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ABSTRACT 

HEMISPHERIC ASYMMETRY ANALYSES THROUGH 

COMPUTATIONAL NEUROSCIENCE MODELS WITH EMPHASIS 

ON EEG MICROSTATES: EEG-fMRI DATA INTEGRATION 

APPROACH  

 

 It is often assumed that there is a direct correlation between the knowledge an individual 

possesses and that individual's actions. However, many hidden processes influence decision-

making processes. Asymmetric processing of affective, cognitive, and sensory information has 

long been one of the fascinating properties of human brain function. Thus, understanding 

hemispheric asymmetry as one of those hidden processes can bridge the gap between what a 

person knows and what one decides to do. 

One widely used technique for analysis of brain asymmetry is Electroencephalography 

(EEG), whose simplicity, portability, and high temporal resolution enable its usage in a relatively 

wide-range of real-world environments. Howbeit, it also poses a drawback of less spatial 

resolution as the localization of an active site is limited to several centimeters. The hemispheric 

difference between EEG alpha activity over the frontal regions has been termed as frontal EEG 

asymmetry. This phenomenon was first linked to patterns of emotion processing decades ago. 

functional Magnetic Resonance Imaging (fMRI) is another technique that provides a unique view 

of the human brain by detecting changes in blood oxygenation. It poses an advantage of high 

spatial resolution; however, it possesses a low temporal resolution. The hemispheric dominance 

in fMRI has been called the laterality index. The laterality index enables one value per subject 

per contrast as a descriptor for activation pattern based hemispheric dominance. Also, 
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simultaneous recordings and analysis of EEG-fMRI techniques, which can counteract the 

limitations posed by EEG-FMRI, have recently gained attention and can be gauged for 

effectiveness in the hemispheric asymmetry research.  

The current thesis aims to corroborate the hemispheric asymmetry research by exploring 

the resting-state EEG/fMRI hemispheric asymmetry models after simultaneous EEG-fMRI data 

acquisition. These resting-state models of hemispheric asymmetry in the brain may serve as 

potential parameters for comprehending the human actions when engaged in any exogenously 

directed task. Thus, the standard resting frontal alpha EEG hemispheric asymmetry model was 

first examined before engagement in a Situational awareness (SA) task to vindicate the 

relationship between pre-task resting asymmetry and SA-task performance. SA is the knowledge 

of the environment, and maintenance of SA is crucial for optimal performance in the aviation 

and military domain. Thus, understanding the linkage of the neural mechanisms underlying the 

pre-task resting frontal alpha asymmetry model with subsequently performed SA-task can 

improve SA. For this purpose, initially, an SA-task with influence from the Stroop effect was 

designed and developed, and pre-task resting EEG absolute alpha power and its frontal alpha 

hemispheric asymmetry were assessed. This study revealed a strong association of SA-task 

performance measures with resting frontal alpha hemispheric asymmetry. Further, the neural 

mechanisms underlying pre-SA task resting absolute alpha power and its frontal asymmetry, as 

assessed through the EEG-informed fMRI approach, significantly influenced the SA-task's 

neural mechanisms. 

After examining the relationship between the pre-task resting alpha EEG asymmetry 

model with subsequently performed SA-task, the association of this standard asymmetry model 

with affect and approach/withdrawal measures of an individual was gauged. The purpose of this 
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study was to understand the significance of real-time standalone recordings of pre-task resting 

alpha EEG asymmetry in terms of its connectedness with measures of positive/negative affect 

and approach/withdrawal behavior. Further, to strengthen the findings, the mapping between pre-

task resting alpha EEG asymmetry model and fMRI through EEG-informed fMRI analysis was 

explored. For this purpose, initially, the robust correlation of standard resting frontal alpha 

asymmetry with affect and approach/withdrawal measures was carried out. Next, the neural 

underpinnings and Hemodynamic Lateralization Index, HLI (based on these neural 

underpinnings) for standard resting frontal alpha asymmetry were assessed. The results yielded 

no significant relationship between the standard resting frontal asymmetry and its HLI with any 

psychological measures. 

This ambivalence on the validity of standard resting frontal alpha asymmetry in terms of 

its association with affect and approach/withdrawal psychological measures motivated us 

towards the estimation of a novel microstate-based frontal alpha asymmetry model and 

assessment of this model’s linkage with positive/negative affect and approach/withdrawal 

measures. The microstates represent global electrical brain activity on the scalp that remains 

semi-stable for brief transient periods. The utilization of microstates was based on the evidence 

that supported the importance of stable EEG patterns in bringing forth the interrelation of affect 

and approach/withdrawal measures with resting frontal alpha asymmetry. The results revealed 

that the microstate-based resting frontal alpha asymmetry model correlated significantly with 

negative affect, and its neural underpinning’s HLI significantly correlated with positive/Negative 

affect and approach/withdrawal measures. Thus, the novel microstate-based microstate-based 

resting frontal alpha asymmetry model proved efficacious in bringing forth the association with 

affect and approach/withdrawal measures. 
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In addition, to understand the role of subcortical regions, and their interaction with 

cortical regions in bringing forth the hemispheric asymmetries of affect and approach/withdrawal 

behavior, a study based on the hemispheric asymmetry model of resting fMRI graph theory 

functional connectivity metrics was carried out, as the viability to detect subcortical signals 

through EEG is still debatable. In this analysis, we report the neuroimaging finding based on 

Region of Interest (ROI) based analysis and graph-theory measures for global networks and sub-

networks. The study revealed the involvement of emotion and memory-related subcortical-

cortical interactions in positive and negative affect and basal ganglia structures in approach-

withdrawal dichotomy. Further, lateralization of the strength of degree-measures of the cortical-

regions vital for subcortical-cortical interaction revealed higher connectivity within the left-

hemisphere for affective measures. 

Thus, the current thesis demonstrates the benefit of assessing the standard resting 

hemispheric asymmetry model before a complex cognitive task such as SA, which holds 

paramount importance for the ergonomics community and for military/aviation domains. Further, 

the outcomes also offer an unprecedented attempt towards the development of a novel 

microstates-based resting hemispheric asymmetry model for bringing forth the relationship of 

resting EEG based asymmetry with psychological measures of affect and approach/withdrawal 

behavior Also, the key findings of subcortical regions and their interaction with cortical regions 

dominating the affect and approach/withdrawal measure can be further explored in clinical as 

well as task-based studies. 
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1.            CHAPTER ONE 

  INTRODUCTION 

1.1 STRUCTURAL AND FUNCTIONAL ASPECTS OF HEMISPHERIC 

ASYMMETRY IN BRAIN 

Hemispheric asymmetry is a paramount aspect of the organization of the human brain, 

and comprehending it’s functional specialization is a core issue in neuroscience research (Rogers 

et al., 2013; A. W. Toga et al., 2009; Arthur W. Toga & Thompson, 2003). A long-established 

theory states that a deep grove known as the medial longitudinal fissure separates the human 

brain into two halves, namely the right and left hemispheres. Moreover, the corpus callosum 

binds the right and the left hemispheres of the brain and processes many cognitive and sensory-

motor signals by integration and transferral of information from both hemispheres (Mooshagian, 

2008; Roland et al., 2017). However, though almost every region in one hemisphere has an 

analogous area in the other, still the two brain hemispheres in humans differ in their anatomy, 

behavior, and function. Toga and Thomson (Arthur W. Toga & Thompson, 2003) emphasized 

the involvement of factors such as developmental, hereditary, pathological, evolutionary, and 

experiential in forming the basis for the existence of lateralization in the brain. One of the facets 

of macroscopic anatomical asymmetry in the human brain is the concept of Petalia, wherein a 

particular hemisphere protrudes in the direction of the other hemisphere. A typical observation of 

brain asymmetry is depicted by the left occipital lobe and the right frontal lobe petalia. Also, a 

notable distortion exists in the hemispheres and is known as Yakovlevian torque (see Figure 1.1) 

(Hugdahl, 2011). This torque, in addition to the frontal and occipital protrusions, encloses the 
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variability in the widths of frontal and occipital regions, with the right frontal area and left 

occipital region being more wider than their counterparts (Kong et al., 2018; Rentería, 2012).  

                                

Figure 1.1 Three dimensional rendered view of magnetic resonance imaging (MRI) scan depicting the 

left occipital lobe petalia and right frontal lobe petalia with noticeable differences in occipital (O) and 

frontal (F) lobes. The figure portrays the yakovlevian torque with structures surrounding the right Sylvian 

fissure torqued forward relative to their left counterparts. Adapted from Arthur W. Toga & Thompson 

(2003). 

 

Further, one of the earliest observations that indicated the asymmetrical nature of the 

human brain were found in language-related abilities and handedness (Knecht et al., 2000; 

Rentería, 2012). Broca (Broca, 1861) and Wernicke (Wernicke, 1974) presented the most initial 

view on language lateralization in the brain. They reported that strokes and tumors in the left-

hemisphere severely damaged the language-related abilities. Anterior regions of the left-

hemisphere, including pars opercularis and triangularis regions of inferior frontal gyrus (also 

known as Broca’s area), were linked to language production. In contrast, language 
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comprehension was found to be associated with temporal-parietal areas, including Wernicke’s 

area (Brodmann area (BA) 21 and BA 22, BA 39 and BA 40, BA 37) (Ardila et al., 2016). Also, 

the structural and functional asymmetries of planum temporale (language-processing structure) 

and other auditory regions have been correlated to the handedness (Foundas et al., 1995).  

Moreover, evidence reveals the pivotal role of hemispheric asymmetries during 

engagement in visual-spatial and attention tasks (Geffen et al., 1972; O’Regan & Serrien, 2018). 

Further, the association of hemispheric asymmetry with the performance in tasks have also been 

explored. Shulman et al. (2010) measured the hemispheric asymmetry during cued-target 

detection and peripheral cue stimulus, evoking spatial attention shifts. Their study demonstrated 

the right-lateralized activity in temporoparietal junction for spatial attention shifts and right-

hemispheric dominance in the frontal, temporal, parietal, and temporoparietal regions during the 

target-detection task. Besides, few brain asymmetry models have also been linked to emotional 

processing (Alves et al., 2008). The first one, called the right hemisphere hypothesis, assumed 

the dominant functioning of the right hemisphere in emotional processing. In contrast, the second 

named the valence hypothesis, assumed the dominant role of the left hemisphere in positive 

emotions and the right hemisphere in negative ones. Both the premises have been supported to 

some extent by visual-field tasks evoking emotions (Canli, 1999; Wyczesany et al., 2018). Also, 

findings (Killgore & Yurgelun-Todd, 2007) hint the concurrent operation of both the hypotheses, 

suggesting these two models as disparate components of a much complex system for emotional 

processing. 

Another studied domain is the relationship between hemispheric asymmetry and task 

performance. Everts et al. (2009) found the correlation of higher verbal IQ with stronger 

language lateralization using functional Magnetic Resonance Imaging (fMRI) modality. In yet 
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another task-based study (Chiarello et al., 2009), a positive relationship was observed between 

the degree of lateralization and an individual’s reading skills. However, another study (Hirnstein 

et al., 2008), including a parallel performance in two cognitive tasks, showed that individuals 

with low lateralization perform better than more lateralized counterparts. Further, past studies 

(Ambrosini & Vallesi, 2015, 2016; Chen et al., 2019; Hanouneh et al., 2017) based on 

Electroencephalography (EEG) have also affirmed the linkage of asymmetry with performance 

in a task. 

Thus, hemispheric asymmetry represents a fundamental feature of the human brain and 

plays a prominent role in emotions and cognitive functions. Further, the above-mentioned 

physiological measurements, namely fMRI and EEG, are frequently employed in cognitive 

neuroscience to understand the neural mechanisms underlying functional hemispheric 

asymmetry research. The subsequent section explains the physiological basis of these techniques. 

1.2 PHYSIOLOGICAL MEASURES OF FUNCTIONAL HEMISPHERIC 

ASYMMETRY IN BRAIN 

fMRI and EEG are the most widely employed neuroimaging techniques to gain insights 

into the neural mechanisms underlying the brain's hemispheric asymmetries.  

1.2.1 FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI) 

1.2.1.1 Physiological Basis  

Blood Oxygenation Level-Dependent (BOLD) fMRI measures the variation in blood 

oxygenation over time (Ogawa et al., 1990). fMRI is based on the principles of Magnetic 

Resonance Imaging (MRI) (Lauterbur, 1973; Mansfield & Grannell, 1973). MRI creates images 
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of biological tissues by utilizing strong magnetic fields. An MRI scanner nowadays operates with 

a typical field strength of 3 Tesla (T). The ground principle of MRI involves measuring signals 

from the tissue’s hydrogen nuclei (protons), which are abundantly available in the human body. 

Since the proton is positively charged and also possesses a spin, it thereby induces a magnetic 

field and thus has a small magnetic dipole moment associated with it. However, due to the 

random orientation of these spin vectors, the tissue holds zero net magnetization. But, on placing 

this tissue in an external magnetic field, say in an MRI scanner with a static magnetic field 𝐵° 

(say 𝐵° =3T), the spins either align in parallel or anti-parallel direction. Besides, protons also 

precess around the magnetic field lines, much similar to a spinning top. Thus, the parallel 

alignment of these precessing protons leads to a net magnetic field in the tissue (𝑀) which is 

longitudinal to the external magnetic field. Also, the rate of precession depends on the strength 

of the static external magnetic field and is mathematically expressed as the Larmor equation 

(Brown & Semelka, 2003), as described below (Equation 1.1). 

 𝜔° = 𝛾𝐵°        Equation 1.1 

where 𝐵° is the aforementioned external field, 𝜔° is the precession frequency, and  𝛾 is 

the gyromagnetic ratio whose value for protons is 42.5 MHz/T. The longitudinal magnetic field 

in the tissue cannot be measured directly. Hence, a Radio Frequency (RF) pulse tuned to the 

precession frequency of protons (Larmor frequency) in tissue is transmitted and causes two 

simultaneous phenomena. First, the protons gain energy and transfer to a higher energy state, and 

second, they exhibit in-phase precession. Thus, the longitudinal magnetization (𝑀𝑍) is reduced, 

and a transversal magnetization (𝑀𝑋𝑌) is established. Moreover, subsequently, the transversal 

magnetization (𝑀𝑋𝑌) reduces and longitudinal magnetization (𝑀𝑍) is regained as protons release 

the energy they gained from RF pulse. Bloch and their colleagues (F. Bloch, W.E.Hansen, 1946) 
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discovered this phenomenon during an experiment. They observed that a nuclear magnetic 

resonance (NMR) induction represents a transient phenomenon, and the signal decay occurs 

because of the interaction of individual spins with the environment and with each other. Thus, 

there exists an innate tendency not to precess indefinitely and return to the initial parallel 

alignment (𝑀𝑍). Thus, a process called ‘relaxation’ occurs where this spin system releases 

energy into the environment. Bloch (F. Bloch, W.E.Hansen,1946) presented two-time constants 

for relaxation namely T1 (characterized retrieval of 𝑀𝑍) and T2 (reflected decay in 𝑀𝑋𝑌). 

Further, it was also concluded that T1 is a result of thermal energy exchange from the spins to 

the surroundings and T2 of spin-spin relaxation. The equations of motion for 𝑀 are as described 

below  

 𝑀𝑋 = 𝑀°𝑒
−𝑡/𝑇2 sin𝜔𝑡        Equation 1.2 

 𝑀𝑌 = 𝑀°𝑒
−𝑡/𝑇2 cos𝜔𝑡        Equation 1.3 

 𝑀𝑍 = 𝑀°(1 − 𝑒−𝑡/𝑇1)        Equation 1.4 

Thus T1 is the time taken by 𝑀𝑍 to reach 63% of 𝑀° and T2 is the time taken by 𝑀𝑋 and 

𝑀𝑌 to decay till 37% of 𝑀°. The RF pulse, which results in a 90
o
 shift in the magnetization, is 

called a 90
o
 RF pulse. Further, on switching this RF pulse off, the transversal magnetization 

switches back to the longitudinal magnetization. Thus, this changing magnetic field induces an 

electrical signal known as free induction decay (FID) signal. The decay of this FID after the 

application of a 90
o
 RF pulse leads to a faster T2* decay. This decay is an amalgamation of T2 

decay as well as local magnetic field inhomogeneities. These T2* effects are utilized for rapid 

imaging sequences, also known as T2*- weighted gradient echo sequence (Mansfield, 1977), and 

also are ideally suited for fMRI acquisitions.  
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The blood oxygenation level-dependent (BOLD) contrast process is, at present, the 

cornerstone of human neuroimaging (Ogawa & Lee, 1990). During an increase in neural activity 

in a specific brain region, the glucose requirements and, thus, the rate of flow of blood to that 

region increases. Thus, the firing rate of the relevant neurons affects their metabolism leading to 

the arrival of more oxygenated blood. The increase in the flow of oxygenated blood changes the 

ratio of deoxygenated hemoglobin to oxygenated hemoglobin. Deoxygenated hemoglobin is 

paramagnetic (4 unpaired electrons) and causes inhomogeneities in the surrounding magnetic 

field, causing faster dephasing of spins and thus swift decay in transverse magnetization leading 

to dampened T2* signal. fMRI allows the localization of the brain activity within millimeters of 

its origin hence results in a good spatial resolution (typically 3x3x3 mm
3
). However, the 

temporal resolution is limited by the hemodynamic response time, the BOLD response that peaks 

5-6 seconds after the onset of the neural stimulus and has a width of about 3 seconds. Thus, the 

temporal information is blurred as the hemodynamic response time is much delayed from the 

onset of underlying neural processes (Glover, 2011). Moreover, the the BOLD signal is modelled 

utilizing the hemodynamic response function (HRF) (Figure 1.2) (Logothetis & Wandell, 2004). 

The analysis of fMRI data depends mainly on fitting a general linear model (GLM) to the data, 

consisting of event timing information convolved with an HRF model. The GLM, therefore, 

assumes that fMRI signal varies linearly with the experimental effects at every voxel (Ã & 

Villringer, 2006).  
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Figure 1.2 The figure depicts the Hemodynamic Response Function (HRF) (Adapted from Huettel et al. 

(2009)). 

 

1.2.1.2 Assessment of Hemispheric Asymmetry 

Varied methods have been proposed to calculate the lateralization index based on fMRI 

BOLD information. The majority of such studies (Bradshaw, Thompson, et al., 2017; Karolis et 

al., 2019; Seghier, 2008) were task-based (language, face perception), and the asymmetry of 

BOLD signal strength, cluster size, and functional connectivity were utilized for hemispheric 

lateralization analysis. The hemispheric asymmetry linked to language processing is well-

established in the fMRI side. The lateralization assessments in fMRI are conventionally 

estimated by comparing left and right hemispheres as given in Equation 1.5 (Bradshaw, Bishop, 

et al., 2017; Seghier et al., 2011).  



9 
 

  𝐿𝐼 =
𝐿𝐻−𝑅𝐻

𝐿𝐻+𝑅𝐻
        Equation 1.5 

where LH and RH are counts of active voxels or measures of signal intensities in the left 

and right hemispheres, respectively. 

1.2.2. ELECTROENCEPHALOGRAPHY (EEG) 

1.2.2.1. Physiological basis 

EEG is a potent technique for studying the brain's electrophysiological dynamics and 

linking those dynamics to various aspects such as perception, cognition, and action (Berger, 

1934). EEG is a direct measure of population-level neural activity and has a high temporal 

resolution. However, the disadvantage is that EEG is limited to large, synchronous populations 

of neurons; and asynchronous activity is difficult or impossible to measure. Further, it also poses 

a limitation of reduced spatial resolution as the localization of an active site is limited to several 

centimeters. Each electrode in an EEG measures the dendritic postsynaptic potentials of neural 

populations in the cerebral cortex. Also, EEG substantially records the summed synchronous 

activity of not one, but thousands of underlying neurons as the signal reaches the electrodes after 

penetrating various layers of non-neural tissues, including the fluid, bones of the skull, and skin 

(Cohen, 2017). 

Neurons are neural cells that constitute the structural and functional basis for brain 

function (Fratkin, 1997). These neurons form macrocircuits that involve interregional 

communication among a population of neurons, and microcircuits which reflect intra-regional 

local cell to cell interactions. The neurons, similar to other cells, consist of a cell body, called 

soma, which contains the nucleus and the organelles. However, neurons are specialized for 
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intercellular communication. The sites of interneuronal transmission in the central nervous 

system (CNS) are termed as synapses. The extensive branching of neurons aids electrical 

communication in them. Most neurons have one axon, often branched, to transmit signals to 

interconnected target neurons. The axon leaves the cell body from a small swelling called the 

axon hillock. Another salient aspect of this branching is the complex arborization of dendrites 

that receive synaptic inputs from other neurons (see Figure 1.3a). The typical arrangement for 

these communications includes axodendritic or axosomatic synapse, in which the axons of the 

cell of origin make their functional contact with the dendrites or cell body of the target neuron, 

respectively. Another less prevalent arrangement is the functional contact between adjacent cell 

bodies (somasomatic) and overlapping dendrites (dendrodendritic). Intrinsically neurons are not 

good conductors of electricity and carry a resting membrane potential (-40 to -60 mV). Stimuli 

cause electrical signals and, therefore, a deviation from this resting membrane potential. 

Further, an axon and dendrites can found correspondence with a long electric cable that 

transmits voltages for certain distances.  The neuron-cable theory (Byrne & Roberts, 2004) 

assumes that an insulating membrane surrounds dendrites and separates it from a conducting 

medium or extracellular space. The cable has a specific membrane capacitance (CM), resistivity 

(𝜌𝑀) and intracellular resistivity (𝜌𝐼). Thus, if a membrane potential is altered at one end of the 

cable, the decay in voltage is exponential and is as described in the equation (Equation 1.6) 

below. 

 
  ∆𝑉𝑋 = ∆𝑉°𝑒

−
𝑋

𝛿      Equation 1.6 

where ∆𝑉𝑋 is the voltage change at distance x, ∆𝑉° is the imposed voltage change and 𝛿 is 

the ‘space constant’ of the cable, given by  𝛿 = √
𝐷

4

𝜌𝑀

𝜌𝐼

2
, where D is the diameter of the cable, 
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although axons are not good conductors, they send electrical signals over long distances utilizing 

the action potentials. Action potential carries the information along the length of axon by making 

the transmembrane potential positive. These electrical signals arise from ion fluxes as cell 

membranes are selectively permeable to different ions (potassium ions (K
+
), chloride ions (Cl

-
),  

sodium ions (Na
+
)), and other organic anions, and also because these ions are non-uniformly 

distributed across the membrane (see Figure 1.3b). Further, as the action potential reaches the 

nerve terminal, it releases neurotransmitters, which enter the postsynaptic terminal of the 

adjoining neuron. The neurotransmitters cause modulation in ions permeability in the target 

neuron’s membrane that leads to alterations in voltages and setting up of postsynaptic potentials, 

which represents the most prominent source of EEG signals (Buzsáki et al., 2012). 
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Figure 1.3 Diagram depicting a. the parts of neuron b. action potential, through which signals are 

conducted in axons and the associated membrane ionic permeabilities. At rest, membranes are permeable 

to K
+
 ions, while during an action potential, the permeability towards Na

+
 ions increases for a temporary 

period (Adapted from Purves et al. (2004)). 

1.2.2.2 EEG rhythms 

EEG activity is categorized into specific distinctive frequencies termed as EEG rhythms. 

These rhythms possess intricate spatiotemporal characteristics based on amplitude, frequency, 

and timing and are driven by variation in the excitation of neuronal populations. Further, these 

variations have found tight coupling with cognitive and emotional processes. The existing EEG 

rhythms are delta (0-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-70 

Hz) (Buzsáki, 2009). A specific EEG rhythm worth emphasizing is the Alpha rhythm 
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(Barzegaran et al., 2017; Halgren et al., 2019). Modern ideas about alpha oscillations suggest 

their involvement in synchronizing temporal dynamics to the inhibition of neural networks. 

Several distinct mechanisms can serve as potential generators of alpha oscillations whose 

features, such as peak frequency, amplitude, and time-course can alter with the cortical region or 

nature of the cognitive task (Klimesch, 2012; Wolff et al., 2017). 

1.2.2.3 Assessment of hemispheric asymmetry  

Alpha asymmetry, specifically Frontal alpha asymmetry (Equation 1.7) derived from 

absolute alpha powers, is an indirect relative frontal activity marker of asymmetry and has been 

widely studied in past decades as a measure to examine emotion and motivation-related trait and 

state differences (J. A. Coan & Allen, 2004; Davidson et al., 1990; Palmiero & Piccardi, 2017). 

 𝐹𝑟𝑜𝑛𝑡𝑎𝑙 𝑎𝑙𝑝ℎ𝑎 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = ln(𝛼𝑙𝑝ℎ𝑎𝑅𝑖𝑔ℎ𝑡) − ln(𝛼𝑙𝑝ℎ𝑎𝐿𝑒𝑓𝑡)        Equation 1.7 

where, 𝛼𝑙𝑝ℎ𝑎𝑅𝑖𝑔ℎ𝑡and 𝛼𝑙𝑝ℎ𝑎𝐿𝑒𝑓𝑡 are the standard alpha powers measured at the right and left 

hemispheric frontal channels for an individual’s EEG data, respectively.   

Frontal asymmetry has been recorded and analyzed during task engagement and resting-

state conditions. One dominant view suggests that resting EEG frontal asymmetry reflects the 

tendencies of a person to involve in motivational (approach/withdrawal) and emotional 

(positive/negative) states (J. Coan, 2003; Mathersul et al., 2008). Also, during task engagement 

(Smith et al., 2017), the higher relative left than right frontal neural activity is known to 

characterize approach behavior. In contrast, withdrawal-related traits and states were linked to 

the greater right than left frontal neural activity. Further, other variables, such as executive 

functions, verbal fluency, have also been linked to frontal alpha asymmetry (Brzezicka et al., 

2017; Hanouneh et al., 2017).  
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1.3 RECORDING AND ANALYSIS OF SIMULTANEOUS EEG-fMRI 

DATA  

The complementary strengths and weaknesses of EEG and fMRI modalities have 

enkindled their convergence (see Figure 1.4). Thus, the simultaneous recording and analysis of 

noninvasive EEG and fMRI techniques have gathered considerable attention in the neuroscience 

community (Huster et al., 2012; Mele et al., 2019). The simultaneous recordings of EEG-fMRI 

were initially utilized for diagnosis and pre-surgical planning of epileptogenic EEG activity as 

they improved the localization of the associated neural sources (Huster et al., 2012). The analysis 

of the simultaneous recordings mentioned above aid in identifying the cortical region responsible 

for the spread of these neuronal events, which otherwise was difficult to achieve from distinct 

recordings. Recently, simultaneous EEG-fMRI has been recorded for spontaneous resting-state 

brain activity (de Munck et al., 2005; Goldman et al., 2002) as well as for stimulus-driven 

cognitive experiments to solve fundamental cognitive neuroscience research questions 

(Hoppstädter et al., 2015; Iannaccone et al., 2015). A typical experiment for simultaneous EEG-

fMRI involves first, the preparation of an MR-compatible EEG cap placed on an individual’s 

head outside the MR-scanner, and lowering the impedance of the silver electrodes for better 

signal quality. Next, the individual is moved to the MR-scanner with the hardware-setup, as 

explained in Figure 1.5. The signals are transmitted outside the MR-scanner using optical cables. 

An ECG lead, which serves as a temporal marker for an individual’s heartbeat, is placed at its 

back. The onsets for fMRI volume acquisitions are also recorded by connecting the EEG 

recording device to the TTL output from the MR-scanner (Michel & Brandeis, 2010). Moreover, 

approaches that allowed direct integration of information across simultaneously recorded EEG-

fMRI were needed to take full advantage of data acquired from these multimodalities. There 
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exist asymmetric and symmetric methods for data integration, as described in the subsequent 

subsection. 

 

 Figure 1.4 Schematic for data-integration of simultaneous EEG-fMRI (Modified from He & Liu (2008)). 
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Figure 1.5 Schematic for simultaneous EEG-fMRI recording hardware setup (Modified from Shah et al. 

(2017)). 

 

1.3.1 ASYMMETRIC APPROACHES 

These integration approaches are characterized by a biased weighing of modalities 

wherein some feature of one modality guides the analysis of the other. The two main methods 

which exist are EEG-informed fMRI and fMRI-informed EEG approaches (Ã & Villringer, 

2006). 

1.3.1.1 EEG informed fMRI  

This technique considers associations of changes between EEG and fMRI signals over 

time. EEG features, such as ERP amplitudes and latencies, the power within specific EEG 

frequency bands, EEG synchronization, and phase coherence, are extracted from preprocessed 
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EEG data. Subsequently, fMRI data is preprocessed, and the derived-EEG features are utilized to 

modulate the modeled hemodynamic responses at the first-level parametrically. Successively, the 

group-level analysis is carried out for the resulting beta-estimates to divulge the significantly co-

varying brain regions (Leicht et al., 2016).  

1.3.1.2 fMRI-informed EEG 

fMRI-informed EEG exploits fMRI to guide the EEG source imaging to improve the 

spatial EEG inverse problem. Thus at first, a forward model is established from the previously 

estimated head geometry and biophysical characteristics of the brain. The forward model 

calculates the paths of current for a stimulated neural event. Further, utilizing the forward model, 

the source localization algorithms yield the most optimal collection of neural generators for a 

given scalp field potential. Thus, neuronal activity can possibly be approximated by distributed 

current sources or a limited number of single current dipoles. Finally, the statistical fMRI maps 

help in inferring these potential EEG generators (Wang et al., 2018). 

1.3.2 SYMMETRIC APPROACHES 

Symmetric approaches employ forward or degenerative models to assess information 

jointly from both modalities. Studies under this domain have exploited independent component 

analysis (ICA) for integrating both the modalities. This framework correlates the trial-to-trial 

modulation across statistically independent maps from the fMRI (spatial ICA) and independent 

time courses from the EEG (temporal ICA). Thus, ICA models data as a linear combination of 

spatial FMRI maps and EEG time courses while maximizing independence between the maps 

(Wei et al., 2020).  
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1.4 IDENTIFICATION OF RESEARCH GAPS 

a. The hemispheric lateralization based on EEG is linked with the preferential engagement 

of left, phasic, or right-lateralized sustained cognitive processes to circumvent the 

changing task demands. This represents yet another feature of multi-faceted hemispheric 

asymmetry, where it links to performance in any task engagement. However, the 

association of neural mechanisms of resting frontal EEG alpha asymmetry, which may 

affect the participation in a subsequent higher-order cognitive task such as Situational 

Awareness (Endsley, 1995; Sarter, 1990; Wickens, 2002), is underexplored.    

 

b. Although the studies have proved EEG based frontal asymmetry assessment as a reliable 

marker of affect, approach/withdrawal behavior during emotional task-engagement, its 

validity in healthy individuals during resting remains ambiguous (Smith et al., 2017). 

Several methodological factors that may account for these conflicting results include 1) 

EEG-reference was chosen for the analysis, 2) across sessions stability of EEG 

asymmetry, 3) EEG recording length, 4) sex differences, 5) comorbid conditions and 

need to be further explored.  

1.5 OBJECTIVES OF THE THESIS 

The focus of the current thesis is to examine the computational models for resting 

hemispheric asymmetry research utilizing the technique of simultaneous EEG-fMRI data 

acquisition. Exploring these resting-state EEG/fMRI hemispheric asymmetry models in the 

brain is vital to understand human actions when engaged in an external task. Further, the 

goal is to assess these resting models' potential for real-time assessment of measures of affect 
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and approach/withdrawal behavior for application in domains such as military/aviation. The 

precise objectives are as follows.  

 

a. Employing strategies for improving the signal-to-noise ratio to alleviate the effect of 

MR-related and other artifacts in EEG asymmetry calculation. This objective is 

carried to ensure that the asymmetry estimations are performed on an EEG data, which is 

devoid of Magnetic resonance (MR) gradient, cardioballistic (CB), and other 

conventional EEG-related artifacts. This objective involved following a specific protocol 

and utilizing an automated toolbox for mitigating these artifacts.  

 

b. Assessing the linkage between the standard resting frontal alpha EEG asymmetry 

model and the subsequent engagement in Situational awareness (SA) task. This 

objective attempts to link the neural substrates underlying resting frontal alpha 

asymmetry to subsequent SA-task outcome. SA is crucial for operations in the 

military/aviation domain and involves the perception and comprehension of all the 

elements in an environment and anticipation of possible future situations. The pre-task 

resting frontal alpha asymmetry may index neural mechanisms that might potentiate its 

application as a vital parameter to be assessed before SA-task to improve SA-task’s 

performance outcomes. The fulfillment of this objective required: 

I. Design and development of SA cognitive paradigm. 

II. Assessing EEG alpha power and its associated standard frontal hemispheric 

asymmetry from resting-state recordings and utilizing the robust correlation, 

EEG-fMRI data integration approach and functional connectivity analysis for 
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evaluating the effect of neural mechanisms of the resting asymmetry model on 

subsequent SA-task. 

 

c. Assessing the linkage between the standard resting frontal alpha EEG asymmetry 

model and positive/negative affect and approach/withdrawal behaviors. This 

objective is carried to understand the relevance of real-time recordings of standard resting 

alpha EEG asymmetry in terms of its association with measures of affect and 

approach/withdrawal behavior. Further, to strengthen the findings and to potentiate the 

use of resting alpha EEG asymmetry for real-time assessment of affect and 

approach/withdrawal behavior while still restoring the related fMRI features, EEG-

informed fMRI was employed. Thus, the completion of this objective included: 

I. Estimating the neural mechanisms and associated asymmetry in the resting 

functional connectivity underlying the self-reported measures of 

positive/negative affect and approach/withdrawal behavior. 

II. Assessment of standard alpha frontal asymmetry and its linkage to self-

reported measures of positive/negative affect and approach/withdrawal 

behavior. 

III. Analyzing the neural mechanisms underlying these standard frontal alpha 

asymmetry measures utilizing the EEG-informed fMRI approach. 

 

d. Assessing the novel microstate-based resting frontal alpha asymmetry measures and 

testing its efficacy against standard frontal alpha asymmetry measures in explaining 

affect and approach/withdrawal behavior. The rationale for this objective was that the 
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EEG patterns' stability might play a vital methodological factor in explaining the 

inconsistent nature of the relationship among resting frontal alpha asymmetry and affect 

and approach/withdrawal measures. Thus, microstates-based resting frontal alpha 

asymmetry was assessed as EEG microstates represent moments of quasi-stable EEG 

activity, and its efficacy against standard asymmetry measure was evaluated. Similar to 

the previous objective, EEG-informed fMRI analysis was utilized to map features of 

microstate-based EEG asymmetry to fMRI. The steps involved in this analysis included: 

I. Assessment of microstate-based EEG asymmetry and its linkage to self-reported 

measures of positive/negative affect and approach/withdrawal behavior and to test 

them against the results obtained for standard resting frontal alpha EEG 

asymmetry. 

II. Analyzing the neural mechanisms underlying these microstate-based frontal alpha 

asymmetry measures utilizing the EEG-informed fMRI approach. 

III. Assessment of index for hemodynamic lateralization from simultaneously 

recorded resting-fMRI data for the neural mechanisms obtained from standard and 

microstate-based frontal alpha asymmetry measures and gauging their linkage to 

self-reported measures of affect and approach/withdrawal behavior. 

1.6 ORGANIZATION OF THE THESIS 

 To accommodate all the research objectives, the thesis is organized into six chapters. The 

references for each chapter are listed at the end of that chapter. The elements of each chapter are 

as described below. 
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a. Chapter two comprises the methodology adopted to enhance the signal-to-noise ratio by 

alleviating the effects of MR gradient, CB, and other conventional EEG-related artifacts 

on EEG data. The chapter includes an in-depth explanation for the basis of MR gradient, 

CB artifacts, and the techniques at hand for alleviating these artifacts. The chapter further 

explains the EEG processing pipeline we adopted to remove these artifacts and validates 

it through a dataset utilized in the later stage of the thesis. 

 

b. The work for the completion of this thesis involved the design and development of a SA 

paradigm. Keeping in mind the compatibility of task performance in an MR environment, 

we chose to employ a modified Stroop-test to study SA. SA is knowledge about the 

environment and has become the focus of the ergonomics community recently and is a 

critical parameter for military/aviation operations (Sarter, 1990; Wickens, 2002). The 

work stands novel and brings clarity on the influence of neural mechanisms of pre-task 

resting alpha and its associated standard frontal asymmetry on subsequently performed 

SA-task when the Stroop effect (Jensen & Rohwer, 1966) influences the task and has 

been encompassed in Chapter three. It is favorable to study the effect of pre-task resting 

alpha and its associated frontal asymmetry on the SA-task to improve SA. For this 

purpose, resting pre-SA task EEG features, such as pre-task resting absolute alpha 

(PRAA) power and pre-task resting alpha frontal asymmetry (PRAFA) index, were 

assessed from eighteen healthy volunteers and their robust correlation with subsequently 

performed SA-task’s performance measures was estimated. Further, neural underpinnings 

of PRAA, PRAFA in SA-task were analyzed through the EEG-informed fMRI approach, 

and functional connectivity analysis was performed among the neural underpinnings of 
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SA-task, PRAA, and PRAFA. The results actively supported the hypothesis that the 

resting frontal alpha asymmetry and associated neural mechanisms significantly influence 

the SA-task's neural mechanisms and performance measures. This work has been 

published (Kaur et al., 2019) in the Human Factors: The Journal of the Human Factors 

and Ergonomics Society. 

 

c. After assessing the linkage among the neural mechanisms of standard resting alpha 

frontal asymmetry with the SA-task outcome, our goal was to test the standard alpha 

frontal asymmetry in terms of its linkage with psychological constructs such as affect, 

fatigue, personality, motivation, etc. Frontal alpha asymmetry is a reliable indicator of 

affect, approach/withdrawal behavior during tasks evoking emotions, and clinical 

populations (Reznik & Allen, 2017). However, the validity of resting frontal alpha 

asymmetry in healthy individuals regarding its association with affect and 

approach/withdrawal measures remains ambiguous. This motivated us to initially test the 

association of resting frontal alpha asymmetry with an individual's affect and 

approach/withdrawal measures. 

Next, we posited that EEG information's stability may serve as an imperative 

parameter for bringing forth the relationship of alpha asymmetry with measures of affect 

and approach/withdrawal behavior. Chapter four comprises our study on the 

Microstates-based resting frontal alpha asymmetry approach for understanding affect and 

approach/withdrawal behavior, which has been published in Scientific Reports (Kaur et 

al., 2020). For this study, frontal alpha asymmetry based on microstates that assess quasi-

stable EEG scalp topography information was evaluated and compared against standard 
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frontal asymmetry. Recently, in spontaneous resting EEG, it has been shown that there 

exist distinct periods of time exhibiting stable scalp topography, and these have been 

referred to as EEG microstates (Michel & Koenig, 2018). Thus, for this study, frontal 

alpha asymmetry based on microstates was proposed, and its effectiveness against 

standard frontal asymmetry was assessed. Both proposed and standard frontal alpha 

asymmetries were estimated from thirty-nine healthy volunteers’ simultaneous EEG-

fMRI recordings. Further, neural underpinnings of these asymmetry measures were 

determined through EEG-informed fMRI. Subsequently, the Hemodynamic 

Lateralization Index (HLI) of both asymmetry measures neural underpinnings was 

assessed.  Finally, the robust correlation of both asymmetry measures and their HLI with 

measures of positive/negative affect and approach/withdrawal behavior was carried out. 

The results revealed that standard resting frontal asymmetry and its HLI yielded no 

significant relationship with any psychological measures. However, the microstate resting 

frontal asymmetry correlated significantly with negative affect, and its neural 

underpinning’s HLI significantly correlated with positive/negative affect and 

approach/withdrawal measures. Thus, the results reveal that resting microstates-based 

frontal alpha asymmetry better assesses the neural mechanisms of affective and 

approach/withdrawal measures. 

 

d. Following the analysis of association of resting standard and microstates-based frontal 

alpha asymmetry with affect and approach/withdrawal measures, we focussed on 

understanding the key role of subcortical structures, their interactions with cortical areas, 

and functional hemispheric asymmetry of cortical regions vital for subcortical-cortical 
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interactions dominating affect and approach/withdrawal behavior. This knowledge would 

foster the know-how on their role in subsequent task-engagement and the interlinkage 

among affective measures and approach/withdrawal dichotomy. This study was based 

solely on the hemispheric asymmetry estimation of resting fMRI graph theory functional 

connectivity metrics as it is difficult to adequately sense the deeper subcortical signals 

using conventional EEG (32-channel) (Seeber et al., 2019) and is encompassed in 

Chapter five. 

 Hence, in this study, we report the neuroimaging finding based on Region of 

Interest (ROI) based analysis and graph-theory measures for global and subnetworks for 

healthy thirty-nine male volunteers. Our study revealed the association of emotion and 

memory-related subcortical-cortical interactions in positive and negative affect.  Right, 

amygdala-right thalamus-frontotemporal cortical-regions emanated in positive affect, and 

the right putamen-left hippocampus-frontotemporal cortical-regions network stemmed for 

negative affect. Then, we show the involvement of basal ganglia structures in approach-

withdrawal dichotomy with tight coupling of right-caudate, left-accumbens with anterior 

cingulate, and insular regions for withdrawal/inhibition system. Further, the distinct 

involvement of the insula (posterior) in affective states while insula (anterior) in 

approach/withdrawal systems builds-up for the existence of a feedback-loop between 

affective and approach/withdrawal systems. Lastly, on probing the lateralization of the 

strength of degree-measures of the cortical substrates vital for subcortical-cortical 

interaction, we found a left-hemispheric proclivity for affective measures. The key 

findings of this resting-study asymmetry can form the basis for studies involving task-

engagement or clinical population. 
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e. Chapter six sums up the research and highlights the conclusions that can be drawn from 

the results obtained in the present thesis. This chapter also discusses some of the 

directions for future work that can emanate from this research. 
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2.         CHAPTER TWO 
 

OPTIMIZATION AND VALIDATION OF EEG PREPROCESSING 

PIPELINE 

 

2.1 ABSTRACT 

The simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance 

imaging (fMRI) lays out several benefits for specific neuroscience researches. However, the 

potential advantages come at the expense of the unavoidable existence of artifacts, which 

contaminate the EEG signals in the magnetic resonance (MR) environment. Thus, to obtain an 

acceptable EEG data quality in simultaneous EEG-fMRI recordings, it is imperative to ensure the 

mitigation of these artifacts. The MR gradient artifact and the cardioballistic (CB) artifact 

represent the two significant sources of EEG artifacts. The rapid switching of gradients during 

MR acquisition induces an electromotive force on the EEG electrodes, giving rise to MR 

gradient artifact. At the same time, local changes in the field generated by cerebral blood flow 

and variations in heartbeat cause CB artifact. The present chapter examines in-detail the 

significant types of artifacts present in the simultaneously recorded EEG data. It also presents 

different techniques available for alleviating these artifacts. Further, the chapter discusses the 

EEG preprocessing pipeline followed in the current thesis work. We utilized the template-based 

method of Brain vision analyzer software for MR gradient artifact correction and FMRIB plug-in 

of EEGLAB for CB artifact correction. Further, we employed the functionalities of the Harvard 

automated processing pipeline for electroencephalography (HAPPE) toolbox in a supervised 

manner to mitigate conventional EEG-related artifacts such as ocular and muscle artifacts. 
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Lastly, the validation of the EEG preprocessing pipeline based on a dataset of thirty-nine 

volunteers has also been presented. 

2.2 INTRODUCTION 

Simultaneous EEG-fMRI acquisitions in clinical and cognitive neurosciences have 

gained significant attention recently (He & Liu, 2008; Murta et al., 2015; Rosa et al., 2010). The 

simultaneous recordings of EEG-fMRI were, in the first instance were utilized to delineate 

epileptic networks in patients undergoing pre-surgical planning (Huster et al., 2012; Murta et al., 

2012). Thus, the analysis of simultaneous recordings helps identify regions responsible for the 

spread of these neuronal events. However, the compromised EEG data quality is a significant 

downside of the simultaneous EEG-fMRI recording procedure. A standard view on the EEG data 

quality acquired inside the MR machine suggests that losses are inevitable and hence must be 

condoned. Thus, to fully utilize the EEG information recorded inside the scanner, the artifacts 

reduction techniques should be optimally followed. 

The two principal sources of artifacts in EEG recorded inside an MRI machine, are first 

the artifacts introduced by sequentially switching of gradients in the MRI imaging process (MR 

gradient artifact), which results in the superimposition of EEG data with large amplitudes (order 

of mV) (Allen et al., 2000). And second is the CB artifact (Allen et al., 1998), which involves the 

interplay between the static external magnetic field (𝐵°) and the cardiovascular system. The 

cardiovascular artifact is synchronous to simultaneously recorded cardiac rhythm or 

Electrocardiogram (ECG) signal. ECG signal is recorded by placing an electrode, referenced 

against the specified EEG reference, at the lower back. This placement scheme corroborates 

enlarged R peaks and reduces the effect of movement and respiratory artifacts on the ECG 



34 
 

channel. However, the ECG signal is affected by the magnetic field with a substantial deflection 

detected between onset and offset of S wave and T wave, respectively, with sign dependent on 

the polarity of the static magnetic field (𝐵°).  

The underlying cause of CB artifact is the electromagnetism induced by the movement of 

electrically conductive material in the static external magnetic field (𝐵°). Precisely, this induced 

electromagnetism is caused due to the cardiac activity (deceleration/acceleration of heartbeat), 

which mainly gives rise to axial head rotation. Besides, the blood movement underneath the EEG 

electrodes can also cause steady motion in the EEG electrodes. Further, the acceleration of this 

electrically conductive blood can contribute to CB artifacts by giving rise to Hall voltage 

(proportional to (𝐵°)). A visual comparison of simultaneously recorded EEG and ECG signals 

revealed an approximate delay of 200 ms between the R peak of ECG wave and EEG artifact 

spike, concluding the interference from a volunteer’s cardiovascular parameters, including heart 

rate. Moreover, analysis of CB artifact's spectral features based on their Global Field Power 

(GFP), which measures the standard deviation across all channels, revealed that the head sphere's 

total spatial topography indeed designates the pulse artifact. Secondly, these topographies 

constituted rotational, moving, and polarity inverting characteristics (Mulert & Lemieux, 2010; 

Ullsperger & Debener, 2010).  

The other primary source of EEG artifact, as mentioned above, arises due to the 

utilization of Echo-Planar Imaging (EPI), which involves rapidly changing magnetic field 

gradients for fMRI acquisition and is called the MR gradient artifact. Yet another MR imaging-

related artifact is the Radio Frequency (RF) artifact. RF artifact is mitigated by utilizing low-pass 

filtering as it contains higher frequency components than the actual EEG signal. Also, the 

gradient switching's periodic nature makes the MR gradient artifact correction less complicated 
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than CB artifact correction. Typically, the electrodes and its leads in the EEG system are made 

from electrically conducting Ag/AgCl material for recording electrical EEG signals. Hence, the 

strong RF emission during scans and static, changing magnetic fields (gradient switching) results 

in the induction of currents in these electrodes and its leads as per Faraday’s law. Thus, the EEG 

signal is superimposed with the artifacts in the form of potentials resulting from this induced 

current, and there exists a substantial overlap between the power spectrum of EEG and image 

acquisition artifact. In particular, the artifact wave period matches the time between the 

consecutive RF pulses, which is known as the time to repeat (TR). Further, the slices acquired 

within this TR at slice repetition time (TRSlice) are recorded as signal peaks in the scalp potential. 

The recorded EEG is thus influenced by the gradient artifact, which repeats itself at the 

harmonics of the inverse of the slice repetition time (1/TRSlice). For, e.g., we can observe the 

gradient artifact peaks for an acquisition involving TR=2 sec and the number of slices acquired 

within this TR to be 30 at frequencies 15,30,45…Hz (harmonics of 
1

2
30⁄

) (Masterton et al., 2007; 

Mulert & Lemieux, 2010; Ullsperger & Debener, 2010). 

Usually, in a 3T MRI during the EPI sequence, the CB artifact is about 200 µV, and the 

MR gradient artifact is about 3 mV. Howbeit, the brain rhythms like alpha (8-12 Hz) range 

between 50-100 µV, while the visual event-related potentials (ERP’s) lie within 4-10 µV (Lee et 

al., 2020). Hence, since CB and MR gradient artifact amplitudes exceed that of the actual EEG 

signal, efficient methods should be adopted to alleviate their effect. This chapter examines the 

methods available for mitigating the effects of the aforementioned MR gradient artifact and CB 

artifact. Further, the chapter outlines the specific pipeline adopted and brings forth the supervised 

employment of functionalities of the Harvard Automated Processing Pipeline for 

Electroencephalography (HAPPE) toolbox (Gabard-Durnam et al., 2018) adopted for ensuring 
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the removal of other conventional EEG artifacts (ocular, muscle-related artifacts). Finally, the 

chapter highlights the steps taken for validating the removal of MR, CB, and other EEG-related 

artifacts and highlights the results obtained for EEG artifact removal in concurrently recorded 

resting EEG-fMRI dataset of 39 healthy male volunteers, which were a part of a study included 

in Chapter four of this thesis. 

2.3 MATERIALS AND METHODS 

2.3.1 SAMPLE AND PROCEDURE 

 This chapter presents the implementation of the EEG artifact removal pipeline on 39 

healthy male volunteers (age range 18-24 years, Mean=19.57; Standard Deviation (SD)=1.28). 

All participants provided written and informed consent, and the experiment was conducted as per 

The Code of Ethics of the World Medical Association (Declaration of Helsinki). All 

measurements were also approved by the Institute of Nuclear Medicine and Allied Sciences 

(INMAS) institutional ethical committee (Number: ECR/824/Inst/DL/2016). All subjects were 

right-handed volunteers recruited among university students and underwent six-minute eyes 

closed simultaneous recording of resting-state EEG-fMRI data. 

2.3.2 DATA ACQUISITION  

Continuous EEG data were acquired simultaneously T2
*
 acquisition (T2* EPI sequence: 

TR 2000 ms, TE 30 ms, FA 90
o
, 30 slices with thickness 5mm and distance factor 0%, FoV 240 

mm with voxel size 3.8X3.8X5.0 mm) for the resting-state eyes-closed condition using a 32-

channel MR-compatible brain vision cap. The electrodes were placed according to the 

international 10-20 system with a separate electrode called the reference electrode, placed 
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between Fz and Cz electrodes, that provided the reference for recording the data. The impedance 

level for each electrode was kept less than 5 KΩ. The recorded EEG signal was digitized and 

transmitted with a 5000 Hz sampling frequency. The acquisition of EEG signals was 

accomplished using Brain vision recorder software (Brain Products GmbH, Gilching, Germany). 

ECG signal was also recorded by placing an ECG electrode at the volunteer’s back. 

2.3.3 PRELUDE TO EXISTING ARTIFACT REMOVAL TECHNIQUES 

2.3.3.1 TECHNIQUES FOR REMOVAL OF CB ARTIFACT 

 One of the frequently used CB artifact removal methods is based on the Average Artifact 

Subtraction (AAS) algorithm (Allen et al., 1998, 2000). The AAS method's prerequisite is the 

detection of the cardiac cycle’s onsets, which are derived from the simultaneously recorded ECG 

signals. Next, for each EEG channel, an artifact template is constructed separately by utilizing 

these onsets as time-locking events, and subsequently, averaging EEG over a pre-defined epoch 

is performed. This resultant artifact template over substantial trials averages out the EEG signal 

and represents the CB artifact. Finally, to remove the CB artifact, this template is subtracted from 

the entire EEG data. Further, the CB template construction and artifact correction is performed 

for each channel separately as the amplitudes of CB artifact differ in electrodes due to various 

factors, including the variability in their positions/orientations w.r.t gradients. Nevertheless, the 

AAS algorithm suffers from multiple drawbacks based on accurate detection of cardiac cycle 

onset, temporal stability of artifact, absence of concurrence between the cardiac rhythm and the 

event of activity, and the selection of the length of the template (Laufs et al., 2008). 
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 Accurately marking the cardiac cycle onset improves the CB correction (Allen et al., 

1998). However, it is hard to identify the onsets precisely as the MR gradient and CB artifact 

contaminate the ECG channel. Software packages like Brain vision analyzer (Brain Products 

GmbH, Gilching, Germany) align the markers by taking the jitter information into account and 

thus minimize the overall jitter before the actual correction process. Moreover, the variation in 

the R-R interval makes the selection of the length of the template tricky. Brain vision analyzer 

software (Brain Products GmbH, Gilching, Germany) employs the building of a template such 

that it incorporates the CB artifact for all R-R intervals existing in the present moving-average 

window. This template is employed to each QRS interval based on the R-R period, which 

circumvents the effect of template length issues on pulse artifact correction procedure (Ellingson 

et al., 2004).  

To overcome the temporal-stability drawback, Niazy and colleagues (Niazy et al., 2005) 

suggested building the artifact template utilizing the channel-based temporal principal 

component analysis (PCA). The temporal-stability assumption states that within a chosen 

moving-average, the CB contribution to the EEG channel changes slowly over time and is 

similar to adjacent cardiac cycles. Hence, the assumption that one template is sufficient for each 

CB epoch may not always be correct. The technique employed by Niazy et al. (2005) does not 

assume these local similarities in CB artifacts. Their method is called an Optimal basis set (OBS) 

wherein among the principal temporal components, the first few are considered to represent 

various CB artifact templates, and their joint utilization subside the CB artifact in the EEG data. 

This tool is available as an FMRIB plug-in for the EEGLAB environment provided by the 

University of Oxford Centre for Functional MRI of the Brain (FMRIB). 
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Another spatial patterns based approach can be used to alleviate the CB artifacts from the 

EEG data. This approach's advantage is that it doesn’t necessarily require the pre-knowledge of 

onsets of each cardiac cycle. The two subcomponents on which spatial topography based 

methods rely are Independent Component Analysis (ICA) and PCA (Srivastava et al., 2005). 

These subcomponents assume that the actual EEG activity is independent (physiologically) from 

the CB artifact, and thus a limited number of components would adequately represent the CB 

artifact activity. Bénar et al. (2003) visually identified these CB artifacts by inspecting the 

similarity between the concurrently recorded ECG signal and the components' time courses. The 

remaining components, when back-projected, resulted in the mitigation of the CB artifacts. 

However, the spatial pattern approaches' effectiveness as compared to template-based methods at 

3T fields is still debatable. Nonetheless, the application of ICA with template-based techniques 

may prove productive in the future.  

2.3.3.2 TECHNIQUES FOR REMOVAL OF MR GRADIENT ARTIFACT 

 The MR gradient artifact correction also extensively utilizes the template-based method 

mentioned above to detect and remove MR gradient artifacts (Allen et al., 2000). First and 

foremost, similar to the CB artifact correction, the EEG intervals contaminated by the gradient 

artifact are selected. The efficacy of the artifact removal technique primarily depends on the 

precision of the artifact intervals' selection. Brain vision analyzer (Brain Products GmbH, 

Gilching, Germany) software supports two methods for detecting artifacts. First is the simple 

gradient method, wherein for selected channels, the sum of the gradients of the curves between 

subsequent data are estimated and marked with ‘Scan Start’ marker on exceeding a particular 

threshold. Second is the gradient method with Template drift detection (TDD). TDD 

automatically assesses the drifts and shifts in the individual artifact intervals. TDD's working 
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principle is based on significant narrow maxima created by the interference caused by the 

changing magnetic field gradients. TDD performs the interpolation of the data around the peaks 

and estimates the temporal drifts accurately. Besides, it also builds an internal table containing 

information about the position of peaks. Thus, comparing this attribute for a particular artifact 

interval with the other intervals gives the measurement of displacement in data points in that 

interval. The position of the ‘Scan Start marker’ is thus optimized based on the drifts, which 

compensate for the displacement caused by the repeated drifts (Mulert & Lemieux, 2010). 

Further, following the detection of scanned intervals, different methods are available for 

template averages assessment and subsequent subtraction for mitigation of MR gradient artifact 

in Brain Vision Analyzer software based on a. sliding average calculation for a definite number 

of intervals, b. selecting pre-defined scanned intervals for average and including other intervals, 

if correlation exceeds a specific value (default is 0.975), c. utilizing all scanned intervals for 

averaging and template calculation. Moreover, to remove any residual frequencies present in the 

EEG data post the template subtraction process, the filtering process is performed on the data. 

Niazy et al. (Niazy et al., 2003, 2005) further established the fMRI artifact template removal 

(FASTR), a plug-in for EEGLAB wherein a distinct artifact template is formed to reduce the 

fluctuations due to the temporal variations in the MR gradient artifact. Thus, a combination of 

moving average template with the basis functions derived from temporal PCA on residual 

artifacts is performed. Additionally, they employed the OBS method, as mentioned earlier, for 

alleviating the remaining artifacts.  
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2.3.3.3 REMOVAL OF CONVENTIONAL EEG ARTIFACTS 

 In addition to CB and MR gradient artifacts, the EEG signal is also contaminated by 

electrical line interference, electrode displacement, and volunteer-induced ocular and muscle 

movements. A series of steps, including filtering, removing the artifacts, and re-referencing EEG 

signals, are typically performed to address the conventional EEG artifacts. For this purpose, the 

Harvard Automated Preprocessing Pipeline (HAPPE) toolbox (Gabard-Durnam et al., 2018) 

provides an automated approach to removing these typical EEG artifacts. HAPPE is freely 

available MATLAB based software that can be operated in a semi-automated or fully-automated 

mode and further utilizes the functionalities of EEGLAB.  

2.3.4 OPTIMIZING EEG PREPROCESSING PIPELINE 

This thesis carefully followed the preprocessing procedures to alleviate the MR gradient, 

CB, and other conventional EEG artifacts. The steps followed (see Figure 2.1) are discussed 

below and have also been published as Supplementary material in Kaur, Chinnadurai, & Chaujar 

(2020).  

a. Employing Average Artifact Subtraction (AAS) based MR gradient artifact removal 

algorithm in the brain vision analyzer   

To mitigate gradient artifact and remove any residuals, we used the AAS (Allen et 

al., 2000; Ritter et al., 2010) method of the Brain vision analyzer (Brain Products GmbH, 

Gilching, Germany). As discussed in previous sections, the AAS algorithm operates 

primarily by creating a template of MR scanner artifacts in EEG data whose quality 

majorly depends on the artifact intervals' precise localization. We used the fMRI volume 

markers (labeled as ‘TR’) for forming the MR gradient template. These markers 
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accurately identify each MR acquisition's starting point and are regularly spaced, thus 

helping build a better MR gradient template. Further, the MR scanner and amplifier were 

synchronized with each other via Brain Vision Sync Box; therefore, the template drift 

detection and compensation were not implemented. The subsequent correction was 

performed by utilizing the sliding average calculation with the default number of 

intervals for sliding average as an averaging method. This step yielded gradient artifact 

removed data with no residuals at harmonics of the MRI slice/volume excitation 

frequency, i.e., 15, 30, 45 Hz, and so on. 

 

b. Trimming of MR uncorrected EEG data before Cardio Ballistic (CB) correction:  

There exist 6 seconds of data before the start of the first fMRI block acquisition 

(identified by the first TR marker) wherein pulse sequence prepares itself. Since the MR 

gradient correction starts from the first TR marker, the gradient effect is retained on these 

6 seconds prior data for ECG and EEG electrodes. This can lead to reduced quality of CB 

artifact cleaning. Hence, we subjected only the data of the fMRI volumes to the CB 

artifact removal and removed these 6 seconds prior data. Subsequently, the CB artifact 

removal was performed in the FMRIB plug-in of EEGLAB provided by the University of 

Oxford Centre for Functional MRI of the Brain (FMRIB). The method detects combined 

adaptive thresholding and the Teager energy operator, followed by a correction algorithm 

for detecting the ECG data’s QRS peaks (Christov, 2004; Kim et al., 2004). This 

algorithm delivers an average specificity and sensitivity of 99% in aligning the events 

and correcting false negatives and positives. Next, the OBS 
 
method is exploited for the 
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removal of the CB artifact. Hence, this step of the trimming prior EEG data before CB 

rectification has yielded a good quality of CB artifact removed data.  

 

c. Supervised utilization of functionalities of Harvard Automated Processing Pipeline 

for Electroencephalography (HAPPE):  

For alleviating conventional EEG artifacts from the MR gradient and CB artifact 

rectified datasets and ensuring better data quality, we also employed the HAPPE toolbox. 

The steps selected from the functionalities of the HAPPE toolbox are described below.  

I. All EEG channels with MR gradient and CB artifact rectified data were filtered with 0.1 

Hz (high pass) and 70 Hz (low pass) filtering process.  

II. The Cleanline plug-in of EEGLAB was utilized next to remove the electrical (line) noise. 

Cleanline (Mullen, 2012) uses the multi-taper regression approach to eliminate the 

electrical line noise without compromising the EEG signal. 

III. The average log power across all channels was assessed, and their normed joint 

probability was estimated. The channels having a joint probability of more than three 

standard deviations are identified as contaminated channels and are removed from further 

processing. 

IV. Next, Wavelet enhanced Independent Component Analysis (W-ICA) approach was used 

before conventional ICA, where artifact components are rejected. The W-ICA approach 

removes muscle, ocular artifacts, and signal discontinuities while retaining the entire 

length of the data, thus improving the decomposition of subsequently performed ICA. 

The first step in W-ICA involves performing extended infomax ICA on the EEG signal 

and then subjecting the derived components’ time series to wavelet transformation, which 
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generates the coefficients using Coiflets (level 5) wavelet to expound the EEG signal 

(Castellanos & Makarov, 2006). The coefficients are subsequently subjected to 

thresholding (Donoho, 1995; Donoho & Johnstone, 1994) and are determined using the 

following equation  

 
       𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

𝑚𝑒𝑑𝑖𝑎𝑛(𝑎𝑏𝑠(𝑑))

0.6745
∗ √2log (𝑛) 

 
 

Equation 2.1 
 

where n is the length of ICA components, and d is the set of coefficients. Thus, 

the component time-series with large amplitudes fail to survive the thresholding and 

constitute an artifact time series. Therefore, to remove these artifacts, they are subtracted 

from the original time series. Thus, within component artifact is removed at this step; 

however, no ICA component is rejected. 

V. After W-ICA, HAPPE implements an extended infomax ICA algorithm again. 

Subsequently, at this stage, the components are rejected using an automated component 

rejection algorithm called the Multiple Artifact Rejection Algorithm (MARA) (Winkler 

et al., 2011). MARA is a machine-learning algorithm that evaluates six features on each 

component and then allocates each component with a probability, which defines the 

percentage of artifact contamination in a specific component. Further, HAPPE  rejects 

any component having this probability measure more than 0.5. The six features are as 

follows. 

i. Mean local skewness:= This feature identifies blinks or loose contact of an 

electrode by measuring local skewness, where larger skewness values point out 

the probable artifact. 



45 
 

ii. Log alpha power:= This feature works by classifying the components with robust 

alpha band powers as non-artifact components. 

iii. Lambda:= Lambda feature encapsulates the deviation observed in the power 

spectrum of a component from 1/f distribution and mainly identifies the muscle-

related artifacts. 

iv. Fit error:= It is the mean squared error estimated among the component’s 

distribution and f distribution, specifically in 8-15 Hz. 

v. The range within the pattern:= It defines the (log) difference between a 

component’s highest and lowest activation magnitudes. The larger range within 

the pattern represents an artifact component. 

vi. Current density norm:= Here, a cerebral-based activity model is used to source-

model the components, and due to their complex source models, artifact 

components contain high current density norm. 

The statistics of the components retained after ICA are included in the generation 

of data quality metrics. 

VI. Finally, any channels removed in the previous analysis were subjected to spherical 

interpolation, and a complete channel set is created. 
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Figure 2.1 Schematic illustrating the EEG preprocessing pipeline. 
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2.4 RESULTS AND DISCUSSION 

 This chapter introduced the severe artifacts present in EEG data, which is recorded 

simultaneously with fMRI. Further, we presented the various techniques available to mitigate 

these artifacts, and finally, we furnished the optimized pipeline followed for the alleviation of 

these artifacts. This section presents the validation for the EEG preprocessing pipeline explained 

in the previous section by applying this pipeline on the dataset of 39 healthy male volunteers. 

2.4.1 VALIDATION BY HAPPE’S PROCESSING REPORT 

HAPPE generated a report table accommodating the data metrics and descriptive 

statistics for all 39 volunteers. The performance of the EEG preprocessing pipeline was gauged 

effectively using these metrics. Table 2.1 shows the HAPPE processing obtained for these 39 

volunteers and highlights the following points. 

a. An average of 95% of the selected 31 channels (excluding ECG) were marked as good 

channels and were used for subsequent processing. 

b. The interpolated (bad channels) covered the central region electrodes, namely Fz and Cz. 

c. On average, 11% of the independent components were rejected for a sample of 39 

volunteers per file during HAPPE. Further, 96% of the EEG variance per file was 

retained on average, signifying acceptable data loss after the MARA component rejection 

step.  

d. Additionally, the mean and median artifact probabilities of components that were retained 

after MARA-based component rejection on average were only 0.1 and 0.06, respectively. 

Since no individual files volunteer files crossed the threshold of 0.25 in mean and median 

artifact probabilities, hence all of them were considered for further analysis. 



48 
 

Table 2.1 HAPPE preprocessing report generated for all volunteers’ (N=39) EEG datasets. Independent 

components are abbreviated as ICs (Kaur et al., 2020). 
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Volunteer_1 410.0 31 1 31 96.875 - 2 6.5 96.4 0.02 0.07 0.47 0.00185 0.47 

Volunteer_2 410.0 31 1 29 90.625 Cz  FC1 6 20.7 89.1 0.04 0.09 0.41 0.00258 0.42 

Volunteer_3 410.0 31 1 31 96.875 - 5 16.1 93.3 0.14 0.16 0.43 0.00033 0.43 

Volunteer_4 410.0 31 1 29 90.625 Cz  FC2 5 17.2 96.3 0.08 0.12 0.38 0.00026 0.38 

Volunteer_5 410.0 31 1 31 96.875 - 2 6.5 98.2 0.06 0.10 0.27 0.00024 0.27 

Volunteer_6 410.0 31 1 31 96.875 - 0 0.0 100.0 0.03 0.07 0.43 0.00019 0.43 

Volunteer_7 410.0 31 1 31 96.875 - 2 6.5 97.9 0.03 0.09 0.43 0.00026 0.43 

Volunteer_8 410.0 31 1 31 96.875 - 3 9.7 96.7 0.05 0.12 0.49 0.00014 0.49 

Volunteer_9 410.0 31 1 31 96.875 - 2 6.5 96.8 0.02 0.10 0.47 0.00088 0.47 

Volunteer_10 410.0 31 1 31 96.875 - 3 9.7 97.8 0.03 0.05 0.24 0.00102 0.25 

Volunteer_11 410.0 31 1 30 93.75 Cz 4 13.3 96.3 0.14 0.13 0.42 0.00161 0.42 

Volunteer_12 410.0 31 1 30 93.75 Cz 2 6.7 99.0 0.04 0.11 0.49 0.00055 0.49 

Volunteer_13 410.0 31 1 31 96.875 - 3 9.7 96.6 0.08 0.12 0.38 0.00031 0.38 

Volunteer_14 410.0 31 1 31 96.875 - 2 6.5 98.4 0.02 0.07 0.50 0.00029 0.50 

Volunteer_15 410.0 31 1 29 90.625 FC1 Fz 0 0.0 100.0 0.02 0.05 0.34 0.00015 0.34 

Volunteer_16 410.0 31 1 30 93.75 Cz 5 16.7 95.1 0.09 0.10 0.42 0.00027 0.42 

Volunteer_17 410.0 31 1 31 96.875 - 3 9.7 97.1 0.04 0.06 0.37 0.00076 0.37 

Volunteer_18 410.0 31 1 30 93.75 Cz 3 10.0 93.2 0.03 0.05 0.21 0.00067 0.21 

Volunteer_19 410.0 31 1 31 96.875 - 1 3.2 99.6 0.02 0.07 0.43 0.00037 0.43 

Volunteer_20 410.0 31 1 30 93.75 Fz 0 0.0 100.0 0.04 0.07 0.31 0.00054 0.31 

Volunteer_21 410.0 31 1 31 96.875 - 8 25.8 92.6 0.19 0.19 0.47 0.00149 0.48 

Volunteer_22 410.0 31 1 31 96.875 - 5 16.1 92.6 0.16 0.17 0.44 0.00648 0.44 

Volunteer_23 410.0 31 1 29 90.625 Fz TP9 2 6.9 99.0 0.04 0.08 0.48 0.00010 0.48 

Volunteer_24 410.0 31 1 30 93.75 Cz 2 6.7 99.2 0.03 0.07 0.31 0.00002 0.31 

Volunteer_25 410.0 31 1 30 93.75 TP9 12 40.0 72.4 0.11 0.15 0.49 0.00137 0.49 

Volunteer_26 410.0 31 1 31 96.875 - 2 6.5 98.2 0.05 0.12 0.48 0.00051 0.48 

Volunteer_27 410.0 31 1 31 96.875 - 2 6.5 99.3 0.02 0.04 0.21 0.00008 0.21 
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Volunteer_28 410.0 31 1 30 93.75 Fz 2 6.7 98.4 0.02 0.06 0.30 0.00016 0.30 

Volunteer_29 410.0 31 1 31 96.875 - 0 0.0 100.0 0.01 0.06 0.36 0.00010 0.36 

Volunteer_30 410.0 31 1 31 96.875 - 0 0.0 100.0 0.01 0.03 0.19 0.00003 0.19 

Volunteer_31 410.0 31 1 31 96.875 - 7 22.6 92.5 0.07 0.12 0.48 0.00029 0.48 

Volunteer_32 410.0 31 1 31 96.875 - 3 9.7 97.2 0.09 0.14 0.49 0.00097 0.49 

Volunteer_33 410.0 31 1 31 96.875 - 6 19.4 87.7 0.06 0.13 0.47 0.00351 0.48 

Volunteer_34 410.0 31 1 30 93.75 Cz 5 16.7 93.5 0.08 0.13 0.40 0.00216 0.41 

Volunteer_35 410.0 31 1 30 93.75 Cz 7 23.3 90.5 0.10 0.18 0.47 0.00147 0.47 

Volunteer_36 410.0 31 1 30 93.75 Fz 1 3.3 99.8 0.04 0.10 0.40 0.00030 0.40 

Volunteer_37 410.0 31 1 31 96.875 - 4 12.9 96.3 0.05 0.10 0.41 0.00022 0.41 

Volunteer_38 410.0 31 1 30 93.75 Cz 6 20.0 84.1 0.06 0.15 0.48 0.00049 0.48 

Volunteer_39 410.0 31 1 31 96.875 - 2 6.5 99.2 0.02 0.09 0.43 0.00036 0.43 

 

 

2.4.2 VALIDATION VIA EEG POWER SPECTRUM 

The data quality was further validated by subjecting the 39 EEG data files to power 

spectrum assessment. Figure 2.2 shows the median power spectrum plots of raw EEG data for 

the range of 0.2 to 50 Hz. The figure depicts the MR gradient artifact peaks at 15, 30, 45 Hz, and 

so on (i.e., multiples of no. of slices/TR) for channels F3, F4, F7, F8, Pz, Oz, and POz. Next, we 

subjected the final artifact removed EEG data to Current Source Density (CSD) referencing 

(Kayser, 2009; Kayser & Tenke, 2015) and subsequently to the estimation of the power spectrum 

between 0.2 Hz to 50 Hz frequency range. The median power spectrum plots of the final artifact 

removed EEG data for channels F3, F4, F7, F8, Pz, Oz, and POz is shown in Figure 2.3. The 

observations following Figure 2.3 are as mentioned below. 

a. The MR gradient artifact peaks observed at the 15, 30, 45 Hz (i.e., multiples of no. of 

slices/TR) range in raw data have been cleaned appropriately in the final processed data.  

b. The median spectral power of artifact removed EEG data reveals parietal and occipital 

alpha and beta bands. 
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Figure 2.2 Median power spectrum (0.2 to 50 Hz) of raw artifact laden data for channels F3, F4, F7, F8, 

Pz, Oz, and POz (Kaur et al., 2020). 
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Figure 2.3 Median power spectrum (0.2 to 50 Hz) of final artifact removed EEG data (CSD referenced) 

for channels F3, F4, F7, F8, Pz, Oz, and POz (Kaur et al., 2020). 

 

2.5 CONCLUSION 

In this chapter, the primary artifacts present in the EEG data simultaneously recorded 

with fMRI, i.e., MR gradient, CB artifacts in addition to conventional EEG artifacts, have been 

discussed in detail. Further, the various techniques available for mitigating these artifacts have 

been conferred. Next, the steps we adopted to optimize the EEG preprocessing pipeline with 

their rationale have been presented. Subsequently, the EEG preprocessing pipeline's validation 

was carried out to ensure that the EEG asymmetry estimations are devoid of the various sources 
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of EEG artifacts. The validation was first carried out based on the HAPPE toolbox's processing 

report, which presented statistics of metrics such as percentages of channels selected as good 

channels, percentages of independent components rejected, the mean and median artifact 

probabilities of independent components, etc. Next, the median spectral power of raw and 

artifact removed data were plotted and compared. The results revealed that the final artifact 

removed data was suitably cleaned for the various artifact sources and exhibited acceptable data 

loss. Further, the subsequent chapters cover the exploration of resting EEG/fMRI hemispheric 

asymmetry models for application in military/aviation domains. 
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3.             CHAPTER THREE 
 

ASSESSMENT OF LINKAGE BETWEEN RESTING ALPHA 

ASYMMETRY AND PERFORMANCE IN SITUATIONAL 

AWARENESS TASK 

 

This chapter is a marginally modified version of the research article published as Kaur, A., 

Chaujar, R., & Chinnadurai, V. (2019). Effects of Neural Mechanisms of Pretask Resting EEG 

Alpha Information on Situational Awareness: A Functional Connectivity Approach. Human 

Factors. https://doi.org/10.1177/0018720819869129. 

                                                                       3.1 ABSTRACT 

In this study, the influence of pre-task resting neural mechanisms of resting alpha and its 

corresponding frontal asymmetry model on Situational Awareness (SA) task is studied. Pre-task 

EEG information and the Stroop effect are known to influence task engagement independently. 

However, the influence of neural mechanisms of pre-task resting absolute alpha (PRAA) and 

pre-task resting alpha frontal asymmetry (PRAFA) on the SA-task, which is undergoing the 

Stroop effect, is still not understood. The study involved pre-task resting EEG measurements 

from 18 healthy individuals, followed by fMRI acquisition during the SA-task. To understand 

the effect of pre-task alpha information and Stroop effect on SA, a robust correlation between 

mean reaction time, SA-index, PRAA, and PRAFA was assessed. Further, neural underpinnings 

of PRAA, PRAFA in SA-task, and functional connectivity were analyzed through the EEG-

informed fMRI approach. Significant robust correlation of reaction time was observed with SA-

index (Pearson: r=0.50, pcorr=0.05) and PRAFA (Pearson: r=0.63; pcorr= 0.01) respectively. 

https://doi.org/10.1177/0018720819869129
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Similarly, SA-index significantly correlated with PRAFA (Pearson: r=0.56, pcorr=0.01; 

Spearman: r=0.61, pcorr=0.007), and PRAA (Pearson: r=0.59, pcorr=0.005; Spearman: r=0.59, 

pcorr=0.002). The neural-underpinnings of the SA-task revealed regions involved in visual-

processing and higher-order cognition. PRAA was primarily underpinned at frontal-temporal 

areas and functionally connected to SA-task regions of the emotional regulation. PRAFA has 

correlated with limbic and parietal-regions, which are involved in integrating visual, emotion, 

and memory information of the SA-task. The results suggest a strong association of reaction time 

with SA-task and PRAFA and strongly support the hypothesis that PRAFA, PRAA, and 

associated neural mechanisms significantly influence the SA-task outcome. Since SA is vital to 

operate complex systems, thus, it is beneficial to study the effect of pre-task resting information 

on the SA-task to improve SA.  

3.2 INTRODUCTION 

Neuro ergonomics, the field which investigates the behavioral aspects of the human brain 

by integrating knowledge from both neuroscience and neuroimaging with ergonomics, has 

evolved immensely in the last decade (Gramann et al., 2017; Hancock & Szalma, 2003; Mehta et 

al., 2013; Sestito et al., 2018). This interdisciplinary approach would be beneficial in 

comprehending human abilities for augmenting their interaction with various environments.    

Situational awareness (SA), which is knowledge about the environment, is one of the 

constructs that has become the focus of the ergonomics community recently (Endsley, 1995b; 

Endsley et al., 2016). It begins with the perception of the elements in the environment (Level-1), 

comprehension of their meaning (Level-2), and ends at decision-making (Level-3) (Endsley, 

1995b; Endsley et al., 2016). Maintenance of SA is essential for optimum performance in the 
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military, aviation domain. However, many physiological and psychological factors can cause a 

loss of SA (Endsley et al., 2015; Klamklay, 2002). These factors include attention, long-term and 

working memory, automaticity, and experience of an individual. Previous research majorly 

examined the association of the factors mentioned above with the loss of SA individually, since 

it is difficult to test the SA model as a whole (Endsley, 2015).  

The maintenance of SA primarily depends on the individual's ability to allocate cognitive 

resources to perform specific functions by filtering out functions-irrelevant stimuli. This 

cognitive process is better studied through the Stroop effect, which involves performing a less 

automated task (e.g., recognizing the ink color) while inhibiting the interference arising from a 

more automated task (e.g., reading the word). Past research (Jensen & Rohwer, 1966; Kang et 

al., 2013; Scarpina & Tagini, 2017) reported the Stroop test application in measuring cognitive 

functions such as attention, processing speed, cognitive flexibility, and working memory. 

Specifically, in their study, Klamklay (2002) reported a high positive correlation of performance 

and SA with Stroop color and word test. Despite these works, many questions are still needed to 

be addressed for a better understanding of the maintenance of SA. They are, 1) Does SA gets 

influenced by the Stroop effect during the SA-task? 2) What are the neural mechanisms of SA 

when it is influenced by the Stroop effect? 3) What are the pre-task factors that can affect the 

neural mechanisms in SA? Understanding these aspects requires an in-depth analysis of 

multimodal information acquired from an individual while performing the SA-task influenced by 

the Stroop effect.  

Cognitive neuroscience employs divergent assessment techniques such as functional 

magnetic resonance imaging (fMRI), electroencephalography (EEG), functional near infra-red 

spectroscopy (fNIRS), and positron emission tomography (PET) to study the functional 
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dynamics of the brain during task engagement. Hence, the appropriate use of these techniques 

will facilitate us in understanding neural mechanisms underlying the Stroop effect on SA and 

ways to ameliorate it under various environments. Catherwood et al. (2014) employed EEG for 

mapping brain activity and suggested an early coactivity in high order and perception areas 

during the loss of SA. The aforementioned study investigated the association of loss of SA with 

concurrent activity in high-level cognitive regions and those for perceptual (visual) processing 

through EEG source analysis. Although this study revealed valuable neural insights of SA, it did 

not address the association of pre-task resting information with the behavioral outcome of the 

subsequently performed SA-task.   

Pre-task resting-state information refers to non-random and intricate patterns of inherent 

activity occurring while the brain is not involved in a task (Raichle & Snyder, 2007). 

Electroencephalography (EEG) signatures acquired during pre-task resting state have been 

known as a contributor to the outcome of subsequently performed cognitive tasks. In particular, 

frontal alpha asymmetry and peak alpha oscillations (8–12 Hz) have been investigated 

extensively in the past decades (Ambrosini & Vallesi, 2015; Grandy et al., 2013) as a measure to 

examine emotion-related (J. Davidson, 1992; Richard J Davidson, 2010; Tomarken et al., 1992) 

and motivation-related state and trait-related changes (R J Davidson et al., 1990; Tomarken et al., 

1990). J. Coan (2003)  postulated the frontal asymmetry’s approach-withdrawal model, wherein 

an increase in relative left-frontal activity indicates a tendency to engage or approach a stimulus. 

In contrast, a decrease in relative left-frontal activity suggests increased withdrawal and reduced 

approach motivation. Frontal hemispheric asymmetry has also been conceptualized and, to some 

extent, proved to be a moderator and mediator of emotion (James A. Coan & Allen, 2004; Gable 
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et al., 2017; Reznik & Allen, 2017). A study by Balconi et al. (2017) elucidated the predictive 

effect of resting-state activity and approach/withdrawal dichotomy.  

Further, the absolute power of alpha oscillations from which frontal asymmetry is derived 

has also been linked to reflect performance in various cognitive functions (Angelakis et al., 

2004), including attention, arousal, working memory, long-term memory, and reading. There is a 

shred of clear evidence that alpha and beta bands of resting EEG predict individual differences in 

attentional blink magnitudes (MacLean et al., 2012; Shapiro et al., 2017). López Zunini et al. 

(2013) explored the mutual relationship between cognitive states and resting-state alpha powers 

by showing that alpha band resting-state activity before a verbal recognition task can predict 

accuracy during the task.  

However, no published works provide a better understanding of the association of pre-

task resting EEG alpha and the associated asymmetry with the performance of subsequently 

performed SA-task when the Stroop effect influences the task. Also, there is no clarity in 

understanding the influence of neural mechanisms of pre-task resting alpha information and 

associated functional connectivity on subsequently performed SA-task.   

Hence, in the present work, the association of pre-task resting EEG alpha and the 

associated asymmetry on the subsequently performed SA-task has been investigated. In 

particular, the SA-task is designed to have more influence from the Stroop effect; hence, the 

ability of pre-task resting information in assessing the behavioral outcome of SA in those 

conditions can be studied. To confirm the presence of the Stroop effect during the SA-task, the 

robust correlation of the reaction time, which assesses the Stroop effect with the SA index of the 

individual during the same task, is carried out. Then, as this study primarily aims to understand 

the effect of pre-task alpha information on an individual’s SA, the pre-task information is 
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correlated with the SA index and further subjected to the EEG-informed fMRI analysis for 

understanding its neural mechanisms.  Integration of EEG and fMRI through the EEG-informed 

fMRI approach has emerged to balance their complementary temporal and spatial resolutions 

(Abreu et al., 2018; Huster et al., 2012; Murta et al., 2014; Zwaag, 2013). This technique enables 

us to assess regions that correspond to the task engagement (neural underpinnings of the SA-

task) as well as the regions whose neural activity is manifested as cortical EEG power (neural 

underpinnings of EEG powers). Subsequently, to understand the modulation of neural 

underpinnings of SA-task by neural mechanisms underlying pre-task resting alpha information, 

functional connectivity among neural underpinnings of SA-task, pre-task alpha power, and its 

associated hemispheric asymmetry was estimated and analyzed. 

3.3 MATERIALS AND METHODS 

The schematic diagram of the methodology adopted in this study is illustrated in Figure 

3.1. 

3.3.1 SAMPLE AND PROCEDURE 

Pre-task resting-state EEG and task-fMRI studies were performed on eighteen healthy 

volunteers (12 males, 6 females, Mean age= 24 years, Standard deviation (S.D.)= 3 years). All 

volunteers completed informed consent procedures approved by the local institutional review 

board. This research complied with the American Psychological Association Code of Ethics. 
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Figure 3.1 Schematic diagram of the methodology adopted in this study (Kaur et al., 2019). 

 

3.3.2 PARADIGM INFORMATION 

 Catherwood et al. (2014) employed an abstract task and a real-world urban threat 

detection task to assess the loss of SA by measuring EEG information for the same. Their study 

concluded the rapid and early coactivity of visual and higher-order regions for both abstract and 

more real-world content. Keeping in mind the compatibility of task performance in an MR 

environment, we chose to employ a modified Stroop-test to study situational awareness. Stroop-

colour and word test is a neuropsychological test used to assess the ability to inhibit cognitive 

interference that occurs when the processing of a specific stimulus feature impedes the 
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simultaneous processing of a second stimulus attribute. Scarpina et al. (2017) also report the 

application of the Stroop test in measuring cognitive functions such as attention, processing 

speed, cognitive flexibility, and working memory. Similar to the study by Catherwood et al. 

(2014), in our study, the “situation” is defined in terms of target information within a visual field. 

The essential requirements resemble many real-world situations requiring perceptual and 

cognitive processing to identify a target item. 

The choice of the Stroop test was made as it requires any volunteer to perform a less 

automated task while inhibiting the interference arising from a more automated task. This holds 

parallel to the concept of SA, wherein identifying which elements the operator needs to perceive 

and understand is an important parameter that facilitates the decision-making process. We 

modified the basic Stroop test by inserting questions about the presence of an object in the 

previous environment at random intervals, which is in-line with Endsley’s original task where 

random questions are asked to the volunteer about the driving simulation. Hence, in our 

paradigm, volunteers were exposed to a paradigm wherein each slide, they had to perceive the 

question being displayed, comprehend its meaning, and answer from a given set of four choices. 

Each stimulus slide lasted for 4.5 seconds on the screen and was followed by a baseline slide for 

3 seconds. The baseline slide is the fixation block of the paradigm where no specific task was 

carried out by the volunteers except viewing standard blank slide with a cross. In the paradigm, 

20 stimulus slides were made where the volunteer had to observe and orient the true sense of 

Stroop color and word test question. Moreover, in five stimulus slides, the volunteer was 

randomly asked about the presence of an object in the previous environment. Level 1 SA 

(perception) in our paradigm was achieved by the visual perception of the questions being 

placed. Volunteers slowly transited to Level 2 SA (comprehension) while understanding the 
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meaning of the question being asked. E.g., one of the slides asked the volunteer to observe the 

color of text, where the text was ‘Eight’ written in green color, as shown in Figure 3.2. Thus, the 

volunteer had to observe all the choices, including a green-colored object and the number eight, 

and make a final choice by pressing a button on the same slide. At random times during the task, 

the volunteers were inquired about the particular features in the previous environment with a 

question such as; did you notice this object in the previous environment? (see Figure 3.2). These 

questions were modified and drafted to go in sync with the Endsley’s original task (Endsley, 

1995a). These questions mainly triggered the bottom-top process where the volunteer had to shift 

the attention to another additional goal, which was to focus on other elements in the 

environment. Further, volunteers were not trained for the occurrence of these random questions 

before the experiment.  
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Figure 3.2 Schematic showing fMRI stimulus and baseline presentation paradigm for Situational 

awareness (SA) task (Kaur et al., 2019). 

 

3.3.3 DATA ACQUISITION AND PRE-PROCESSING STEPS 

3.3.3.1 Pre-task resting EEG data acquisition and pre-processing 

Pre-task resting-state EEG data were acquired using MRI compatible Brain-Amp EEG 

amplifier and electrode cap with 31 Ag/AgCl electrodes positioned according to the 10/20 

system and 1 ECG channel. The reference electrode was placed between Fz and Cz electrodes. 

Raw EEG data were sampled at 5 kHz using brain vision recorder (Brain Products GmbH, 
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Gilching, Germany), and impedances of electrodes were kept below 10 kΩ. We recorded resting-

EEG on all volunteers while they were at rest in the MRI room. Resting-state EEG recording 

lasted for 6 minutes and included the eyes-closed condition. The eyes closed condition was 

chosen, as alpha rhythm, which is the EEG correlate of relaxed wakefulness, is best obtained 

while the eyes are closed. Further, functional connectivity in the alpha band decreases in the 

eyes-open condition compared to the eyes-closed condition (Barry & De Blasio, 2017; Gómez-

Ramírez et al., 2017). 

The acquired EEG data were corrected for gradient and cardio-ballistic artifacts using 

Brain vision analyzer’s (BVA) algorithms (Brain Products GmbH, Gilching, Germany), and 

ocular artifacts were removed using the ICA approach in BVA. Then, the alpha band's power 

spectral densities (8-12 Hz) of every channel were computed for the entire duration of resting 

acquisition using Welch’s overlapped segment averaging estimator. The spectral densities of 

alpha-band power were then log-transformed for further analysis. 

3.3.3.2 fMRI data acquisition and pre-processing 

Functional and anatomical MR imaging was performed in a 3T MR Siemens scanner. 

During the SA-task, fMRI scanning was carried out with a T2* weighted EPI sequence, and 247 

functional blocks were acquired. The other acquisition parameters were set as number of 

slices=36, slice thickness = 3 mm, TR = 3000ms, flip angle = 90°, TE = 36ms, Field of View 

(FOV) = 230X230. The whole-brain anatomical scan was also acquired using a T1-weighted 

sequence with the parameters TR = 1900ms, flip angle = 9°, TE = 2.49ms, FOV=256X256. The 

acquired fMRI data were pre-processed, co-registered, normalized to Montreal Neurological 
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Institute (MNI) template, and smoothed using a Gaussian kernel (6mm full-width half-

maximum) in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). 

3.3.4 DATA ANALYSIS 

3.3.4.1 Estimation of the SA index as a behavioral measure of task  

Quantification of SA in previous literature has been done using Quantitative Assessment 

of Situational Awareness (QASA) (Edgar et al., 2018; Nikolla et al., 2018; Stanislaw & Todorov, 

1999). QASA involves the collection and analysis of volunteers’ responses to true/false 

statements using signal detection theory metrics. As this study aims to understand the Stroop 

effect on SA-task, we required to keep more than one task-irrelevant option along with the 

correct answer in the slides in order to bring more Stroop effect during task engagement. Hence, 

each slide had one correct answer (signal) and three wrong answers (noise). We have calculated 

Hits (H) as a ratio between the number of correct answers selected by the individual and the total 

number of correct answers. In order to calculate False Alarm (F), we have grouped all three task-

irrelevant answers in the slide as one false category. Hence, if the individual selects any task-

irrelevant stimuli as an answer, it is considered a single false category. Thus, a false alarm is 

estimated as the ratio between the number of task-irrelevant stimuli identified as correct and the 

total number of false. The purpose of doing this was to ensure that the volunteer uses his/her 

cognitive resources in observing all the options in addition to the hit. This assessment of 

true/false from volunteers' answers for the adaptation of signal detection theory metrics, and 

eventual quantification of SA allowed us to assess the Stroop effect during the task engagement.  

The additional slides that enquired about the presence of a particular object in the previous 

environment evoked yes-no responses from the volunteers. These yes-no responses on signal 

https://www.fil.ion.ucl.ac.uk/spm/


67 
 

trials (when an object was present in the previous environment) and noise trials (when an object 

was absent in the previous environment) were also added to the proportion of hits (correct 

identification) and false alarms (incorrect identification). Hence, using the estimated H and F, SA 

Index was derived as 

 
𝑆𝐴 𝐼𝑛𝑑𝑒𝑥 = 0.5 +

(𝐻 − 𝐹)(1 + 𝐻 − 𝐹)

4𝐻(1 − 𝐹)
 

 

Equation 3.1 

 

 Ben-david et al. (2012) have also employed a similar concept of signal detection theory 

(SDT) for analysis of emotional Stroop color and word task where the percentage of correct 

identification of color provided the rate of hits (H). In a complementary fashion, the percentage 

of incorrect identifications of color as word provided the rate of false alarms (F). 

Subsequently, the behavioral score of SA-task of each volunteer was combined in a 

vector form (SA all) as 

 𝑆𝐴𝑎𝑙𝑙 = {𝑆𝐴𝐼𝑛𝑑𝑒𝑥𝑖|𝑖 = 1 𝑡𝑜𝑁} Equation 3.2 

 

where N is the total number of volunteers who participated in the study, these estimations 

were implemented via programming in Matlab 2013b. 

3.3.4.2 Estimation of reaction time to corroborate Stroop effect on SA-task 

Reaction time was estimated specifically for slides involving the Stroop effect to validate 

its presence in SA-task. Mean reaction time was calculated for every volunteer and combined in 

a vector form (RTall) as 

 𝑅𝑇𝑎𝑙𝑙 = {𝑅𝑇𝐼𝑛𝑑𝑒𝑥𝑖|𝑖 = 1 𝑡𝑜𝑁} Equation 3.3 
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where N is the number of volunteers who participated in the study; subsequently, the 

robust correlation between response time, SA index, and pre-task alpha information was 

assessed. 

3.3.4.3 Estimation of pre-task resting alpha information  

As mentioned in earlier sections, this study focuses on understanding the role of the pre-

task EEG alpha signatures in the outcome of the subsequently performed SA-task. Hence, in this 

study, the pre-task resting alpha information was assessed by measuring pre-task resting absolute 

alpha (PRAA) power and its associated hemispherical asymmetry through pre-task resting alpha 

frontal asymmetry (PRAFA) index. The methods of estimating these two indices are explained 

below.  

At first, the average PRAA values of every channel of each volunteer was estimated and 

organized as 

 
𝑃𝑅𝐴𝐴𝑎𝑙𝑙 = {𝑃𝑅𝐴𝐴𝑖,𝑗|

𝑖 = 1 𝑡𝑜𝑁
𝑗 = 1 𝑡𝑜𝑀

} 

 

   Equation 3.4 

 

N and M are the total number of volunteers who participated in the study and the total 

EEG channels, respectively. Each row in the matrix PRAAall contains details about the PRAA of 

every channel of a particular volunteer.   

Further, PRAFA was calculated through the PRAFA index based on differences of 

absolute alpha values measured from frontal hemispheres (Ellis et al., 2017; Smith et al., 2017) 

as given in Equation 3.5 

 𝑃𝑅𝐴𝐹𝐴𝑎𝑙𝑙 = {𝑃𝑅𝐴𝐹𝐴𝑖|𝑖 = 1 𝑡𝑜𝑁} 
 

Equation 3.5 
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where N is the number of volunteers and 𝑃𝑅𝐴𝐹𝐴𝑖 is the PRAFA of the i
th

 volunteer, 

which is estimated as  log(∝𝑅𝑖𝑔ℎ𝑡) − log(∝𝐿𝑒𝑓𝑡).  The ∝𝑅𝑖𝑔ℎ𝑡 is the median of absolute alpha 

values of F4, F8 channels and ∝𝐿𝑒𝑓𝑡 was estimated by computing the median of absolute alpha 

values of F3, F7 channels for every volunteer. These channels were chosen because hemispheric 

asymmetry has been linked to mid-frontal (F3, F4) and lateral frontal (F7, F8) sites (Coan 

&Allen, 2003; Harmon-jones, Gable, &Peterson, 2010; Wheeler, Davidson, &Tomarken, 1993). 

The PRAFA is an ideal index to assess neural mechanisms associated with the 

hemispherical asymmetry.  Higher scores on the PRAFA index indicate relatively higher alpha 

power and lower inhibition in the right frontal hemisphere than the left hemisphere. Many 

researchers (Klimesch, 2012; Sadaghiani & Kleinschmidt, 2016; Uusberg et al., 2013) have 

observed that neural activity as reflected by blood oxygenated level dependent (BOLD) signal, 

correlates negatively with alpha power. This implies that a higher PRAFA index is suggestive of 

higher neural activity in the left frontal hemisphere and vice versa. Numerous studies (Balconi et 

al., 2014; De Pascalis et al., 2013; Ferreira et al., 2006; Harmon-Jones et al., 2010; Jones et al., 

2009; Mennella et al., 2017; Papousek et al., 2014; Schneider et al., 2016) reflect the association 

of greater left frontal activity with a general motivational or approach system, and the higher 

right frontal activity with avoidance or withdrawal system. 

3.3.4.4 Robust correlations among reaction time, SA index, and pre-task resting 

information 

Robust correlations were implemented in the Robust correlation Matlab toolbox (Pernet 

et al., 2013).  This method protects against bivariate or univariate outliers.  Pearson, Spearman, 

Bend and Skipped correlation coefficients and their bootstrapped confidence intervals were 
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computed. Further, both p-values and confidence intervals were Bonferroni corrected for 

multiple comparisons. 

To substantiate the influence of the Stroop effect on SA, the robust correlation of reaction 

times pertaining to slides evoking the Stroop effect was estimated with the SA index as well as 

PRAA and PRAFA. Thus, RTall was correlated with SAall vector, PRAAall, and PRAFAall. 

Further, to explore the role of pre-task resting information in the behavioral outcome of the 

subsequently performed SA-task, the robust correlation of SA index with PRAA and PRAFA 

was carried out. Each row of PRAAall was thus correlated with the SAall vector to assess the most 

informative EEG channels, which are associated with the behavioral outcome of subsequently 

performed task. Eight EEG channels (fp2, poz, c4, pz, p7, cp1, o1, oz) were significantly 

correlated with the SA index. Hence, their median was computed for the purpose of passing it as 

a covariate in the EEG-informed fMRI model to estimate the neural underpinnings of PRAA. 

Similarly, PRAFAall was also subjected to the robust correlation analysis with the SAall index. 

The median value of the PRAFA was then used as a covariate in the EEG-informed fMRI model 

to assess the neural underpinnings of PRAFA. 

3.3.4.5 Estimation of neural underpinnings of SA-task, PRAFA, and PRAA 

The assessment of the SA-task's neural underpinnings reveals the brain regions involved 

during the task. This has been estimated by the general linear model approach using the 

statistical parametric model (SPM 12). In this model, at the first level of analysis, t-contrast was 

specified for testing the SA-task effect (active-baseline), where active comprised all the stimuli, 

and statistical parametric maps were constructed for canonical HRF and its temporal and 

dispersion derivatives. These contrast images of each subject were then passed onto second-level 
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group analyses. Similarly, the neural underpinnings of PRAFA and PRAA were assessed through 

the EEG-informed fMRI approach. Both PRAFA and PRAA were subjected as a global covariate 

at the second-level to two independent EEG-informed fMRI models. The results of the second-

level analysis of the neural underpinnings of the SA-task, as well as PRAFA and PRAA, were 

subjected to the one-way analysis of variance (ANOVA) statistical method.  The F-contrast was 

computed, and significant activations for the SA-task and PRAFA and PRAA were analyzed at 

FWE corrected p<0.05 significance.  

3.3.4.6 Functional connectivity analysis  

This study aims to understand the modulation of SA-task's neural underpinnings by 

neural mechanisms of pre-task resting alpha information. Therefore, functional connectivity 

analysis was carried out to understand the interaction between SA-task's neural underpinnings 

with PRAA and PRAFA. It is estimated by assessing the mutual correlations of the mean 

hemodynamic response of different neural underpinnings pertaining to the SA stimuli. 

Specifically, the functional connectivity (FC) between x
th

 neural underpinning of PRAA 

(PRAA(x)) and y
th

 neural underpinning of SA (SA(y) is estimated as 

 𝐹𝐶[𝑃𝑅𝐴𝐴(𝑥), 𝑆𝐴(𝑦)]  =  𝐶𝑜𝑟𝑟(𝑚𝐻𝑅𝑃𝑅𝐴𝐴(𝑥),𝑚𝐻𝑅𝑆𝐴(𝑦)) 
 

 

Equation 3.6 

 

Similarly, functional connectivity (FC) between PRAFA and SA neural underpinnings is 

estimated as  

 𝐹𝐶[𝑃𝑅𝐴𝐹𝐴(𝑧), 𝑆𝐴(𝑦)]  =  𝐶𝑜𝑟𝑟(𝑚𝐻𝑅𝑃𝑅𝐴𝐹𝐴(𝑧),𝑚𝐻𝑅𝑆𝐴(𝑦)) 
 

 

Equation 3.7 

 

Additionally, the functional connectivity (FC) between x
th

 neural underpinning of PRAA 

(PRAA(x)) and z
th

 neural underpinning of PRAFA (PRAFA(z)) is further estimated as 
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 𝐹𝐶[𝑃𝑅𝐴𝐴(𝑥), 𝑃𝑅𝐴𝐹𝐴(𝑧)]  =  𝐶𝑜𝑟𝑟(𝑚𝐻𝑅𝑃𝑅𝐴𝐴(𝑥),𝑚𝐻𝑅𝑃𝑅𝐴𝐹𝐴(𝑧)) 
 

 

Equation 3.8 

 

where 𝑚𝐻𝑅𝑃𝑅𝐴𝐴(𝑥),𝑚𝐻𝑅𝑃𝑅𝐴𝐹𝐴(𝑧) 𝑎𝑛𝑑 𝑚𝐻𝑅𝑆𝐴(𝑦) are the mean hemodynamic 

responses of the x
th

, z
th,

 and y
th

 neural underpinnings of PRAA, PRAFA, and SA, respectively 

pertaining to the SA-task stimuli. The mean hemodynamic responses of every neural 

underpinning pertaining to PRAA, PRAFA, and SA are estimated by forming a vector whose 

elements are the average hemodynamic response of all the voxels of that specific neural 

underpinning corresponding to a particular SA stimuli block (Figure 3.3). For example, the mean 

hemodynamic response of x
th

 neural underpinning of PRAA, 𝑚𝐻𝑅𝑃𝑅𝐴𝐴(𝑥) is estimated as 

      𝑚𝐻𝑅𝑃𝑅𝐴𝐴(𝑥) =  {|𝐴𝑣𝑔(𝑚𝐻𝑅𝑃𝑅𝐴𝐴
𝑖 | 𝑖 = 1:𝑁𝑥)|

𝐵𝐼
; 𝐵𝐼 = 1:𝑁𝑆𝐴𝐵𝑙𝑜𝑐𝑘𝑠} 

 

 

Equation 3.9 

 

where 𝑁𝑥 is the total number of voxels in the x
th

 underpinning of PRAA, 𝑁𝑆𝐴𝐵𝑙𝑜𝑐𝑘𝑠 is the 

total number of SA-task stimuli blocks, which in our experiment is 25, and BI is the block index.  

The mean hemodynamic response of every voxel pertaining to each stimulus was carried out by 

measuring time to peak (TTP) and width (W) of hemodynamic response function (HRF) for each 

stimulus (Lindquist et al., 2009). The TTP and W of each task stimulus were observed to be 

having mean values of 3.78 seconds and 1.9 seconds, respectively. This suggests that the 

hemodynamic response of the task stimuli was very well contained inside the block time of 4.5 

seconds during the task. The correlation threshold for the correlation among the neural 

underpinnings of SA, PRAA, and PRAFA was set more than 0.5, and t-test (p<0.05) for group 

analysis was performed for the in-depth understanding of the association between underpinnings 

of PRAA and SA, PRAFA and SA and PRAFA and PRAA. 
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Figure 3.3 Schematic showing the estimation of mean hemodynamic response of each stimulus for 

functional connectivity analysis (Kaur et al., 2019). 

 

 

3.4 RESULTS 

As mentioned in the earlier sections, this study aims to understand the influence of neural 

mechanisms of pre-task resting information on SA. Particularly, the SA-task is designed to have 

more influence from the Stroop effect; wherefore, the ability of pre-task resting information in 

assessing the behavioral outcome of SA in those conditions can be studied. Additionally, this 

study validated the existence of the Stroop effect in SA-task by correlating the reaction time, 

which assesses the Stroop effect with the SA index as well as pre-task resting parameters. The 
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study also focuses on bringing better clarity of interactions between neural mechanisms 

associated with SA-task and pre-task resting information through functional connectivity 

analysis. The pre-task resting information has been assessed by estimating both PRAA and 

PRAFA. The following sections present the results of this study in detail.  

3.4.1 CONFIRMATION FOR PRESENCE OF STROOP EFFECT DURING SA-TASK 

The results of robust correlations revealed significant association among the reaction time 

of the stimuli evoking the Stroop effect in SA-task with a SA index. Strong and significant 

Pearson and Pearson skipped correlation was observed between reaction time and SA index 

measures (Figure 3.4a: Pearson r=0.51, 95% CI= [0.07; 0.84], pcorr=0.05; Figure 3.4b: Pearson 

skipped rskipped=0.51, 95% CI= [0.06; 0.83]). Bend, Spearman, and Spearman skipped 

correlations revealed insignificant p-values for this analysis. 

Similarly, reaction time revealed significant positive Pearson and Pearson skipped 

correlations with PRAFA (Figure 3.4c: Pearson r=0.63, 95% CI= [0.16; 0.87], pcorr=0.011; 

Figure 3.4d: Pearson skipped rskipped=0.44, 95% CI= [0.03; 0.75]). However, insignificant p-

values were revealed for Bend, Spearman, and Spearman skipped correlations. Further, no 

significant correlations were observed between reaction time and PRAA. Hence, these results 

validate the presence of the Stroop effect in the SA-task. 
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Figure 3.4 Correlation plots between mean normalized reaction time and SA index. a. Pearson correlation 

b. Skipped (Pearson) correlation. Correlation plots between mean normalized reaction time and PRAFA. 

c. Pearson correlation d. Skipped (Pearson) correlation (Kaur et al., 2019). 

 

3.4.2 ASSOCIATION OF PRE-TASK RESTING INFORMATION WITH SA INDEX  

The results of robust correlations revealed significant role of pre-task resting measures 

with behavioral performance in SA-task. In particular, robust correlation analysis revealed a 

strong and significant correlation between PRAFA and SA index measures (Figure 3.5a: Pearson 

r=0.56, 95% CI= [0.15; 0.79], pcorr=0.01; Figure 3.5b: Spearman r=0.61, 95% CI= [0.12; 0.90], 

pcorr=0.007). Skipped (Pearson and Spearman) and bend correlations among PRAFA values and 

SA index measures also yielded stronger correlations (Figure 3.5c: Bend correlation coefficient 

=0.51, 95% CI= [0.09; 0.88], pcorr=0.03; Figure 3.5d: Pearson rskipped=0.56, 95% CI= [0.16; 0.79]; 

Spearman rskipped=0.61, 95% CI= [0.12; 0.91]). 
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Figure 3.5 Correlation plots between PRAFA and SA index and associated histograms of correlations for 

bootstrapped data. a. Pearson correlation b. Spearman correlation c. 20% Bend correlation d. Skipped 

(Pearson and Spearman) correlations (Kaur et al., 2019). 

 

 

Similarly, PRAA was strongly correlating with the SA index across eight electrodes. The 

correlation coefficients of all these channels, as well as the respective significance levels, have 

been tabulated in Supplementary Table S3.1 (see Appendix 1). Median of PRAA of these 

strongly correlating eight electrodes have also revealed a significant positive correlation with 

behavioral SA index (Figure 3.6a: Pearson r=0.59, 95% CI= [0.23; 0.88], pcorr=0.005; Figure 

3.6b: Spearman r=0.59, 95% CI= [0.09; 0.89], pcorr=0.002). Skipped (Pearson and Spearman) and 

bend correlations among median of PRAA values and SA index measures also yielded 

significant correlations (Figure 3.6c: Bend correlation coefficient =0.62, 95% CI= [0.18; 0.89], 

pcorr=0.004; Figure 3.6d: Pearson rskipped=0.76, 95% CI= [0.55; 0.91]; Spearman rskipped=0.79, 
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95% CI= [0.51; 0.92]).  Hence, these results reveal the significant association between pre-task 

resting measures and behavioral performance of the subsequently performed SA-task.  

 
 

Figure 3.6 Correlation plots between median PRAA values and SA index and histograms of correlations 

for bootstrapped data .a. Pearson correlation b. Spearman correlation c. 20% Bend correlation d. Skipped 

(Pearson and Spearman) correlations (Kaur et al., 2019). 

 

3.4.3 NEURAL UNDERPINNINGS OF SA-TASK 

Figure 3.7 shows the neural underpinnings of SA-task (FWE corrected p<.05), and 

regions are tabulated in Supplementary Table S3.2 (see Appendix 1). The significant activations 

during the SA-task relative to the baseline were analyzed using the categorical approach. The 

baseline is the neural activity observed during the paradigm fixation block where no specific task 

was carried out except viewing standard blank slide with a cross. The group analysis of the GLM 
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model showed significant neural activations in primary and high-level visual processing areas, 

including the lateral occipital cortex (inferior and superior division), occipital fusiform gyrus, 

and temporal-occipital fusiform gyrus. Also, significant involvement of the frontal lobe (Inferior, 

middle, and superior frontal gyrus) was observed as the neural underpinning of the SA-task. The 

presence of activity in the visual cortex and occipital-temporal regions justified the attainment of 

level 1 (perception) of SA, where primary and high-level visual processing regions are involved. 

The significant activations in motor areas, precuneous, Inferior, middle, and superior frontal 

gyrus, posterior cingulate gyrus elucidate their role in high order cognition required to form level 

2 (comprehension) and level 3 (decision-making) of SA. 
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Figure 3.7 Neural underpinnings of Situational awareness (SA) task, as shown in (A) surface rendered 

view (B) slice montage view. The activations are represented at FWE corrected p<0.05 (Kaur et al., 

2019). 
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3.4.4 NEURAL UNDERPINNINGS OF PRAFA AND PRAA  

  Reznik & Allen (2017) explored the frontal hemispherical differences of alpha as a 

predictor, moderator, and mediator of emotional regulation.  However, it is still unclear which 

brain regions, in particular, are involved in mediating the emotional regulation during the SA-

task.  Thus, in order to decipher these neural underpinnings during the SA-task, PRAFA was 

passed as a global covariate in an independent EEG-informed fMRI model. Figure 3.8 shows the 

neural underpinning of PRAFA as assessed by this EEG-informed fMRI model, and details of 

the regions are tabulated in Supplementary Table S3.3 (see Appendix 1). The significant 

activations were observed in the parahippocampal gyrus, precuneous cortex, insular cortex, and 

parietal operculum cortex all at uncorrected p<.001. 

 

Figure 3.8 Neural underpinnings of Pre-task resting-state alpha frontal asymmetry (PRAFA) through 

EEG informing SA-task based fMRI, as shown in the slice montage view. The activations are represented 

at uncorrected p<0.001(Kaur et al., 2019). 
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Similarly, the neural underpinnings of PRAA, as assessed by the independent EEG-

informed fMRI analysis, are shown in Figure 3.9, and the regions are tabulated in Supplementary 

Table S3.4 (see Appendix 1). The neural underpinnings of PRAA revealed significant activations 

in both the frontal and temporal cortex at uncorrected p<.001. In particular, the frontal pole, 

middle frontal gyrus, superior frontal gyrus, inferior frontal gyrus has shown stronger activation 

in the frontal cortex. In addition, the right hippocampus, precuneous cortex, cingulate gyrus, 

thalamus, inferior temporal gyrus, and middle temporal gyrus have also shown significant 

involvement. These regions are well known for their role in the individual's emotional stability 

(Kassam et al., 2011; Kohn et al., 2014). Further, the PRAA has also revealed a correlation with 

neural activity in visual and attention regions such as an occipital pole, lateral occipital cortex, 

and temporal fusiform cortex.  
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Figure 3.9 Neural underpinnings of Pre-task resting-state absolute alpha (PRAA) power through EEG 

informing SA-task based fMRI, as shown in (A) surface rendered view (B) slice montage view. The 

activations are represented at uncorrected p<0.001 (Kaur et al., 2019). 
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3.4.5 FUNCTIONAL CONNECTIVITY ANALYSIS 

The functional connectivity between the neural underpinnings of PRAFA and neural 

underpinnings of PRAA has revealed strong mutual interaction across those regions. Similarly, 

the functional connectivity approach brought a better understanding of changes in neural 

mechanisms of SA-tasks by pre-task resting information.   

3.4.5.1 Connectivity between PRAA and SA neural underpinnings 

Figure 3.10 shows strong interactions of the frontal (frontal pole, middle frontal gyrus, 

superior frontal gyrus) and temporal (middle temporal gyrus, temporal pole) underpinnings of 

PRAA with the neural underpinning of SA-task such as the inferior frontal gyrus, middle frontal 

gyrus, precentral gyrus, motor cortex, occipital lobe regions (occipital fusiform gyrus, lateral 

occipital cortex) and parietal regions (precuneous cortex, postcentral gyrus). Further, the 

subcortical underpinning of SA-task in left putamen specifically connected to the frontal and 

temporal pole underpinnings of PRAA. 

3.4.5.2 Connectivity between PRAFA and SA neural underpinnings 

The connectivity results revealed strong interactions of the insula (PRAFA neural 

underpinning) with postcentral gyrus and left putamen of the SA-task (see Figure 3.10). The 

parietal operculum cortex of PRAFA neural underpinning significantly correlated with many 

neural underpinnings of SA-task such as the lateral occipital cortex, occipital fusiform gyrus, 

postcentral gyrus, precuneous cortex, regions. Another neural underpinning of PRAFA, the 

precuneous cortex correlated with the intracalcarine cortex, juxtapositional lobule cortex, lateral 

occipital cortex, middle frontal gyrus, occipital fusiform gyrus, postcentral gyrus, precentral 
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gyrus, precuneous cortex, right thalamus areas of SA-task. On the other hand, the 

Parahippocampal gyrus showed no correlation with SA clusters.  

3.4.5.3 Connectivity between PRAFA and PRAA neural underpinnings 

Figure 3.10 shows the connectivity within the neural underpinnings of PRAFA and 

PRAA. The connectivity results (r>0.5; p<0.05) revealed a significant correlation of the insula, 

parietal operculum cortex, and precuneous cortex (neural underpinnings of PRAFA) with frontal-

temporal underpinnings of PRAA. Parahippocampal gyrus (neural underpinning of PRAFA) 

correlated explicitly with the temporal pole underpinning of PRAA. 

 

Figure 3.10  Schematic showing functional connectivity of neural underpinnings of SA-task with PRAA 

and PRAFA underpinnings. The interregional correlation was done at r>0.5 (p<0.05). The dotted arrow 

illustrates the functional connectivity of PRAA (frontal and temporal regions) with SA regions. The solid 

arrows illustrate the limbic association of PRAFA regions with SA-task regions, and the integration of 

dorsal/ventral pathways, memory regulation (Kaur et al., 2019). 
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3.5 DISCUSSION 

Our study aims to explore the influence of pre-task resting alpha information such as 

PRAFA and PRAA on SA. In particular, the SA-task is designed to have more influence from 

the Stroop effect; hence, the ability of pre-task resting information in assessing the behavioral 

outcome of SA in those conditions can be studied.  The study extends to explore the neural 

underpinnings of the task, pre-task resting information and revealed through functional 

connectivity analysis that neural underpinnings of PRAFA and PRAA significantly interact with 

the neural underpinnings of SA-task and influence the behavioral outcome of SA.  

SA generally possesses alternation between top-down and bottom-up processes. Top-

down processing is a goal-driven process where attention is directed in accordance with active 

goals. On the contrary, bottom-up is a data-driven process wherein perceived cues from the 

environment activate new goals. In this study, the neural underpinnings of the SA-task revealed 

significant engagement of the visual cortex and occipital-temporal regions. The strong 

involvement of these regions pertaining to the memory (temporal regions) and visual processing 

justifies the hypothesis of Catherwood et al. (2014) that rapid memory operation is engaged 

during the reversal of bottom-up cognitive operations in SA.  Similarly, the strong arousal was 

observed in sensory, precuneous, frontal gyrus, posterior cingulate gyrus during the SA-task. 

These regions have also been observed by Catherwood et al. (2014) and have been linked with 

cognition under uncertainty. Hence, the present study provides neuroimaging validation of 

regions associated with SA-task engagement, as observed in the aforementioned study. 
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3.5.1 VALIDATION OF PRESENCE OF STROOP EFFECT DURING SA-TASK 

 In this study, the increase in reaction time during the Stroop effect in SA-task correlated 

positively with the SA index. This goes in line with the previous studies where delayed reaction 

times were observed when the font color and the word were different compared to when they 

were the same (Klamklay, 2002; Repov, 2004). This happens during the Stroop effect as the 

processing of a color impedes the simultaneous processing of a second stimulus attribute (word). 

Thus, our results show that the more the reaction time in the Stroop effect, the better is the 

performance in the task. Further, the Stroop effect’s reaction time also correlated positively with 

the pre-task EEG alpha parameter PRAFA. 

3.5.2 ROLE OF PRE-TASK ABSOLUTE ALPHA INFORMATION IN SA-TASK 

 The changes in alpha EEG oscillation are known to be a marker of inhibition caused by 

neural activity. The neural underpinning, as assessed by functional imaging, facilitates to 

pinpoint the involvement of cognitive trait and state of the individual in the modulations of alpha 

oscillations. In this study, changes observed in pre-task absolute alpha information have been 

revealed to be significantly modulating neural mechanisms associated with subsequently 

performed SA-task.  This is evident through a higher positive, robust correlation observed 

between the SA index and PRAA of eight channels (mainly posterior).   

The neural underpinnings of PRAA observed in this study were primarily from frontal, 

temporal, and few parietal regions. Figure 3.10 clearly illustrates the strong functional 

connectivity between frontal-temporal regions of PRAA with neural underpinnings of the SA-

task.  Although the temporal lobe is the hub of memory management, the functional connectivity 

between frontal and temporal lobes has also been studied (Kennis et al., 2013; Lacruz et al., 
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2007; Pfeifer et al., 2016) for their association with emotional regulation and arousal of affect. 

This clearly explains the effect of PRAA on SA-task as there is a demand for rapid memory 

management for the purpose of comprehension and understanding of environments.  Further, the 

neural underpinnings of PRAA observed in the parietal regions such as angular gyrus, 

precuneous have been well studied as main areas involved in the mentalization process ( Frith & 

Frith, 2006). This is one of the core cognitive resources recruited during the comprehension stage 

of the SA-task.  

3.5.3 ROLE OF PRE-TASK RESTING ALPHA FRONTAL ASYMMETRY IN SA-TASK 

The hemispheric asymmetry and lateralization of arousal of task-related neural activity 

are strongly connected with modulation of many cognitive state and trait behaviors, particularly 

approach/withdrawal behavior (Alves & Fukusima, n.d.; J. Davidson, 1992; Spielberg et al., 

2010). The EEG alpha asymmetry is one of the validated information which estimates the 

hemispherical asymmetry and associated cognitive state and trait behavior modulations.  In this 

study, the high positive, robust correlation of PRAFA with SA index indicates the possible role 

of pre-task cognitive state/ trait behavior as assessed by EEG asymmetry in the SA-task 

engagement. This further supports the suggestion of Catherwood et al. (2014) that the asymmetry 

of brain processes is linked with neural mechanisms of SA.  

Further, neural underpinnings of PRAFA revealed areas of the limbic lobe (insular cortex 

and parahippocampal gyrus) and parietal cortex (precuneous and parietal operculum cortex). 

During situational awareness task, the perception and attention resources play a vital role in the 

task's behavioral outcome (Thilakarathne, 2015). The limbic region has direct access to 

perceptual information prior to sensory cortical systems and also modulates innate behaviors, 
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including motivation and avoidance behaviors (Nishijo et al., 2018).  In particular, the insula in 

the limbic lobe plays a critical role in integrating bottom-up interceptive prediction error signals 

with top-down predictions from high-level cortical areas (Gu et al., 2013; Klein et al., 2013; Lu 

et al., 2016).  

Similarly, the role of working and episodic memory in situational awareness task is 

nicely explained by the neural underpinning of PRAFA and their functional connectivity with 

neural underpinnings of SA-task (Figure 3.10).  During SA-task, the individual perceives the 

environment and encodes the situational information as episodic and working memory 

(Gutzwiller & Clegg, 2013; Heenan et al., 2014; Johannsdottir & Herdman, 2005). Any decay of 

this encoded information in episodic and working memory leads to loss of SA, which pauses the 

individual to reassess the situations again (Gartenberg et al., 2013). This is known as the 

resumption lag. The neural underpinnings of PRAFA (parahippocampal gyrus and posterior 

parietal cortex) are involved in the regulation and maintenance of these episodic (Behrendt, 

2013) and working memory (Schon et al., 2015). The Situations are assessed by the individual by 

integrating informational and spatial content of objects in the situations and associated emotional 

and spatiotemporally information (Behrendt, 2013). Posterior parietal regions, which are part of 

the dorsal visual stream, communicate spatial environmental information through the 

parahippocampal cortex. The integration of objects and contextual emotional information 

(Aminoff et al., 2013) with the parahippocampal cortex are derived from the ventral visual 

stream (neural underpinning of SA-task) and insula. Thus, it is evidently clear that the neural 

underpinning of PRAFA controls key regions pertaining to understanding the situations during 

the SA-task. Further, a parietal association of PRAFA is also supported by many research work 
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wherein precuneous forms a central hub for the link between the frontal and parietal regions 

(Bullmore & Sporns, 2009; Gong et al., 2009; Iturria-Medina et al., 2008). 

3.5.4 LIMITATION OF STUDY 

In this study, SA-task is designed to have more influence from the Stroop effect; hence, 

the ability of pre-task resting information in assessing the behavioral outcome of SA in those 

conditions can be studied.  The robust correlation of the reaction time with the SA index of the 

individual has validated the presence of the Stroop effect during the SA-task. However, the 

possibility of association of pre-task resting information with other cognitive traits and states 

such as fatigue, mental workload (Borghini et al., 2014) cannot be ignored. Hence, more 

elaborate research could be carried out in the future to reveal the role of specific 

cognitive/affective traits and states independently in the behavioral outcome and neural 

mechanisms of SA-tasks. 

3.6 CONCLUSION 

SA is a complex cognitive task, and the present study explored the association of the 

neural mechanisms associated with pre-task resting alpha information (PRAA and PRAFA) on 

SA. SA-task is designed to have more influence from Stroop effect and the ability of pre-task 

resting information in assessing SA in those conditions has been studied. The positive correlation 

of reaction time with the SA index, as well as PRAFA, validates the presence of the Stroop effect 

in the SA-task. A robust positive correlation of behavioral outcome of SA-task with PRAA and 

PRAFA suggests that the variability in an individual’s PRAFA and PRAA are vital parameters to 

be observed prior to SA-task. The present findings are also part of the first efforts in 
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understanding the SA-task's neural underpinnings using functional imaging. Further, the role of 

PRAA and PRAFA on the SA-task has been reinforced by assessing the functional connectivity 

of SA-task neural underpinnings with PRAA and PRAFA underpinnings. The connectivity 

results revealed a strong connection of the neural underpinnings of PRAA and PRAFA, which 

are associated with cognitive and affective state/trait factors, with visual, memory, and high-

order cognition regions involved in SA-task. In particular, the connectivity of pre-task alpha 

asymmetry with the SA-task's neural underpinnings reveals the modulation of integration of 

perceived contextual information, emotion, and retrieval of memory associated with the 

situational awareness by the pre-task trait/state information. Our results are encouraging and 

could be employed in operations that involve maintenance of good situational awareness, 

wherein neural mechanisms associated with pre-task resting alpha, and corresponding frontal 

asymmetry model could be utilized as a reliable predictor of an individual's performance in those 

operations. 

Further, to unveil the association of the discussed pre-task resting frontal alpha 

asymmetry model with constructs of affect and approach/withdrawal behavior, a study covered 

in the next chapter was carried out. The affect and approach/withdrawal behavior measures have 

been linked to the frontal alpha asymmetry model during task engagement, evoking emotion, and 

the clinical population. However, their association during the resting-state is still debatable. 

Hence, the subsequent chapter visits the relationship of affect and approach/withdrawal 

dichotomy with the standard resting frontal alpha asymmetry model. Further, it introduces a 

novel resting microstates-based frontal alpha asymmetry model as a more reliable indicator of 

neural mechanisms underlying affect and approach/withdrawal measures. 
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4.          CHAPTER FOUR 
 

MICROSTATES-BASED RESTING FRONTAL ALPHA 

ASYMMETRY APPROACH FOR UNDERSTANDING AFFECT AND 

APPROACH/WITHDRAWAL BEHAVIOR 

 

This chapter is a marginally modified version of the research article published as Kaur, A., 

Chinnadurai, V., & Chaujar, R. (2020). Microstates-based resting frontal alpha asymmetry 

approach for understanding affect and approach/withdrawal behavior. Scientific Reports, 10(1), 

1–25. https://doi.org/10.1038/s41598-020-61119-7 

4.1 ABSTRACT 

The role of resting frontal alpha-asymmetry in explaining neural mechanisms of affect 

and approach/withdrawal behavior is still debatable. The present study explores the ability of the 

quasi-stable resting EEG asymmetry information and the associated neurovascular 

synchronization/desynchronization in bringing more insight into the understanding of neural-

mechanisms of affect and approach/withdrawal behavior. For this purpose, a novel frontal alpha-

asymmetry based on microstates, that assess quasi-stable EEG scalp topography information, is 

proposed and compared against standard frontal-asymmetry. Both proposed and standard frontal 

alpha-asymmetries were estimated from thirty-nine healthy volunteers resting-EEG 

simultaneously acquired with resting-fMRI. Further, neurovascular mechanisms of these 

asymmetry measures were estimated through EEG-informed fMRI. Subsequently, the 

Hemodynamic Lateralization Index (HLI) of the neural-underpinnings of both asymmetry 

measures was assessed.  Finally, the robust correlation of both asymmetry-measures and their 

https://doi.org/10.1038/s41598-020-61119-7
https://doi.org/10.1038/s41598-020-61119-7
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HLI’s with PANAS, BIS/BAS was carried out. The standard resting frontal-asymmetry and its 

HLI yielded no significant correlation with any psychological-measures. However, the 

microstate resting frontal-asymmetry correlated significantly with negative affect, and its neural 

underpinning’s HLI significantly correlated with Positive/Negative affect and BIS/BAS 

measures. Finally, alpha-BOLD desynchronization was observed in neural underpinning, whose 

HLI correlated significantly with negative affect and BIS. Hence, the proposed resting 

microstate-frontal asymmetry better assesses the neural-mechanisms of affect, 

approach/withdrawal behavior.    

4.2 INTRODUCTION 

Understanding the neural mechanisms associated with functional hemispheric asymmetry 

of affect, approach/withdrawal measures is a core focus in neuroscience. Numerous studies 

revealed an association of functional hemispheric asymmetry with positive/negative affect and 

approach/withdrawal dichotomy. This linkage was initially observed in many studies where left 

hemispheric lesion affected the perception of positive emotions whilst damage to the right 

hemisphere impaired the perception of negative emotions (Aben et al., 2017; Killgore & 

Yurgelun-Todd, 2007; Nijboer & Jellema, 2012). Subsequently, there was a surge in elucidating 

the role of frontal hemispheric asymmetry based on the alpha signature of 

electroencephalography (EEG) in manifesting the individual differences in affect and 

approach/withdrawal measures (J. J. B. Allen et al., 2018; Hewig, 2018; Palmiero & Piccardi, 

2017). Davidson and colleagues (R. J. Davidson et al., 1993; R J Davidson et al., 1990; Richard 

J. Davidson, 2004), in their studies, suggested the lateralization of the prefrontal cortex (PFC) 

with respect to positive/motivational valence. Thus, the right PFC was observed to be linked with 



99 
 

avoidance/negative emotion and left PFC with approach/positive emotion. Nevertheless, Carver 

& Harmon-Jones (2009) showed the association of the left hemisphere with negative emotion 

anger and thus proposed to eliminate the differentiation of positive and negative valence from the 

affective model. Subsequently, a larger number of studies concentrated on EEG frontal 

asymmetry through the induction of emotional/motivational states or tasks to understand the 

neural mechanisms associated with the evoked approach/withdrawal behavior (Andreas & 

Hewig, 2017; Balconi et al., 2017; Eftekhari et al., 2017; Fedorowicz, 2012; Gollan et al., 2014; 

Jacob et al., 2017; Rey et al., 2014; Studer et al., 2013) and other specific tasks (Kelley & 

Schmeichel, 2014). This has led to ample literature which examined alterations in frontal EEG 

asymmetry in clinical and healthy populations (Adolph & Margraf, 2017; Brzezicka et al., 2017; 

Flasbeck et al., 2017; Frenkel et al., 2017; Greimel et al., 2018; Lachman et al., 2016; Conny 

W.E.M. Quaedflieg et al., 2015; Stewart & Allen, 2018; van der Vinne et al., 2017). 

Although the aforementioned studies have proved EEG based frontal asymmetry 

assessment as a reliable indicator of affect, approach/withdrawal behavior during emotional 

tasks, it’s validity in healthy individuals during resting still remains ambiguous. In one large 

resting EEG study, Tomarken and colleagues ( a J. Tomarken et al., 1992; A. J. Tomarken et al., 

1992) revealed a significant negative correlation of resting Frontal asymmetry (FA; channel pair: 

F4, F3) with negative affect and positive correlation of resting Anterior Temporal Asymmetry 

(ATA; channel pair: T4, T3) with positive affect for female subjects. Jacobs & Snyder (1996), in 

their study, revealed the negative correlation of resting Frontal Temporal Asymmetry (FTA; 

channel pair: F8, F7) with negative affect in men, further Hall & Petruzello (1999) showed that 

resting FA positively predicted the positive affect of both sexes. Pertaining to approach and 

withdrawal measures, studies by Harmon-Jones & Allen (1997) and De Pascalis et al. (2013) 
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reported a significant positive correlation of approach measure, Behavioral Activation System 

(BAS) with resting FA. The aforementioned studies are in sync with the hypothesis that positive 

affect correlates positively with alpha asymmetry (ln(𝛼𝑙𝑝ℎ𝑎𝑅𝑖𝑔ℎ𝑡) − ln(𝛼𝑙𝑝ℎ𝑎𝐿𝑒𝑓𝑡)) and links 

to the left hemisphere, howbeit negative affect correlates negatively with the same and associates 

with the right hemisphere. Conversely, in another study (Sutton & Davidson, 1997), absolutely 

no significant relationship was observed between resting FA and measures of positive and 

negative valence for both sexes. Similarly, Schneider et al. (2016) observed an absence of 

correlation between resting alpha FA and measures of approach/withdrawal behavior. In 

contradiction to the above hypothesis, Hagemann et al. (1998) showed that subjects exhibiting 

greater relative left-hemispheric resting cortical activation at the anterior temporal site reported 

more intense NA in response to negative stimuli. Further, in the same line of research 

(Hagemann et al., 1999), it was found that subjects scoring high on NA demonstrated greater 

relative left-sided resting cortical activation at the anterior temporal region than subjects scoring 

low on NA. 

Most findings of the aforementioned literature are based on two fundamental 

assumptions.  Firstly, the above studies assume the acquired EEG to possess only stable 

cognitive information. Hence, these studies correlate the single session EEG information directly 

with affect and approach/ withdrawal measures. However, many studies ( a J. Tomarken et al., 

1992; Wheeler et al., 1993) revealed that the stable EEG patterns across previous sessions 

showed the interrelation of affect and approach/ withdrawal measures with frontal alpha 

asymmetry. This brings the importance of assessing the stable EEG patterns and information 

from single session recordings as unstable EEG information may be influenced by interference 

from many cognitive factors. Recent EEG studies of wakeful rest have shown that global 
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electrical brain activity on the scalp remains semi-stable for transient periods (Khanna, 2016; 

Michel & Koenig, 2018).In specifics, there exists a finite number of scalp potential topographies 

in spontaneous resting EEG activity that remains stable for a definite time before rapidly shifting 

to a different topography that once again attains a stable state. These distinct epochs of 

topographic stability have been referred to as ‘EEG microstates’. Lehmann et al. (1998) 

substantiated that EEG microstates represent blocks of consciousness, and these microstates are 

modulated by the content of the thoughts. Additionally, Milz et al. (2017) postulated the role of 

intracranial sources in the alpha band in predominantly determining these EEG microstate 

topographies. Further, Shafi et al. (2017), in their study, highlighted the role of microstates in 

individual variability of human fluid intelligence and in response to cognitive training. Howbeit, 

there is no study to date that has explored the quasi-stable state as assessed by EEG microstates 

for understanding frontal hemispheric asymmetry. Also, their ability over standard EEG frontal 

asymmetry in explaining affect and approach/withdrawal dichotomy is still unmapped. 

The second important assumption is that EEG alpha power is inversely (Fink et al., 2005; 

Lenartowicz et al., 2016; Wright et al., 2015) related to neural activation. Hence, an increase in 

the left hemisphere's neural activation is linked to increased frontal asymmetry scores. This 

enables us in concluding that the positive correlation of affect and approach/withdrawal 

measures with frontal asymmetry score  (ln(𝛼𝑙𝑝ℎ𝑎𝑅𝑖𝑔ℎ𝑡) − ln(𝛼𝑙𝑝ℎ𝑎𝐿𝑒𝑓𝑡)) is the resultant of 

left hemispherical neuronal activity and vice versa. However, recently, many neuro-vascular 

studies (Arakaki et al., 2018; Benedek et al., 2011; Klimesch et al., 1999; Palva & Palva, 2011) 

have observed alpha-BOLD synchronization wherein the alpha power correlates positively with 

neural activation during task engagement.  Hence, there is a need to fully understand the 

neurovascular coupling and neural underpinning associated with frontal EEG asymmetry (J. J. B. 
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Allen et al., 2018) and how alpha-BOLD synchronization or desynchronization during resting-

state associates with affect and approach/withdrawal behavior. Few researchers brought better 

understanding by studying the role of hemispheric asymmetry in affect, approach/avoidance 

behavior through functional MR imaging. Rohr et al. (2013) concluded that the affective 

elements in the underlying organization of emotion are predominantly associated with the 

network of right-hemispheric regions. K. A. Lindquist et al. (2016) proposed that the 

implementation of valence depends on a set of valence-general limbic and paralimbic brain 

regions. Though the above studies gave significant insights, the congruence between resting-

EEG frontal alpha asymmetry and resting-fMRI is still uncharted. This is vital for a better 

understanding of neuro-vascular aspects of resting frontal asymmetry and their association with 

affect and approach/withdrawal behavior.  

Hence, the present study proposes an EEG microstate based approach for assessment of 

quasi-stable frontal hemispherical asymmetry measures of resting-state affect and 

approach/withdrawal behavior. It further aims to compare the performance of microstate based 

frontal hemispheric asymmetry against the standard resting EEG frontal asymmetry measures. 

For this purpose, resting EEG was acquired from a sample of 39 healthy male subjects. This 

multichannel resting-EEG signal from all subjects was parsed into a limited number of distinct 

quasi-stable microstates. These microstates were back-fitted to each subject’s EEG data to obtain 

microstate time-series data specific to each subject. The microstate time-series was further 

filtered at alpha frequency band and EEG microstate based frontal asymmetry measures were 

derived from channel pairs F4/F3 (FA) and F8/F7 (FTA). Further, the robust correlation of both 

standard and EEG microstate based frontal hemispheric asymmetry with positive/negative affect 

(PANAS) and approach (BAS)/withdrawal (BIS) behavior was carried out. 
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Moreover, the study focuses on bringing a better understanding of neural mechanisms 

associated with functional hemispheric asymmetry of affect and approach/ withdrawal behavior 

during resting-state. For this purpose, standard and microstates based resting EEG frontal 

asymmetries were subjected to the EEG informed fMRI approach, and the associated neural 

underpinning of both EEG frontal asymmetries were independently estimated. Thereafter, the 

hemodynamic lateralization index (HLI) based on the amplitude of hemodynamic response 

function (HRF) of regions part of the neural underpinning of both EEG frontal asymmetries were 

assessed. Further, the estimated HLI was subjected to a robust correlation with resting-state 

affect and approach/ withdrawal psychological scores. Finally, the results were analyzed to 

understand the ability of proposed EEG microstate estimates in revealing neural-vascular 

insights of association of functional hemispherical asymmetry with resting-state affect and 

approach/ withdrawal behavior.   

  4.3 MATERIALS AND METHODS 

Figure 4.1 depicts the schema of the methodology adopted in this study. 
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Figure 4.1 Schema of the methodology adopted in this study (Kaur et al., 2020). 
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4.3.1 SAMPLE AND PROCEDURE 

Thirty-nine healthy participants (all males; age range 18-24 M=19.57; SD=1.28) took 

part in this study after providing a written and informed consent to the protocol. The experiment 

has been carried out in accordance with The Code of Ethics of the World Medical Association 

(Declaration of Helsinki), and all measurements were also approved by the Institute of Nuclear 

Medicine and Allied Sciences (INMAS) institutional ethical committee (Number: 

ECR/824/Inst/DL/2016). All subjects were volunteers recruited among university students and 

were right-handed. Subjects completed a personality questionnaire for positive affect and 

negative affect and Behavioral inhibition system (BIS)/ Behavioral approach system (BAS). The 

questionnaires were in the English language, and all the volunteers were fluent in the English 

language. The resting-state fMRI and EEG data analyzed in this paper were collected after the 

subject completed the psychological questionnaires. The simultaneous EEG-fMRI resting-state 

recording lasted for 6 minutes with eyes closed condition. 

4.3.2 BEHAVIORAL MEASURES 

To assess the dispositional affect and approach/withdrawal parameters in resting state, 

PANAS scores and BIS/BAS measures were evaluated for each individual. We also estimated 

the Profile of mood states using POMS scores for prior exclusion criteria. Table 4.1 presents 

descriptive characteristics for the study participants with the mean and standard deviation values. 

4.3.2.1 Positive and Negative Affect 

Positive and negative affect scores were evaluated for each volunteer. Positive and 

Negative Affect Schedule (PANAS) consists of mood scales devised to assess affect at the 

present moment (Watson & Clark, 1988). These scales are highly uncorrelated, stable over time, 
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and consistent, and both scales demonstrate good discriminant and convergent validity (John & 

Julie, 2004; Tuccitto et al., 2010). Positive and negative affect scores showed good internal 

consistency in our study (Cronbach’s alphas= 0.89; 0.91). 

4.3.2.2 Behavioral approach system (BAS)/ Behavioral inhibition system (BIS) 

BIS and BAS scores were calculated for each subject (Cooper et al., 2007) and evaluation 

included 24 items (20 score-items and four fillers, each measured on a four-point Likert scale), 

and two total scores for BIS (range = 7–28; 7 items) and BAS (range = 13–52; 13 items). In our 

study, BIS and BAS scales showed good internal consistency (Cronbach’s alphas= 0.93; 0.92). 

4.3.2.3 POMS (Profile of mood states) 

Volunteers were also asked to fill in forms for the POMS (Renger, 1993). It measures six 

different dimensions of mood swings, namely Tension or Anxiety, Vigor or Activity, Anger or 

Hostility, Depression or Dejection, Fatigue or Inertia,  Confusion, or Bewilderment. These scores 

formed the basis for exclusion criteria. All selected volunteer returned self-report scores for all 

the modes within a relatively normal range.  

Table 4.1 Demographic and behavioral characteristics of study participants (N=39) (Kaur et al., 2020). 

 

 

 

Variable Mean (M) Std. Dev (SD) 

Age 19.57 1.28 

Positive Affect scores 39.66 5.66 

Negative Affect scores 14.64 4.29 

BAS scores 23.42 3.5 

BIS scores 15.28 2.7 
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4.3.3 DATA ACQUISITION AND PRE-PROCESSING STEPS 

MRI data was acquired in a Siemens 3T scanner. After acquiring a high-resolution T1-

weighted anatomic rapid gradient-echo image (T1 MPRAGE sequence TR 1900ms, TE 2.49ms, 

FA 9
o
, 160 slices with slice thickness 0.9 mm and distance factor of 50%, FoV 240 mm with 

voxel size 0.9X0.9X0.9 mm), we acquired 205 T2*-weighted EPI images for resting-state eyes-

closed condition (T2* EPI sequence: TR 2000ms, TE 30ms, FA 90
o
, 30 slices with thickness 

5mm and distance factor 0%, FoV 240 mm with voxel size 3.8X3.8X5.0 mm). Continuous EEG 

data were acquired simultaneously during resting state T2* acquisition using a 32-channel MR-

compatible brain vision cap. The electrodes were placed according to the international 10-20 

system with a separate electrode called the Reference electrode, placed between Fz and Cz 

electrodes, that provided the reference for recording the data. Electrocardiogram (ECG) was also 

recorded. The impedance level for each electrode was kept less than 5 KΩ. The recorded EEG 

signal was digitized and transmitted with a 5000 Hz sampling frequency. The acquisition of EEG 

signals was accomplished using Brain vision analyzer software. These steps were also briefly 

discussed in Chapter two. 

The fMRI data pre-processing for 205 resting-state volumes was done using the default 

pre-processing pipeline for volume-based analysis in CONN software. The pre-processing 

procedure included the realignment and unwarping of the T2*-weighted image with the mean 

functional image for motion correction followed by the translation of center to (0, 0, 0) 

coordinates and slice time correction of functional data. Functional outlier detection (ART- 

based identification of outlier scans for scrubbing) was performed, followed by segmentation and 

direct normalization to MNI space. Next, functional smoothening with a Gaussian Kernel with 
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FWHM of 6 mm was carried out. Further, translation of structural center to (0, 0, 0) and 

simultaneous structural segmentation and normalization were performed. 

EEG data were corrected for gradient artifact using the Brain vision analyzer’s (Ritter et 

al., 2007, 2010)average artifact subtraction algorithm (AAS) (P. J. Allen et al., 1998, 2000). A 

template from MR scanner artifacts was created by averaging the MR scanner artifacts over fixed 

intervals which were accurately specified by utilizing the fMRI volume markers (labeled as 

‘TR’). Subsequently, this average was subtracted from the EEG data. Further, the gradient 

artifact removed data accommodated six seconds of data prior to the start of the first fMRI block 

acquisition (identified by the first TR marker). These six seconds is the time the fMRI pulse 

sequence prepares itself before acquiring the first fMRI block. This prior time interval 

accommodated gradient-contaminated ECG; hence we truncated these 6 seconds prior data and 

subjected only the data pertaining to the fMRI volumes to the subsequent cardio ballistic (CB) 

artifact removal. The CB artifact removal was performed in the FMRIB plugin. The method 

detects the QRS peaks in the ECG data using combined adaptive thresholding (Niazy et al., 

2005) and the Teager energy operator (Christov, 2004), followed by a correction algorithm. 

Further, the removal of the CB artifact is performed based on the Optimal Basis Set (OBS) 

method (Kim et al., 2004).  

In addition, we also employed the HAPPE toolbox (Gabard-Durnam et al., 2018) for 

further ensuring the quality of conventional EEG artifact removal from the scanner and CB 

artifact corrected datasets. The following steps utilizing the HAPPE toolbox were adopted. First, 

the scanner and CB artifact removed data were subjected to the filtering process with 0.1 Hz high 

pass and 70 Hz low pass filtering, and all the EEG channels were selected for further analysis. 

This was followed by the removal of the electrical (line) noise using the Cleanline plugin 
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(Mullen, 2012) of EEGLAB. The functionality of HAPPE was utilized next to identify and 

remove the contaminated channels. HAPPE identifies the contaminated channels by evaluating 

the normed joint probability of average log power across all the channels and rejecting the 

channels whose joint probability is more than three standard deviations. Wavelet enhanced ICA 

(W-ICA) approach was implemented to correct for EEG artifact while retaining the entire length 

of the data file. The W-ICA approach removes ocular and muscle-related artifacts and improves 

the decomposition of later performed ICA, which eventually rejects artifact components. Next, 

independent components (ICs) with the extended infomax independent component analysis 

(ICA) were computed, and the MARA plugin (Winkler et al., 2011, 2014) of EEGLAB was 

employed for automatic component rejection. MARA evaluates each component on six features 

and eventually assigns a probability of artifact contamination to that component. Further, 

HAPPE’s pipeline automatically rejected any components with artifact probabilities higher than 

0.5. Subsequently, segmentation of data based on the markers, rejection of segments, and 

interpolation of removed channels were carried out. Finally, the processing report about the 

quality of data was generated. The EEG pre-processing procedures in this study have also been 

explained in detail in Chapter two. 

4.3.4 DATA ANALYSIS 

4.3.4.1 Assessment of frontal hemispherical asymmetry measures  

The main objective of the study was to understand the neural mechanisms associated with 

the affect, approach/withdrawal behavior, as explained by the hemispherical asymmetry 

measures. For this purpose, the present study proposes an EEG microstate based frontal 

hemispheric assessment approach and aims to compare its advantage over the standard EEG 
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frontal asymmetry approach. The following subsections explain the methods for estimating the 

proposed EEG microstate based frontal hemispheric asymmetry as well as the standard frontal 

EEG asymmetry.  

4.3.4.1.1 EEG microstates based estimation of hemispheric asymmetry 

Many recent studies (Michel & Koenig, 2018; Pessoa, 2014; Sigman & Dehaene, 2008) 

have indicated that individual brain mechanisms involve extensive parallel processing in 

distributed brain networks. These distributed brain networks are observed as the scalp field 

potential in EEG, and the state of global neural activity is measured as a topographical map at 

that moment of time.  The changes in this topography reflect variations in the global coordination 

of neural activity over time. EEG microstates were proposed to represent changes in behavior, 

thoughts, and emotions and can be classified into a few topographies, which have explained 90% 

of continuous EEG variance. Microstate analysis considers millisecond time range signals from 

all electrodes to create a global picture of a functional state during that interval. 

The schema of the methodology adopted for microstate estimation is explained in Figure 

4.2. The aim of a microstate analysis is first to segment EEG maps into microstate prototypes 

and second to re-express the spatial-temporal characteristics of the EEG time-series through 

these microstate prototypes.  

In this study, let X be the time series EEG information that was acquired from the 

volunteers. At first, the EEG data X has been pre-processed for removing the artifacts and was 

referenced to the average referencing. Then, it was subjected to the estimation of Global field 

power (GFP). GFP is the measure of global brain response to an event and is represented as 
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GFP =  √(∑(𝑋𝑖(𝑡) − 𝑋𝑚𝑒𝑎𝑛(𝑡))
2

𝐶

𝑖=1

)/𝐶 

 

 
           Equation 4.1 

 

where 𝑋𝑖 is the measured potential at the i
th

 electrode at a given time-point t, 𝑋𝑚𝑒𝑎𝑛is the 

mean value of all 𝑋𝑖’s and C represents the total number of channels. GFP, therefore, represents 

the standard deviation of the electrode values and indicates, on average, how strong potential is 

being recorded across the electrode montage (Murray et al., 2008). For each volunteer, a 

selection of data points for the further processing has been carried out by filtering estimated 

GFPs based on minimum peak distance of 20 milliseconds and the threshold amplitude of one 

standard deviation of estimated GFP. Then, the filtered EEG data points of every individual are 

concatenated to form the GFP datasets for further clustering process as follows 

 𝜒 = {𝑥𝐺𝐹𝑃
1, 𝑥𝐺𝐹𝑃

2, ……… . 𝑥𝐺𝐹𝑃
𝑆} 

 
 

           Equation 4.2 
 

where 𝜒 is of the concatenated GFP dataset and 𝑥𝐺𝐹𝑃
𝑖 are selected data points based on 

the GFP criteria of the i
th

 volunteer, and S is the total number of volunteers. In this study, thirty-

nine volunteers dataset has been subjected to analysis.                                                              
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Figure 4.2 Schema of the methodology adopted for proposed microstate estimation and assessment of 

standard and microstates based frontal alpha hemispheric asymmetry measures (Kaur et al., 2020). 

 

 Further, concatenated GFP dataset 𝜒 was subjected to the clustering process through the 

modified K-means clustering algorithm (Poulsen et al., 2018). The modified K-means clustering 

algorithm requires the initialization of both number (K) of microstate prototype vectors and their 

components values (Kretowski, 2019). Thus, the clustering algorithm was randomly initialized 

with a set of microstate prototype vectors as the center of initial clusters as follows 

 𝑍 = {𝑧𝑖| 𝑖 = 1 𝑡𝑜 𝐾} 
 
 

          Equation 4.3 
 

where K is the total number of microstate prototype vectors (cluster center). In this study, 

the K is initialized with 8. The clustering algorithm was allowed to iterate and minimize the 

orthogonal euclidean distance between the data points in 𝜒 as given below. 
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 𝜏𝑛 = 𝑎𝑟𝑔min
𝑘
{𝐷𝑘𝑛

2 }          Equation 4.4 
 

 𝐷𝑘𝑛
2 = 𝜒𝑛

𝑇 . 𝜒𝑛 − (𝜒𝑛
𝑇 . 𝑧𝑘)

2 
 
 

         Equation 4.5 
 

where  𝜏𝑛 represents the microstate label for n
th

 sample, 𝜒𝑛 represents the n
th

 time sample 

of the concatenated dataset, 𝑧𝑘 represents the prototypical map for the k
th

 microstate cluster and 

𝐷𝑘𝑛 represents the distance between 𝜒𝑛 and microstate k for the n
th

 time sample. Thus, this 

clustering algorithm allocates each EEG sample to the cluster whose prototype it is most 

comparable to and then re-estimates microstate prototypes by averaging newly assigned samples 

(Poulsen et al., 2018). The maximal iterations were set to 1000, and the threshold for 

convergence was 1e
-6

 for analysis in this study.  

 Subsequently, a review of goodness of fit and selection of active microstates is carried out 

based on global explained variance (GEV) and cross-validation (CV) criterion. It evaluates how 

well microstate segmentation explains the EEG data, which has been used to estimate the 

prototypes. Therefore, GEV measures how similar the EEG sample and the microstate prototype 

are; and is calculated as follows.  

 

𝐺𝐸𝑉𝑛 =
(𝐶𝑜𝑟𝑟 (𝜒𝑛, 𝑧𝜏𝑛). 𝑥𝐺𝐹𝑃𝑛)

2

∑ 𝑥𝐺𝐹𝑃𝑛′
2𝑁

𝑛′
 

 
 

         Equation 4.6 
 

where 𝜒𝑛represents the n
th

 time sample of the concatenated dataset, 𝑧𝜏𝑛 (𝜏𝑛 = 𝑘) is the 

prototypical map the k
th

 microstate cluster and 𝑥𝐺𝐹𝑃𝑛  represents the n
th

 time sample of the GFP 

data, and N represents the total time samples in concatenated dataset 𝜒. GEV is thus the measure 

of correlation among the EEG dataset and associated microstate prototype weighted by the EEG 

dataset’s fraction of the total squared GFP (Poulsen et al., 2018). After that, to calculate the GEV 
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for a given cluster, the GEV of its members is summed. Subsequently, CV, which is a measure 

related to the residual noise,  ∈  is estimated as 

 
𝐶𝑉 = 𝜎2. (

𝐶 − 1

𝐶 − 𝐾 − 1
) 

          Equation 4.7 
 

 
 

   𝜎2 =
∑ 𝜒𝑛

𝑇 . 𝜒𝑛 − (𝜒𝑛
𝑇 . 𝑧𝑘)

2𝑁
𝑛

𝑁(𝐶 − 1)
 

 

         Equation 4.8 
 

 

where 𝜎2 is the variance of the residual noise, C is the total number of EEG channels, N 

represents the number of time samples in concatenated dataset 𝜒, and K is the total number of 

clusters. The aim is to obtain a low value of CV. The active microstate prototypes obtained in 

this study are consistent with the normative EEG microstate classes identified by many studies 

(Al Zoubi et al., 2019; Brodbeck et al., 2012; Khanna, 2016; Michel & Koenig, 2018; Musso et 

al., 2010; Van De Ville et al., 2010). 

Following the selection of an active number of microstate prototypes, the EEG of each 

volunteer is re-expressed as a sequence of microstate classes by back-fitting these active 

microstate prototypes on each volunteer’s EEG data. Back fitting implies assigning microstate 

labels to the EEG dataset based on the dataset’s topographic similarity with the microstate 

prototype. The estimated re-expressed back fitted dataset is represented as follows. 

 𝑋𝑟𝑒−𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 = {𝜇𝑛|  𝑤ℎ𝑒𝑟𝑒 𝜇𝑛 ∈  𝑍𝑘′} 
 

          Equation 4.9 
 

where  𝜇𝑛 = 𝑎𝑟𝑔min (𝐺𝑀𝐷𝑛) 

The global map dissimilarity (GMD) index measures the topographical similarity 

between each microstate prototype vector with the EEG sample vector. The GMD is calculated 

as 



115 
 

 

𝐺𝑀𝐷𝑛 =

‖
𝑋𝑛

𝑋𝐺𝐹𝑃𝑛
−

𝑧𝑘′
𝑧𝐺𝐹𝑃𝑘′

‖

√𝐶
 

 

   

     Equation 4.10 
 

where 𝑋𝑛represents the n
th

 time sample of the pre-processed dataset, 𝑧𝑘′ represents the 

prototypical map for the k
th

 microstate cluster. In an ideal condition, if the microstate prototype 

vector and the EEG sample vector of interest are having the same topographic distribution, then 

the GMD index will be zero. In case if both the vectors are topographically opposite, then the 

GMD index would be positively higher. Hence, in this study, instead of the thresholding the 

GMD index, the microstate prototype vector, which yields a significantly less GMD index, is 

chosen as the label for that particular EEG sample vector. Finally, microstates statistics using 

labels obtained from back-fitted prototypes were calculated.  

Subsequently, the microstate prototype vector's amplitude associated with each label in 

microstate re-expressed EEG data of every individual is subjected to the alpha band power (8 – 

12 Hz) estimation. The estimated alpha power map of the microstate re-expressed EEG data was 

used to estimate EEG microstate based frontal hemispheric asymmetry as follows. 

 
   𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑀𝑆 = ln(𝛼(𝑋𝑟𝑒−𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑

𝑅𝑖𝑔ℎ𝑡) − ln(𝛼(𝑋𝑟𝑒−𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑
𝐿𝑒𝑓𝑡) 

 
 

     Equation 4.11 
 

      𝛼(𝑋𝑟𝑒−𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑
𝑅𝑖𝑔ℎ𝑡) and 𝛼(𝑋𝑟𝑒−𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑

𝐿𝑒𝑓𝑡) are the alpha powers measured at the 

right and left hemispheric channel of microstate re-expressed EEG data, respectively.   

4.3.4.1.2 Standard EEG estimation of hemispheric asymmetry 

In order to estimate standard frontal asymmetry, the preprocessed EEG data is first re-

referenced to CSD reference using the CSD toolbox (Kayser & Tenke, 2006a, 2006b). Recent 

work suggests that the CSD transformation reduces the influence of non-frontal sources to 
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frontal asymmetry and may provide a better index of individual differences in frontal asymmetry 

(Smith et al., 2017). Subsequently, the power spectral density (PSD) of alpha frequency (8-12 

Hz) was extracted. The estimated alpha power map EEG data was used to calculate standard 

EEG frontal hemispheric asymmetry as follows. 

 
𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = ln(𝛼(𝑋)𝑅𝑖𝑔ℎ𝑡) − ln(𝛼(𝑋)𝐿𝑒𝑓𝑡) 

 
 

     Equation 4.12 
 

             𝛼(𝑋)𝑅𝑖𝑔ℎ𝑡 and 𝛼(𝑋)𝐿𝑒𝑓𝑡 are the standard alpha powers measured at the right and left 

hemispheric channels of individual EEG data, respectively.   

Table 4.2 presents the median and median absolute deviation values for EEG 

asymmetries for mid-frontal and lateral-frontal sites. 

 

Table 4.2 Median and median absolute deviation of the standard and proposed microstates based frontal 

hemispheric asymmetry measures (Kaur et al., 2020). 

 

Variable Channel pair F4/F3 (FA) Channel pair F8/F7 (FTA) 

  

Median 
Median Absolute 

Deviation 
Median 

Median Absolute 

Deviation 

Standard  hemispheric asymmetry
a
 0.0347 0.3509 -0.052 0.3655 

Microstates based hemispheric 

asymmetry
a
 

-0.2324 0.1427 0.0256 0.0896 

a
The difference between log-transformed alpha values from one right-hemispheric electrode to the corresponding 

electrodes on the left. 
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4.3.4.2 Robust correlation of frontal hemispherical asymmetry measures with 

psychological measures  

Further, estimated EEG microstate and standard frontal hemispherical asymmetries are 

correlated with PANAS and BAS, BIS measures. These robust correlations were carried out for 

hemispherical measures that are estimated for both channel pairs F4/F3 i.e. Frontal Asymmetry 

(FA) and F8/F7, i.e., Frontal Temporal Asymmetry (FTA) independently. The rationale for 

choosing these channels was based on the linkage of hemispheric asymmetry to mid-frontal (F3, 

F4) and lateral frontal (F7, F8) sites (J. Coan, 2003; Harmon-Jones et al., 2010; Wheeler et al., 

1993). Robust correlations were implemented in the Robust correlation Matlab toolbox (Pernet et 

al., 2013). This method detects and protects against any bivariate or univariate outliers. Pearson, 

Bend, and Spearman correlation coefficients, as well as bootstrapped confidence intervals, were 

computed to evaluate each correlation. Both p-values and confidence intervals were Bonferroni 

corrected for multiple comparisons. 

4.3.4.3 Assessment of neural mechanisms associated with functional hemispheric 

asymmetry measures 

One of the focuses of the current study is to understand the neural mechanisms associated 

with proposed and standard functional hemispheric asymmetry measures in explaining the affect 

and approach/ withdrawal behavior during resting state.  For this purpose, both proposed and 

standard hemispheric asymmetry measures were subjected to the EEG informed fMRI, and their 

neural underpinnings were estimated.  Subsequently, the lateralization index based on 

differences in the amplitude of hemodynamic response of neural underpinnings of both 

hemispheric asymmetry measures was assessed. Finally, the estimated lateralization index was 
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correlated with PANAS and BAS, BIS psychological measures to understand the ability of both 

hemispheric asymmetry measures in explaining affect and approach/ withdrawal behavior during 

resting state. The following sub-sections explain these operations in detail.   

4.3.4.3.1 EEG informed fMRI analysis  

Estimation of neural underpinnings of proposed microstate based EEG asymmetry and 

standard asymmetry was carried out as follows. At first, the estimated alpha powers for frontal 

channels F3, F4 F7, and F8 were downsampled to match the acquisition blocks of fMRI (TR: 2 

seconds). This was carried out by taking the median of the alpha powers for these specific 

channels corresponding to each fMRI scan time, which is 2 seconds. The onset time of EEG and 

fMRI acquisition were also matched. This yielded one EEG alpha power corresponding to each 

fMRI scan, respectively. Thereafter, microstate based and standard FA and FTA were estimated. 

The first-level analysis in the present study was performed in SPM12. Different design matrices 

were obtained each for microstate based and standard asymmetry respectively for each subject 

wherein microstate based and standard FA and FTA parametrically modulated the fMRI 

regressors in EEG informed fMRI analysis (Abreu et al., 2018; Laufs et al., 2003; Murta et al., 

2014; Pisauro et al., 2017; Sclocco et al., 2014).   

The first-level analysis in our study was performed in SPM12, and the time series of 

fMRI regressors and parametric modulators were convolved with canonical HRF and with its 

time and dispersion derivatives. Further, at first-level, an F-contrast was defined for parametric 

modulators subsuming both non-derivative (canonical HRF) and derivative terms (time and 

dispersion derivatives) for microstate based FA, standard FA, microstate based FTA, and 

standard FTA models. 
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Subsequently, for the second level of analysis, the first-level contrast images, along with 

the dispersion and temporal derivatives, were subjected to the extraction of amplitude measures 

from the basis sets (Calhoun et al., 2004; Gawlowska et al., 2018; Kok et al., 2016; M. A. 

Lindquist & Wager, 2007; Wymbs et al., 2012). The robust regression toolbox (Wager et al., 

2005) was used to conduct group-level random-effects analysis. The robust regression toolbox 

uses iteratively re-weighted least squares (IRLS), which detects influential extreme outliers. 

Thus, the IRLS analysis reduces the likelihood of false-positive and negative findings with no 

reduction in power and minimizes the effect of extreme outliers (Fritsch et al., 2015). The IRLS 

has proved beneficial with small samples (n = 10), and the benefits tend to increase with larger 

sample sizes (n = 40). Further, IRLS controls false-positive rates at an appropriate level when no 

true effects are present. The contrast image for amplitude summary measure was then subjected 

for the whole brain analysis corrected with voxel-wise False Discovery Rate (FDR) thresholded 

at q < .05. This yielded the underpinning of both microstate based FA and FTA and standard FA 

and FTA. 

4.3.4.3.2 Estimation of Hemodynamic lateralization index and its robust correlation 

with psychological measures  

The lateralization index measures the hemispherical dominance within the large-scale 

brain network that integrates the neural underpinnings associated with resting affect and 

approach/withdrawal behavior. The neural activity associated with each hemisphere's neural 

underpinnings causes differential electrical potential on the cortical surface of the respective 

hemisphere. This is measured as the EEG asymmetry index, as explained in the earlier sections. 

In the mean-time, these differential neural activities of each hemisphere generate a feed-forward 

signal, which results in differential hemodynamic response at the location of neural activity.  
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Measurement of these hemodynamic hemispherical differences facilitates a better understanding 

of hemispherical dominance within the large scale brain interactions. Diverse methods have been 

proposed to calculate the hemodynamic lateralization index on the basis of fMRI BOLD 

information. As most of these studies involved task engagement, the hemispherical difference of 

cluster size and BOLD signal strength (Bradshaw et al., 2017; Branco et al., 2006; Jansen et al., 

2006; Jones et al., 2011; Seghier, 2008) were normally used to estimate the HLI.    

The main motivation behind this estimation is to understand whether hemodynamic 

asymmetry reveals more insight into understanding the neurovascular mechanisms of the affect 

and approach /withdrawal behavior. For this purpose, initially, we estimated the hemodynamic 

response function metric that is hemodynamic response function amplitude (HRF_Amp) at every 

voxel by independently subjecting the pre-processed resting fMRI data to blind deconvolution 

method as proposed by Wu et al. (2015). The estimation of HRF was carried out independently 

by assuming acquired fMRI BOLD signal 𝑦(𝑡)  as the convolution of neural states  𝑛(𝑡) 

with 𝐻𝑅𝐹(𝑡). This is represented as 

 𝑦(𝑡) = 𝑐𝑜𝑛𝑣(𝑛(𝑡), 𝐻𝑅𝐹(𝑡))+∈ (𝑡) 
 

        Equation 4.13 
 

where ∈ (𝑡) is the noise in the measurement. Further, 𝑛(𝑡) is substituted by a 

hypothetical neural activation model as follows. 

 
𝑛 (𝑡) =∑𝛿(𝑡 − 𝜏)

∞

𝜏=0

 

 

  
        Equation 4.14 

 

where 𝛿(𝑡 − 𝜏) is the delta function. This allows fitting 𝐻𝑅𝐹(𝑡)according to 𝑛 (𝑡) using a 

canonical HRF and two derivatives (temporal and dispersion derivatives). This model is 

subjected to a blind deconvolution approach for retrieving the hemodynamic response function 
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(𝐻𝑅𝐹(𝑡))  of every voxel. Once 𝐻𝑅𝐹(𝑡) is obtained, an approximation of 𝑛̃(𝑡) can be calculated 

using the inverse Fourier transform (deconvolution). Then, 𝐻𝑅𝐹(𝑡) was utilized to estimate the 

HLI for the neural underpinnings of both microstate based FA and FTA and standard FA and 

FTA, all considered together. Hence, the cluster results of EEG informed fMRI were used only 

for the selection of regions for estimating HLI as follows. 

 𝐻𝐿𝐼(𝑛) =   𝐻𝑅𝐹𝐴𝑚𝑝𝑛

𝑅 − 𝐻𝑅𝐹𝐴𝑚𝑝𝑛

𝐿  

 

         Equation 4.15 
 

 where 𝐻𝑅𝐹_𝐴𝑚𝑝𝑛
𝑅 and  𝐻𝑅𝐹_𝐴𝑚𝑝𝑛

𝐿 are the median amplitude of hemodynamic response 

function of the n
th

 neural underpinnings in the right and left hemispheres, respectively. The 

median of estimated HLI of neural underpinnings of proposed microstate based EEG asymmetry 

and the standard EEG asymmetry measures were finally subjected to the robust correlations with 

PANAS and BIS/BAS measures. 

4.4 RESULTS 

Our study focused on exploring the ability of quasi-stable EEG microstate based frontal 

alpha hemispherical asymmetry measures against standard EEG frontal alpha asymmetry 

measures in explaining the resting state affect and approach/ withdrawal behavior for healthy 

young male volunteers during 1-time measurement. The standard alpha topographic maps (CSD 

referenced) and microstate alpha topographic maps are shown in Figure 4.3. Evidently, the maps 

of standard alpha topography (CSD referenced) in Figure 4.3b reveal the typical parietal-

occipital alpha activity for eyes-closed resting-state conditions (Rashed-Al-Mahfuz et al., 2013; 

Tenke et al., 2015). However, the parietal-alpha activity is typical of standard alpha topographic 

maps and has not been observed and reported by any researchers in microstate alpha topographic 

maps so far. For assessing the association of EEG microstate based frontal hemispheric 
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asymmetry with affect and approach/withdrawal behavior, robust correlation of PANAS and 

BAS, BIS measures with standard and EEG microstate FA and FTA was estimated. 

Subsequently, to better understand the neural mechanisms underlying the proposed microstate 

and standard hemispherical asymmetry measures, they were subjected to the EEG informed 

fMRI, and their neural underpinnings were estimated. Further, to gain insights into the 

hemodynamic lateralization associated with the neural underpinnings and its linkage with affect 

and approach/withdrawal measures, HLI of both asymmetry measures neural underpinnings’ was 

calculated and subsequently subjected to the robust correlation with PANAS and BAS, BIS 

measures.  
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Figure 4.3 Topographic EEG maps of spectral power density for the alpha band for a. proposed 

microstate based analysis and b. Standard analysis (CSD referenced). The color bar represents the log-

transformed spectral power density (10*log10 (µv2/Hz)) where red represents the maximum and blue 

represents the minimum values (Kaur et al., 2020). 

 

4.4.1 ROBUST CORRELATION OF FRONTAL HEMISPHERICAL ASYMMETRY MEASURES 

WITH PSYCHOLOGICAL MEASURES  

The robust correlation (Pearson, bend, spearman, and skipped) of proposed microstate 

and standard frontal hemispheric asymmetry measures with PANAS and BIS/BAS psychological 

scores is tabulated in Table 4.3. 

Standard FA and FTA revealed no statistically significant correlation with PANAS as 

well as BIS/BAS measures. Similarly, proposed microstate based FA and FTA yielded 

insignificant low correlation with positive affect score.  
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Howbeit, negative affect scores revealed a strong and significant correlation with 

proposed microstate based FA and FTA. Specifically, microstates based FA yielded high 

pearson, bend and spearman correlations (Figure 4.4a: pearson r=0.35, 95% CI= [0.07; 0.58], 

pcorr=0.04; Figure 4.4b: bend r=0.33, 95% CI= [-0.02; 0.61], pcorr=0.05; Figure 4.4c: spearman 

r=0.36, 95% CI= [0.04; 0.62], pcorr=0.03). Similarly, skipped pearson and spearman robust 

correlations of microstates based FA with negative affect scores has also yielded stronger 

correlations (Figure 4.4d: pearson skipped=0.35, 95% CI= [0.04; 0.57]; spearman skipped=0.36, 

95% CI= [0.005; 0.62]). In addition, a strong robust pearson, bend and spearman correlation of 

microstates based FTA with negative affect scores was observed (Figure 4.5a: pearson r=0.42, 

95% CI= [0.13; 0.67], pcorr=0.01; Figure 4.5b: Bend r=0.42, 95% CI= [0.05; 0.70], pcorr=0.01; 

Figure 4.5c: spearman r=0.38, 95% CI= [0.02; 0.68], pcorr=0.02). Skipped (pearson and 

spearman) correlations among microstates-derived FTA and negative affect scores has also 

yielded stronger correlations (Figure 4.5d: Pearson skipped=0.42, 95% CI= [0.14; 0.67]; 

Spearman skipped=0.38, 95% CI= [0.04; 0.68]).  

However, BAS measures yielded a statistically insignificant low correlation with 

proposed microstate asymmetry. The analysis with BIS measures for both FA and FTA revealed 

high correlation, but the p-values remained insignificant.  
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Table 4.3 Robust correlation (Pearson, bend, spearman and skipped) of standard and proposed microstate 

based frontal hemispheric asymmetry measures with psychological scores (Kaur et al., 2020). 

 

 

 

 

 

EEG alpha 

frontal 

asymmetry 

Channel 

pair 

Behavioral 

measure 

Pearson 

Correlation 

Bend 

correlation 

Spearman 

correlation 

Skipped correlation 

Pearson Spearman 

      
r p r p r p r t r t 

Standard 

F4/F3 

(FA)  

Positive affect 0.22 0.21 0.2 0.23 0.09 0.54 0.22 1.27 0.09 0.54 

Negative 

affect -0.1 0.54 -0.04 0.8 -0.05 0.75 -0.1 -0.6 -0.05 -0.31 

BAS -0.25 0.37 -0.16 0.56 -0.17 0.56 -0.25 -0.92 -0.17 -0.59 

BIS -0.03 0.9 0.09 0.75 0.09 0.73 -0.03 -0.12 0.09 0.34 

  

F8/F7 

(FTA) 

Positive affect 0.03 0.83 -0.11 0.52 -0.12 0.47 0.03 0.21 -0.12 -0.73 

Negative 

affect -0.05 0.75 0.01 0.92 -0.004 0.97 -0.05 -0.31 -0.004 -0.02 

BAS 0.18 0.52 0.17 0.55 0.13 0.65 0.18 0.65 0.13 0.46 

BIS -0.14 0.62 -0.14 0.61 -0.3 0.28 -0.14 -0.5 -0.3 -1.12 

  

Microstates 

F4/F3 

(FA)  

Positive affect 0.03 0.84 0.08 0.61 0.12 0.46 0.03 0.2 0.12 0.73 

Negative 

affect 0.35 0.04 0.33 0.05 0.36 0.03 0.35 2.13 0.36 2.2 

BAS -0.09 0.74 -0.04 0.86 0 1 -0.09 -0.32 0 0 

BIS -0.3 0.29 -0.41 0.14 -0.28 0.32 -0.3 -1.09 -0.28 -1.01 

  

F8/F7 

(FTA) 

Positive affect 0.0003 0.99 -0.01 0.91 -0.01 0.92 0.0003 0.0018 -0.01 -0.09 

Negative 

affect 0.42 0.01 0.42 0.01 0.38 0.02 0.42 2.64 0.38 2.34 

BAS -0.17 0.54 -0.18 0.52 -0.18 0.53 -0.17 -0.62 -0.18 -0.64 

BIS -0.32 0.25 -0.45 -1.7 -0.33 -1.22 -0.32 -1.19 -0.33 -1.22 
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Figure 4.4  Correlation plots between negative affect scores and microstate based FA (F4/F3) and 

associated histograms of correlations for bootstrapped data. a. Pearson correlation b. 20% Bend 

correlation c. Spearman correlation d. Skipped (Pearson and Spearman) correlations (Kaur et al., 2020). 
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Figure 4.5 Correlation plots between negative affect scores and microstate based FTA (F8/F7) and 

associated histograms of correlations for bootstrapped data. a. Pearson correlation b. 20% Bend 

correlation c. Spearman correlation d. Skipped (Pearson and Spearman) correlations (Kaur et al., 2020). 

 

4.4.2 EEG INFORMED FMRI ANALYSIS 

The proposed microstate and standard hemispherical asymmetry measures were subjected 

to the EEG informed fMRI analysis to assess their neural underpinnings, respectively. The 

observed neural underpinnings were inferred with FDR corrected p-values less than 0.05, and a 

cluster size of more than 20 voxels were considered for analysis. 

4.4.2.1 Neural underpinnings of standard hemispheric asymmetry 

The neural underpinnings of standard FA encompassed right as well as left-hemispheric 

regions (Figure 4.6a). Supplementary Table S4.1 (see Appendix 2) comprises of these areas, 

their peak coordinates, and cluster size. Specifically, in the right hemisphere, EEG frontal 
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asymmetry negatively correlated with BOLD activity in the occipital cortex with major clusters 

in the lateral occipital cortex and occipital pole. Additionally, BOLD activity in the temporal 

cortex also correlated negatively with standard FA. However, the BOLD of parietal cortex 

regions, particularly the postcentral gyrus, correlated positively with standard FA. Withal, in the 

left hemisphere, standard FA correlated positively with BOLD activity in the postcentral gyrus. 

However, activity in the occipital fusiform gyrus and temporal lobe regions correlated negatively 

with this alpha asymmetry measure. Majority of frontal lobe regions correlated negatively. 

However, superior frontal gyrus correlated positively (high t-value compared to the right 

hemisphere) with standard FA.  

Figure 4.6b shows the neural underpinnings of standard FTA. Both right and left 

hemispheres revealed positive and negative correlations between BOLD activity and standard 

FTA (Supplementary Table S4.2; see Appendix 2). In the right hemisphere, BOLD activity in 

occipital lobe regions (cuneal cortex, lingual gyrus, and superior division of lateral occipital 

cortex) correlated negatively with standard FTA. Major clusters in the frontal lobe, specifically 

the frontal pole and activity in the precuneus cortex, also found a negative correlation with this 

frontal asymmetry index. In the left hemisphere, standard FTA correlated negatively with BOLD 

activity in the Inferior frontal gyrus. Few clusters in the parietal, occipital, and temporal pole also 

correlated negatively with standard FTA. The neural underpinnings of standard FA showed left-

hemispheric dominance whilst FTA revealed right-hemispheric dominance. 
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Figure 4.6 Surface rendered view of neural underpinnings of standard a. FA (channel pair F4/F3) b. FTA 

(channel pair F8/F7). The color bar indicates the t-values with blue being the least and red being the 

highest. The activations are represented at FDR corrected p<0.05 (Kaur et al., 2020). 
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4.4.2.2 Neural underpinnings of microstate based EEG asymmetry 

Right and left-lateralized neural underpinnings of microstate based FA are shown in 

Figure 4.7a. A complete list of activation clusters is provided in Supplementary Table S4.3 (see 

Appendix 2). In the right hemisphere, microstate based FA correlated negatively with BOLD 

activity in the frontal medial cortex and frontal pole regions of the frontal lobe. Similarly, BOLD 

activity in the posterior division of the cingulate gyrus has also correlated negatively. However, 

few clusters in the frontal lobe, occipital lobe, and temporal pole revealed a positive correlation 

with microstate FA. In the left hemisphere, resting-state microstate based FA correlated 

positively with major clusters in all lobes, with the frontal lobe having the maximum cluster 

extent. This is evident as microstates are known to represent the global brain activity.  

Figure 4.7b shows the neural underpinnings in both right and left hemispheres for resting-

state microstate based FTA. Supplementary Table S4.4 (see Appendix 2) comprises of these 

areas, their peak coordinates, and cluster size. In the right hemisphere, activity in the frontal lobe 

and limbic lobe regions correlated negatively with this EEG alpha asymmetry. BOLD of specific 

regions of the parietal lobe (Angular gyrus) and temporal lobe (Planum temporale) correlated 

negatively with microstate based FTA. Pertaining to the left hemisphere, activations in the 

frontal lobe and limbic lobe (a posterior division of cingulate gyrus) correlated negatively with 

microstate based FTA. Negative correlation also emanated from BOLD activity in specific 

regions of the parietal lobe (Angular gyrus, Superior parietal lobule) and lateral occipital cortex 

of the occipital lobe. The neural underpinnings for microstate based FA and FTA showed left-

hemispheric dominance. 
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Figure 4.7 Surface rendered view of neural underpinnings of proposed microstate based a. FA (channel 

pair F4/F3) b. FTA (channel pair F8/F7). The color bar indicates the t-values with blue being the least and 

red being the highest. The activations are represented at FDR corrected p<0.05 (Kaur et al., 2020). 
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4.4.3 ROBUST CORRELATION OF HLI WITH PANAS, BIS/BAS MEASURES 

The correlation and p-values for all the significant results obtained for this analysis are 

tabulated in Table 4.4. The robust correlation between negative affect measure and HLI of neural 

underpinnings of microstate frontal alpha asymmetry yielded a significantly strong negative 

correlation in the anterior division of the middle temporal gyrus. Further, superior frontal gyrus 

emerged as the positive correlate for correlation among positive affect scores and HLI pertaining 

to neural underpinnings of microstate alpha asymmetry. Moreover, the correlation of BIS 

measure with HLI pertaining to neural underpinnings of microstate frontal alpha asymmetry 

yielded a significantly strong positive correlation in the inferior frontal gyrus (pars triangularis) 

and frontal medial cortex. Further, the HLI of occipital fusiform gyrus correlated negatively with 

the BAS measure.  

However, the robust correlation between negative affect and HLI of neural underpinnings 

of standard frontal alpha asymmetry yielded a low and insignificant correlation with all cortical 

regions. While the correlation of positive affect scores with HLI pertaining to standard alpha 

asymmetry revealed a significant positive correlation with the insular cortex. Further, the 

correlation of BAS and BIS measures with HLI revealed a low and insignificant correlation with 

all cortical regions pertaining to standard alpha asymmetry. 
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Table 4.4 Robust correlation (Pearson, bend, spearman, and skipped) of HLI based on standard and 

proposed microstate based frontal hemispheric asymmetry measures with psychological scores (Kaur et 

al., 2020). 

 

Hemodynamic 

Lateralization 

Index (HLI) 

Behavioral 

measure 
Cortical regions 

Pearson 

Correlation 

Bend 

correlation 

Spearman 

correlation Skipped correlation 

            Pearson Spearman 

r p r p r p r t r t 

Standard 

neural 

underpinnings 

Negative 

affect 

No region 

survived 
- - - - - - - - - - 

BIS 
No region 

survived 
- - - - - - - - - - 

 
Positive 

affect 
Insular cortex 0.44 0.004 0.44 0.005 0.4 0.01 0.53 3.82 0.41 2.75 

BAS 
No region 

survived 
- - - - - - - - - - 

  
            

Microstates 

Neural 

underpinnings 

Negative 

affect 

Middle temporal 

gyrus, anterior 

division 

-0.4 0.01 -0.38 0.01 -0.43 0.006 -0.4 -2.67 -0.43 -2.91 

BIS 

Inferior frontal 

gyrus 
0.69 0.005 0.63 0.01 0.69 0.005 0.69 3.36 0.69 3.39 

Frontal medial 

cortex 
0.71 0.004 0.76 0.001 0.75 0.001 0.71 3.53 0.75 4.04 

 
Positive 

affect 

Superior frontal 

gyrus 
0.36 0.02 0.3 0.05 0.31 0.05 0.36 2.37 0.31 2.01 

BAS 
Occipital 

fusiform gyrus 
-0.58 0.02 -0.57 0.03 -0.55 0.03 -0.58 -2.51 -0.55 -2.32 

 

4.4.4 ROBUST CORRELATION AMONG FRONTAL HEMISPHERICAL ASYMMETRY 

MEASURES 

Figure 4.8 shows the Pearson robust correlation of proposed microstate frontal 

hemispheric asymmetry with standard frontal hemispheric asymmetry measures. Proposed 

microstate based FA and FTA yielded insignificant low correlation with standard FA and FTA. 
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Pearson correlation among standard and microstate based FA and FTA revealed correlation 

coefficients and p-values as Pearson r= -0.14, 0.013; pcorr=0.37, 0.93 respectively. 

 

Figure 4.8 Pearson correlation plots and associated histograms for bootstrapped data for correlation 

between a. Standard and microstate based FA (F4/F3) b. Standard and microstate based FTA (F8/F7) 

(Kaur et al., 2020). 

 

4.5 DISCUSSION 

Valence (Baijal & Srinivasan, 2011; J. Davidson, 1992; Richard J. Davidson et al., 1987; 

Wyczesany et al., 2018) and motivation hypothesis (Harmon-Jones et al., 2010) propose that 

higher values of positive affect/approach behavior and negative affect/withdrawal behavior are 

associated with the greater relative left and right cortical activation, respectively. These 

hypotheses are established in task-based EEG alpha asymmetry studies where the implications 

are based on alpha inhibition (desynchronization w.r.t BOLD) in event-specific regions (Fink et 

al., 2005; Wright et al., 2015). Thus, following this abstraction, the above-mentioned hypothesis 

holds when standard frontal hemispheric asymmetry (ln(𝛼𝑅𝑖𝑔ℎ𝑡) − ln (𝛼𝐿𝑒𝑓𝑡)) correlates 
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positively with positive affect/ approach behavior and negatively with negative affect/withdrawal 

behavior. Howbeit, the validity of these hypotheses in resting-state recordings which involves 

sole perception and not induction of valence/behavior still remains vacillating. The inconsistent 

results of the relationship between the standard resting frontal asymmetry and affect and 

approach/withdrawal behavior are tabulated in Table 4.5. The line of studies by Tomarken and 

colleagues ( a J. Tomarken et al., 1992; A. J. Tomarken et al., 1992) and Jacobs & Snyder (1996) 

supported the above hypothesis. Similarly, for approach/withdrawal dichotomy, Harmon-Jones 

& Allen (1997), Shackman et al. (2009), and De Pascalis et al. (2013) supported the above-

mentioned hypotheses. Nonetheless, Sutton & Davidson (1997) and Schneider et al. (2016) 

observed no association of affect, approach/withdrawal dichotomy with frontal asymmetry, 

respectively. Conversely, the study by Hagemann et al. (1999) proposed that subjects with high 

negative affect exhibited high left cortical activation. Further, Hewig et al. (2006) propounded a 

higher approach measure to be associated with the bilateral frontal cortical activity. Hence, in 

order to bring more clarity, the present study aims to assess the capability of quasi-stable 

microstates based frontal hemispheric asymmetry in explaining the affect and 

approach/withdrawal dichotomy as against standard frontal hemispheric asymmetry. 
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Table 4.5 List of studies for positive/negative affect and approach/withdrawal dichotomy (Kaur et al., 

2020). 

 

STUDY 

ALPHA EEG 

ASYMMETRY 

(R-L) 

MOOD 

MEASURES 
SUBJECTS 

MAIN 

RESULTS 

A. J. Tomarken, 

Davidson, & Henriques 

(1990)  

FA (F4/F3); 

 

Acquisition of 

resting EEG 

followed by the 

presentation of 

affective clips to 

obtain subjective 

ratings for 

emotional 

reactions 

32 females, 

Cohort A: 17 

to 41 years 

Cohort B: 20 

to 54 years 

Resting FA 

significantly 

predicted self-

reported 

global NA 

a J. Tomarken et al., 

(1992a)  

FA (F4/F3); 

ATA (T4/T3) 

Resting EEG on 

two occasions; 3 

weeks apart; 

PANAS 

90 females, 

17-21 years 

FA:      NA 

ATA:    PA 

A. J. Tomarken et al. 

(1992b) 

Same as in 

Tokarman et al. 

(1992a) 

Same as in 

Tomarken et al. 

(1992a) 

85 females, 

17-21 years 

Same as in 

Tomarken et al. 

(1992a) 

Jacobs & Snyder (1996) 
FA (F4/F3); 

FTA (F8/F7) 

Resting EEG on 

1-time 

measurement; 

PANAS 

40 males, 

18-53 years 
FTA:     NA 

Sutton & Davidson 

(1997) 
FA (F4/F3) 

Resting EEG on 

two occasions 6 

weeks apart 

PANAS first 

session; BIS/BAS 

scales the second 

session 

46 (23 

females) 

18–22 years 

No correlation 

between FA 

and PA, NA, 

BAS, BIS 
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Hagemann et al. (1998) 
FA (F4/F3); 

ATA (T4/T3) 

Acquisition of 

resting EEG 

followed by the 

presentation of 

affective slides to 

obtain subjective 

ratings for 

emotional 

reactions 

37 (22 

females: 15 

males: Mean 

age 24.5) 

Subjects with 

greater relative 

left-sided 

anterior 

temporal 

cortical 

activation 

reported more 

intense NA in 

response 

to negative 

stimuli 

Hagemann et al.(1999) 
FA (F4/F3); 

ATA (T4/T3) 

Resting EEG; 

PANAS 

36 (24 

females) 

Mean age 

24.7 

 

Subjects with 

high NA 

exhibited high 

left cortical 

activation at the 

anterior 

temporal site 

 

Hall & Petruzello 

(1999) 
FA (F4/F3) 

Resting EEG and 

measures of 

physical activity; 

PANAS 

41 (26 

females) 

Mean age 

68.7 

FA positively 

predicted PA 

Harmon-Jones & Allen 

(1997) 

FA (F4/F3); 

 

Resting EEG 

from females who 

scored in the 

upper or lower 

third of the 

distribution of 

social anxiety 

scores; BAS,BIS 

37 female FA:      BAS 

Hewig et al. (2006) 

FA (F4/F3); 

FTA (F8/F7); 

ATA (T4/T3) 

 

Resting EEG on 

four occasions; 

four weeks apart; 

BAS, BIS 

59 (30 

females: 

Mean age 23; 

29 males: 

Mean age 25) 

 

Higher BAS 

associated with 

bilateral frontal 

cortical activity 
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Shackman et al. (2009) 
FA (F4/F3); 

FTA (F8/F7) 

Resting EEG on 

two occasions; 

several weeks 

apart; BAS, BIS 

51 female 

Mean age 

19.5 

A significant 

relationship 

between BIS 

and FA. Higher 

BIS associated 

with right 

posterior 

DLPFC 

De Pascalis et al. (2013) 
FA (F4/F3); 

FTA (F8/F7) 

Resting EEG; 

BAS,BIS 

51 female 

Mean age 

24.1 

 

FA:     BAS, 

Higher BAS 

associated with 

left-sided 

activation in 

MFG 

Schneider et al. (2016) 
FA (F4/F3); 

 

Two assessments 

of resting EEG; 

BAS, BIS 

99 (50 

females; 49 

males aged 

10-12 years) 

No correlation 

of BAS, BIS 

measures with 

FA 

 

EEG, Electroencephelography;    Positive correlation;    Negative correlation; FA, Frontal Asymmetry 

(F4/F3); FTA, Frontal Temporal Asymmetry (F8/F7); ATA, Anterior Temporal Asymmetry (T4/T3); 

BAS, Behavioral Activation System; BIS, Behavioral Inhibition System; PA, Positive Affect; NA, 

Negative Affect; DLPFC, Dorsolateral Prefrontal Cortex; MFG, Middle Frontal Gyrus 

 

4.5.1 PRELUDE TO THE PRESENT RESEARCH STUDY 

This study primarily focuses on exploring the ability of EEG microstates based frontal 

hemispherical asymmetry measure against standard Davidson’s approach in explaining 

mechanisms of the resting state affect and approach/ withdrawal behavior. The rationale for 

examining EEG microstates-derived frontal asymmetry was based on the specific observation 

that affect and approach/withdrawal measures associated significantly with stable EEG 

signatures. Microstate analysis estimates the global pattern of coherence across entire EEG 
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channels from temporal EEG data and thus assesses patterns of quasi-stable activities. The 

interaction within a large-scale brain network involves a rapid change in the dynamics of these 

quasi-stable activity patterns. Further, the neural mechanism associated with any cognitive 

process generally involves the coordinated activity of many neural assemblies located at different 

cortexes. Correspondingly, the neural mechanisms of resting-state affect and approach/ 

withdrawal behavior result from one such coordinated activity of the large scale brain networks. 

Thus, in this study, a novel approach is explored, which assesses the hemispherical 

frontal asymmetry of quasi-stable activity patterns (microstates) from large scale brain 

interactions of the resting state affect and approach/ withdrawal behavior. These EEG 

microstates based frontal hemispherical asymmetry measures are further subjected to the EEG 

informed fMRI analysis to estimate their neural underpinnings. Subsequently, the lateralization 

index, which measures the hemispherical asymmetry of these large scale brain networks based 

on their hemodynamic information, is measured and correlated with affect and approach/ 

withdrawal psychological measures. Lastly, the insights brought by the proposed EEG 

microstates based approach is compared with the standard EEG asymmetry measures to 

understand the effectiveness of microstate derived asymmetry measures in explaining resting-

state affect and approach/ withdrawal behavior. The insights of the present study are summarized 

in the following sections. 

4.5.2 STANDARD ALPHA ASYMMETRY AND ITS HLI REVEAL NO CORRELATION WITH 

PANAS AND BIS/BAS MEASURES 

The current study is in line with the observation of Davidson and colleagues (Sutton & 

Davidson, 1997) and other earlier studies (Palmiero & Piccardi, 2017; C. W.E.M. Quaedflieg et 
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al., 2015; Schneider et al., 2016), where no correlation was observed for affect and BIS/BAS 

measures with standard hemispheric asymmetry. However, these previous studies never explored 

the neurovascular underpinnings and associated hemodynamic asymmetry of these 

underpinnings. In the present study, the absence of linkage of standard hemispheric asymmetry 

with affect and BIS/BAS measures is further strengthened by the lack of correlation of HLI of 

neural underpinnings of standard alpha asymmetry with PANAS, BIS, and BAS measures. This 

supports the understanding that neural mechanisms that are measured as standard EEG frontal 

alpha asymmetry may not be the marker to explain the affect and/or approach-withdrawal 

measures during resting state. It might possibly are influenced by the neural activity associated 

with other ongoing resting-state neural mechanisms, which limit its sensitivity towards the neural 

mechanisms associated with affect and approach-withdrawal measures during resting state. Thus, 

our finding strengthens the understanding that the standard EEG alpha asymmetry model, 

especially in the male population, is effectual in explaining affect or approach-withdrawal 

measures only when arousing situations such as those relying on mood induction procedures are 

present.   

4.5.3 MICROSTATES BASED ASYMMETRY CORRELATES WITH AND DELINEATES THE 

NEURAL MECHANISMS OF NEGATIVE AFFECT  

In contradistinction to the standard hemispheric asymmetry, the proposed microstates 

based measure brings better insights into the global coordinated activity of large scale brain 

networks pertaining to negative affect. In this study, the robust correlational analysis revealed a 

positive correlation of negative affect with microstates based frontal hemispheric asymmetry. 

This implies that negative affect increases with an increase in right hemispheric alpha activity or 

a decrease in left-hemispheric alpha activity. Further, the most common neurovascular 
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hypotheses state that when engaged in the task, the brain region exhibits suppression in alpha 

power with an increase in the BOLD signal (Fink et al., 2005). This causes a negative correlation 

between alpha power and BOLD signal and is termed as alpha-BOLD desynchronization. Figure 

4.9 depicts these underlying dynamics for the association between alpha asymmetry measures 

and the BOLD signal during alpha-BOLD synchronization/desynchronization. Following this, 

the positive correlation of negative affect with microstates based frontal hemispheric asymmetry 

implies left-hemispheric interaction with negative affect. These observations do not support the 

valence hypothesis explained in the earlier section but goes in line with the observations by 

Hagemann et al. (1999), wherein negative affect has been linked to the left-hemisphere. Our 

results were also in line with a mood induction study by Gale et al. (2001), where negative mood 

increased with an increase in left frontal activation. Further, recently Farahi et al. (2019) showed 

the associativity of fear positively with the left hemisphere. 

Additionally, neural underpinnings of microstate derived asymmetry revealed the 

involvement of temporal lobe regions. In this study, HLI (𝐻𝑅𝐹_𝐴𝑚𝑝𝑛
𝑅 − 𝐻𝑅𝐹_𝐴𝑚𝑝𝑛

𝐿 ), which 

was estimated by utilizing the amplitude of the HRF of each neural underpinning of microstate 

based frontal asymmetry linked negatively to the HLI of the anterior division of middle temporal 

gyrus neural underpinning to negative affect. This implies that relatively left-lateralized HRF 

amplitude of temporal underpinning of microstate based frontal asymmetry is associated with 

negative affect. Studies in the past have connected left anterior temporal cortical activation as 

well as temporal lobe per se to the negative affect (Hennion et al., 2019; Ives-Deliperi & Jokeit, 

2019; Meador et al., 2015; Ritchey et al., 2019); this proves the efficacy of microstate based 

frontal asymmetry in explaining the neurovascular mechanism of negative affect which remains 

absent in the previous literature. Batut et al. (2006) signaled the involvement of mesial temporal 
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regions in emotional processes; further, Yun et al. (2017) showed that the angst for social 

communication in social anxiety disorder could be resultant of the imbalanced functional 

connectivity of left middle temporal gyrus. The association of anterior division of middle 

temporal gyrus with negative affect is plausible as studies (Buchanan et al., 2006; Dolcos et al., 

2005, 2011) have indicated the interaction between the middle temporal gyrus and amygdala for 

better prediction of memory for emotional events. Hence, the middle temporal gyrus may be 

more tightly functionally coupled with affect specific regions for the memory of negative events. 

The significant correlation of negative affect with temporal region’s HLI, which is independently 

measured from resting fMRI data for neural underpinnings of microstate frontal asymmetry and 

its relative left lateralization, also strengthens the finding of positive correlation of negative 

affect with microstate based frontal asymmetry measures (FA and FTA).  
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Figure 4.9 Underlying dynamics associated with alpha asymmetry index and BOLD signal (Kaur et al., 

2020). 

 

4.5.4 MICROSTATE BASED ASYMMETRY REVEALS NO CORRELATION WITH BIS, 

POSITIVE AFFECT, AND BAS  

Microstate based asymmetry showed a high but insignificant correlation with BIS 

measure. It also showed no correlation with positive affect and BAS measure. One possible 

explanation for these findings is the fact that the positive affect scale is a diverse measure with 

components of joy, interest, and activation. Each of these components might involve distinct and 

sometimes even opposite whole-brain activations (Egloff et al., 2003). Similarly, BAS is also 
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composed of varied components (reward, drive, and fun) (Taubitz et al., 2015). These varied 

brain activation patterns might not be producing definite patterns at cortical levels to be picked 

by the alpha power. 

4.5.5 HLI OF MICROSTATES NEURAL UNDERPINNINGS REVEALS SIGNIFICANT 

ASSOCIATION WITH BIS, POSITIVE AFFECT, AND BAS MEASURES  

The hemodynamic lateralization measure of neural underpinnings of the proposed 

technique revealed a high and positive correlation of BIS in frontal cortical regions. Frontal 

cortical regions play a very important role in inhibition systems, and it has been one of the 

cornerstones of neuroscience research (Andreas & Hewig, 2017; J. A. Coan & Allen, 2004; 

Harmon-Jones & Gable, 2018). Further, Fuentes et al. (2012) also emphasized the association of 

individual differences in the behavioral inhibition system with the orbitofrontal cortex. Hence, 

our results suggest that the HLI, which constitutes the voxel-level hemispheric differences in 

HRF amplitude of neural underpinnings of microstates based asymmetry, better manifests BIS 

measure. Further, though microstate based alpha asymmetry found no significant correlation 

with positive affect and BAS measure, the HLI of occipital fusiform gyrus was found to correlate 

with BAS measure strongly. This is consonant with the hypothesis where the BAS system is 

proposed to be modulated by occipital cortices (Barrós-Loscertales et al., 2010). The nature of 

correlation was strong but negative and thus was inverse of the BIS system. Moreover, positive 

affect was correlated positively with hemodynamic lateralization measures in superior frontal 

gyrus. The link of the prefrontal cortex with positive affect is consistent with recent studies. 

Wager et al. (2015) showed the association of the prefrontal cortex with positive affect as 

compared to negative affect. Similarly, Roy et al. (2012) observed more frequent activity was 

found in the prefrontal cortex during positive as compared with negative feelings. Hence, 
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hemodynamic lateralization measures of microstates neural underpinnings bring better insight 

into the positive affect and BAS as compared to the standard EEG based hemispherical 

asymmetry measures.  

Interestingly, the neural underpinnings  (middle temporal gyrus (anterior division), 

inferior frontal gyrus, frontal medial cortex) whose HLI revealed significant correlation (r-value) 

with negative affect and BIS scores have been observed to be undergoing only the alpha-BOLD 

desynchronization process. They were found to be either correlating positively in the left 

hemisphere or negatively in the right hemisphere. On the other hand, the neural underpinnings 

whose HLI correlated with positive affect and BAS scores have revealed both alpha-BOLD 

synchronization and desynchronization. Particularly, the superior frontal gyrus, which correlated 

with positive affect, underwent both alpha-BOLD synchronization and desynchronization. 

However, the occipital fusiform gyrus correlated negatively in the left hemisphere, which thus 

undergoes alpha-BOLD synchronization.  Thus, the neural mechanisms involved in negative 

affect/withdrawal in the resting state exhibited only alpha-BOLD desynchronization. On the 

contrary, the positive affect and an approach relevant region involved both alpha-BOLD 

synchronization and desynchronization. However, the underlying innate cause of these 

mechanisms remains elusive and needs to be explored in the future. Thus, our finding implicates 

that microstates based frontal alpha asymmetry may provide newer insights into the association 

of alpha asymmetry with mood and personality measures in both healthy and clinical 

populations. The plausible explanation is that different cognitive states, including affect and 

approach/withdrawal behavior, generally involve coordinated activity of many neural assemblies 

located at the different cortex, and the microstate prototypes could represent these cognitive 

states. 
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4.5.6 ABSENCE OF CORRELATION AMONG PROPOSED MICROSTATE AND STANDARD 

FRONTAL HEMISPHERIC ASYMMETRY MEASURES 

The proposed microstate based FA and FTA yielded an insignificant low correlation with 

standard FA and FTA. The proposed microstate based FA and FTA measure the quasi-stable 

coordinated brain activity and, in the present study, brings better insights into the large scale 

brain networks of negative affect. Previous works of literature ( a J. Tomarken et al., 1992; 

Wheeler et al., 1993) have also emphasized the prominence of stability in the standard EEG 

patterns in bringing forth the linkage among standard frontal alpha asymmetry and affect and 

approach/withdrawal measures. Hence, the lack of correlation among proposed microstate and 

standard frontal hemispheric asymmetry measures might be caused by the unstable nature of 

standard EEG and its frontal alpha asymmetry indices, which is caused by a substantial 

interference from many other cognitive factors. As this interference is different at different time 

points across volunteers, the standard EEG and its frontal alpha asymmetry are likely to correlate 

less with the quasi-stable patterns assessed by the proposed microstate frontal alpha asymmetry 

indices. 

4.5.7 LIMITATION OF STUDY 

The present study utilizes 39 volunteers’ data to validate the role of microstate based 

resting frontal alpha asymmetry in understanding the neural mechanisms of affect and 

approach/withdrawal behavior.  However, affect and approach/withdrawal behavior is known to 

be elicited by mood induction tasks. Hence, it is necessary to carry out future studies to validate 

the proposed microstate based frontal alpha asymmetry during such task engagements. Further, 

the current research involves healthy volunteers from the Indian urban population.  Many studies 
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(Consedine et al., 2002; Deer et al., 2018; Thayer & Koenig, 2019) in the past have revealed the 

association of affect and approach/withdrawal behavior with the cultural, ethnic, and social 

background of the individuals. Thus, it is required to examine the proposed microstate based 

frontal alpha asymmetry approach in a larger population dataset, which includes individuals from 

various cultural, ethnic, and social backgrounds.   

Also, the topographies of average-referenced, pre-processed standard EEG are known to 

represent the posterior alpha than frontal alpha, and these topographies have also been studied in 

comparison with other referencing schemes (Barzegaran et al., 2017; Tenke et al., 2015). 

However, the microstate analysis employed in the current study uses an average referencing 

scheme for frontal alpha asymmetry estimation. The present study follows average referencing 

for microstate analysis as various studies (Al Zoubi et al., 2019; Michel & Koenig, 2018) 

adequately understand the cognitive phenomena through average-referenced microstate 

estimations. Further, the effect of different EEG referencing schemes on microstate estimations 

is still not clearly understood. Extensive, systematic work needs to be undertaken to properly 

understand the role of varying EEG reference montages based microstate analysis in explaining 

frontal, posterior, and temporal EEG frequency signatures and topographies. 

4.6 CONCLUSION 

The above study validates the effectiveness of resting quasi-stable microstate based 

asymmetry in explaining the neural mechanisms of affect and approach/withdrawal behavior for 

healthy young male volunteers during 1-time measurement. The novelty of our work emanates 

from the fact that we estimated the frontal asymmetry of the alpha power from the average GFP 

amplitude of the quasi-stable microstates topographies, which might reflect the degree of 
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coordination of the neurons underlying alpha-neural underpinnings. Microstate frontal alpha 

asymmetry correlated positively with negative affect scores, which are defended by the negative 

correlation of HLI based on microstates’ temporal neural underpinning with negative affect. 

Further, a significant association of HLI based on microstate neural underpinnings with positive 

affect, BAS and BIS measures concludes that the neural mechanisms of affect and 

approach/withdrawal dichotomy are better explained by the synchronized global firing of 

neurons and on-going activity of entire brain networks as assessed by quasi-stable microstates 

frontal alpha asymmetry. This study also stands unique in exploring the underlying 

neurovascular synchronization/desynchronization mechanisms of microstate based frontal 

asymmetry measures. The analysis revealed that neural underpinnings involved both positively 

and negatively correlating brain regions, thus satisfying alpha-BOLD desynchronization and 

synchronization criteria. However, specifically the microstates neural underpinnings whose HLI 

correlated with negative affect and inhibition involved alpha-BOLD desynchronization, however 

the positive affect and approach relevant regions involved alpha-BOLD synchronization as well 

as desynchronization.  

Thus, the microstates-based frontal asymmetry model better explains the neural 

mechanisms underlying the affect and approach/withdrawal measures. Further, subcortical 

regions and their interactions with the cortical areas also may play an essential role in 

understanding the mechanisms of affect and approach/withdrawal measures. However, since the 

detection of deep-rooted subcortical regions through conventional EEG is still dubious, we 

carried a subsequent study, covered in the next chapter where the subcortical structures, 

subcortical-cortical interactions, and the architecture of the hemispheric asymmetry of their 
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functional connectivity dominating affect and approach/withdrawal mechanisms was studied 

using resting-fMRI functional connectivity estimates. 
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5.          CHAPTER FIVE 
 

THE ARCHITECTURE OF SUBCORTICAL-CORTICAL      

INTERACTIONS AND FUNCTIONAL ASYMMETRY DOMINATING 

AFFECT AND APPROACH/WITHDRAWAL BEHAVIOR:     

GRAPH THEORY APPROACH 

5.1 ABSTRACT 

The relevance of subcortical structures and interhemispheric subcortical-cortical 

interactions among positive/negative affect and approach/withdrawal tendencies during resting-

state are not fully understood. Gaining this knowledge may foster the know-how on their role in 

subsequent task-engagement and also on the interlinkage among affective measures and 

approach/withdrawal dichotomy. Here we report the neuroimaging finding based on ROI-based 

analysis and graph-theory estimates for global and subnetworks on healthy 39 male-volunteers 

who recorded resting fMRI and self-reported measures of PANAS and BAS-BIS scores. The 

ROI-to-ROI connectivity, in our study, revealed the connectivity of subcortical neural substrates 

of PANAS and BAS-BIS scores with bi-lateralized cortical regions. However, on probing the 

lateralization of strength of degree-measures of the cortical-regions vital for subcortical-cortical 

interaction, we found, for positive affect, a left-hemispheric proclivity. Further, higher 

connectivity within the left-hemisphere was also observed for the left-lateralized critical cortical 

regions of negative affect. Our study also revealed the association of emotion and memory-

related subcortical-cortical interactions in positive and negative affect. Right amygdala-right 

thalamus-frontotemporal cortical areas emanated in positive affect, and right putamen-left 

hippocampus-frontotemporal cortical regions network stemmed for negative affect. Then, we 
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show the involvement of basal-ganglia structures in approach-withdrawal dichotomy with tight 

coupling of right-caudate, left-accumbens with anterior cingulate, and insular regions for 

withdrawal/inhibition system. Further, distinct involvement of the insula (posterior) in affective 

states while insula (anterior) in approach/withdrawal systems builds-up for the existence of a 

feedback-loop between affective and approach/withdrawal systems. 

5.2 INTRODUCTION 

The innate resting neural interactions have been shown to influence subsequent task 

engagement and decision making (Grossman et al., 2019; Hasson, Nusbaum, & Small, 2009; 

Kuschpel et al., 2015; López Zunini, Thivierge, Kousaie, Sheppard, & Taler, 2013; Schultz & 

Cole, 2016). However, it is not clear whether these interactions possess the neural signatures of 

affective (positive/negative) and approach/withdrawal states of an individual. Affective and 

approach/withdrawal states exhibit neural engagements that are regulated by strong 

interhemispheric subcortical-cortical interactions. An existing body of research involving task 

engagement provides a valuable foundation for understanding these subcortical-cortical neural 

interactions encompassing the affective and approach/withdrawal measures (Balconi et al., 2012; 

Chikazoe et al., 2014; Citron et al., 2016; Helfinstein et al., 2012; Kensinger and Schacter, 2006; 

Laricchiuta and Petrosini, 2014). However, the association of the resting neural interactions with 

affect and approach/withdrawal measures of an individual is still not established. Specifically, 

the outlook on the resting subcortical-cortical interactions with their interhemispheric functional 

connectivities for these measures remains unfathomed. Attaining this knowledge would facilitate 

the understanding of their predictive effect on subsequently performed tasks. 
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In addition, the present study also derives its motivation from our previous study (Kaur, 

Chinnadurai, & Chaujar, 2020), wherein we estimated the efficacy of microstates derived resting 

frontal electroencephalography (EEG) alpha asymmetry against the standard alpha asymmetry 

measure in understanding affect and approach-withdrawal behavior. Howbeit, the current study 

focusses on the resting subcortical-cortical neural interactions and the associated asymmetry in 

the functional connectivities which dominate the processing of self-reported measures of Positive 

and Negative Affect Schedule (PANAS) and Behavioral Activation System (BAS) / Behavioral 

Inhibition System (BIS) psychological scales (Carver & White, 1994; Watson & Clark, 1988). 

Further, there also exist several theories that interlink the affect measures with the approach, 

withdrawal behavior (Baumeister, Vohs, DeWall, & Zhang, 2007; Gable, Reis, & Elliot, 2000; 

Gomez & Gomez, 2002; Maio & Esses, 2001; Meyer & Shack, 1989; Zelenski & Larsen, 1999). 

One of the arguments posits that positive and negative affect can act as a go or stop signal for 

any goal-directed (approach/withdrawal) behavior (Henk & Elliot, 2012; Orehek, Bessarabova, 

Chen, & Kruglanski, 2011). Further, Carver (2001) proposed that during a goal-directed task, 

affective states influence the approach/withdrawal behavior through a feedback mechanism. This 

specific feedback process compares a signal during an approach or withdrawal situation against a 

reference rate. Hence, the error signal in this loop is manifested as either positive/negative affect 

(see Figure 5.1). For example, in the presence of stimuli that cues reward (or absence of 

punishment) and mediates approach behavior, the attainment of goal would lead to happiness 

(positive affect; PA), while the otherwise would elicit sadness (negative affect; NA). Though the 

above observations were insightful, still, these works of literature bring no clarity on how the 

neural feedback interactions are manifested during resting-state and further on the association of 

these interactions with affect, approach/withdrawal behavior of an individual.  
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Figure 5.1 Schema is indicative of the feedback loop between affective states and approach/withdrawal 

dichotomy. 

 

Also, studies in the recent past have independently analyzed the varied aspects of neural 

engagements involved in affect (positive and negative) and approach/withdrawal measures 

during resting-state and task engagement. Rohr et al. (2013), in a resting-state study, showed that 

positive and negative affect as assessed through PANAS covaried with functional connectivity of 

a shared set of regions. Subsequently, Lindquist et al. (2016), in a task-based meta-analysis 

study, explored the brain basis for positive and negative affect. The study mentioned above 

emphasized the role of the prefrontal cortex, insular region, and subcortical regions of the 

amygdala and thalamus in elaborating the functions of positive and negative affective stimuli. On 

the other hand, Angelides et al. (2017) demonstrated the correlation of BAS (fun-seeking) 

measures with resting-state connectivity between the middle orbitofrontal cortex and putamen. In 

another task-based study, Laricchiuta and Petrosini (2014) showed approach and withdrawal 
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behaviors to be modulated by a network of subcortical structures (amygdala, dorsal striatum, 

hypothalamus, and cerebellum). The above study further proposed that nodes of the network of 

these subcortical structures are strongly interconnected, and the weight associated with the nodes 

decides whether the final output would lead to approach or withdrawal behavior. Nevertheless, 

the knowledge of the network of subcortical and cortical regions involved in processing the 

affective and approach/withdrawal measures during resting-state still requires exploration. 

Hence, in the present study, distinct resting subcortical-cortical interactions and 

functional connectivity associated with affect and approach/ withdrawal behavior were assessed. 

For this purpose, self-report inventories that independently measure positive and negative affect 

(PANAS) and BAS and BIS measures were utilized, and the relationship between these measures 

and resting Bold-oxygenated level-dependent (BOLD) signal was gauged. To assess subcortical-

cortical interactions associated with neural underpinnings of affect and approach/ withdrawal 

behavior independently, ROI-to-ROI analysis and graph theory metrics (degree and betweenness 

centrality) were employed. Further, an existing body of literature (Balconi et al., 2017; J. 

Davidson, 1992; R. J. Davidson, Saron, Senulis, Ekman, & Friesen, 1990; Killgore & Yurgelun-

Todd, 2007) supports the hemispheric lateralization of affective processes and personality 

measures where the left hemisphere dominates PA and BAS measures. In contrast, the right 

hemispheric region dominates NA and BIS measures. However, the validity of lateralization for 

affect and approach/withdrawal behavior in resting-state remains elusive. To refine this 

understanding further, the Estimation of the asymmetry in the functional connectivity measures 

of the subcortical and the critical cortical substrates dominating subcortical-cortical interaction of 

affect and approach/ withdrawal behavior was performed. 
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5.3 METHODS 

The schematic of the methodology followed in the present study is explained in Figure 

5.2. 

 

Figure 5.2 Schematic of the methodology followed in the present study. 

 

5.3.1 SAMPLE AND PROCEDURE 

The sample consists of the same subjects which were utilized for the study included in 

Chapter four. Thus, thirty-nine healthy adults with a mean age of 19.57 ± 1.28 were recruited for 

this study. The study included all right-handed male subjects with no history of depression or 

other severe diseases. The study adhered to the Declaration of Helsinki and was approved by the 

local institutional ethical committee. All subjects submitted a written informed consent.  
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5.3.2 BEHAVIORAL MEASURES 

As explained in Chapter four, participants were asked to complete Positive and Negative 

Affect (PANAS) and Behavioral approach system (BAS)/ Behavioral inhibition system (BIS) 

questionnaires before resting fMRI acquisition to assess the dispositional affect and 

approach/withdrawal parameters in resting state. PANAS consists of ten positive and negative 

adjectives each that are rated on a Likert scale ranging from very slightly or not at all (1) to 

extremely (5) and assesses the affect at the present moment (Crawford & Henry, 2004; Watson 

& Clark, 1988). BAS and BIS scales (Carver & White, 1994) include twenty-four items in total 

(twenty score-items and four fillers, each measured on a four-point Likert scale), among them 

seven items (range = 7–28) measure BIS and thirteen items BAS (range = 13–52; 13 items).  PA, 

NA, BIS, and BAS scores showed good internal consistency (Cronbach’s alpha’s= 0.89; 0.91; 

0.93; 0.92).  

5.3.3 DATA ACQUISITION AND PRE-PROCESSING STEPS 

As described in Chapter four, we acquired resting-fMRI data using a Siemens 3T 

scanner. Anatomical scans included a high-resolution T1-weighted structural image with the 

following parameters: MPRAGE sequence, 0.9 x 0.9 x 0.9 mm resolution ; FoV: 240 mm; slice 

TR/TE=1900ms/2.49ms; FA:90
o
; 160 slices with slice thickness 0.9mm and distance factor of 

50%). Functional T2*-weighted images were obtained using a 6-minute resting-state echo-planar 

imaging (EPI) sequence with the following parameters: T2* EPI sequence, 3.8 x 3.8 x 5.0 mm 

resolution; FoV: 240 mm; slice TR/TE=2000ms/30ms; FA: 90
o
; 30 slices with thickness 5mm 

and distance factor of 0%). 
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Functional scans were pre-processed and analyzed using the Functional Connectivity 

Toolbox (CONN) (Whitfield-Gabrieli & Nieto-Castanon, 2012). Data from the resting-fMRI 

scan underwent the default pre-processing pipeline for volume-based analysis (realignment and 

unwarping, slice-time correction, direct normalization to MNI space, and spatial smoothening 

with 8 mm full width half maximum Gaussian kernel filter).  

5.3.4 DATA ANALYSIS 

The present study aims to decipher the distinct subcortical-cortical interactions and 

asymmetry in functional connectivity dominating the affect and approach/ withdrawal behavior. 

For this purpose, at first, the cortical and subcortical neural underpinnings of PANAS and 

BAS/BIS measures were estimated. Subsequently, ROI-to-ROI functional connectivity analysis 

and the graph theory metrics (degree and betweenness centrality) was employed to understand 

the connectivity among subcortical-cortical regions of affect and approach/withdrawal measures.  

After assessing the neural substrates, we employed a global network wherein the nodes 

comprised all the neural substrates (region of interest) of a particular psychological measure. 

Besides, subnetworks constituting the amalgamation of each cortical substrate with all 

subcortical substrates for a specific psychological measure were examined to understand the 

interaction among subcortical and cortical substrates and pinning down the vital subcortical and 

cortical regions for the same. Further, to estimate the hemispheric asymmetry of functional 

connections associated with the neural substrates of positive and negative affect (PANAS) and 

BAS and BIS measures, other subnetworks were constituted which involved the concatenation of 

an individual neural substrate of a particular psychological measure first with all the left-

lateralized cortical substrates and subsequently with all the right-lateralized cortical substrates. 
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Thus, the merger of left-lateralized cortical substrates would constitute the ipsilateral functional 

connection for left-lateralized cortical regions and the contralateral functional connection for 

right-lateralized cortical areas. Therefore, to analyze the hemispheric dominance for the 

functional associations of each cortical region, the ratio quantifying the ipsilateral and 

contralateral functional connections was estimated. 

5.3.4.1 Estimation of neural substrates of PANAS and BIS/BAS measures 

We examined the robust correlations of PANAS and BAS-BIS scores with the Bold 

Oxygen Level Dependent (BOLD) signal of resting-state fMRI to establish the cortical and 

subcortical neural basis for PA, NA, BAS, and BIS measures. The first-level analysis of resting-

state fMRI data was performed in SPM12 using the General linear model (GLM). The model 

also incorporated the six motion regressors. The above step yielded, for each subject, the first-

level statistical parametric maps accommodated with their temporal and dispersion derivative 

terms. The first-level statistical maps were then subjected to the Canlab Core toolbox to extract 

amplitude measures from the basis sets (Calhoun, Stevens, Pearlson, & Kiehl, 2004). The robust 

second-level group analysis was employed next, utilizing the contrast images for amplitude 

summary measure, in Canlab core’s robust regression toolbox (Wager, Keller, Lacey, & Jonides, 

2005). PA, NA, BAS, and BIS measures were passed as covariates in second-level analysis in 

four separate models, respectively, to estimate their neural underpinnings. Canlab core’s robust 

regression toolbox detects the extreme outliers through iteratively re-weighted least squares 

(IRLS) method. IRLS minimizes the probability of negative findings and false-positives while 

retaining power. It reduces the effect of extreme outliers and has proved effective with small 

samples (n=10), and the benefits increase with an increase in sample size (n=40). Subsequently, 

the amplitude contrast image was subjected for the whole brain analysis corrected with voxel-
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wise False Discovery Rate (FDR) thresholded at q < .05, yielding the neural substrates f PA, NA, 

BAS, and BIS. 

5.3.4.2 Functional connectivity analysis 

5.3.4.2.1 Definition of Region of Interest (ROI’s) and ROI-to-ROI connectivity  

The CONN Functional Connectivity Toolbox (Whitfield-Gabrieli & Nieto-Castanon, 

2012) was utilized to parcellate the brain into ROI’s, consisting of 10 mm diameter spheres, 

based on neural substrates of psychological measures (PA, NA, BAS, and BIS). The above step 

yielded four independent atlases consisting of ROI’s of neural substrates of PA, NA, and BAS 

and BIS measures. Functional connectivity analyses were performed independently on all four 

ROI atlases. 

Further, to analyze the interaction among subcortical and cortical regions, we utilized the 

CONN Functional Connectivity Toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012) to 

estimate the significance and strength of bivariate Pearson correlation among pairs of ROI’s 

within each subject’s data. For ROI-to-ROI connectivity, the BOLD time-series was extracted 

from each neural substrate and was correlated with the BOLD time-series signal of every other 

cortical and subcortical neural substrate of a psychological measure. This resulted in a 

correlation matrix showing connectivity between each region within the network for each 

participant. The bivariate regression coefficient is represented as follows 

 
𝑟(𝑖, 𝑗) =

∑ 𝑁𝑆𝑖(𝑡)𝑁𝑆𝑗(𝑡)𝑡

√∑ 𝑁𝑆𝑖(𝑡)2𝑁𝑆𝑗(𝑡)2𝑡

 Equation 5.1 

 𝑍(𝑖, 𝑗) = tanh−1 𝑟(𝑖, 𝑗) Equation 5.2 
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 with 𝑁𝑆𝑖(𝑡) = BOLD time series within the i
th

 neural substrate, centered to zero mean, 

𝑟(𝑖, 𝑗) = correlation coefficients between the i
th

 and j
th 

ROI’s (cortical/subcortical neural 

substrate) and 𝑍(𝑖, 𝑗) = Fisher-transformed correlation coefficient. In the second-level analysis 

step, the first-level connectivity-measure matrix for each participant (effect of rest condition) 

was thresholded at p < 0.05 corrected for multiple comparisons (FDR). 

5.3.4.2.2 Graph theory analysis 

In the current study, we employed graph theory to understand the subcortical and cortical 

neural interactions for PA, NA, BAS, and BIS measures. Graph theory is a mathematical 

technique that represents brain networks as maps composed of nodes (i.e., regions of interest, 

ROI) and edges (i.e., connections between them) (Farahani et al., 2019; Wang et al., 2010). Thus, 

for a given ROI, graph theory captures large-scale properties of information flow by accounting 

for that ROI’s relationship with the entire brain network rather than individual regions.  

To construct a functional brain network, CONN Functional Connectivity Toolbox was 

utilized (Whitfield-Gabrieli & Nieto-Castanon, 2012). The unweighted ROI-to-ROI correlation 

matrices were first thresholded at a cost value of 0.15. The adjacency matrices were built using 

two-sided analysis thresholds for accounting for the possible effects of negative correlations. For 

the following explanation, the network is represented as a graph by G (N, K) with N denoting the 

total number of nodes in the graph, and K the number of edges. Further, 𝐶 = {𝐶1, 𝐶2, ……𝐶𝑛} 

denotes an array of cortical regions and 𝑆𝐶 = {𝑆𝐶1, 𝑆𝐶2, ……𝑆𝐶𝑚} is an array of subcortical 

regions where n,m are the total number of cortical and subcortical neural substrates, respectively. 
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This graph G (N, K) is computed independently for all the self-reported psychological measures. 

Thus, the graph-theoretical matrices which have been assessed are as follows 

a. Degree, which is the total number of edges linked to any node 𝑖 and is calculated as 

follows 

          𝐷𝑖 =∑𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝑖𝑗
𝑗∈𝐺

 Equation 5.3 

where, 𝐷𝑖 = (degree of the i
th

 node)/ROI, 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝑖𝑗 is the i
th

 row and j
th

 

column element of adjacency matrix 𝐴. Graph adjacency matrix 𝐴(𝑖, 𝑗) is computed by 

thresholding the ROI-to-ROI analysis correlation matrix 𝑟(𝑖, 𝑗).                                                                                                        

b. Betweenness centrality is defined as the proportion of all shortest paths in a network that 

pass through a particular neural substrate ROI, indicating the importance of this ROI in 

information flow. Betweenness centrality is represented as follows 

 
         𝐵𝐶𝑖 =

∑ [𝑖 ∈ 𝑃𝑗,𝑘]𝑗∈𝐺,𝑘≠𝑖

(𝑁 − 1)(𝑁 − 2)
 Equation 5.4 

where 𝐵𝐶𝑖 = (betweenness centrality of the i
th

 node )/ROI and, 𝑃𝑗,𝑘 = set of nodes 

in minimum distance path between j
th

 and k
th

 nodes. Results were considered significant 

after p<.05 FDR correction. 

5.3.4.2.2.1 Defining network and sub-network nodes 

A global network encompassing all cortical and subcortical substrates of a specific 

psychological measure was utilized to assess the vital subcortical regions for subcortical-cortical 

interactions. The network for gauging subcortical-cortical interactions was defined as follows 

      𝑁 = 𝐺(𝑁,𝐾) Equation 5.5 
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where 𝑁 is the network formed by the concatenation of all cortical substrates and 

subcortical substrates of a particular psychological measure as defined in the previous section. 

Thus, N (n+m) depicts the total neural underpinnings of a specific psychological measure, and K 

represents the respective edges of this network. 

Subsequently, to delineate the vital cortical substrates which communicate with the 

subcortical areas, a discrete subnetwork was constructed, independently for each psychological 

measure as described below in Equation 5.6 

                   𝐶𝑆𝐶𝑁𝑖 = 𝐺(𝑚𝑖, 𝑘𝑖) Equation 5.6 

where i = 1: 𝑛 ; 𝑛 is the number of cortical regions, 𝑚𝑖={𝐶𝑖 , 𝑆𝐶} is formed by the 

concatenation of the i
th

 cortical substrate and all subcortical substrates (𝑆𝐶) of a particular 

psychological measure and 𝑘𝑖 represents the respective edges.  

At last, the subnetwork for understanding ipsilateral and contralateral hemispheric 

interactions among cortical neural substrates was formed as 

                   𝐶𝑜𝑛𝑁𝑖 =  𝐺(𝑚𝑐𝑜𝑛𝑖, 𝑘𝑐𝑜𝑛𝑖) Equation 5.7 

                   𝐼𝑝𝑠𝑁𝑖 = 𝐺(𝑚𝑖𝑝𝑠𝑖, 𝑘𝑖𝑝𝑠𝑖) Equation 5.8 

where i = 1: 𝑠 ; 𝑠 is the total neural substrates of a particular psychological measure, 

i.e., 𝑠 = 𝑛 +𝑚; 𝑚𝑐𝑜𝑛𝑖={𝑠𝑖, 𝐶𝑐𝑜𝑛} is formed by the concatenation of the i
th

 substrate and all the 

contralateral cortical substrates (𝐶𝑐𝑜𝑛) of a particular psychological measure and 𝑘𝑐𝑜𝑛𝑖 

represents the respective edges. Supposedly, if a left-lateralized region is considered then, the 

specific ConN network would include this region and all the right-lateralized cortical areas. 

Similarily, 𝑚𝑖𝑝𝑠𝑖={𝑠𝑖, 𝐶𝑖𝑝𝑠} is formed by the concatenation of the i
th

 substrate and all the 

ipsilateral cortical substrates (𝐶𝑖𝑝𝑠) of that particular psychological measure and 𝑘𝑖𝑝𝑠
𝑖
 represents 
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the respective edges. For the same left-lateralized region, the specific IpsN network would 

include this region and all the left-lateralized cortical areas.  Finally, the hemispherical 

interactions (HI) for the cortical substrates were quantified utilizing the degree measures of these 

subnetworks as described below 

 
             𝐻𝐼𝑐𝑜𝑛𝑖 =

𝐶𝑜𝑛𝑁𝐷𝑒𝑔𝑟𝑒𝑒𝑖

𝐶𝑜𝑛𝑁𝐷𝑒𝑔𝑟𝑒𝑒𝑖
+ 𝐼𝑝𝑠𝑁𝐷𝑒𝑔𝑟𝑒𝑒𝑖

 Equation 5.9 

 
             𝐻𝐼𝑖𝑝𝑠𝑖 =

𝐼𝑝𝑠𝑁𝐷𝑒𝑔𝑟𝑒𝑒𝑖

𝐶𝑜𝑛𝑁𝐷𝑒𝑔𝑟𝑒𝑒𝑖
+ 𝐼𝑝𝑠𝑁𝐷𝑒𝑔𝑟𝑒𝑒𝑖

 Equation 5.10 

where i = 1: 𝑛 ; 𝑛 is the total cortical substrates of a particular psychological measure. 

Finally, the laterality index (𝐿𝐼𝑓𝑢𝑛_𝑐𝑜𝑛𝑛) based on the HI’s was estimated as described in 

Equation 5.11. Only the cortical regions vital for subcortical-cortical interactions as assessed via 

ROI-to-ROI connectivity analysis and degree measures of global (N) as well as subnetwork 

CSCN were considered for estimation of  𝐿𝐼𝑓𝑢𝑛_𝑐𝑜𝑛𝑛. 

                   𝐿𝐼𝑓𝑢𝑛_𝑐𝑜𝑛𝑛𝑖 = 𝐻𝐼𝑖𝑝𝑠𝑖 − 𝐻𝐼𝑐𝑜𝑛𝑖 Equation 5.11 

 where i=1:v, v is the cortical regions vital for subcortical to cortical interaction and  

𝐿𝐼𝑓𝑢𝑛_𝑐𝑜𝑛𝑛 is the functional connectivity based laterality index.  

We also estimated the laterality index (LIactive_voxels) based on the number of active 

voxels/lobe for each psychological measure (see Equation 5.12). 

 
 𝐿𝐼𝑎𝑐𝑡𝑖𝑣𝑒_𝑣𝑜𝑥𝑒𝑙𝑠 =  

𝑁𝑉𝑙𝑒𝑓𝑡 − 𝑁𝑉𝑟𝑖𝑔ℎ𝑡

𝑁𝑉𝑙𝑒𝑓𝑡 + 𝑁𝑉𝑟𝑖𝑔ℎ𝑡
 Equation 5.12 

where 𝑁𝑉𝑙𝑒𝑓𝑡 and 𝑁𝑉𝑟𝑖𝑔ℎ𝑡 are the number of active voxels in the left and right 

hemispheres, respectively, for a particular lobe. 
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5.4 RESULTS  

The present study estimates the distinct subcortical-cortical interactions and asymmetry 

in functional connectivity associated with affect and approach/ withdrawal behavior. Initially, the 

cortical and subcortical neural underpinnings of PANAS and BAS/BIS measures were assessed. 

Then, to understand the subcortical-cortical interactions and the critical regions which facilitate 

the same, ROI-to-ROI analysis and the graph theory metrics (degree and betweenness centrality) 

were utilized. Subsequently,  hemispheric dominance of functional connections associated with 

the vital cortical substrates of PANAS and BAS and BIS measures were assessed and analyzed. 

The following subsections summarize the results obtained after carrying out the analysis. 

5.4.1 RESTING NEURAL SUBSTRATES ASSOCIATED WITH AFFECT AND                               

APPROACH/WITHDRAWAL MEASURES 

Figure 5.3a accommodates the resting neural substrates for PA, NA, BAS, and BIS 

measures. The associated extent (no. of voxels) for resting neural substrates for PA, NA, BAS, 

and BIS measures has been depicted as a heatmap in Figure 5.4, and Supplementary Figure S5.1 

(see Appendix 3) illustrates the concomitant t-values. The abbreviations for the region names 

used in Figure 5.4 and Supplementary Figure S5.1 are provided as Abbreviations at the end of 

this chapter. The tabulation of neural substrates for the psychological measures have also been 

presented as supplementary material (see Supplementary Tables S5.1-S5.4; see Appendix 3). We 

report the most significant results after applying a false discovery rate (p<0.05) to solve the 

problem of multiple comparisons. Regions with cluster size >20 were considered for analysis.  

The subcortical neural substrates for PA were pinned majorly at the right amygdala and 

left hippocampus. Few subcortical clusters were also found in the right and left-lateralized 
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thalamus. Major cortical substrates for PA included left and right-lateralized regions of the 

occipital lobe (Temporal occipital and occipital fusiform gyrus, cuneal cortex, lingual gyrus), 

frontal lobe (inferior frontal gyrus pars opercularis, frontal pole, frontal orbital cortex, precentral 

gyrus), anterior division of superior temporal gyrus, central operculum cortex and middle 

temporal gyrus (posterior division) of the temporal lobe and few clusters in the postcentral gyrus. 

Activations also elicited in limbic regions of the parahippocampal gyrus, posterior division of the 

cingulate gyrus and insular cortex. Subcortical regions of the brain-stem, right putamen, and left 

hippocampus activated in association with NA. Insular cortex (posterior division) also emerged 

as a significant neurophysiological correlate for this psychological measure. Cortical neural 

substrates for NA were pinned at substantial clusters in the occipital lobe (a superior division of 

lateral occipital cortex, intracalcarine cortex, and lingual gyrus), temporal lobe (inferior temporal 

gyrus (temporooccipital part), planum temporale), frontal lobe (precentral gyrus, middle frontal 

gyrus, inferior frontal gyrus pars opercularis, frontal operculum cortex) and parietal regions such 

as postcentral gyrus, supramarginal gyrus (anterior division) and precuneus cortex. 

BAS subcortical neural substrates were primarily pinned at the right and left thalamus 

and brain stem. Few clusters were also found in the left and right putamen and left hippocampus. 

Limbic regions such as the parahippocampal gyrus, anterior division of cingulate gyrus, insular 

cortex, and paracingulate gyrus were found to be strongly associated with BAS. Major cortical 

substrates were found in frontal lobe regions (superior frontal gyrus, frontal pole, and medial 

frontal cortex) and parietal lobe regions (superior parietal lobule, postcentral gyrus, angular 

gyrus). Other significant cortical substrates included temporal fusiform and temporal occipital 

fusiform cortex. 
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On the other hand, right caudate, brain stem, left accumbens, and left thalamus emerged 

as subcortical neurophysiological substrates for BIS. Anterior as well as the posterior division of 

cingulate gyrus along with insular and paracingulate regions activated for BIS. Cortical 

substrates for BIS, similar to BAS, were pinned majorly at frontal lobe regions (precentral gyrus, 

frontal pole, and inferior frontal gyrus pars opercularis). Other activations included the posterior 

division of the middle and inferior temporal gyrus, superior division of lateral occipital cortex, 

and parietal regions (angular gyrus, postcentral gyrus). 
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Figure 5.3 (a) Surface rendered view of neural substrates of PA, NA, BAS, and BIS. The color bar 

indicates the t-values, and the activations are represented at FDR corrected p<0.05 (b) The nodes and 

edges of PA, NA, BAS, and BIS for global graph analysis. 
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Figure 5.4 Heatmaps for the representation of the extent (no. of voxels) of neural substrates of PA, NA, 

BAS, and BIS measures for (a) frontal regions, (b) parietal regions, (c) temporal regions, (d) occipital 

regions (e) limbic regions. 
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5.4.2 FUNCTIONAL CONNECTIVITY ANALYSIS 

 To attain the objectives of the present study, ROI-to-ROI analysis and graph theory 

analysis was implemented on the global network and subnetworks of neural substrates for PA, 

NA, BAS, and BIS measures. Figure 5.3b shows the nodes and edges for a global network (N) 

formed by all neural substrates of particular psychological measures. The results of the analyses 

are explained below. 

5.4.2.1 Subcortical hubs for subcortical-cortical interaction 

 Figure 5.5 and Figure 5.6 illustrates the violin plots for degree and betweenness centrality 

associated with all the subcortical substrates of PA, NA, BAS, and BIS for a global network (N). 

The violin plot constitutes both the kernel density plot and box plot for the entire dataset of 39 

volunteers’ degree and betweenness centrality values. Thus, the violin plot represents the full 

distribution of the data along with statistical parameters such as mean, median, and interquartile 

ranges.  

Among the subcortical neural substrates of PA right amygdala and right thalamus 

emanated as correlate showing high degree (right amygdala, β: 10.15; T: 12.63, right thalamus β: 

8.79; T: 8.09) and betweenness centrality (right amygdala, β: 0.013; T: 6.07, right thalamus, β: 

0.018; T: 4.99) in a global network N (see Figure 5.5a and 5.6a). In NA, the right putamen and 

left hippocampus emerged as the substrates exhibiting high degree (right putamen, β: 11.54; T: 

13.87, left hippocampus, β: 9.17; T: 8.55)  as well as betweenness centrality (right putamen, β: 

0.004: T: 7.98, left hippocampus, β: 0.006; T: 5.58) (see Figure 5.5b and 5.6b). Further, the brain 

stem showed low betweenness centrality, and thus it’s representation has been omitted in Fig 5b. 
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Figure 5.5 Violin plots (kernel density plot and box plot) representing degree in the global network (N) 

for subcortical substrates of (a) PA (b) NA (c) BAS (d) BIS. 
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Figure 5.6 Violin plots (kernel density plot and box plot) representing betweenness centrality in the 

global network (N) for subcortical substrates of (a) PA (b) NA (c) BAS (d) BIS. 

 

Graph theory analysis for the global network (N) in BAS revealed right putamen and left 

thalamus exhibiting high degree (right putamen, β: 8.97; T: 11.26, left thalamus, β: 8.05; T: 8.98) 

and the left thalamus showed high betweenness centrality (left thalamus, β: 0.014; T: 5.92) (see 

Figure 5.5c and 5.6c).  Left accumbens and right caudate showed a high degree (left accumbens, 

β: 4.95; T: 12, right caudate, β: 4.38; T: 11.50) and betweenness centrality (left accumbens, β: 

0.022; T: 5.42, right caudate, β: 0.020; T: 5.81)  among the other subcortical substrates of BIS 

(see Figure 5.5d and 5.6d). 
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5.4.2.2 Cortical hubs for subcortical-cortical interaction 

5.4.2.2.1 ROI-to-ROI connectivity analysis in the global network  

Figure 5.7a shows the Sankey diagram for ROI-to-ROI connectivity analysis between 

subcortical and cortical regions for all the psychological measures in which the width of the 

flows is proportional to the correlation values. The results reported are at FDR corrected p<.05 

and correlation coefficient value r>0.2. Supplementary Table S5.5 (see Appendix 3) shows the 

tabulation of data for the above analysis. The abbreviations for the cortical regions, for Figure 

5.7, are provided in the Abbreviations section at the end of this chapter. 

  The ROI-to-ROI functional connectivity analysis for PA revealed the significant coupling 

of the right amygdala with cortical regions of the left and right-lateralized insular cortex 

(posterior), medial and anterolateral temporal lobe regions (left-lateralized planum palore, 

posterior division parahippocampal gyrus, central opercular cortex, temporal pole, and right-

lateralized anterior division of superior temporal gyrus), prefrontal cortex regions (right and left-

lateralized inferior frontal gyrus (pars opercularis), right-lateralized subcallosal cortex). The 

posterior division of left-lateralized parahippocampal gyrus also showed significant connectivity 

with the subcortical region left hippocampus. Left thalamus connected with the insular cortex 

(left, posterior) and the right thalamus with the right and left-lateralized insular cortex 

(posterior). The ROI-to-ROI analysis for NA showed the strong connection of the subcortical 

region, right putamen with prefrontal cortex regions (bilateral frontal orbital cortex, precentral 

gyrus), bilateral insular cortex (posterior), and right lateralized central operculum cortex. The left 

hippocampus also showed significant connectivity towards a few temporal regions and left-

lateralized frontal orbital cortex. 
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BAS’s ROI-to-ROI analysis showed a significant correlation of right putamen with frontal 

regions (juxtapositional lobule cortex (left), frontal orbital cortex (right)), anterior division of 

insular cortex (left-lateralized). Further, the left putamen also showed connectivity to the anterior 

division of the insular cortex (left-lateralized) and prefrontal regions. The left Hippocampus is 

connected to the temporal areas such as the posterior division of the parahippocampal gyrus (left) 

and temporal fusiform cortex (left). The left thalamus showed association with the temporal 

fusiform cortex (right) and occipital regions. BIS’s functional connectivity showed a high 

correlation of left accumbens with bilateral anterior cingulate gyrus, paracingulate gyrus (left), 

insular cortex  (right, anterior division). Also, the right caudate showed a significant association 

with the bilateral anterior cingulate gyrus and right lateralized insular cortex. 

Figure 5.7b shows the Sankey diagram for ROI-to-ROI connectivity analysis among 

subcortical regions for all the psychological measures in which the width of the arrows is 

proportional to the correlation values. The results reported are at FDR corrected p<.05 and 

correlation coefficient value r>0.2. In PA, the right amygdala and right thalamus connected to 

the left thalamus. Similarily in BAS, the left thalamus found its connectivity with the right 

thalamus, left hippocampus, and brain-stem. Right caudate, left accumbens and left thalamus 

associated with each other in BIS. 
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Figure 5.7 Sankey diagram for ROI-to-ROI connectivity analysis for PA, NA, BAS, and BIS (a) between 

subcortical and cortical regions (b) within subcortical regions. The width of the flow is proportional to the 

correlation values. 
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5.4.2.2.2 Cortical hubs in network analysis of CSCN network 

The vital cortical regions for subcortical-cortical interaction were analyzed through a 

discrete subnetwork (𝐶𝑆𝐶𝑁𝑖), which was constructed independently for each psychological 

measure by the concatenation of the i
th

 cortical substrate and all subcortical substrates of a 

particular psychological measure. The graph theory measures (degree and betweenness 

centrality) for cortical neural substrates for their interaction with subcortical substrates are 

provided in Supplementary Table S5.6 (see Appendix 3). Figure 5.8a and 5.8b depict Sankey 

diagrams for this analysis, where the flow represents the beta-values for degree and betweenness 

centrality measures at p<0.05 for the cortical regions of all psychological measures. The 

abbreviations for the cortical regions, for Figure 5.8, are provided in the Abbreviations section at 

the end of this chapter. 

In PA, a high degree, which correlates to dense functional connections were found in the 

posterior division of left-lateralized parahippocampal gyrus and other temporal regions (medial 

and anterolateral temporal lobe regions), posterior division of left and right-lateralized insular 

cortex and subcallosal cortex (right). Among these regions, high betweenness centrality, which 

pinpoints the critical cortical hubs which communicate with subcortical areas, was exhibited by 

the posterior division of left-lateralized parahippocampal gyrus and superior temporal gyrus, and 

posterior division of left and right-lateralized insular cortex. Graph theory analysis for the CSCN 

network revealed a higher degree within the NA in the left and right-lateralized insular cortex 

(posterior), prefrontal, and temporal regions. Among them, the left-lateralized temporal pole, 

frontal orbital cortex, and posterior insula exhibited high betweenness centrality. 
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Figure 5.8 Sankey diagram for subcortical-cortical interaction for discrete subnetwork (CSCN) where the 

flow represents (a) the degree and (b) the betweenness centrality measures for the cortical regions of all 

psychological measures.  
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Similar to psychological measure, PA, a higher degree, was exhibited by the left-

lateralized parahippocampal gyrus and temporal fusiform cortex (posterior) in BAS. The anterior 

division of left-lateralized cingulate gyrus and insula also showed a high degree. Other regions 

included the bi-lateral frontal orbital and precuneous cortex. Among the areas mentioned above, 

the left-lateralized parahippocampal gyrus and temporal fusiform cortex (posterior), anterior 

division of left-lateralized cingulate gyrus, and insula showed high betweenness centrality. BIS 

exhibited dense connections of the bi-lateral anterior cingulate gyrus, anterior insular cortex 

(left), paracingulate gyrus (right), and superior parietal lobule (right) with subcortical substrates. 

The bilateral anterior cingulate gyrus showed high betweenness centrality for this network. 

5.4.2.3 Hemispheric dominance of functional connections 

5.4.2.3.1 Lateralization predilection of subcortical regions 

The subnetwork for understanding contralateral (𝐶𝑜𝑛𝑁) and ipsilateral (𝐼𝑝𝑠𝑁) 

hemispheric interactions were formed independently for each psychological measure by the 

concatenation of each neural substrate first with all left-lateralized cortical regions and 

subsequently with all right-lateralized cortical areas. Figure 5.9 shows this analysis for all the 

subcortical neural substrates for all psychological measures. The figure depicts no specific 

lateralization for NA and BAS measures, barring the left hippocampus, which shows a higher 

mean degree value for left-lateralized cortical regions for PA, NA, and BAS measures. In PA, 

the right amygdala is more affine towards left-lateralized areas, while the right thalamus shows a 

higher mean degree for right lateralized regions. In BIS, all the subcortical regions connected 

more to left-lateralized cortical regions. 
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Figure 5.9 Violin plots (kernel density plot and box plot) representing degree in contralateral (𝐶𝑜𝑛𝑁) and 

ipsilateral (𝐼𝑝𝑠𝑁) networks for the interaction of subcortical substrates with left and right lateralized 

cortical regions in (a) PA (b) NA (c) BAS (d) BIS. 

 

5.4.2.3.2 Lateralization predilection of cortical regions vital for subcortical-to-cortical 

interactions 

In the previous analyses, the cortical areas which exhibited dense connections with 

subcortical regions were considered, and their laterality index (𝐿𝐼𝑓𝑢𝑛_𝑐𝑜𝑛𝑛) based on 

interhemispheric parameters 𝐻𝐼𝑖𝑝𝑠 and 𝐻𝐼𝑐𝑜𝑛 was assessed. Figure 5.10 depicts the 𝐿𝐼𝑓𝑢𝑛_𝑐𝑜𝑛𝑛 

for vital cortical regions for all psychological measures. Figure 5.10 reveals the dense 



189 
 

connectivity of left and right lateralized cortical regions critical for subcortical-cortical 

interactions in PA with the left hemisphere. Further, specifically, the left-lateralized vital cortical 

regions in NA showed a greater laterality index depicting their higher connectedness to left 

hemispheric operations. 

 

Figure 5.10 The functional connectivity based laterality index for cortical regions vital for subcortical-

cortical interaction for (a) PA (b) NA (c) BAS (d) BIS. 

 

 The laterality index (𝐿𝐼𝑎𝑐𝑡𝑖𝑣𝑒_𝑣𝑜𝑥𝑒𝑙) based on the number of active voxels per lobe was 

also estimated for all psychological measures and is shown in Figure 5.11.  
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Figure 5.11 The number of active voxels based laterality index for each lobe for (a) PA (b) NA (c) BAS 

(d) BIS. 

 

5.5 DISCUSSION 

In this study, to assess the pre-task affect (positive/negative) and approach/withdrawal 

neural systems that dominate the brain, we established the neural mechanisms underlying PA, 

NA, BAS, and BIS self-reported measures in resting-state fMRI recording. The rationale for this 

estimation is that emotional processes facilitate learning and memory processing (Osaka, Yaoi, 

Minamoto, & Osaka, 2013), which integrates with other secondary processes and finally mature 

to higher-order cognitive functions to create productive solutions for living. It has been reported 

that positive emotions facilitate academic achievement and learning, being mediated by the self-
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motivation levels, and satisfaction with learning materials (Um, Plass, Hayward, & Homer, 

2012). Conversely, a recent study (D’Mello, Lehman, Pekrun, & Graesser, 2014) reported that a 

state such as confusion improves learning and leads to higher performances on the post and 

transfer tests because of the increase in focus of attention on materials of learning. 

Specifically, the present study brings more clarity in understanding resting subcortical-to-

cortical neural interactions that serve these resting self-reported affective and 

approach/withdrawal measures. Further, the hemispheric asymmetry of the functional 

connections of these neural substrates dominating a particular psychological measure was also 

analyzed. The key observations from the analysis in this study are discussed below. 

5.5.1 LATERALIZATION OF CONNECTIVITY OF CORTICAL REGIONS VITAL FOR 

SUBCORTICAL-CORTICAL INTERACTIONS    

In our study, both left and right cortical neural substrates in PA, which were significantly 

associated with the subcortical substrates, were found to show dense connectivity with all the left 

hemispheric cortical substrates, hinting the crucial role of left-hemispheric connectivity in 

processing PA. Further, the left-lateralized vital cortical neural substrates of NA showed higher 

connectivity with the left hemispheric cortical regions, while no specific asymmetry was 

observed for the right-lateralized regions. Also, relatively more voxels activated for the left 

hemisphere for the majority of lobes in NA.  
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5.5.2 THE EMERGENCE OF THE AMYGDALA, HIPPOCAMPUS, AND PUTAMEN AS 

SUBCORTICAL HUBS FOR PA AND NA 

The right amygdala (see Figure 5.5a and Figure5.6a) and right thalamus appear as the hub 

subcortical neural substrate for PA among other substrates, namely the left hippocampus and 

thalamus. However, for NA, the amygdala seemed to be absent, and the right putamen along 

with the left hippocampus appeared as subcortical neural substrates. Our results are in line with 

the study of Bonnet et al. (2015), wherein it was revealed that the amygdala is sensitive to 

changes in emotional intensity while viewing positively valenced stimuli. However, Rohr et al. 

(2013) found feeble connectivity of the right amygdala with PA as well as NA. In this study, 

PANAS, which was used to assess the positive and negative affective states, involves labeling 

events in the past or present to evaluate the current self-mood state. Although the amygdala has 

been associated with both positive and negatively valenced stimuli in many task-based studies 

(Banks, Eddy, Angstadt, Nathan, & Luan Phan, 2007; Berntson, Bechara, Damasio, Tranel, & 

Cacioppo, 2007; Okada et al., 2011), present research reveals that right amygdala is involved 

significantly during labeling of current events which are decisive of an individual’s resting 

positive valence. Also, the thalamo-amygdala pathway exhibits long-term potentiation, a form of 

synaptic plasticity that might constitute the circuit's emotional learning functions (LeDoux, 

1993). 

On the other hand, the right putamen came across as the hub subcortical region 

interacting with NA's cortical neural substrates (see Fig 5.5b and Figure 5.6b). Putamen forms a 

part of basal ganglia, which is known to be involved in emotional regulation. A recent study by 

Eimontaite et al. (2019) found that left amygdala activation may indicate an increase in 

cooperative behavior and emotion augmentation, and the left putamen may help suppress an 
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emotion to engage in cooperation. Our study suggests the role of the right amygdala during PA 

and right putamen during NA. The differential lateralization of the current research with the 

study mentioned above can be due to the present study's resting-state nature. 

Further, the left hippocampus appeared to play a part as the subcortical substrate for both 

PA and NA. A plausible explanation for the association of the left hippocampus with both PA 

and NA is that memories of the past can influence an individual's current affective mood state. 

Hippocampus is a significant contributor to keeping memories of past events (Hamm & Mattfeld, 

2019; Squire et al., 2010). Many studies (Dolcos, Labar, & Cabeza, 2005; Phelps, 2004; 

Richardson, Strange, & Dolan, 2004; Zheng et al., 2017) suggest that the amygdala, in 

combination with the hippocampus and prefrontal cortex, plays a vital role in the retrieval of 

memories for emotional events. Together they act in concert when emotion meets memory. In 

the present study, we postulate that the dynamics of the amygdala and Hippocampus interactions 

are associated with the positive event's memory, which gets translated to the current resting 

positive affect score for an individual. In contrast, the putamen and hippocampus system might 

transform memories of adverse events to current resting negative affect. 

5.5.3 FRONTAL AND TEMPORAL REGIONS’ ROLE IN PA AND NA 

The temporal and frontal regions for PA and NA interacted significantly with the 

subcortical neural substrates. The left-lateralized parahippocampal gyrus (posterior division), 

connected considerably with the amygdala and Hippocampus for PA. Parahippocampal gyrus is 

known to be a part of the Papez circuit, one of the significant pathways of the limbic system, 

involved in cortical control of emotion as well as maintaining new information in memory 

(Citron, Gray, Critchley, Weekes, & Ferstl, 2014). The parahippocampal gyrus' involvement 
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signifies its interaction with the amygdala and other subcortical regions for retrieval of emotional 

memory and transferal of this information for forming the current PA of an individual. The right 

amygdala also showed connectedness with bilateral inferior frontal gyrus and few temporal 

regions. The existence of the temporal-amygdala-orbitofrontal network (Catani, Dell’Acqua, & 

Thiebaut de Schotten, 2013) has also been observed in the limbic system model for the 

amalgamation of visceral sensation and emotion with semantic memory and behavior.  

However, in NA, the frontal orbital cortex and few other frontal regions (prefrontal 

gyrus) appeared to be significantly connected with the right putamen. Beucke et al. (2013), in 

their study, observed greater connectivity in the orbitofrontal cortex and putamen. Further, the 

orbitofrontal cortex's connectivity and putamen positively correlated with global obsessive-

compulsive disorder’s symptom severity. This substantiates the association of NA with greater 

connectivity of putamen and further with other frontal regions. The frontal orbital cortex, in 

addition to other few temporal areas, also found strong connections with the left hippocampus 

subcortical neural substrate for NA (Ross, Lopresti, Schon, & Stern, 2013). Thus, the memories 

that form an individual's negative affectivity are managed by the hippocampus-basal ganglia 

pathway, which has been associated with the domain of emotion and memory in the past (Foerde 

& Shohamy, 2011; Kafkas & Montaldi, 2015; Xiao & Barbas, 2002).  

Thus, in the current study, the high linkage of the temporal, frontal regions with 

subcortical regions was found for both PA and NA. The frontal and temporal areas form the part 

of significant pathways of the limbic system, which are responsible for the management of 

emotion and memory (Kensinger, 2009). NA network, besides, showed connectivity with a few 

parietal regions (supramarginal gyrus, superior parietal lobule, and precuneous cortex), which 

was consonant with the study of Rohr et al. (2013). Our results were also equivalent to the study 
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by Citron et al. (2014). In the study mentioned above, the interaction of valence and arousal was 

explored at the neural level, during implicit emotion-word processing. The results of this study 

stated the occurrence of frontal-temporal regions (language network) during the contrast between 

words and pseudowords. Although ours was a resting-state study, the PANAS questionnaire does 

involve words like ‘interested,’ ‘distressed,’ ‘ashamed,’ which too may elicit particular valence 

(positive and negative) and arousal associated with these words and can bring in more 

connectivity of frontal and temporal regions. 

5.5.4  THE SPECIFIC ROLE OF BASAL GANGLIA IN BAS AND BIS  

In this study, the critical subcortical neural substrates of BAS were mainly found in the 

right putamen and left-lateralized thalamus (Figure 5.5c and Fig 5.6c). Putamen forms a part of 

the striatum, and previous research has exhibited the striatum's crucial roles in high-level 

processing of learning, reward, and decision-making (Berkman, Lieberman, & Gable, 2009). 

Graybiel (2017) reported that many cognitive functions count on the striatum and its connectivity 

between various subcortical and cortical networks. Angelides et al. (2017), in their study, 

employed ROI-to-ROI functional connectivity analysis for assessing the neural mechanisms of 

appetitive motivation and approach behavior as reflected in BIS/BAS measures during resting-

state. Their results demonstrated a correlation between BAS-fun seeking and resting-state 

connectivity between the middle orbitofrontal cortex and putamen. This observation is in line 

with our results for integrated BAS scores wherein bi-lateralized putamen formed higher 

connections with medial and orbitofrontal regions. Also, the right and left putamen is 

significantly connected to the anterior division of the insula. This confirms that the functional 

link for BAS measure is driven by putamen during resting-state. 
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On the other hand, BIS was driven by right-lateralized caudate and left-lateralized 

accumbens and thalamus at the sub-cortical level (Figure 5.5d and Fig 5.6d). Carretié et al. 

(2009) demonstrated that the caudate nucleus was sensitive to negative pictures compared to 

positive and neutral images. Their study concluded that striatum (specifically caudate) plays a 

crucial role in withdrawal situations. Caudate activation has been shown to interfere with the 

elaboration of goal-directed behavior (Aron et al., 2003; Jahanshahi, Obeso, Rothwell, & Obeso, 

2015). In another study, the indirect pathway from the caudate tail was found to mediate the 

rejection of bad objects in the periphery (Amita & Hikosaka, 2019). Moreover, the ventral 

striatum’s (accumbens) role in controlling behavioral inhibition has been studied in the past 

(Guyer et al., 2006; Verharen, Van Den Heuvel, Luijendijk, Vanderschuren, & Adan, 2019). Our 

study thus confirms the role of the dorsal striatum (caudate) and ventral striatum (accumbens) in 

constantly comparing perceptual inputs with representations of goals and detection of goal 

conflicts. 

5.5.5 ROLE OF ANTERIOR CINGULATE AND ANTERIOR DIVISION OF INSULA IN BAS AND 

BIS 

The regions showing significant involvement with the subcortical neural substrates for 

both BIS were the anterior division of the cingulate gyrus and insular cortex. At the same time, 

BAS showed connectedness to majorly anterior division of the insular cortex, frontal regions and 

left thalamus in BAS connected to anterior division of the cingulate gyrus. Anterior cingulate 

gyrus has been known to control a wide range of behaviors based on reward, punishment, and 

uncertainty (Monosov, 2017; Orr & Hester, 2012; Swick & Turken, 2002). Our study shows that 

the anterior cingulate and insula are tightly coupled with the subcortical neural substrates of BIS 

as compared to BAS. 
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Further, the anterior insula may be playing an important role in switching between 

different functional networks, based on current needs, by directing highly connected hubs to 

activate them or to deactivate them. In their work, Medford and Critchley (2010) reviewed the 

anterior cingulate and insula's conjoint activity in response and awareness. Thus, the anterior 

insula and cingulate may be playing a role in the feedback system, which eventually generates 

the approach/avoidance behavior.  

5.5.6 POINTER FOR THE EXISTENCE OF FEEDBACK MECHANISM AMONG AFFECTIVE AND 

APPROACH/WITHDRAWAL STATES 

The involvement of the posterior portion of the insula in both PA and NA and the anterior 

part of the insula in both approach and withdrawal behavior points to the feedback mechanism 

which may exist among affective and approach/withdrawal states. Cauda et al. (2011) 

documented the existence of two major networks for insula in the resting brain. One network 

connected the anterior insula with the anterior cingulate and to the middle and inferior temporal 

cortex, and the second links the middle-posterior insula to the sensorimotor, premotor, 

supplementary motor, and middle posterior cingulate cortices, specifying its linkage with 

sensorimotor integration. Further, it has been proposed (Craig, 2002; Namkung et al., 2017; 

Uddin, Nomi, Hébert-Seropian, Ghaziri, & Boucher, 2017) that the integration of visceral 

information in the insula follows a posterior-to-anterior progression, wherein the primary 

interoceptive signals are first represented in its posterior portion, then attended in the middle and 

anterior parts, where integrated perceptual maps of the organism state are more refined. Another 

study (Ying et al., 2018) on moral disgust suggested the association of posterior insula in 

primary and anterior insula in the secondary level of moral disgust. Thus the involvement of the 

posterior portion of the insula, specifically in PA and NA, and the anterior part of the insula in 
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both approach and withdrawal behavior suggests the existence of a feedback loop among 

affective and approach/withdrawal states where the affective states in the background involve 

explicit neural mechanisms for translation into behavior. 

5.6 CONCLUSION 

The present study explores the distinct subcortical-cortical interactions and assesses the 

asymmetry in functional connections among PA, NA, BAS, and BIS measures. The ROI-to-ROI 

connectivity revealed the connectivity of subcortical neural substrates of PANAS and BAS-BIS 

scores with bi-lateralized cortical regions. However, the lateralization of the strength of degree-

measures of the cortical-regions vital for subcortical-cortical interaction, a left-hemispheric 

inclination, was observed for positive affect. Further, higher connectivity within the left-

hemisphere was also observed for the left-lateralized critical cortical regions of negative affect. 

ROI-to-ROI analysis and graph theory analysis revealed the connectedness among the right 

amygdala, right thalamus, and majorly frontal-temporal regions for PA. The left hippocampus 

also emerged as a subcortical substrate for PA and connected substantially to the 

parahippocampal gyrus. Similarily right putamen, left hippocampus, and majorly frontal-

temporal regions emerged as having significant interactions for NA. This highlights the 

importance of emotion and memory associated areas with the affective states. BAS measure 

constitutes dense coupling of the right putamen, left thalamus, frontal regions, and anterior insula 

and cingulate regions. At the same time, BIS showed strong connectedness among right caudate, 

left accumbens, frontal regions, and anterior insula and cingulate regions. These observations 

strengthen the role of basal ganglia’s structures in approach and inhibition tendencies. Further, in 

our study, the association of posterior insula and major subcortical regions with affective 
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measures and the linkage of the anterior insula with approach/withdrawal measures underscores 

the existence of feedback mechanisms among affect and approach/withdrawal measures. This 

study's key findings may serve as the basis for exploration in the clinical population and during 

task engagement. 

5.7 ABBREVIATIONS 

Cortical regions Abbreviations 
Inferior frontal gyrus (pars oper.) IFG (pars oper.) 

Frontal orbital cortex FOrbC 

Frontal pole FP 

Precetral gyrus PreCG 

Superior frontal gyrus SFG 

Middle frontal gyrus MFG 

Juxtapositional lobule JuxtaLC 

Frontal operculum cortex FOpercC 

Subcallosal cortex SubcalC 

Postcentral gyrus PostCG 

Supramarginal gyrus, anterior division SMG (ant.) 

Superior parietal lobule SPL 

Supramarginal gyrus, posterior division SMG (post.) 

Precuneous cortex PrecuC 

Parietal operculum cortex ParietalOperC 

Angular gyrus AG 

Superior temporal gyrus, anterior division STG (ant.) 
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Central operculum cortex CenOperC 

Middle temporal gyrus, posterior division MTG (post.) 

Middle temporal gyrus, temporooccipital division MTG (tempocc.) 

Temporal fusiform cortex, posterior division) TemFusiformC (post.) 

Temporal pole TP 

Middle temporal gyrus, anterior division MTG (ant.) 

Planum temporale PlanumTemp 

Inferior temporal gyrus, temporooccipital part ITG (tempocc.) 

Inferior temporal gyrus, posterior division ITG (post.) 

Superior temporal gyrus, posterior division STG (post.) 

Inferior temporal gyrus, anterior division ITG (ant.) 

Planum palore PlanumPal 

Temporal occipital fusiform gyrus TemOccFusiformG 

Occipital fusiform gyrus OFG 

Cuneal cortex CunealC 

Lateral occipital cortex, superior division LOccC (sup.) 

Intracalcarine cortex ICalC 

Lingual gyrus LingualG 

Lateral occipital cortex, inferior division LOccC (inf.) 

Occipital pole OccPole 

Parahippocampal gyrus, posterior division ParaHG (post.) 

Cingulate gyrus, posterior division CingG (post.) 

Insular cortex, posterior division IC (post.) 

Paracingulate gyrus ParacingG 

Insular cortex, anterior division IC (ant.) 
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6.             CHAPTER SIX 
 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1 CONCLUSIONS 

The hemispheric asymmetry of cognitive, affective, and several high-order functions is a 

vital feature of the human brain and offers innumerable directions to explore (Toga et al., 2009). 

This thesis examines resting-state EEG/fMRI hemispheric asymmetry models and utilizes EEG-

fMRI data integration approaches and simultaneous EEG-fMRI acquisitions. Since the EEG data 

used to estimate the resting-state EEG hemispheric models was recorded simultaneously with 

fMRI, we devised an EEG preprocessing pipeline streamlined to mitigate the Magnetic 

resonance gradient artifact, Cardioballistic artifact, and other conventional EEG-related artifacts, 

which is enclosed in Chapter two. The chapter also validated the pipeline by estimating the 

power spectrum from 0-50 Hz and analyzing the quality report generated after the supervised 

usage of functionalities of The Harvard Automated Processing Pipeline for 

Electroencephalography toolbox (Gabard-Durnam et al., 2018). The chapter concluded that the 

final artifact corrected data was appropriately cleaned without any significant loss of data 

following this pipeline's use. 

 Next, primarily in this thesis, the EEG-based resting-state hemispheric asymmetry 

models were estimated. Further, their capability to comprehend the human response to an 

external task, and the potential of their real-time recordings to reflect specific human 

psychological states was gauged, for application in domains such as military/aviation. EEG 

measurements hold the advantage of being cheap, non-invasive, portable, and has a high 
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temporal resolution to enable real-time recordings. Though fMRI has a high spatial resolution, it 

is still costly, non-portable, and thus not fit for real-time recordings (Rosa et al., 2010). 

Therefore, for these EEG-based resting-state hemispheric asymmetry models, we utilized the 

EEG-informed fMRI approach for further exploring the mapping between EEG and fMRI, which 

might aid the use of these models for real-time applications while still restoring the related fMRI 

features.   

 The resting-state frontal asymmetry model based on EEG's alpha signature was first 

examined before a Situational Awareness (SA) task, and its linkage with the SA-task outcome 

was tested in Chapter three. SA has gained considerable attention in the field of ergonomics, 

and is vital for operation in the military/aviation domain (Sarter, 1990; Wickens, 2002). Thus 

assessing the linkage of SA with pre-task parameters may improve SA. The chapter concluded a 

strong association of the neural mechanisms underlying pre-SA task resting alpha power and its 

frontal asymmetry model with subsequently performed SA-task which was designed to have 

influence from Stroop effect. Hence, the pre-task resting alpha frontal asymmetry displayed 

potential as a reliable parameter that can be estimated to assess an individual's performance in 

the tasks involving the maintenance of good situational awareness. The following were the key 

highlights of this work: 

 The performance measures of SA-task, i.e., the reaction time and the SA-index correlated 

positively with the measure of pre-task resting frontal alpha hemispheric asymmetry, 

suggesting that pre-task alpha frontal asymmetry is a vital parameter that, when observed 

before tasks calling for the maintenance of good SA, can reduce human errors associated 

with the task. 
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 Further, the functional connectivity analysis revealed a strong association of the neural 

underpinnings of pre-task resting alpha and its frontal asymmetry with visual, memory, 

and high-order cognition underpinnings of the SA task. In specifics, connectivity analysis 

among the neural underpinnings of pre-task frontal alpha asymmetry and SA task 

divulged that the pre-task frontal alpha asymmetry parameters could cause modulation in 

the integration of perceived contextual information, emotion, and retrieval of memory 

associated with the situational awareness. 

 

Following the assessment of the effect of neural mechanisms of resting frontal alpha 

asymmetry model on subsequently performed SA-task, the connectedness of this model with 

self-reported measures of affect and approach/withdrawal behavior was assessed. Frontal alpha 

asymmetry assessed during task engagement and in the clinical population has been linked to 

affect and approach/withdrawal behavior (Reznik & Allen, 2017). However, the standard resting 

frontal alpha asymmetry model's linkage with these measures of affect and approach/withdrawal 

behavior in healthy population is dubious. Our analysis also concluded no association of standard 

resting frontal alpha asymmetry model, and it’s Hemodynamic Lateralization Index (HLI) 

(assessed from the neural underpinnings of standard resting frontal alpha asymmetry model) with 

affect and approach/withdrawal behavior. 

We further hypothesized that EEG patterns' stability might be one of the vital 

methodological parameters responsible for the inconsistent results obtained for the association of 

standard resting frontal alpha asymmetry model with affect and approach/withdrawal behavior as 

unstable EEG patterns might possess interference from other cognitive processes. Thus, we 

assessed a novel microstates-based resting frontal alpha asymmetry model as EEG microstates 
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are short durations of stable scalp topography (Khanna, 2016). The study is encompassed in 

Chapter four and concluded that the microstates-based resting frontal alpha asymmetry model 

better assess the mechanisms of affect and approach/withdrawal behavior and can potentially 

reflect them in real-time analysis. The vital highlights from this study were: 

 The negative affect scores’ robust positive correlation exclusively with resting 

microstates-based frontal alpha asymmetry and its negative correlation with 

hemodynamic lateralization of microstates’ temporal neural underpinning revealed that 

the degree of coordinated neuronal activity underlying alpha underpinnings is better 

represented by the quasi-stable microstates topographies. 

 The linkage between hemodynamic lateralization of microstates’ neural underpinnings 

and the positive affect, approach, and withdrawal measures concluded that the 

synchronized firing of neurons as assessed by the quasi-stable resting microstates-based 

frontal alpha asymmetry better explains the neural mechanisms of affect and 

approach/withdrawal dichotomy. 

 The analysis also concluded the involvement of processes of alpha synchronization and 

desynchronization among the neural underpinnings of microstates as well as standard 

alpha asymmetry measures. However, precisely the microstates neural underpinnings 

whose hemodynamic lateralization correlated with negative affect and inhibition behavior 

involved alpha-BOLD desynchronization; however, the positive affect and approach 

relevant regions involved alpha-BOLD synchronization as well as desynchronization. 

 

After analyzing the association of EEG based resting hemispheric asymmetry models 

with affect and approach/withdrawal dichotomy, our objective was to assess the critical role of 
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subcortical structures, their interactions with cortical areas and functional hemispheric 

asymmetry of cortical regions vital for subcortical-cortical interactions dominating affect and 

approach/withdrawal behavior. As it is challenging to capture stronger subcortical signals using 

conventional 32-channel EEG  (Seeber et al., 2019), this study, as included in Chapter five, was 

exclusively based on estimating the hemispheric asymmetry model from resting fMRI graph 

theory functional connectivity metrics. The following key findings may form the basis for task-

based studies and in the clinical population:  

 The ROI-to-ROI connectivity revealed the connectivity of subcortical neural substrates of 

affect and approach/withdrawal behavior with bi-lateralized cortical regions. However, 

the hemispheric asymmetry index based on the degree measure of functional connectivity 

analysis revealed the left hemisphere's dense connectedness for affective measures. This 

also goes in line with Chapter four's observation, where the nature of the correlation of 

negative affect with microstates-based frontal alpha asymmetry measure and its HLI 

indicated its significant interactions with the left hemisphere. 

 Further, the specific role of subcortical structures and subcortical-cortical interactions 

dominating the positive and negative affect, approach, and withdrawal behavior was 

deciphered, and it was concluded that: 

► The right amygdala, right thalamus, and majorly frontal-temporal regions showed 

dense connectivity for positive affect. 

► The right putamen left hippocampus, and majorly frontal-temporal regions 

emerged as having significant interactions for negative affect. This highlights the 

importance of emotion and memory associated areas with the affective states. 
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►  Approach measure constituted dense coupling of the right putamen, left 

thalamus, frontal regions, anterior insula, and anterior cingulate regions. Also, 

inhibition measures showed strong connectedness among right caudate, left 

accumbens, frontal regions, anterior insula, and anterior cingulate regions. These 

observations strengthen the role of basal ganglia’s structures in approach and 

inhibition tendencies.  

6.2 RECOMMENDATIONS FOR FUTURE WORK  

 This thesis's main objective was to estimate the resting EEG/fMRI hemispheric 

asymmetry models and gauge their capability to understand and influence human actions during 

task-engagement and to assess the potential of their real-time recordings to reflect specific 

human psychological states. Though these objectives were majorly accomplished, still, the 

following aspects can be explored in the future. 

 Demographic Effect: The current research work involves healthy volunteers from the 

Indian urban population. Thus, it is required to observe the results presented here in a 

larger population dataset, which includes individuals from various cultural, ethnic, and 

social backgrounds.  

 Additional state-trait variables for SA: The association of standard resting asymmetry 

measures with other state and trait measures such as anxiety, curiosity, fatigue can be 

explored in future studies. 

 EEG referencing out-turn on microstate analysis: Future works can incorporate the 

role of different EEG referencing schemes on microstate based estimations of frontal 

asymmetry measures and thus in elucidating EEG frequency signatures and topographies. 
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 Validation in a clinical population and task studies: The results presented for various 

hemispheric asymmetry models can be tested further for studies involving mood-

induction tasks as well as in the clinical population. 
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APPENDIX 1: SUPPLEMENTARY MATERIAL FOR CHAPTER 

THREE 

 

 

Supplementary Table S3.1 Correlation (r) and Significance (p) values for electrodes finding strong 

correlation of their PRAA with behavioral SA Index (Kaur et al., 2019). 

 

Electrodes Pearson correlation Spearman correlation Skipped correlation 

  r p r p r t 

Fp2 0.58 0.01 0.55 0.01 0.55 2.69 

C4 0.52 0.02 0.5 0.03 0.64 3.37 

O1 0.53 0.02 0.52 0.02 0.71 4.05 

SP7 0.53 0.02 0.48 0.04 0.6 3.07 

Pz 0.53 0.02 0.48 0.04 0.63 3.32 

Oz 0.53 0.02 0.5 0.03 0.49 2.3 

Cp1 0.53 0.02 0.5 0.03 0.43 1.91 

POz 0.58 0.01 0.57 0.01 0.77 4.91 
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Supplementary Table S3.2 Neural underpinnings of Situational Awareness (SA) task. The activations 

are represented at FWE Corrected p<0.05. The coordinates reported are in Montreal Neurological 

Institute (MNI) space (Kaur et al., 2019). 
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X Y Z 

FRONTAL LOBE  

Superior Frontal Gyrus 1 636 22.727 2 22 50 L 

Inferior Frontal Gyrus, pars opercularis 1 219 26.867 -44 6 26 L 

Middle Frontal Gyrus 1 211 29.805 -30 -6 54 L 

Precentral Gyrus 

2 127 24.759 36 -2 58 R 

1 124 24.492 -52 -8 48 L 

2 124 24.413 -38 -18 62 L 

3 30 19.234 44 8 32 R 

PARIETAL LOBE  

Precuneous Cortex 

1 18 21.188 -8 -56 64 L 

2 8 19.876 6 -50 54 R 

3 5 19.848 -4 -44 60 L 

Superior Parietal Lobule 1 8 18.979 -30 -44 44 L 

Parietal Operculum Cortex 1 7 18.391 -60 -26 18 L 

TEMPORAL LOBE  

Inferior Temporal Gyrus, temporooccipital part 1 8 20.546 -44 -50 -10 L 

OCCIPITAL LOBE  

Occipital fusiform gyrus 
1 3843 46.216 -28 -70 -12 L 

2 1452 44.349 26 -76 -12 R 

Lateral Occipital Cortex, inferior division 1 3843 38.899 -40 -84 8 L 

Intracalcarine Cortex 
1 3843 36.932 4 -86 2 R 

2 12 17.864 -16 -64 10 L 

Temporal Occipital Fusiform Cortex 1 1452 43.344 28 -50 -14 R 

Lateral Occipital Cortex, superior division 1 1452 42.125 38 -82 12 R 
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2 219 42.358 28 -58 54 R 

3 145 19.302 32 -86 24 R 

4 138 31.954 16 -66 62 R 

Juxtapositional Lobule Cortex 1 636 32.122 -4 -2 52 L 

SUBCORTICAL REGIONS 

Right Thalamus 1 9 19.081 10 -16 8   
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Supplementary Table S3.3 Neural underpinnings of pre-task resting alpha frontal asymmetry (PRAFA) 

through EEG informing SA-task based fMRI. The activations are represented at uncorrected p<0.001. 

The coordinates reported are in MNI space (Kaur et al., 2019). 
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PARIETAL LOBE  

Precuneous cortex 1 23 16.08 12 -50 14 R 

Parietal operculum cortex 1 6 17.995 -36 -32 20 L 

LIMBIC LOBE  

Parahippocampal gyrus, posterior division 1 23 28.405 -18 -30 -20 L 

Insular cortex 1 7 16.96 -36 8 -16 L 
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Supplementary Table S3.4 Neural underpinnings of pre-task resting absolute alpha (PRAA) power 

through EEG informing SA-task based fMRI. The activations are represented at uncorrected p<0.001. 

The coordinates reported are in MNI space (Kaur et al., 2019).  

 

 

 

 

R
E

G
IO

N
 L

A
B

E
L

 

C
L

U
S

T
E

R
 N

U
M

B
E

R
 

E
X

T
E

N
T

 

T
-V

A
L

U
E

 

M
N

I 

C
O

O
R

D
IN

A
T

E
S

 

L
A

T
E

R
A

L
IT

Y
 

X Y Z 

FRONTAL LOBE  

Frontal Pole  

1 88 22.631 22 40 44 R 

2 45 23.765 -20 44 42 L 

3 30 23.64 36 60 12 R 

4 27 25.706 38 50 -18 R 

5 25 52.7 -12 68 6 L 

6 16 16.718 26 36 -20 R 

Middle Frontal Gyrus 

1 88 21.838 26 18 48 R 

2 22 23.402 40 10 50 R 

3 14 18.613 -42 14 46 L 

4 12 22.327 36 4 42 R 

5 7 14.495 -34 8 56 L 

6 6 14.621 -36 36 34 L 

7 5 14.723 -48 20 34 L 

Superior Frontal Gyrus  

1 51 25.006 2 42 44 L 

2 26 39.144 -18 34 52 L 

3 12 15.027 4 14 62 R 

4 5 13.194 22 16 64 R 

Inferior Frontal Gyrus, pars opercularis 1 11 19.37 44 20 24 R 

PARIETAL LOBE  

Postcentral Gyrus 

1 21 24.729 50 -22 56 R 

2 19 23.454 46 -22 44 R 

3 12 16.575 56 -12 50 R 

Precuneous Cortex 1 20 23.712 -6 -50 54 L 

Superior Parietal Lobule 1 8 14.716 -30 -42 48 L 
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TEMPORAL LOBE 

Inferior Temporal Gyrus, posterior division 1 115 33.605 60 -8 -34 R 

Temporal Fusiform Cortex, posterior division 1 115 21.658 38 -10 -38 R 

Middle Temporal Gyrus, posterior division 

1 24 25.518 -54 -46 4 L 

2 21 27.991 -62 -24 -18 L 

3 8 16.989 52 -36 -2 R 

Middle Temporal Gyrus, anterior division 1 20 33.302 54 2 -38 R 

Temporal pole 

1 14 19.004 -50 6 -22 L 

2 6 17.258 42 18 -36 R 

3 6 17.203 -50 8 -32 L 

OCCIPITAL LOBE 

Lateral Occipital Cortex, superior division 1 24 16.916 -38 -72 38 L 

LIMBIC LOBE 

Cingulate Gyrus, posterior division 1 20 17.348 -4 -20 44 L 

SUBCORTICAL REGIONS 

Right Hippocampus 1 20 26.765 24 -16 -24 

  

Right Thalamus 
1 13 17.714 2 -24 6 

2 8 15.125 6 -18 12 

Left Thalamus 1 6 17.056 -4 -10 4 

 

 

 

 

 

 

 

 

 

 

 



221 
 

APPENDIX 2: SUPPLEMENTARY MATERIAL FOR CHAPTER 

FOUR 

 

 

Supplementary Table S4.1 Neural underpinnings of standard FA (channel pair F4/F3). The activations 

after correction for multiple comparisons are represented at p<.05 (FDR corrected). The coordinates 

reported are in MNI space (Kaur et al., 2020). 
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FRONTAL LOBE 

Superior frontal gyrus 1 43 4.271 22 4 48 

PARIETAL LOBE 

Postcentral gyrus 

1 246 6.414 50 -20 38 

2 97 8.087 16 -28 44 

3 33 3.886 14 -44 60 

4 23 -3.349 48 -26 64 

Superior parietal lobule 1 48 4.345 18 -46 64 

TEMPORAL LOBE 

Temporal pole 1 20 -2.74 42 14 -32 

OCCIPITAL LOBE 

Lateral occipital cortex, superior division 1 96 -4.214 38 -86 14 

Lateral occipital cortex, inferior division 
1 31 -2.84 36 -72 -30 

2 20 -3.317 46 -80 2 

Occipital pole 1 96 -4.04 22 -90 26 

Intracalcarine cortex 1 27 -2.747 10 -80 10 
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LIMBIC LOBE 

Paracingulate gyrus 1 34 3.121 12 50 10 

Insular cortex 1 38 9.396 34 -6 -2 

LEFT HEMISPHERIC ACTIVATIONS 
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FRONTAL LOBE 

Superior frontal gyrus 
1 118 7.828 -24 -4 62 

2 26 -3.36 -6 56 30 

Frontal medial cortex 1 117 -5.587 -12 42 -10 

Frontal orbital cortex 1 60 -6.658 -22 26 -18 

Precentral gyrus 1 60 6.636 -16 -26 40 

Inferior frontal gyrus 1 27 -3.36 -46 30 -2 

PARIETAL LOBE 

Postcentral gyrus 

1 147 5.015 -46 -26 38 

2 36 3.992 -36 -28 70 

3 21 2.715 -62 -8 22 

Superior parietal lobule 1 132 7.511 -30 -46 64 

TEMPORAL LOBE 

Temporal Occipital Fusiform Cortex 1 159 -2.946 -28 -66 -22 

Temporal Fusiform cortex, posterior division 1 39 -3.441 -36 -14 -26 

OCCIPITAL LOBE 

Occipital fusiform gyrus 1 159 -3.179 -22 -84 -10 

Occipital pole 
1 29 -3.58 -16 -90 30 

2 20 -2.736 -2 -98 0 

LIMBIC LOBE 

Cingulate gyrus, posterior division 1 34 4.73 -8 -54 28 
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Supplementary Table S4.2  Neural underpinnings of standard FTA (channel pair F8/F7). The activations 

after correction for multiple comparisons are represented at p<.05 (FDR corrected). The coordinates 

reported are in MNI space (Kaur et al., 2020). 
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FRONTAL LOBE 

Frontal pole 

1 67 3.822 26 54 22 

2 385 -5.757 46 38 10 

3 385 -5.113 30 48 -12 

4 385 -2.962 50 44 -10 

Subcallosal cortex 
1 25 6.522 6 30 -4 

2 20 -3.574 6 14 -4 

Middle frontal gyrus 1 94 -8.063 50 14 36 

Precentral gyrus 1 27 -3.411 50 6 40 

PARIETAL LOBE 

Precuneous cortex 
1 392 -4.401 28 -52 10 

2 392 -2.89 22 -66 26 

Supramarginal gyrus, posterior gyrus 1 36 3.054 64 -46 32 

TEMPORAL LOBE 

Inferior temporal gyrys, temporooccipital part 1 39 -3.061 56 -54 -14 

Central operculum cortex 1 28 -2.751 36 -12 22 

OCCIPITAL LOBE 

Cuneal cortex 1 392 -5.546 8 -78 38 

Lateral occipital cortex, superior division 1 174 -6.328 34 -62 46 

Occipital fusform cortex 1 149 -4.764 26 -68 -26 

Lingual gyrus 
1 210 -2.931 14 -58 -4 

2 48 -2.582 2 -76 0 

Occipital pole 1 20 -2.553 8 -96 2 
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LIMBIC LOBE 

Insular cortex 1 56 3.558 30 20 8 

LEFT HEMISPHERIC ACTIVATIONS 

FRONTAL LOBE 

Inferior frontal gyrus 
1 305 -3.912 -50 32 16 

2 20 -2.703 -46 16 26 

Middle frontal gyrus 
1 42 -3.196 -52 22 30 

2 21 -3.502 -50 14 36 

Frontal operculum cortex 1 46 3.808 -34 18 12 

Precentral gyrus 
1 36 -2.984 -6 -26 52 

2 22 -3.16 -32 -20 72 

PARIETAL LOBE 

Supramarginal gyrus, posterior division 1 32 -2.772 -36 -44 36 

Postcentral gyrus 1 24 -2.86 -62 -14 36 

TEMPORAL LOBE 

Temporal pole 1 40 -3.633 -50 10 -28 

OCCIPITAL LOBE 

Occipital pole 1 60 -2.882 -4 -94 22 

Lateral occipital cortex, superior division 1 26 -2.893 -8 -86 38 

Lingual gyrus 1 42 -2.896 -24 -54 2 

LIMBIC LOBE 

              

Parahippocampal gyrus, posterior division 1 175 -5.375 -10 -38 -22 

Parahippocampal gyrus, anterior division 1 23 -3.412 -30 -10 -30 

Cingulate gyrus, posterior division 1 22 -2.716 -10 -40 2 
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Supplementary Table S4.3 Neural underpinnings of proposed microstate based FA (channel pair F4/F3). 

The activations after correction for multiple comparisons are represented at p<.05 (FDR corrected). The 

coordinates reported are in MNI space (Kaur et al., 2020). 
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FRONTAL LOBE 

Middle frontal gyrus 
1 32 5.93 42 34 40 

2 26 3.035 44 4 58 

Superior frontal gyrus 1 24 3.421 4 14 60 

Frontal operculum cortex 1 20 3.036 40 22 4 

Frontal medial cortex 1 59 -6.743 4 44 -14 

Frontal pole 1 20 -3.366 22 48 18 

PARIETAL LOBE 

Precuneous cortex 1 23 4.279 6 -50 66 

TEMPORAL LOBE 

Temporal occipital fusiform cortex 1 60 3.691 32 -40 -28 

Middle temporal gyrus, temporoccipital part 1 42 4.211 62 -50 -8 

Inferior temporal gyrus,temporoccipital part 1 22 3.538 54 -38 -18 

Central operculum cortex 1 22 -4.769 50 -8 10 

Middle temporal gyrus, anterior division 1 23 -5.849 52 0 -36 

OCCIPITAL LOBE 

Lateral occipital cortex, superior division 1 64 4.138 22 -58 48 

LIMBIC LOBE 

Insular cortex 
1 48 6.748 40 14 -4 

2 29 -3.17 36 2 4 

Parahippocampal gyrus, posterior division 1 27 5.738 36 -28 -10 

Cingulate gyrus, posterior division 1 106 -3.381 8 -52 28 
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LEFT HEMISPHERIC ACTIVATIONS 
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FRONTAL LOBE 

Inferior frontal gyrus 1 82 5.142 -54 10 14 

Frontal operculum cortex 1 37 3.055 -40 24 6 

Middle frontal gyrus 
1 29 2.89 -42 30 42 

2 42 -7.953 -24 24 36 

Frontal pole 1 42 -4.002 -22 40 32 

Precentral gyrus 1 41 -3.66 -36 -10 66 

PARIETAL LOBE 

Supramarginal gyrus, anterior division 
1 57 3.13 -60 -30 46 

2 23 3.112 -44 -36 44 

Postcentral gyrus 1 23 3.168 -14 -38 76 

Supramarginal gyrus, posterior division 
1 22 3.485 -54 -42 54 

2 35 -3.261 -38 -48 36 

Precuneous cortex 1 144 -4.005 -4 -58 42 

TEMPORAL LOBE 

Temporal fusiform cortex, posterior division 1 66 3.132 -38 -48 -32 

Inferior temporal gyrus, temporoocipital part 1 23 2.967 -58 -54 -14 

OCCIPITAL LOBE 

Lateral occipital cortex, superior division 

1 74 4.041 -42 -74 28 

2 50 2.992 -28 -62 30 

3 41 3.427 -30 -78 36 

Lateral occipital cortex, inferior division 1 24 -3.625 -30 -82 -28 

Occipital fusiform gyrus  1 21 -3.382 -34 -86 -20 

LIMBIC LOBE 

Parahippocampal Gyrus, posterior division 1 66 3.035 -22 -36 -20 
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Supplementary Table S4.4 Neural underpinnings of proposed microstate based FTA (channel pair 

F8/F7). The activations after correction for multiple comparisons are represented at p<.05 (FDR 

corrected). The coordinates reported are in MNI space (Kaur et al., 2020). 
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FRONTAL LOBE 

Frontal medial cortex 1 192 -11.711 2 42 -12 

Frontal pole 
1 81 -3.819 8 50 42 

2 25 -2.958 8 58 14 

Subcallosal cortex 1 68 -4.043 6 28 -4 

Superior frontal gyrus 1 23 -3.107 16 32 56 

PARIETAL LOBE 

Angular gyrus  1 104 -3.685 50 -56 28 

TEMPORAL LOBE 

Planum Temporale 1 124 -3.416 62 -12 6 

OCCIPITAL LOBE 

Lingual gyrus 1 20 -3.676 26 -56 2 

LIMBIC LOBE 

Cingulate gyrus, posterior division 1 203 -5.841 4 -44 38 

Insular cortex 1 124 -5.241 36 -12 14 
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FRONTAL LOBE 

Middle frontal gyrus 

1 25 3.014 -42 34 24 

2 51 -3.049 -26 20 38 

3 25 -3.022 -42 18 48 

Superior Frontal Gyrus 

1 138 -3.021 -4 52 36 

2 30 -4.585 -6 40 50 

3 21 -3.298 -2 14 66 

Frontal pole 

1 138 -6.323 -8 58 14 

2 75 -3.548 -20 52 30 

3 21 -2.748 -20 44 38 

Precentral gyrus 1 21 -2.877 -36 -12 68 

PARIETAL LOBE 

Supramarginal gyrus, anterior division 
1 87 7.244 -62 -28 40 

2 41 2.927 -44 -36 46 

Angular gyrus  
1 181 -3.641 -46 -56 54 

2 181 -3.615 -58 -54 36 

Superior Parietal Lobule 1 181 -2.478 -34 -52 38 

TEMPORAL LOBE 

Temporal pole 1 47 -4.092 -44 10 -36 

OCCIPITAL LOBE 

Lateral occipital cortex, inferior division 1 91 -3.47 -30 -88 -18 

LIMBIC LOBE 

Cingulate gyrus, posterior division 
1 386 -5.096 -6 -48 36 

2 386 -2.506 -4 -44 14 
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APPENDIX 3: SUPPLEMENTARY MATERIAL FOR CHAPTER 

FIVE 

 

 

Supplementary Figure S5.1 Heatmaps for the representation of the t-values of neural substrates of PA, 

NA, BAS and BIS measures for (a) frontal regions (b) parietal regions (c) temporal regions (d) occipital 

regions (e) limbic regions. 
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Supplementary Table S5.1 Neural substrates of Positive affect (PA). The activations after correction for 

multiple comparisons are represented at p<.05 (FDR corrected). The coordinates reported are in MNI 

space. 
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X Y Z 

FRONTAL LOBE  

Inferior Frontal Gyrus, pars opercularis 

1 580 5.24 -56 8 0 L 

2 493 7.03 52 18 -2 R 

3 493 3.53 54 30 14 R 

Frontal Orbital Cortex 1 580 4.10 -36 30 0 L 

Frontal Pole 

1 493 4.03 38 44 -16 R 

2 35 3.99 -12 62 22 L 

3 31 3.75 16 68 14 R 

4 69 3.60 -46 38 -18 L 

5 69 -3.43 26 40 42 R 

Precentral Gyrus 

1 239 2.57 44 -12 38 R 

2 85 2.83 -24 -30 56 L 

3 82 3.24 56 -6 46 R 

4 73 3.28 -40 -16 50 L 

5 27 2.97 12 -30 66 R 

Subcallosal Cortex 1 79 4.04 6 30 -14 R 

Superior Frontal Gyrus 
1 26 3.11 -22 -2 60 L 

2 78 -2.31 -6 38 36 L 

PARIETAL LOBE  

Postcentral Gyrus 

1 239 3.09 46 -28 64 R 

2 146 3.24 -60 -10 42 L 

3 146 2.36 -50 -24 54 L 

4 85 3.76 -46 -24 64 L 

5 71 3.60 42 -30 52 R 

Supramarginal Gyrus, posterior division 

1 174 4.38 -44 -42 42 L 

2 68 -2.76 -64 -44 10 L 

3 23 -3.02 -64 -48 22 L 
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4 20 -3.19 -56 -46 50 L 

Superior Parietal Lobule 

1 57 3.24 -38 -52 58 L 

2 46 2.97 -36 -38 52 L 

3 21 2.92 40 -46 66 R 

Precuneous Cortex 1 258 3.78 20 -52 8 R 

Angular Gyrus 1 97 -3.73 58 -46 48 R 

TEMPORAL LOBE 

Superior Temporal Gyrus, anterior division 
1 580 -2.33 -50 -14 -6 L 

2 184 3.99 58 -2 -14 R 

Central Opercular Cortex   580 3.93 -48 -10 8 L 

Middle Temporal Gyrus, posterior division 
1 112 4.49 -62 -18 -24 L 

2 31 2.89 -50 -36 -4 L 

Superior Temporal Gyrus, posterior division 1 83 2.95 50 -28 2 R 

Middle Temporal Gyrus, temporooccipital part 
1 74 2.73 58 -56 4 R 

2 68 4.15 -62 -46 -2 L 

Temporal Fusiform Cortex, posterior division 1 53 -4.07 -40 -12 -34 L 

Temporal Pole 
1 35 3.64 -50 8 -32 L 

2 24 3.21 -48 12 -22 L 

Planum Polare 
1 23 2.10 -48 -2 -4 L 

2 23 -3.42 -48 -6 -6 L 

Middle Temporal Gyrus, anterior division 1 20 2.70 -48 0 -26 L 

OCCIPITAL LOBE 

Temporal Occipital Fusiform Cortex 
1 1693 4.41 -40 -52 -22 L 

2 346 4.90 32 -40 -22 R 

3 346 3.75 44 -58 -20 R 

Occipital Fusiform Gyrus 
1 1693 5.10 -20 -78 -8 L 

2 638 4.57 30 -82 -10 R 

Cuneal Cortex 

1 1178 4.88 18 -72 26 R 

2 1178 4.56 10 -84 40 R 

3 52 3.81 -16 -80 34 L 

Lingual Gyrus 

1 1178 4.48 4 -82 -2 R 

2 638 4.59 22 -62 -10 R 

3 258 3.67 22 -40 -14 R 

4 22 3.08 0 -72 -14 R 

Occipital Pole 1 40 3.37 10 -96 2 R 

Lateral Occipital Cortex, superior division 

1 62 4.05 -24 -60 64 L 

2 24 3.60 -40 -76 20 L 

3 97 -4.22 36 -70 48 R 

4 23 3.57 38 -86 10 R 
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Intracalcarine Cortex 1 258 -3.16 14 -64 10 R 

Lateral Occipital Cortex, inferior division 1 23 -2.81 32 -86 6 R 

LIMBIC LOBE 

Parahippocampal Gyrus, posterior division 
1 1693 4.57 -16 -34 -12 L 

2 36 4.55 -30 -26 -22 L 

Cingulate Gyrus, posterior division 
1 90 5.50 -12 -34 38 L 

2 90 -2.06 -10 -34 42 L 

Insular Cortex 

1 27 3.31 -42 -8 4 L 

2 43 -3.10 -36 -14 -4 L 

3 37 -3.53 -34 0 6 L 

4 32 -3.82 36 -16 2 R 

5 27 -2.65 -42 -10 -2 L 

Paracingulate Gyrus 1 42 -3.25 6 34 38 R 

SUBCORTICAL REGIONS 

Right Amygdala 1 77 5.03 24 -6 -16 

  

Left Hippocampus 1 1693 -1.94 -20 -30 -8 

Left Thalamus 1 29 -3.13 0 -8 4 

Right Thalamus 1 28 -3.84 14 -10 4 
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Supplementary Table S5.2 Neural substrates of Negative affect (NA). The activations after correction 

for multiple comparisons are represented at p<.05 (FDR corrected). The coordinates reported are in MNI 

space. 
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FRONTAL LOBE 

Precentral Gyrus 

1 164 6.02 -58 6 6 L 

2 79 4.33 -36 -6 56 L 

3 23 3.87 60 2 12 R 

4 23 3.63 -52 8 36 L 

5 21 3.37 58 10 34 R 

6 151 -3.82 -52 -10 46 L 

7 107 -4.71 48 -10 36 R 

8 100 -3.90 22 -12 74 R 

9 100 -2.17 32 -6 56 R 

10 79 -2.87 -30 -10 56 L 

11 72 -3.62 -6 -28 58 L 

12 46 -2.94 6 -18 48 R 

13 27 -2.69 -12 -22 46 L 

Superior Frontal Gyrus 

1 81 2.27 20 -10 64 R 

2 33 2.88 -22 -8 68 L 

3 105 -3.90 -4 26 62 L 

4 105 -2.90 -6 4 68 L 

5 92 -4.88 10 32 58 R 

6 40 -3.54 22 10 52 R 

7 33 -3.32 -24 0 70 L 

Inferior Frontal Gyrus, pars triangularis 
1 57 4.61 54 32 12 R 

2 164 -3.04 -48 10 10 L 

Frontal Orbital Cortex 

1 31 3.24 -40 18 -14 L 

2 32 -2.92 -24 4 -14 L 

3 20 -3.10 30 16 -18 R 

Middle Frontal Gyrus 1 21 2.61 30 20 48 R 
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2 138 -5.18 -30 28 48 L 

3 138 -3.84 -46 24 36 L 

4 81 -3.27 30 4 58 R 

5 21 -2.56 28 26 44 R 

Juxtapositional Lobule Cortex  1 121 -4.34 -6 -6 48 L 

Frontal Pole 

1 111 -3.11 -24 48 -12 L 

2 57 -2.94 52 40 4 R 

3 25 -3.38 -4 58 0 L 

Frontal Operculum Cortex 1 106 -4.25 -36 16 10 L 

PARIETAL LOBE 

Supramarginal Gyrus, anterior division 

1 491 4.67 -54 -28 42 L 

2 378 4.54 64 -18 42 R 

3 226 -5.19 64 -22 24 R 

4 21 -3.14 54 -32 34 R 

Postcentral Gyrus 

1 378 3.03 48 -30 58 R 

2 226 2.22 58 -18 28 R 

3 35 2.97 -16 -38 74 L 

4 491 -4.98 -42 -38 46 L 

5 378 -4.25 44 -32 52 R 

6 57 -3.48 -44 -22 60 L 

7 57 -2.42 -22 -32 64 L 

8 35 -4.28 -8 -38 78 L 

Precuneous Cortex 

1 341 4.06 -8 -68 30 L 

2 120 2.96 20 -52 6 R 

3 34 2.96 10 -62 24 R 

4 168 -4.82 6 -74 46 R 

5 114 -4.12 -4 -70 56 L 

6 34 -2.24 12 -60 22 R 

Parietal Operculum Cortex 

1 48 4.81 -44 -24 18 L 

2 313 -4.08 -44 -40 22 L 

3 24 -3.44 32 -28 20 R 

Superior Parietal Lobule 
1 491 -5.20 -36 -50 64 L 

2 24 -2.66 24 -46 64 R 

Supramarginal Gyrus, posterior division 1 313 -3.51 -64 -44 30 L 

Angular Gyrus 
1 185 -4.26 -54 -54 16 L 

2 20 -3.27 62 -50 28 R 

TEMPORAL LOBE 

Planum Temporale 

1 313 3.65 -62 -20 10 L 

2 313 -2.71 -62 -30 12 L 

3 34 -4.15 62 -12 6 R 
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Middle Temporal Gyrus, anterior division 

1 139 3.91 64 -8 -8 R 

2 97 2.22 -56 0 -30 L 

3 97 -3.71 -56 -4 -28 L 

Central Opercular Cortex 
1 64 4.13 44 8 6 R 

2 96 -4.38 42 -18 20 R 

Temporal Fusiform Cortex, posterior division 1 35 4.28 24 -38 -18 R 

Inferior Temporal Gyrus, temporooccipital part 

1 566 -4.49 54 -44 -16 R 

2 338 -4.83 -56 -54 -8 L 

3 110 -4.37 62 -50 6 R 

Middle Temporal Gyrus, posterior division 1 139 -6.45 66 -22 -4 R 

Superior Temporal Gyrus, anterior division 1 88 -4.24 -54 0 -10 L 

Temporal Pole 
1 80 -3.09 56 10 -18 R 

2 48 -3.11 -46 10 -34 L 

Inferior Temporal Gyrus, anterior division 1 26 -2.87 40 -6 -36 R 

OCCIPITAL LOBE 

Lateral Occipital Cortex, superior division 

1 566 3.13 46 -74 18 R 

2 51 4.00 -44 -76 26 L 

3 114 -2.79 -18 -80 40 L 

4 65 -3.68 16 -70 48 R 

5 42 -3.30 34 -68 34 R 

6 42 -3.22 18 -82 38 R 

7 32 -3.45 18 -60 62 R 

8 28 -2.69 -22 -70 38 L 

Intracalcarine Cortex 
1 341 4.28 -16 -68 6 L 

2 120 3.70 12 -72 10 R 

Lingual Gyrus 

1 341 3.73 -14 -52 -12 L 

2 99 3.99 20 -60 -14 R 

3 341 -3.04 -8 -62 0 L 

Occipital Fusiform Gyrus 

1 27 2.77 28 -74 -10 R 

2 278 -5.01 -14 -90 -14 L 

3 27 -3.98 28 -82 -10 R 

4 26 -3.32 14 -86 -22 R 

Temporal Occipital Fusiform Cortex 
1 338 -2.89 -42 -48 -22 L 

2 58 -4.72 38 -50 -26 R 

Lateral Occipital Cortex, inferior division 

1 338 -2.86 -46 -72 4 L 

2 278 -3.84 -36 -82 -14 L 

3 53 -3.98 32 -84 2 R 

4 23 -3.19 -44 -70 -18 L 

Occipital Pole 
1 168 -4.31 -6 -90 32 L 

2 28 -4.23 -14 -98 -14 L 
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LIMBIC LOBE 

Insular Cortex 

1 109 5.34 -36 -14 8 L 

2 64 2.35 40 -14 6 R 

3 64 -2.72 42 -12 8 R 

4 54 -2.34 -36 6 -8 L 

SUBCORTICAL REGIONS 

Brain-Stem 
1 29 5.54 -10 -44 -34 

  

2 28 3.49 -2 -36 -16 

Right Putamen 1 29 3.69 28 0 -4 

Left Hippocampus 1 33 -3.54 -30 -8 -26 
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Supplementary Table S5.3 Neural substrates of Behavioral activation system (BAS). The activations 

after correction for multiple comparisons are represented at p<.05 (FDR corrected). The coordinates 

reported are in MNI space. 
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FRONTAL LOBE 

Superior Frontal Gyrus 

1 165 10.14 16 4 66 R 

2 165 6.70 24 -8 52 R 

3 31 4.55 -4 42 42 L 

4 27 3.17 -22 8 48 L 

5 26 3.77 22 26 44 R 

6 70 -2.08 -18 22 50 L 

Frontal Pole 

1 82 2.56 38 54 0 R 

2 71 4.90 -20 44 36 L 

3 22 2.11 24 42 -16 R 

4 186 -7.24 -44 50 8 L 

5 82 -5.13 26 54 2 R 

6 81 -3.87 44 50 6 R 

7 47 -7.40 -30 46 -16 L 

8 27 -3.26 14 54 38 R 

9 25 -4.50 20 64 16 R 

10 22 -5.10 26 44 -14 R 

Juxtapositional Lobule Cortex  
1 79 4.17 -8 -6 50 L 

2 79 -2.07 -6 -2 50 L 

Precentral Gyrus 

1 39 3.70 -54 6 24 L 

2 32 5.19 -46 2 42 L 

3 24 5.24 62 8 22 R 

4 21 5.61 42 2 34 R 

Middle Frontal Gyrus 
1 36 3.96 42 26 26 R 

2 36 -6.31 44 34 34 R 

Inferior Frontal Gyrus, pars triangularis 1 33 4.10 52 30 -8 R 

Frontal Orbital Cortex 
1 27 4.46 28 24 -6 R 

2 55 -11.28 20 28 -18 R 
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3 34 -3.31 -36 30 -14 L 

Frontal Medial Cortex 1 105 -5.91 6 42 -14 R 

Inferior Frontal Gyrus, pars opercularis 
1 34 -4.94 -50 12 4 L 

2 28 -4.17 54 22 12 L 

PARIETAL LOBE 

Superior Parietal Lobule 

1 314 2.58 34 -48 42 R 

2 109 8.62 20 -46 62 R 

3 109 2.84 40 -40 64 R 

Postcentral Gyrus 

1 105 6.43 -24 -34 72 L 

2 52 3.64 60 -6 38 R 

3 33 4.74 44 -32 64 R 

4 105 -2.09 -16 -32 64 L 

5 30 -4.57 -58 -8 28 L 

Supramarginal Gyrus, posterior division 1 66 5.00 48 -40 52 R 

Precuneous Cortex 

1 38 5.48 -8 -62 14 L 

2 46 -5.58 -8 -76 42 L 

3 26 -5.94 14 -60 28 R 

Angular Gyrus 1 314 -5.87 50 -56 38 R 

Supramarginal Gyrus, anterior division 1 21 -3.57 -60 -38 30 L 

TEMPORAL LOBE 

Temporal Fusiform Cortex, posterior division 

1 235 3.16 26 -34 -22 R 

2 45 5.65 -40 -28 -24 L 

3 26 4.19 42 -30 -22 R 

Middle Temporal Gyrus, posterior division 1 21 2.60 68 -34 -6 R 

OCCIPITAL LOBE 

Lingual Gyrus 1 86 4.28 4 -70 0 R 

Temporal Occipital Fusiform Cortex 1 235 -2.09 26 -48 -18 R 

Lateral Occipital Cortex, inferior division 1 55 -3.54 52 -66 -2 R 

Cuneal Cortex 1 38 -6.76 -18 -72 26 L 

Middle Temporal Gyrus, posterior division 

1 86 -7.29 -60 -12 -26 L 

2 74 -4.42 -66 -34 -10 L 

3 22 -5.14 64 -8 -22 R 

4 21 -3.04 60 -28 -4 R 

5 20 -4.85 -58 -16 -10 L 

6 57 -3.94 54 -22 -28 R 

Temporal Pole 1 35 -4.66 50 20 -20 R 

Middle Temporal Gyrus, temporooccipital part 1 28 -5.12 64 -48 4 R 

Planum Temporale 1 25 -4.91 48 -28 12 R 
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LIMBIC LOBE 

Paracingulate Gyrus 1 62 4.27 -8 42 22 L 

Insular Cortex 1 63 -4.94 -32 16 -6 L 

Parahippocampal Gyrus, posterior division 1 34 -3.26 -34 -38 -10 L 

Cingulate Gyrus, anterior division 1 20 -3.46 -2 42 4 L 

SUBCORTICAL REGIONS 

Right Thalamus 1 186 6.91 8 -24 2 

  

Brain-Stem 

1 186 3.75 4 -36 -20 

2 92 4.76 10 -38 -46 

3 186 -2.29 -2 -30 -20 

Left Thalamus 

1 132 6.86 -6 -10 0 

2 30 4.02 -8 -26 -2 

3 25 -4.45 -20 -36 0 

Left Putamen 1 26 4.93 -20 18 -8 

Right Putamen 1 23 -6.16 32 -8 -4 

Left Hippocampus 1 21 -3.53 -34 -14 -22 
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Supplementary Table S5.4 Neural substrates of Behavioral inhibition system (BIS). The activations 

after correction for multiple comparisons are represented at p<.05 (FDR corrected). The coordinates 

reported are in MNI space. 
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FRONTAL LOBE 

Precentral Gyrus 

1 102 4.60 -8 -32 48 L 

2 71 5.31 -52 6 26 L 

3 71 3.16 -38 2 40 L 

4 42 -2.78 60 -2 18 R 

Inferior Frontal Gyrus, pars triangularis 

1 64 5.94 50 32 18 R 

2 22 3.86 -44 36 8 L 

3 27 -3.96 -54 16 6 L 

Frontal Pole 

1 32 3.37 40 42 32 R 

2 25 3.64 24 64 20 R 

3 125 -8.01 12 50 46 R 

4 56 -4.25 22 38 52 R 

5 40 -3.62 36 58 -4 R 

6 38 -6.15 12 68 2 R 

7 35 -6.56 -38 48 -16 L 

8 31 -4.70 32 38 -10 R 

9 30 -4.46 -16 62 16 L 

10 23 -3.72 -8 58 34 L 

PARIETAL LOBE 

Postcentral Gyrus 1 95 5.80 -26 -32 64 L 

Supramarginal Gyrus, anterior division 1 43 5.75 -62 -26 20 L 

Superior Parietal Lobule 

1 22 2.66 -34 -42 54 L 

2 72 -7.79 16 -52 72 R 

3 25 -4.22 -12 -52 70 L 

Angular Gyrus 
1 210 -5.48 52 -50 44 R 

2 93 -4.44 -48 -56 28 L 

Precuneous Cortex 1 50 -5.07 -6 -58 42 L 
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2 32 -3.55 -8 -70 36 L 

TEMPORAL LOBE 

Middle Temporal Gyrus, posterior division 
1 259 -6.10 -56 -12 -28 L 

2 52 -4.02 60 -20 -24 R 

Inferior Temporal Gyrus, posterior division 
1 259 -2.37 -60 -32 -20 L 

2 59 -5.81 46 -16 -34 R 

Temporal Pole 
1 42 -4.53 -54 6 -18 L 

2 37 -4.90 -40 12 -38 L 

Middle Temporal Gyrus, anterior division 1 34 -4.26 58 -6 -14 R 

OCCIPITAL LOBE 

Lateral Occipital Cortex, superior division 1 210 -2.59 32 -62 54 R 

LIMBIC LOBE 

Cingulate Gyrus, anterior division 

1 154 2.39 -4 34 -6 L 

2 94 5.87 -4 14 32 L 

3 33 3.47 -2 -10 30 L 

4 207 -7.82 4 36 0 R 

Insular Cortex 1 52 5.73 30 16 -14 R 

Paracingulate Gyrus 
1 207 -6.03 12 40 22 R 

2 154 -7.64 -12 44 -2 L 

Cingulate Gyrus, posterior division 
1 28 -5.15 2 -46 34 R 

2 26 -5.18 -2 -28 26 L 

SUBCORTICAL REGIONS 

Brain-Stem 

1 58 3.96 12 -40 -28 

  

2 38 4.10 8 -28 -40 

3 21 3.37 -2 -32 -8 

Left Thalamus 
1 32 3.45 -2 -2 -4 

2 29 3.94 -6 -24 10 

Right Caudate 1 151 -4.30 6 10 -2 

Left Accumbens 1 31 -4.01 -8 16 -8 
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Supplementary Table S5.5 ROI-to-ROI correlations of subcortical with cortical regions and other 

subcortical areas for Positive affect (PA), Negative affect (NA), Behavioral activation system (BAS), and 

Behavioral inhibition system (BIS) psychological measures. 

 

S
U

B
C

O
R

T
IC

A
L

 R
E

G
IO

N
S

 

(S
E

E
D

 R
E

G
IO

N
S

) 

C
O

R
T

IC
A

L
 R

E
G

IO
N

 

L
A

B
E

L
S

 

A
B

B
R

E
V

IA
T

IO
N

S
 O

F
 

C
O

R
T

IC
A

L
 R

E
G

IO
N

 

L
A

B
E

L
S

 

S
U

B
C

O
R

T
IC

A
L

 R
E

G
IO

N
S

 

C
O

R
R

. 
V

A
L

U
E

S
 (

p
<

.0
5

) 

PA 

Right Amygdala Insular cortex, posterior division (R)  IC (post.)   0.38 

  Insular cortex, posterior division (L) IC (post.)   0.32 

  Planum Palore (L) Ppalore   0.31 

  Parahippocampal gyrus, posterior division (L) ParaHG   0.25 

  Superior temporal gyrus, anterior division (R)  STG (ant.)   0.25 

  Subcallosal cortex (R) SubcalC   0.25 

  Inferior Frontal Gyrus, pars opercularis (R) IFG (pars oper.)   0.24 

  Central Opercular Cortex (L) CenOperC   0.24 

  Temporal Pole (L) TP   0.24 

  Inferior Frontal Gyrus, pars opercularis (L) IFG (pars oper.)   0.21 

          

Left 

Hippocampus Parahippocampal gyrus, posterior division (L)  ParaHG (post.)   0.49 

          

Left Thalamus     Right thalamus 0.53 

      Right amygdala 0.2 

  Insular cortex, posterior division (L) IC (post.)   0.2 

          

Right Thalamus     Left Thalamus 0.53 

  Insular cortex, posterior division (L) IC (post.)   0.27 

  Insular cortex, posterior division (R) IC (post.)   0.23 

          

NA 

Right Putamen Frontal orbital cortex (L) FOrbC   0.63 
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  Central opercular cortex (R) CenOperC   0.43 

  Insular cortex, posterior division (R) IC (post.)   0.37 

  Insular cortex, posterior division (L) IC (post.)   0.38 

  Precentral gyrus (L) PreCG   0.27 

  Precentral gyrus (R) PreCG   0.29 

  Frontal operculum cortex (L) FOperC   0.23 

  Frontal orbital cortex (R) FOrbC   0.22 

  Supramarginal gyrus, anterior division (R) SMG (ant.)   0.21 

  Juxtapositional lobule cortex (L) JuxtaLC   0.21 

          

Left 

Hippocampus Temporal pole (L) TP   0.37 

  Frontal orbital cortex (L) FOrbC   0.31 

  Inferior temporal gyrus, anterior division (R) ITG (ant.)   0.28 

  Middle temporal gyrus, anterior division (L) MTG (ant.)   0.2 

          

BAS 

Brain-stem     Left thalamus 0.2 

Left thalamus     Right thalamus 0.78 

Left thalamus     

Left 

hippocampus 0.24 

  Paahippocampal gyrus, posterior division (L) ParaHG (post.)   0.4 

  

Temporal fusiform gyrus, posterior division 

(R) 

TemFusiformC 

(post.)   0.22 

  Temporal occipital fusiform gyrus (R) TemOccFusiformG   0.21 

  Cuneal cortex (L) CunealC   0.2 

          

Left Putamen Insular cortex, anterior division (L) IC (ant.)   0.25 

  Frontal orbital cortex (R) FOrbC   0.22 

  Frontal medial cortex (R) FMedC   0.2 

          

Right putamen Planum temporale (R) PlanumTemp   0.32 

  Juxtapositional lobule cortex (L) JuxtaLC   0.3 

  Precentral gyrus (R) PreCG   0.25 

  Insular cortex, anterior division (L) IC (ant.)   0.24 

  Frontal orbital cortex (R) FOrbC   0.22 

  Postcentral gyrus (L) PostCG   0.21 

  Postcentral gyrus (R) PostCG   0.2 

          

Left 

Hippocampus 

Temporal Fusiform Cortex, posterior division 

(L) 

TemFusiformC 

(post.)   0.35 

  Parahippocampal Gyrus, posterior division (L) ParaHG (post.)   0.3 
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      Left thalamus 0.24 

          

Brain stem     Left thalamus 0.32 

          

BIS 

Left thalamus     Right caudate 0.6 

      Left accumbens 0.41 

      Brain stem 0.31 

  Cingulate gyrus, anterior division (L) CingG (ant.)   0.2 

          

          

Right caudate     Left accumbens 0.65 

      Left thalamus 0.6 

  Cingulate gyrus, anterior division (L) CingG (ant.)   0.26 

  Insular cortex, anterior division (R) IC (ant.)   0.25 

  Cingulate gyrus, anterior division (R) CingG (ant.)   0.24 

          

          

Left accumbens     Right caudate 0.65 

      Left thalamus 0.41 

  Cingulate gyrus, anterior division (L) CingG (ant.)   0.4 

  Paracingulate gyrus (L) ParaCingG   0.25 

  Cingulate gyrus, anterior division (R) CingG (ant.)   0.24 

  Insular cortex, anterior division (R) IC (ant.)   0.2 
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Supplementary Table S5.6 Graph theory measures (degree and betweenness centrality) for the 

subnetwork CSCN (each cortical substrate with all subcortical neural substrates) of Positive affect (PA), 

Negative affect (NA), Behavioral activation system (BAS), and Behavioral inhibition system (BIS) 

psychological measures. 
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PA 

Parahippocampal Gyrus, posterior division L 0.641 0.160 0.013 

Insular Cortex R 0.500 0.125 0.013 

Insular Cortex L 0.462 0.115 0 

Subcallosal cortex R 0.462 0.115 0.009 

Planum Polare L 0.410 0.103 0.004 

Central Opercular Cortex L 0.385 0.096 0.013 

Superior Temporal Gyrus, anterior division L 0.385 0.096 0 

Temporal Fusiform Cortex, posterior division L 0.385 0.096 0.004 

Middle Temporal Gyrus, anterior division L 0.385 0.096 0.004 

Superior Temporal Gyrus, anterior division R 0.372 0.093 0.002 

Inferior Frontal Gyrus, pars opercularis R 0.359 0.090 0.004 

NA 

Temporal Pole L 0.974 0.244 0.030 

Frontal Orbital Cortex L 0.936 0.234 0.038 

Insular Cortex L 0.923 0.231 0.038 

Inferior Temporal Gyrus, anterior division R 0.872 0.218 0.017 

Insular Cortex R 0.872 0.218 0.028 

Central Opercular Cortex R 0.795 0.199 0.015 

Middle Temporal Gyrus, anterior division L 0.782 0.196 0.026 

Juxtapositional Lobule Cortex  L 0.769 0.192 0.021 

Inferior Temporal Gyrus, temporooccipital part L 0.718 0.179 0.017 

Inferior Frontal Gyrus, pars triangularis L 0.718 0.179 0.017 
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Frontal Orbital Cortex R 0.692 0.173 0.026 

Frontal Operculum Cortex L 0.692 0.173 0.017 

BAS 

Supramarginal Gyrus, posterior division R 16.85 0.225 0.027 

Middle Frontal Gyrus R 16.41 0.219 0.020 

Middle Temporal Gyrus, posterior division R 16.15 0.215 0.022 

Inferior Frontal Gyrus, pars opercularis L 15.38 0.205 0.022 

Angular Gyrus R 15.10 0.201 0.022 

Middle Temporal Gyrus, temporooccipital part R 14.64 0.195 0.021 

Middle Temporal Gyrus, posterior division L 14.39 0.192 0.020 

Inferior Frontal Gyrus, pars triangularis R 14.36 0.191 0.019 

Frontal Pole R 13.79 0.184 0.019 

Middle Temporal Gyrus, posterior division R 13.56 0.181 0.018 

Temporal Pole R 13.03 0.174 0.016 

Superior Parietal Lobule R 12.84 0.171 0.018 

BIS 

Cingulate Gyrus, posterior division R 14.03 0.286 0.051 

Angular Gyrus L 11.85 0.242 0.044 

Cingulate Gyrus, anterior division R 11.13 0.227 0.050 

Angular Gyrus R 10.77 0.220 0.043 

Middle Temporal Gyrus, posterior division R 10.62 0.217 0.035 

Paracingulate Gyrus R 10.44 0.213 0.033 

Middle Temporal Gyrus, posterior division L 10.38 0.212 0.033 

Paracingulate Gyrus L 9.62 0.196 0.035 

Frontal Pole L 9.00 0.184 0.030 

Inferior Temporal Gyrus, posterior division L 8.92 0.182 0.027 

Cingulate Gyrus, anterior division L 8.91 0.182 0.035 

Cingulate Gyrus, posterior division L 8.56 0.175 0.026 
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Objective: In this study, the influence of pretask resting neu-
ral mechanisms on situational awareness (SA)-task is studied.

Background: Pretask electroencephalography (EEG) infor-
mation and Stroop effect are known to influence task engagement 
independently. However, neural mechanisms of pretask resting 
absolute alpha (PRAA) and pretask resting alpha frontal asymme-
try (PRAFA) in influencing SA-task which is undergoing Stroop 
effect is still not understood.

Method: The study involved pretask resting EEG measure-
ments from 18 healthy individuals followed by functional magnetic 
resonance imaging (fMRI) acquisition during SA-task. To under-
stand the effect of pretask alpha information and Stroop effect on 
SA, a robust correlation between mean reaction time, SA Index, 
PRAA, and PRAFA were assessed. Furthermore, neural under-
pinnings of PRAA, PRAFA in SA-task, and functional connectivity 
were analyzed through the EEG-informed fMRI approach.

Results: Significant robust correlation of reaction time was 
observed with SA Index (Pearson: r = .50, pcorr = .05) and PRAFA 
(Pearson: r = .63; pcorr = .01), respectively. Similarly, SA Index 
significantly correlated with PRAFA (Pearson: r = .56, pcorr = .01; 
Spearman: r = .61, pcorr = .007), and PRAA (Pearson: r = .59, 
pcorr = .005; Spearman: r = .59, pcorr = .002). Neural under-
pinnings of SA-task revealed regions involved in visual-processing 
and higher-order cognition. PRAA was primarily underpinned at  
frontal-temporal areas and functionally connected to SA-task 
regions pertaining to the emotional regulation. PRAFA has cor-
related with limbic and parietal regions, which are involved in inte-
gration of visual, emotion, and memory information of SA-task.

Conclusion: The results suggest a strong association of 
reaction time with SA-task and PRAFA and strongly support the 
hypothesis that PRAFA, PRAA, and associated neural mechanisms 
significantly influence the outcome of SA-task.

Application: It is beneficial to study the effect of pretask 
resting information on SA-task to improve SA.

Keywords: situational awareness, cognition, physiological mea-
surement, methods and skills, neuroimaging, neuroergonomics, 
analysis and evaluation

Introduction
Neuroergonomics, the field which investi-

gates the behavioral aspects of the human brain 
by integrating knowledge from both neurosci-
ence and neuroimaging with ergonomics has 
evolved immensely in the last decade (Gramann, 
Fairclough, Zander, & Ayaz, 2017; Hancock & 
Szalma, 2003; Mehta, Parasuraman, Mckinley, 
& Neuroscience, 2013; Sestito, Harel, Nador, 
& Flach, 2018). This interdisciplinary approach 
would be very useful in comprehending human 
abilities for augmenting their interaction with 
various environments.

Situational awareness (SA), which is the 
knowledge about the environment, is one of the 
constructs that has become the focus of the ergo-
nomics community recently (Endsley, 1995b; 
Endsley, Bolté, & Jones, 2016). It begins with 
the perception of the elements in the environ-
ment (Level 1), comprehension of their meaning 
(Level 2), and ends at decision making (Level 3) 
(Endsley, 1995b; Endsley et al., 2016). Mainte-
nance of SA is essential for optimum perfor-
mance in the military, aviation domain. How-
ever, there are many physiological and psycho-
logical factors that can cause loss of SA (Ends-
ley, Bolstad, & Carolina, 1994; Klamklay, 
2002). These factors include attention, long-
term and working memory, automaticity, and 
experience of an individual. Previous research 
majorly examined the association of the afore-
mentioned factors with the loss of SA individu-
ally because it is difficult to test the SA model as 
a whole (Endsley, 2015).

The maintenance of SA primarily depends on 
the ability of the individual to allocate cognitive 
resources to perform specific functions by filter-
ing out function-irrelevant stimuli. This cogni-
tive process is better studied through the Stroop 
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effect which involves performing a less auto-
mated task (e.g., recognizing the ink color) while 
inhibiting the interference arising from a more 
automated task (e.g., reading the word). Past 
research (Jensen & Rohwer, 1966; Kang et al., 
2013; Scarpina & Tagini, 2017) reported the 
application of the Stroop test in measuring cogni-
tive functions, such as attention, processing 
speed, cognitive flexibility, and working mem-
ory. Specifically, Klamklay (2002), in their study, 
reported a high positive correlation of perfor-
mance and SA with Stroop color and word test. 
Despite these works, there are many questions 
that are still needed to be addressed for a better 
understanding of the maintenance of SA. They 
are as follows: (1) Does SA gets influenced by 
the Stroop effect during the SA-task? (2) What 
are the neural mechanisms of SA when it is influ-
enced by the Stroop effect? (3) What are the pre-
task factors that can affect the neural mechanisms 
in SA? Understanding these aspects requires an 
in-depth analysis of multimodal information 
acquired from an individual while performing 
the SA-task that is influenced by the Stroop 
effect.

Cognitive neuroscience employs divergent 
assessment techniques such as functional mag-
netic resonance imaging (fMRI), electroenceph-
alography (EEG), functional near infra-red 
spectroscopy (fNIRS), and positron emission 
tomography (PET) to study the functional 
dynamics of the brain during task engagement. 
Hence, appropriate use of these techniques will 
facilitate us in understanding neural mechanisms 
underlying the Stroop effect on SA and ways to 
ameliorate it under various environments. Cath-
erwood et  al. (2014) employed EEG for map-
ping brain activity and suggested that there is an 
early coactivity in high-order and perception 
areas during the loss of SA. The aforementioned 
study investigated the association of loss of SA 
with concurrent activity in high-level cognitive 
regions and those for perceptual (visual) pro-
cessing through EEG source analysis. Although 
this study revealed valuable neural insights of 
SA, it did not address the association of pretask 
resting information with the behavioral outcome 
of the subsequently performed SA-task.

Pretask resting-state information refers to 
complex and highly nonrandom patterns of 
intrinsic activity occurring while the brain is not 

actively involved in a task (Raichle & Snyder, 
2007). EEG signatures acquired during pretask 
resting state have been known as a contributor 
to the outcome of subsequently performed cog-
nitive tasks. In particular, frontal alpha asym-
metry and peak alpha oscillations (8–12 Hz) 
have been investigated extensively in the past 
decades (Ambrosini & Vallesi, 2016; Grandy, 
Werkle-bergner, Chicherio, & Schmiedek, 
2013) as a measure to examine emotion-related 
(Davidson, 1992, 2010; Tomarken, Davidson, 
Wheeler, & Kinney, 1992), and motivation-
related trait individual differences and state-
related changes (Davidson, Saron, Senulis, 
Ekman, & Friesen, 1990; Tomarken, Davidson, 
& Henriques, 1990). Frontal hemispheric asym-
metry has also been conceptualized and, to 
some extent, proved to be a mediator and mod-
erator of emotion (Coan & Allen, 2004; Gable, 
Neal, & Threadgill, 2018; Reznik & Allen, 
2018). A recent study by Balconi, Vanutelli, and 
Grippa (2017) elucidated the predictive effect 
of resting-state activity and approach/with-
drawal dichotomy.

Furthermore, absolute power of alpha oscilla-
tions from which frontal asymmetry is derived 
has also been linked to reflect performance in 
various cognitive functions (Angelakis, Lubar, 
Stathopoulou, & Kounios, 2004), including 
attention, arousal, working memory, long-term 
memory, and reading. There is a shred of clear 
evidence that alpha and beta bands of resting 
EEG predict individual differences in attentional 
blink magnitudes (MacLean, Arnell, & Cote, 
2012; Shapiro, Hanslmayr, Enns, & Lleras, 
2017). López Zunini, Thivierge, Kousaie, Shep-
pard, and Taler (2013) explored the mutual rela-
tionship between cognitive states and resting-
state alpha powers by showing that alpha band 
resting-state activity before a verbal recognition 
task can predict accuracy during the task.

However, there are no published works which 
provide a better understanding of the association 
of pretask resting EEG alpha information with 
the performance of subsequently performed SA-
task when the task is influenced by the Stroop 
effect. In addition, there is no clarity in under-
standing of the influence of neural mechanisms 
of pretask resting alpha information and associ-
ated functional connectivity on subsequently 
performed SA-task.
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Hence, in this work, the association of pre-
task resting EEG alpha information on the sub-
sequently performed SA-task has been investi-
gated. In particular, the SA-task is designed to 
have more influence from the Stroop effect; 
hence, the ability of pretask resting information 
in assessing the behavioral outcome of SA in 
those conditions can be studied. To confirm the 
presence of Stroop effect during the SA-task, the 
robust correlation of the reaction time which 
assesses the Stroop effect with the SA Index of 
the individual during the same task is carried 
out. Then, as this study primarily aims to under-
stand the effect of pretask alpha information on 
individual’s SA, the pretask information is cor-
related with SA Index and further subjected to 
the EEG-informed fMRI analysis for under-
standing its neural mechanisms. Integration of 
EEG and fMRI through the EEG-informed 
fMRI approach has emerged to balance their 
complementary temporal and spatial resolutions 
(Abreu, Leal, & Figueiredo, 2018; Huster, 
Debener, Eichele, & Herrmann, 2012; Jorge, 
van der Zwaag, & Figueiredo, 2014; Murta, 
Leite, Carmichael, Patrícia, & Louis, 2015). 
This technique enables us to assess regions that 
correspond to the task engagement (neural 
underpinnings of the SA-task) as well as the 
regions whose neural activity is manifested as 
cortical EEG power (neural underpinnings of 
EEG powers). Subsequently, to understand the 
modulation of neural underpinnings of SA-task 
by neural mechanisms underlying pretask rest-
ing alpha information, functional connectivity 
among neural underpinnings of SA-task, pretask 
alpha power, and its associated hemispheric 
asymmetry was estimated and analyzed.

Materials And Methods
Schematic diagram of the methodology 

adopted in this study is illustrated in Figure 1.

Subjects
Pretask resting-state EEG and task-fMRI 

studies were performed on 18 healthy volun-
teers (12 men, 6 women, mean age: 24 years, 
SD: 3 years). All volunteers completed informed 
consent procedures approved by the local insti-
tutional review board. This research complied 

with the American Psychological Association 
Code of Ethics.

Paradigm Information
Catherwood et  al. (2014) employed an 

abstract task, and a real-world urban threat 
detection task to assess the loss of SA by mea-
suring EEG information for the same. Their 
study concluded the rapid and early coactiv-
ity of visual and higher-order regions for both 
abstract and more real-world content. Keeping 
in mind the compatibility of task performance 
in an MR environment, we chose to employ a 
modified Stroop test to study SA. Stroop color 
and word test is a neuropsychological test exten-
sively used to assess the ability to inhibit cogni-
tive interference that occurs when the process-
ing of a specific stimulus feature impedes the 
simultaneous processing of a second stimulus 
attribute. Scarpina and Tagini (2017) also report 
the application of the Stroop test in measuring 
cognitive functions such as attention, processing 
speed, cognitive flexibility, and working mem-
ory. Similar to the study by Catherwood et  al. 
(2014), in our study, the “situation” is defined 
in terms of target information within a visual 
field. The essential requirements resemble many 
real-world situations requiring perceptual and 
cognitive processing to identify a target item.

The choice of Stroop test was done, as it 
requires any volunteer to perform a less auto-
mated task while inhibiting the interference aris-
ing from a more automated task. This holds paral-
lel to the concept of SA, wherein identifying 
which elements the operator needs to perceive 
and understand is an important parameter that 
facilitates the decision-making process. We modi-
fied the basic Stroop test by inserting questions 
about the presence of an object in the previous 
environment at random intervals, which is in line 
with Endsley’s original task where random ques-
tions are asked to the volunteer about the driving 
simulation. Hence, in our paradigm, volunteers 
were exposed to a paradigm wherein each slide, 
they had to perceive the question being displayed, 
comprehend its meaning, and answer from a 
given set of four choices. Each stimulus slide 
lasted for 4.5 seconds on the screen and was fol-
lowed by a baseline slide for 3 seconds. The base-
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line slide is the fixation block of the paradigm, 
where no specific task was carried out by the vol-
unteers except viewing standard blank slide with 
a cross. In the paradigm, 20 stimulus slides were 
made, where the volunteer had to observe and ori-
ent the true sense of the Stroop color and word 
test question. Moreover, in five stimulus slides, 
the volunteer was randomly asked about the pres-
ence of an object in the previous environment. In 
our paradigm, Level 1 SA (perception) was 
achieved by the visual perception of the questions 
being placed. Volunteers slowly transited to  
Level 2 SA (comprehension) while understanding 
the meaning of the question being asked. For 
example, one of the slides asked the volunteer to 
observe the color of text, where the text  
was “Eight” written in green color as shown in 
Figure 2. Thus, the volunteer had to observe all 
the choices, including a green-colored object and 
number eight and make a final choice by pressing 
a button in the same slide. At random times dur-
ing the task, the volunteers were inquired about 
the particular features in the previous environ-
ment with a question such as: did you notice this 
object in the previous environment? (Figure 2). 
These questions were modified and drafted to go 

in sync with Endsley’s original task (Endsley, 
1995a). These questions particularly triggered the 
bottom-top process, where the volunteer had to 
shift the attention to another additional goal, 
which was to focus on other elements in the envi-
ronment. Furthermore, volunteers were not 
trained for the occurrence of these random ques-
tions before the experiment.

Acquisition and Preprocessing Steps
Pretask resting EEG data acquisition and 

preprocessing.  Pretask resting-state EEG data 
were acquired using magnetic resonance imag-
ing (MRI) compatible Brain-Amp EEG ampli-
fier and electrode cap with 31 Ag/AgCl electrodes 
positioned according to the 10/20 system and 1 
electrocardiography (ECG) channel. The refer-
ence electrode was placed between Fz and Cz 
electrodes. Raw EEG data were sampled at 5 
kHz using a brain vision recorder, and electrode 
impedances were kept less than 10 kΩ. We 
recorded resting EEG on all volunteers while 
they were at rest in the MRI room. Resting-state 
EEG recording lasted for 6 minutes and included 
the eyes-closed condition. The eyes-closed con-
dition was chosen, as alpha rhythm which is the 

Figure 1. Schematic diagram of the methodology adopted in this study.
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EEG correlate of relaxed wakefulness, is best 
obtained while the eyes are closed. Furthermore, 
functional connectivity in the alpha band 
decreases in the eyes-open condition as com-
pared to eyes-closed condition (Barry & De Bla-
sio, 2017; Gómez-Ramírez, Freedman, Mateos, 
Pérez-Velázquez, & Valiante, 2017).

The acquired EEG data were corrected for 
gradient and cardio-ballistic artifacts using brain 
vision analyzer’s (BVA) algorithms, and ocular 
artifacts were removed using the independent 
component analysis (ICA) approach in BVA 
(Gajda, Sroka, Stencel, Wajda, & Zeglen, 2001). 
Then, the power spectral densities of the alpha 
band (8–12 Hz) of every channel were computed 
for the entire duration of resting acquisition 
using Welch’s overlapped segment averaging 
estimator. The spectral densities of alpha band 
power were then log transformed for further 
analysis.

fMRI data acquisition and preprocessing.  
Functional and anatomical MRI was performed 
in a 3 T MR Siemens scanner. During the SA-
task, fMRI scanning was carried out with a 

T2-weighted echo-planar imaging (EPI) sequence 
and 247 functional blocks were acquired. The 
other acquisition parameters were set as number 
of slices = 36, slice thickness = 3 mm, TR = 3,000 
ms, flip angle = 90°, TE = 36 ms, field of view 
(FOV) = 230 × 230. The whole-brain anatomical 
scan was also acquired using a T1-weighted 
sequence with the parameters TR = 1900 ms, flip 
angle = 9°, TE = 2.49 ms, FOV = 256 × 256. The 
acquired fMRI data were preprocessed, coregis-
tered, normalized to Montreal Neurological Insti-
tute (MNI) template, and smoothed using a 
Gaussian kernel (6 mm full width half maximum) 
in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/).

Data Analysis
Estimation of the SA Index as a behavioral 

measure of task.  Quantification of SA in previ-
ous literature has been done using Quantitative 
Assessment of Situational Awareness (QASA; 
Edgar et al., 2018; Nikolla, Edgar, Catherwood, 
& Matthews, 2018; Stanislaw & Todorov, 1999). 
QASA involves the collection and analysis of 
volunteers’ responses to true/false statements 

Figure 2. Schematic showing functional magnetic resonance imaging (fMRI) stimulus and 
baseline presentation paradigm for situational awareness (SA) task.
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using signal-detection theory (SDT) metrics. As 
this study aims to understand the Stroop effect 
on SA-task, we required to keep more than one 
task-irrelevant option along with the correct 
answer in the slides to bring more Stroop effect 
during task engagement. Hence, each slide had 
one correct answer (signal) and three wrong 
answers (noise). We have calculated Hits (H) as 
a ratio between the number of correct answers 
selected by the individual and the total number 
of correct answers. To calculate false alarm (F), 
we have grouped all three task-irrelevant 
answers in the slide as one false category. Hence, 
if the individual selects any one of the task-irrel-
evant stimuli as an answer, then it is considered 
as a single false category. Thus, a false alarm is 
estimated as the ratio between the number of 
task-irrelevant stimuli identified as correct and 
the total number of false. The purpose of doing 
this was to ensure that the volunteer uses his/her 
cognitive resources in observing all the options 
in addition to the hit. This assessment of true/
false from the answers of volunteers for the 
adaptation of signal-detection theory metrics, 
and eventual quantification of SA allowed us to 
assess the Stroop effect during the task engage-
ment. The additional slides which enquired 
about the presence of a particular object in the 
previous environment evoked yes-no responses 
from the volunteers. These yes-no responses on 
signal trials (when an object was present in the 
previous environment) and noise trials (when an 
object was absent in the previous environment) 
were also added to the proportion of hits (correct 
identification) and false alarms (incorrect identi-
fication). Hence, using the estimated H and F, 
SA Index was derived as,

SA Index
H F H F

H F
= +

−( ) + −( )
−( )

0 5
1

4 1
.

Ben-David, Chajut, and Algom (2012) have 
also employed a similar concept of SDT for 
analysis of emotional Stroop color and word 
task, where the percentage of correct identifica-
tion of color provided the rate of hits (H). In a 
complementary fashion, the percentage of incor-
rect identifications of color as word provided the 
rate of false alarms (F).

Subsequently, the behavioral score of SA-
task of each volunteer was combined in a vector 
form (SAall) as,

SA SA Index | to Nall i i= ={ }1

where N is the total number of volunteers who 
participated in the study. These estimations were 
implemented via programming in Matlab 
(2013).

Estimation of reaction time to corroborate 
Stroop effect on SA-task.  Reaction time was 
estimated specifically for slides involving the 
Stroop effect to validate its presence in SA-task. 
Mean reaction time was calculated for every vol-
unteer and combined in a vector form (RTall) as,

RT RT Index | to Nall i i= ={ }1

where N is the total number of volunteers who 
participated in the study. Subsequently, the 
robust correlation between response time, SA 
Index, and pretask alpha information were 
assessed.

Estimation of pretask resting alpha information.  
As mentioned in earlier sections, this study 
focuses on understanding the role of the pretask 
EEG alpha signatures in the outcome of the sub-
sequently performed SA-task. Hence, in this 
study, the pretask resting alpha information was 
assessed by measuring pretask resting absolute 
alpha (PRAA) power and its associated hemi-
spherical asymmetry through pretask resting 
alpha frontal asymmetry (PRAFA) index. The 
methods of estimating these two indices are 
explained as follows:

At first, the average PRAA values of every 
channel of each volunteer was estimated and 
organized as,

PRAA PRAA |
to N

to Mall i j

i

j
=

=
=









,

1

1

where N and M are the total number of volun-
teers who participated in the study and the total 
number of EEG channels, respectively. Each 
row in the matrix PRAAall contains details about 
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PRAA of every channel of a particular volun-
teer.

Furthermore, PRAFA was calculated through 
PRAFA index based on differences of absolute 
alpha values measured from frontal hemispheres 
(Ellis, Kinzel, Salgari, & Loo, 2017; Smith, 
Reznik, Stewart, & Allen, 2017) as given as fol-
lows,

PRAFA PRAFA | to Nall i i= ={ }1

where N is the number of volunteers, and 
PRAFAi  is the PRAFA of the ith volunteer 
which is estimated as log( )∝ − ∝Right Leftlog( ) . 
The ∝Right  is the median of absolute alpha values 
of F4, F8 channels and ∝Left

 was estimated by 
computing the median of absolute alpha values 
of F3, F7 channels for every volunteer. These 
channels were chosen because hemispheric 
asymmetry has been linked to mid-frontal (F3, 
F4) and lateral frontal (F7, F8) sites (Coan & 
Allen, 2003; Harmon-Jones, Gable, & Peterson, 
2010; Wheeler, Davidson, & Tomarken, 1993).

The PRAFA is an ideal index to assess neural 
mechanisms associated with the hemispherical 
asymmetry. Higher scores on the PRAFA index 
indicate relatively higher alpha power and lower 
inhibition in the right frontal hemisphere as 
compared to the left hemisphere. Many research-
ers (Klimesch, 2012; Sadaghiani & Klein-
schmidt, 2016; Uusberg, Uibo, Kreegipuu, & 
Allik, 2013) have observed that neural activity 
reflected by blood oxygenated level dependent 
(BOLD) signal, correlates negatively with alpha 
power. This suggests that higher PRAFA index 
is suggestive of higher neural activity in the left 
frontal hemisphere and vice versa. Numerous 
studies (Balconi, Finocchiaro, & Canavesio, 
2014; De Pascalis, Cozzuto, Caprara, & Ales-
sandri, 2013; Ferreira et  al., 2006; Harmon-
Jones et  al., 2010; Jones, Field, & Almeida, 
2009; Mennella, Patron, & Palomba, 2017; 
Papousek et  al., 2014; Schneider et  al., 2016) 
reflect the association of greater left frontal 
activity with a general approach or motivational 
system, and the greater right frontal activity with 
avoidance or withdrawal system.

Robust correlations among reaction time, SA 
Index, and pretask resting information.  Robust 
correlations were implemented in the robust 

correlation Matlab toolbox (Pernet, Wilcox, & 
Rousselet, 2013). This method protects against 
bivariate or univariate outliers. Pearson, Spear-
man, Bend, and Skipped correlation coefficients, 
as well as their bootstrapped confidence inter-
vals, were computed. Furthermore, both p val-
ues and confidence intervals were Bonferroni 
corrected for multiple comparisons.

To substantiate the influence of Stroop effect 
on SA, the robust correlation of reaction times 
pertaining to slides evoking Stroop effect was 
estimated with the SA Index as well as PRAA 
and PRAFA. Thus, RTall was correlated with 
SAall vector, PRAAall, and PRAFAall. Further-
more, to explore the role of pretask resting infor-
mation in the behavioral outcome of the subse-
quently performed SA-task, the robust correla-
tion of SA Index with PRAA and PRAFA was 
carried out. Each row of PRAAall was thus cor-
related with SAall vector to assess the most infor-
mative EEG channels which are associated with 
the behavioral outcome of subsequently per-
formed task. Eight EEG channels (fp2, poz, c4, 
pz, p7, cp1, o1, and oz) significantly correlated 
with the SA Index. Hence, their median was 
computed for the purpose of passing it as a 
covariate in the EEG-informed fMRI model to 
estimate the neural underpinnings of PRAA. 
Similarly, PRAFAall was also subjected to the 
robust correlation analysis with the SAall Index. 
The median value of the PRAFA was then used 
as a covariate in the EEG-informed fMRI model 
to assess the neural underpinnings of PRAFA.

Estimation of neural underpinnings of SA-
task, PRAFA, and PRAA.  The assessment of  
the neural underpinnings of the SA-task reveals 
the brain regions which are involved during the 
task. This has been estimated by the general 
linear model approach using statistical para-
metric model (SPM12). In this model, at first 
level of analysis, t-contrast was specified for 
testing the SA-task effect (active-baseline); 
where active comprised all the stimuli, and sta-
tistical parametric maps were constructed for 
canonical hemodynamic response function 
(HRF) and its temporal and dispersion deriva-
tives. These contrast images of each subject 
were then passed onto second-level group anal-
yses. Similarly, the neural underpinnings of 
PRAFA and PRAA were assessed through 
EEG-informed fMRI approach. Both PRAFA 
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and PRAA were subjected as a global covariate 
at the second level to two independent EEG-
informed fMRI models. The results of the sec-
ond-level analysis of the neural underpinnings 
of the SA-task as well as PRAFA and PRAA 
were subjected to the one-way analysis of vari-
ance (ANOVA) statistical method. The F-con-
trast was computed, and significant activations 
for the SA-task and PRAFA and PRAA were 
analyzed at family-wise error (FWE) corrected 
p < .05 significance.

Functional connectivity analysis.  This study 
aims to understand the modulation of neural 
underpinnings of SA-task by neural mechanisms 
of pretask resting alpha information. Therefore, 
functional connectivity analysis was carried out 
to understand the interaction between the neural 
underpinnings of SA-task with PRAA and 
PRAFA. It is estimated by assessing the mutual 
correlations of the mean hemodynamic response 
of different neural underpinnings pertaining to 
the SA stimuli. Specifically, the functional con-
nectivity between xth neural underpinning of 
PRAA (PRAA[x]) and yth neural underpinning 
of SA, SA(y) is estimated as,

	
Functional connectivity PRAA SA

HR HRPRAA

x y

Corr m x m

( ) ( )  =

( )
,

, SSA y( )( ) �

Similarly, functional connectivity between 
PRAFA and SA neural underpinnings is esti-
mated as

	
Functional connectivity PRAFA SA

HRPRAFA

z y

Corr m z m

( ) ( )  =

( )
,

, HHRSA y( )( )

In addition, the functional connectivity 
between xth neural underpinning of PRAA 
(PRAA[x]) and zth neural underpinning of 
PRAFA (PRAFA[z]) is further estimated as,

	
Functional connectivity PRAA PRAFA

HRPRAA

x z

Corr m x

( ) ( )  =

( )
,

,mm zHRPRAFA ( )( )

where m x m mzHR HR and HRPRAA PRAFA SA( ), ),(   
( )y  are the mean hemodynamic responses of 
the xth, zth, and yth neural underpinnings of 
PRAA, PRAFA, and SA, respectively, pertain-
ing to the SA stimuli during the task. The mean 
hemodynamic responses of every neural under-
pinning pertaining to PRAA, PRAFA, and SA 
are estimated by forming a vector whose ele-
ments are the average hemodynamic response 
of all the voxels of that specific neural under-
pinning corresponding to a particular SA stim-
uli block (Figure 3). For example, the mean 
hemodynamic response of xth neural underpin-
ning of PRAA, m xHRPRAA ( )  is estimated as,

	

m x
Avg m i xi

HR
HR N

Block index N
PRAA

PRAA
Blockindex

S

( ) =
=( )

=

| : ;

:

1

1 AABlocks













where Nx  is the total number of voxels in the 
xth underpinning of PRAA, and NSABlocks  is the 
total number of SA stimuli blocks performed 
during the task which in our experiment is 25. 
The mean hemodynamic response of every 
voxel pertaining to each stimulus was carried 
out by measuring time to peak (TTP) and width 
(W) of HRF for each stimulus (Lindquist, Meng, 
Atlas, & Wager, 2009). The TTP and W of each 
task stimulus were observed to be having mean 
values of 3.78 seconds and 1.9 seconds, respec-
tively. This suggests that the hemodynamic 
response of the task stimuli was very well con-
tained inside the block time of 4.5 seconds dur-
ing the task. Correlation threshold for the corre-
lation among the neural underpinnings of SA, 
PRAA, and PRAFA was set more than 0.5, and 
t-test (p < .05) for group analysis was performed 
for the in-depth understanding of the association 
between underpinnings of PRAA and SA, 
PRAFA and SA, and PRAFA and PRAA.

Results
As mentioned in the earlier sections, this 

study aims to understand the influence of neural 
mechanisms of pretask resting information on 
SA. Particularly, the SA-task is designed to have 
more influence from the Stroop effect; there-
fore, the ability of pretask resting information in 
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assessing the behavioral outcome of SA in those 
conditions can be studied. In addition, this study 
validated the existence of the Stroop effect in 
SA-task by correlating the reaction time which 
assesses the Stroop effect with the SA Index as 
well as pretask resting parameters. The study 
also focuses in bringing better clarity of inter-
actions between neural mechanisms associated 
with SA-task and pretask resting information 
through functional connectivity analysis. The 
pretask resting information has been assessed 
by estimating both PRAA and PRAFA. The fol-
lowing sections present the results of this study 
in detail.

Confirmation for the Presence of 
Stroop Effect During SA-Task

The results of robust correlations revealed 
significant association among the reaction time 
of the stimuli evoking Stroop effect in SA-
task with an SA Index. Strong and significant 
Pearson and Pearson-skipped correlation was 
observed between reaction time and SA Index 
measures (Figure 4a: Pearson r = .51, 95% 
CI = [0.07; 0.84], pcorr = .05; Figure 4b: 
Pearson-skipped rskipped = .51, 95% CI = [0.06; 
0.83]). Bend, Spearman, and Spearman-skipped  

correlations revealed insignificant p values for 
this analysis.

Similarly, reaction time revealed significant 
positive Pearson and Pearson-skipped correla-
tions with PRAFA (Figure 4c: Pearson r = .63, 
95% CI = [0.16; 0.87], pcorr = .011; Figure 4d: 
Pearson-skipped rskipped = .44, 95% CI = [0.03; 
0.75]). However, insignificant p values were 
revealed for Bend, Spearman, and Spearman-
skipped correlations. Furthermore, no signifi-
cant correlations were observed between reac-
tion time and PRAA. Hence, these results vali-
date the presence of the Stroop effect in SA-task.

Association of Pretask Resting 
Information With SA Index

The results of robust correlations revealed 
a significant role of pretask resting measures 
with behavioral performance in SA-task. In 
particular, robust correlation analysis revealed 
a strong and significant correlation between 
PRAFA and SA Index measures (Figure 5a: 
Pearson r = .56, 95% CI = [0.15; 0.79], pcorr = 
.01; Figure 5b: Spearman r = .61, 95% CI = 
[0.12; 0.90], pcorr = .007). Skipped (Pearson 
and Spearman) and bend correlations among 
PRAFA values and SA Index measures also 

Figure 3. Schematic showing the estimation of mean hemodynamic response of each 
stimulus for functional connectivity analysis.
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yielded stronger correlations (Figure 5c: Bend 
correlation coefficient = .51, 95% CI = [0.09; 
0.88], pcorr = .03; Figure 5d: Pearson rskipped = 
.56, 95% CI = [0.16; 0.79]; Spearman rskipped = 
.61, 95% CI = [0.12; 0.91]).

Similarly, PRAA was strongly correlating 
with the SA Index across eight electrodes. The 
correlation coefficients of all these channels, as 
well as the respective significance levels, have 
been tabulated in Supplementary Table 1. 
Median of PRAA of these strongly correlating 
eight electrodes have also revealed a significant 
positive correlation with behavioral SA Index 
(Figure 6a: Pearson r = .59, 95% CI = [0.23; 
0.88], pcorr = .005; Figure 6b: Spearman r = .59, 
95% CI = [0.09; 0.89], pcorr = .002). Skipped 
(Pearson and Spearman) and bend correlations 
among median of PRAA values and SA Index 
measures also yielded significant correlations 
(Figure 6c: Bend correlation coefficient = .62, 
95% CI = [0.18; 0.89], pcorr = .004; Figure 6d: 
Pearson rskipped = .76, 95% CI = [0.55; 0.91]; 

Spearman rskipped = .79, 95% CI = [0.51; 0.92]). 
Hence, these results reveal the significant asso-
ciation between pretask resting measures and 
behavioral performance of the subsequently per-
formed SA-task.

Neural Underpinnings of SA-Task
Figure 7 shows neural underpinnings of SA-

task (FWE corrected p < .05), and regions are 
tabulated in Supplementary Table 2. The signifi-
cant activations during the SA-task relative to 
the baseline were analyzed using the categorical 
approach. The baseline is the neural activity 
observed during fixation block of the paradigm, 
where no specific task was carried out except 
viewing standard blank slide with a cross. The 
group analysis of the generalized linear model 
(GLM) model showed significant neural activa-
tions in primary and high-level visual-processing 
areas including occipital fusiform gyrus, lateral 
occipital cortex (inferior and superior divi-
sion) and temporal-occipital fusiform gyrus. In  

Figure 4. Correlation plots between mean normalized reaction time and Situational Awareness Index: (a) 
Pearson correlation, (b) Skipped (Pearson) correlation. Correlation plots between mean normalized reaction 
time and pretask resting alpha frontal asymmetry: (c) Pearson correlation, (d) Skipped (Pearson) correlation.
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addition, significant involvement of frontal lobe 
(inferior, middle, and superior frontal gyrus) 
was also observed as neural underpinning of 
SA-task. The presence of activity in the visual 
cortex and occipital-temporal regions justified 
the attainment of Level 1 (perception) of SA, 
where primary and high-level visual-processing 
regions are involved. The significant activations 
in motor areas, precuneus, inferior, middle, and 
superior frontal gyrus, and posterior cingulate 
gyrus elucidate their role in high-order cogni-
tion required to form Level 2 (comprehension) 
and Level 3 (decision making) of SA.

Neural Underpinnings of PRAFA  
and PRAA

Reznik and Allen (2018) explored the frontal 
hemispherical differences of alpha as a predic-
tor, moderator, and mediator of emotional regu-
lation. However, it is still unclear which brain 
regions, in particular, are involved in mediating 
the emotional regulation during the SA-task. 

Thus, to decipher these neural underpinnings 
during the SA-task, PRAFA was passed as 
a global covariate in an independent EEG-
informed fMRI model. Figure 8 shows the neu-
ral underpinning of PRAFA as assessed by this 
EEG-informed fMRI model and details of the 
regions are tabulated in Supplementary Table 
3. The significant activations were observed in 
the parahippocampal gyrus, precuneus cortex, 
insular cortex, and parietal operculum cortex all 
at uncorrected p < .001.

Similarly, the neural underpinnings of PRAA 
as assessed by the independent EEG-informed 
fMRI analysis are shown in Figure 9, and the 
regions are tabulated in Supplementary Table 4. 
The neural underpinnings of PRAA revealed sig-
nificant activations in both frontal and temporal 
cortex at uncorrected p < .001. In particular, fron-
tal pole, middle frontal gyrus, superior frontal 
gyrus, and inferior frontal gyrus have shown 
stronger activation in the frontal cortex. In addi-
tion, right hippocampus, precuneus cortex,  

Figure 5. Correlation plots between pretask resting alpha frontal asymmetry and Situational Awareness 
Index and associated histograms of correlations for bootstrapped data: (a) Pearson correlation, (b) Spearman 
correlation, (c) 20% Bend correlation, and (d) skipped (Pearson and Spearman) correlations.
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cingulate gyrus, thalamus, inferior temporal 
gyrus, and middle temporal gyrus have also 
shown significant involvements. These regions 
are well known for their role in the emotional sta-
bility of the individual (Kassam, Markey, Cher-
kassky, Loewenstein, & Just, 2011; Kohn et al., 
2014). Furthermore, the PRAA has also revealed 
a correlation with neural activity in visual and 
attention regions such as an occipital pole, lateral 
occipital cortex, and temporal fusiform cortex.

Functional Connectivity Analysis
The functional connectivity between neural 

underpinnings of PRAFA and neural underpin-
nings of PRAA has revealed strong mutual inter-
action across those regions. Similarly, the func-
tional connectivity approach brought a better 
understanding of changes in neural mechanisms 
of SA-tasks by pretask resting information.

Connectivity between PRAA and SA neural 
underpinnings.  Figure 10 shows strong interac-
tions of frontal (frontal pole, middle frontal 
gyrus, and superior frontal gyrus) and temporal 

(middle temporal gyrus and temporal pole) 
underpinnings of PRAA with neural underpin-
ning of SA-task such as inferior frontal gyrus, 
middle frontal gyrus, precentral gyrus, motor 
cortex, occipital lobe regions (occipital fusiform 
gyrus and lateral occipital cortex), and parietal 
regions (precuneus cortex and postcentral 
gyrus). Furthermore, the subcortical underpin-
ning of SA-task in left putamen specifically con-
nected to frontal and temporal pole underpinnings 
of PRAA.

Connectivity between PRAFA and SA neural 
underpinnings.  The connectivity results re- 
vealed strong interactions of the insula (PRAFA 
neural underpinning) with postcentral gyrus and 
left putamen of the SA-task (Figure 10). Parietal 
operculum cortex of PRAFA neural underpin-
ning significantly correlated with many neural 
underpinnings of SA-task, such as lateral occipi-
tal cortex, occipital fusiform gyrus, postcentral 
gyrus, and precuneus cortex regions. Another 
neural underpinning of PRAFA, the precuneus 
cortex, correlated with the intracalcarine cortex, 

Figure 6. Correlation plots between median pretask resting absolute alpha values and Situational Awareness 
Index and histograms of correlations for bootstrapped data: (a) Pearson correlation, (b) Spearman correlation, 
(c) 20% Bend correlation, and (d) skipped (Pearson and Spearman) correlations.



Pretask Resting Information in SA-Task	 13

Figure 7. Neural underpinnings of situational awareness task as shown in (a) surface rendered 
view and (b) slice montage view. The activations are represented at family-wise error-corrected  
p < .05.



14	 Month XXXX - Human Factors

juxtapositional lobule cortex, lateral occipital 
cortex, middle frontal gyrus, occipital fusiform 
gyrus, postcentral gyrus, precentral gyrus, pre-
cuneus cortex, and right thalamus areas of SA-
task. On the contrary, parahippocampal gyrus 
showed no correlation with SA clusters.

Connectivity between PRAFA and PRAA 
neural underpinnings.  Figure 10 shows the 
connectivity within neural underpinnings of 
PRAFA and PRAA. The connectivity results  
(r > .5; p < .05) revealed a significant correlation 
of insula, parietal operculum cortex, and precu-
neus cortex (neural underpinnings of PRAFA) 
with frontal-temporal underpinnings of PRAA. 
Parahippocampal gyrus (neural underpinning of 
PRAFA) correlated explicitly with temporal 
pole underpinning of PRAA.

Discussion
Our study aims to explore the influence 

of pretask resting alpha information such as 
PRAFA and PRAA on SA. In particular, the 

SA-task is designed to have more influence 
from the Stroop effect; hence, the ability of 
pretask resting information in assessing the 
behavioral outcome of SA in those conditions 
can be studied. The study extends to explore the 
neural underpinnings of the task, pretask resting 
information, and revealed through functional 
connectivity analysis that neural underpinnings 
of PRAFA and PRAA significantly interact with 
neural underpinnings of SA-task and influence 
the behavioral outcome of SA.

SA generally possesses alternation between 
top-down and bottom-up processes. Top-down 
processing is a goal-driven process, where atten-
tion is directed in accordance with active goals. 
On the contrary, bottom-up is a data-driven pro-
cess, where perceived cues from the environment 
activate new goals. In this study, the neural 
underpinnings of the SA-task revealed signifi-
cant engagement of visual cortex and occipital-
temporal regions. The strong involvement of 
these regions pertaining to the memory (tempo-

Figure 8. Neural underpinnings of pretask resting-state alpha frontal asymmetry through 
electroencephalography informing situational awareness-task-based functional magnetic 
resonance imaging as shown in slice montage view.
The activations are represented at uncorrected p < .001.
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Figure 9. Neural underpinnings of pretask resting-state absolute alpha power through 
electroencephalography informing situational awareness-task-based functional magnetic 
resonance imaging as shown in (a) surface rendered view and (b) slice montage view.
The activations are represented at uncorrected p < .001.
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ral regions) and visual processing justifies 
hypothesis of Catherwood et al. (2014) that rapid 
memory operation is engaged during reversal of 
bottom-up cognitive operations in SA. Similarly, 
the strong arousal was observed in sensory, pre-
cuneus, frontal gyrus, and posterior cingulate 
gyrus during the SA-task. These regions have 
also been observed by Catherwood et al. (2014) 
and have been linked with cognition under uncer-
tainty. Hence, this study provides neuroimaging 
validation of regions associated with SA-task 
engagement as observed in the aforementioned 
study.

Validation of Presence of Stroop  
Effect During SA-Task

In this study, the increase in reaction time 
during the Stroop effect in SA-task correlated 
positively with the SA Index. This goes in line 
with the previous studies where delayed reac-
tion times were observed when the font color 
and the word were different compared to when 

they were the same (Klamklay, 2002; Repov, 
2004). This happens during the Stroop effect as 
the processing of a color impedes the simulta-
neous processing of a second stimulus attribute 
(word). Thus, our results suggest that the more 
the reaction time in Stroop effect, the better the 
performance in the task. Furthermore, Stroop 
effect’s reaction time also correlated positively 
with pretask EEG alpha parameter PRAFA.

Role of Pretask Absolute Alpha 
Information in SA-Task

The changes in alpha EEG oscillation are 
known to be a marker of inhibition caused by 
the neural activity. The neural underpinning as 
assessed by functional imaging facilitates to pin-
point the involvement of cognitive trait and state 
of the individual in the modulations of alpha 
oscillations. In this study, changes observed in 
pretask absolute alpha information have been 
revealed to be significantly modulating neural 
mechanisms associated with the subsequently  

Figure 10. Schematic showing functional connectivity of neural underpinnings of SA-task with 
PRAA and PRAFA underpinnings.
The interregional correlation was done at r > .5 (p < .05). The dotted arrow illustrates the 
functional connectivity of PRAA (frontal and temporal regions) with SA regions. The solid 
arrows illustrate the limbic association of PRAFA regions with SA-task regions and integration 
of dorsal/ventral pathways, memory regulation. SA = situational awareness; PRAA = pretask 
resting absolute alpha; PRAFA = pretask resting alpha frontal asymmetry.
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performed SA-task. This is evident through 
higher positive robust correlation observed 
between the SA Index and PRAA of eight chan-
nels (mainly posterior).

The neural underpinnings of PRAA observed 
in this study were primarily from frontal, tempo-
ral, and few parietal regions. Figure 10 clearly 
illustrates the strong functional connectivity 
between frontal-temporal regions of PRAA with 
neural underpinnings of SA-task. Although tem-
poral lobe is the hub of memory management, 
the functional connectivity between frontal and 
temporal lobes has also been studied (Kennis, 
Rademaker, & Geuze, 2013; Lacruz, García 
Seoane, Valentin, Selway, & Alarcón, 2007; 
Pfeifer et  al., 2009) for their association with 
emotional regulation and arousal of affect. This 
clearly explains the effect of PRAA on SA-task, 
as there is a demand for rapid memory manage-
ment for the purpose of comprehension and 
understanding of environments. Furthermore, 
the neural underpinnings of PRAA observed in 
the parietal regions such as angular gyrus, pre-
cuneus have been well studied as main areas 
involved in mentalization process (Frith & Frith, 
2006). This is one of the core cognitive resources 
recruited during comprehension stage of SA-
task.

Role of PRAFA in SA-Task
The hemispheric asymmetry and lateraliza-

tion of arousal of task-related neural activity 
are strongly connected with modulation of 
many cognitive state and trait behaviors, par-
ticularly approach/withdrawal behavior (Alves 
& Fukusima, 2009; Davidson, 1992; Spielberg, 
Stewart, Levin, & Miller, 2008). The EEG alpha 
asymmetry is one of the validated information 
which estimates the hemispherical asymmetry 
and associated cognitive state and trait behavior 
modulations. In this study, the high positive 
robust correlation of PRAFA with SA Index 
indicates the possible role of pretask cognitive 
state/trait behavior as assessed by the EEG 
asymmetry in the SA-task engagement. This 
further supports the suggestion of Catherwood 
et al. (2014) that asymmetry of brain processes 
is linked with neural mechanisms of SA.

Furthermore, neural underpinnings of PRAFA 
revealed areas of the limbic lobe (insular cortex 

and parahippocampal gyrus) and parietal cortex 
(precuneus and parietal operculum cortex). Dur-
ing SA-task, the perception and attention 
resources play a very important role in the 
behavioral outcome of the task (Thilakarathne, 
2015). The limbic region has direct access to 
perceptual information prior to sensory cortical 
systems and also modulates innate behaviors, 
including motivation and avoidance behaviors 
(Nishijo, Rafal, & Tamietto, 2018). In particular, 
the insula in limbic lobe plays a critical role in 
integrating bottom-up interceptive prediction 
error signals with top-down predictions from 
high-level cortical areas (Gu, Hof, Friston, & 
Fan, 2013; Klein, Ullsperger, & Danielmeier, 
2013; Lu et al., 2016).

Similarly, the role of working and episodic 
memory in SA-task is nicely explained by the 
neural underpinning of PRAFA and their func-
tional connectivity with neural underpinnings of 
SA-task (Figure 10). During SA-task, the indi-
vidual perceives the environment and encodes 
the situational information as episodic and work-
ing memory (Gutzwiller & Clegg, 2013; Heenan, 
Herdman, Brown, & Robert, 2014; Johannsdottir 
& Herdman, 2010). Any decay of this encoded 
information in episodic and working memory 
leads to loss of SA which pauses the individual to 
reassess the situations again (Gartenberg, Bres-
low, Mccurry, & Trafton, 2013). This is known as 
the resumption lag. The neural underpinnings of 
PRAFA (parahippocampal gyrus and posterior 
parietal cortex) are involved in regulation and 
maintenance of the episodic (Behrendt, 2013) 
and working memory (Schon, Newmark, Ross, 
& Stern, 2016). The situations are assessed by 
the individual by integrating informational and 
spatial content of objects in the situations and 
associated emotional and spatiotemporally infor-
mation (Behrendt, 2013). Posterior parietal 
regions which are part of the dorsal visual stream 
communicates spatial environmental informa-
tion through the parahippocampal cortex. The 
integration of objects and contextual emotional 
information (Aminoff, Kveraga, & Bar, 2013) 
with parahippocampal cortex are derived from 
the ventral visual stream (neural underpinning of 
SA-task) and insula. Thus, it is evidently clear 
that the neural underpinning of PRAFA controls 
key regions pertaining to understanding the  
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situations during the SA-task. Furthermore, a 
parietal association of PRAFA is also supported 
by many research work wherein precuneus forms 
a central hub for the link between the frontal  
and parietal regions (Bullmore & Sporns, 2009; 
Gong et  al., 2009; Iturria-Medina, Sotero,  
Canales-Rodríguez, Alemán-Gómez, & Melie-
García, 2008).

Limitation of the Study
In this study, SA-task is designed to have 

more influence from the Stroop effect; hence, 
the ability of pretask resting information in 
assessing the behavioral outcome of SA in those 
conditions can be studied. The robust correla-
tion of the reaction time with the SA Index of the 
individual has validated the presence of Stroop 
effect during the SA-task. However, the possi-
bility of association of pretask resting informa-
tion with other cognitive traits and states such 
as fatigue, mental workload (Borghini, Astolfi, 
Vecchiato, Mattia, & Babiloni, 2014) cannot be 
ignored. Hence, more elaborate research could 
be carried out in the future to reveal the role 
of specific cognitive/affective traits and states 
independently in the behavioral outcome and 
neural mechanisms of SA-tasks.

Conclusion
SA is a complex cognitive task, and this 

study explored the association of the neural 
mechanisms associated with pretask resting 
alpha information (PRAA and PRAFA) on SA. 
SA-task is designed to have more influence 
from Stroop effect and the ability of pretask 
resting information in assessing SA in those 
conditions has been studied. The positive corre-
lation of reaction time with the SA Index as well 
as PRAFA validates the presence of the Stroop 
effect in SA-task. Positive robust correlation 
of behavioral outcome of SA-task with PRAA 
and PRAFA suggests that the variability in an 
individual’s PRAFA and PRAA are vital param-
eters to be observed before SA-task. The present 
findings are also part of the first efforts in under-
standing the neural underpinnings of the SA-
task using functional imaging. Furthermore, the 
role of PRAA and PRAFA on the SA-task has 
been reinforced by assessing the functional con-
nectivity of SA-task neural underpinnings with 

PRAA and PRAFA underpinnings. The con-
nectivity results revealed a strong connection of 
the neural underpinnings of PRAA and PRAFA 
which are associated with cognitive and affec-
tive state/trait factors, with visual, memory, and 
high-order cognition regions involved in SA-
task. In particular, the connectivity of pretask 
alpha asymmetry with neural underpinnings of 
SA-task reveals the modulation of integration of 
perceived contextual information, emotion, and 
retrieval of memory associated with the SA by 
the pretask trait/state information. Our results 
are encouraging and could be employed in 
operations which involve maintenance of good 
SA, wherein neural mechanisms associated with 
pretask resting alpha information could be used 
as a reliable predictor of performance of an indi-
vidual in those operations.

Key Points
•• Pretask resting information correlates positively 

with SA.
•• Pretask absolute alpha correlates with frontal- 

temporal regions in SA.
•• Pretask absolute alpha controls emotional path-

ways during SA.
•• Pretask frontal alpha asymmetry correlates with 

limbic-parietal regions.
•• Pretask resting information facilitates memory-

visual integration in SA.

Supplemental Material
Supplemental material is available in the online 

version of the journal.
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Microstates-based resting frontal 
alpha asymmetry approach for 
understanding affect and approach/
withdrawal behavior
Ardaman Kaur1,2, Vijayakumar Chinnadurai1* & Rishu Chaujar2

The role of resting frontal alpha-asymmetry in explaining neural-mechanisms of affect and approach/
withdrawal behavior is still debatable. The present study explores the ability of the quasi-stable resting 
EEG asymmetry information and the associated neurovascular synchronization/desynchronization in 
bringing more insight into the understanding of neural-mechanisms of affect and approach/withdrawal 
behavior. For this purpose, a novel frontal alpha-asymmetry based on microstates, that assess 
quasi-stable EEG scalp topography information, is proposed and compared against standard frontal-
asymmetry. Both proposed and standard frontal alpha-asymmetries were estimated from thirty-nine 
healthy volunteers resting-EEG simultaneously acquired with resting-fMRI. Further, neurovascular 
mechanisms of these asymmetry measures were estimated through EEG-informed fMRI. Subsequently, 
the Hemodynamic Lateralization Index (HLI) of the neural-underpinnings of both asymmetry measures 
was assessed. Finally, the robust correlation of both asymmetry-measures and their HLI’s with PANAS, 
BIS/BAS was carried out. The standard resting frontal-asymmetry and its HLI yielded no significant 
correlation with any psychological-measures. However, the microstate resting frontal-asymmetry 
correlated significantly with negative affect and its neural underpinning’s HLI significantly correlated 
with Positive/Negative affect and BIS/BAS measures. Finally, alpha-BOLD desynchronization was 
observed in neural-underpinning whose HLI correlated significantly with negative affect and BIS. 
Hence, the proposed resting microstate-frontal asymmetry better assesses the neural-mechanisms of 
affect, approach/withdrawal behavior.

Understanding the neural mechanisms associated with functional hemispheric asymmetry of affect, approach/
withdrawal measures is one of the core focuses in neuroscience. Numerous studies revealed an association of 
functional hemispheric asymmetry with positive/negative affect and approach/withdrawal dichotomy. This link-
age was initially observed in many studies where left hemispheric lesion affected the perception of positive emo-
tions whilst damage to the right hemisphere impaired the perception of negative emotions1–3. Subsequently, there 
was a surge in elucidating the role of frontal hemispheric asymmetry based on the alpha signature of electroen-
cephalography (EEG) in manifesting the individual differences in affect and approach/withdrawal measures4–6. 
Davidson et al.7–9, in their studies, suggested the lateralization of the prefrontal cortex (PFC) with respect to 
positive/motivational valence. Thus, the right PFC was observed to be linked with avoidance/negative emotion 
and left PFC with approach/positive emotion. Nevertheless, Carver and Harmon-Jones10 showed the association 
of left hemisphere with negative emotion anger and thus proposed to eliminate the differentiation of positive and 
negative valence from the affective model. Subsequently, a larger number of studies concentrated on EEG frontal 
asymmetry through the induction of emotional/motivational states or tasks to understand the neural mecha-
nisms associated with the evoked approach/withdrawal behavior11–18 and other specific tasks19. This has led to 
ample literature which examined alterations in frontal EEG asymmetry in clinical and healthy populations20–28.

Although the aforementioned studies have proved EEG based frontal asymmetry assessment as a reliable 
indicator of affect, approach/withdrawal behavior during emotional tasks, it’s validity in healthy individuals dur-
ing resting still remains ambiguous. In one large resting EEG study, Tomarken et al.29,30 revealed a significant 
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negative correlation of resting Frontal asymmetry (FA; channel pair: F4, F3) with negative affect and positive 
correlation of resting Anterior Temporal Asymmetry (ATA; channel pair: T4, T3) with positive affect for female 
subjects. Jacobs and Snyder31, in their study, revealed the negative correlation of resting Frontal Temporal 
Asymmetry (FTA; channel pair: F8, F7) with negative affect in men, further Hall and Petruzzello32 showed that 
resting FA positively predicted the positive affect of both sexes. Pertaining to approach and withdrawal measures, 
studies by Harmon-Jones and Allen33 and De Pascalis et al.34 reported a significant positive correlation of 
approach measure, Behavioral Activation System (BAS) with resting FA. The aforementioned studies are in sync 
with the hypothesis that positive affect correlates positively with alpha asymmetry α α−lpha lpha(ln( ) ln( ))Right Left  
and links to the left hemisphere, howbeit negative affect correlates negatively with the same and associates with 
the right hemisphere. Conversely, in another study35, absolutely no significant relationship was observed between 
resting FA and measures of positive and negative valence for both sexes. Similarly, Schneider et al.36 observed an 
absence of correlation between resting alpha FA and measures of approach/withdrawal behavior. In contradiction 
to the above hypothesis, Hagemann et al.37 showed that subjects exhibiting greater relative left-hemispheric rest-
ing cortical activation at the anterior temporal site reported more intense NA in response to negative stimuli. 
Further, in the same line of research38, it was found that subjects scoring high on NA, demonstrated greater rela-
tive left-sided resting cortical activation at the anterior temporal region than subjects scoring low on NA.

Most findings of the aforementioned literature are based on two fundamental assumptions. Firstly, the above 
studies assume the acquired EEG to possess only stable cognitive information. Hence, these studies correlate 
the single session EEG information directly with affect and approach/ withdrawal measures. However, many 
studies29,39 revealed that the stable EEG patterns across previous sessions showed the interrelation of affect and 
approach/ withdrawal measures with frontal alpha asymmetry. This brings the importance of assessing the stable 
EEG patterns and information from single session recordings as unstable EEG information may be influenced by 
interference from many cognitive factors. Recent EEG studies of wakeful rest have shown that global electrical 
brain activity on scalp remains semi-stable for transient periods40,41. In specifics, there exists a finite number of 
scalp potential topographies in spontaneous resting EEG activity that remains stable for a definite time before rap-
idly shifting to a different topography that once again attains a stable state. These distinct epochs of topographic 
stability have been referred to as ‘EEG microstates’. Lehman et al.42 substantiated that EEG microstates represent 
blocks of consciousness, and these microstates are modulated by the content of the thoughts. Additionally, Milz 
et al.43 postulated the role of intracranial sources in the alpha band in predominantly determining these EEG 
microstate topographies. Further, Shafi et al.44, in their study, highlighted the role of microstates in individual 
variability of human fluid intelligence and in response to cognitive training. Howbeit, there is no study to date 
that has explored the quasi-stable state as assessed by EEG microstates for understanding frontal hemispheric 
asymmetry. Also, their ability over standard EEG frontal asymmetry in explaining affect and approach/with-
drawal dichotomy is still unmapped.

Further, the second important assumption is that EEG alpha power is inversely45–47 related to neural activa-
tion. Hence, an increase in neural activation in the left hemisphere is associated with the increase observed in 
frontal asymmetry scores. This enables us in concluding that the positive correlation of affect and approach/
withdrawal measures with frontal asymmetry score α α−lpha lpha(ln( ) ln( ))Right Left  is the resultant of left hemi-
spherical neuronal activity and vice versa. However, recently, many neuro-vascular studies48–51 have observed 
alpha-BOLD synchronization wherein the alpha power correlates positively with neural activation during task 
engagement. Hence, there is a need to fully understand the neurovascular coupling and neural underpinning 
associated with frontal EEG asymmetry5 and how alpha-BOLD synchronization or desynchronization during 
resting-state associates with affect and approach/withdrawal behavior. Few researchers brought better under-
standing by studying the role of hemispheric asymmetry in affect, approach/avoidance behavior through func-
tional MR imaging. Rohr et al.52 concluded that the affective elements in the underlying organization of emotion 
are predominantly associated with the network of right-hemispheric regions. Lindquist et al.53 proposed that the 
implementation of valence depends on a set of valence-general limbic and paralimbic brain regions. Though the 
above studies gave significant insights, the congruence between resting-EEG frontal alpha asymmetry and 
resting-fMRI is still uncharted. This is vital for a better understanding of neuro-vascular aspects of resting frontal 
asymmetry and their association with affect and approach/withdrawal behavior.

Hence, the present study proposes an EEG microstate based approach for assessment of quasi-stable frontal 
hemispherical asymmetry measures of resting-state affect and approach/withdrawal behavior. It further aims 
to compare the performance of microstate based frontal hemispheric asymmetry against the standard resting 
EEG frontal asymmetry measures. For this purpose, resting EEG was acquired from a sample of 39 healthy male 
subjects. This multichannel resting-EEG signal from all subjects was parsed into a limited number of distinct 
quasi-stable microstates. These microstates were back-fitted to each subject’s EEG data to obtain microstate 
time-series data specific to each subject. The microstate time-series was further filtered at alpha frequency band 
and EEG microstate based frontal asymmetry measures were derived from channel pairs F4/F3 (FA) and F8/F7 
(FTA). Further, the robust correlation of both standard and EEG microstate based frontal hemispheric asymme-
try with positive/negative affect (PANAS) and approach (BAS)/withdrawal (BIS) behavior was carried out.

Moreover, the study focuses on bringing a better understanding of neural mechanisms associated with func-
tional hemispheric asymmetry of affect and approach/ withdrawal behavior during resting-state. For this pur-
pose, standard and microstates based resting EEG frontal asymmetries were subjected to the EEG informed 
fMRI approach and the associated neural underpinning of both EEG frontal asymmetries were independently 
estimated. Thereafter, the hemodynamic lateralization index (HLI) based on the amplitude of hemodynamic 
response function (HRF) of regions part of the neural underpinning of both EEG frontal asymmetries were 
assessed. Further, the estimated HLI was subjected to a robust correlation with resting-state affect and approach/ 
withdrawal psychological scores. Finally, the results were analyzed to understand the ability of proposed EEG 
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microstate estimates in revealing neural-vascular insights of association of functional hemispherical asymmetry 
with resting-state affect and approach/ withdrawal behavior.

Results
Our study focused on exploring the ability of quasi-stable EEG microstate based frontal alpha hemispherical 
asymmetry measures against standard EEG frontal alpha asymmetry measures in explaining the resting state 
affect and approach/ withdrawal behavior for healthy young male volunteers during 1-time measurement. The 
standard alpha topographic maps (CSD referenced) and microstate alpha topographic maps are shown in Fig. 1. 
Evidently, the maps of standard alpha topography (CSD referenced) in Fig. 1b reveal the typical parietal-occipital 
alpha activity for eyes-closed resting-state condition54,55. However, the parietal-alpha activity is typical of standard 
alpha topographic maps and has not been observed and reported by any researchers in microstate alpha topo-
graphic maps so far. For assessing the association of EEG microstate based frontal hemispheric asymmetry with 
affect and approach/withdrawal behavior, robust correlation of PANAS and BAS, BIS measures with standard and 
EEG microstate FA and FTA was estimated. Subsequently, to better understand the neural mechanisms underly-
ing the proposed microstate and standard hemispherical asymmetry measures, they were subjected to the EEG 
informed fMRI, and their neural underpinnings were estimated. Further, to gain insights into the hemodynamic 
lateralization associated with the neural underpinnings and its linkage with affect and approach/withdrawal 
measures, HLI of both asymmetry measures neural underpinnings’ was calculated and subsequently subjected to 
the robust correlation with PANAS and BAS, BIS measures.

Robust correlation of frontal hemispherical asymmetry measures with psychological meas-
ures.  The robust correlation (Pearson, bend, spearman, and skipped) of proposed microstate and standard 
frontal hemispheric asymmetry measures with PANAS, BIS/BAS psychological scores are tabulated in Table 1.

Standard FA and FTA revealed no statistically significant correlation with PANAS as well as BIS/BAS meas-
ures. Similarly, proposed microstate based FA and FTA yielded insignificant low correlation with positive affect 
score.

Howbeit, negative affect scores revealed a strong and significant correlation with proposed microstate based 
FA and FTA. Specifically, microstates based FA yielded high pearson, bend and spearman correlations (Fig. 2a: 
pearson r = 0.35, 95% CI = [0.07; 0.58], pcorr = 0.04; Fig. 2b: bend r = 0.33, 95% CI = [−0.02; 0.61], pcorr = 0.05; 
Fig. 2c: spearman r = 0.36, 95% CI = [0.04; 0.62], pcorr = 0.03). Similarly, skipped pearson and spearman robust 
correlations of microstates based FA with negative affect scores has also yielded stronger correlations (Fig. 2d: 
pearson skipped = 0.35, 95% CI = [0.04; 0.57]; spearman skipped = 0.36, 95% CI = [0.005; 0.62]). In addition, a 
strong robust pearson, bend and spearman correlation of microstates based FTA with negative affect scores was 
observed (Fig. 3a: pearson r = 0.42, 95% CI = [0.13; 0.67], pcorr = 0.01; Fig. 3b: Bend r = 0.42, 95% CI = [0.05; 

Figure 1.  Topographic EEG maps of spectral power density for the alpha band for. (a) Proposed microstate 
based analysis and. (b) Standard analysis (CSD referenced). The color bar represents the log-transformed 
spectral power density (10*log10 (µv2/Hz)) where red represents the maximum and blue represents the 
minimum values.
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0.70], pcorr = 0.01; Fig. 3c: spearman r = 0.38, 95% CI = [0.02; 0.68], pcorr = 0.02). Skipped (pearson and spear-
man) correlations among microstates-derived FTA and negative affect scores has also yielded stronger correla-
tions (Fig. 3d: Pearson skipped = 0.42, 95% CI = [0.14; 0.67]; Spearman skipped = 0.38, 95% CI = [0.04; 0.68]).

EEG alpha frontal 
asymmetry Channel pair

Behavioral 
measure

Pearson Correlation Bend correlation Spearman correlation

Skipped correlation

Pearson Spearman

r p r p r p r t r t

Standard

F4/F3 (FA)

Positive affect 0.22 0.21 0.2 0.23 0.09 0.54 0.22 1.27 0.09 0.54

Negative affect −0.1 0.54 −0.04 0.8 −0.05 0.75 −0.1 −0.6 −0.05 −0.31

BAS −0.25 0.37 −0.16 0.56 −0.17 0.56 −0.25 −0.92 −0.17 −0.59

BIS −0.03 0.9 0.09 0.75 0.09 0.73 −0.03 −0.12 0.09 0.34

F8/F7 (FTA)

Positive affect 0.03 0.83 −0.11 0.52 −0.12 0.47 0.03 0.21 −0.12 −0.73

Negative affect −0.05 0.75 0.01 0.92 −0.004 0.97 −0.05 −0.31 −0.004 −0.02

BAS 0.18 0.52 0.17 0.55 0.13 0.65 0.18 0.65 0.13 0.46

BIS −0.14 0.62 −0.14 0.61 −0.3 0.28 −0.14 −0.5 −0.3 −1.12

Microstates

F4/F3 (FA)

Positive affect 0.03 0.84 0.08 0.61 0.12 0.46 0.03 0.2 0.12 0.73

Negative affect 0.35 0.04 0.33 0.05 0.36 0.03 0.35 2.13 0.36 2.2

BAS −0.09 0.74 −0.04 0.86 0 1 −0.09 −0.32 0 0

BIS −0.3 0.29 −0.41 0.14 −0.28 0.32 −0.3 −1.09 −0.28 −1.01

F8/F7 (FTA)

Positive affect 0.0003 0.99 −0.01 0.91 −0.01 0.92 0.0003 0.0018 −0.01 −0.09

Negative affect 0.42 0.01 0.42 0.01 0.38 0.02 0.42 2.64 0.38 2.34

BAS −0.17 0.54 −0.18 0.52 −0.18 0.53 −0.17 −0.62 −0.18 −0.64

BIS −0.32 0.25 −0.45 −1.7 −0.33 −1.22 −0.32 −1.19 −0.33 −1.22

Table 1.  Robust correlation (Pearson, bend, spearman and skipped) of standard and proposed microstate based 
frontal hemispheric asymmetry measures with psychological scores.

Figure 2.  Correlation plots between negative affect scores and microstate based FA (F4/F3) and associated 
histograms of correlations for bootstrapped data. (a) Pearson correlation. (b) 20% Bend correlation. (c) 
Spearman correlation. (d) Skipped (Pearson and Spearman) correlations.
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However, BAS measures yielded a statistically insignificant low correlation with proposed microstate asym-
metry. The analysis with BIS measures for both FA and FTA revealed high correlation, but the p-values remained 
insignificant.

EEG informed fMRI analysis.  The proposed microstate and standard hemispherical asymmetry meas-
ures were subjected to the EEG informed fMRI analysis to assess their neural underpinnings, respectively. The 
observed neural underpinnings were inferred with FDR corrected p-values less than 0.05, and a cluster size of 
more than 20 voxels were considered for analysis.

Neural underpinnings of standard hemispheric asymmetry.  Neural underpinnings of standard FA 
encompassed right as well as left-hemispheric regions (Fig. 4a). Table 2 comprises of these areas, their peak coor-
dinates, and cluster size. Specifically, in the right hemisphere, EEG frontal asymmetry negatively correlated with 
BOLD activity in occipital cortex with major clusters in lateral occipital cortex and occipital pole. Additionally, 
BOLD activity in temporal cortex also correlated negatively with standard FA. However, BOLD of parietal cortex 
regions, particularly postcentral gyrus, correlated positively with standard FA. Withal, in the left hemisphere, 
standard FA correlated positively with BOLD activity in the postcentral gyrus. However, activity in the occipital 
fusiform gyrus and temporal lobe regions correlated negatively with this alpha asymmetry measure. Majority of 
frontal lobe regions correlated negatively. However, superior frontal gyrus correlated positively (high t-value as 
compared to the right hemisphere) with standard FA.

Figure 4b shows the neural underpinnings of standard FTA. Both right and left hemispheres revealed positive 
as well as negative correlations between BOLD activity and standard FTA (Table 3). In the right hemisphere, 
BOLD activity in occipital lobe regions (cuneal cortex, lingual gyrus, and superior division of lateral occipital 
cortex) correlated negatively with standard FTA. Major clusters in the frontal lobe, specifically frontal pole, and 
activity in precuneus cortex also found a negative correlation with this frontal asymmetry index. In the left hem-
isphere, standard FTA correlated negatively with BOLD activity in Inferior frontal gyrus. Few clusters in parietal, 
occipital and temporal pole also correlated negatively with standard FTA. The neural underpinnings of standard 
FA showed left-hemispheric dominance whilst FTA revealed right-hemispheric dominance.

Neural underpinnings of microstate based EEG asymmetry.  Right and left-lateralized neural under-
pinnings of microstate based FA are shown in Fig. 5a. A complete list of activation clusters is provided in Table 4. 
In the right hemisphere, microstate based FA correlated negatively with BOLD activity in the frontal medial 
cortex and frontal pole regions of the frontal lobe. Similarly, BOLD activity in the posterior division of cingu-
late gyrus has also correlated negatively. However, few clusters in the frontal lobe, occipital lobe, and temporal 

Figure 3.  Correlation plots between negative affect scores and microstate based FTA (F8/F7) and associated 
histograms of correlations for bootstrapped data. (a) Pearson correlation. (b) 20% Bend correlation. (c) 
Spearman correlation. (d) Skipped (Pearson and Spearman) correlations.
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pole revealed a positive correlation with microstate FA. In the left hemisphere, resting-state microstate based FA 
correlated positively with major clusters in all lobes with frontal lobe having the maximum cluster extent. This is 
evident as microstates are known to represent the global brain activity.

Figure 5b shows the neural underpinnings in both right and left hemispheres for resting-state microstate 
based FTA. Table 5 comprises of these areas, their peak coordinates, and cluster size. In the right hemisphere, 
activity in the frontal lobe and limbic lobe regions correlated negatively with this EEG alpha asymmetry. BOLD of 
specific regions of the parietal lobe (Angular gyrus) and temporal lobe (Planum temporale) correlated negatively 
with microstate based FTA. Pertaining to the left hemisphere, activations in the frontal lobe and limbic lobe (a 
posterior division of cingulate gyrus) correlated negatively with microstate based FTA. Negative correlation also 
emanated from BOLD activity in specific regions of the parietal lobe (Angular gyrus, Superior parietal lobule) 
and lateral occipital cortex of occipital lobe. The neural underpinnings for microstate based FA and FTA showed 
left-hemispheric dominance.

Robust correlation of HLI with PANAS, BIS/BAS measures.  The correlation and p-values for all the signif-
icant results obtained for this analysis are tabulated in Table 6. The robust correlation between negative affect measure 
and HLI of neural underpinnings of microstate frontal alpha asymmetry yielded a significantly strong negative cor-
relation in the anterior division of the middle temporal gyrus. Further, superior frontal gyrus emerged as the positive 
correlate for correlation among positive affect scores and HLI pertaining to neural underpinnings of microstate alpha 
asymmetry. Moreover, the correlation of BIS measure with HLI pertaining to neural underpinnings of microstate fron-
tal alpha asymmetry yielded a significantly strong positive correlation in inferior frontal gyrus (pars triangularis) and 
frontal medial cortex. Further, the HLI of occipital fusiform gyrus correlated negatively with BAS measure.

Figure 4.  Surface rendered view of neural underpinnings of standard. (a) FA (channel pair F4/F3). (b) FTA 
(channel pair F8/F7). The color bar indicates the t-values with blue being the least and red being the highest. 
The activations are represented at FDR corrected p < 0.05.
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However, the robust correlation between negative affect measure and HLI of neural underpinnings of stand-
ard frontal alpha asymmetry yielded low and insignificant correlation with all cortical regions. Whilst correlation 
of positive affect scores with HLI pertaining to standard alpha asymmetry revealed a significant positive cor-
relation with the insular cortex. Further, the correlation of BAS and BIS measures with HLI revealed a low and 
insignificant correlation with all cortical regions pertaining to standard alpha asymmetry.

Robust correlation among frontal hemispherical asymmetry measures.  Figure 6 shows the 
Pearson robust correlation of proposed microstate frontal hemispheric asymmetry with standard frontal hemi-
spheric asymmetry measures. Proposed microstate based FA and FTA yielded insignificant low correlation with 

Cluster Center Region Cluster No. Voxels MNI Coordinates T-Stats

Right Hemispheric Activations

Frontal Lobe

Superior frontal gyrus 1 43 22 4 48 4.271

Parietal Lobe

Postcentral gyrus

1 246 50 −20 38 6.414

2 97 16 −28 44 8.087

3 33 14 −44 60 3.886

4 23 48 −26 64 −3.349

Superior parietal lobule 1 48 18 −46 64 4.345

Occipital Lobe

Lateral occipital cortex, superior 
division 1 96 38 −86 14 −4.214

Lateral occipital cortex, inferior 
division

1 31 36 −72 −30 −2.84

2 20 46 −80 2 −3.317

Occipital pole 1 96 22 −90 26 −4.04

Intracalcarine cortex 1 27 10 −80 10 −2.747

Temporal Lobe

Temporal pole 1 20 42 14 −32 −2.74

Limbic Lobe

Paracingulate gyrus 1 34 12 50 10 3.121

Insular cortex 1 38 34 −6 −2 9.396

Left Hemispheric Activations

Frontal Lobe

Superior frontal gyrus
1 118 −24 −4 62 7.828

2 26 −6 56 30 −3.36

Frontal medial cortex 1 117 −12 42 −10 −5.587

Frontal orbital cortex 1 60 −22 26 −18 −6.658

Precentral gyrus 1 60 −16 −26 40 6.636

Inferior frontal gyrus 1 27 −46 30 −2 −3.36

Parietal Lobe

Postcentral gyrus

1 147 −46 −26 38 5.015

2 36 −36 −28 70 3.992

3 21 −62 −8 22 2.715

Superior parietal lobule 1 132 −30 −46 64 7.511

Occipital Lobe

Occipital fusiform gyrus 1 159 −22 −84 −10 −3.179

Occipital pole
1 29 −16 −90 30 −3.58

2 20 −2 −98 0 −2.736

Temporal Lobe

Temporal Occipital Fusiform 
Cortex 1 159 −28 −66 −22 −2.946

Temporal Fusiform cortex, 
posterior division 1 39 −36 −14 −26 −3.441

Limbic Lobe

Cingulate gyrus, posterior division 1 34 −8 −54 28 4.73

Table 2.  Neural underpinnings of standard FA (channel pair F4/F3). The activations after correction for 
multiple comparisons are represented at p < 0.05 (FDR corrected). The coordinates reported are in Montreal 
Neurological Institute (MNI) space.
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Cluster Center Region Cluster No. Voxels MNI Coordinates T-Stats

Right Hemispheric Activations

Frontal Lobe

Frontal pole

1 67 26 54 22 3.822

2 385 46 38 10 −5.757

3 385 30 48 −12 −5.113

4 385 50 44 −10 −2.962

Subcallosal cortex
1 25 6 30 −4 6.522

2 20 6 14 −4 −3.574

Middle frontal gyrus 1 94 50 14 36 −8.063

Precentral gyrus 1 27 50 6 40 −3.411

Parietal Lobe

Precuneous cortex
1 392 28 −52 10 −4.401

2 392 22 −66 26 −2.890

Supramarginal gyrus, posterior 
gyrus 1 36 64 −46 32 3.054

Occipital Lobe

Cuneal cortex 1 392 8 −78 38 −5.546

Lateral occipital cortex, superior 
division 1 174 34 −62 46 −6.328

Occipital fusiform cortex 1 149 26 −68 −26 −4.764

Lingual gyrus
1 210 14 −58 −4 −2.931

2 48 2 −76 0 −2.582

Occipital pole 1 20 8 −96 2 −2.553

Temporal Lobe

Inferior temporal gyrus, 
temporooccipital part 39 56 −54 −14 −3.061

Central operculum cortex 28 36 −12 22 −2.751

Limbic Lobe

Insular cortex 56 30 20 8 3.558

Left Hemispheric Activations

Frontal Lobe

Inferior frontal gyrus
1 305 −50 32 16 −3.912

2 20 −46 16 26 −2.703

Middle frontal gyrus
1 42 −52 22 30 −3.196

2 21 −50 14 36 −3.502

Frontal operculum cortex 1 46 −34 18 12 3.808

Precentral gyrus
1 36 −6 −26 52 −2.984

2 22 −32 −20 72 −3.16

Parietal Lobe

Supramarginal gyrus, posterior 
division 1 32 −36 −44 36 −2.772

Postcentral gyrus 1 24 −62 −14 36 −2.86

Occipital Lobe

Occipital pole 1 60 −4 −94 22 −2.882

Lateral occipital cortex, superior 
division 1 26 −8 −86 38 −2.893

Lingual gyrus 1 42 −24 −54 2 −2.896

Temporal Lobe

Temporal pole 1 40 −50 10 −28 −3.633

Limbic Lobe

Parahippocampal gyrus, posterior 
division 1 175 −10 −38 −22 −5.375

Parahippocampal gyrus, anterior 
division 1 23 −30 −10 −30 −3.412

Cingulate gyrus, posterior division 1 22 −10 −40 2 −2.716

Table 3.  Neural underpinnings of standard FTA (channel pair F8/F7). The activations after correction for 
multiple comparisons are represented at p < 0.05 (FDR corrected). The coordinates reported are in Montreal 
Neurological Institute (MNI) space.
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standard FA and FTA. Pearson correlation among standard and microstate based FA and FTA revealed correla-
tion coefficients and p-values as Pearson r = −0.14, 0.013; pcorr = 0.37, 0.93 respectively.

Discussion
Valence56–59 and motivation hypothesis60 propose that higher values of positive affect/approach behavior and negative 
affect/withdrawal behavior are associated with the greater relative left and right cortical activation, respectively. These 
hypotheses are established in task-based EEG alpha asymmetry studies where the implications are based on alpha 
inhibition (desynchronization w.r.t BOLD) in event-specific regions45,47. Thus, following this abstraction, the 
above-mentioned hypothesis holds when standard frontal hemispheric asymmetry (ln( ) ln( ))Right Leftα α−  correlates 
positively with positive affect/ approach behavior and negatively with negative affect/withdrawal behavior. Howbeit, the 
validity of these hypotheses in resting-state recordings which involves sole perception and not induction of valence/
behavior still remains vacillating. The inconsistent results of the relationship between the standard resting frontal asym-
metry and affect and approach/withdrawal behavior are tabulated in Table 7. The line of studies by Tomarken et al.29,30 
and Jacob and Snyder31 supported the above hypothesis. Similarly, for approach/withdrawal dichotomy, Harmon-Jones 
and Allen33, Shackman et al.61, and De Pascalis et al.34 supported the above-mentioned hypotheses. Nonetheless, Sutton 
and Davidson35 and Schneider et al.36 observed no association of affect, approach/withdrawal dichotomy with frontal 
asymmetry, respectively. Conversely, the study by Hagemann et al.38 proposed that subjects with high negative affect 
exhibited high left cortical activation. Further, Hewig et al.62 propounded a higher approach measure to be associated 
with the bilateral frontal cortical activity. Hence, in order to bring more clarity, the present study aims to assess the 
capability of quasi-stable microstates based frontal hemispheric asymmetry in explaining the affect and approach/
withdrawal dichotomy as against standard frontal hemispheric asymmetry.

Figure 5.  Surface rendered view of neural underpinnings of proposed microstate based. (a) FA (channel pair 
F4/F3). (b) FTA (channel pair F8/F7). The color bar indicates the t-values with blue being the least and red 
being the highest. The activations are represented at FDR corrected p < 0.05.
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Prelude to the present research study.  This study primarily focuses on exploring the ability of EEG 
microstates based frontal hemispherical asymmetry measure against standard Davidson’s approach in explain-
ing mechanisms of the resting state affect and approach/ withdrawal behavior. The rationale for examining 
EEG microstates-derived frontal asymmetry was based on the specific observation that affect and approach/

Cluster Center Region Cluster No. Voxels MNI Coordinates T-Stats

Right Hemispheric Activations

Frontal Lobe

Middle frontal gyrus
1 32 42 34 40 5.93

2 26 44 4 58 3.035

Superior frontal gyrus 1 24 4 14 60 3.421

Frontal operculum cortex 1 20 40 22 4 3.036

Frontal medial cortex 1 59 4 44 −14 −6.743

Frontal pole 1 20 22 48 18 −3.366

Parietal Lobe

Precuneous cortex 1 23 6 −50 66 4.279

Occipital Lobe

Lateral occipital cortex, superior division 1 64 22 −58 48 4.138

Temporal Lobe

Temporal occipital fusiform cortex 1 60 32 −40 −28 3.691

Middle temporal gyrus, temporoccipital part 1 42 62 −50 −8 4.211

Inferior temporal gyrus,temporoccipital part 1 22 54 −38 −18 3.538

Central operculum cortex 1 22 50 −8 10 −4.769

Middle temporal gyrus, anterior division 1 23 52 0 −36 −5.849

Limbic Lobe

Insular cortex
1 48 40 14 −4 6.748

2 29 36 2 4 −3.17

Parahippocampal gyrus, posterior division 1 27 36 −28 −10 5.738

Cingulate gyrus, posterior division 1 106 8 −52 28 −3.381

Left Hemispheric Activations

Frontal Lobe

Inferior frontal gyrus 1 82 −54 10 14 5.142

Frontal operculum cortex 1 37 −40 24 6 3.055

Middle frontal gyrus
1 29 −42 30 42 2.89

2 42 −24 24 36 −7.953

Frontal pole 1 42 −22 40 32 −4.002

Precentral gyrus 1 41 −36 −10 66 −3.66

Parietal Lobe

Supramarginal gyrus, anterior division 1 57 −60 −30 46 3.13

Supramarginal gyrus, anterior division 2 23 −44 −36 44 3.112

Postcentral gyrus 1 23 −14 −38 76 3.168

Supramarginal gyrus, posterior division
1 22 −54 −42 54 3.485

2 35 −38 −48 36 −3.261

Precuneous cortex 1 144 −4 −58 42 −4.005

Occipital Lobe

Lateral occipital cortex, superior division

1 74 −42 −74 28 4.041

2 50 −28 −62 30 2.992

3 41 −30 −78 36 3.427

Lateral occipital cortex, inferior division 1 24 −30 −82 −28 −3.625

Occipital fusiform gyrus 1 21 −34 −86 −20 −3.382

Temporal Lobe

Temporal fusiform cortex, posterior division 1 66 −38 −48 −32 3.132

Inferior temporal gyrus, temporoocipital part 1 23 −58 −54 −14 2.967

Limbic Lobe

Parahippocampal Gyrus, posterior division 1 66 −22 −36 −20 3.035

Table 4.  Neural underpinnings of proposed microstate based FA (channel pair F4/F3). The activations after 
correction for multiple comparisons are represented at p < 0.05 (FDR corrected). The coordinates reported are 
in Montreal Neurological Institute (MNI) space.
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withdrawal measures associated significantly with stable EEG signatures. Microstate analysis estimates the 
global pattern of coherence across entire EEG channels from temporal EEG data and thus assesses patterns of 
quasi-stable activities. The interaction within a large scale brain network involves a rapid change in the dynamics 
of these quasi-stable activity patterns. Further, the neural mechanism associated with any cognitive process gen-
erally involves the coordinated activity of many neural assemblies located at different cortexes. Correspondingly, 
the neural mechanisms of resting-state affect and approach/ withdrawal behavior are also the result of one such 
coordinated activity of the large scale brain networks.

Thus, in this study, a novel approach is explored, which assesses the frontal hemispherical asymmetry of 
quasi-stable activity patterns (microstates) from large scale brain interactions of the resting state affect and 
approach/ withdrawal behavior. These EEG microstates based frontal hemispherical asymmetry measures are 
further subjected to the EEG informed fMRI analysis to estimate their neural underpinnings. Subsequently, the 
lateralization index, which measures the hemispherical asymmetry of these large scale brain networks based on 
their hemodynamic information, is measured and correlated with affect and approach/ withdrawal psychological 

Cluster Center Region Cluster No. Voxels MNI Coordinates T-Stats

Right Hemispheric Activations

Frontal Lobe

Frontal medial cortex 1 192 2 42 −12 −11.711

Frontal pole
1 81 8 50 42 −3.819

2 25 8 58 14 −2.958

Subcallosal cortex 1 68 6 28 −4 −4.043

Superior frontal gyrus 1 23 16 32 56 −3.107

Parietal Lobe

Angular gyrus 1 104 50 −56 28 −3.685

Occipital Lobe

Lingual gyrus 1 20 26 −56 2 −3.676

Temporal Lobe

Planum Temporale 1 124 62 −12 6 −3.416

Limbic Lobe

Cingulate gyrus, posterior division 1 203 4 −44 38 −5.841

Insular cortex 1 124 36 −12 14 −5.241

Left Hemispheric Activations

Frontal Lobe

Middle frontal gyrus

1 25 −42 34 24 3.014

2 51 −26 20 38 −3.049

3 25 −42 18 48 −3.022

Superior Frontal Gyrus

1 138 −4 52 36 −3.021

2 30 −6 40 50 −4.585

3 21 −2 14 66 −3.298

Frontal pole

1 138 −8 58 14 −6.323

2 75 −20 52 30 −3.548

3 21 −20 44 38 −2.748

Precentral gyrus 1 21 −36 −12 68 −2.877

Parietal Lobe

Supramarginal gyrus, anterior 
division

1 87 −62 −28 40 7.244

2 41 −44 −36 46 2.927

Angular gyrus
1 181 −46 −56 54 −3.641

2 181 −58 −54 36 −3.615

Superior Parietal Lobule 1 181 −34 −52 38 −2.478

Occipital Lobe

Lateral occipital cortex, inferior 
division 1 91 −30 −88 −18 −3.47

Temporal Lobe

Temporal pole 1 47 −44 10 −36 −4.092

Limbic Lobe

Cingulate gyrus, posterior division
1 386 −6 −48 36 −5.096

2 386 −4 −44 14 −2.506

Table 5.  Neural underpinnings of proposed microstate based FTA (channel pair F8/F7). The activations after 
correction for multiple comparisons are represented at p < 0.05 (FDR corrected). The coordinates reported are 
in Montreal Neurological Institute (MNI) space.

https://doi.org/10.1038/s41598-020-61119-7


1 2Scientific Reports |         (2020) 10:4228  | https://doi.org/10.1038/s41598-020-61119-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

measures. Lastly, the insights brought by the proposed EEG microstates based approach is compared with the 
standard EEG asymmetry measures to understand the effectiveness of microstate derived asymmetry measures 
in explaining resting-state affect and approach/ withdrawal behavior. The insights of the present study are sum-
marized in the following subsections.

Standard alpha asymmetry and its HLI reveal no correlation with PANAS and BIS/BAS meas-
ures.  The current study is in line with the observation of Davidson and colleagues35 and other earlier 
studies4,36,63, where no correlation was observed for affect and BIS/BAS measures with standard hemispheric 
asymmetry. However, these previous studies never explored the neurovascular underpinnings and associated 
hemodynamic asymmetry of these underpinnings. In the present study, the absence of linkage of standard hem-
ispheric asymmetry with affect and BIS/BAS measures is further strengthened by the lack of correlation of HLI 
of neural underpinnings of standard alpha asymmetry with PANAS, BIS, and BAS measures. This supports the 
understanding that neural mechanisms that are measured as standard EEG frontal alpha asymmetry may not 
be the marker to explain the affect and/or approach-withdrawal measures during resting state. It might possibly 
are influenced by the neural activity associated with other ongoing resting-state neural mechanisms, which limit 
its sensitivity towards the neural mechanisms associated with affect and approach-withdrawal measures during 
resting state. Thus, our finding strengthens the understanding that the standard EEG alpha asymmetry model, 
especially in the male population, is effectual in explaining affect or approach-withdrawal measures only when 
arousing situations such as those relying on mood induction procedures are present.

Microstates based asymmetry correlates with and delineates the neural mechanisms of 
Negative affect.  In contradistinction to the standard hemispheric asymmetry, the proposed microstates 
based measure brings better insights into the global coordinated activity of large scale brain networks pertain-
ing to negative affect. In this study, the robust correlational analysis revealed a positive correlation of negative 
affect with microstates based frontal hemispheric asymmetry. This implies that negative affect increases with an 
increase in right hemispheric alpha activity or a decrease in left-hemispheric alpha activity. Further, the most 
common neurovascular hypotheses state that when engaged in the task, the brain region exhibits suppression 
in alpha power with an increase in BOLD signal47. This causes a negative correlation between alpha power and 
BOLD signal and is termed as alpha-BOLD desynchronization. Figure 7 depicts these underlying dynamics for 
the association between alpha asymmetry measures and the BOLD signal during alpha-BOLD synchronization/
desynchronization. Following this, the positive correlation of negative affect with microstates based frontal hem-
ispheric asymmetry implies left-hemispheric interaction with negative affect. These observations do not support 
the valence hypothesis explained in the earlier section but goes in line with the observations by Hagemann et 
al.38, wherein negative affect has been linked to the left-hemisphere. Our results were also in line with a mood 
induction study by Gale et al.64, where negative mood increased with an increase in left frontal activation. Further, 
recently Farahi et al.65 showed the associativity of fear positively with the left hemisphere.

Additionally, neural underpinnings of microstate derived asymmetry revealed the involvement of temporal 
lobe regions. In this study, HLI ( −HRF Amp HRF Amp_ _n

R
n
L), which was estimated by utilizing the amplitude of 

the HRF of each neural underpinning of microstate based frontal asymmetry linked negatively the HLI of the 
anterior division of middle temporal gyrus neural underpinning to negative affect. This implies that relatively 

Hemodynamic 
Lateralization 
Index (HLI)

Behavioral 
measure

Cortical 
regions

Pearson 
Correlation

Bend 
correlation

Spearman 
correlation

Skipped correlation

Pearson Spearman

r p r p r p r t r t

Standard neural 
underpinnings

Negative affect No region 
survived — — — — — — — — — —

BIS No region 
survived — — — — — — — — — —

Positive affect Insular cortex 0.44 0.004 0.44 0.005 0.4 0.01 0.53 3.82 0.41 2.75

BAS No region 
survived — — — — — — — — — —

Microstates 
Neural 
underpinnings

Negative affect

Middle 
temporal 
gyrus, 
anterior 
division

−0.4 0.01 −0.38 0.01 −0.43 0.006 −0.4 −2.67 −0.43 −2.91

BIS

Inferior 
frontal gyrus 0.69 0.005 0.63 0.01 0.69 0.005 0.69 3.36 0.69 3.39

Frontal 
medial cortex 0.71 0.004 0.76 0.001 0.75 0.001 0.71 3.53 0.75 4.04

Positive affect Superior 
frontal gyrus 0.36 0.02 0.3 0.05 0.31 0.05 0.36 2.37 0.31 2.01

BAS
Occipital 
fusiform 
gyrus

−0.58 0.02 −0.57 0.03 −0.55 0.03 −0.58 −2.51 −0.55 −2.32

Table 6.  Robust correlation (Pearson, bend, spearman and skipped) of HLI based on standard and proposed 
microstate based frontal hemispheric asymmetry measures with psychological scores.
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left-lateralized HRF amplitude of temporal underpinning pertaining to microstate based frontal asymmetry is 
associated with negative affect. Studies in the past have connected left anterior temporal cortical activation as well 
as temporal lobe per se to the negative affect;66–69 this proves the efficacy of microstate based frontal asymmetry 
in explaining the neurovascular mechanism of negative affect which remains absent in the previous literature. 
Batut et al.70 signaled the involvement of mesial temporal regions in emotional processes; further, Yun et al.71 
showed that the angst for social communication in social anxiety disorder could be resultant of the imbalanced 
functional connectivity of left middle temporal gyrus. The association of anterior division of middle temporal 
gyrus with negative affect is plausible as studies72–74 have indicated the interaction between middle temporal 
gyrus and amygdala for better prediction of memory for emotional events. Hence, the middle temporal gyrus may 
be more tightly functionally coupled with affect specific regions for the memory of negative events. The signifi-
cant correlation of negative affect with temporal region’s HLI, which is independently measured from resting 
fMRI data for neural underpinnings of microstate frontal asymmetry and its relative left lateralization, also 
strengthens the finding of positive correlation of negative affect with microstate based frontal asymmetry meas-
ures (FA and FTA).

Microstate based asymmetry reveals no correlation with BIS, Positive affect, and 
BAS.  Microstate based asymmetry showed a high but insignificant correlation with BIS measure. It also 
showed no correlation with positive affect and BAS measure. One possible explanation for these findings is the 
fact that the positive affect scale is a diverse measure with components of joy, interest, and activation. Each one of 
these components might involve distinct and sometimes even opposite whole-brain activations75. Similarly, BAS 
is also composed of varied components (reward, drive, and fun)76. These varied brain activation patterns might 
not be producing definite patterns at cortical levels to be picked by the alpha power.

HLI of microstates neural underpinnings reveals significant association with BIS, positive 
affect, and BAS measures.  The hemodynamic lateralization measure of neural underpinnings of the 
proposed technique revealed a high and positive correlation of BIS in frontal cortical regions. Frontal cortical 
regions play a very important role in inhibition systems, and it has been one of the cornerstones of neuroscience 
research13,77,78. Further, Fuentes et al.79 also emphasized the association of individual differences in the behavioral 
inhibition system with the orbitofrontal cortex. Hence, our results suggest that the HLI, which constitutes the 
voxel-level hemispheric differences in HRF amplitude of neural underpinnings of microstates based asymmetry 
better manifests BIS measure. Further, though microstate based alpha asymmetry found no significant correla-
tion with positive affect and BAS measure, the HLI of occipital fusiform gyrus was found to strongly correlate 
with BAS measure. This is consonant with the hypothesis where the BAS system is proposed to be modulated 
by occipital cortices80. The nature of correlation was strong but negative and thus was inverse of the BIS system. 
Moreover, positive affect was correlated positively with hemodynamic lateralization measures in superior frontal 
gyrus. The link of the prefrontal cortex with positive affect is consistent with recent studies. Wager et al.81 showed 
the association of the prefrontal cortex with positive affect as compared to negative affect. Similarly, Roy et al.82 
observed more frequent activity was found in the prefrontal cortex during positive as compared with negative 
feelings. Hence, hemodynamic lateralization measures of microstates neural underpinnings bring better insight 
into the positive affect and BAS as compared to the standard EEG based hemispherical asymmetry measures.

Interestingly, the neural underpinnings (middle temporal gyrus (anterior division), inferior frontal 
gyrus, frontal medial cortex) whose HLI revealed significant correlation (r-value) with negative affect and 
BIS scores have been observed to be undergoing only alpha-BOLD desynchronization process. They were 
found to be either correlating positively in the left hemisphere or negatively in the right hemisphere. On 
the other hand, the neural underpinnings whose HLI correlated with positive affect and BAS scores have 

Figure 6.  Pearson correlation plots and associated histograms for bootstrapped data for correlation between. 
(a) Standard and microstate based FA (F4/F3). (b) Standard and microstate based FTA (F8/F7).
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revealed both alpha-BOLD synchronization and desynchronization. Particularly, superior frontal gyrus, 
which correlated with positive affect, underwent both alpha-BOLD synchronization and desynchronization. 
However, the occipital fusiform gyrus correlated negatively in the left hemisphere, which thus undergoes 
alpha-BOLD synchronization. Thus, the neural mechanisms involved in negative affect/withdrawal in the 
resting state exhibited only alpha-BOLD desynchronization. On the contrary, the positive affect and an 
approach relevant region involved both alpha-BOLD synchronization and desynchronization. However, the 
underlying innate cause of these mechanisms remains elusive and needs to be explored in the future. Thus, 
our finding implicates that microstates based frontal alpha asymmetry may provide newer insights into the 
association of alpha asymmetry with mood and personality measures in both healthy and clinical popula-
tions. The plausible explanation is that different cognitive states, including affect and approach/withdrawal 
behavior, generally involve coordinated activity of many neural assemblies located at the different cortex, 
and the microstate prototypes could represent these cognitive states.

Absence of correlation among proposed microstate and standard frontal hemispheric asym-
metry measures.  The proposed microstate based FA and FTA yielded an insignificant low correlation with 
standard FA and FTA. The proposed microstate based FA and FTA measure the quasi-stable coordinated brain 
activity and, in the present study, brings better insights into the large scale brain networks of negative affect. 
Previous works of literature29,39 have also emphasized the prominence of stability in the standard EEG patterns in 
bringing forth the linkage among standard frontal alpha asymmetry and affect and approach/withdrawal meas-
ures. Hence, the lack of correlation among proposed microstate and standard frontal hemispheric asymmetry  
measures might be caused by the unstable nature of standard EEG and its frontal alpha asymmetry indices, which 

Study
Alpha EEG 
Asymmetry (R-L) Mood Measures Subjects Main Results

Tomarken et al.136 FA (F4/F3);

Acquisition of resting EEG 
followed by the presentation 
of affective clips to obtain 
subjective ratings for 
emotional reactions

32 females,
Cohort A: 17 to 41 years
Cohort B: 20 to 54 years

Resting FA significantly 
predicted self-reported
global NA

Tomarken et al.29 FA (F4/F3);
ATA (T4/T3)

Resting EEG on two occasions; 
3 weeks apart; PANAS

90 females,
17–21 years

FA:↓NA
ATA:↑PA

Tomarken et al.30
Same as in 
Tokarman et al., 
1992a

Same as in Tomarken et al., 
1992a

85 females,
17–21 years

Same as in Tomarken et al., 
1992a

Jacobs and 
Snyder,199631

FA (F4/F3);
FTA (F8/F7)

Resting EEG on
1-time measurement; PANAS

40 males,
18–53 years FTA:↓NA

Sutton and 
Davidson,199735 FA (F4/F3)

Resting EEG on two occasions 
6 weeks apart
PANAS first session; BIS/BAS 
scales the second session

46 (23 females)
18–22 years

No correlation between FA 
and PA, NA, BAS, BIS

Hagemann et al.37 FA (F4/F3);
ATA (T4/T3)

Acquisition of resting EEG 
followed by the presentation 
of affective slides to obtain 
subjective ratings for 
emotional reactions

37 (22 females: 15 males: 
Mean age 24.5)

Subjects with greater relative 
left-sided anterior temporal
cortical activation reported 
more intense NA in response
to negative stimuli

Hagemann et al.38 FA (F4/F3);
ATA (T4/T3) Resting EEG; PANAS 36 (24 females)

Mean age 24.7

Subjects with high NA 
exhibited high left cortical 
activation at the anterior 
temporal site

Hall and 
Petruzzello, 199932 FA (F4/F3) Resting EEG and measures of 

physical activity; PANAS
41 (26 females)
Mean age 68.7 FA positively predicted PA

Harmon-Jones and 
Allen, 199733 FA (F4/F3);

Resting EEG from females who 
scored in the upper or lower 
third of the distribution of 
social anxiety scores; BAS,BIS

37 females FA:↑BAS

Hewig et al.62
FA (F4/F3);
FTA (F8/F7);
ATA (T4/T3)

Resting EEG on four occasions; 
four weeks apart; BAS, BIS

59 (30 females: Mean age 23; 
29 males: Mean age 25)

Higher BAS associated with 
bilateral frontal cortical 
activity

Shackman et al.61 FA (F4/F3);
FTA (F8/F7)

Resting EEG on two occasions; 
several weeks apart; BAS, BIS

51 females
Mean age 19.5

A significant relationship 
between BIS and FA. Higher 
BIS associated with right 
posterior DLPFC

De Pascalis et al.34 FA (F4/F3);
FTA (F8/F7) Resting EEG; BAS,BIS 51 females

Mean age 24.1
FA:↑BAS,
Higher BAS associated with 
left-sided activation in MFG

Schneider et al.36 FA (F4/F3); Two assessments of resting 
EEG; BAS, BIS

99 (50 females; 49 males aged 
10–12 years)

No correlation of BAS, BIS 
measures with FA

Table 7.  List of studies for positive/negative affect and approach/withdrawal dichotomy. EEG, 
Electroencephelography;↑Positive correlation;↓Negative correlation; FA, Frontal Asymmetry (F4/F3); FTA, 
Frontal Temporal Asymmetry (F8/F7); ATA, Anterior Temporal Asymmetry (T4/T3); BAS, Behavioral 
Activation System; BIS, Behavioral Inhibition System; PA, Positive Affect; NA, Negative Affect; DLPFC, 
Dorsolateral Prefrontal Cortex; MFG, Middle Frontal Gyrus.
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is caused by a substantial interference from many other cognitive factors. As this interference is different at dif-
ferent time points across volunteers, the standard EEG and its frontal alpha asymmetry are likely to correlate less 
with the quasi-stable patterns assessed by the proposed microstate frontal alpha asymmetry indices.

Limitation of the study.  The present study utilizes 39 volunteers’ data to validate the role of microstate 
based resting frontal alpha asymmetry in understanding the neural mechanisms of affect and approach/with-
drawal behavior. However, affect and approach/withdrawal behavior is known to be elicited by mood induction 
tasks. Hence, it is necessary to carry out future studies to validate the proposed microstate based frontal alpha 
asymmetry during such task engagements. Further, the current research involves healthy volunteers from the 
Indian urban population. Many studies83–85 in the past have revealed the association of affect and approach/
withdrawal behavior with the cultural, ethnic, and social background of the individuals. Thus, it is required to 
examine the proposed microstate based frontal alpha asymmetry approach in a larger population dataset, which 
includes individuals from various cultural, ethnic, and social backgrounds.

Also, the topographies of average-referenced, preprocessed standard EEG are known to represent the poste-
rior alpha than frontal alpha, and these topographies have also been studied in comparison with other referencing 
schemes54,86. However, the microstate analysis employed in the current study uses an average referencing scheme 
for frontal alpha asymmetry estimation. The present study follows average referencing for microstate analysis 
as various studies40,87 adequately understand the cognitive phenomena through average-referenced microstate 
estimations. Further, the effect of different EEG referencing schemes on microstate estimations is still not clearly 
understood. Extensive, systematic work needs to be undertaken to properly understand the role of varying EEG 
reference montages based microstate analysis in explaining frontal, posterior, and temporal EEG frequency sig-
natures and topographies.

Conclusion
The above study validates the effectiveness of resting quasi-stable microstate based asymmetry in explaining 
the neural mechanisms of affect and approach/withdrawal behavior for healthy young male volunteers during 
1-time measurement. The novelty of our work emanates from the fact that we estimated the frontal asymmetry 
of the alpha power from the average GFP amplitude of the quasi-stable microstates topographies, which might 
reflect the degree of coordination of the neurons underlying alpha-neural underpinnings. Microstate frontal 
alpha asymmetry correlated positively with negative affect scores, which are defended by the negative correlation 
of HLI based on microstates’ temporal neural underpinning with negative affect. Further, a significant association 
of HLI based on microstate neural underpinnings with positive affect, BAS and BIS measures concludes that the 
neural mechanisms of affect and approach/withdrawal dichotomy are better explained by the synchronized global 
firing of neurons and on-going activity of entire brain networks as assessed by quasi-stable microstates frontal 
alpha asymmetry. This study also stands unique in exploring the underlying neurovascular synchronization/
desynchronization mechanisms of microstate based frontal asymmetry measures. The analysis revealed that neu-
ral underpinnings involved both positively and negatively correlating brain regions, thus satisfying alpha-BOLD 
desynchronization and synchronization criteria. However, specifically the microstates neural underpinnings 

Figure 7.  Underlying dynamics associated with alpha asymmetry index and BOLD signal.
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whose HLI correlated with negative affect and inhibition involved alpha-BOLD desynchronization, however the 
positive affect and approach relevant regions involved alpha-BOLD synchronization as well as desynchronization.

Methods
Figure 8 depicts the schema of the methodology adopted in this study.

Sample and procedure.  Thirty-nine healthy participants (all males; age range 18–24 M = 19.57; SD = 1.28) 
took part in this study after providing a written and informed consent to the protocol. The experiment has been 
carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki), 
and all measurements were also approved by the Institute of Nuclear Medicine and Allied Sciences (INMAS) 
institutional ethical committee (Number: ECR/824/Inst/DL/2016). All subjects were volunteers recruited among 
university students and were right-handed. Subjects completed a personality questionnaire for positive affect and 
negative affect and Behavioral inhibition system (BIS)/Behavioral approach system (BAS). The questionnaires 
were in the English language, and all the volunteers were fluent in the English language. The resting-state fMRI 
and EEG data analyzed in this paper were collected after the subject completed the psychological questionnaires. 
The simultaneous EEG-fMRI resting-state recording lasted for 6 minutes with eyes closed condition.

Behavioral measures.  To assess the dispositional affect and approach/withdrawal parameters in resting 
state, PANAS scores, and BIS/BAS measures were evaluated for each individual. We also estimated the Profile of 
mood states using POMS scores for prior exclusion criteria. Table 8 presents descriptive characteristics for the 
study participants with the mean and standard deviation values.

Positive and negative affect.  Positive and negative affect scores were evaluated for each volunteer. Positive 
and Negative Affect Schedule (PANAS) consists of mood scales designed to assess affect at the present moment88. 
These scales are highly uncorrelated, stable over time, and consistent, and both scales demonstrate good conver-
gent and discriminant validity89,90. Positive and negative affect scores showed good internal consistency in our 
study (Cronbach’s alphas = 0.89; 0.91).

Behavioral approach system (BAS)/behavioral inhibition system (BIS).  BIS and BAS scores were 
calculated for each subject91 and evaluation included 24 items (20 score-items and four fillers, each measured on 
four-point Likert scale), and two total scores for BIS (range = 7–28; 7 items) and BAS (range = 13–52; 13 items). 
In our study, BIS and BAS scales showed good internal consistency (Cronbach’s alphas = 0.93; 0.92).

POMS (Profile of mood states).  Volunteers were also asked to fill in forms for the POMS92. It measures six 
different dimensions of mood swings, namely Tension or Anxiety, Anger or Hostility, Vigor or Activity, Fatigue 
or Inertia, Depression or Dejection, Confusion, or Bewilderment. These scores formed the basis for exclusion 
criteria. All selected volunteer returned self-report scores for all the modes within a relatively normal range.

Simultaneous EEG-fMRI data acquisition and preprocessing.  MRI data was acquired in a Siemens 
3 T scanner. After acquiring a high-resolution T1-weighted anatomic rapid gradient-echo image (T1 MPRAGE 
sequence TR 1900ms, TE 2.49 ms, FA 9°, 160 slices with slice thickness 0.9 mm and distance factor of 50%, 
FoV 240 mm with voxel size 0.9 × 0.9 × 0.9 mm), we acquired 205 T2*-weighted EPI images for resting-state 
eyes-closed condition (T2* EPI sequence: TR 2000ms, TE 30 ms, FA 90°, 30 slices with thickness 5 mm and dis-
tance factor 0%, FoV 240 mm with voxel size 3.8 × 3.8 × 5.0 mm). Continuous EEG data were acquired simulta-
neously during resting state T2* acquisition using a 32-channel MR-compatible brain vision cap. The electrodes 
were placed according to the international 10–20 system with a separate electrode called the Reference electrode, 
placed between Fz and Cz electrodes, that provided the reference for recording the data. Electrocardiogram 
(ECG) was also recorded. The impedance level for each electrode was kept less than 5 KΩ. The recorded EEG 
signal was digitized and transmitted with a sampling frequency of 5000 Hz. The acquisition of EEG signals was 
accomplished using Brain vision analyzer software.

The fMRI data preprocessing for 205 resting-state volumes was done using the default preprocessing pipe-
line for volume-based analysis in CONN software. The pre-processing procedure included the realignment and 
unwarping of T2*-weighted image with the mean functional image for motion correction followed by the trans-
lation of center to (0, 0, 0) coordinates and slice time correction of functional data. Functional outlier detection 
(ART- based identification of outlier scans for scrubbing) was performed, followed by segmentation and direct 
normalization to MNI space. Next, functional smoothening with a Gaussian Kernel with FWHM of 6 mm was 
carried out. Further, translation of structural center to (0, 0, 0) and simultaneous structural segmentation and 
normalization were performed.

EEG data were corrected for gradient artifact using the Brain vision analyzer’s93,94 average artifact subtrac-
tion algorithm (AAS)95,96. A template from MR scanner artifacts was created by averaging the MR scanner 
artifacts over fixed intervals which were accurately specified by utilizing the fMRI volume markers (labeled as 
‘TR’). Subsequently, this average was subtracted from the EEG data. Further, the gradient artifact removed data 
accommodated six seconds of data prior to the start of the first fMRI block acquisition (identified by the first TR 
marker). These six seconds is the time the fMRI pulse sequence prepares itself before acquiring the first fMRI 
block. This prior time interval accommodated gradient-contaminated ECG; hence we truncated these 6 seconds 
prior data and subjected only the data pertaining to the fMRI volumes to the subsequent cardio ballistic (CB) 
artifact removal. The CB artifact removal was performed in the FMRIB plugin. The method detects the QRS peaks 
in the ECG data using combined adaptive thresholding97 and Teager energy operator98, followed by a correction 
algorithm. Further, the removal of the CB artifact is performed based on the Optimal Basis Set (OBS) method99.
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In addition, we also employed the HAPPE toolbox100 for further ensuring the quality of conventional EEG 
artifact removal from the scanner and CB artifact corrected datasets. The following steps utilizing the HAPPE 
toolbox were adopted. First, the scanner and CB artifact removed data were subjected to the filtering process with 
0.1 Hz high pass and 70 Hz low pass filtering, and all the EEG channels were selected for further analysis. This was 
followed by removal of the electrical (line) noise using the Cleanline plugin101 of EEGLAB. The functionality of 
HAPPE was utilized next to identify and remove the contaminated channels. HAPPE identifies the contaminated 
channels by evaluating the normed joint probability of average log power across all the channels and rejecting 
the channels whose joint probability is more than three standard deviations. Wavelet enhanced ICA (W-ICA) 
approach was implemented subsequently to correct for EEG artifact while retaining the entire length of the data 
file. The W-ICA approach removes ocular and muscle-related artifacts and also improves the decomposition of 
later performed ICA, which eventually rejects artifact components. Next, independent components (ICs) with 

Figure 8.  Schema of the methodology adopted in this study.

Variable Mean (M) Std. Dev (SD)

Age 19.57 1.28

Positive Affect scores 39.66 5.66

Negative Affect scores 14.64 4.29

BAS scores 23.42 3.5

BIS scores 15.28 2.7

Table 8.  Demographic and behavioral characteristics of study participants (N = 39).
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the extended infomax independent component analysis (ICA) were computed, and the MARA plugin102,103 of 
EEGLAB was employed for automatic component rejection. MARA evaluates each component on six features 
and eventually assigns a probability of artifact contamination to that component. Further, HAPPE’s pipeline auto-
matically rejected any components with artifact probabilities higher than 0.5. Subsequently, segmentation of data 
based on the markers, rejection of segments, and interpolation of removed channels were carried out. Finally, the 
processing report about the quality of data was generated. The EEG preprocessing procedures in this study have 
been explained in detail in Supplementary methods and discussion section. Further the processing report about 
the quality of data for all volunteers has been tabulated in Supplementary Table 1.

To ensure the quality of preprocessing, we also subjected both raw and final artifact removed EEG data (CSD 
referenced) to the estimation of the power spectrum between 0.2 Hz to 50 Hz frequency range. The median power 
spectrum plots of both raw and final artifact removed EEG data (CSD referenced) for channels F3, F4, F7, F8, 
Pz, Oz, and POz are shown in Supplementary Figs. 1 and 2 respectively. The median spectral power of artifact 
removed EEG data clearly reveals parietal and occipital alpha and beta bands. Data was down-sampled to 250 Hz 
for further analysis.

Assessment of frontal hemispherical asymmetry measures.  The main objective of the study was to 
understand the neural mechanisms associated with the affect, approach/withdrawal behavior, as explained by the 
hemispherical asymmetry measures. For this purpose, the present study proposes an EEG microstate based fron-
tal hemispheric assessment approach and aims to compare its advantage over the standard EEG frontal asymme-
try approach. The following subsections explain the methods for estimating the proposed EEG microstate based 
frontal hemispheric asymmetry as well as the standard frontal EEG asymmetry.

EEG microstates based estimation of hemispheric asymmetry.  Many recent studies40,104,105 have 
clearly indicated that individual brain functions involve massive parallel processing in distributed brain net-
works. These distributed brain networks are observed as the scalp field potential in EEG, and the state of global 
neural activity is measured as a topographical map at that moment of time. The changes in this topography reflect 
changes in the global coordination of neural activity over time. EEG microstates were proposed to represent 
changes in behavior, thoughts, and emotions and can be classified into few topographies, which have explained 
90% of the variance of continuous EEG. Microstate analysis considers millisecond time range signal from all 
electrodes to create a global picture of a functional state during that interval.

The schema of the methodology adopted for microstate estimation is explained in Fig. 9. The aim of a 
microstate analysis is first to segment EEG maps into microstate prototypes and second to re-express the 
spatial-temporal characteristics of the time series of EEG through these microstate prototypes.

In this study, let X be the time series EEG information that was acquired from the volunteers. At first, the EEG 
data X has been pre-processed for removing the artifacts and was referenced to the average referencing. Then, it 
was subjected to the estimation of Global field power (GFP). GFP is the measure of global brain response to an 
event and is represented as:
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where Xi is the measured potential at the ith electrode at a given time-point t, Xmean is the mean value of all Xi’s 
and C represents the total number of channels. GFP, therefore, represents the standard deviation of the electrode 
values and indicates, on average, how strong potential is being recorded across the electrode montage106. For each 
volunteer, a selection of data points for the further processing has been carried out by filtering estimated GFPs 
based on minimum peak distance of 20 milliseconds, and the threshold amplitude of one standard deviation of 
estimated GFP. Then, the filtered EEG data points of every individual are concatenated to form the GFP datasets 
for further clustering process as follows:

χ = … … ….x x x{ , , } (2)GFP GFP GFP
S1 2

where χ is of the concatenated GFP dataset and xGFP
i are selected data points based on the GFP criteria of the ith 

volunteer, and S is the total number of volunteers. In this study, thirty-nine volunteers dataset has been subjected 
to analysis.

Further, concatenated GFP dataset χ was subjected to the clustering process through the modified K-means 
clustering algorithm107. Modified K-means clustering algorithm requires the initialization of both number (K) of 
microstate prototype vectors and their components values108. Thus, the clustering algorithm was randomly initial-
ized with a set of microstate prototype vectors as the center of initial clusters as follows:

= | =Z z i to K{ 1 } (3)i

where K is the total number of microstate prototype vectors (cluster center). In this study, the K is initialized with 
8. The clustering algorithm was allowed to iterate and minimize the orthogonal euclidean distance between the 
data points in χ as given below.

τ = arg Dmin{ } (4)n
k

kn
2
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where τn represents the microstate label for nth sample, χn represents the nth time sample of the concatenated 
dataset, zk represents the prototypical map for the kth microstate cluster and Dkn represents the distance between 

nχ  and microstate k for the nth time sample. Thus, this clustering algorithm allocates each EEG sample to the 
cluster whose prototype it is most similar to and then re-estimates microstate prototypes by averaging newly 
assigned samples107. The maximum number of iterations was set to 1000, and the threshold for convergence was 
set at 1e−6 for analysis in this study.

Subsequently, a review of goodness of fit and selection of active microstates is carried out based on global 
explained variance (GEV) and cross-validation (CV) criterion. It basically evaluates how well microstate seg-
mentation explains the EEG data, which has been used to estimate the prototypes. Therefore, GEV measures how 
similar the EEG sample and the microstate prototype are; and is calculated as follows.
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where nχ represents the nth time sample of the concatenated dataset, z
nτ
 ( k)nτ = is the prototypical map for the 

kth microstate cluster and xGFPn
 represents the nth time sample of the GFP data, and N represents the total number 

of time samples in concatenated dataset χ. GEV is thus the correlation between the EEG dataset and associated 
microstate prototype weighted by the EEG dataset’s fraction of the total squared GFP107. Thereafter to calculate 
the GEV for a given cluster, the GEV of its members is summed. Subsequently, CV which is a measure related to 
the residual noise ∈ is estimated as,
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where σ2 is the variance of the residual noise, C is the number of EEG channels, N represents the total number of 
time samples in concatenated dataset χ, and K is the number of clusters. The aim is to obtain a low value of CV. 
The active microstate prototypes obtained in this study are consistent with the normative EEG microstate classes 
identified by many studies40,41,87,109–111.

Following the selection of an active number of microstate prototypes, the EEG of each volunteer is re-expressed 
as a sequence of microstate classes by back-fitting these active microstate prototypes on each volunteer’s EEG 

Figure 9.  Schema of the methodology adopted for proposed microstate estimation and assessment of standard 
and microstates based frontal alpha hemispheric asymmetry measures.
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data. Back fitting implies assigning microstate labels to the EEG dataset based on the dataset’s topographic simi-
larity with the microstate prototype. The estimated re-expressed back fitted dataset is represented as follows

X where Z{ } (9)re expressed n n kµ µ= | ∈− ′

µ = arg GMDwhere min( )n n

The global map dissimilarity (GMD) index measures the topographical similarity between each microstate 
prototype vector with the EEG sample vector. The GMD is calculated as,

=
− ′

′GMD
C (10)n

X
X

z
z

n

GFPn

k

GFPk

where Xn represents the nth time sample of the preprocessed dataset, zk′ represents the prototypical map for the 
kth microstate cluster. In an ideal condition, if the microstate prototype vector and the EEG sample vector of inter-
est are having the same topographic distribution, then the GMD index will be zero. In case, if both the vectors are 
topographically opposite, then GMD index would be positively higher. Hence, in this study, instead of the thresh-
olding the GMD index, the microstate prototype vector, which yields a very less GMD index, is chosen as the label 
for that particular EEG sample vector. Finally, microstates statistics using labels obtained from back-fitted proto-
types were calculated.

Subsequently, the amplitude of the microstate prototype vector associated with each label in microstate 
re-expressed EEG data of every individual is subjected to the alpha band power (8–12 Hz) estimation. The esti-
mated alpha power map of the microstate re-expressed EEG data was used to estimate EEG microstate based 
frontal hemispheric asymmetry as follows:

Asymmetry X Xln( ( ) ln( ( ) (11)MS re expressed
Right

re expressed
Leftα α= −− −

X( )re expressed
Rightα −  and α −X( )re expressed

Left  are the alpha powers measured at the right and left hemispheric channel 
of microstate re-expressed EEG data, respectively.

Standard EEG estimation of hemispheric asymmetry.  In order to estimate standard frontal asymme-
try, the preprocessed EEG data is first re-referenced to CSD reference using the CSD toolbox112,113. Recent work 
suggests that the CSD transformation reduces the influence of non-frontal sources to frontal asymmetry and may 
provide a better index of individual differences in frontal asymmetry114. Subsequently, the power spectral density 
(PSD) of alpha frequency (8–12 Hz) was extracted. The estimated alpha power map EEG data was used to calcu-
late standard EEG frontal hemispheric asymmetry as follows:

Asymmetry X Xln( ( ) ) ln( ( ) ) (12)Standard
Right Leftα α= −

X( )Rightα  and X( )Leftα  are the standard alpha powers measured at the right and left hemispheric channels of indi-
vidual EEG data, respectively.

Table 9 presents the median and median absolute deviation values for EEG asymmetries for mid-frontal and 
lateral-frontal sites.

Robust correlation of frontal hemispherical asymmetry measures with psychological meas-
ures.  Further, estimated EEG microstate and standard frontal hemispherical asymmetries are correlated with 
PANAS and BAS, BIS measures. These robust correlations were carried out for hemispherical measures that are 
estimated for both channel pairs F4/F3 i.e. Frontal Asymmetry (FA) and F8/F7 i.e. Frontal Temporal Asymmetry 
(FTA) independently. The rationale for choosing these channels was based on the linkage of hemispheric asym-
metry to mid-frontal (F3, F4) and lateral frontal (F7, F8) sites39,60,115. Robust correlations were implemented in 
Robust correlation Matlab toolbox116. This method detects and protects against any bivariate or univariate out-
liers. Pearson, Bend, and Spearman correlation coefficients, as well as bootstrapped confidence intervals, were 
computed to evaluate each correlation. Both p-values and confidence intervals were Bonferroni corrected for 
multiple comparisons.

Assessment of neural mechanisms associated with functional hemispheric asymmetry meas-
ures.  One of the focuses of the present study is to understand the neural mechanisms associated with proposed 
and standard functional hemispheric asymmetry measures in explaining the affect and approach/ withdrawal 
behavior during resting state. For this purpose, both proposed and standard hemispheric asymmetry measures 
were subjected to the EEG informed fMRI, and their neural underpinnings were estimated. Subsequently, the 
lateralization index based on differences in the amplitude of hemodynamic response of neural underpinnings of 
both hemispheric asymmetry measures was assessed. Finally, the estimated lateralization index was correlated 
with PANAS and BAS, BIS psychological measures to understand the ability of both hemispheric asymmetry 
measures in explaining affect and approach/ withdrawal behavior during resting state. The following sub-sections 
explain these operations in detail.

EEG informed fMRI analysis.  Estimation of neural underpinnings of proposed microstate based EEG 
asymmetry and standard asymmetry was carried out as follows. At first, the estimated alpha powers for frontal 
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channels F3, F4 F7, and F8 were down sampled to match the acquisition blocks of fMRI (TR: 2 seconds). This 
was carried out by taking the median of the alpha powers for these specific channels corresponding to each fMRI 
scan time, which is 2 seconds. The onset time of EEG and fMRI acquisition were also matched. This yielded one 
EEG alpha power corresponding to each fMRI scan, respectively. Thereafter, microstate based and standard FA 
and FTA were estimated. The first-level analysis in the present study was performed in SPM12. Different design 
matrices were obtained each for microstate based and standard asymmetry respectively for each subject wherein 
microstate based and standard FA and FTA parametrically modulated the fMRI regressors in EEG informed 
fMRI analysis117–121.

The first-level analysis in our study was performed in SPM12, and the time series of fMRI regressors and par-
ametric modulators were convolved with canonical HRF and with its time and dispersion derivatives. Further, at 
first-level, an F-contrast was defined for parametric modulators subsuming both non-derivative (canonical HRF) 
and derivative terms (time and dispersion derivatives) for microstate based FA, standard FA, microstate based 
FTA and standard FTA models.

Subsequently, for the second level of analysis, the first-level contrast images, along with the dispersion and 
temporal derivatives, were subjected to extraction of amplitude measures from the basis sets122–126. The robust 
regression toolbox127 was used to conduct group-level random-effects analysis. The robust regression toolbox 
uses iteratively re-weighted least squares (IRLS), which detects influential extreme outliers. Thus, the IRLS anal-
ysis reduces the likelihood of false-positive and negative findings with no reduction in power and minimizes the 
effect of extreme outliers128. The IRLS has proved beneficial with small samples (n = 10), and the benefits tend to 
increase with larger sample sizes (n = 40). Further, IRLS controls false-positive rates at an appropriate level when 
no true effects are present. The contrast image for amplitude summary measure was then subjected for the whole 
brain analysis corrected with voxel-wise False Discovery Rate (FDR) thresholded at q < 0.05. This yielded the 
underpinning of both microstate based FA and FTA and standard FA and FTA.

Estimation of Hemodynamic lateralization index and its robust correlation with psychological 
measures.  The lateralization index measures the hemispherical dominance within the large scale brain net-
work that integrates the neural underpinnings associated with resting affect and approach/withdrawal behavior. 
The neural activity associated with the neural underpinnings of each hemisphere causes differential electrical 
potential on the cortical surface of the respective hemisphere. This is measured as the EEG asymmetry index, as 
explained in the earlier sections. In the mean-time, these differential neural activities of each hemisphere gener-
ate a feed-forward signal, which results in differential hemodynamic response at the location of neural activity. 
Measurement of these hemodynamic hemispherical differences facilitates a better understanding of hemispher-
ical dominance within the large scale brain interactions. Diverse methods have been proposed to calculate the 
hemodynamic lateralization index on the basis of fMRI BOLD information. As most of these studies involved 
task engagement, the hemispherical difference of cluster size and BOLD signal strength129–133 were normally used 
to estimate the HLI.

The main motivation behind this estimation is to understand whether hemodynamic asymmetry reveals more 
insight into understanding the neurovascular mechanisms of the affect and approach /withdrawal behavior. For 
this purpose, initially, we estimated the hemodynamic response function metric that is hemodynamic response 
function amplitude (HRF_Amp) at every voxel by independently subjecting the preprocessed resting fMRI data 
to blind deconvolution method as proposed by Wu et al.134,135. The estimation of HRF was carried out inde-
pendently by assuming acquired fMRI BOLD signal y t( ) as the convolution of neural states n t( ) with HRF t( ).
This is represented as,

= + ∈y t conv n t HRF t t( ) ( ( ), ( )) ( ) (13)

where t( )∈  is the noise in the measurement. Further, n t( ) is substituted by a hypothetical neural activation model:

n t t( ) ( )
(14)0

ˆ ∑δ τ= −
τ=

∞

where t( )δ τ−  is the delta function. This allows fitting HRF t( ) according to n t( )ˆ  using a canonical HRF and two 
derivatives (temporal and dispersion derivatives). This model is subjected to blind deconvolution approach for 
retrieving the hemodynamic response function HRF t( ( )) of every voxel. Once HRF t( ) is obtained, an approxima-
tion of n t( )  can be calculated using the inverse Fourier transform (deconvolution). Then, HRF t( ) was utilized to 
estimate the HLI for the neural underpinnings of both microstate based FA and FTA and standard FA and FTA, 

Variable

Channel pair F4/F3 (FA) Channel pair F8/F7 (FTA)

Median
Median Absolute 
Deviation Median

Median Absolute 
Deviation

Standard hemispheric 
asymmetrya 0.0347 0.3509 −0.052 0.3655

Microstates based 
hemispheric asymmetrya −0.2324 0.1427 0.0256 0.0896

Table 9.  Median and median absolute deviation of the standard and proposed microstates based frontal 
hemispheric asymmetry measures. aThe difference between log-transformed alpha values from one right-
hemispheric electrode to the corresponding electrodes on the left.
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all considered together. Hence, the cluster results of EEG informed fMRI were used only for the selection of 
regions for estimating HLI as follows,

= −HLI n HRF Amp HRF Amp( ) _ _ (15)n
R

n
L

where HRF Amp_ n
R and HRF Amp_ n

L are the median amplitude of hemodynamic response function of the nth neu-
ral underpinnings in the right and left hemispheres, respectively. The median of estimated HLI of neural under-
pinnings of proposed microstate based EEG asymmetry and the standard EEG asymmetry measures were finally 
subjected to the robust correlations with PANAS and BIS/BAS measures.
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