Understanding The Role Of *Achyranthes aspera* Extract On Pancreatic Cancer Through Differential Gene Expression Analysis

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY IN BIOINFORMATICS

Submitted by:

AMIT NEGI

(2K18/BIO/01)

Under the supervision of

Prof. Jaigopal Sharma (Professor)

DEPARTMENT OF BIOTECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

JUNE, 2020

DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CANDIDATE'S DECLARATION

I, Amit Negi, 2K18/BIO/01 of M.Tech (Bioinformatics), hereby declare that the project Dissertation titled "**Understanding The Role** *Achyranthes aspera* **Extract On Pancreatic Cancer Through Differential Gene Expression Analysis**" which is submitted by me to the Department of Biotechnology, Delhi Technological University, Delhi in partial fulfilment of the requirements for the award of the degree of Master of Technology, is original and not copied from any source with proper citation. This work has not previously formed the basis for the award of the Degree, Diploma Associateship, Fellowship or other similar title or recognition.

Place: Delhi

Date:

AMIT NEGI

(2K18/BIO/01)

DEPARTMENT OF BIOTECHNOLOGY DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled "Understanding The Role Achyranthes aspera Extract On Pancreatic Cancer Through Differential Gene Expression Analysis" which is submitted by Amit Negi(2K18/BIO/01), Department of Biotechnology, Delhi Technological University, Delhi in partial fulfillment of the requirement for the award of the degree of Master of Technology, is a record of the project work carried out by the student under my supervision. To the best of my knowledge this work has not been submitted in part or full for any Degree or Diploma to this University or elsewhere.

Place: Delhi

Prof. Jaigopal Sharma

Date:

Professor

ACKNOWLEDGEMENT

I, Amit Negi wish to express my profound gratitude and indebtedness to **Prof. Jaigopal Sharma**, Department of Bio-Technology, Delhi Technological University, Delhi for introducing the present topic and for her inspiring guidance, constructive criticism and valuable suggestion throughout the project work. And my sincere thanks to all our friends who have patiently extended all sorts of help for accomplishing this undertaking.

AMIT NEGI (2K18/BIO/01) Dept. of Bio-Technology, DTU, Delhi-110042

Understanding The Role Achyranthes aspera Extract On Pancreatic Cancer Through Differential Gene Expression Analysis

AMIT NEGI

Delhi Technological University, Delhi, India

Email ID: amitnever36@gmail.com

ABSTRACT

Herbal drugs are broadly utilized since ancient time demonstrating that herbs are a developing segment of contemporary, advancely generated medication. India has an old legacy of conventional herbal medication. The medicinal plants are utilized for treatment of different ailments on account of their security and viability. The issue of microbial aversion is developing and the standpoint for the utilization of antimicrobial medications later on is as yet undetermine. So, measures must be made to control the utilization of anti-infection, to create examination to all the more likely comprehend the hereditary systems of obstruction, and to proceed with studies to grow either man-made or innate noval medications. Various researches have been done on herbals affirming their possible antimicrobial property against microbes. One of the methodologies towards accomplishing this goal is the sound restriction of bioactive phytoconstituents. Achyranthes aspera (Amaranthaceae) is a significant therapeutic herb found as a weed all through India. Despite the fact that practically the entire of its parts are utilized in conventional processes of medications, seeds, roots and shoots are the most significant parts which are utilized therapeutically. Using the bioinformatics tools, bioinformatics-analysis has been done when plant extract is used on human cancer cells to find the most significant genes and the level of their expression.

CONTENTS

Candidate's Declaration	i
Certificate	ii
Acknowledgement	iii
Abstract	iv
Contents	v
List of Figures	vi
CHAPTER 1. INTRODUCTION	1
CHAPTER 2. MATERIALS AND METHODS	3
 2.1 Microarray data processing and screening for DEGs 2.2 Pathway and GO enrichment analysis of DEGs 2.3 PPI network construction 2.4 K-means clustering and heat map analysis 	
CHAPTER 3. RESULT	4
3.1 Identification of DEGs from dataset3.2 Functional enrichment analysis of DEGs3.3 Construction of PPI network	
 3.4 Pathway analysis 3.5 k-Means clustering of genes 3.6 Heat map analysis 3.7 Role of some significant genes in other cancers and distance 	seases
CHAPTER 4. CONCLUSION	18
CHAPTER 5. REFERENCES	20

LIST OF FIGURES

S.No.	Details
1	Workflow of the iDEP.91 tool
2	Enrichment tree of DEGs in biological process
3	Enrichment tree of DEGs in molecular function
4	Enrichment tree of DEGs in cellular component
5	Enrichment tree of DEGs in KEGG
6	Protein-protein interaction of the top 100 proteins
7	Pathways analysis in which red and blue indicates the activated and suppressed pathways
8	Heat map analysis of the most significant genes and level of their expression

LIST OF TABLES

S.No.	Details
1	GO enrichment analysis of DEGs in biological process
2	GO enrichment analysis of DEGs in molecular function
3	GO enrichment analysis of DEGs in cellular component
4	GO enrichment analysis of DEGs in KEGG
5	k-Means clustering of the genes into four cluster

1. INTRODUCTION

It has been realized that information with respect to herbs passed on starting with one age then onto the next for a large number of years. As we realize that herbal medications have a powerful conventional base and possibly valuable as a medications regarding well being and viability which leads for medicating various ailments .Plants have an unprecedented capacity to blend aromatic substances which are normally phenols. The therapeutically dynamic plant mixes are generally their secondary metabolites which may be flavonoids, terpenoids, tannins, and so forth that are accountable for defending the plants from microbes, pest and small insects. In the ongoing past there has been a huge increment in the utilization of plant based well being items in creating just as created nations bringing about a fast development of herbal items across the world.

Achyranthes aspera is one of the plant which is used as a herbal plant. Amaranthaceae is the family which A. aspera linn. belongs , is a yearly, hardened erect, enduring herb, 1-2m tall, having a woody base, usually found as a weed on side of the road. Achyranthes aspera is a notable plant medicate in Ayurved Allopathic, Siddha, homeopathic. It is also used in the home remedies. It is the yearly bush discovered dispersed all through the tropical and subtropical districts. It is normally found in various part of the world like India, Sri Lanka, Baluchistan, Australia, Tropical Asia and America. This tropical plant is referred to by various names in different languages across India, for example, in hindi it is known as Chirchita, likewise in Aghedi (Gujarati), Apamarga (Sanskrit), Apang (Bengali). The plant is utilized in indigenous arrangement of medication as antiarthritic, antifertility, diuretic, anti-helminthic, antiviral, antihypertensive, . It is additionally valuable to treat renal dropsy, skin surge, nasal, inflammation, asthma, malaria and snake nibbles.

This plant juice is used in treating of dysentery, boils, diarrhea. It also help to treat haemorrhoids, itches and skin related problems too. The secondary metabolites which are present in the plant are saponins, alkaloids, steroids and terpenoids. The secondary metabolite flavonoids have appeared to slow down the progession of tumor cells and mainly act as an anti-inflammatory factors

According to the conventational healers if the *Achyranthes aspera* is added then it enhances the viability of most of the medication of plant origin. So the current study ia an attempt to analyse the more prominent investigation of the pharmacological utilization of the *Achyranthes aspera* through the bioinformatics tools.

2. MATERIALS AND METHODS

2.1 Microarray data processing and screening for DEGs

In the study the expression profile GSE44290 from the GEO database was used to identify DEGs. The series GSE44290 provides the microarray data which contains the differentially expressed genes. To determine the DEGs GEO2R tool is used. Then excel file was produced which having the DEGs.

2.2 Pathway and GO enrichment analysis of DEGs

To understand the functional changes of the DEGs, their biological processes (BP), molecular function (MF) and cellular components (CC) were analysed by iDEP.91.

Enrichment of pathways was also performed by using iDEP.91.

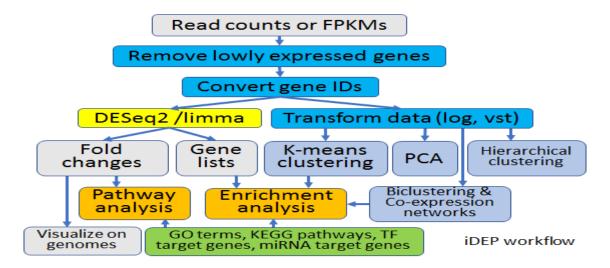


Fig1. Workflow of the iDEP.91 tool

2.3 PPI network construction

A PPI network was constructed using STRING database on iDEP.91 for the proteins. In which how proteins are interacted with each other is shown.

2.4 k-Means clustering and heat map analysis

k-Means clustering method includes clustering genes into groups based on their expression pattern across all samples and heat map was used to find out the level of expression of the most significant genes.

3. RESULTS

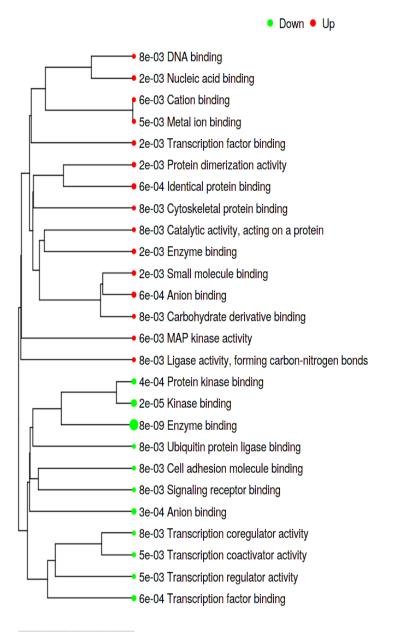
3.1 Identification of DEGs

The series GSE44290 was to identify the DEGs between the treated and untreated cell with the *Achyranthes aspera* using the tool GEO2R. Fold change of >|1.5| and p-value < 0.05 were used to identify the DEGs. The total genes of 1671 were identified in which 720 genes were downregulated and 951 genes are upregulated.

3.2 Functional enrichment analysis of DEGs

To understand the function of the DEGs, their biological processes (BP), molecular function (MF) and cellular components (CC) were analysed by iDEP.91.

For the biological process:

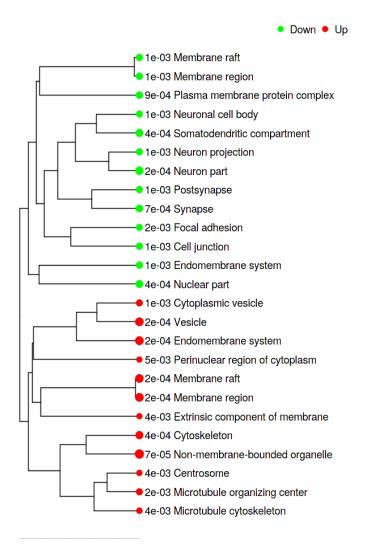

Fig 2. Enrichment tree of DEGs in biological process

	Direction	adj.Pval	nGenes	Pathways
				Response to
	Down			organic
1	regulated	5.51E-13	170	substance
				Response to
	Down			endogenous
2	regulated	8.08E-11	98	stimulus
				Cellular
				response to
	Down			organic
3	regulated	8.08E-11	142	substance
				Cellular
				response to
	Down			endogenous
4	regulated	9.35E-11	87	stimulus
				Response to
				oxygen-
	Down			containing
5	regulated	9.82E-11	98	compound
				Cellular
				response to
	Down			chemical
6	regulated	3.45E-10	159	stimulus
	-			Regulation of
				multicellular
	Down			organismal
7	regulated	4.56E-09	150	process
				Positive
				regulation of
				multicellular
	Down			organismal
8	regulated	4.56E-09	100	process
				Regulation of
	Down			cell
9	regulated	5.56E-09	94	proliferation
	Down			Cell
10	regulated	1.86E-08	107	proliferation
-	Down			Cell
11	regulated	4.05E-08	180	differentiation
<u> </u>	Down			Regulation of
12	regulated	4.50E-08	164	signaling
12	regulated	- .J0L-08	104	Cellular
	Down			developmental
13	regulated	4.50E-08	186	process
13	regulated	4.301-00	100	Regulation of
	Down			cell
14	regulated	5.37E-08	162	communication
14		J.J/E-00	102	
45	Down	F 405 00	450	Animal organ
15	regulated	5.42E-08	158	development

				. .
				Response to
				organic
16	Up regulated	2.88E-08	187	substance
				Cellular
				response to
				chemical
17	Up regulated	3.81E-08	185	stimulus
18	Up regulated	4.08E-08	69	Import into cell
				Cellular
				response to
				organic
19	Up regulated	6.69E-08	159	substance
				Response to
				organonitrogen
20	Up regulated	1.10E-07	74	compound
21	Up regulated	1.42E-07	61	Endocytosis
				Response to
				nitrogen
22	Up regulated	5.17E-07	77	compound
				Response to
				endogenous
23	Up regulated	5.35E-07	103	stimulus
				Response to
24	Up regulated	1.61E-06	47	toxic substance
				Tube
25	Up regulated	1.92E-06	72	development
				Cellular
				catabolic
26	Up regulated	2.15E-06	134	process
	1			
27	Up regulated	2.33E-06	130	Cell death
		2.002.00	100	Regulation of
28	Up regulated	2.33E-06	106	cell death
20	opregulated	2.332 00	100	Homeostatic
29	Up regulated	2.33E-06	113	
29	opregulated	2.336-00	112	process
20	المعادية والمعاد		05	Response to
30	Up regulated	3.08E-06	85	cytokine

Table 1. GO enrichment analysis of DEGs in biological process

For the molecular function:


Fig 3. Enrichment tree of DEGs in molecular function

	Direction	adj.Pval	nGenes	Pathways
	Down			
1	regulated	8.28E-09	115	Enzyme binding
	Down			
2	regulated	2.42E-05	46	Kinase binding
	Down			
3	regulated	0.00028489	120	Anion binding
	Down			
4	regulated	0.00041848	39	Protein kinase binding
	Down			Transcription factor
5	regulated	0.00058318	39	binding

	Down			Transcription coactivator
6	regulated	0.00472788	23	activity
	Down	0.001/2/00	20	Transcription regulator
7	regulated	0.00485576	86	activity
	Down			
8	regulated	0.00830411	73	Signaling receptor binding
	Down			Cell adhesion molecule
9	regulated	0.00830411	29	binding
	Down			Transcription coregulator
10	regulated	0.00847612	32	activity
	Down			Ubiquitin protein ligase
11	regulated	0.00847612	21	binding
	Up			
12	regulated	0.00058123	99	Identical protein binding
	Up			
13	regulated	0.00058123	145	Anion binding
	Up			
14	regulated	0.00190059	194	Nucleic acid binding
	Up			Transcription factor
15	regulated	0.00190059	45	binding
10	Up	0.00100050	120	
16	regulated	0.00190059	130	Small molecule binding Protein dimerization
17	Up regulated	0.00190059	76	activity
1/	Up	0.00190039	70	
18	regulated	0.00193541	113	Enzyme binding
10	Up	0.00155541	115	
19	regulated	0.00465616	192	Metal ion binding
	Up			
20	regulated	0.00598895	5	MAP kinase activity
	Up			
21	regulated	0.00598895	194	Cation binding
	Up			
22	regulated	0.00815049	122	DNA binding
	Up			Cytoskeletal protein
23	regulated	0.00815049	55	binding
	Up			Ligase activity, forming
24	regulated	0.00815049	8	carbon-nitrogen bonds
	Up			Carbohydrate derivative
25	regulated	0.00815049	112	binding
	Up			Catalytic activity, acting on
26	regulated	0.00815049	111	a protein

Table 2. GO Enrichment analysis of the DEGs for the molecular function $\label{eq:constraint}$

For the cellular component:

Fig 4. Enrichment tree of DEGs in cellular component

	Direction	adj.Pval	nGenes	Pathways
	Down			
1	regulated	0.000236	82	Neuron part
	Down			Somatodendritic
2	regulated	0.00045	47	compartment
	Down			
3	regulated	0.00045	176	Nuclear part
	Down			
4	regulated	0.000655	60	Synapse
	Down			Plasma membrane protein
5	regulated	0.000864	40	complex

	Down			
6	regulated	0.001037	173	Endomembrane system
	Down			
7	regulated	0.001037	24	Membrane region
	Down			
8	regulated	0.001223	63	Cell junction
	Down			
9	regulated	0.001223	23	Membrane raft
10	Down	0.001075	64	· · · ·
10	regulated	0.001275	61	Neuron projection
11	Down	0.001214	20	Destaurages
11	regulated	0.001314	36	Postsynapse
12	Down regulated	0.001496	30	Neuronal cell body
12	Down	0.001490		
13	regulated	0.001985	27	Focal adhesion
10	Up	0.001505		Non-membrane-bounded
14	regulated	6.91E-05	209	organelle
	Up			
15	regulated	0.00015	219	Endomembrane system
	Up			
16	regulated	0.000169	191	Vesicle
	Up			
17	regulated	0.000169	30	Membrane region
	Up			
18	regulated	0.000175	29	Membrane raft
10	Up	0.000251	110	Cutoskolatan
19	regulated	0.000351	116	Cytoskeleton
20	Up regulated	0.001499	123	Cytoplasmic vesicle
20	Up	0.001400	123	Microtubule organizing
21	regulated	0.001661	48	center
	Up		.0	
22	regulated	0.003836	67	Microtubule cytoskeleton
	Up			,
23	regulated	0.004408	35	Centrosome
	Up			Extrinsic component of
24	regulated	0.004408	24	membrane
	Up			Perinuclear region of
25	regulated	0.005049	44	cytoplasm

Table 3. GO enrichment analysis of DEGS in cellular component

For the KEGG:

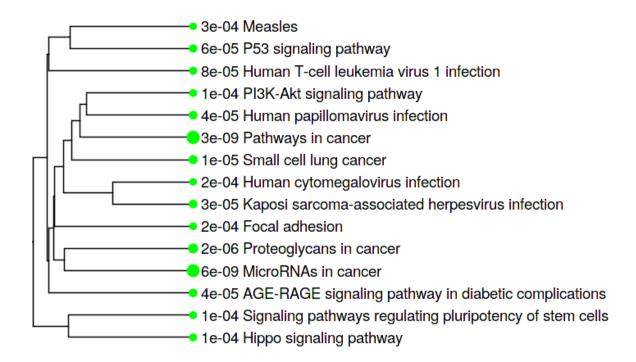


Fig 4. GO enrichment analysis of DEGs in KEGG

	Direction	adj.Pval	nGenes	Pathways
	Down			
1	regulated	3.18E-09	76	Pathways in cancer
	Down			
2	regulated	6.43E-09	34	MicroRNAs in cancer
	Down			
3	regulated	2.46E-06	35	Proteoglycans in cancer
	Down			
4	regulated	1.41E-05	21	Small cell lung cancer
	Down			Kaposi sarcoma-associated
5	regulated	3.48E-05	31	herpesvirus infection
	Down			AGE-RAGE signaling pathway
6	regulated	3.53E-05	21	in diabetic complications
	Down			Human papillomavirus
7	regulated	3.53E-05	45	infection

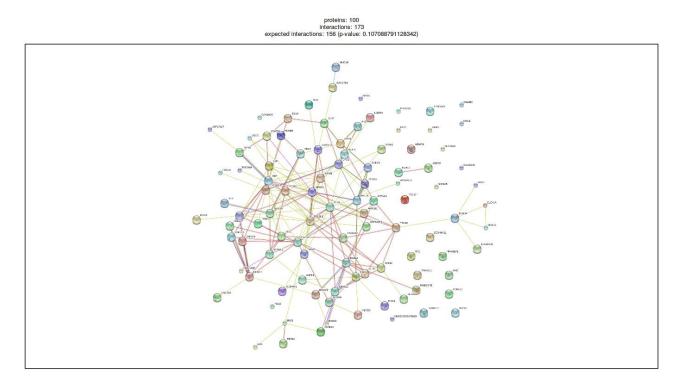

	Down			
8	regulated	6.09E-05	17	P53 signaling pathway
	Down			Human T-cell leukemia virus 1
9	regulated	7.86E-05	33	infection
	Down			
10	regulated	0.000107	26	Hippo signaling pathway
	Down			
11	regulated	0.000136	45	PI3K-Akt signaling pathway
	Down			Signaling pathways regulating
12	regulated	0.00014	24	pluripotency of stem cells
	Down			
13	regulated	0.000166	30	Focal adhesion
	Down			Human cytomegalovirus
14	regulated	0.000244	32	infection
	Down			
15	regulated	0.0003	23	Measles

Table 4. GO enrichment analysis of DEGs in KEGG

3.3 Construction of PPI network

For the PPI network construction, STRING database was used in top 100 proteins were taken.

PPI network for proteins:

Fig 6. Protein protein interaction network of top 100 proteins

3.4 Pathways analysis

In this basically different pathways were analysed, red and blue indicates activated and suppressed pathways, respectively.

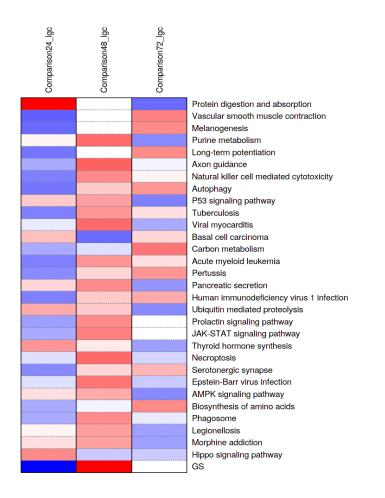


fig 7. Pathways analysis in which red and blue indicates the activated and suppressed pathways

3.5 k-means clustering analysis

Cluster	adj.Pval	nGenes	Pathways	Genes
A	1.29E-06	19	MicroRNAs in cancer	CDCA5, EGFR, APC, IKBKB, MDM2, MDM4, MMP16, NFKB1, PIM1, PLCG1, DDIT4, PRKCA, FSCN1, BRCA1, TP53, UBE2I, VEGFA, CD44, HDAC4
A	4.86E-06	36	Pathways in cancer	ADCY2, DVL1, EGFR, FGF2, FGFR1, GNAS, GSK3B, BIRC5, IGF1, IKBKB, IL2, IL3RA, IL4, IL6ST, ITGA2, JUN, LAMC1, LAMC2, SMAD2, SMAD4, MDM2, NFKB1, NFKB2, PIM1, PLCG1, PMAIP1, CYCS, PRKCA, RALGDS, CXCL12, STAT1, TP53, VEGFA, CASP7, CBL
A	0.00015	25	PI3K-Akt signaling pathway	CREB3, EGFR, FGF2, FGFR1, GH2, GSK3B, IGF1, IKBKB, IL2, IL3RA, IL4, ITGA2, LAMC1, LAMC2, MDM2, NFKB1, PDPK1, DDIT4, PRKCA, SPP1, BRCA1, TP53, VEGFA, VWF, YWHAZ
А	0.00015	13	Th17 cell differentiation	HLA-DRB1, IKBKB, IL1B, IL2, IL4, IL6ST, JUN ,LCK, SMAD2, SMAD4, NFKB1, PLCG1, STAT1
A	0.000295	12	T cell receptor signaling pathway	FYN, GSK3B, IKBKB, IL2, IL4, JUN, LCK, NFKB1, PDPK1, PLCG1, PTPRC, BCL10
А	0.000295	17	Proteoglycans in cancer	EGFR, FGF2, FGFR1, FLNA, GAB1, ANK1, IGF1, ITGA2, SMAD2, MDM2, PDPK1, PLCG1, PRKCA, TP53, VEGFA, CBL, CD44
A	0.000295	11	Colorectal cancer	EGFR, GSK3B, APC, BIRC5, JUN, SMAD2, SMAD4, PMAIP1, CYCS, RALGDS, TP53
А	0.000304	10	P53 signaling pathway	IGF1, IGFBP3, MDM2, MDM4, GTSE1, PMAIP1, CYCS, TP53, CCNB2, EI24
A	0.000517	14	Non-alcoholic fatty liver disease (NAFLD)	CYC1, GSK3B, IKBKB, IL1B, JUN, NDUFS7, NDUFC2, NFKB1, NDUFA13, CYCS, PRKAB2, NDUFA4L2, CASP7, ADIPOQ
A	0.00061	9	Inflammatory bowel disease (IBD)	HLA-DRB1, IL1B, IL2, IL4, IL18, JUN, SMAD2, NFKB1, STAT1
A	0.000704	11	NF-kappa B signaling pathway	CYLD, IKBKB, IL1B, LCK, NFKB1, NFKB2, PLCG1, CXCL12, UBE2I, BCL10, CD40
A	0.000704	11	AGE-RAGE signaling pathway in diabetic complications	IL1B, JUN, SMAD2, SMAD4, NFKB1, PIM1, PLCG1, PRKCA, CCL2, STAT1, VEGFA
A	0.001389	21	Human papillomavirus infection	CREB3, DLG2, DLG3, DVL1, EGFR, GNAS, GSK3B, APC, IKBKB, ITGA2, LAMC1, LAMC2, MDM2, NFKB1, PARD3, PSEN1, SPP1, STAT1, TP53, VEGFA, VWF

In this analysis four clusters of genes were made using the iDEP.91 tool.

			Pancreatic	EGFR, IKBKB, SMAD2, SMAD4, NFKB1, RALGDS, STAT1,
А	0.001566	9	cancer	TP53, VEGFA
•	0.001010	10	Anontosia	CTSB, BIRC5, IKBKB, IL3RA, JUN, NFKB1, PDPK1, PMAIP1,
A	0.001919	12	Apoptosis	CYCS, TP53, TUBA4A, CASP7
				CDKN1A, CDKN1B, TXNRD2, CREBBP, E2F1, EDN1, EPOR,
				ERBB2, FGF5, FH, GNA11, GRB2, HMOX1, HRAS, KLK3,
				ITGB1, KIT, KRAS, MET, PLCB2, PML, WNT4, PPARG,
				MAPK1, MAPK8, BAK1, RAD51, RALA, RELA, BCL2L1,
_			Pathways in	STAT3, TRAF2, WNT10B, BIRC7, CALM3, RASSF5, CASP8,
В	2.10E-07	38	cancer	CDC42
			HIF-1 signaling	CDKN1A, CDKN1B, CREBBP, DN1, EIF4E, ERBB2, GAPDH,
В	1.21E-06	15	pathway	HK2, HMOX1, MAPK1, RELA ,STAT3, TEK, TLR4, HKDC1
			Pancreatic	CDKN1A, E2F1, ERBB2, KRAS, MAPK1, MAPK8, BAK1,
В	1.14E-05	12	cancer	RAD51, RALA, RELA, BCL2L1, STAT3
				CDKN1A, TIRAP, CREBBP, E2F1, GRB2, HRAS, HSPG2,
				KRAS, MAPK1, MAPK8, RELA, SLC10A1, STAT3, TLR2,
В	1.44E-05	17	Hepatitis B	TLR4, CASP8, CASP10
			Chronic	
			myeloid	CDKN1A, CDKN1B, E2F1, GRB2, HRAS, KRAS, MAPK1,
В	6.33E-05	11	leukemia	BAK1, PTPN11, RELA, BCL2L1
			Kaposi	
			sarcoma- associated	CDKN1A, CREBBP, E2F1, HRAS, ICAM1, KRAS, LYN,
			herpesvirus	PPP3CA, MAPK1, MAPK8, BAK1, RELA, STAT3, SYK,
В	6.73E-05	17	infection	TRAF2, CALM3, CASP8
			MicroRNAs in	CDKN1A, CDKN1B, CREBBP, E2F1, ERBB2, GRB2, HMOX1,
С	6.89E-05	15	cancer	HRAS, ITGB3, KRAS, MET, MAPK1, BAK1, STAT3, CDC25A
			Drestata	
с	6.89E-05	12	Prostate cancer	CDKN1A, CDKN1B, CREBBP, E2F1, ERBB2, GRB2, HRAS, KLK3, KRAS, MAPK1, RELA, TMPRSS2
		77	Non-small cell	CDKN1A, E2F1, ERBB2, GRB2, HRAS, KRAS, MAPK1,
С	6.89E-05	10	lung cancer	BAK1, STAT3, RASSF5
				CEBPB, TIRAP, CREBBP, IL1A, IL10, IL10RB, PPP3CA,
				MAPK1, MAPK8, RELA, SYK, TLR2, TLR4, CALM3, CASP8,
С	9.32E-05	16	Tuberculosis	CASP10
				CSF1, FGF5, KSR2, GRB2, HRAS, KIT, KRAS, MET, MAPK1,
			Ras signaling	MAPK8, PTPN11, RALA, RELA, BCL2L1, TEK, CALM3,
С	0.000187	18	pathway	RASSF5, RIN1
				COX8A, GAPDH, APOE, APP, NDUFA10, NDUFAB1,
			Alzheimer	PLCB2, PPP3CA, MAPK1, SDHD, ADAM17, CACNA1S,
С	0.000188	15	disease	CALM3, CASP8, COX5A
				CLTC, COX8A, CREBBP, DNAH5, DNAI1, NDUFA10,
			Huntington	NDUFAB1, PLCB2, POLR2H, POLR2L, PPARG, SDHD,
С	0.000188	16	disease	SOD1, TBP, CASP8, COX5A

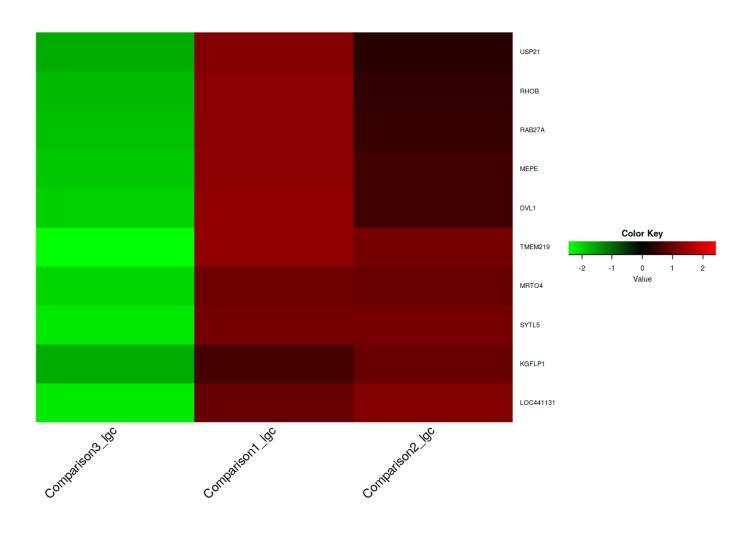

С	0.000188	12	Toxoplasmosis	IL10, IL10RB, ITGB1, MAPK1, MAPK8, RELA, BCL2L1, STAT3, TLR2, TLR4, BIRC7, CASP8
D	0.000257	16	Proteoglycans in cancer	CDKN1A, ERBB2, GRB2, HRAS, HSPG2, ITGB1, ITGB3, KRAS, MET, WNT4, MAPK1, PTPN11, STAT3, TLR2, TLR4, WNT10B

Table 5. k-Means clustering of the genes into four cluster

3.6 Heat map analysis

Through the heat map analysis we found the most significant genes and their level of expression at different time point:

Fig 8. Heat map analysis in which the most significant genes and their level of expression at different time point

3.7 Role of some significant genes in other cancer and diseases

- **USP21 :-** This gene, when it is overly expressed which leads to the formation of the non small cell lung cancer(NSCLC). This gene also supports the NSCLC cell proliferation.
- **RAB27A** :- when this gene is over expressed which increase the malignancy in breast cancer cells through the secretion of IGF-II(Insulin Like Growth Factor-II).
- **MEPE :-** When the over expression this gene is achieved which leads to decrease in bone mass and ultimately refers to osteomalacia. It causes bone related problem too.
- **DVL1 :-** When the overexpression of this gene take place which promotes the prostrate cancer by the beta-catenin signalling. It is also upregulated in the cervical cancer.
- **SYTL5** :- Basically this gene is a vesicle trafficking gene, so when this gene gets up-regulated which promotes the expression of protein in breast tumours.

4. CONCLUSION

In India the *Achyranthes aspera* is a significant herbal plant which is found as a weed. In spite of the fact that practically the entirety of its parts are utilized in conventional frameworks of drugs, seeds, shoots and roots. These are the main significant parts that are utilized therapeutically. Using the bioinformatics tools, bioinformatics-analysis has been done on the plant to find the most significant genes which are downregulated so as to treat the cancer cells. Many cancer relatead genes were downregulated by the use of the plant extract over the different period of time which show the pharmacological behaviour of *Achyranthes aspera*. Now a days situation is that we are utilizing this weed in different sort of ailments and disease. Its pharmacological qualities have the incredible capability of healing up sicknesses. The herbal plants are utilized for treatment of different illnesses on account of their well being and viability. This study shows that the plant is having medicinal properties by which it is able to downregulate some genes which are upregulated in the cancer cells.

REFERENCES

- 1. Shankar D, Ved DK. "A balanced Perspective for Management of Indian Medicinal Plants" Indian Forester. 2003;129:275–87.
- 2. Vijaya Kumar S, Sankar P, Varatharajan R. Anti-inflammatory activity of roots of *A. aspera*. Pharm Biol. 2009;47:973–5.
- 3. The Wealth of India; a dictionary of Indian raw materials and industrial products. 1ST ed. III-C. New Delhi: CSIR; 1985. pp. 66–7.
- 4. Dwivedi S, Dubey R, Mehta K. *Achyranthes aspera* linn. (Chirchira): A magic herb in folk medicine. Ethno Leafl. 2008;12:670–6.
- 5. Elumalai EK, Chandrasekaran N, Thirumalai T. *Achyranthes aspera* leaf extracts inhibited fungal growth. Int J Pharmtech Res. 2009;1:1576–9.
- 6. Goyal BR, Goyal RK, Mehta AA. Phyto-pharmacology of *Achyranthes aspera*: A Review. Pharmacogn Rev. 2007;1:143–50.
- Bhosale UA, Radha Y, Pophale P, Zambare M, Somani RS. Antinociceptive evaluation of an ethanol extract of *Achyranthes aspera* (Agadha) in animal models for nociception. Int J Phytomed. 2010;2:440–5.
- 8. Alam MT, Karim MM, Khan SN. Antibacterial activity of different organic extracts of *Achyranthes aspera* and Cassia Alata. J Sci Res. 2009;1:393–8.
- 9. Vetrichelvan T, Jegadeesan M. Effect of alcohol extract of *Achyranthes aspera* Linn. on acute and subacute inflammation. Phytother Res. 2003;17:77–9.
- Khandelwal KR. Practical Pharmacognosy. 19th ed. Pune: Nirali Prakashan; 2008. pp. 149–56.
- Organization for Economic Cooperation and Development (OECD). OECD guidelines for testing of chemicals test no. 423, acute oral toxicity. France: OECD Publishing; 2006. pp. 1–27.
- 12. Winter CA, Risley EA, Nuss Gw. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med. 1962;111:544–7.
- 13. Perianayagam JB, Sharma SK, Pillai KK. Anti-inflammatory activity of Trichodesma indicum root extract in experimental animals. J Ethnopharmacol. 2006;104:410–4.
- 14. Sutar N, Garai R, Sharma U, Goyal P, Yadav G. Pharmacognostic studies of the Achyranthes aspera leaves. Pharmacie Globale (IJCP) 2011;5:1–3.
- 15. Bafna AR, Mishra SH: Arsh Pharmaceuticals 2004; 45(4): 343-351.
- 16. Banerji A, Chadha MS: Insect moulting hormone from *Achyranthes aspera* Linn., Phytochemistry 2008; 9: 16-71.
- 17. Basu NK, Singh HK and Aggarwal OP: Chemical investigation of *Achyranthes aspera*, J. Pro. Inst .Chem. 2007; 29 (1): 33-58.
- 18. Charde: Achyranthes aspera Linn. (Chirchira), A Magic Herb in Folk Medicine, IJBAR 2011; 2 (6): 228-240.
- 19. Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN and Ray C: Screening of Indian plants for biological activity: part I", Ind. J. Exp.Biol. 2008; .6: 232-247.
- 20. Girach RD and Khan ASA: Ethnomedicinal uses of *Achyranthes aspera* leaves in Orissa, India, Int J Pharmacogn 2011; 30: 113-115.

- 21. Gokhale AB, Damre AS, Kulkami KR and Saraf MN: Preliminary evaluation of antiinflammatory and anti-arthritic activity of *S. lappa, A. speciosa* and *A. aspera*, Phytomed. 2012; 9(5): 433-437.
- 22. Han ST, Un C: Cardiac toxicity caused by *Achyranthes aspera*, Vet Hum Topical. 2010; 45(4): 212-213.
- 23. Neogi NC, Garg RD and Rathore RS: Preliminary pharmacological studies on Achyranthine, Ind. J. Pharm. 2011; 32:43 46.
- 24. Paul D, De D, Ali KM, Chatterjee K, Nandi DK and Ghosh D: Contraception 2010; 81(4): 355-361.
- 25. Tyler V: Phytomedicines in Western Europe: their potential impact on herbal medicine in the United States, Herbalgram 2013; 30: 24-30.
- 26. Wesely Edward Gnanaraj, Johnson Marimuthu Antonisamy, Mohanamathi RB, Kavitha and Marappampalyam Subramanian: *In vitro* clonal propagation of *Achyranthes aspera* L. and *Achyranthes bidentata* Blume using nodal explants, Asian Pacific Journal of Tropical Biomedicine 2012; 1: 1-5.
- 27. Zafar R: Medicinal Plants of India, CBS publishers & distributors 2009; 2: 1-15.