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                                                  ABSTRACT 

 

Lung Cancer have become one of the most common cause of death among human 

beings. Many human beings die early because of lung cancer. The early detection of 

lung cancer is tough due to the structure of cancer cells and less awareness among 

human beings. Diagnosis of lung cancer is done using various tests like imaging 

tests, sputum cytology and biopsy, which are costly and time taking. Classifying lung 

cancer is not an easy task and needs experienced physicians and a lot of money. 

Cancer recurrence in recovered patients leads to a high cost, and not everyone can 

afford it. We have used lung cancer data from Wu, Jiangpeng et al. [11] as it is an 

unbalanced dataset. We used various evaluation parameters like Accuracy, 

Confusion matrix, AUC- ROC [6] and FNR, which gives us more insight. XGBoost 

provides the best accuracy of 92.16% for lung cancer. We have used various 

Machine Learning classification techniques under the library of scikit-learn like 

KNN, Logistic Regression, XGBoost, Gaussian Naive Bayes, Decision Tree and 

SVM. Different algorithms under the library of scikit learn have been used to select 

the features, and only those features that are important to our model are selected. Our 

models achieved more accuracy score and sensitivity than Wu, Jiangpeng et al. [11] 

for lung cancer. Parameter tuning has helped to improve the performance of the 

model. In various phases of machine learning pipeline, we have improved the result 

of Wu, Jiangpeng et al. [11]. Starting from preprocessing to the development of the 

model. 

 

KEYWORDS 

Cancer, Classification Techniques, Lung Cancer Classification, Dataset, Machine 

Learning Techniques, Machine Learning, Scikit-Learn Algorithms 
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CHAPTER 1 

 

    INTRODUCTION 
 

 

There is an abundance of data in this world. When humans use the internet to 

communicate from one person to another, sitting in one corner of the world to the 

other- data is created. Data means pictures, videos, text, spreadsheets, music, word 

file, tweets etc. Lots of data is being generated in the world by human being, smart 

IoT devices and other electronic devices. In future, increase in IoT devices and the 

use of 5G network will lead to rapid growth of data. 

Traditionally human have analyze data manually, and have tried to create system that 

adapts to change in data patterns. However, this approach is not sustainable because 

of the volume of data and the failure to comprehend and create rules for such data. 

Today we have shifted to automated systems that can learn from the data and adjust 

to the changes in the data environment.  

 

 

 

Figure 1 Traditional Computing diagram [34] 
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Machine learning is used to derive meanings or patterns from the data. Arthur C. 

Clarke used to say: "Any sufficiently advanced technology is indistinguishable from 

magic". 

 

In Machine Learning we analyze data to make predictions or answer questions 

related to that data. In Machine Learning we first use training data for the creation 

of rules and learning patterns present in the data. Using this training data, models are 

built and these models are used to predict and answer questions for new data in the 

future. As more data is gathered, the model can be improved over time, and new 

predictive models can be deployed.  

 

All of the Machine Learning process is dependent on data. Machine learning is the 

learning of patterns or identifying connections from the data to answer questions or 

make predictions.  

Machine Learning is a tool, technology and algorithms that can be utilized to answer 

or can be utilized to predict the answer of a given question based on the data. 

 

One of the biggest example of machine learning in practice is Google Search. Google 

Search incorporates many machine learning system from analyzing and 

understanding the query of user in form of text or voice to personalizing users’ search 

result and ads. 

 

Today machine learning applications are widely used in many areas like image 

detection, Cancer detection, weather prediction and fraud detection etc. 
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Figure 2 Machine Learning diagram [35] 

 

There are usually three ways by which machines can learn: 

 

1.1 Supervised Learning 

 

Supervised Learning is one of the area of ML. In Supervised Learning, learning 

happens under the supervision of a teacher. In this we have a dataset which has class-

label, i.e. we have a sample dataset from which algorithm can learn.  

 

The dataset consists of train and test sets. Train set helps us to train the model, i.e. 

capture the patterns from the dataset known as fitting or training the model. Once the 

model had been trained, it is then applied to new data for validation. 

 

1.2 Unsupervised Learning 
 

Unsupervised Learning is one of the area of ML. In Unsupervised Learning, learning 

happens without the supervision of a teacher. In this, we have a dataset which doesn't 

have class-label. PCA, ICA, clustering etc. are some of the unsupervised learning 

approaches. Market segmentation, Astronomical data analysis, and Social network 

analysis are some of the examples in which unsupervised learning is used. 
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1.3 Reinforcement Learning 
 

Reinforcement Learning is one of the area of ML. Reinforcement Learning is about 

taking effective action to maximize rewards in a given situation. It is used by 

software and machines to find the best course of action or direction to take in a 

specific situation. Reinforcement learning differs from supervised learning because 

in this we don’t have the response key for the training data which is there in 

supervised learning. In reinforcement learning, the reinforcement agent decides what 

is needed to achieve the task and maximize the rewards. It is required to learn from 

its past, in the absence of a training dataset. 

 

1.4 Background 
                            

Lung cancer is the uncontrolled growth of abnormal cells in one or both of the lungs 

[15]. These abnormal cells do not develop into healthy lung tissue and hence could 

not perform the normal lung cell functions. These abnormal cells can form tumors 

as they expand and interfere with the functioning of the lung, which is to provide the 

body with oxygenated blood. Lung Cancer is very common among humans and 

causes a large number of deaths every year. We can reduce the deaths caused by 

Lung Cancer by detecting it in the earlier stage. Using a blood test, we can detect 

lung cancer in the early stage, and chances may increase to save human life [1]. 

Various tests like imaging tests, sputum cytology and biopsy are used to detect lung 

cancer [2]. 

Cancer Research has made steady progress in the last few decades [7]. About 18.1 

million [5] new patients are diagnosed with various subtypes of cancer in 2018 and 

are projected to grow to 23.6 million by 2030 [3, 4]. Prediction of cancer subtypes 

in early stages can help the doctors to give the patients proper medication and 

treatment. If cancer stages are predicted accurately early, then the patients will have 

chances of being cured. Underdeveloped and developing countries are the worst 

affected because of the lack of sufficient medical services leading to high mortality 

rates relative to developed countries.  
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Ignorance of cancer symptoms and failure to seek proper early-stage medical 

consultation or late seeking medical advice leads to a higher mortality rate.  

The lack of physicians and medical equipment in rural areas also adds to the problem 

of early-stage diagnosis of cancer disease, leading to higher mortality rates. Machine 

learning approaches are commonly used for identification and classifying different 

diseases in medical fields. Machine learning methods are now also being used in 

medical field areas to predict cancer early, which can lead to better chances of 

patients' survival.  

Doctors and scientists have applied various methods, such as screening, detection, 

and classification to diagnose different types of cancer even before they cause any 

symptoms. Scientists have also developed various new methods to predict the 

outcome of cancer treatment in the early stage [8]. A significant amount of cancer 

data were collected and published for medical research with the emergence of 

modern medical technologies. Predicting precisely outcome of a disease is one of the 

most difficult tasks for physicians. Due to this Machine Learning (ML) approaches 

is becoming a best tool in medical research and can also help in predicting potential 

outcomes of different cancer types. 
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CHAPTER 2 

 

LITERATURE REVIEW 
 

 

Wu, Jiangpeng et al. [11] has identified Lung Cancer based on Routine Blood 

Indices. Blood-based liquid biopsies are widely recognized as a method for cancer 

monitoring tool and diagnostic for cancer detection. Immensely high sensitivity is 

also required because of the very low levels of correctly identified protein 

biomarkers, RNA or DNA released into the blood. Doctors also order regular tests 

of blood indices because they are easy to manage and cost-efficient. Machine 

learning models like Random Forest has been adopted to create a model of 

identification between lung cancer and routine blood indices that would decide if 

they are potentially likely linked. 

 

Leng, Shaoyi et al. [9] had used the integrity of cell-free DNA to identify patients 

with lung cancer. The cfDNA levels and cfDNA integrity were significantly higher 

in patients with NSCLC than in patients with tuberculosis. Also, cfDNA and its 

integrity may be used as markers to classify tuberculosis-related NSCLC.  

 

Fradkin, Dmitriy et al. [10] used SVM and penalized logistic regression to build a 

model that can predict the survival of patients diagnosed with lung cancer and to 

analyze the importance of model parameter based features.  

 

Lynch, Chip M. et al. [14] applies unsupervised machine-learning clustering and 

classification techniques to a group of lung cancer patients. The aim is to 

automatically classify lung cancer patients into groups on the basis of clinically 

measurable disease-specific variables to estimate the chances of their survival. 
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Dimitoglou, George et al. [13] used the Naïve Bayes classifier and C4.5 algorithm 

for the prediction of survivability of lung cancer patients. 

 

Lynch, Chip M. et al. [12] used supervised Machine Learning techniques like 

Decision Trees, GBM, Custom ensemble, Linear regression and SVM which is 

applied on the SEER data to classify patients with lung cancer in terms of survival. 

Main attributes of the data when applying these methods include gender, age, stage, 

tumor grade, tumor size and number of primaries, with the objective of comparing 

predictive power between the different methods. 
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CHAPTER 3 

 

                                            SOURCE OF DATA  

 
 

The source of the dataset for the cancer patients is taken from the research paper Wu, 

Jiangpeng et al. [11] collected at Second Hospital, China, Lanzhou University. There 

are 277 patients in total in the dataset, with 49 different forms of blood indices for 

each patient in the dataset. 

 
 

Figure 3 Dataset description 

 

 

In Figure 3, description of the dataset is of features Platelet distribution width, 

Basophil ratio, Albumin, Age, Large platelet ratio, Lymphocyte ratio, ALB/GLB, 

Neutrophile granulocyte ratio, White blood cell and Creatine kinase isoenzymes. The 

description of the dataset includes count, mean, std, min, 25%, 50%, 75% and max. 

 

 
 

Figure 4 Dataset count 
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Of the 277 patients, 183 were positive for lung cancer. The tissue biopsies were used 

to diagnose these patients. The other remaining 94 patients have been diagnosed as 

not having lung cancer. We can see from Figure 4 that our dataset is imbalanced. 

The imbalanced dataset is those datasets where you have an unequal number of 

data points for each of your classes. For example- In our Cancer dataset, which are 

having two classes and the value count for two classes are:     

      Lung Cancer                        183 

      Without Lung Cancer          94 

 The Imbalanced data set somehow look like above. 

The balanced dataset is those datasets where you have an almost equal number of 

data points for each of your classes. For example - We had a flower dataset which is 

having three species and the value count for three species are: 

      Versicolor         50 

      Virginica          50 

      Setosa               50 

The balanced data set somehow look like above. 

Figure 4 shows Label as one of the columns of the dataset, '1' means having Lung 

Cancer which is 183 patients, and '-1' means not having Lung Cancer which is 94 

patients. These patients include females and males, with age, ranges between 20 and 

81 years. Such positive or '1' patients find themselves at a different level of cancer. 

Each patient's Smoking status was also reported into the dataset. 

Out of the 94 patients, 51 patients are suffering from tuberculosis. These tuberculosis 

patients were especially included because the use of CT scans to differentiate lung 

cancer from tuberculosis has a high false-positive rate. The remaining patients went 

for regular checkups', and they were not detected with any disease related to lung 

cancer. The dataset [11] contains the column 'Dataset' which had entries as the 

training set and test set. The training set is consist of 226 patients out of which 153 

were patients with Lung Cancer, 37 patients with tuberculosis and 36 were patients 
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with other diseases. 51 patients are from test data. 

 

 

 

Figure 5 Data visualization in 2-D using TSNE  

 

 

 

3.1 EXPLORATORY DATA ANALYSIS (EDA) 
 

EDA understands what dataset uses simple statistical methods, graphs, visualizes 

data before we actually go and start machine learning. 

Using statistical analysis and visualization tools, EDA is used for data analysis to 

understand the data and to use visualization tools. 

There are 58 columns out of which 50 will be used as our features in our feature 

engineering. Feature engineering is essential as it helps to improve the performance 

of the model. 

Out of the 50 features, I have applied ExtraTreeClassifier method as a feature ranking 

for the ranking of 50 features in decreasing order. I have used Univariate Exploratory 

Data Analysis and Bivariate Exploratory Data Analysis in feature engineering on our 

50 features but I will be taking here top 5 ranked features as I couldn’t be able to 

show all here. 
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3.1.1 UNIVARIATE EXPLORATORY DATA ANALYSIS 

 

In Univariate EDA, we only take one variable or feature into consideration at a time. 

Using SelectKBest method, it was applied to the top 5 features of the dataset [11] 

obtained. We graphed the plot 1-D Scatter plot, Histogram and PDF, CDF, Boxplot 

and Violin plot into Univariate Analysis.  

1-D Scatter Plot 

 

 
 

Figure 6 1-D Scatter plot of Age 

 

 

         OBSERVATIONS 

 

 Very hard to make sense, as points are overlapping a lot. 

 Hard to know how many points are there. 
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        Histogram and Probability density function (PDF)  

 

 

 

Figure 7 Histogram and PDF of Platelet distribution width 

 

 

 

 

 

Figure 8 Histogram and PDF of Basophil ratio 
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Figure 9 Histogram and PDF of Albumin 

 

 

 

 

 

Figure 10 Histogram and PDF of Age 
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Figure 11 Histogram and PDF of Large platelet ratio 

 

 

 OBSERVATIONS 

 

As can be seen from the above figures, the cancer and non can cancer patients have 

almost overlapping probability distribution. Therefore these features are not capable 

or sufficient enough to use as standalone features to classify patients. 

 

      Cumulative distribution function (CDF) 
 

 

 
 

Figure 12 PDF and CDF of Platelet distribution width 
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       OBSERVATIONS 
 

 There are 70% of cancer patients’ values that have Platelet distribution width ≤ 

15.0 as evident by CDF. 

 There are 100% of cancer patients’ values that have Platelet distribution width < 

20.0 as evident by CDF.   

 There are 80% of non-cancer patients’ values that have Platelet distribution width 

≤ 17.2 as evident by CDF. 

 100% of non-cancer patients’ have Platelet distribution width ≤ 21.0 as evident 

by CDF. 

After reading the plot, we observe that the patients whose platelet distribution width 

is less than 12.0 are more likely to have lung cancer, as 55% approx. of the cancerous 

patients lie between that range whereas very few, i.e. 16% approx. of non- cancerous 

patients lie in that range. 

 

 
 

 
 

Figure 13 PDF and CDF of Basophil ratio 

 
       OBSERVATIONS 

 

 There are 78% of cancer patients’ values that have Basophil ratio ≤ 0.0100 as 

evident by CDF. 

 There are 100% of cancer patients’ values that have Basophil ratio ≤ 0.0200 as  



16  

 

evident by CDF. 

 There are 75% of non-cancer patients’ values that have Basophil ratio ≤ 0.0100 

as evident by CDF. 

 100% of non-cancer patients’ have Basophil ratio ≤ 0.0200 as evident by CDF. 

 

After reading the plot, we observe that the patients whose basophil ratio is less than 

0.0025 are more likely to have lung cancer, as 78% approx. of the cancerous patients 

lie between that range whereas, i.e. 33% approx. of non- cancerous patients lie in 

that range. 

 

 
 

Figure 14 PDF and CDF of Albumin 

 

 

      OBSERVATIONS 
 

 There are 62% of cancer patients’ values that have Albumin ≤ 40 as evident by 

CDF. 

 There are 100% of cancer patients’ values that have Albumin ≤ 49 as evident by 

CDF. 

 There are 70% of non-cancer patients’ values that have Albumin ≤ 45 as evident 

by CDF. 

 100% of non-cancer patients’ have Albumin ≤ 52 as evident by CDF. 
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After reading the plot, we observe that the patients whose albumin is less than 37 are 

more likely to have lung cancer, as 56% approx. of the cancerous patients lie between 

that range whereas very few, i.e. 18% approx. of non- cancerous patients lie in that 

range. 

 

 

Figure 15 PDF and CDF of Age 

 

 

 

       OBSERVATIONS 
 

 There are 50% of cancer patients’ values that have Age ≤ 60 as evident by CDF. 

 There are 100% of cancer patients’ values that have Age ≤ 82 as evident by CDF. 

 There are 62% of non-cancer patients’ values that have Age ≤ 60 as evident by 

CDF. 

 100% of non-cancer patients’ have Age ≤ 79 as evident by CDF. 

 

After reading the plot, we observe that the patients whose age is less than 56 are 

more likely to have lung cancer, as 40% approx. of the cancerous patients lie between 

that range whereas, i.e. 58% approx. of non- cancerous patients lie in that range. 
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Figure 16 PDF and CDF of Large platelet ratio  

 

 
     OBSERVATIONS 
 

 There are 77% of cancer patients’ values that have large platelet ratio ≤ 30 as 

evident by CDF. 

 There are 100% of cancer patients’ values that have large platelet ratio ≤ 62 as 

evident by CDF. 

 There are 60% of non-cancer patients’ values that have large platelet ratio ≤ 36 

as evident by CDF. 

 100% of non-cancer patients’ have large platelet ratio ≤ 57 as evident by CDF. 

 

After reading the plot, we observe that the patients whose large platelet ratio is less 

than 22 are more likely to have lung cancer, as 40% approx. of the cancerous patients 

lie between that range whereas very few, i.e. 17% approx. of non- cancerous patients 

lie in that range. 

 

Boxplot  

Boxplot can be visualized as a PDF on the side ways. It is another method of 

visualizing the 1-D scatter plot with the concept of median, percentile and quantiles. 
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A technique called Inter-Quartile range (IQR) is used in plotting the whiskers. While  

histograms are very good to understand the density or how many points exists in a 

range but it can’t tell us what 25th, 50th (Median), 75th and 100th percentiles values. 

CDF graphs still can tell us the percentile values but Boxplot gives clear view for 

this. 

 

 

 

 

Figure 17 Boxplot of Platelet distribution width 

 

 

        OBSERVATIONS 
 

 25th percentile of the cancer patients’ values are having Platelet distribution width 

≤ 10. 

 50th percentile (Median) of the cancer patients’ values are having Platelet 

distribution width ≤ 12. 

 25th percentile of the non-cancer patients’ values are having Platelet distribution 

width ≤ 14. 

 50th percentile (Median) of the non-cancer patients’ values are having Platelet 

distribution width ≤ 16. 

After reading the plot, we can say that if we choose large Platelet distribution width 

≤ 15.0 as our threshold for classification then we can see that for class-label ‘-1’  

more than 50% of the values have level greater than this threshold and for class label 

‘1’ more than 65% of the values less than this threshold. 
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Figure 18 Boxplot of Basophil ratio 

 
 

      OBSERVATIONS 
 

 25th percentile of the non-cancer patients’ values are having Basophil ratio ≤ 0. 

 50th percentile (Median) of the non-cancer patients’ values are having Basophil 

ratio ≤ 0.0060. 

 75th percentile of the non-cancer patients’ values are having Basophil ratio ≤ 

0.0095. 

 100th percentile of non-cancer patients’ have Basophil ratio ≤ 0.0200 as evident 

by CDF. 

After reading the plot, we can say that if we choose large Basophil ratio ≤ 0 as our 

threshold for classification then we can see that for class-label ‘-1’  more than 75% 

of the values have level greater than this threshold and for class label ‘1’ it contains 

whiskers for  this threshold. 

 

 
 

Figure 19 Boxplot of Albumin 
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      OBSERVATIONS 
 

 25th percentile of the cancer patients’ values are having Albumin ≤ 34.50. 

 50th percentile (Median) of the cancer patients’ values are having Albumin ≤ 39. 

 25th percentile of the non-cancer patients’ values are having Albumin ≤ 40. 

 50th percentile (Median) of the non-cancer patients’ values are Albumin ≤ 42.50. 

 

After reading the plot, we can say that if we choose Albumin ≤ 40 as our threshold 

for classification then we can see that for class-label ‘-1’  approximately 75% of the 

values have level greater than this threshold and for class label ‘1’ more than 50% of 

the values less than this threshold. 

 

 

 

Figure 20 Boxplot of Age 

 

 

 

       OBSERVATIONS 
 

 25th percentile of the cancer patients’ values are having Age ≤ 52. 

 50th percentile (Median) of the cancer patients’ values are having Age ≤ 60. 

 25th percentile of the non-cancer patients’ values are having Age ≤ 45. 

 50th percentile (Median) of the non-cancer patients’ values are Age ≤ 53. 
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After reading the plot, we can say that if we choose Age ≤ 50 as our threshold for 

classification then we can see that for class-label ‘-1’  more than 50% of the values 

have level greater than this threshold and for class label ‘1’ more than 25% of the 

values less than this threshold. 

 

 

 

Figure 21 Boxplot of Large platelet ratio 

     

 

      OBSERVATIONS 
 

 25th percentile of the cancer patients’ values are having large platelet ratio ≤ 18. 

 50th percentile (Median) of the cancer patients’ values are having large platelet 

ratio ≤ 24. 

 25th percentile of the non-cancer patients’ values are having large platelet ratio ≤ 

26. 

 50th percentile (Median) of the non-cancer patients’ values are large platelet ratio 

≤ 34. 

After reading the plot, we can say that if we choose large platelet ratio ≤ 30 as our 

threshold for classification then we can see that for class-label ‘-1’  more than 50% 

of the values have level greater than this threshold and for class label ‘1’ 

approximately 60% of the values less than this threshold. 
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Violin Plot 

Violin plot includes both PDF and boxplots information. It combines the benefits of 

the previous two plots (histograms, PDF and boxplots) and simplifies them. We can 

find the 25th, 50th (Median) and 75th percentiles using Violin plots also evaluate the 

feasibility of if-else based machine learning models. 

 

 

 

 

Figure 22 Violin plot of Platelet distribution width 

 

      OBSERVATIONS 
 

 25th percentile of the cancer patients’ values are having Platelet distribution width 

≤ 10. 

 50th percentile (Median) of the cancer patients’ values are having Platelet 

distribution width ≤ 12. 

 25th percentile of the non-cancer patients’ values are having Platelet distribution 

width ≤ 14. 

 50th percentile (Median) of the non-cancer patients’ values are Platelet 

distribution width ≤ 16. 

After reading the plot, we can say that if we choose large Platelet distribution width 

≤ 15.0 as our threshold for classification then we can see that for class-label ‘-1’  

more than 50% of the values have level greater than this threshold and for class label 

‘1’ more than 65% of the values less than this threshold. 
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Figure 23 Violin plot of Basophil ratio 

 

 

      OBSERVATIONS 
 

 25th percentile of the non-cancer patients’ values are having Basophil ratio ≤ 0. 

 50th percentile (Median) of the non-cancer patients’ values are having Basophil 

ratio ≤ 0.0060. 

 75th percentile of the non-cancer patients’ values are having Basophil ratio ≤ 

0.0095. 

 100th percentile of the non-cancer patients’ values are having Basophil ratio ≤ 

0.0200. 

 

After reading the plot, we can say that if we choose large Basophil ratio ≤ 0 as our 

threshold for classification then we can see that for class-label ‘-1’  more than 75% 

of the values have level greater than this threshold and for class label ‘1’ it contains 

whiskers for  this threshold. 
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Figure 24 Violin plot of Albumin 

 

    OBSERVATIONS 
 

 25th percentile of the cancer patients’ values are having Albumin ≤ 34.50. 

 50th percentile (Median) of the cancer patients’ values are having Albumin ≤ 39. 

 25th percentile of the non-cancer patients’ values are having Albumin ≤ 40. 

 50th percentile (Median) of the non-cancer patients’ values are Albumin ≤ 42.50. 

After reading the plot, we can say that if we choose Albumin ≤ 40 as our threshold 

for classification then we can see that for class-label ‘-1’  approximately 75% of the 

values have level greater than this threshold and for class label ‘1’ more than 50% of 

the values less than this threshold. 

 

 
 

Figure 25 Violin plot of Age 
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After reading the plot, we can say that if we choose Age ≤ 50 as our threshold for 

classification then we can see that for class-label ‘-1’  more than 50% of the values 

have level greater than this threshold and for class label ‘1’ more than 25% of the 

values less than this threshold. 

 

    OBSERVATIONS 
 

 25th percentile of the cancer patients’ values are having Age ≤ 52. 

 50th percentile (Median) of the cancer patients’ values are having Age ≤ 60. 

 25th percentile of the non-cancer patients’ values are having Age ≤ 45. 

 50th percentile (Median) of the non-cancer patients’ values are Age ≤ 53. 

 

 

 

Figure 26 Violin plot of Large platelet ratio 

 

                     

      OBSERVATIONS 
 

 25th percentile of the cancer patients’ values are having large platelet ratio ≤ 18. 

 50th percentile (Median) of the cancer patients’ values are having large platelet 

ratio ≤ 24. 

 25th percentile of the non-cancer patients’ values are having large platelet ratio ≤ 

26. 
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 50th percentile (Median) of the non-cancer patients’ values are large platelet ratio 

≤ 34. 

After reading the plot, we can say that if we choose large platelet ratio ≤ 30 as our 

threshold for classification then we can see that for class-label ‘-1’  more than 50% 

of the values have level greater than this threshold and for class label ‘1’ 

approximately 60% of the values less than this threshold. 

 

 

3.1.2 BIVARIATE EXPLORATORY DATA ANALYSIS 

 

In Bivariate EDA, we only take into account two variables or features at a time. In 

the Univariate Analysis, we were unable to distinguish different groups because of 

overlapping, and we were not able to know how many points are there. Hence we 

have applied this Bivariate EDA. We graphed the plot 2-D Scatter plot and Pair plot 

into Bivariate Analysis. 

 

 

2-D Scatter Plot 

 

  

 

Figure 27 2-D Scatter Plot of Age with Platelet distribution width 
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Figure 28 2-D Scatter Plot of Age with Basophil ratio 

 

 

 

 

 

 

 

 

Figure 29 2-D Scatter Plot of Age with Albumin 
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Figure 30 2-D Scatter Plot of Age with Large platelet ratio 

 

    OBSERVATIONS 
 

 Separating cancer patients from non-cancer patients is much harder as they have 

considerable overlap. 

As can be seen from the above figures, the cancer and non can cancer patients have 

overlapping scatter plots. Therefore these features are not capable or sufficient 

enough to use as standalone features to classify patients 
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Pair Plot 

 

 

 

Figure 31 Pair plot of Platelet distribution width, Basophil ratio, Albumin, Age, Large platelet 

ratio 

 

      OBSERVATIONS 
 

 25th percentile of the cancer patients’ values are having large platelet ratio ≤ 18. 

 50th percentile (Median) of the cancer patients’ values are having large platelet 

ratio ≤ 24. 

As can be seen from the above figures, the cancer and non can cancer patients have 

overlapping pair plots. Therefore these features are not capable or sufficient enough 

to use as standalone features to classify patients. 

In this 2-D pair-plot graph, we can get P (5, 2) = 20 scattered graphs because here 

we have five dimensions in which ten graphs will be unique. We were also unable to 

make observations and distinguish between different classes in the 2-D plot graph 

while the diagonal graph is PDF, as can be seen in Figure 31 Pair Plot graph. 
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CHAPTER 4 

 

                                      SELECTION OF FEATURES  

 
 

Features are the selected columns of dataset using which we can determine to which 

class/class-label a particular data point should belong to. Selection of features should 

be performed in such a way that our training model is given maximum information. 

We had used these methods for the selection of features to gain maximum knowledge 

 

1. SelectKBest method: It is one of the algorithms in Scikit-learn library for 

feature selection. In this algorithm, K features with highest value score 

from the dataset are selected. For our model, Chi2 has been used as a 

scoring function for SelectKBest. 

 

2. Tree based method: It is also one of the mainly used algorithms for feature 

ranking in the Scikit-learn library. It uses multiple techniques to improve 

model performance. 

 

ExtraTreeClassifier: It is an ensemble learning technique, also known as 

extremely randomized trees classifier. Multiple de-correlated decision 

trees are generated in this classifier and the aggregates of its results are 

used as classification result. 

 

Table 1 Features ranked from ExtraTreeClassifier method. 

 

RANK INDEX REFERENCE RANGE 

1 Age 20-81 

2 ALB/GLB 0.590-2.660 

3 Glucose 2.590-27.060 

4 Aspartate aminotransferase 7.000-136.000 

5 Uric acid Uric acid 86.000-821.000 

6 Alanine transaminase 3.000-177.000 

7 AST/ALT 0.230-6.250 
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Table 2 Blood indices top ranking features (Wu, Jiangpeng et al.  2019) 

 

 

 

Table 1 and Table 2 shows 26 features; our classification model used these 26 

features. Table 1, ranked the features using ExtraTreeClassifier and Table 2, features 

were selected from (Wu, Jiangpeng et al. 2019); in total 26 features were chosen for 

our final model. These 26 selected features helped us to achieve better performance 

in terms of evaluation parameters as compared to (Wu, Jiangpeng et al. 2019). 
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CHAPTER 5 

 

METHODOLOGY 

 
 

Improved Lung Cancer detection (ILCD) using Machine Learning techniques, 

datasets was split into training set and test set i.e. 226 data points was used for 

training the models (training the dataset) and the remaining 51 data points was used 

for the evaluation of model performance (testing the dataset). The training data set 

was standardized for logistic regression and KNN, all the models except these uses 

non standardized data set. The models were evaluated on the parameters discussed 

in the section ahead. 

ILCD uses cross validation. We have used 10- fold cross validation for model 

development and hyper-parameter tuning of model was also done. 

 

 
 

Figure 32 Overall Methodology 
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5.1 EVALUATION PARAMETERS  
       

The parameters that were used to evaluate Improved Lung Cancer detection 

(ILCD) using Machine Learning models are as follow: 

 Accuracy: Accuracy is the ratio of the correct predictions made by the model 

to the total observations. 

 Confusion Matrix: Confusion Matrix is an NxN matrix, here N is the number 

of classes in the dataset. For example ILCD has two classes Lung Cancer 

patients (or '1') and without Lung Cancer patients (or '-1') so the confusion 

matrix will be of the size 2x2. 

 AUC-ROC: AUC is the area under the ROC curve. ROC curve is the plot 

between TPR and FPR. 

 FNR: FNR is the ratio of the person who is having the disease, but the test 

results say Negative. It is also known as Miss Rate (MR). 

 

Classification methods such as XGBoost, Decision Tree, KNN, Logistic Regression, 

Gaussian Naïve Bayes and SVM had been used on the lung cancer dataset. All the 

models' results were analyzed, and it was found that XGBoost provided the best 

results. 

 

The final classification model is built using XGBoost classification method. Speed 

and accuracy are the two principal advantage of using the XGBoost model. 

Classification, regression, user-defined prediction and ranking are the problems that 

can be solved using XGBoost method. We first used XGBoost hyperparameter 

tuning using GridSearchCV in our research work. GridSearchCV is a standard way 

to do hyper parameter tuning on any classification method. Grid of parameters are 

defined for our classification method and then grid search was run on this grid of 

parameters. 10-fold Cross-validation was also used with GridSearchCV. 
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The other parameters that were also found to test performance of our models are 

Sensitivity (TPR), Matthews correlation coefficient (MCC), Specificity (TNR), 

False Positive, True Positive, True Negative and False Negative. 

 

The methodological steps are summarized below: 

1. Training set and test set were created from the dataset. 

2. Select the features as discussed in Chapter 4 (selection of features). 

3. Class weight is applied wherever applicable as the dataset is unbalanced and 

hyperparameter tuning using GridSearchCV is done. 

4. Use best parameters to create model. 

5. Validation of the model is done using 10-fold Cross Validation. 

6. Find the evaluation parameters like accuracy, confusion matrix. We will be 

getting TP, TN, FP and FN from the confusion matrix. 

The XGBoost method is better, according to the accuracy matrix. The FNR 

weightage is quite high, FNR for the model is low, which is good for our application 

domain. The FNR is the ratio of the person who has the disease, but the results of the 

test say negative. It is also called Miss Rate. The closest this value is to 0, the better 

it will be. The AUC-ROC curve value can vary from [0, 1]. The prediction 

performance of lung cancer will be better, closer the AUC of ROC is to 1. For the 

medical domain, FNR and Sensitivity or TPR are the better parameters. If we try to 

decrease or reduce FNR, then it means we are increasing Sensitivity or TPR. 

Sensitivity or TPR should be maximized because if it is low, then it means there is a 

high chance of classifying a patient with lung cancer as not having cancer and for 

the patient, this could be fatal. That is why it is essential to minimize FNR or 

maximize Sensitivity or TPR. 
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CHAPTER 6 

 

                                                     RESULT 

 
 

Table 3 compares the performance of various classification methods on lung cancer 

dataset. The XGBoost model's performance achieved better results compared with 

the RBLC Model [11]. 10-fold Cross-validation with GridSearchCV was performed 

on each of the machine learning models that were used on the lung cancer dataset. 

Hyper parameter tuning of models was also done using Scikit-learn GridSearchCV 

where ever applicable. Accuracy, AUC-ROC Curve, FNR and confusion matrix are 

the evaluation parameters. The comparison with the base paper and with other 

models are shown in Table 3 for FNR, Table 4 for the performance of models and 

Table 5 for AUC-ROC Curve. If the false-negative rate is high, that means a 

diagnosis can endanger a patient's life because the true value is misclassified as false. 

 The FNR score was only less than 4%, AUC of ROC score was 95% greater than 

90% while the accuracy was 92.16% that is also higher than 90%. 

 

False Negative Rate = 3.33%, Accuracy = 92.16%, Sensitivity = 96.67%, Specificity 

= 85.71%, MCC = 83.86%, AUC = 95%. 

 

Table 3 False Negative Rate (FNR) of Models 

                                         

MACHINE LEARNING 

TECHNIQUES 

FALSE NEGATIVE 

RATE (FNR) 

RBLC MODEL [11] 14.29% 

ILCD  MODEL 3.33% 
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Table 4 Performance of Models 

 

 

MACHINE LEARNING 

TECHNIQUES 

TRAIN 

ACCURACY 

TEST 

ACCURACY 

RBLC MODEL [11] - 88.24% 

ILCD  MODEL 99.01% 92.16% 

LOGISTIC REGRESSION 

MODEL 

87.71% 86.27% 

SVM MODEL 88.67% 84.31% 

GAUSSIAN NAÏVE BAYES 

MODEL 

76.60% 72.55% 

DECISION TREE MODEL 82.55% 76.47% 

KNN MODEL 100% 74.51% 

 

 

 

Table 5 AUC-ROC Score 
 

 

MACHINE LEARNING 

TECHNIQUES 

AUC-ROC SCORE 

RBLC MODEL [11] 0.9016 

ILCD  MODEL 0.95 

LOGISTIC REGRESSION 

MODEL 

0.91 

SVM MODEL 0.91 

GAUSSIAN NAÏVE BAYES 

MODEL 

0.81 

DECISION TREE MODEL 0.80 

KNN MODEL 0.77 
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Figure 33 ROC curve 

 

                                                                       

 

 

Figure 34 Confusion Matrix 

 

 

Comparison of RBLC model [11] performance with all models that were applied is 

shown in Table 4. The FNR for XGBoost Model is one order of magnitude smaller 

than the RBLC model [11] as shown in Table 3. The AUC-ROC Score of RBLC 

model [11] with other models is compared in Table 5. For test data, the AUC of the 

ROC curve is 95% as shown in Figure 33. For XGBoost model, it is much better than 

the RBLC model [11] who’s AUC of the ROC curve was 90%. In Figure 34 Actual 

refers to Actual Values while Predicted refers to Predicted Values. In Figure 34 

Matrix (0, 0) refers to TN, matrix (0, 1) refers to FN, matrix (1, 0) refers to FP and 

matrix (1, 1) refers to TP. 
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CHAPTER 7 

 

                                                CONCLUSION  

 
 

XGBoost provides the best accuracy, sensitivity, AUC-ROC Curve and FNR for 

lung cancer, i.e. 92.16%, 96.67%, 0.95 and 3.33%. In healthcare, the less false-

negative rate is desirable, as it means that true value is misclassified as false less 

often. Some models perform well for a certain parameter, and some not well for other 

parameters. On the basis of accuracy we obtained, it gave better results than the basic 

paper implementation. The parameter tuning helped us to increase the accuracy of 

our models. Parameter tuning increased the accuracy of our models. All the results 

above show that Machine Learning techniques can be useful in the identification of 

lung cancer. These methods can help doctors diagnose lung cancer, which can be 

verified by screening tests that can help us save a human being's precious life. 
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