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Abstract 

_____________________________________ 

  The vanishing conventional energy sources and global warming drive the world for the 

power generation from renewable energy sources. The main renewable sources namely solar 

power and wind power are uncertain and intermittent in nature. Wind & solar photo voltaic 

(PV) power forecasting with good accuracy promise the power sector for large scale 

integrations of wind & solar PV power generations into the grid. In the context of smart grid 

and deregulated electricity market, price forecasting is a challenging job for researchers. 

  A rigorous literature review of wind power forecasting, solar PV power forecasting and 

price forecasting is conducted with focus on various statistical & learning forecasting 

methods. The data is collected from Belgium wind farms, US wind farms and Indian wind 

farms and Indian photo voltaic plants. The dependency of wind power generation and solar 

power generation is analyzed with the computation of correlation factors. 

  Nonlinear autoregressive with external input (NARX) model is implemented to forecast 

wind power generation of Belgium wind farms by using historical data of wind speed and 

wind power. Further, NARX model is also used to forecast wind speed for US wind farms 

from the input data of wind direction, temperature and air density. Wind speed is predicted 

with good accuracy and minimum MAPE is 2.3%.  

  The research work is continued to improve short term wind power forecasting accuracy 

by designing generalized regression neural network (GRNN) and radial basis function neural 

network (RBFN). A hybrid network of GRNN &RBFN is designed with parallel topology to 

forecast wind power for improved accuracy. Reliability of forecasting models is analyzed 

with the computation of confidence intervals on MAPE. 

  As support vector machine (SVM) is very good at classification and regression analysis, 

in this work the support vector regression (SVR) model with tuned parameters is used to 



   

xiii 

 

forecast wind power generation and solar PV power generation. To achieve better accuracy 

and to retain the benefits of individual models, a hybrid approach K-means clustering based 

artificial neural network- particle swarm optimization (ANN-PSO) model is designed and 

proposed for solar PV power forecasting. 

  In the context of smart grid, the uncertainty in wind & solar PV power generations 

increases the volatility of electricity price. A hybrid approach of K-means clustering based 

long short term memory (LSTM) network is proposed for short term electricity price 

forecasting of Austria by considering wind power generation in the market. The proposed 

model shows highest accuracy in prediction when compared against feed forward neural 

network-particle swarm optimization (FNN-PSO) and SVR models. In hour ahead price 

forecasting with the consideration of wind & solar PV power generations, bootstrap 

aggregation of ensemble model (proposed model) has outperformed with significant 

reduction in error. 

 As renewable energy integration to the power grid is enhancing day by day, it becomes 

pertinent to introduce new market models to operate the renewable energy (RE) enabled 

restructured electricity market.  For such an RE enabled Indian electricity market, seven 

various market models are developed and proposed along with their salient features. An 

operating mechanism for future RE enabled Indian electricity market is also proposed based 

upon the developed models. 
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Chapter 1 

INTRODUCTION 

1.1 Overview of renewable energy 

Limited availability of conventional energy resources and their adverse impact on 

environment such as global warming are two important motivating factors to utilize 

renewable energy resources for meeting the increasing energy demand of our society. Most of 

the air pollution is generated by thermal power plants, hence currently the world is moving 

towards the clean energy with low carbon emissions. Development of the smart grid 

technology is also encouraging the integration of wind and solar power into the grid. 

Intelligent grid is often referred to as a digitized electricity network that treats electricity 

unconventionally; not as a commodity but as a value-added service. Its important features are 

deregulation, distributed generation, enhanced participation of consumers, generation and 

storage options, power quality, optimized asset utilization with high operational efficiency, 

self-healing and resiliency against attack & natural disaster. Integration of micro grids, 

electric vehicles and other utilities are another dimension added to the smart grid. The 

restructuring or deregulation of electricity market has demanded the control and analysis of 

large set of data being generated from smart power grid.  

It is expected that global wind power capacity to reach 1,000 GW and global solar 

photo voltaic (PV) power capacity to reach 969 GW by the end of 2025. While solar 

photovoltaic capacity is currently several times smaller than wind power, it is expected to rise 

at a faster pace than wind in the coming decades. In India, the target for renewable energy 

capacity is set to 175 GW by 2022. In which, solar capacity comprises of 100GW and wind 

capacity comprises of 60 GW [1]. 
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The wide and growing supply-demand gap in India and its high power losses have 

fuelled the government and other stakeholder’s interest in the smart grid. India's power sector 

is one of the world’s largest and globally, it ranks fourth in installed capacity, and sixth in 

energy consumption. Although the installed capacity in India is 369 GW approximately as of 

February 2020, its rising population and growing economy mean that the power demand 

could rise to 800 GW to as much as 900 GW by 2030. There is a need of gradual increase of 

power generation from renewable sources. The energy demand, by 2030 is estimated to be as 

high as 900 GW in India, out of which the renewable energy potential that can be exploited 

till 2030 is around 450 GW.  

Both wind and solar generation experience intermittency, a combination of 

uncontrollable variability and partial unpredictability, and rely on location-dependent 

resources. These three distinct aspects each pose distinct challenges for wind and solar power 

generation owners and grid operators to incorporate. 

To overcome the uncertainty of promising resources such as wind power and solar 

power, wind power forecasting (WPF) and solar photo voltaic (PV) power forecasting are 

greatly being carried worldwide in various power grids in order to maintain the stability and 

reliability of the grids. With growing penetrations of wind and solar power penetrations, it is 

necessary to examine their impact on the variations of electricity market price. 

 

1.2 Literature Survey 

1.2.1 Wind power forecasting 

In a grid, balancing power generation and load demand is essential for its stable and 

reliable operation. Amid wind and solar power generations, the grid stability is a major issue 

to the power sector world-wide. One of the solutions includes forecasting wind power and 
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solar power generations. The wind power forecasting methods are in turn categorized into 

four sub-categories based on the time horizon of forecasting as given below [2].  

Very short term: It ranges from few seconds to 30 minutes and used in wind turbine control, 

electricity market clearing etc. 

Short term: It ranges from 30 minutes to 72 hrs and useful in economic load dispatch, load 

increment or decrement decisions. 

Medium term: It ranges from 72 hrs to one week ahead and used for maintenance related 

decisions/unit commitment. 

Long term: It ranges from one week to one year ahead and applied in design of the wind 

farms. 

Secondly, wind power forecasting can be classified as physical approach and statistical 

approach. The physical approach needs the detailed physical description to model the on-site 

conditions by using numerical weather prediction (NWP) data [3]. The physical approach 

does not require training input from historical data. The implementation of physical approach 

in short term wind power forecasting is beneficial for the financial gains in Electricity Market 

[4]. 

The other main forecasting method is statistical approach. It uses previous historical 

data to build statistical model. The statistical methods are appropriate for short term, medium 

term, long term forecasting. However, in case of very short term and short term horizon 

where NWP data plays a vital role to achieve accuracy, physical approaches are also 

essential. Most of the researchers aimed at short term forecasting using statistical methods 

[5]. As per forecasting data, WPF can also be classified into wind speed forecasting (indirect 

method) and wind power forecasting (direct method) [6]. 
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Some other additional forecasts as per the requirements are (i) Regional forecasting, (ii) 

Spatial correlation forecasting and (iii) Probabilistic forecasting. 

Regional or grid forecasting provides enough information to improve reliability of the 

grid. There are two ways the grid connected wind power can be predicted. For each farm 

wind power is forecasted individually and then grid power can be estimated by adding all 

wind farm power forecasts is one approach. On the other hand in Ref [7] the author proposed 

determination of weight coefficient of each farm by using correlation matrix of output power 

and forecast accuracy coefficient. 

The weight coefficient is computed as below in eq.1. 

Q𝑖 =  
𝐶𝑎𝑝𝑖(1−𝑅𝑀𝑆𝐸𝑖 )

∑ [𝐶𝑎𝑝𝑖
𝐹
𝑖=1 (1−𝑅𝑀𝑆𝐸𝑖 )]

                                              (1) 

In the above equation Q𝑖 represents weight coefficient of i-th wind farm, 𝐶𝑎𝑝𝑖 

represents the installed capacity of i-th wind farm and 𝑅𝑀𝑆𝐸𝑖 is RMSE of the i-th wind farm, 

where F indicates the total number of representative wind farms. 

Grid power forecasting could be assessed by the following eq.2. 

𝑃𝐺 =
∑ 𝑃𝑖

𝐹
𝑖=1 𝑄𝑖

∑ 𝐶𝑎𝑝𝑖𝑄𝑖
𝐹
𝑖=1

𝐶𝑎𝑝𝑇                                                   (2) 

Where, 𝑃𝐺  represents the forecasted grid scale power, 𝑃𝑖 is the power forecast of i-th wind 

farm and 𝐶𝑎𝑝𝑇 is indicating the maximum of running wind power capacity in the grid. 

Spatial correlation forecasting is typically applied to forecast the wind speed and power 

at a wind farm if enough information is not available. The most commonly used approach is 

measure correlate predict method. This model is mainly used to predict the uncertainty of the 

total wind energy potential prior to the development of wind farms [8].  
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Unlike, conventional WPF the probabilistic forecasts could provide quantitative 

information on the uncertainty of wind power generation. With the help of probability density 

function (PDF) the uncertainty could be evaluated [9]-[10]. The proposed methods are kernel 

density estimation (KDE) and Quintile Regression [11]. 

Some of the conventional statistical methods are simplistic persistence model, 

autoregressive model, moving average model, ARMA, ARIMA etc. Some of the learning 

statistical methods are artificial neural network, particle swarm optimization, enhanced PSO, 

modified hybrid neural network and genetic algorithm etc. 

Some of the researchers used combinational approach with ANN and PSO or ANN is 

combined with fuzzy logic. ANNs are simple and flexible tools for forecasting. Large input, 

output samples are required along with proper number of hidden layers. Three layered feed 

forward ANNs are used for forecasting. 

WPF with ANNs mainly requires NWP data like wind speed, wind direction and 

temperature etc. and historical wind power data. The optimal structure of a neural network 

can be selected by applying an optimization technique like PSO, GA. There has been a clear 

comparison of various neural networks with the input parameters used in Ref. [12] for very 

short term forecasting and short term forecasting of wind power. ANN approach has been 

used for short term wind power forecasting in Portugal and forecasted data is computed by 

historical data with MAPE of 9.51% for winter [13].  

Both ANN and markov chain are applied for short term forecast [14]. All models of the 

markov chain are based on transitional probability matrices of different time stages. It is a 

random process, undergoing transitions on a state space from one state to another. Markov 

chains have extensive applications as statistical methods of the processes in the real world. 
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This paper shows improved results in comparison to ANN application alone with MAPE for 

ANN-Markov approach is 4.025 and 4.055 for ANN approach.  

Multi-layer neural network has been used to forecast wind power at Mia liao wind 

farm, Taiwan, utilizing five years of data obtained from 2002 to 2007. Enhanced simplified 

swarm optimization (iSSO) is also suggested to demonstrate better results from GA, PSO and 

BP. In Ref [15] input variables for MLP are selected by using autocorrelation function (ACF) 

and partial auto correlation function (PACF). Out of fifty three variables, two variables 

namely, last wind power and previous last wind speed are observed as most relevant variables 

under the confidence level 95%. It is also observed that MSE is greatly affected by number of 

training years. In WPF suitable parameter selection and data decomposition are observed to 

be crucial steps [16].  

Persistence model is very much familiar and less costly. However, this method needs 

improvement for wind power forecasting technology. This method uses previous hour wind 

speed or wind power to forecast next hour wind power [17]. One another notable 

conventional forecasting method is auto regressive time series models ARMA and ARIMA.  

ARMA model is mainly used to forecast wind speed and its direction. The general form is 

shown in eq.3. 

Xt = C + εt + Ʃi=1
p

φi Xt−i + Ʃj=1
q

θj εt−j                         (3) 

Where C is the constant term of the ARMA model, φi  is the i-th auto regressive 

coefficient, θj is the j-th moving average coefficient, εt  is the error term at time period t and 

Xt  represents the value of wind speed observed or forecasted at time period t. 

There has been a comparison of four statistical methods component model, traditional 

linked ARMA, vector auto regression (VAR) and restricted VAR for short term wind speed 

and direction forecasting in [18]. To forecast wind speed, traditional linked ARMA has 
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shown better performance and VAR based methods are performing better in forecasting wind 

direction. Among all the proposed models, the performance is evaluated in terms of mean 

absolute error (MAE).  ARMA model is well suited for WPF because of good correlation in 

wind power generations. For very short term forecasting of wind energy, ARMA models are 

widely used [19]-[20]. 

In [21], the author proposed a new forecast engine composed of modified hybrid neural 

network (MHNN) and enhanced particle swarm optimization (EPSO). HNN is efficient in 

price forecasting for Electricity Market with good accuracy. Due to complexity of wind 

power in case of wind power forecasting the combinational approach (HNN& EPSO) is 

proved to be effective. RMSE is evaluated as 6.71 for HNN alone and RMSE for the 

combination is 4.18. 

In [22], indexed semi-Markov chains forecasting (ISMC) has been proposed and 

compared with persistence and auto regressive models for RMSE values. To reproduce the 

statistical behaviour of wind speed, ISMC is best suitable model .Since, the model doesn’t 

need any assumption for wind speed distribution, ISMC model is considered for wind speed 

forecast in a specific site. 

Ref. [23] has successfully presented the data mining approach for predicting future 

wind power values over short time horizons. Data mining is an observational method 

intended to analyze vast volumes of data in order to determine the hierarchical association 

between variables. It has been already proven to be effective approach in marketing business 

and manufacturing industry. 

1.2.2 Uncertainty in prediction  

WPF mainly aims at the demand side management, maintenance of operating reserves 

and generating units scheduling. Absolutely, the accurate prediction leads to the proper 
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estimation of storage capacity and provides correct information to energy trading. Thus, WPF 

must be reliable and provides right information to power sector. To check the uncertainty in 

WPF, estimation of confidence interval for the errors is required. Evaluation of confidence 

interval promises reliability in the forecast. As error distribution of WPF is not the normal 

distribution due to non-linearity in the power curve, confidence intervals can be estimated 

using regression models and fuzzy interference [24]. Confidence interval is a range of values 

so defined that there is specific probability for the parameter value to fall in the range. The 

confidence interval is also used to express the degree of uncertainty. Confidence level is the 

probability that the value of the parameter falls within a specified range of values.  

A proper comparison has been carried among three methods for WPF i.e. ANN, 

wavelet decomposition (WD) and least squares support vector machine (LS-SVM) in terms 

of error range probabilities in [25]. The hybrid model with ANN&WD has performed better 

with 82.84% probability in the confidence interval of -10% to 10% for Mean Absolute Error 

(MAE). An analysis on uncertainties associated with wind speed forecasts  has been carried 

using a Hybrid model established by cuckoo search optimization (CSO) based back 

propagation neural network (BPNN) for different wind speed intervals [26]. 

1.2.3 Solar PV power forecasting 

Due to its availability and flexible technology, solar PV power generation is gaining 

prominence worldwide at a fast rate. Solar PV power forecasting techniques have been 

developed and evaluated for accuracy for many years now. Statistical methods, research, and 

functional strategies are utilized mainly. Statistical methods incorporate several models of 

mathematics such as ARMA, ARIMA, and SVM etc. [27]-[28]. Solar PV power is highly 

dependent on to solar irradiation [29]. This approach mainly establishes the relationship 

between meteorological variables such as solar irradiation, ambient temperature with 
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generation of solar PV power utilizing historical data from time series. Physical approaches 

are using data from numerical weather forecast (NWP). 

Further learning methods are used in forecasting, such as artificial neural networks 

(ANNs), genetic algorithms (GA), and fuzzy systems etc. In addition to the above mentioned 

image processing techniques, optimal linear filters are also implemented. To evaluate their 

efficiency, the results are compared with specific feed forward neural networks [30]. The 

hybrid method with different combinations of ANN, PSO and fuzzy logic is built to increase 

precision in solar PV power forecasting. An optimized hybrid forecasting model GA, PSO 

and ANFIS for PV power prediction in micro grids is suggested and evaluated effectively 

[31]. The impact of solar PV power prediction through back propagation neural network on 

load forecasting is observed and understood [32]. Recently, data mining strategies such as 

support vector machine and relevance vector machine for PV capacity forecasting are being 

applied in order to achieve greater accuracy [33]. Categorizing historical data based on highly 

influenced parameters such as solar irradiation and ambient temperature is derived from the 

different operating conditions of PV systems. Further probability distribution function (PDF) 

of PV output power is forecasted by implementing higher order Markov chains [34]. In 

addition to meteorological parameters such as solar irradiance, temperature, humidity and 

wind speed, BPNN finds the aerosol index as an input vector for PV power forecasts [35]. Six 

simple forecasting models such as grey box model, neural network model, quantile random 

forest, k-nearest neighbours, ensemble averaging and support vector regression are compared 

for their performance to forecast PV power in 32 different Photo Voltaic plants [36]. Support 

vector machine (SVM) models are developed based on the weather classification to predict 

the generation of PV power at a PV station in China [37]. EMS is designed to forecast PV 

power to optimize the power flows between PV systems, grid and battery electric vehicles 

(BEVs) at the work place [38]. 
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Gradually research is continuing to build hybrid models of ANN, GA, Fuzzy systems, 

and PSO to improve the accuracy of solar PV power forecasting. Therefore, a hybrid model 

for forecasting PV power is being developed. The neural networks are well trained with the 

output power data of fuzzy systems and weather data [39].  

1.2.4 Electricity price forecasting 

 With the restructuring and deregulation of the electric power industry, electricity price 

forecasting has been the key to operate a power market. Electricity is a non-storable 

commodity and its supply and demand must be matched at all times. Otherwise, maintaining 

the steady state frequency would become a serious problem. Since supply and demand 

dynamics are forced to play out constantly, price is often determined for short time periods. 

Electricity price is highly dependent on many factors which include power demand, day 

or night time, day of the week, weather conditions, climatic conditions, fuel price, power 

generation, emission allowances and transmission capacity etc. The volatility of electricity 

price is high unlike other commodities mainly due to two important factors; one is its non-

storability and short time users of electricity. Restructured and deregulated electricity market 

introduces competition to supply reliable energy with good quality to consumers at low cost. 

Especially, the dealings of electricity market are of two types one is pool trading and 

the other is bilateral contracts. In pool, both producers and consumers submit bids and then a 

particular market operator announces market clearing price for next day with the intersection 

of supply and demand curves, whereas in bilateral contracts, buyer and seller reaches to 

certain agreement on price and the amount of power to be transferred. Restructured and 

deregulated market is being dynamic and competitive; the price volatility is a major concern 

for market participants. However, electricity price forecasts provide crucial information to 

producers and consumers in trading and bidding activities of the market. An accurate 

prediction of price could assist a generating company in bidding and power exchange in 
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trading. Efficient price forecasting could also help in setting up highly precise bilateral 

contracts. Hourly price forecasts assist a generating company in managing its prices and 

generating schedule. 

Many methods are used for short term price forecasting by implementing various 

statistical, learning and hybrid models. Wavelet neural networks with data filtering are 

proposed for price forecasting in deregulated electricity market. Wavelet decomposition is 

used to partition loads at different frequencies. For decomposed loads at different 

frequencies, separate neural networks are applied and results are combined finally to get the 

complete error [40]. A hybrid approach of relevance vector machine and extreme gradient 

boost is proposed and proved to be the best one among various models like multilayer 

perceptron(MLP), recurrent neural network (RNN), relevance vector machine (RVM), 

random forest, support vector machine (SVM) and LASSO with the computation of 

confidence interval [41]. Extreme learning machine-bootstrap method is employed for 

probabilistic forecasting of electricity price. Reliability and sharpness are considered in the 

evaluation of the hybrid approach. The forecasting uncertainty is evaluated with model 

uncertainty and the data noise [42]. Input-output hidden markov model (IOHMM) is 

proposed to forecast electricity price with good accuracy and to provide dynamic information 

of the market [43].  

ANNs are used for non-linear modelling and famous for short term load forecasts. One 

hour ahead load forecast is performed using ANNs with the concept of similar data [44]. 

ANNs are also simple to implement in electricity price forecasting [45]. Proposed ANN 

model has come to be more robust than autoregressive models and ANN predicts with good 

accuracy irrespective of length of time horizon considered for forecast [46]. Global warming 

being a major concern to the world, solar energy and wind energy are most promising 

renewable energy sources to produce clean & green electricity. But, large integration of solar 
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energy and wind energy sources into the grid makes much volatile due to their intermittent 

nature. In process of smart grid deployment, price forecasting in a day ahead deregulated 

market is crucial [47]. Price forecasting is essential in assisting trading and bidding activities 

of electricity market. Producers and consumers could set up bilateral contracts based on price 

forecasts [48]. In deregulated electricity market, electricity prices and loads are forecasted for 

one hour ahead and six hours ahead. It is identified with the increase of time horizon of 

forecast the error increases in terms of MAPE [49]. Elman network (Recurrent neural 

network model) has been proposed to forecast price in a day ahead deregulated electricity 

market of New York [50]. A rigorous analysis on electricity price forecasting is carried with 

the RNN-Elman network and various models like ARIMA, wavelet ARIMA, fuzzy neural 

network, radial basis function neural network, adaptive wavelet neural network and hybrid 

intelligent system. 

The deregulated electricity price forecasting could be analysed based on time horizon, 

input variables, output variables, data points used for analysis, pre-processing technique 

employed, and architecture of the model [51]. Identification of various features which impact 

price is significant for one hour ahead and a day ahead forecasting in deregulated electricity 

market with classification and regression trees, bagging and random forests [52]. Extreme 

gradient boosting based ensemble model of relevance vector machine using radial basis 

function and polynomial kernels has outperformed among many models such as relevant 

vector machine, recurrent neural network, support vector regression, multi-layer perceptron 

and random forest regression [53]. An hour ahead price forecasts provide crucial information 

to market participants in order to decide the strategy for bidding an hour before. A hybrid 

approach of least square support vector regression and bacterial foraging optimization 

algorithm was developed in forecasting electricity price one hour ahead [54]. A hybrid 

approach of relevance vector machine with various kernels such as gaussian, polynomial and 
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spline and genetic algorithm has been proposed for price forecasts with higher accuracy than 

autoregressive moving average and naïve forecasting techniques [55]. A stacked denoising 

auto encoder (SDA) model is implemented in a day ahead price forecasting using the data 

collected US electricity markets, and compared to conventional neural networks(NN), 

support vector machine(SVM) and multivariate adaptive regression splines (MARS) [56]. A 

Rigorous literature review on electricity price forecasting based on various single models, 

hybrid models and time horizon in the past fifteen years is carried to explore the strengths and 

the weaknesses of the models and to suggest right directions in electricity price forecasting 

for future [57]. The real time electricity market works to balance the differences between day 

ahead production/demand and actual production/demand and establishes real time local 

marginal price (LMP). Thus one hour ahead forecasting of price plays a vital role in spot 

market. Real-time forecasting of electricity price has been carried using extreme learning 

machine algorithm in dynamic electricity market by considering the impact of unexpected 

changes [58]. As integration of electricity markets is gaining importance worldwide, a day 

ahead electricity prices are predicted with deep neural networks in Europe [59]. Short term 

electricity prices are forecasted in Australian electricity market with generalized neuron 

model tuned by environment method adaptation method algorithm after pre-processing the 

data through wavelet transform [60]. 

1.3 Research gaps 

With above literature survey, the research gaps found listed below. 

 Many authors analyzed the performance of the models of wind power forecasting 

either by calculating MAPE or RMSE, but not with both the evaluation factors. 

 As renewable power forecasting has a great role in the operation of a smart grid, the 

reliability of a forecasting model has to be checked with the analysis of uncertainty in 

the prediction. 
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 In Smart grid scenario, the effect of renewable energy on electricity market price 

could be investigated. 

 The uncertainty in wind speed forecasting and wind power forecasting could be 

analysed using a developed hybrid model. 

 The work shall be done to improve the convergence rate. 

 Many authors tested and validated the forecasting models developed using the data of 

one location. Further, the location dependency of the model requires verification 

using the data from more than one location. 

 Most of the research on wind power forecasting shows models developed for short 

term forecasting, but not much for long term forecasting. 

 In case of grid integration of large capacity renewable energy sources, more work can 

be carried towards wind power forecasting at grid level. 

 To know the reliability of a forecasting tool, a comparison study can be carried 

between physical model and statistical model in forecasting. 

 The effect of wind direction on the prediction of wind power can be evaluated. 

 

1.4 Main objectives of the research proposal 

After rigorous literature review in the relevant areas above research gaps are identified. 

To proceed with the research work the following objectives are defined. 

 To design a suitable model for wind power forecasting. 

 To design a suitable model for solar photo voltaic (PV) power forecasting. 

 To develop a suitable market model for enhancing the wind and solar power 

penetrations in smart grid.  

 To investigate the impact of wind and solar power generations on electricity prices. 
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 To analyse the uncertainty in the prediction of renewable power generation. 

1.5 Key research outcomes 

The outcomes of the research work are listed below. 

• NARX model is consistent in short term wind power forecasting irrespective of the 

location. 

• A Hybrid network of GRNN and RBFN with parallel topology is developed to 

incorporate the benefits of individual networks. 

•  Data clustering by K-means improves the accuracy in solar PV power forecasting. 

• Season wise dependency of solar power on either diffuse radiation or direct radiation 

is investigated. 

• A hybrid GRNN-RBFN is developed to reduce uncertainty in prediction analyzed in 

wind power forecasting. 

• Seven market models and operating mechanism are proposed for renewable energy 

(RE) enabled Indian electricity market. 

• Load clustering improves the accuracy in short term electricity price forecasting. 

• Electricity price forecasting is significantly influenced by wind power generation. 

• Bootstrap aggregation of ensemble model has been developed for an hour ahead 

accurate electricity price forecasting in RE enabled electricity market. 

1.6 Organization of thesis 

One of the objectives is to design a suitable model for wind power forecasting. Chapter 

2 explains the work carried in order to achieve this objective. The work implements models 
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like NARX, GRNN, RBFN and SVR for wind power forecasting with the data acquired from 

Belgium wind farms, US wind farms and Indian wind farms. NARX neural network is used 

to predict wind speed and wind power. This method of prediction is showing good accuracy 

in wind speed forecasting and consistency in wind power forecasting. In one day ahead WPF, 

the SVR approach is more consistent and reliable. The GRNN model is also performing 

consistently with accuracy similar to SVR model. 

Chapter 3 explores analysis of uncertainty in prediction of wind power. The work 

implements GRNN, RBFN and a hybrid GRNN-RBFN. Confidence intervals are calculated 

on MAPE for all the models to analyse the uncertainty in prediction. GRNN has performed 

consistently in all months of 2014 with significant reliability. Further a hybrid GRNN-RBFN 

is designed to forecast wind power, which emphasizes proper assignment of weights to each 

neural network in parallel topology. The hybrid neural network provides better accuracy in 

forecasting, if a single neural network is not reliable in forecasting. 

In chapter 4, the work carried for solar PV power forecasting is explained. This work 

mainly implements SVR model, a hybrid model ANN-PSO and a hybrid approach of K-

means based ANN-PSO. The results indicate improvement in forecasting accuracy of ANN-

PSO model with clustering. The selection of input parameters for season wise forecasting 

between direct irradiation and diffuse irradiation is investigated. 

Chapter 5 & chapter 6 provide price forecasting in electricity market influenced by 

renewable energy sources. This work is carried by SVR model, a hybrid model of ANN-PSO 

and a hybrid approach of K-means clustering based LSTM network. The impact of wind 

power on price forecasting is investigated. In price forecasting an hour ahead, Bootstrap 

Aggregation of Ensemble model (proposed model) is developed and best accuracy is 

achieved in comparison of many other models. 
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In chapter 7, various market models and operating mechanism is suggested for 

renewable energy enabled electricity market. Considering various aspects like the growth of 

RE generation, MNRE policies, state wise targets of RE generation, competition in the 

market and reliable power supply to the consumers, this paper has proposed seven different 

market models. The operating mechanism is proposed to operate such a market has many 

new components. 

Chapter 8 concludes the work. 
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Chapter 2 

WIND POWER FORECASTING 

2.1 Introduction 

About 75 to 80 percent of thermal pollution is generated by power plants which is 

primarily responsible for global warming. As the conventional energy sources are vanishing, 

renewable energy sources are the promising alternative to the conventional sources. Currently 

the world is moving towards clean energy with low carbon emissions. Smart grid technology 

development also encourages more wind power and solar power integration to the grid.  The 

energy demand, by 2030 is estimated to be as high as 900 GW in India, out of which the 

renewable energy potential that can be exploited till 2030 is around 450 GW [1]. Wind power 

is growing rapidly all over the world especially in European countries, America and China. 

India also has sufficient potential for wind energy.  

The Global Cumulative installed wind capacity by 2019 is 597 GW. Globally installed 

wind power capacity is increasing at a rate of 19%. It is also estimated that wind power 

contribution will be increased to 12% of the Global power generation by 2020. Worldwide, 

India has 5th largest wind installed capacity. Fig.2.1 shows 47 percent contribution of wind 

energy in India by 2018. 
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Fig.2.1: Renewable energy in India 

The variant nature of wind poses a few challenges to the power sector. Being uncertain 

and intermittent, the wind power integration leads to the unbalance between generation and 

load in the power grid. WPF is identified as an important task in the proper operation of 

power systems with large wind power penetrations. Wind speed and power forecasting plays 

a prominent role for maintaining balance of generation and load. Accurate wind power 

forecasting can provide a proper technical support for wind power trading in electricity 

market to achieve the significant economic benefit. To decide the operating reserves, the 

wind power forecasts are very much essential. Wind power forecasts are also required in 

selecting the site & location of new wind farms. Accurate prediction of renewable energy is 

very much required, where the power system operators would be fined with the penalty cost 

for imbalance between predicted and actual generation. Since wind power is a non-linear 

function of wind speed, air density and turbulent kinetic energy and turbine characteristics, a 
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lot of research is carried in the area of forecasting techniques of wind speed & wind power 

[2]. 

Wind power & speed forecasts are able to produce information about the wind speed & 

power in next few minutes, hours and days. Accordingly WPF is categorized into short term, 

medium term and long term as per the power system operational requirements. Short term 

forecasting is important for turbine control and also to balance with the load. Medium term 

forecasting is essential for managing power system and energy trading, whereas long term 

forecasting is focused for maintenance of wind farms. To plan the installation of new wind 

turbines and farms the technical assistance is obtained from long term wind speed and power 

forecasting. WPF is also a part of energy management system (EMS) implemented for micro 

grid operation & control. EMS provides significant information for scheduling generating 

units and provides signals towards demand side management [3]. Researchers developed 

many forecasting techniques with the increase of accuracy. Fig.2.2 presents classification of 

wind power forecasting based on technique. 

The wind power forecasting methods basically can be categorized into 4 types based on 

the time horizon of forecasting as given below.  

Very short term: It ranges from few seconds to 30 minutes and used in wind turbine control, 

electricity market clearing etc. 

Short term: It ranges from 30 minutes to 72 hrs and useful in economic load dispatch, load 

increment or decrement decisions. 

Medium term: It ranges from 72 hrs to one week ahead and used for maintenance related 

decisions/unit commitment. 
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Long term: It ranges from one week to one year ahead and applied in design of the wind 

farms.

Wind power
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Fig.2.2: Wind power forecasting methods 

2.2 Wind speed & wind power forecasting using NARX model 

2.2.1 Data collection & pre-processing 

Data has been acquired from Belgium wind farms for the years of 2013 & 2014 from its 

official website. In wind power forecasting, the data set of wind speed, historical wind power 

with the frequency of 15 min. is utilized. 

Data also has been acquired from US wind farms for the years of 2011 & 2012. Using 

the data set of five parameters wind speed, wind direction, temperature, air density & wind 
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power with the frequency of 5 min., wind power and wind speed have been forecasted in US 

wind farms.  

Poor and missing data from the collected sample data can affect forecast accuracy. Data 

normalization improves the pace of convergence and the precision of neural network training. 

The acquired data is normalized to organize the data 

2.2.2 Nonlinear autoregressive with external input (NARX) model 

Neural networks comprise neurons inspired by biological nervous systems. The neural 

network of the appropriate function is well trained with data from the real world. The trained 

neural network can perform the function required. Fig.2.3 shows a neural network with 

multilayers. 

 

 

Fig.2.3: A multilayer neural network 

The standard NARX network is a feed forward network which is of three layers. In the 

hidden layer a sigmoid transfer method is applied in this network, and a linear transfer 

mechanism is used for the output layer.  This network often incorporates tapped delay lines to 

store previous x (t) and y (t) series values. The NARX network output y (t) is fed back to the 

network input (by delays). A nonlinear autoregressive with exogenous (external) input 

(NARX) predicts future values of a time series y(t) from past values of that time series and 

past values of a second time series x(t). It can be written as per eq.2.1. 

y(t) = f(y(t – 1), ..., y(t – d), x(t – 1), ...,x(t – d))         (2.1) 

This model is widely being used for time series prediction in finance sector, 

manufacturing systems, robotics, aerospace vehicle and chemical processes etc. 

X1 

X2 

X3 

X4 

Output 
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Fig.2.4: Parallel and series parallel architectures of NARX networks 

These networks, as shown in fig.2.4, are again classified as parallel and series-parallel 

architecture. The NARX network with series-parallel architecture uses the past values of the 

actual time series to be predicted and past values of other inputs to predict the future value of 

the target series. In the parallel architecture, the NARX network predicts future value of 

target series by using past predicted values of time the time series y(t) and the past values of  

other inputs [4]. 

2.2.3 Design of neural network 

Neural network design requires a three layer design. The three layers are neurons in the 

input layer, hidden layer, and output layer. There are connections from each input layer 

neuron to everyone in the hidden layer, and in turn, from each hidden layer neuron to each 

output layer neuron for feed forward activity. Thus activation of hidden neurons and output 

neurons requires two sets of weights [5]. 

Using Levenberg-Marquardt back propagation method, the weights are adjusted to 

reduce the mean squared error (MSE) between the predicted value of the network and the real 

goal value in each training range. These modifications are rendered in the reverse direction, 

from the output layer, via each hidden layer down to the first hidden layer, before the state of 

termination is reached. The below steps are followed in the proposed algorithm. 

 Initialization of  the weights 

 Transmission of  the inputs in  forward direction 
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 Back propagation of the error 

 Terminating condition 

2.2.4 Training & testing of the network 

The neural network is properly trained to predict future wind power with the selected 

input parameters such as historical wind power, and wind speed. The data used in training is 

70% and the remaining input values are used for testing and validation. The minimum error is 

achieved by varying the number of hidden layers in the network, the number of test epochs, 

the tolerance of errors and the number of neurons in hidden layer etc. [6]. The selection of 

various parameters of NARX model is depicted in table 2.1. 

Table 2.1: Various parameters of designed NARX model 

Parameters Selection 

Number of hidden layers  1 

Neurons in hidden layer 10 

Delays 2 

Training parameters 

Error: MSE 

Learning algorithm: Levenberg-Marquardt 

 

2.2.5 Simulations & results 

a) Results of wind power forecasting in Belgium wind farms 

This work implements artificial neural network using NARX model. Forecasting is 

carried in MATLAB. A three layer ANN is used. The optimum number of hidden neurons of 

hidden layer of the network is identified while minimizing the forecasting error in terms of 

mean squared error (MSE) and improving regression. MSE is calculated between the 

predicted value and the actual value. Regression signifies the correlation between the 
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predicted and actual values. Input data used   are wind speed and historical wind power to 

forecast wind power as specified in table 2.2. 

The accuracy of this forecasting is assessed with the MAPE calculation. MAPE 

represents mean absolute percentage error. The wind power forecast was carried out from 

Belgium's wind farms by using 6 months of historical power data and wind speed of every 15 

minutes. The assessment factor MAPE is set out in eq.2.2. All the calculated MAPE values 

for wind power forecasting are depicted in table 2.2. 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑖−𝐹𝑖

𝐴𝑖
|𝑁

𝑖=1                                                     (2.2) 

Where, Ai and Fi are actual and forecasted values respectively.   

Table 2.2: Forecasting accuracy in terms of MAPE in Belgium wind farms 

Input Data Used Predicted parameter % MAPE 

Historical wind power of Jan 2013 Wind power of Jan 2014 3.3 

Historical wind power of Feb 2013 Wind power of Feb 2014 3.19 

Historical wind power of Mar 2013 Wind power of Mar 2014 8.3 

Historical wind power of Apr 2013 Wind power of Apr 2014 9.6 

Historical wind power of May 2013 Wind power of May 2014 9.3 

Historical wind power of June 2013 Wind power of June 2014 10.1 

6 months wind speed of Jan 2014 to 

June 2014 

Wind power of Jan 2014 to June 

2014 

7.4 

 

In fig.2.5, the MAPE plot is shown for wind power forecasting of Jan’14. The error in 

terms of MAPE is 3.3 % as mentioned in table 2.2. The MAPE plot depicts lower errors 

indicating good accuracy in forecasting. The MAPE plot for the wind power forecasting of  
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Feb’14 is also shown in fig.2.6. This plot indicates few samples with high errors. The MAPE 

plot in fig.2.7 for wind power forecasting in Mar’14 clearly indicate higher error in terms of 

MAPE. Wind power forecasting for the month Mar’14 is less accurate. For the months of 

Apr’14, May’14 and June’14, the MAPE plots are shown in fig.2.8, fig.2.9 & fig.2.10 

respectively. In Belgium, wind speeds are high in the months January and February. The 

results in table 2.2 are clearly depicting with good accuracy in forecasting in Jan’14 and 

Feb’14 as the wind speed patterns are similar in the consecutive years 2013 and 2014. 

 In the regression plot seen in fig.2.11, x-axis quantity is actual wind power and y-axis 

quantity is predicted wind power. The plot clearly illustrates the usage of strongly correlated 

data in Jan 2014 wind power prediction. Whereas in fig.2.12 the regression map indicates the 

usage of reasonably linked data for the June 2014 wind power forecasting. Fig.2.13 displays 

MAPE plot using wind speed as input data for wind power forecasting. The MAPE error is 

obtained to be 7.4%. 

It is understood that NARX artificial neural network, using historical power data or 

wind speed data used in this work, performs with proper reliability in the wind power 

forecasting. Wind power forecasting error is increasing in the Apr’14, May’14 & June’14 

monthly wind power forecast. 

 

Fig.2.5: MAPE plot as a function of time for wind power forecasting in Jan’14 
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Fig.2.6: MAPE plot as a function of time for wind power forecasting in Feb’14 

 

Fig.2.7: MAPE plot obtained for wind power forecasting in Mar’14 

 

Fig.2.8: MAPE plot obtained for wind power forecasting in Apr’14 
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Fig.2.9: MAPE plot obtained for wind power forecast of May’14 using historical wind 

power as input data 

 

Fig.2.10: MAPE plot obtained for wind power forecast of June’14 using historical wind 

power as input data 
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Fig.2.11: Regression plot obtained for wind power forecast for Jan ’14 using historical 

wind power as input data 

 

Fig.2.12: MAPE plot obtained for wind power forecast for June’14 using historical wind 

power as input data 

 

Fig.2.13: MAPE plot obtained for wind power forecast using wind speed as input data 

b) Results of wind speed & wind power forecasting in US wind farms 

I. Wind speed forecasting 
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In this work, forecasting is mainly carried in MATLAB using the NARX model with 

artificial neural network. Using A three-layer ANN, repeated simulations are done to provide 

the optimal number of hidden neurons to reduce the statistical error and boost regression. 

Input parameters used for forecasting wind speed are wind direction, air density & 

temperature. 

With MAPE's evaluation the accuracy of this forecast is estimated. MAPE reflects 

mean absolute percentage error, specified in eq.2.2. The wind speed forecast was carried out 

from US wind farms using one month data of every 5 minutes. In the regression plot in fig. 

2.14, actual wind speed is indicated on x- axis and predicted wind speed is specified on y-

axis. The regression plot depicts high accuracy in wind speed forecast. Fig.2.15 shows 

evaluation factor MAPE plot. All the calculated MAPE values for wind speed & wind power 

forecasting are depicted in table 2.3. 

Table 2.3: Forecasting accuracy in terms of MAPE for US wind farms  

Wind Speed & wind power forecasting 

Input Data Used Predicted parameter % MAPE 

Air density,  wind direction and 

temperature  of Jan 2011 

Wind speed of 2011 2.3 

Wind speed, wind direction & 

temperature of Jan 2011  

Wind power of Jan 2011 20 

Historical wind power of Jan 2011 Wind power of Jan 2012 22.3 

Historical wind power of Feb 2011 Wind power of Feb 2012 22.7 

Historical wind power & wind speed of 

Jan 2011 

Wind power of Jan 2012 19.7 

Historical one day  wind speed & wind  

power 

One day ahead  

Forecast of wind power 

17 
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Fig.2.14: Regression plot obtained for wind speed forecast 

As shown in fig.2.14, the regression plots clearly indicate the use of highly correlated 

data in the wind speed forecast. MAPE plot in fig.2.15 is depicting good accuracy of the wind 

speed forecast. 

 

Fig.2.15: MAPE plot as a function of time for wind speed forecast 

II. Wind power forecasting 

5 10 15 20

5

10

15

20

Target

O
u

tp
u

t ~
= 

1*
T

ar
g

et
 +

 0
.0

46

Training: R=0.99801

 

 

Data

Fit

Y = T

5 10 15 20

5

10

15

20

Target

O
u

tp
u

t ~
= 

0.
99

*T
ar

g
et

 +
 0

.0
88

Validation: R=0.99693

 

 

Data

Fit

Y = T

5 10 15 20

5

10

15

20

Target

O
u

tp
u

t ~
= 

1*
T

ar
g

et
 +

 0
.0

46

Test: R=0.99781

 

 

Data

Fit

Y = T

5 10 15 20

5

10

15

20

Target

O
u

tp
u

t ~
= 

1*
T

ar
g

et
 +

 0
.0

52

All: R=0.99781

 

 

Data

Fit

Y = T

0
0.2
0.4
0.6
0.8

1
1.2

1

5
9

7

1
1

93

1
7

89

2
3

85

2
9

81

3
5

77

4
1

73

4
7

69

5
3

65

5
9

61

6
5

57

7
1

53

7
7

49

8
3

45

MAPE 
in % 

Time with step of 5 min  



Wind power forecasting Chapter 2 

 

42 

 

By using the data sets of wind speed, wind direction, temperature & historical wind 

power as input data future wind power is forecasted. The data of 2011 & 2012 of US wind 

farm is used in this work. The wind power forecasting is carried by artificial neural network 

using NARX model in MATLAB. In this work, the forecasting accuracy is evaluated in terms 

of the error calculation MAPE. 

 

Fig.2.16: Regression plot obtained for wind power forecast based on meteorological 

information 

 

Fig.2.17: MAPE plot as a function of time in wind power forecast 
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Here fig.2.16 & fig.2.17 show regression plots and MAPE plot respectively in the wind 

power forecast using meteorological data. The regression plot of wind power forecast 

suggests the utilization of moderately correlated data. From MAPE plot, it is understood the 

MAPE value is much larger for some samples which increases the error of prediction up to 

20%. 

 It is clear that NARX network performs with good reliability in wind power 

forecasting either by using meteorological data or historical power as the input data used in 

this work. The error of wind power forecasting is reduced to some extent when historical 

wind power & wind speed data is used as input as shown in MAPE plot in fig.2.22. 

 

Fig.2.18: Regression plot obtained for wind power forecast for Jan’12 
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Fig.2.19: MAPE plot obtained for wind power forecast for Jan’12 

 

Fig.2.20: Regression plot obtained for wind power forecast for Feb’12 

 

Fig.2.21: MAPE plot obtained for wind power forecast for Feb’12 
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Fig.2.22: MAPE plot obtained for wind power forecast for Jan’12 using historical wind 

power & wind speed as input data 

2.3 One day ahead wind power forecasting   

This section proposes radial basis function neural network (RBFN), generalized 

regression neural network (GRNN) and support vector regression (SVR) approach towards 

effective & efficient wind power forecasting using less historical wind power data in the 

training. 

2.3.1. Data collection & pre-processing 

Data has been acquired from Indian wind farms for the year 2014. In wind power 

forecasting, the data set of hourly wind speed, historical wind power is utilized. 

Poor and missing data from the collected sample data can affect forecast accuracy. 

Data normalization improves the pace of convergence and the precision of neural network 

training. The acquired data is normalized to organize the data [7]. The formula is 

implemented to normalize the available data is given by eq.2.4. This normalization technique 

is implemented when the data is normally distributed.  

𝑥𝑛𝑒𝑤 =
(𝑥−𝜇)

𝜎
                                                   (2.4) 

Where,  𝜇 is the mean of data set and 𝜎  is the standard deviation.  

2.3.2 Methods  

The methods implemented in the work described below. 

a) Radial basis function neural network 

 Radial basis function neural network (RBFN) is a specific type of neural network 

resembling to K-nearest neighbour model. Generally, artificial neural networks are referred to 
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be multilayer perceptron (MLP).In MLP; each neuron receives the sum of product of input 

value and its connection weight. This describes linear classification [8]-[9]. But the 

combination of these neurons leads to a complex non-linear classification technique. Unlike 

MLP, RBFN a three layer neural network performs classification by analysing the input’s 

similarity to training set. Each neuron stores a prototype from the examples of the training set 

while RBFN gets trained. The new input is classified by computing the Euclidean distance 

between the input and its prototype. The weight of each neuron can be computed by applying 

a radial basis function to the Euclidean distance. Further, the choice of the receptor is crucial 

in the weight’s calculation in RBFN [10]-[11]. Fig. 2.23 presents the structure of RBFN.                             

h
1

h
j

h
k

Y(x)

x
1

x
2

x
m

 

Fig.2.23: Structure of RBF neural network 

As depicted in fig.2.23 the inputs to the neural network are denoted as x1, x2 up to xm. 

Whereas the hidden layer hj takes a radial basis function. The most commonly used radial 

basis function in neural networks is Gaussian function as described in eq.2.5. Finally, the 

network’s output is calculated as per the eq.2.6, where wj indicates the weight of the 

connections. 

Gaussian Function: ∅(𝑟) = exp [
−𝑟2

2𝜎2 ]                 (2.5) 

Where, 𝑟 indicates Euclidean distance and 𝜎 is standard deviation. 
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Output: 𝑦(𝑥) = ∑ 𝑤𝑗ℎ𝑗(𝑥)𝑘
𝑗=1                              (2.6) 

b) Generalized regression neural network 

Generalized regression neural network (GRNN) is a type of probabilistic neural 

networks. It is based on the function approximation one pass learning algorithm. GRNN 

applies the probability density function following normal distribution. This neural network 

needs only a fraction of training data that is required by any neural network follows 

backpropagation. Training data maps input to output. Once the network is trained, testing 

data set is used to predict the result [12].  

In case of GRNN, output is estimated using weighted average of the outputs of training 

dataset, where the weight is calculated using the Euclidean distance between the training data 

and   testing data. If the distance is large then the weight will be very less and if the distance 

is small, it will put more weight to the output. This neural network mainly consists of four 

layers named input layer, pattern layer, summation layer and output layer. The input layer 

passes the input to next layer. In pattern layer, a Gaussian probability distribution function 

RADBAS is applied which needs the calculation of Euclidean distance. Further every 

training sample will represent a mean to a radial basis neuron. 

In summation layer, two sub parts, numerator and denominator of the function as 

described in eq.2.7 are computed. Numerator part computes the summation of multiplication 

of training output data and activation function. Denominator part calculates the summation of 

activation function. The output layer finally calculates the output by taking the ratio of 

numerator part to denominator part as per eq.2.7. 

𝑌(𝑥) =
∑ 𝑌𝑖 exp (−

𝐷𝑖2

2𝜎2 )𝑛
𝑖=1

∑ exp (−
𝐷𝑖2

2𝜎2)𝑛
𝑖=1

                                         (2.7)                             
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Where Di is the distance between the training sample and point of prediction, Yi is the 

training sample and the parameter 𝜎 is defined as the standard deviation or spread. 

c) Support vector regression 

For classification and regression analysis the algorithms of supervised learning models 

are used in support vector machines. In a linear classifier the feature vectors in non-linear 

classifier are effectively translated into high-dimensional space. Implicitly, this mapping can 

be done with the Kernel functions. For a given training data
1 1{( , ),....., ( , )}l lx y x y x R  , 

where x denotes the space of input patterns. In  support vector regression, our goal is to 

find a function f(x) that has at most   deviation from the actually obtained targets iy for all 

the training data, and at the same time, is flat as possible. As long as the errors are less than , 

it is accepted otherwise the errors will be taken care [13]-[15]. Ultimately Support vector 

regression finds a regression function as in eq.2.8. 

( ) ( )Ty f x w x b                                                  (2.8) 

Where, ( )x is a function that can map data x from low dimension to high dimensional 

space, w  is a weight vector and b represents bias that is either increased or decreased. 

Standard support vector regression adopts  -insensitive function. It is assumed that all the 

training data is fitted with a linear function in the accuracy of  .The problem is translated 

into an objective function to optimize its   minimization as given in eq.2.9. 

Minimize        
1

2
‖𝑤‖2 + *

1

( )
l

i i

i

C  


                                 (2.9)      

Subject to  

( )T

iw x b y    + i  
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iy - ( )Tw x - b  + *

i  

                   

 *,i i               0 

Where, *,i i  are known as the relaxation factors.  

When there is an error in fitting, *,i i  are greater than 0.If not, *,i i   are all equal to 

zero.   For the fitting method the first term of the optimization function more smoothen to 

boost generalization. The second term is that of reducing the error. The next important 

parameter is the error penalty parameter C which greatly affects support vector regression 

performance C is a trade-off between the difficulty of the algorithm and the degree of 

samples wrongly classified. Smaller C values indicate lower punishment for the original 

data's empirical error, and higher risk of experience. If the value of C is larger, the empirical 

error penalty is larger and experience risk is smaller. The greater C value also results in high 

computational complexity. The selection of appropriate penalty factor C thus has a major 

impact on the convergence of the model and its performance in prediction. Another critical 

element is kernel function, which is known to be the origin of support vector regression. It 

has an impact on support vector regression results. Significant steps in the performance of 

support vector regression are the determination of the appropriate kernel function and the 

appropriate values for the various relevant kernel parameters. 

Mostly four types of kernel functions, linear kernel, polynomial kernel, RBF kernel and 

sigmoid kernel are implemented in support vector regression. As construction of RBF kernel 

(Gauss kernel) is relatively easy, this is widely used at present. The function is as follows in 

eq.2.10. 
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2
2( , ) exp( / )i j i jK x x x x                   (2.10) 

Where  is the standard deviation,  >0. 

2.3.3 Training & testing of the models 

After normalization, the multilayer neural network RBFN which is a three-layer neural 

network has been developed for wind power forecasting. The three layers of the RBFN are 

described as input, output and hidden layers. The hidden layer incorporates radial basis 

function RADBAS .The neurons of hidden layer are increased for a radial basis network until 

it reaches specified mean squared error. The connections are made for feed forward. In RBFN 

the weights are adjusted according to the receptor and spread unlike conventional neural 

network. So, proper receptor selection rapidly converges with the network. GRNN is also a 

kind of radial basis network and used for approximation of functions. The GRNN applies 

Gaussian distribution function RADBAS. Similarly, for the GRNN, spread is selected as per 

random search method to approach minimum error in forecasting. Smaller spread ensures to 

fit the data closely. 

Further the SVR model is designed with RBF kernel function. In SVR model kernel 

plays a key role because with kernel trick only nonlinear regression is performed by 

implicitly mapping their inputs into high dimensional feature spaces. The effectiveness of 

SVR depends on the selection of kernel, kernel parameters and regularization parameter C. 

Most widely used kernel is RBF, since it is simple in construction with only one parameter  . 

It is the inverse of the standard deviation of RBF kernel (Gaussian kernel) which is used as 

similarity measure between two points. The appropriate values of the parameters C&    are 

required to achieve higher cross validation accuracy. Fig.2.24 describes the methodology of 

the work carried out for WPF in this paper. The work presented in this section is initiated 

with data collection from an official website of Indian wind farms. The data includes 
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historical data of meteorological parameters wind speed, temperature and wind power. After 

proper data acquisition, relevant excel files have been prepared to pre-process the data. To 

ensure continuity of the data, and to improve the convergence rate of neural networks, 

normalization is carried as mentioned in the above section. Then three different forecasting 

models GRNN, RBFN and SVR have been designed. With the data wind speed and wind 

power of 27 days from every month in the year 2014 is utilized in training of the models 

.Once the models are well trained and ready to forecast, the hourly wind power on 28 th day of 

every month for the year 2014 is forecasted. Then, rigorous evaluation is carried to assess the 

performance of all the forecasting models. Finally, the work concludes with the comparison 

of the model’s performance. 

Data Collection

Data Preprocessing

and Normalization

Development of

RBFN Model

Development of

GRNN Model

Development of

SVR Model

Training of the Models with 27 days

of each month

Performance comparison of all three

Models

Testing & Validation of the Models to

forecast a day ahead Wind power

 

Fig.2.24: Flow chart of the proposed methodology 
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2.3.4 Simulations & results 

This work mainly proposes wind power forecasting with two different neural networks 

RBFN, GRNN and SVR model. The WPF uses the data of the year 2014 from the Indian 

region Kolkata. It is availed from the official website consists NWP data of hourly wind 

speed and wind power for the year 2014. The data is divided into two sets for training and 

testing. In each month, 27 days hourly data is used in training the neural networks GRNN and 

RBFN and the SVR model. For the GRNN and the RBFN suitable spread values are chosen. 

The spread value is optimized to 0.005 with random search method for GRNN and it is 1 for 

RBFN. The SVR model establishes a suitable kernel which evolves with the selection of 

suitable values for regularization parameter C and  .To handle misclassification of training 

sample, the regularization parameter C must be optimized. If the value of   is small, variance 

is large. Further, it is well understood that large gamma indicates high bias and small 

variance .In this work, RBF kernel is chosen. Using grid search method, the values of C and 

  are optimized to 100 and 1 respectively. 

In each month the historical data of wind speed and wind power is used to train the 

neural network models and the SVR model effectively for 648 epochs. A day ahead hourly 

wind power generation is forecasted by using all three models. The forecasting accuracy of 

these models is analyzed by calculating the two errors such as mean absolute percentage error 

(MAPE) and root mean squared error (RMSE) as given by eq.2.11 and eq.2.12 respectively. 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑖−𝐹𝑖

𝐴𝑖
|𝑁

𝑖=1                              (2.11) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐴𝑖

𝑁
𝑖=1 − 𝐹𝑖)2                       (2.12)                           
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Where, Ai and Fi are actual and forecasted values of the parameter (to be predicted) 

respectively.   

The MAPE values are presented in table 2.4. It is observed that the SVR model shows 

consistent performance though the errors in terms of MAPE in a day ahead WPF of the 

months of Oct’14 and Nov’14 are higher than usual. Fig.2.25 presents bar graph of MAPE 

values of all three models.   

Table 2.4: Comparison of forecasting accuracy in terms of MAPE values 

MAPE values for Wind power forecasting  one day  ahead 

Day of prediction 

 

 

RBFN SVR GRNN 

28th Jan’14 0.24 0.2 0.32 

28th Feb’14 7.33 7.93 3.6 

28th Mar’14 0.24 0.26 0.37 

28th Apr ‘14 0.56 0.55 0.67 

28th May’14 42.70 1.33 0.51 

28th June’14 0.24 0.16 0.46 

28th July ‘14 0.12 0.14 0.17 

28th Aug’14 0.18 0.12 0.18 

28th Sep’14 0.64 0.65 0.77 

28th Oct’014 15.4 9.4 13.07 

28th Nov ‘14 7.2 11 12.92 

28th Dec’14 0.23 0.22 0.47 

Maximum 42.70 11 13.07 

Minimum 0.12 0.12 0.17 

 

Table 2.5: Comparison of forecasting accuracy in terms of RMSE values 

RMSE values in kW for Wind power forecasting  one day  ahead 

Day of prediction 

day 

RBFN SVR GRNN 

28th Jan’14 0.03 0.03 0.068 

28th Feb’14 0.007 0.007 0.0095 

28th Mar’14 0.04 0.041 0.155 
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Support vector regression is mainly influenced by kernel function and the proper 

selection of its parameters. Though the RBFN model forecasted has wind power with similar 

accuracy of the SVR model in some months, it got failed to predict wind power on 28 th 

May’14 with very poor MAPE of 42.7% as range of wind speed is higher side on that day. In 

RBFN model when the samples of larger variance dominate the objective function, the model 

will not be able to predict accurately. But, unlike the RBFN model, other two models the 

SVR model and the GRNN model are successful in forecasting with good accuracy. Fig.2.26 

& fig.2.27 depict the comparison of the forecasted power and the actual   power for the 

forecasted day 28th May’14. Except in one or two months, the SVR model provides higher 

accuracy in a day head forecasting. Though MAPE values of WPF with the GRNN model are 

little bit higher than the SVR model, being improved version of neural networks based on 

non-parametric regression, GRNN model is reliable in short term WPF. In the months of 

October and November all three models suffer with less accuracy because of lower values of 

wind speed for many samples  and high volatility in wind speed of the forecasted day. Fig. 

2.28 clearly indicates MAPE values are at the higher range for SVR model when wind speeds 

are very much lower. The lower wind speeds lead to higher MAPE for the SVR model in 

WPF on 28th Nov’14. Fig.2.29 shows highly variant wind speed on the forecasted day 28 th 

Nov’14. For WPF through SVR model , MAPE value ranges from 11% to 0.12 %.The 

28th Apr ‘14 0.04 0.036 0.38 

28th May’14 125 2.8 0.62 

28th June’14 0.028 0.028 0.055 

28th July ‘14 0.04 0.046 0.09 

28th Aug’14 0.029 0.031 0.034 

28th Sep’14 0.026 0.03 0.022 

28th Oct’014 0.02 0.018 0.02 

28th Nov ‘14 0.02 0.02 0.053 

28th Dec’14 0.033 0.036 0.223 

Maximum 125 2.8 0.62 

Minimum 0.007 0.007 0.0095 
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maximum MAPE for WPF with GRNN model  is 13.07% and minimum MAPE is 

0.17%.Similarly maximum MAPE, minimum MAPE are 42.7% and 0.12% for WPF using 

the RBFN model respectively. To emphasize the performance of all three models RMSE 

values are computed in KW and presented in table 2.4.While analysing RMSE values also, 

the SVR model is considered to be the best model for short term WPF. The maximum RMSE 

for WPF  through the RBFN model is abnormal value as shown in table 2.5, indicating the 

inability of the model for a day ahead WPF of the day in the month of May’14 i.e.28 th 

May’14. 

 

Fig.2.25: Comparison of RBFN, SVR and GRNN performances  in terms of MAPE 

 

Fig.2.26: Comparison of forecasted power of RBFN to actual power of  28th May’14 
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Fig.2.27: Comparison of forecasted power of SVR to Actual power of 28th May’14 

 

Fig.2.28: Comparison of MAPE plots of 28th Nov’14 

 

Fig.2.29:  Variation of wind speed on 28th Nov’14 

2.4 Summary 

This work effectively describes the performance of NARX Neural Network in wind 

power forecasting and wind speed forecasting. The optimization of number of hidden layer’s 

neurons is significant. In this work, the number of neurons in hidden layer is set by repeated 
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simulations. NARX model is consistent in short term wind power forecasting irrespective of 

the location. Further to understand the performance of various models like GRNN, RBFN 

and SVR, one day ahead forecasting of wind power is carried, and the tuning of parameters is 

done using grid search method. The SVR model is identified to be more consistent and 

reliable one. The GRNN model is also performing consistently with good accuracy. 
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Chapter 3 

UNCERTAINTY IN PREDICTION OF WIND POWER 

3.1. Introduction 

Renewable energy supply is slowly replacing traditional sources of energy. Wind 

energy is a big stakeholder in clean energy production, but wind power supply instability is 

the main issue regarding its power grid penetration. Wind power’s uncertainty and 

intermittent nature leads to the unbalance between load and generation. Scientists have been 

trying to overcome this challenge over the past one decade to bring on more and more wind 

energy production. Wind power forecasting assists in managing the balance between power 

generation and demand. Wind power forecasting (WPF) also assists the market in electricity 

trading. 

Apart from conventional neural networks, generalized regression neural network can be  

implemented in wind power forecasting by using less training data that overcomes  

drawbacks like requirement of large sets of data and slow learning of neural networks in 

order to improve accuracy in forecasting [1]-[4]. Composite neural network with parallel 

topology may improve accuracy in wind power forecasting [5].  

The effectiveness of any forecasting technique or model is evaluated by knowing its 

reliability. In this chapter generalized regression neural network (GRNN), radial basis 

function neural network (RBFN) are used and a hybrid GRNN-RBFN model has been 

developed with parallel topology for wind power forecasting. Forecasting accuracy is 

evaluated in terms of mean absolute percentage error (MAPE). To evaluate uncertainty in 

prediction with the above mentioned methods, the confidence intervals are computed on 

MAPE.  Among all three methods confidence intervals are narrower for GRNN.  In case 
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individual methods may not show good accuracy in forecasting, the hybrid GRNN-RBFN is 

much reliable with narrower confidence intervals. This chapter presents three models GRNN, 

RBFN and hybrid GRNN-RBFN for forecasting hourly wind power a week ahead in Indian 

wind farms. 

3.2 Methods applied for wind power forecasting  

This work implements RBFN, GRNN and a hybrid GRNN-RBFN. This section 

describes the above mentioned models. 

3.2.1 Radial basis function neural network 

Radial basis function neural network (RBFN) is conceptually close to neighbour type 

K-nearest. RBFN is a neural network comprising three layers formed of an input layer, a 

hidden layer and an output layer. It is usually used for approximation of functions. Every 

hidden-layer neuron consists of a component on a radial basis. The output layer calculates 

weighted sum of outputs to form network output. An RBFN locates one or more neurons 

inside the predictor variables defined in the space. The space would be multi-dimensional as 

per the number of predictor variables. Each neuron's weight is computed by applying a radial 

basis function to the Euclidean distance computed between each neuron's input and centre. 

Unlike in traditional neural networks, where back propagation algorithm is implemented, 

receptor selection has a major impact on weight calculation [6]-[10]. The structure of RBFN 

is shown in fig.3.1. 
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Fig.3.1: Structure of RBF neural network 

As shown in fig.3.1, x1, x2 up to xn are the inputs to the neural network. For hidden 

layer hx takes a radial basis function. The radial basis functions used in neural networks may 

be represented by eq.3.1, eq.3.2 or eq.3.3. Most commonly used radial basis function is 

Gaussian function. The output of the network is calculated as per the eq.3.4, where wj 

specifies the weight of the connections. 

Multiquadri : ∅(𝑟) =  (𝑟2 + 𝑐2)
1

2                               (3.1) 

Inverse Multiquadrics : ∅(𝑟) =
1

(𝑟2 +𝑐2)1/2                   (3.2) 

Gaussian Function : ∅(𝑟) = exp [
−𝑟2

2𝜎2 ]                         (3.3) 

In eq.3.1, eq.3.2 and eq.3.3, 𝑟 indicates Euclidian distance and 𝑐 is shape parameter and 𝜎 

represents standard deviation. 

Output: 𝑓(𝑥) = ∑ 𝑤𝑗ℎ𝑗(𝑥)𝑚
𝑗=1                                      (3.4) 

3.2.2 Generalized regression neural network 

Generalized regression neural network (GRNN) is basically a probabilistic neural 

network. It is function approximation based one pass learning algorithm. Following normal 
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distribution GRNN applies probability density function. This neural network needs to train 

itself with a training data. The training data should include mapping of input-outputs. After 

the network is trained with the training data set, the results are predicted using a new test data 

set. 

Depending on Euclidean distance, the weights of the connections are determined in 

GRNN. The Euclidean distance is measured between the training data and evaluation data. 

The wide distance means less weight, so with a limited distance weight is greater. This neural 

network basically contains four layers labelled to be input layer, pattern layer, summation 

layer, and output layer [11]. Input layer works when input data is transferred to next layer. 

Whereas Gaussian probability distribution function is implemented in pattern layer. 

The summation layer, as presented in eq.3.5, consists of two sub-parts, the function 

numerator and denominator. In the numerator the sum of the product of the training output 

data and activation function is calculated, and the sum of the activation function is calculated 

as a denominator part. Ultimately, the output is computed with the ratio of numerator part to 

denominator. 

𝑓(𝑥) =
∑ 𝑓𝑖 exp (−

𝐷𝑖2

2𝜎2 )𝑛
𝑖=1

∑ exp (−
𝐷𝑖2

2𝜎2)𝑛
𝑖=1

                                       (3.5)                             

Where Di is the distance between the training sample and point of prediction, 𝑓𝑖 is the 

training sample and the parameter 𝜎 is defined as the standard deviation or spread. 

3.2.3 Hybrid GRNN-RBFN 
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Fig.3.2: Parallel topology of Hybrid GRNN-RBFN 

As illustrated in fig.3.2, two neural networks are connected in parallel and trained for 

prescribed target with the same input data [5]. The neural trained networks predict future 

wind power. The wind power output shall be calculated according to the weights assigned to 

each network. According to Mean Squared Error measured in network training, the weight is 

allocated to each network. The output is calculated as per eq.3.6.  

Output= W1*OUTPUTGRNN+W2*OUTPUTRBFN             (3.6) 

W1&W2 are the weights assigned to GRNN and RBFN respectively, such that the sum 

of W1 and W2 equal to 1. 

The flow chart for methodology of wind power forecasting using hybrid neural network 

is shown in fig.3.3 which is self-explanatory. 
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Fig.3.3: Flow chart of WPF for Hybrid GRNN-RBFN 

 3.3 Data collection & pre-processing 

3.3.1  Data acquisition & statistical analysis 

 Data has been acquired from Indian wind farms for the year of 2014 towards prediction 

of wind power. The forecast of wind power has been done for one week in every month using 

the historical data of wind speed and wind power. To decrease the computational complexity 

in wind power forecasting, it is necessary to select suitable input parameters. Initially, 

correlation factors are computed among the historical wind power, wind speed and 

temperature. Then, the highly correlated data of historical wind power and wind speed is used 
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in the training of neural networks. The correlation factors of the data for the months Jan’14 

and Feb’14 are closer. For the months Apr’14 and June’14, correlation factors are higher 

reflecting the accuracy of forecasting. Further in months Oct’14 and Nov’14, the correlation 

factors are lower, which decreases the forecasting accuracy in the respective months. 

3.3.2  Normalization of  the data  

Improper and missing data of the acquired data affects accuracy in WPF. In order to 

address this issue, the data is normalized, hence improves accuracy and convergence in 

training of the neural networks. In order to organize the data, the acquired data is normalized 

with two formulas initially; more effective formula for the sample data is chosen according to 

the accuracy of the forecasting. As per eq.3.7, the available data is normalized in the present 

work. This leads to the standardization of the data [12]. 

𝑥𝑛𝑒𝑤 =
(𝑥−𝜇)

𝜎
                                                   (3.7) 

Where,  𝜇  is the mean of data set and 𝜎  is the standard deviation.  

Another normalization method is shown in eq.3.8. It is feature scaling used to fix the 

data set in a particular range. 

𝑥𝑛𝑒𝑤 =
(𝑥−𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
                                        (3.8) 

After normalization, the multilayer neural network RBFN implemented for wind power 

forecasting is a three-layer neural network. They are described as input, output and hidden 

layers. The hidden layer uses radial basis function RADBAS. The neurons of hidden are 

increased for a radial basis network until it reached specified mean squared error. The feed 

forward connections are done. In RBF neural network, unlike conventional neural network, 

the weights are adjusted according to the receptor and spread. Hence proper choice of 
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receptor gets the network converge fast. A GRNN is also a kind of radial basis network and 

used for function approximation. The GRNN applies Gaussian distribution function 

RADBAS. Similarly, for the GRNN, spread is selected as per random search method to 

approach minimum error in forecasting. Smaller spread ensures to fit data closely. 

3.4 Simulations & results  

This work essentially offers wind power forecasting with three different neural 

networks such as GRNN, RBFN and Hybrid GRNN-RBFN. The WPF consumes the data of 

the year 2014 from Indian wind farms obtained from its official website. The data comprises 

meteorological data of hourly wind speed and historical wind power of the year 2014. The 

data is divided into two sets for training and testing. In each month, three weeks hourly data 

is used in training the neural network with the selection of suitable spread value for GRNN 

and RBFN. The spread value is optimized to 0.005 with random search method for GRNN 

and it is 1 for RBFN.  

Using each month data of wind speed and wind power, the neural network models are 

effectively trained for 504 epochs to forecast a week ahead hourly wind power generation. 

The forecasting accuracy of these networks are analysed by calculating the various errors 

such as mean absolute percentage error (MAPE) and root mean squared error (RMSE) as 

given by eq.3.9 and eq.3.10 respectively. 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑖−𝐹𝑖

𝐴𝑖
|𝑁

𝑖=1                                     (3.9) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐴𝑖

𝑁
𝑖=1 − 𝐹𝑖)

2                                      (3.10)                           

Where, Ai and Fi are actual and forecasted values respectively.   



Uncertainty in prediction of wind power Chapter 3 

 

68 

 

All the calculated MAPE values for wind power forecasting are listed in table 3.1. 

From table 3.1, it is evident that GRNN forecasts wind power with MAPE range of 0.48 % to 

10.53 % for all months of the year. Whereas the samples of negligible wind power 

generations increase error in forecasting with RBFN and affect the performance of RBFN. If 

the wind power variations are regular enough in any month RBFN is also performing well. 

The performance of GRNN is analysed thoroughly by forecasting wind power one day ahead 

even. A day head forecasting is done for a month in each season. The results are tabulated in 

tables 3.2, 3.3 & 3.4. Fig.3.4 shows the variations of MAPE values for 24 hours in wind 

power forecasting one day ahead of 27th June 2014. Fig.3.5 compares the accuracy of the 

neural network models in wind power forecasting in terms of MAPE for every month of the 

year 2014. In the year 2014, for all the months GRNN has shown consistency in forecasting 

wind power effectively with lower errors irrespective to the large variations in the data for the 

months Feb’14 and Mar’14. The forecasting analysis in this paper suggests GRNN can do 

better for dynamical systems like WPF. 

To support the performance of GRNN, evaluation is also done by calculating RMSE 

values as depicted in table 3.5. From Table 3.5 of RMSE values, it is found that in forecasting 

wind power a week ahead for the month of Mar’14, GRNN forecasted with RMSE of 

3.31kW, whereas RBFN has shown poor performance with RMSE of 11.61kW. Irrespective 

of the higher uncertainty in wind speed, the wind power is forecasted accurately in the month 

of May’14 using GRNN with MAPE of 7.5 % and RMSE 0.76 kW. The plot in fig.3.6 shows 

the predicted wind power vs. actual wind power of the month Jan’14. It depicts the accuracy 

in forecasting wind power one week ahead with GRNN. The plot also indicates the 

inefficiency of GRNN in the prediction of some peak values. The plot in fig.3.7 compares the 

forecasted wind power to actual one in the month Mar’14 with GRNN. The forecasted wind 

power is matching the actual one except for some peak samples. 
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3.5 Uncertainty analysis in prediction 

 In this work, uncertainty involved in wind power forecasts is investigated effectively 

with the computation of confidence intervals (CI) [13]-[14]. In further evaluation of 

performance of the above mentioned neural network models, confidence intervals on MAPE 

vector for all the models are computed. For the calculation of the confidence interval of a 

vector, first the standard deviation (σ) of the vector is calculated and then standard error (SE) 

is computed using eq.3.11. In the next step margin of error is calculated using eq. 3.12 for the 

desired confidence level. The value of variable t in eq.3.12 is found from standard normal 

distribution for desired confidence level. In this work, the confidence level considered is 

95%, for which the value of t is 1.96. Finally, CI is calculated using eq.3.13 [15]. 

SE= σ/√n                                                                         (3.11) 

Where n is the sample size. 

Margin of error E = t * SE                         (3.12)                                            

CI= Mean (X) ± E                                   (3.13)                                                                          

The computed confidence intervals for confidence level 95% are presented in table 3.6. 

As shown in table 3.6, the GRNN model has narrow confidence interval with respect to 

higher accuracy in every month in week ahead forecasting. For some months the confidence 

interval of the RBFN model is so wider like in the month May’14 with lower boundary of 

11.5 % and upper boundary 39.7 %. But, the GRNN model has narrower confidence interval 

comparatively with lower boundary of 4.9 % and upper boundary of 10.1%. Compared to 

RBFN and hybrid GRNN-RBFN, GRNN can provide good prediction in wind power because 

it is an improved technique in neural networks based on nonparametric regression. 
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Table 3.1: Forecasting accuracy of various models in terms of MAPE for one week 

ahead 

MAPE in  Wind power forecasting  one week ahead 

Input Data 

Used 

Month of 

forecasted week 

RBFN GRNN Hybrid GRNN-

RBFN 

Wind speed Jan 2014 7.70 3.50 4.50 

Wind speed Feb 2014 16.90 7.50 9.50 

Wind speed Mar 2014 17.40 2.60 8.30 

Wind speed Apr 2014 2.10 0.90 1.10 

Wind speed May 2014 25.60 7.50 11.40 

Wind speed June 2014 2.00 0.68 1.00 

Wind speed July 2014 9.70 3.20 5.10 

Wind speed Aug 2014 0.31 0.70 0.51 

Wind speed Sept 2014 0.44 0.73 0.52 

Wind speed Octo 2014 11.88 10.53 10.84 

Wind speed Nov 2014 13.90 10.08 9.77 

Wind speed Dec 2014 0.25 0.48 0.25 

 

Table 3.2: A day ahead forecasting accuracy in terms of MAPE in the month Apr’14 

MAPE in  Wind power forecasting  one day ahead 

Day for the week of 

Apr’14 

RBFN GRNN Hybrid GRNN -

RBFN 
22nd Apr’14 5.30 0.80 2.50 

23rd Apr’14 0.40 0.39 0.30 

24th Apr’14 1.60 0.37 0.80 

25th Apr’14 0.47 0.43 0.37 

26th Apr’14 1.54 0.18 0.69 

27th Apr’14 5.57 0.14 2.05 

28th Apr’14 0.42 0.96 0.63 

 

Table 3.3: A day ahead forecasting accuracy in terms of MAPE in the month Aug’14 

MAPE in  Wind power forecasting  one day ahead 

Day for the week of 

Aug’14 

RBFN GRNN Hybrid GRNN-

RBFN 
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22nd Aug’14 0.18 0.56 0.42 

23rd Aug’14 0.30 0.87 0.63 

24th Aug’14 0.24 0.40 0.29 

25th Aug’14 0.27 0.55 0.41 

26th Aug’14 0.32 0.63 0.47 

27th Aug’14 0.64 1.60 1.15 

28th Aug’14 0.25 0.25 0.19 

 

Table 3.4: A day ahead forecasting accuracy in terms of MAPE in the month Dec’14 

MAPE in  Wind power forecasting  one day ahead 

Day for the week of 

Dec’14 

RBFN GRNN Hybrid GRNN-

RBFN 

22nd Dec’14 0.28 0.45 0.30 

23rd Dec’14 0.38 0.88 0.66 

24th Dec’14 0.22 0.54 0.41 

25th Dec’14 0.14 0.31 0.22 

26th Dec’14 0.27 0.27 0.19 

27th Dec’14 0.20 0.35 0.27 

28th Dec’14 0.22 0.59 0.42 

 

Table 3.5: Table for RMSE values in KW 

RMSE values in kW for Wind power forecasting  one 

week ahead 

Month  RBFN GRNN Hybrid GRNN-

RBFN 

Jan. 2014 0.17 0.65 1.00 

Feb. 2014 0.01 0.01 0.009 

March 2014 11.61 3.31 6.44 

April 2014 0.02 0.23 0.14 

May 2014 1.25 0.76 0.22 

June 2014 0.03 0.08 0.05 

July 2014 0.02 0.07 0.05 

August 2014 0.02 0.04 0.03 

Sept.  2014 0.02 0.03 0.02 

October 2014 0.01 0.05 0.04 

Nov. 2014 0.03 0.06 0.04 
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Dec. 2014 0.03 0.14 0.10 

 

Table 3.6:  Comparison of Confidence Intervals 

Confidence intervals of MAPE values in  Wind power forecasting month 

wise 

Month of forecasted 

week 

RBFN GRNN Hybrid GRNN-

RBFN 

Jan’14 [-0.6   16] [1.3   5.7] [0.3  8.7] 

Feb’14 [2.9   30.9] [4.2   10.8] [2.9   16.1] 

Mar’14 [8.5  26.35] [1.6   3.6] [4.6    12] 

Apr’14 [0.9   1.2] [0.53   1.25] [0.54    1.4] 

May’14 [11.5  39.7] [4.9   10.1] [6.9   15.9] 

Jun’14 [0.5    3.5] [0.43   0.93] [0.46  1.54] 

July’’14 [-1.7 21.19] [1.2    5.2] [0.5   9.7] 

Aug’14 [0.25  0.36] [0.48   0.92] [0.37  0.65] 

Sep’14 [0.37   0.5] [0.57   0.89] [0.4   0.64] 

Oct’14 [6.7    16.9] [6.3    14.7] [6.4  15.2] 

Nov’14 [7.1   20.7] [5.81  14.35] [5.5  14.04] 

Dec’14 [0.21  0.28] [0.37   0.59] [0.27  0.43] 

 

 

Fig.3.4: Comparison of RBFN,GRNN and Hybrid GRNN-RBFN performance in terms 

of MAPE of a day ahead wind power forecasting for 27th June’14 

0

0.2

0.4

0.6

0.8

1 3 5 7 9 11 13 15 17 19 21 23

RBFN

GRNN

Hybrid

Time in hours 

     
MAPE 
 in % 



Uncertainty in prediction of wind power Chapter 3 

 

73 

 

 

Fig.3.5: Comparison of RBFN,GRNN and Hybrid GRNN-RBFN performance in terms 

of MAPE 

 

Fig.3.6: Predicted wind power one week ahead of Jan’14 with the actual wind power 

 

 

 

 

 

Fig.3.7: Predicted wind power one week ahead of Mar’14 with the actual wind power 
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3.6 Summary 

The randomness of wind power poses safety concerns to the power grid to increase 

wind power penetration. Forecasting wind power using GRNN, RBFN and Hybrid GRNN-

RBFN is carried out in this paper to address this issue. The GRNN model has performed 

consistently in all months of 2014 with significant reliability, which is ensured with the 

narrowest confidence interval of MAPE values in WPF for all months. The cases where there 

is highly correlated data, the RBFN model improves its performance. Further a hybrid 

GRNN-RBFN model is designed to forecast wind power, which emphasizes proper 

assignment of weights to each neural network in parallel topology. The hybrid neural network 

provides better accuracy in forecasting, if a single neural network is not reliable in 

forecasting. Various topologies like series, parallel and series parallel connections can be 

designed to increase the accuracy in wind power forecasting. 
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Chapter 4 

SOLAR PHOTO VOLTAIC POWER FORECASTING 

4.1 Introduction 

Reliable electric power supply is crucial in the sustainable development for any country 

in recent years. The growing demand for power worldwide, the disappearance of 

conventional energy sources and the free generation of pollution-free power insist on the 

necessity of generating power from renewable sources. A major motivating force for 

sustainable power production is also the enhanced output from renewable energy sources. 

Solar photo voltaic (PV) power promises a clean and renewable resource that generates 

electricity with low pollution. Solar energy plays a key role in future electricity generation as 

sun is the powerful source. Solar energy is actually the fast-growing solar technology for 

producing electricity with an annual growth of 48 percent [1]. The power grids face stability 

and efficiency issues because of the volatility and irregularity of solar PV power production. 

Solar PV power production is very much decided by solar irradiation. Its intermittent nature 

causes uncertain and volatile solar power generation. Solar PV power generation is 

susceptible to meteorological parameters such as solar irradiance and temperature, as seen in 

eq.4.1 [2]. The characteristics of the PV system are highly nonlinear [3]. Solar PV power 

forecasting is evolved as the right solution to overcome this variability in solar PV power 

generation for the power grid operators.  

𝑃𝑝𝑣 = 𝑛𝑝 𝑉𝑝𝑣 (𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡 (exp (
𝑞

𝑛𝑘𝑇
 .

𝑉𝑝𝑣

𝑛𝑠
) − 1))                                          (4.1) 

𝐼𝑝ℎ = (𝐼𝑠𝑐𝑟 +
𝐾𝑟

1000
(𝑇 − 𝑇𝑟))𝑆𝑟                                                                     (4.2) 
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Where, 𝑃𝑝𝑣 represents PV array’s output power. 𝑛𝑝  Indicates the number of PV arrays 

connected in parallel. When PV arrays connected in series, 𝑛𝑠 shows the number, the output 

voltage of a PV array is represented by  𝑉𝑝𝑣 .  𝐼𝑝ℎ describes the output current of a PV 

array,  𝐼𝑠𝑎𝑡 describes the dark saturation current of PV array, the charge of an electron is 

given by q, n represents  the identity factor, k is the Boltzmann constant, the absolute 

temperature is given by T,  the reference temperature in kelvin is given by 𝑇𝑟, 𝐼𝑠𝑐𝑟 indicates 

the short circuit current at 1KW/m2 of solar irradiance and reference temperature, 𝐾𝑟 is the 

temperature coefficient of the short circuit current and 𝑆𝑟  is the solar irradiance (KW/m2) . 

Solar PV power production has been witnessing a substantial increase over the past 

decade. Power grid operators rely mostly on solar PV power forecasting in order to penetrate 

PV power stably into the power grid and towards efficient planning for distributed 

generation. Precise solar PV power forecasting is important for power grid operators to 

sustain a safe and effective power network in an efficient load control. Solar PV power 

forecasting   is also very helpful in trading of electricity to achieve economic benefits. 

Solar PV power is predicted in two ways, i.e. the direct and the indirect. PV output is 

predicted in direct method, while solar irradiation is calculated in advance to determine PV 

capacity by indirect process. According to time-based grouping, three approaches are used by 

several researchers worldwide for the short, medium and long term [4].  

This chapter explains the implementation and significance of K-means clustering 

technique with a hybrid model of artificial neural network-particle swarm optimization 

(ANN-PSO) to improve forecasting accuracy. The forecasting results are validated in 

comparison with support vector regression (SVR) model. 

4.2 Methods implemented in solar PV power forecasting 
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The various methods applied for solar PV power forecasting are described in this section. 

4.2.1 Particle swarm optimization 

Particle swarm optimization (PSO) is triggered by the birds and fish collecting and 

moving patterns. PSO was invented by Russel Eberhart and James Kennedy in 1995. Since 

two decades, researchers are implementing PSO in various optimization problems like 

training of neural networks and optimization of power distribution networks [5]. 

This algorithm's understanding is simple, and easy. After a few iterations, the values of 

a community of variables are changed according to the participant whose value at any given 

moment is nearest to the target which is equivalent to a grouping of birds taking rounds 

around a secret food supply. The one that is closest to the sounds of the food, and other birds 

are swinging in its direction. If some of the other birds around come near to the target than 

the first one, it will tweet to encourage everyone to join them. Finally one of the birds enters 

the target i.e. the position of the food, the cycle continues until then. The steps to be followed 

are given below in the algorithm. Fig.4.1 describes PSO Algorithm steps. 

a) PSO algorithm 

i

jx  : Position of the particle 

i

jv : Velocity of the particle 

i

jp : Best position of the individual particle  

g

jp : Best position of the swarm  

1 2,m m : Cognitive and social parameters 

1 2,r r : Random numbers between 0 and 1 
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Position of individual position updated as follows 

1 1

i i i

j j jx x v          (4.3) 

With the velocity calculated as follows 

1 1 1 2 2( ) ( )i i i i g i

j j j j j jv v m r p x m r p x         (4.4) 

   b)  Steps to be followed 

1. Initialize  

Set constants maxj , 1 2,m m  

Randomly initialize particle positions 0

ix D in nIR  for 1,.......,i p  

Randomly initialize particle velocities 
max

0 00 iv v   for 1,.......,i p  

Set  j =1 

2. Optimize 

Evaluate function value 
i

jf  using design space coordinates 
i

jx  

a) If 
i i

j bestf f  then 
i i

best jf f , 
i

jp =
i

jx . 

b) If 
i g

j bestf f  then 
g i

best jf f , 
g

jp =
i

jx  

If stopping condition is met then go to 3 

Update all particle velocities 
i

jv  for 1,.......,i p  

Update all particle positions 
i

jx  for 1,.......,i p  
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Increment j  

Go to 2(a) 

3. Terminate 

For each particle

compute the fitness

value

Compare current fitness to

pBest whether it is better or

not

Update

pBest

Retain

previous

pBest

Update gBest

with best of

pBest

Calculation of

every particle's

velocity

Update the position

of each particle with

its velocity

Maximum epochs

reached
end

Initialize the

particles

yes No

yesNo

for

 

Fig.4.1: PSO flow chart 

4.2.2   Feed forward neural networks 

The artificial neural network (ANN) is a simulation of the human brain in order to 

accommodate human intellect and the capacity to learn from experience. ANN’s structures 

imply nonlinearity. Without prior information on the relationships between input variables 
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and output variables, the ANNs can model nonlinear problems. Hence, they are simple and 

powerful models for forecasting solar PV power generation which is a nonlinear problem. 

Therefore, they are simple and powerful models that are a nonlinear problem for forecasting 

soar PV power generation. Feed forward neural networks are one of the types of ANN [6]-

[8]. Feed forward neural networks are the simplest among all neural artificial networks. The 

information flows in these networks in just one way, i.e. from the input layer to hidden layers 

and hidden layers to the output layer. In its training ANN implements both supervised 

learning and unsupervised learning. Forecasting Models focused on ANN often adopt 

supervised learning. Fig.4.2 shows a multilayer artificial neural network composed of the 

layer of input, the hidden layer and the layer of output. In the fig.4.2, x1, x2 denote network 

inputs, w, v are connection weights, input layer to hidden layer, and hidden layer to output 

layer. Whereas b represents the bias and y is the network output. 

X1

X2

W

V

Y

 

Fig.4.2: Structure of a three layer artificial neural network 

Hidden layer neuron’s output 𝑜𝑗 is calculated as shown by eq.4.5. Here f denotes the 

activation function such as step, ramp, sigmoid and Gaussian etc. 

𝑜𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗
𝑚
𝑖=1 )                                                       (4.5) 

Similarly the output of multilayer neural network is obtained as shown in eq.4.6. 

𝑦 = 𝑓(∑ 𝑣𝑖𝑜𝑖 + 𝑏𝑛
𝑖=1 )                                                           (4.6) 
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4.2.3 K-means clustering 

In normal operation PV device provides a huge number of details. Conventionally, 

statistical approaches such as auto-regressive approaches are used to predict solar PV power 

treating the data as time series [9]. Nevertheless, the volatility of solar irradiation will lead to 

training sample inconsistencies. Then, unsuitable training can greatly affect predictive 

accuracy. The key features of any predictive approach are accuracy, consistency, and 

reliability. Therefore it is important to choose similar days such as rainy day, cloudy day and 

sunny day to classify them into the same category as the training samples. This can be 

deemed a good approach for enhancing the predictability. 

a) Cluster formation 

The generation of solar PV power mostly depends on meteorological parameters such 

as solar irradiation and temperature [10]-[11]. The days are to be chosen from historical data, 

which have the most similar irradiation and temperature to the day of prediction. A data set of 

maximum solar irradiation, minimum solar irradiation, average solar irradiation, maximum 

temperature, minimum temperature and average temperature is used in the clustering 

technique, which is built as in eq.4.7. 

S = [IRmax, IRmin, IRmean, Tmax, Tmin, Tmean]                        (4.7) 

Where, IRmax, IRmin, IRmean, Tmax, Tmin, and Tmean represent the maximum, 

minimum, and average values of solar irradiation and temperature respectively. Solar PV 

power production is primarily affected by meteorological factors such as solar irradiation and 

temperature according to the various research and empirical tests. A cluster from S is picked 

which has most similarity to the day of prediction. The days belonging to the respective 

cluster are gathered as forecast model training samples. 
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b) Clustering algorithm 

Clustering is an unsupervised learning method. There are several effective clustering 

techniques. One among is the K-means clustering technique. In this chapter, the K-means 

clustering is used as the clustering technique for the reason that K-means algorithm can take 

care of large amount of data sets effectively. K-means algorithm, which is based on 

partitioning mainly, computes the distance to know the similarity. In K-means technique, 

randomly the data is partitioned and k centre points are selected. The partitioning is revised 

according to the distance between k-centre points and the remaining data. The Euclidean 

distance is computed, the clustering technique allocates each data to its nearest centre point 

Pk, which is calculated as per eq.4.8. 

Pk =    
1

𝑁
∑  𝑥𝑖

𝑘  𝑁
𝑖=1                                                                                (4.8) 

Where xi
k is the ith data in the cluster k, and N is the number of data points of the 

respective cluster. Then calculate the average value of every cluster to update the centre of 

the cluster. The above process is continued till the value does not change any more.  Hence, k 

clusters are derived from the original data set. The data of each cluster is highly similar .The 

process of clustering is as follows.  

 1st step) There will be K objects as the initial centres of the clusters from the data set of M 

objects. 

 2nd step) Compute the distance between the data objects and centre of the cluster is to 

classify them to the closest cluster. 

 3rd step) Calculate the average value of the each cluster, which is utilized in the updating of 

the centre of the cluster. 
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4th step) The iterative method is repeated as per 2nd and 3rd steps until no more change in the 

clustering centre. If not, the process continues [12]. 

It is not compulsory that K-means provides global optimal solution. In contrary to that, 

fuzzy based K-means assigns a degree of membership to each data vector, which can lead to 

better solution. This work implements normal K-means clustering to classify the weather data 

into three different types as cloudy day, rainy day and sunny day. 

4.2.4 Support vector regression 

For classification and regression analysis the algorithms of supervised learning models 

are used in supporting vector machines. In a linear classifier the feature vectors in non-linear 

classifier are effectively transformed into high-dimensional space. Implicitly, this mapping 

can be done with the kernel functions. 

Let a training data is given by 1 1{( , ),....., ( , )}l lx y x y x R  , where x represents the 

space of input patterns. Especially,  support vector regression aims to get a function f(x) that 

has a maximum   deviance from the originally obtained targets jy for all the training 

samples, and at the same time, is flat as possible. As long as the errors are less than , it is 

accepted otherwise the errors will be taken care [13]. Ultimately Support vector regression 

finds a regression function as in eq.4.9. 

( ) ( )Ty f x w x b                                                                           (4.9) 

Here ( )x is a function used to map data x from low dimension to high dimensional 

space, w  represents a weight vector and b represents bias, which can be increased or 

decreased. Standard SVR implements  -insensitive function. As per assumption, all the 

samples of training are fixed with a linear function in the accuracy of  . The problem is 
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converted into an objective function to adjust the objective function minimization as shown 

in eq.4.10. 

Minimize        
1

2
‖𝑤‖2 + *

1

( )
l

j j

j

C  


                                              (4.10)      

Subject to  

( )T

jw x b y    + j  

jy - ( )Tw x - b  + *

j  

*,j j               0 

Where, *,j j  are the relaxation factors. If there exists an error in fitting, *,j j  are 

greater than 0, otherwise, *,j j   are all equal to zero. The first term of the optimization 

function further smoothens the fitting function to improve generalization. The second term is 

to reduce the error. The next important parameter is the error penalty parameter C. For 

support vector regression, the performance is much affected by the value of C. It is analysed 

that C is a trade-off between the algorithm complexity and degree of mistakenly classified 

samples. Smaller values of C indicate the punishment for the empirical error of the original 

data is small and experience risk is high. If the value of C is larger, the empirical error 

penalty is larger and experience risk is small. The larger value of C also leads to high 

computational complexity also. Hence, the selection of appropriate penalty factor C has a 

great impact on the model convergence and its prediction performance. Another crucial 

factor, which is considered to be the core of support vector regression, is kernel function. It 

affects the performance of support vector regression. Determinations of appropriate kernel 
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function and appropriate values to the various relevant parameters of the kernel function are 

significant steps in the performance of support vector regression. 

Mostly four types of kernel functions, linear kernel, polynomial kernel, RBF kernel and 

sigmoid kernel are implemented in support vector regression. As construction of RBF kernel 

(Gauss kernel) is relatively easy, this is widely used at present. The function is as follows in 

eq.4.11. 

2
2( , ) exp( / 2 )i j i jK x x x x                                                      (4.11) 

Where i jx x   represents Euclidean distance,  is the standard deviation , >0. Eq.4.11 

can be redefined as in eq.4.12. 

2

( , ) exp( )i j i jK x x x x                                                             (4.12)            

Where 
21/ 2    

4.3 Methodology 

4.3.1 Data acquisition & statistical analysis 

Meteorological data of diffuse irradiation, direct irradiation, temperature, and solar PV 

power of the year of 2014 is acquired from PV power plants located in Kolkata region of 

India. The data is collected from 100 KW PV plant. Using this data with the developed 

forecasting models, a day ahead PV power forecasting and a week ahead solar PV power 

forecasting are performed. 

4.3.2 Parameter selection 
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The estimation of correlation factors indicates that the parameters most relevant to the 

PV capacity are chosen properly. It further decreases the complexity of forecasting 

computations. The use of irrelevant parameters in the training set can result in undesirable 

results. In order to identify the dependencies between the historical solar PV power, 

meteorological data such as direct irradiation, diffusion of irradiation, temperature and wind 

speed [14]-[15], correlation factors are calculated with the available data. Table 4.1 depicts 

the computed correlation factors. In the training of neural networks, the highly correlated data 

of historical PV power and direct irradiation, diffuse irradiation, and temperature are then 

used. The total radiation that hits the collector has two direct and diffuse irradiation 

components, respectively. It's explained that direct beam irradiation comes from the sun in a 

straight line. On bright days and clean sky, much of the solar irradiation is direct beam 

irradiation, whereas diffuse irradiation is the one that is spread by gases, aerosols, and 

pollutants from the direct beam. When the sky is bright, direct irradiation is successful, and 

then indirect irradiation is to be considered on cloudy days, which is well established by the 

correlation factors calculation as depicted in table 4.1. The expression of correlation factor is 

given by eq.4.13. 

R x,y = 
𝑐𝑜𝑣(𝑥,𝑦)

𝜎𝑥 𝜎𝑦
  =  

1

𝑛
∑ (𝑥𝑖−𝑥 ̅ )(𝑦𝑖 −𝑦 ̅)𝑛

𝑖=1

√
1

𝑛
∑ (𝑥𝑖−𝑥 ̅)𝑛

𝑖=1
2

√
1

𝑛
∑ (𝑦𝑖−𝑦 ̅)𝑛

𝑖=1
2
                                           (4.13) 

Where the variance of the variables x and y is represented by cov (x,y) and  σx and σy 

are the standard deviations of the variables x and y. 𝑥 ̅ and 𝑦 ̅ indicate the mean values of the 

respective data sets. 

Table 4.1: Correlation factors 

Correlation factors 

Month data Correlation factor of PV 

power and direct 

Correlation factor of PV 

power and diffuse 

Correlation factor of 

PV power and 
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4.3.3 Normalization of the data 

Forecasting accuracy can be affected by poor and missing data of the sample data 

collected. Data normalization increases the convergence rate and accuracy in training of the 

forecasting models. In order to organize the data, the acquired data is normalized. The 

formula is implemented to normalize the available data is given by eq.4.14. This 

normalization technique is implemented when the data is normally distributed.  

𝑥𝑛𝑒𝑤 =
(𝑥−𝜇)

𝜎
                                                                                             (4.14) 

Where,  𝜇  is the mean of data set and 𝜎  is the standard deviation.  

4.3.4 Training & testing of the models 

After the selected data has been pre-processed, the data is clustered by applying K-

means clustering technique for similar days of rainy days, cloudy days and sunny days. 

Therefore a three-layer feed forward neural network is developed. The three layers are 

described as input, output and hidden layers. Hidden layer neurons are optimized for best 

forecasting outcomes. By implementing particle swarm optimisation technique, the weights 

of the connections between layers are optimized. 

Further RBF kernel function is used to design SVR model. Kernel only helps to 

perform nonlinear regression by mapping their inputs into high dimensional feature spaces 

radiance radiance temperature 

February’14 0.98 0.83 0.67 

April’14 0.97 0.94 0.79 

June’14 0.73 0.97 0.79 

August’14 0.80 0.95 0.87 

October’14 0.96 0.79 0.62 

December’14 0.98 0.89 0.69 
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indirectly. Here the selection of kernel, kernel parameters and regularization parameter C is 

crucial in the development of effective SVR model. Since RBF kernel is simple in 

construction with only one parameter  , it is widely used in most of the applications.   is the 

inverse of the standard deviation of RBF kernel (Gaussian kernel) which is used as similarity 

measure between two points. To achieve higher cross validation accuracy, values of the 

parameters C&   are to be appropriate. Different SVR models are implemented based on the 

categorisation of sunny day, cloudy day and rainy day to forecast solar PV power as per 

weather conditions. The values of parameters used in the different models of this work are 

described in tables 4.2 & 4.3. Also, fig.4.3 describes the hybrid approach, proposed in this 

chapter.   

Parameter

selection

Data

cleaning &

Normalizati

on

Weather

paraeters

Clustering of

similar days as

sunny day,

cloudy day and

rainy day

K-Means

clustering

Historical
PV power

Training

data

Feed Forward

Neural

Network

Weights

optimization by

PSO

Trained

NN

Testing

of Neural

network

with one

day/one

week PV

power

forecast

 

Fig.4.3: Block diagram for the proposed solar PV power forecasting approach (K-

means based ANN-PSO)  

Table 4.2: Parameters of ANN-PSO model 

Hidden layer 

neurons 

5 

No. of 

iterations 

1000 

Population 10 

tolerance 10-15 
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Table 4.3: Parameters of SVR model 

Kernel Rbf 

Tolerance 0.00001 

Regularization 

parameter (C) 

100 

Gamma( ) 1 

 

4.4 Simulations & results 

In this work, a hybrid model of K-means clustering, feed forward neural networks 

based on particle swarm optimization (PSO) is proposed to forecast solar PV power in short 

term PV power forecasting i.e. one day ahead solar PV power generation as well as one week 

ahead solar PV power forecasting.  The forecasting results are validated with the comparison 

of solar PV power forecasting using data mining technique, SVR model. The above said solar 

PV power forecasting utilizes the data of the year 2014 from the PV plants located in Indian 

region Kolkata. The data consists of hourly NWP data like diffuse irradiation, direct 

irradiation temperature and hourly historical solar PV power generation data. The data is 

divided into two sets for training and testing. Initially, correlation factors are computed 

among historical solar PV power, direct irradiation, diffuse irradiation and temperature and 

depicted in table 4.1. As presented in table 4.1 except in the months June’14 and Aug’14, the 

historical solar PV power is highly correlated to direct irradiation. In the months June and 

August solar PV power is highly correlated to diffuse irradiation because of the rainy season. 

For solar PV power forecasting one day ahead, data of 29 or 30 days of each month is utilized 

to train ANN-PSO model. PV power generation of the last day of the respective month is 

forecasted. To implement the K-means clustering, every two months data is used for 

clustering to find similar days in the previous two months as per weather conditions of solar 

irradiation (KW/m2) and temperature (⁰C). Further, ANN-PSO model is trained with the 
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cluster data which is similar to day of prediction considering solar irradiation and temperature 

as input parameters and PV power as target. To perform solar PV power forecasting a week 

ahead the whole year is clustered into three clusters representing rainy day, cloudy day and 

sunny day. Fig.4.4 (a) shows irradiation clusters of the year. Three weeks cluster data is used 

for training of neural network and the objective week’s solar PV power is forecasted. Fig.4.4 

(b) compares forecasted PV power by proposed model to actual PV power during training 

period for a day ahead forecasting in the month Aug’14. Along with different SVR models 

are developed to forecast solar PV power one day ahead and a week ahead. Design of support 

vector regression model mainly involves in an effective construction of kernel and there by 

choosing suitable values for regularization parameter C and . Optimization of C is 

significantly important to overcome the issue of misclassifying the training samples. A small 

value of   indicates a large variance and large gamma leads to high bias and small variance. 

In this work, the kernel chosen is RBF kernel. The values of C and   are optimized to 100 

and 1 respectively by grid search method. 

The forecasting accuracy of these models are analysed by calculating the two errors 

such as mean absolute  error (MAE) and  root mean squared error (RMSE) as given by 

eq.4.15 and eq.4.16 respectively. 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐴𝑖 − 𝐹𝑖|

𝑁
𝑖=1                                                                                  (4.15) 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐴𝑖

𝑁
𝑖=1 − 𝐹𝑖)

2                                                      (4.16) 

The significance of proper selection of input parameters is analysed as presented in 

table 4.4. In the months of June and august, there is higher correlation between diffuse 

irradiation and solar PV power than the correlation between direct irradiation and solar PV 

power, which affects the forecasting accuracy greatly as shown in table 4.4. Unlike in the 
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months June and august, in the remaining months solar PV power is highly correlated to 

direct irradiation. From table 4.4 it is evident that the forecasting accuracy is highly 

influenced by the selection of appropriate input parameters. With direct irradiation as input 

parameter, the error in terms of MAE for one day ahead forecasting in the month June is 6.01 

KW, whereas MAE is 1.17 KW only with diffuse irradiation as input parameter due to the 

high correlation between diffuse radiation and solar PV power generation in the respective 

month. Fig.4.5 clearly compares the forecasted PV power to actual power with variation of 

input parameters in solar PV power forecasting for a day ahead forecasting in the month 

June’14. Also, the clustering impact on forecasting accuracy is clearly indicated in table 4. 4 

& 4.5 with the comparison of the error values in terms of MAE & RMSE between ANN-PSO 

model and ANN-PSO model along with K-means clustering. After the implementation of K-

means clustering, forecasting accuracy is very much improved for ANN-PSO model and 

comparable to the forecasting accuracy of data mining technique SVR model as depicted in 

table 4.4 & 4.5. Fig.4.6 compares forecasted PV power of all three approaches mentioned in 

this chapter and actual solar PV power of 31stAug’14 considering direct irradiation and 

temperature as input parameters. 

The proposed forecasting model performs better than SVR model in a week ahead 

forecasting in the months Apr’14 and Oct’14 with reduced errors in terms of MAE & RMSE 

as depicted in table 4.6. For one week i.e. 18th to 24th Oct’14, the forecasted solar PV power 

from all three forecasting approaches is compared to actual solar PV power in fig.4.7. In 

month of Apr’14, for a week ahead PV power forecasting i.e. 22nd to 28th Apr’14, the 

forecasting accuracy is good without the consideration of clustering technique as it is a 

summer season, the temperature ranges from 24.7⁰ C to 44.8⁰ C. But in case of solar PV 

power forecasting from 18th to 24th Oct’14, the error in terms of MAE is reduced from 8.38 
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KW to 5.26 KW with clustering the data by K-means clustering technique and used in 

training of ANN-PSO model.  

 

Fig.4.4 (a): Clusters of solar irradiation 

 

Fig.4.4 (b): Actual vs forecasted PV power for training data in the month of Aug’14 for 

proposed model 

Table 4.4 .The impact of input parameters on forecasting 
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Table 4.5: Results of one day ahead forecasting 

One day ahead forecasting 

Objective day MAE(KW) RMSE(KW) 

ANN-PSO SVR 

Proposed 

(K-means 

based ANN-

PSO) 

ANN-PSO SVR 

Proposed 

(K-means 

based ANN-

PSO) 

28th Feb 2014 4.99 4.72 4.54 4.97 4.98 4.95 

30th Apr-2014 2.95 1.75 2.08 4.3 2.21 2.76 

30th June-2014 1.17 0.41 0.35 1.58 0.54 0.51 

31st Aug-2014 1.37 0.48 0.41 1.58 0.58 0.52 

31st Oct-2014 4.54 1.88 1.86 5.26 2.41 2.07 

29th Dec-2014 5.05 4.4 4.31 6.52 6.20 5.05 

 

Table 4.6: Results of a week ahead forecasting 

A week ahead forecasting 

Objective week MAE(KW) RMSE(KW) 

ANN-

PSO 

SVR Proposed(K-

means based 

ANN-PSO) 

ANN-

PSO 

SVR Proposed(K-

means based 

ANN-PSO) 

22nd to 28th 

April 

4.27 5.19 4.2 4.57 6.8 4.18 

18th to 24th 

October 

8.38 9.14 5.26 9.32 11.44 6.08 

 

&temperature 

Diffuse 

irradiation & 

temperature 

30th June’14 1.17 0.41 0.35 1.58 0.54 0.51 

Direct irradiation 

&temperature 

31st 

August’14 

6.02 5.44 4.24 7.09 6.36 4.64 

Diffuse radiance 

& temperature 

31st 

August’14 

1.37 0.48 0.41 1.58 0.58 0.52 
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Fig.4.5: A day ahead forecasting in June’14 using ANN-PSO model 

 

Fig.4.6: A day ahead forecasting in Aug’14 with all three approaches (Direct radiation 

& temperature as input parameters) 

 

Fig.4.7: A week ahead forecasting from 18th to 24th Oct’14 
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4.5 Summary 

This chapter basically explores the significance of solar irradiation on solar PV power 

generation and its forecasting. Work is continued on developing an appropriate hybrid model, 

ANN-PSO based on clustering by K-means. According to the evaluations, the meteorological 

condition-based clustering technique has a significant effect on solar PV power forecast a 

week ahead. The results indicate improvement in forecasting accuracy of ANN-PSO model 

with clustering. Although, SVR model forecasts solar PV power with similar accuracy in a 

day ahead forecasting, it suffers in a week ahead forecasting with high errors. However, 

clustering of K-means may not have the final answer at times. Therefore, the work of 

implementing fuzzy logic based K-means clustering in solar PV power forecasting may be 

continued. There is a possibility for further research to analyse the effect of other clustering 

algorithms like mean shift clustering; density based spatial clustering and Gaussian mixture 

etc. on forecasting accuracy. Furthermore, a hybrid model of SVR and optimization 

techniques like GA, PSO can be established to check the enhancement in forecasting 

accuracy. 
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Chapter 5 

SHORT TERM PRICE FORECASTING WITH THE 

IMPACT OF WIND POWER GENERATION 

5.1 Introduction 

Global warming is a major concern to the world as power generation from conventional 

sources cause 30 % environmental pollution [1]. Thus renewable energy (RE) generation is 

gaining attention in power sector, which is transforming the existing electricity market to RE 

enabled electricity market. The development of smart grids all over the world encourages 

large penetrations of wind and solar power generations. By the year 2019, world-wide the 

total cumulative installed electricity generation capacity from wind power and solar power 

amounted to 600 GW & 300 GW respectively [2]. Deregulation of electricity market across 

the globe has enabled competition in generation, transmission and distribution due to which 

electricity market price suffers with high volatility [3]. This makes both suppliers and 

consumers more interested in devising future electricity price strategies as electricity price 

forecasting assists the suppliers in trading and bidding of electricity and consumers can 

systematically manage their utilization of electricity [4].  

Electricity price is strongly related to physical characteristics of a power system such as 

loads, meteorological conditions, fuel price, unit operating characteristics, emission 

allowances and transmission capacity and power generation. Electricity price is highly 

volatile and electricity market experiences price dynamics due to the unique features of 

electricity market such as non-storability and the need of power system stability. The major 

causes of volatility of modern electricity market include load uncertainty, fuel prices & its 

availability, intermittent nature of wind power and solar power generations, irregularity in 
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hydro-electric production, unplanned outages and transmission constraints etc. [4]. Further 

the price forecasting in today’s electricity market, amid wind & solar power penetrations is 

highly challenging one [5]-[8].  

This chapter proposes a hybrid approach using long short term memory (LSTM) 

network and K-means clustering for short term electricity price forecasting to investigate the 

effect of wind power penetration of electricity price forecasting. The proposed model is 

implemented on real world historical data obtained from Austrian electricity market. The data 

contains electricity price, load, wind power generation and solar wind power generation data 

of the year 2016. The accuracy of the proposed model is compared with feed forward neural 

network- particle swarm optimization (FNN-PSO) and support vector regression (SVR) 

models. The simulation results show that the proposed model is superior to other two models 

in forecasting the price and the forecasting accuracy improves further with presence of wind 

power generation. 

5.2 Techniques used in price forecasting 

The various techniques such as K-means clustering, recurrent neural network (RNN) 

and LSTM network, FNN-PSO and SVR used in this work are described below.  

5.2.1 K-means clustering 

The aim of any clustering technique is to achieve intrinsic grouping of a set of data with 

large variations. K-means is one of the simplest unsupervised learning algorithms. This 

algorithm resolves clustering problems. Being a method of vector quantization, it gained wide 

popularity for cluster analysis in data mining [9]. The crucial steps involved in the algorithm 

are as follows. 

i. Partition of the data into K number of non-empty subsets. 
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ii. Identifying the cluster centroids (mean points) of the current partition. 

iii. Allotting each individual to a specific cluster. 

iv. Compute the distance from each individual to own cluster mean and other 

clusters. 

v. Allot the individuals to a cluster based on minimum distance from the centroid. 

vi. After re-allotting the individuals, find the centroid of new clusters framed. 

vii. Repeat steps 4, 5 & 6 until no more relocations occur. 

The algorithm can be presented mathematically as follows. 

Consider D is a set of n vectors 

i.e. 1 2 3{ , , ,........ .... }i nD X X X X X                                               (5.1) 

Where, iX  represents each record an m-dimensional vector.         

1 2 3{ , , ,........ }i i i i imX X X X X                                                       (5.2) 

2

( ) arg minj i j i jC cluster X X     

2

1

( )
n

i i

i

Distortion X C


                                                            (5.3) 

The distortion is minimized by partially differentiating Distortion with respect to each 

cluster centre and equated to zero. In this work, to handle the high volatility of electricity 

price and to forecast electricity price with higher accuracy, clustering has been performed in 

two ways. Conventionally the electricity price is much dependant on the load demand of the 

region. Considering RE enabled electricity market, wind power generation is one more 

feature chosen for clustering. Firstly, the days of similar wind power pattern are clustered into 

three groups. To achieve this, a data set of maximum wind power, minimum wind power and 
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average (mean) wind power of the day for all days of the year is prepared as per eq.5.4 and 

then K-means is applied to partition the data. Secondly, the days of similar load pattern are 

clustered into three groups. In order to partition the data into three groups, a data set of 

maximum load, minimum load and average (mean) load of the day is prepared as per eq.5.5, 

for which, K-means is applied to finally split the whole year data  into three groups [10]-[11]. 

1 max min[ , , ]meanD WP WP WP                                                          (5.4) 

2 max min[ , , ]meanD L L L                                                                 (5.5) 

Where max min, , meanWP WP WP  represent day’s maximum, day’s minimum and day’s average 

values of wind power generation respectively. Similarly max min, , meanL L L  represent maximum, 

minimum and average values of the load for the day. 

5.2.2 Recurrent neural networks 

Conventional neural networks assume all the inputs and outputs are independent to 

each other. However RNNs take the advantage of sequential information. RNNs retain the 

information in each state and used for the next state. As shown in fig.5.1, RNN has a unique 

structure with chain of repeating modules. 
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Fig.5.1: An unrolled RNN 

An unrolled RNN is shown in fig.5.1. Accordingly 

 tx  is the input at time step t. 

 ts  is the hidden state at time step t. It replicates the memory of the network. Using 

previous hidden state and the input at the current step, ts  is calculated as 

( 1)( )t t tx f ux ws    

 The function f is generally a non-linear one Ex. tan h 

 1s is required to compute the first hidden state normally initialized to all zeroes. 

 to  is the output at step t  max( )t to soft vs  

 Here ts  captures information from all previous time steps. 

 The output is calculated only based on the memory at time t. 

 Unlike a traditional deep neural network, a RNN implements same , &u v w  across all 

steps. This effectively reduces the total number of parameters in the network. 

 The main feature of an RNN is its hidden state, which captures some information 

about a sequence. 

Due to some limitations of RNNs in handling long term dependencies, LSTMs grab 

the attention to address the issue. 

5.2.3 LSTM networks 

LSTM networks are special kind of RNNs, which can learn long term dependencies. 

The networks have the capability to remember information for long time. LSTMs have 

similar structure of RNN with the difference in the internal structure of repeating module as 

shown in fig.5.2. The repeating module has four layers unlike standard RNNs, which has 

single layer. 
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Fig.5.2: Internal structure of LSTM network 

As shown in fig.5.2, the internal module performs four important tasks. 

Task 1: Decides on retaining the old information. The output is obtained as per eq.5.6 for 

each number in the cell state and varies from 0 to 1. 

( 1)( .[ , ] )t f t t ff w h x b                                               (5.6) 

Task 2: It stores new information in the cell state. 

It has two parts. 

1) A sigmoid layer that decides the values to be updated .The output ti  is presented in 

eq.5.7. 

( 1)( .[ , ] )t i t t ii w h x b                                                  (5.7) 

2) tanh  layer computes a vector of new values i.e  tC  as per eq.5.8. 

( 1)tanh( .[ , ] )t c t t cC w h x b                                        (5.8) 
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Task 3: Combining ti & 
tC  

Task 4: New cell state tC  is computed by updating the old cell state ( 1)tC   as per eq.5.9. 

( 1)* *t t t t tC f C i C                                                     (5.9) 

Finally the output is obtained as per equations 5.10 & 5.11. 

( 1)( .[ , ] )t o t t oo w h x b                                                 (5.10) 

*tanh( )t t th o C                                                            (5.11) 

Table 5.1: Parameters of LSTM model 

Parameters  

Layers of LSTM 2 

Number of neurons in layer 1 10 

Number of neurons in layer 2 50 

Optimizer Adam 

Loss function Mean squared error 

Epochs 180 

 

Various parameters of LSTM model are listed in table 5.1. The number of neurons of 

the layer and number of epochs are optimized by grid search method. 

5.2.4 Support vector regression 

Support vector machine (SVM) looks at extremes of the data sets and draws a decision 

boundary line known as a hyper plane near the extreme points in the data set. SVM 
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segregates the two classes by drawing on arbitrary separation lines known as support vectors 

[12]. 

 If the classes are not linearly separable, a function is used to transform the data into 

high dimensional feature space. This process is computationally expensive. A kernel trick is 

used to reduce computational complexity.  A function takes inputs as vectors in original 

space and returns dot product of vectors in the feature space is called kernel function. Using 

kernel, we can apply the dot product between two vectors so that every point is mapped into a 

high dimensional space via some transformation essentially we use it to transform a non-

linear space into linear space. Some of popular kernel functions are polynomial, radial basis 

function and sigmoid. SVM solves mainly classification and regression analysis [13]. 

 SVR aims to obtain a regression function  : Df R R  as in eq.5.12. 

( ) ( )

:

1,2......,

T

D

y f x w x b

f R R

i l

  





                                                  (5.12)              

Where ( )x  is a function, which maps the data x from low dimension to high 

dimensional feature space, w  is a weight vector and b  indicates bias. Standard support 

vector regression adopts  -insensitive function.   is considered to be the accuracy with 

which all the training data is fitted with a linear function. The problem is converted to an 

objective function that is optimized to its minimization. 

Minimize        
1

2
‖𝑤‖2 + *

1

( )
l

i i

i

C  


                              (5.13) 

Subject to  

( )T

iw x b y    + i    , 1,2......,i l  
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iy - ( )Tw x - b  + *

i  ,  1,2......,i l  

                       *,i i               0,  1,2......,i l  

Where *,i i  are the relaxation factors .In case of error in fitting, *,i i  are greater than 

0, otherwise *,i i   are all equal to zero. The first term in equation 5.13 is the optimization 

function that smoothens the fitting function to improve generalization. The error is reduced 

by second term. The penalty parameter C affects the performance of support vector 

regression to great extent. C balances between the algorithm complexity and degree of 

mistakenly classified samples. Hence, choosing proper penalty factor C has a large impact on 

the model convergence and also leads to good prediction performance. The support vector 

regression (SVR) is centred to kernel function. The performance of support vector regression 

is much dependant on kernel function. Thus discovering appropriate kernel function and 

obtaining suitable values to the parameters of the kernel function have a great impact on the 

performance of support vector regression. 

Mostly four types of kernel functions, linear kernel, polynomial kernel, RBF kernel and 

sigmoid kernel are implemented in support vector regression. As construction of RBF kernel 

(Gauss kernel) is relatively easy, this is widely used at present. The function of RBF kernel is 

presented in eq.5.14. Gamma ( ) is the inverse of (2 2 ), which is to be optimized to make 

SVR model perform well.  

2
2( , ) exp( / 2 )i j i jK x x x x                                                    (5.14) 

Where  >0 

Where i jx x   represents Euclidean distance, is the standard deviation , >0 
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Eq.5.14 can redefined as in eq.5.15 

2

( , ) exp( )i j i jK x x x x                                                             (5.15)            

Where 
21/ 2   

Table 5.2: Parameters of SVR model 

Parameters  

Kernel RBF 

Regularization parameter(C) 1 

Gamma 0.1 

Tolerance 0.00001 

 

The parameters listed in table 5.2 are optimized by applying grid search method. 

5.2.5 Feed forward neural networks 

Artificial neural network (ANN) replicates human brain and its intelligence. The ANNs 

are non-linear in structure and used to model non-linear problems effectively. Feed forward 

neural networks (FNNs) are the basic type of ANNs and simpler than RNNs. Fig. 5.3 shows 

the structure of FNN used in the work. It consists three layers connected to each other in 

forward direction. The layers are input layer, hidden layer and output layer. In the network 

X1, X2 are the inputs; U&V are the connecting weights whereas b includes the bias to the 

nodes. Hidden layer’s output is h and ‘o’ is the output of the network [14]-[16]. 
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X1

X2

U

V

o

h  

Fig.5.3: The structure of FNN 

The output of hidden layer is computed as per eq.5.16 and the output of the network is 

obtained as per eq.5.17.  The activation function f takes various functions like sigmoid, ramp 

and Gaussian. FNN in this work implements sigmoid function. 

1
( )

n

j ij i ji
h f U x b


                                                                    (5.16) 

The output is calculated as per eq.5.17 

1
( )

m

i ii
o f V h b


                                                                          (5.17) 

Further the optimization technique particle swarm optimization (PSO) is incorporated 

to adjust the weights of the FNN [17]-[18]. The optimized values of various parameters of the 

model are listed in table 5.3. 

Table 5.3: Parameters of FNN-PSO model 

Parameters  

Network layers 3 

Hidden layer neurons 5 

Population in PSO 10 
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Number of iterations 1000 

Tolerance 10-15 

 

5.3 Methodology of the proposed model  

The proposed model is presented in fig.5.4 through a flow chart. The data of Austrian 

electricity market is collected and normalized after pre-processing it. The data consists of an 

hourly data of historical electricity price, load, wind power generation and solar wind power 

generation of the year 2016. A data set of the days of similar load pattern is clustered into 

three groups by using K-means clustering technique. This clustering is performed by 

considering three parameters such as maximum load, minimum load and average (mean) load 

of the day. A data set of 30 similar days to day of prediction fed to the LSTM network where 

it is used for training the network. Various parameters of LSTM network such as number of 

neurons of the network layers and epochs as mentioned in table 5.1 are optimized with grid 

search method. After the training is complete, a separate data set is used for testing and 

forecasting of electricity price. In this chapter electricity price is forecasted one day ahead. 

Data

Collection

WPmax

WPmin

WPmean

Data Clustered by

K-means
Data pre-

processing

and

normalization Lmax

Lmean

Lmin
Data Clustered by

K-means

Training of

LSTM  with

30 days

clustered

data similar

to

forecasted

day

A day

ahead

Price

forecasting

 

Fig.5.4: The proposed hybrid approach 

5.4 Simulations & results  

The historical data of Austrian electricity market for the year 2016 is used in the work 

carried. The data is pre-processed for the set of data contains hourly data of load, wind power 
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generation, solar PV power generation and electricity price. As the data consists different 

features of different ranges hence normalized to the values less than or equal to 1. The 

variations in price data of the year 2016 are presented in fig.5.5. With the computation of 

correlation factors it is analysed that the wind power is highly correlated parameter to price 

than solar PV power after the load demand. The contribution of solar PV power generation to 

the grid is also very marginal. Thus, this work only focusses on the impact of wind power to 

electricity price. Then similar days of the year are clustered as per wind power generation 

into three clusters as shown in fig.5.6. Later, similar days of the year as per load demand are 

clustered into three clusters as depicted in fig.5.7. Then 30 days of clustered data based on 

wind power similar to day of prediction is considered for proper training of the LSTM 

network to forecast a day ahead electricity price of 6th Sep’16. The clustered data based on 

load is also used for training to compare the accuracy of forecasting. Without applying 

clustering also the same day’s price is forecasted by training the LSTM with previous 30 days 

data.  Similarly, using the SVR model and the FNN-PSO model the same day price is 

forecasted after training the models with previous 30 days data. To analyse the impact of 

wind power generation on electricity price forecasting, by only considering load as input, the 

model is trained and tested for forecasting electricity price of the same day and the 

forecasting accuracy is compared the accuracy of price forecasting, when both load & wind 

power are considered as input. 

To evaluate the performance of forecasting models, three important evaluation factors 

are used. They are mean absolute percentage error (MAPE), mean absolute error (MAE) and 

root mean squared error (RMSE). 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐴𝑖 − 𝐹𝑖 |𝑁

𝑖=1       (5.18) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑖−𝐹𝑖

𝐴𝑖
|𝑁

𝑖=1        (5.19) 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐴𝑖

𝑁
𝑖=1 − 𝐹𝑖)

2       (5.20) 

In eq.5.18, eq.5.19 & eq.5.20 𝐴𝑖& 𝐹𝑖  represent actual and forecasted values and N 

indicates total number of samples of forecasting period. As per eq.5.19 MAPE is widely used 

to evaluate the performance of any forecasting method. In price forecasting, the same may 

not work properly sometimes as the actual value is zero, MAPE would be infinity. Even large 

actual values also make improper MAPE computation. Thus as per modified equation in 

eq.5.21, MAPE is computed in the present work. The results are depicted in table 5.4. 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑖−𝐹𝑖

�̅�
|𝑁

𝑖=1        (5.21) 

Where, 𝐴𝑖 & 𝐹𝑖  are the actual & forecasted values and �̅�  represents average value of N 

number of actual values. 

Table 5.4: MAPE, MAE & RMSE values of a day ahead price forecasting 

Approach Input 

parameters 

MAPE MAE RMSE 

LSTM-Kmeans 

(based on load) 

Load & wind 

power 

8.29 2.90 5.01 

LSTM-Kmeans 

(based on load) 

Load 10.37 3.63 5.72 

LSTM-Kmeans 

(based on wind 

power) 

Load & wind 

power 

12.16 5.26 5.67 

LSTM-Kmeans 

(based on wind 

power) 

Load 12.51 5.38 6.07 

LSTM model Load & wind 

power 

12.71 5.46 6.05 

SVR Load &  wind 

power 

13.75 5.82 6.61 

FNN-PSO Load & wind 

power 

16.18 5.67 7.65 

FNN-PSO Load 18.17 6.37 7.63 
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Fig.5.5: Price data of 2016 

 

Fig.5.6: Wind power clusters of the year 2016 data  
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Fig.5.7: Load Clusters of the year 2016 data  

 

Fig.5.8: Predicted price vs actual price on 6thSep’16 

0

2000

4000

6000

8000

10000

12000

1

2
0

5

4
0

9

6
1

3

8
1

7

1
0

21

1
2

25

1
4

29

1
6

33

1
8

37

2
0

41

2
2

45

2
4

49

2
6

53

2
8

57

3
0

61

3
2

65

3
4

69

3
6

73

3
8

77

4
0

81

4
2

85

cluster-1

cluster-2

cluster-3

Load in 
MW  

Time in hours 

0

5

10

15

20

25

30

35

40

45

50

1 3 5 7 9 11 13 15 17 19 21 23

Actual Price

Predicted-
LSTM

Predicted-
LSTM&K-

means

Price 
in 
Euros 

Time in hours 



Short term price forecasting… Chapter 5 

 

117 

 

 

Fig.5.9: Predicted price vs actual price on 6thSep’16 

 

Fig.5.10: Predicted price vs actual price on 6thSep’16 
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Fig.5.11: Predicted price vs actual price on 6thSep’16 
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all models. The proficiency of the SVR model is superior to FNN-PSO model and inferior to 

the proposed model. The plots in fig.5.10 & fig.5.11 clearly indicate the improvement in 

forecasting accuracy with the consideration of wind power as input, which is right indication 

of the impact of wind power generation on electricity price forecasting for renewable energy 

enabled electricity market. The improvement in forecasting accuracy also depends on the 

contribution of wind power generation to the power grid on the respective day of price 

forecasting. 

5.5 Summary 

Electricity price is a special commodity unlike any other commodity in the market. Its 

storage is not an easy task. It is influenced by many factors like load demand, power 

generations, time factor, industrial requirements, weather conditions, fuel prices and 

transmission constraints etc. Thus electricity market experiences a lot of fluctuations making 

price highly volatile. One of the recent concerns for the volatility is power generation from 

renewable energy sources. The work carried has suggested a suitable hybrid approach using 

K-means clustering and LSTM network for short term electricity price forecasting showing 

its proficiency in accurate price forecasting amid wind power penetration. The impact of 

wind power generation on price forecasting has been analysed and results depicted that the 

impact of wind power generation on the accuracy of price forecasting is significant with the 

considerable reduction in errors. However, it is also noticed that the contribution of wind 

power generation to the grid also matters in the forecasting period. Further the scope is left 

for implementing any other clustering technique other than K-means for future research and 

to analyse the impact of solar PV power generation also on price forecasting. 
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Chapter 6 

   

 BOOTSTRAP AGGREGATION OF ENSEMBLE FOR 

SHORT TERM PRICE FORECASTING WITH THE 

IMPACT OF WIND & SOLAR POWER GENERATIONS 

6.1. Introduction 

With the deregulation and restructuring of the electric power industry, forecasting of 

electricity price has been the modus operandi to operate a power market. The economically 

non-storable commodity, electricity must be balanced out in terms of its production and 

consumption. Otherwise, maintaining the steady state frequency would become a major 

obstacle. Under deregulation, utility profit maximization takes over automatically, but with 

efficient markets this should also benefit consumers [1], introducing competition to reduce 

energy wastage and minimizing bills at the consumer end. The most distinct characteristic of 

electricity is its volatility due to non-storability and short-time users.  

The hourly price series shows properties such as high frequency, non-constant mean 

and variance and high unusual price percentage due to uncontrolled events, sufficient to make 

the series stochastic and hence making forecasting complex. Electricity price forecasts 

provide crucial information which help utilities and consumers in the power market. This 

could assist generation companies in bidding and power exchange in trading. Efficient hourly 

price forecasting could also be beneficial in setting up highly precise bilateral contracts [2] 

and in generating schedule of a utility. The aim of this work is to inquire into the potential of 

ensemble learning to forecast nonlinear, non-stationary electricity prices. The contributions of 

this chapter are as follows: 
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1. The presented model is suitable for very short term electricity price forecasting, as it is 

flexible and follows the dynamics of price signals in addition to being computationally 

inexpensive. 

2. Besides meteorological and historical parameters, renewable energy parameters are also 

considered for forecasting price. 

3. Proposed model is compared with various benchmark models along with previously 

recommended ensemble model for the same problem and is observed to be most accurate.  

In the presented model, independent outputs of the first stage of stacking phase, which 

comprises of extreme gradient boosted trees and random forest regressor, capable of learning 

distinct parts of the data, are advanced to the next stage, where bayesian linear regression is 

used as a meta-regressor, with the aim of improving the real-time price prediction 

performance. In the proposed model bootstrap aggregation of stacked model has been done in 

order to reduce the variance and further prevent overfitting [3]. The suitability and 

significance of the presented approach is illustrated by implementing it on real-world price 

data of Austrian electricity market in Europe. Florian Ziel et al. [4] analyzed the interrelation 

between electricity price of Energy Exchange Austria and other European markets. The 

EXAA issues day-ahead price earlier than other European exchanges, connected with 

Austria, therefore, enabling traders to use the Austria electricity price into their calculation.  

The selection of the features among all the considered parameters has been performed using 

the mutual information coefficient between the input parameters and output vector. The 

features used for the electricity price prediction were selected not only on the basis of its 

dependency on price, but also on the ease of data availability for different European markets, 

consequently the proposed model may be applied to other markets in future making it robust 

and reliable. In order to estimate the accuracy of forecasting we use metrics including root 
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mean squared error and mean absolute error. Mean absolute percentage error (MAPE) metric 

can be misleading when applied to electricity price, this is due to the fact that electricity price 

may get significantly close to zero, resulting in a very large value of MAPE, regardless of the 

absolute error. To tackle this challenge we use a different metric, the mean arctangent 

absolute percentage error (MAAPE), which is proposed in [5]. Since, the mean error metrics 

only demonstrate the overall accuracy, and may arise from few accurate predictions, with a 

view to quantify the consistence of predictions we validate our model by evaluating the 

confidence interval of absolute error. 

The study of short-term electricity price forecasting can be organized into three sub-

categories, namely, statistical models, computational intelligence models and 

hybrid/ensemble models [6]. The statistical and computational intelligence are widely used 

approaches, but due to the nonlinear and stochastic characteristics of price series, statistical 

approaches, videlicet exponential smoothing, moving average, auto regression, autoregressive 

moving average (ARMA), autoregressive integrated moving average (ARIMA) [7] and 

generalized autoregressive conditional heteroskedastic (GARCH) [8] have proven to be 

incompetent [9]. On the other hand, the computational intelligence techniques [10]-[12] are 

flexible, capable of capturing complexities and non-linearity. Artificial neural networks 

(ANNs) are remarkable for short-term predictions and are easily implementable for electricity 

price forecasting [13]. The work [14] uses ANN to show the strong dependency of electricity 

price on trend in load demand and clearing price. A class of deep neural network, stacked 

denoising auto-encoder method is implemented to forecast day-ahead electricity price of US 

electricity markets, and was compared to conventional neural networks, multivariate adaptive 

regression splines and support vector regression [15]. However, as the relationship among 

price series vary with time, the ANN may lose the value of features captured by it [6].   
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A single prediction model fails when handling complex data. The hybrid models are 

better choice for capturing the pattern where the uncontrollable contingencies make the price 

predictions difficult. Similarly, Yang et al. [16] proposed a new hybrid model that combines 

wavelet transform with kernel extreme learning machine using adaptive particle swarm 

optimization parameter searching along with ARMA model. The above-mentioned hybrid 

models improve the performance significantly but the computational time was not taken into 

account. Low computational complexity is one of the most important criteria required for 

very short-term price forecasting as it makes re-training the model feasible. Probabilistic 

models [17] were also proposed with the aim of reduction in the computation time. Recently, 

Aggarwal et al. [18] introduced an ensemble of relevance vector regression and gradient 

boosting which has demonstrated high accuracy and low computational complexity, suitable 

for very-short term forecasting.  

Along with the various approaches used for future price prediction, the feature selection 

also plays crucial role in short-term forecasting. The idea is to employ the historical prices 

and other estimated parameters to extrapolate the price. Global warming being a major 

concern to the world, solar energy and wind energy are most promising renewable energy 

sources to produce clean electricity. However, large integration of wind and solar energy 

sources into the grid increases the volatility due to their intermittent nature. In process of 

smart grid deployment, price forecasting plays significant role in a day-ahead deregulated 

market [19]. The real time electricity market aims to balance out the differences between day-

ahead production/demand and actual production/demand and establishes real time local 

marginal price (LMP).   

This chapter builds in the following way: 

 It takes into consideration solar and wind renewable energy parameters along with climate 

conditions for forecasting electricity price. 
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 The methodology is based on bagging of a stacked generalized model on complete dataset. 

 The model uses a combination of extreme gradient boosting and random forest. 

 The evaluation utilizes MAAPE as error metric instead of MAPE due to the reasons as 

discussed previously. 

6.2 Dataset and feature engineering 

The dataset for the prediction of electricity price has been acquired via the ENTSO-E 

Transparency Platform. We utilize the data for day-ahead electricity price, load consumption, 

wind generation, humidity, temperature, etc. of Austria from the platform. The data collected 

from January 2015 to December 2016 possesses an hour granularity. The employed dataset 

has some missing values for electricity price which have been handled by mean imputation. 

The dataset is segmented into training and testing sets with the later consisting of seven 

consecutive days from the second half of each month in the dataset, while the remaining days 

are used for training. It may be clarified that the target variable for our forecasting problem, is 

day-ahead electricity price of the next hour. Feature engineering was accomplished to choose 

the optimum set of features and formulate new features from the existing ones in order to 

enhance the performance and accuracy of the forecasting models. Extraction of calendar 

pointers, specifically month, weekday and hour pointers from the utc-timestamp is carried out 

to obtain new categorical nominal features. Moreover, the day-ahead price is impacted by 

electricity generation and demand parameters such as solar generation, wind generation and 

load demand. Apart from these features we also use the historical electricity price data for 

forecasting day-ahead price at time t, represented as P(t), 24-hour window (one day) starting 

from the previous hour with hourly resolution is used. Importance of previous hour DA prices 

in the prediction is calculated using extra trees feature importance, as shown in fig.6.1. In 
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fig.6.1, previous hours are specified on x-axis, importance is specified on y-axis. Only P(t-1), 

P(t-2), P(t-3), P(t-4), P(t-22), P(t-23), P(t-24) are observed to have a significant impact on the 

day-ahead price forecasts at time t, and are used as inputs. The feature selection for the 

remaining parameters was carried out by analysing the mutual information coefficients (y-

axis) between input features (x-axis) and actual price target vector as shown in fig.6.2. 

Parameters having negligible or zero values have not been incorporated in the final feature 

set. The used input features for electricity price are depicted in fig.6.3.  

 

 

 

Fig.6.1: The impact of features on day ahead price forecast 

 

 

Fig.6.2: Mutual information coefficients of various input features 
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Fig.6.3: Input features for price forecast 

6.3 Methodology 

In this section we explain the proposed model which dominantly focuses on ensemble 

learning. The stacking phase comprises of two stages. In the first stage we ensemble extreme 

gradient boosted tree with random forest regressor, followed by the second stage which uses 

bayesian linear regression as a meta-regressor. The predictions of the stacking phase on 

bootstrapped sample points are then aggregated to obtain the electricity price forecasts. The 

end of this section illustrates the implementation of the developed model on Austria dataset 

including hyper parameter tuning and metrics used for the quantitative comparison of all the 

models in this study.  

6.3.1 Bootstrapping the dataset  

Bootstrap is used to quantify the uncertainty correlated to an estimator. Subsets are 

constructed by selecting sample points in a random manner from the ENTSO-E Austria price 

training set. The chosen points are replaced in the training set; this enables them to be 
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included in a particular subset multiple times. In each such set fraction of total sample points 

are distinct [20]. Given the Austria electricity price training set  xy consisting of N sample 

points, where x represents the input feature matrix with V features and y is the day-ahead 

electricity price target vector. Then, each bootstrapped set contains 'N points with the same 

number of features, represented by:    

   

(i) (i) (i)

x yB = ,  b b                                                             (6.1) 

Where ( )iB  corresponds to the thi bootstrapped set, b(i)x  and b
(i)
y represent input feature matrix 

and output vector respectively formed by random sampling of the dataset. Hence, after 

resampling we obtain M distinct sets, (1) (2) ( )M  B ,B ,.....,B . 

6.3.2 Stacking phase 

a) First stage 

This stage exploits the merits of two different decision tree ensemble techniques i.e. 

bagging and boosting. This stage builds upon the Bootstrapped datasets
iB . 

I. Extreme gradient boosted trees  

 XGBoost algorithm realizes weak learners by optimization of the structured loss 

function. Instead of employing linear search method as in gradient boosting, it explicitly uses 

the first and second derivatives of the loss function. The performance of algorithm is further 

enhanced by, cache recognition, sparsity-aware algorithm, out-of-core computing and 

weighted quantile sketch algorithm [21]. 

     For a given bootstrapped set 
(i) (i) (i)

x yB = ,  b b where  b b b b '

T
(i) (i) (i) (i)
x x,1 x,2 x,N
= , ,...., and

 '

( ) ( ) ( )

,1 ,2 ,
, ,....,i i i

y y y N
b b bb

T
(i)
y = , R additive functions are used by the tree based ensemble model to make 

output predictions. 
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 ( ) ( ) ( )

, , ,

1

ˆ( ) ( )
R

i i i

x j y j r x j

r

f b fb b= = ,                
rf F                    (6.2) 

Where, the space of regression trees is represented by F, given by    
{ }f w

b
b (i)

x

(i
q

)
x = . Here in 

eq.6.2, each 
rf  is associated to leaf weights w and tree structure q.  

'

( ) ( )

, ,

1 1

ˆ,
N R

i i

y j y j r

j r

L l b b f                                             (6.3) 

In eq.6.3, l is the denotation of the differentiable loss function and   estimates the 

complexity of the model, given as:  

1
T

2
f w

T
2

r j
j=1

( )= +                                                        (6.4) 

γ in eq.6.4 signifies the minimum loss reduction necessary to generate a split, T is the number 

of leaves in the tree. The regularization term reduces over-fitting by smoothing the final 

learnt weights, λ is the 
2L  regularization constant on weight w [22]. 

1
( ) -

2

g
L q T

h

2
T

t

j=1 t

= +
+

                                                 (6.5) 

  In eq.6.5, 
tg and 

th are the first a second derivatives respectively. Instead of relying on 

any distant metric, XGBoost maps the similarities between the data points through adaptive 

adjustments of neighbourhoods, therefore, beating the curse of dimensionality. It overcomes 

the problem of imbalanced dataset, moreover uses second-order gradients to converge faster 

and advance regularisation to improve model generalization. XGBoost aims to add new trees 

complimenting the existing ones, this generally enables improved price forecasting accuracy 

to the overall ensemble with lower number of trees. Furthermore, it is utilized to 

accommodate the stochastic variations in pricing signals which are a recurring property in 

dynamic electricity market.   
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II. Random forest regression  

Random Forest is a significant adaptation of bootstrap aggregation; it trains 

independent decision trees on bootstrapped sets along with random feature-selection during 

the tree-growing procedure. The final output is predicted by averaging the output of each 

weak learner. The algorithm of random forest used in our model is illustrated as follows: 

The property of variance reduction of bagging helps the aggregation of weak learners 

like decision trees to outperform a single strong learner. However, bagged trees do not 

significantly improve upon the bias of an individual tree. Moreover, in case of dependent 

variables, the variance of the average is given by: 

21

T


 

 
 

 
     (6.6) 

Where,   is the pairwise correlation and 2  is the variance of each variable. It can be 

observed that for a large value of T, the above quantity becomes 2 , hence the reduction in 

variance is not substantial. Random Forest inculcates random feature-selection during the 

tree-descending process reducing the correlation between electricity price forecasting features 

further reducing the variance [23]. 

b) Second stage 

For every bootstrapped set, each regressor in the first stage generates an 'N  dimensional 

output vector. The predictions of XGBoost (g) and Random Forest (r) are stacked together to 

obtain the input matrix [g r]. This matrix along with the target vector yb  of the previous stage 

forms the blending training set which is used for training Bayesian Linear regressor. 

1. Bayesian linear regression 

Bayesian linear regression uses a mechanism to deal with poorly distributed data. It 

allows the use of prior on the coefficients and on the noise so that in the absence of data, the 
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priors dominate. It consists of the following two stages: (I) Treating the parameter vector (w) 

as a random variable as it is approximated from data which is inherently noisy, we estimate w 

using: 

 
   

   

| ,  
,   |

 |

p p
p

p


y X w
X y

y

w

X
w                                  (6.7) 

Where, X is the input matrix and y is the output vector.  

 (II) The calculation of the predictive distribution of *y given any new query *x is given by: 

* * * *( | , ,  )  ( | ,  ) ( , )|  p y p y p d x X y x X yw ww                     (6.8) 

In this implementation we use a particular form of Gaussian prior distribution which is 

used to include a regularization parameter in the estimation [24]. 

     In stacking each model makes a significant contribution, the individual weaknesses and 

biases are offset by the strengths of other models. The stacking phase in our proposed model 

uses XGBoost to capture the various characteristics of the data, specifically the extremities by 

penalizing the errors. However, XGBoost is harder to tune and is highly sensitive to 

overfitting. Contrary to this, Random forests overcomes overfitting as the ensembles are not 

built on the residuals, the way XGBoost does. The Bayesian Linear regression model is used 

as the meta-regressor to optimally combine the first stage algorithms. 

II. Aggregation of stacked generalization 

The hour-ahead electricity price ( p' ) is predicted by aggregating the outputs (p) of 

independent stacked models on M distinct bootstraps. The proposed model is shown in 

fig.6.4. In stacking, multiple models predict the same target, combining them may lead to 

overfitting. This limitation of stacked generalization is diminished with the help of bagging. 

Furthermore, bagging improves the accuracy of price prediction as it reduces the variance of 

individual models [25] and imparts the ability to ignore irrelevant features.  
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Fig.6.4: The proposed model for price forecasting 

6.3.3 Hyper parameter tuning 

We use random grid search with MAAPE as the scoring loss metric to perform 5-fold 

cross validated search over the hyper parameter settings as described in Table 6.1. The final 

selected values after 30 iterations of search are listed in the same table. For the remaining set 

of hyper parameter the respective default values have been used. It may be stated here that 

the number of points in each bootstrap set is chosen to be same as the total number of sample 

points in the complete Austria electricity price training set, i.e. 'N  = N, hence each set will 

contain approximately 63% unique points.   

Table 6.1:Tuned  Hyper parameters 

Hyper parameter Search Space Value 

RandomF_max_depth [2,3,4,5,6,7,8] 3 

RandomF_max_features [12,15,20,25,30,None] 30 

RandomF_n_estimators [50,60,70,80,90,100,110,120] 70 

XGBoost_max_depth [2,3,4,5,6,7,8] 6 
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XGBoost_learning_rate Log uniform(1e4, 1e+1) 0.3798 

BayesianRegression_
1  Log uniform(1e-7, 1e-3) 4.8001e-07 

BayesianRegression_
2  Log uniform(1e-7, 1e-3) 1.5269e-06 

Bagging_bootstrap [True ,False] True 

Bagging_n_estimators (M) [10,30,50,70] 50 

6.3.4 Evaluation metrics 

The performance of various models is evaluated on the basis of these validation 

metrics: Mean arctangent absolute percentage error (MAAPE), Mean absolute Error (MAE) 

and Root mean squared error (RMSE). MAAPE is a variation of MAPE that considers the 

ratio of absolute error and real value as an angle instead of slope. Out of these three, MAAPE 

is given in terms of percentage, whereas, the other two are given as absolute values. 

 

MAAPE is defined as: 

  

MAAPE = 
1

1
arctan 100%

n
t t

t t

y p

n y

 
  

 
                                (6.9)   

 

MAE is defined as: 

 

MAE=
1

1 n

t t

t

y p
n 

                                                                (6.10)    

RMSE is defined as: 

 

RMSE = 2

1

1 n

t t

t

y p
n 

                                                        (6.11)      
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Where 
ty is the actual price and 

tp is the predicted price, n is the number of observations in the 

test set. The confidence interval (CI) [26] for absolute error is calculated to measure the 

precision of forecasts. Let c be the N dimensional absolute error vector computed for each 

data point in the test set, the confidence interval range is given by 

,CI z z
N N

  
   
 
c c                                                    (6.12) 

Where, c  and  represent the mean and standard deviation values of vector c and z denotes 

the critical value. The critical value depends on the confidence level (C) which is specified 

beforehand. For standard normal distribution, the critical value is looked up in the z-table 

corresponding to the area enclosed by the curve which is a function of C and is equal to 

 (1 C)

2
2 1


  . For a confidence level of 95% and 99% the critical values are evaluated to be 1.96 

and 2.576 respectively. 

 

 

Fig.6.5: Comparison of forecasted price vs actual price for various models 
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Fig.6.6: Comparison of forecasted price of stacked model and proposed model with actual 

price 

 

Fig.6.7: Comparison of MAAPE values of various models 

6.4. Simulations & results  

In this section we compare the presented model with benchmark models for electricity 

price forecasting. Artificial neural network (ANN), relevance vector machine (RVM), 

support vector machine (SVM), lasso regression, random forest regressor, adaboost and 

Xgboost have been previously used for the task. It should be emphasized that our model is an 

adaptation of the stacked model. Hence, in order to demonstrate the importance of bootstrap-



Bootstrap aggregation of ensemble… Chapter 6 

 

138 

 

aggregation in our work, we also compare the proposed model with the independent stacked 

model. All the models are trained using the same set of features and dataset as illustrated in 

section 6.2, this aids in the unbiased evaluation of all the models. To compute the average as 

well as seasonal performance metrics, our test set that comprises of consecutive days from 

each month in the dataset that expands over two-year period. The evaluation metrics, as 

mentioned in the previous section are assessed using eq.6.8, eq.6.9 and eq.6.10. MAAPE, 

RMSE and MAE for the test set are tabulated in table 6.2. The developed model outperforms 

other models and produces highly accurate day-ahead electricity price forecasts, which is 

vindicated by its dominant performance on the metrics. To evaluate the performance for 

different seasons, a random month from each season, for both the years is chosen. Electricity 

price forecasts for all the days in the test set corresponding to the chosen months are used for 

MAAPE calculation of all the four seasons, reported in table 6.4. The proposed ensemble is 

observed to outperform all other models with the lowest error percentage for all seasons.   

 To indicate the range over which the error varies for majority of the data points, we 

report the 95% and 99% confidence interval of absolute error for all the models evaluated in 

this study. From table 6.3 it may be inferred that of the upper limit of CI range for 95% 

confidence level is still below the lower limit of all the other models. From this, we discern 

that the electricity price forecasts made by the proposed ensemble model are consistently 

accurate compared to other models for majority of points in the test set.   

For visualization purposes, the predicted values by various benchmark models for four 

consecutive days from test set corresponding to February, 2015 are shown in fig.6.6. 

Moreover, the predictions obtained by proposed and stacked models along with the absolute 

error for seven consecutive days from the same month are depicted in fig.6.7. The actual 

values are also plotted with the predicted values to visually compare the accuracy of all the 

models. On a more focused view in fig.6.6 at the times 41, 113 and 126 hours, it can be 
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clearly noticed that the proposed model, unlike the stacked model avoids unnecessary spiking 

at price maxima. Additionally, the substantial overshooting just after price maxima observed 

at times 99 and 138 hours by the stacked model is overcome by bootstrap aggregation, 

resulting in a model that captures pricing trends more smoothly and adapts to the stochastic 

changes in electricity price.  

Table 6.2: Error comparison of different models 

Model MAAPE (%) RMSE MAE 

Lasso [27] 6.604 2.715 1.819 

ANN [28] 6.499 2.639 1.775 

Random Forest [29] 5.801 2.484 1.592 

XGBoost [30] 5.857 2.448 1.610 

RVM [31] 6.267 2.510 1.711 

Ensemble of RVM 

and XGBoost [24] 
5.439 2.179 1.485 

Stacked Model 5.724 2.332 1.561 

Proposed Model 

(BA + Stacked) 
5.132 2.156 1.385 

  

Table 6.3: Confidence Interval of Absolute Error 

Model 95% 99% 

Range Interval Range Interval 

Lasso [27] [1.75,1.88] 3.42 [1.74,1.90] 4.49 

ANN [28] [1.71,1.84] 3.41 [1.69,1.85] 4.46 

Random Forest [29] [1.53,1.65] 3.69 [1.51,1.67] 4.85 

XGBoost [1.55,1.67] 3.85 [1.53,1.68] 4.64 

RVM [31] [1.65,1.77] 3.31 [1.64,1.78] 4.35 
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Ensemble of RVM and XGBoost [24] [1.44,1.53] 3.03 [1.42,1.55] 4.37 

Stacked model [1.51,1.61] 3.36 [1.49,1.63] 4.49 

Proposed (BA+ Stacked) [1.33,1.43] 3.60 [1.32,1.45] 4.71 

 

Table 6.4: Mean Arctangent Absolute Error (MAAPE) comparison of different models  

Model Winter Spring Summer Fall 

Lasso [27] 7.65 7.77 5.46 5.78 

ANN [28] 7.69 7.61 5.41 5.50 

Random Forest [29] 6.68 6.81 4.85 5.11 

XGBoost 6.54 6.88 4.92 5.29 

RVM [31] 7.19 7.45 5.19 5.37 

Ensemble of RVM & XGBoost [24] 6.64 6.69 4.75 5.04 

Stacked model 6.74 6.61 4.66 5.10 

Proposed Model 5.81 6.20 4.23 4.48 

6.5. Summary 

This work investigates the potential of ensemble learning for very short-term 

forecasting of electricity price. The presented model combines the merits of bagging and 

boosting in the stacking phase and further reduces the overall variances imparted due to the 

stacking process by inculcating bootstrap aggregation. Apart from historic price and demand 

data, the model takes into consideration renewable energy parameters along with factors 

affecting its generation like wind speed and weather parameters, for making next hour 

electricity price predictions. The proposed model shows superior forecasting performance 

compared to various existing models, including previously proposed ensemble pipeline of 

boosted trees and RVM for the same task. An analytical and visual comparison between the 

independent stacked model and proposed models depicts the importance of bagging in our 
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work. In price-directed smart grids consumers adjust their consumption schedule and 

strategize purchasing in order to minimize energy cost, making next hour price forecasting an 

important tool. The presented model not only captures dynamic changes in price signals, it 

does so without being computationally complex.      
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Chapter 7 

ELECTRICITY MARKET MODELS FOR RENEWABLE 

ENERGY ENABLED INDIAN ELECTRICITY MARKET 

Important Terminology in Indian Electricity Market 

PGCIL –Power Grid Corporation India Limited  

ISO - Independent system operator 

SEB-State Electricity Board 

MNRE-Ministry of new renewable Energy 

NLDC-National Load dispatch centre 

SLDC-State Load dispatch centre 

RLDC-Regional Load Dispatch centre 

CTU- Central Transmission Utility 

CERC-Central Electricity Regulatory Commission 

SERC-State Electricity Regulatory Commission 

PX-Power Exchange 

SC-Scheduling Coordinator 

UI-Unscheduled interchange mechanism 

PPA-Power Purchase Agreements 
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REMC-Renewable Energy Management Centre 

NTP-National Tariff Policy 

RPO-Renewable Purchase Obligation 

FITs-Feed in Tariffs 

REC-Renewable Energy Certificate 

NAPCC-National Action Plan for Climate Change 

CEA-Central Electricity Authority 

FERC-Federal Energy Regulation Commission 

CFD-Contract for Differences 

ADR-Alternative Dispute Resolution 

BRP-Balance Responsible Parties 

CGU-Central Generating Utility 

SGU-State Generating Utility 

IPP- Independent Power Producer 

SDU-State Distribution Utility 

DISCOM -Distribution Company 

MCP- Market Clearing Price 

Important Literature in Indian Electricity Market 
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Power Exchange (PX): RLDC provides ATC information to PX. Thus, PX is an ISO 

receives bids from suppliers, bulk customers, traders, DISCOM’s for a day ahead or an hour 

ahead schedule and finalises the market price based on demand and available power 

generation. Then PX informs day ahead/hour ahead scheduling to RLDC. PX manages day 

ahead and hour ahead markets. 

In the day ahead market, participants would bid supply and demand for the next day’s 24 

hours. This market starts at 6.00 am and closes at 1.00PM of the day ahead of the trading day. 

Based on all unit specific supply bids and location specific demand bids, the ISO determines 

whether there are any transmission congestions and increase of congestion, the ISO uses 

adjustment bids to submit and adjusted schedule to schedule coordinators. 

Market working  

 Generation/load bidding in day ahead  market 

 Calculation of MCP 

 Adjustment of bids 

 Congestion management using adjustment bids 

 Generation/load bidding in hour ahead  market 

 Supplemental energy bids 

 Settlement procedure and calculations of average price for actual consumption and 

production. 

NLDC: National Load Dispatch Centre (NLDC) works for optimum scheduling and 

dispatch of electricity among RLDCs. 

RLDC: The RLDCs shall be the Apex Body to ensure integrated operation of power 

system in the concerned region. 
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SLDC: It is responsible for optimum scheduling and dispatch of electricity in the state. 

SC: Scheduling coordinator can directly bid or self-schedule resources as well as handle 

the settlement process. 

Electricity Trader: It means a person who has been granted a licence to undertake 

trading in electricity market. 

Franchisee: It means a person authorised by a distribution licensee to distribute 

electricity on its behalf in a particular area within this area of supply. 

Open Access: The non-discriminatory provision for the use of transmission lines or 

distribution system or associated facilities with such times or system by any licensee or 

consumer or a person engaged in accordance with the regulations specified by the 

appropriate commission. 

Licensee: A person who has been granted a licence. 

Vertical Integration: It is an arrangement where the same company owns all the 

different aspects of making, selling and delivering a product or a service. 

Wheeling: It refers to the transfer of electric power through transmission and distribution 

lines from one utility’s service area to another’s. Wheeling can occur between two 

adjacent utilities in different states. 

Retail Wheeling: Loads can choose suppliers apart from the respective connection to the 

distribution network. 

Market Power: It is defined as owning the ability by a seller or a group of sellers to drive 

price over a competitive level, control the total output or exclude competitors from a 

relevant market for a significant period of time. 
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Ancillary Services: These are defined as services which are required to support the 

transmission of capacity and energy from resources to loads while keeping a reliable 

operation of the transmission system of a transmission provider in accordance with good 

quality of practice. 

Trading: It means purchase of electricity for resale thereof and the expression “trade” 

shall be construed accordingly. 

Utility: It means the electric lines or electrical plant and includes all lands, buildings, 

works and materials attached there to belonging to any person acting as a Generating 

company or licensee under the provisions of the Electricity Act. 

7.1 Introduction 

The world is already seeing the consequences of 1⁰ C rise in temperature above pre-

industrial levels through more extreme weather, rising sea levels, and diminishing Arctic sea 

ice among other changes. Now the special report on global warming by the intergovernmental 

panel for climate change (IPCC) estimates the increase in global warming of 1.5⁰C above 

pre-industrial levels which may further deteriorate the environmental conditions. 

Significantly de-carbonizing existing energy systems by devoting in renewable energy 

systems, which mainly includes solar, at a record scale and pace is required to address such 

effects of global warming [1]. The depletion of conventional energy sources such as fossil 

fuel is one another factor that promotes renewable energy sources strategically to meet the 

global electricity demand [2]. In India, the central government and the state governments 

have put in place various policies and mechanisms to promote solar energy, including 

financial incentives for certain categories of users. 

 

The renewable energy component is increasing every year in the electricity market in 
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India and overseas as well. As of now, the installed capacity of renewable energy is 78.31 

GW that comprises 35.63 GW from wind energy, 28.18 GW from solar energy, 9.91 GW 

from bio and 4.59 GW from small hydro. Further 67.38 GW more capacity of renewable 

energy is in the process of addition. By 2030, India commits to increase non-fossil based 

energy resources to 40 % of the electricity capacity installed. The government of India has 

planned to increase solar energy capacity to 100 GW by 2022, out of which 40% has to come 

from the consumer category in the form of rooftop and similar small scale solar energy 

systems. To some extent, the ministry of new and renewable energy (MNRE) also enforces 

renewable energy purchase obligation to bulk consumers. To address critical issues like the 

uncertainty of renewable energy generation, as assigned by the Govt. of India the power grid 

corporation of India limited (PGCIL) has initiated the establishment of the renewable energy 

management centers (REMCs) with the technical assistance of German Govt. at the state 

level and central level in the year 2016 and actual implementation started since 2017 [3]. To 

deliver rising demand for electricity in an environmentally friendly way through the 

promotion of renewable energy, many Indian states came up with many guidelines and 

policies in recent years. The guidelines for the procurement of power from solar power 

projects more than 5MW through long term PPA and the procurement of power from solar 

power projects below 5 MW capacities at feed in tariff mentioned clearly in the solar policies 

of the states in India [4].  

The entry of RE sources in an already restructured and deregulated electricity market 

will make it more competitive, dynamic, and add to the complexity of operation and decision 

making [5]. The increasing penetration of renewable energy may lead to many new issues 

and challenges such as time scale of operation, price volatility, security and reliability [6]. 

Although many market models are established for restructured electricity market in 

international domain, which mostly depend on conventional power generation. However, to 
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handle the obstacles due to renewable energy power generation, new market models are 

anticipated for present Indian electricity market. This paper presents many market models to 

handle the situations arising due to increase dominance of RE in Indian electricity market. To 

develop market models in the scenario of Indian electricity market enabled by renewable 

energy sources, various policies of MNRE such as renewable energy certificate (REC), RE 

promotion policies of various Indian states such as power purchase agreement (PPA) and 

feed in tariff are applied. A new entity called balance responsible parties (BRP) is introduced 

in second and third models developed in this work to enhance the assistance to market 

participants for RE enabled Indian electricity market. 

Remaining sections are structured as follows. Section 2 describes the evolution of 

Indian electricity market. Section 3 presents various market models proposed for RE enabled 

Indian electricity market whereas section 4 analyses and compares all the proposed models. 

Section 5 describes the proposed operating mechanism for RE enabled Indian electricity 

market and section 6 presents the conclusion. 

7.2 Evaluation of Indian electricity market 

In India before independence, under the provisions of Indian electricity act 1910 private 

entities used to supply the power in their locality. Indian electricity industry underwent the 

process of nationalization by virtue of the foresaid act of 1948. This act paved the way for 

formation of State Electricity Boards (SEBs) to deal with generation, transmission and 

distribution of electricity in states. Subsequently many large power generation projects were 

established by central govt. to provide power to various states. SEBs became inefficient with 

time and suffered financially, hence central sector generation and transmission were 

separated in 1992, but distribution of electricity remained monopoly in the hands of SEBs [7], 

[8]. 



Electricity market models… Chapter 7 

 

153 

 

Going ahead with restructuring of Indian power sector in 2001, States divided 

generation, transmission and distribution into separate corporate entities. But power purchase 

and distribution still remains in the hand of SEBs indicating its monopoly referred to be a 

single buyer model, which neither benefited sellers nor buyers in order to get competitive 

market price. In the further transformation process, the independent regulatory bodies have 

been established at central level and states to rationalize electricity tariff, formulise transport 

policies regarding subsidies and also to promote efficient and environmentally friendly 

policies.  

The Electricity Act 2003 focuses on supply of electricity to all areas, rationalization of 

electricity tariff, ensuring transparent policies regarding subsidies, promotion of efficient and 

environmentally benign policies, and constitution of central electricity authority (CEA), 

regulatory commissions and establishment of appellate tribunal [7]. It provides open access 

and encourages privatization as well as competition. Hence, many bulk consumers are turning 

into producers also, which leads to distributed generation in the power system a lot. Also the 

solar and wind generation are getting connected to the grid at several locations in distributed 

manner. The power grid is becoming smart by adding many devices and technologies to 

manage such changes.  

In such a restructured dynamic electricity market where renewable energy (RE) power 

generation, will dominate in future, appropriate market models need to be developed to 

minimize the electricity price and increase the efficiency of operations.  

7.3 Proposed market models for RE enabled Indian electricity market  

Traditional electricity market works with three major restructured models named 

PoolCo model, bilateral contracts model and hybrid model [9]. A PoolCo model consists of a 

power exchange (PX) which handles the bids submitted by sellers and buyers by analysing 

supply and demand of the following day and finalise the optimal price, which is market 
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clearing price (MCP). In bilateral contract model, traders are allowed to negotiate the price 

without interference of system operators. In this model customers can contact directly to 

power generating companies. However, the hybrid model incorporates different features in 

both versions. Here PX may exist and customers are also allowed to contact suppliers 

directly. This model provides good flexibility to customers and utilities as well.  

In this chapter, market models for renewable energy enabled electricity market based 

on rigorous study on renewable energy policies of various countries and different states in 

India. Also literature review on existing market models & proposed market models by 

researchers assist in developing the market models in this paper. Single buyer model and Pool 

market model have been proposed for Malaysia electricity supply industry [10]. Emission 

trading schemes are introduced to reduce CO2 emission and to promote renewable energy in 

European countries [11].To encourage wider adoption of renewable energy, UK implements 

many schemes for financial support such as feed in tariff and renewable obligation [12]-

[13].Transmission expansion planning techniques are provided for enhancing penetrations 

from renewable energy sources and to deal with the complexity related to integration of smart 

grid technology and electricity market [14]. The impact of increased wind power penetration 

to the grid on Iberian electricity market (Spain & Portugal) has been emphasized for having 

reduced spot prices [15]. The electricity market model for Irish has been proposed, that 

targets for contribution of wind power to 37 % of total power generation by 2020 exploring 

the curtailment of excess wind power generation and storage options [16]. The impact of 

variable generation from renewable energy sources on the trading of electricity market and 

the need to formulate few strategies of demand side management based on grid operating 

conditions & reliability are emphasized [17]. To meet the growing demand for power in an 

environmentally sustainable manner i.e. in the promotion of renewable energy, several states 

of India came up with many guidelines and policies in recent years. The guidelines for the 
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procurement of power from solar power projects more than 5 MW through long term PPA 

and the procurement of power from solar power projects below 5 MW capacities at feed in 

tariff mentioned clearly in the solar policies of the states in India [4]. 

The market models for markets with large scale integration of renewable energy 

generation are proposed in following sections. 

7.3.1 Energy pool model 

This model is consisting of solar power plants, wind power plants, IPPs, CGU, SGU, 

PX, SDU, DISCOM’s and retailers. PX purchases power from all generating units through 

online bidding. Then distributing units will purchase the power from pool to supply the 

power in their respective areas. Being ISO, power pool finalises one MCP by matching the 

supply and demand curves. This is the simplest structure as shown in fig.7.1, not entertaining 

private entities into the market. This model exhibits monopoly leaving no choice to 

consumers in selecting the supplier on distribution side. In this model, the DISCOM’s, SDUs 

and retailers have dedicated consumers. Hence competition at supply side is minimum in this 

model. This model may be free from congestion except peak demand hours. Perhaps, 

reliability of the model depends on the performance of the respective distributors. Social 

obligation may be covered by distribution companies. 

Solar/Wind power

Plants CGU/SGU

PX, SEBs/SCs

SDU
DISC

OMs

Retail

ers

C C C

  

Fig.7.1: Energy pool model 
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7.3.2 Renewable energy pool model 

In this model, it is proposed to have separate power trading for renewable energy and 

non-renewable energy and two power pools as shown in fig.7.2. Conventional generating 

units submit bids directly to PX and PX finalises MCP by matching the bids. On the other 

hand, Solar/ wind power plants bid through BRP, an intermediate entity between solar/ wind 

power plants and consumers. BRP receives a day ahead solar/ wind power forecast from 

REMC. In case solar/ wind power generation is less, BRP takes the responsibility to fulfil the 

balance power generation by purchasing power from the PX. In case of excess power 

generation BRP also can submit bids to PX for the sale of power. At distribution level, open 

access will be given to consumers.  

In this model, there will be proper competition because of separate trading for 

conventional energy and renewable energy. Also this model provides more competition than 

previous model due to which tariff may be lower and consumers will get benefited. 

Implementation of this model is easy and operation is less complex, however congestion may 

occur due to wheeling at distribution level. 

OMs

Retail

ers

C C

BRP

DISC

CC

SDU

C

DISCOM'sRetailers

CGU SGU IPP

PX

Solar

plant
Wind plant

 

Fig.7.2: Renewable energy pool model 
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7.3.3 Renewable energy bilateral contracts model with BRP 

In this model as shown in fig.7.3, along with entities like CGU, SGU, solar/ wind 

power plants, PX, DISCOM’s, retailers and consumers a new entity called BRP is added to 

deal with uncertainty of renewable energy [18]. Solar/ wind power plants can go for long 

term bilateral contracts by making PPA with distributors/ consumers through BRP. In case 

solar/ wind power generation is less, BRP takes the responsibility to fulfil the balance power 

generation by purchasing power from CGU/SGU. On the other hand, BRP also can submit 

bids to sell excess power from solar/ wind plants to PX in a day ahead or hour ahead market 

along with CGU and SGU. Above said bilateral contracts would be supported by the 

incentives and subsidies of the state governments to promote renewable energy. The 

consumers in bilateral contracts will be supplied from renewable energy suppliers through 

BRP. 

By matching supply and demand curves, MCP will be finalized in a day ahead market 

by PX. DISCOM’s and Retailers can purchase power directly from the PX whereas consumer 

will purchase power from DISCOM’s, retailers.  

This model establishes the structure of hybrid model, which enjoys both bilateral 

contracts and power pool. This model promotes renewable energy and encourages bulk 

consumers to use renewable energy. In fact, bulk consumers can also fulfil renewable energy 

purchase obligation by the governments. Compared to renewable energy pool model, this 

model may be complex to operate due to the additional entity BRP. At distribution level, 

DISCOM’s have dedicated consumers so competition will be less which may increase the 

electricity price in pool. The reliability of this model depends upon the performance of 

DISCOM’s and BRP. 
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Solar/Wind power

Plants

CGU/SGU

PX, SEBs/SCs

DISC

OMs

Retail

ers

C C C

BRP

 

Fig.7.3: Renewable energy bilateral contracts model with BRP 

7.3.4 Energy pool model with bilateral contracts of DISCOM’s and RES 

In this model as shown in fig.7.4, solar/ wind power plants will have bilateral contracts 

with DISCOMs and also they can sell excess power to the pool. At the same time DISCOMs 

in bilateral contracts may purchase the power from pool as and when required in case of 

power shortage. In this model, solar projects of less than 5 MW are allowed to sell power 

directly to the pool under guidelines set by the state governments and MNRE. The solar 

power projects less than 5 MW shall feed into grid based upon feed in tariff (FIT) determined 

by state electricity commission to the extent power required with in the state [4]. The 

DISCOMs would establish bilateral contracts with Solar PV or wind power plant owners by 

making long term PPAs, selected through competitive bidding based upon the guidelines, 

notified by ministry of power.  

This model is also one type of hybrid model for power trading. In this model, bilateral 

contracts with long term PPA will be signed between solar/ wind power companies and 

DISCOM’s. Hence DISCOM’s will take care of the uncertainty in renewable energy.  
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Fig.7.4: Power pool model with bilateral contracts of DISCOM’s and RES 

7.3.5 Flexible market model with wheeling at distribution level 

It is similar to previous model, where DISCOM’s may have bilateral contracts with 

solar/ wind power plants and also purchase power from pool, however in this model, power 

wheeling is introduced at distribution level [19]. Open access enables the bulk consumers to 

buy power from the open market. Instead of buying power from the local utility monopoly, 

the consumers can choose from many competitive companies. Thus, the suppliers under open 

access have to incur various charges for using the grid.   
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5 MW Solar
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Fig.7.5: Flexible market model with wheeling at distribution level 

The model shown in fig.7.5, has got flexibility in a way that the consumer may choose 

its distributor, thereby introducing competition at distribution level which may result in lower 

tariff and better service to the consumer. 

7.3.6 Open access model for bulk consumers 

Here in this model, the bulk consumers can purchase power from any power 

companies, DISCOMs or pool. The small consumers also have open access to different 

distributors, which overcomes monopoly at distribution level as presented in fig.7.6.This 

enables heavy users with more than 1MW connected load to buy cheap power from the open 

market. The open market allows the consumers to select from a number of competitive power 

companies rather than being forced to buy power from local utility monopoly. With open 

access provision, regular power supply is ensured to Industrial& commercial consumers at 

competitive rates. Also consumers can meet their Renewable purchase obligations. 

The power shortage can be effectively reduced by open access as many solar energy/ 

wind energy companies directly transmit power to some load centres. The open market 
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allows the consumers to purchase power from any company, which increases the competition 

in the market and makes the price less. Open access may be either Interstate open access or 

intra state open access [20].  

C C

Solar/Wind

power  Plants CGU/SGU

PX, SEBs/SCs

DISC

OMs

Retail

ers

Bulk

Consumers

5 MW Solar

plants

 

Fig.7.6: Open access model for bulk consumers 

7.3.7 Flexible market model for consumers and distributors  

Unlike above models, this model as shown in fig.7.7 does not contain any power pool. 

The DISCOMs/ SDUs may purchase power from CGU/ SGU/ solar/ wind power plants. At 

distribution level also, the consumer has flexibility to choose the distributor. The distributor 

will possess distribution licensee for more than one consumer or area. Further, the bulk 

consumers will be given flexibility to purchase power either from any DISCOM/ SDU or 

directly from solar/ wind power plants. To make solar/ wind power plants compete with 

CGU/ SGU the state governments and MNRE are supposed to announce some attractive 

incentives and subsidies to DISCOM’s/ bulk consumers for purchasing power from solar/ 

wind power plants. In this multi-buyer or Multi-seller system, one of the major tasks is to 

have a market based solution with economic efficiency for congestion management [21]. 

Most of the buyers are interested in purchase power from cheapest generator available. Of 
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course, this leads to overloading of cheaper generators. If congestion occurs, price will be 

settled area wise. Areas with excess generation will have lower prices and area with excess 

load will have higher prices [22]. In this model competition is introduced at transmission as 

well as distribution level.  

Solar/Wind

power  Plants CGU/SGU

DISC

OMs

Retail

ers

C C C
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C

5 MW

Solar

plants

 

Fig.7.7: Flexible market model for consumers and distributors 

7.4 Comparative analysis 

All the above proposed models in section 7.3 have been compared for various features 

such as implementation, competition, congestion, tariff and reliability and the highlights are 

presented in table 7.1. 

Table 7.1: Comparison of proposed models 

Model Implementation 

of the model 

Market 

Competition 

Congestion Power 

Tariff 

Reliability of 

power supply 

Energy pool 

model 

simple and easy less Nil more Inferior 

Renewable 

energy pool 

model 

a little  difficulty 

involved 

medium Less mediu

m 

Good 

Renewable 

energy bilateral 

contracts model 

not so easy Less Less more Inferior 
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with BRP 

Energy pool 

model with 

bilateral contracts 

of DISCOM’s 

and RES 

Easy Less Less more Inferior 

Flexible market 

model with 

wheeling at 

distribution 

Difficult More More less Better 

Open access 

model for bulk 

consumers 

Difficult More More lower 

tariffs 

Better 

Flexible market 

model for 

consumers and 

distributors 

difficult most 

competitive 

More lowest Best 

 

7.5 Operating mechanism 

Operating mechanism explains the functioning of electricity market with the 

coordination of power network. This section proposes operating mechanism of future Indian 

electricity market with high level of penetration of wind and solar generation as shown in 

fig.7.8. SLDC forecasts load a day ahead and an hour ahead, REMC forecasts solar power/ 

wind power generations a day ahead. This forecasting information is further conveyed to 

RLDC, which analyses ATC and sends the information regarding ATC and forecasting data 

to PX. At the same time, SLDC and RLDC will be coordinating with REMC for the details of 

renewable energy. At PX, all generating units will participate in bidding. Then, PX finalises 

MCP for a day ahead power schedule and sends information to RLDC. Under the supreme 

control of PGCIL, with the coordination of NLDC, RLDC & SLDC plan and monitor the 

scheduling/ dispatching of power for a day ahead in the respective state. The steps involved 

in the operation of the market are shown in fig.7.9 through a flowchart.  
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This operating mechanism also includes entities like RE generators and Renewable 

energy certificate (REC). RECs would be issued to RE generators. These RECs are purchased 

by any consumer in order to meet its renewable purchase obligation [23]. REC will be issued 

to RE generators by central agency like NLDC. RE generators would submit bids to PX for 

remaining power generation excluding RECs. 
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Fig.7.8: Operating mechanism of Indian electricity market 
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Fig.7.9: Flow chart for operating mechanism 

7.6 Summary 

The increasing demand of clean power with good quality and scalable consumption has 

put a pressure on power companies to increase the renewable energy integration in to the 

grid. However intermittent nature of solar and wind generation forces the market operators to 

look for new energy trading models and operating mechanism. Considering various aspects 

like the growth of RE generation, MNRE policies, state wise targets of RE generation, 

competition in the market and reliable power supply to the consumers, this chapter has 

proposed seven different market models and has made a comparative study of all the models. 

The operating mechanism is proposed to operate such a market has many new components.   
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Chapter 8 

CONCLUSION 

The uncertainty associated with wind power generation poses safety concerns to the 

power grid and lays roadblocks in achieving higher penetration of wind power into the grid. 

To overcome this difficulty, wind power forecasting (WPF) is evolved to be an appropriate 

way for power grid operators. Hence, various techniques and models are being developed in 

forecasting wind power. In chapter 2, NARX neural network is used to predict wind speed 

and wind power. A good accuracy in wind speed forecasting is demonstrated using this 

method. Though, the wind power forecasting projects reliability, the prediction accuracy can 

be improved with the development of a hybrid model to forecast wind power along with 

fuzzy system and data mining techniques like support vector machine to classify the 

historical data. In this chapter along with conventional neural network models, a statistical 

approach is also implemented in short term WPF to assess and compare their performances. 

The work is executed by using GRNN, RBFN and SVR models. In one day ahead WPF, the 

SVR approach is more consistent and reliable. The GRNN model is also performing 

consistently. At higher wind speeds the RBFN model is not able to predict wind power. The 

cases where there is a highly correlated data, the RBFN model depicts its performance with 

good accuracy. The work can be preceded with the design of a hybrid model consisting 

neural networks and SVR by elevating their respective merits. Also a hybrid model of SVR 

and suitable optimization technique like particle swarm optimization technique in tuning 

parameters of SVR model may be developed to improve the accuracy in short term WPF for 

highly dynamic cases also.  
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The volatility of wind power is a major issue to the power sector to be addressed. WPF 

is found to be an appropriate way to deal it. However, it is very much essential to analyse the 

reliability of the forecasting technique applied. Forecasting wind power using GRNN, RBFN 

and Hybrid GRNN-RBFN is carried out in 3rd Chapter to address this issue. Uncertainty in 

WPF is evaluated with the computations of confidence intervals. GRNN has performed 

consistently in all months of 2014 with significant reliability, which is ensured with the 

narrowest confidence interval of MAPE values in WPF for all months. The cases where there 

is highly correlated data, RBFN improves its performance. Further Hybrid GRNN-RBFN is 

designed to forecast wind power emphasizing proper assignment of weights to each neural 

network in parallel topology. In addition, confidence intervals on MAPE are evaluated to 

assess the uncertainty in prediction by the models used in this work. Hybrid neural network 

provides better accuracy in forecasting, if a single neural network is not reliable in 

forecasting. Various topologies like series, parallel and series parallel connections can be 

designed to increase the accuracy in wind power forecasting. 

Basically chapter 4 explores the significance of solar irradiation on solar PV power 

generation and its forecasting. The work is continued to develop a suitable hybrid model, 

ANN-PSO based on K-means clustering. As per evaluations, there is a significant effect of 

meteorological condition based clustering technique on a week ahead solar PV power 

forecasting. The results indicate improvement in forecasting accuracy of ANN-PSO model 

with clustering. Although, SVR model forecasts solar PV power with similar accuracy in a 

day ahead forecasting, it suffers in a week ahead forecasting with high errors. However, 

sometimes K-means clustering may not provide final solution. Hence, the work may be 

continued to implement fuzzy logic based K-means clustering in solar PV power forecasting. 

There is a scope for further research to analyse the effect of other clustering algorithms like 

mean shift clustering, density based spatial clustering and Gaussian Mixture etc. on 
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forecasting accuracy. Further, a hybrid model of SVR and optimization techniques like GA, 

PSO can be developed to check the improvement in forecasting accuracy. 

Electricity price is a special commodity unlike any other commodity in the market. Its 

storage is not an easy task. It is influenced by many factors like load demand, power 

generations, time factor, industrial requirements, weather conditions, fuel prices and 

transmission constraints etc. Thus electricity market experiences a lot of fluctuations making 

price highly volatile. One of the recent concerns for the volatility is power generation from 

renewable energy sources. The work carried in chapter 5 has suggested a suitable hybrid 

approach using K-means clustering and LSTM network for short term electricity price 

forecasting showing its proficiency in accurate price forecasting amid wind power 

penetration. The impact of wind power generation on price forecasting has been analysed and 

results depicted that the impact of wind power generation on the accuracy of price forecasting 

is significant with the considerable reduction in errors. However, it is also noticed that the 

contribution of wind power generation to the grid also matters in the forecasting period. 

Further the scope is left for implementing any other clustering technique other than K-means 

for future research and to analyse the impact of solar PV power generation also on price 

forecasting. 

The work in chapter 6 investigates the potential of ensemble learning for very short-

term forecasting of electricity price. The work develops a stacked model that integrates 

extreme gradient boosting and bagging based tree ensemble regressors using bayesian linear 

regression technique, improving upon individual technique's bias and variance limitations. 

This stacked model's overall performance is further enhanced using bootstrap aggregation, 

which helps in adapting to the stochastic price changes by avoiding spiking and overfitting. 

The model is implemented on real-world historical data obtained from Austrian electricity 

market. The growing dependence on renewable sources impact the spot prices and are 
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included in our forecasting model. The performance of the proposed methodology is 

compared to six state-of-the-art electricity price forecasting models. The proposed ensemble 

with a minimal mean absolute error of 1.38 clearly demonstrates superiority over other tested 

models with regards to accuracy of electricity price forecasts. Additionally, the model is 

found to perform consistently with a confidence interval of absolute error of ±3.6% as well as 

suitable for online training with a computation time of 135s.     

The increasing demand of clean power with good quality and scalable consumption has 

put a pressure on power companies to increase the renewable energy integration in to the 

grid. However intermittent nature of solar and wind generation forces the market operators to 

look for new energy trading models and operating mechanism. Considering various aspects 

like the growth of RE generation, MNRE policies, state wise targets of RE generation, 

competition in the market and reliable power supply to the consumers, 7th chapter has 

proposed seven different market models for RE enabled Indian electricity market and has 

made a comparative study of all the models. All the proposed models have been compared for 

various features such as implementation, competition, congestion, tariff and reliability. It is 

well established that every model has both merits and demerits. Mainly, the requirements of 

market participants will be crucial in the implementation of the model. Further, the operating 

mechanism with many new components is also proposed to operate such a market.   
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Appendix 

 
Sample training and testing data used from Belgium wind farms 

 

Wind 
speed 

Wind power in 
MW 

43.2 1299.17 

35.2 1292.969 

33.3 1294.071 

32.4 1302.089 

35.2 1306.519 

35.2 1310.968 

37 1307.285 

36 1323.109 

40.7 1316.356 

40.7 1288.359 

37 1274.804 

36 1273.864 

33.3 1283.661 

33.3 1257.03 

38.9 1256.767 

39.6 1196.057 

40.7 1033.464 

40.7 1006.243 

27.8 1089.018 

28.8 1098.102 

27.8 1110.776 

27.8 1216.687 

25.9 1219.033 

25.2 1224.631 

29.6 1209.446 

29.6 1204.431 

29.6 1228.573 

28.8 1215.606 

33.3 1201.853 

33.3 1181.769 

25.9 1167.195 

25.2 1148.11 

24.1 1128.025 

24.1 1117.765 

24.1 1149.079 

21.6 1152.294 

20.4 1136.664 

20.4 1165.087 
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Sample training and testing data used from US wind farms 
 

density 

at hub 
height 

(kg/m^3) 

power 

(MW) 

surface 

air 
pressure 

(Pa) 

air 

temperature 
at 2m (K) 

wind 

direction 
at 100m 

(deg) 

wind 

speed 
at 

100m 
(m/s) 

1.07 16 0 274.265 339.993 15.451 

1.071 16 0 274.207 340.355 15.216 

1.071 16 0 274.115 340.729 14.822 

1.071 16 0 274.008 340.982 14.386 

1.072 16 0 273.801 341.108 13.995 

1.072 16 0 273.642 341.179 13.657 

1.072 16 0 273.52 341.328 13.376 

1.073 16 0 273.404 341.35 13.223 

1.073 15.991 0 273.316 341.07 13.171 

1.073 15.955 0 273.233 340.757 13.049 

1.073 15.888 0 273.154 340.246 12.823 

1.073 15.801 0 273.093 339.559 12.53 

1.074 15.697 0 273.023 338.746 12.179 

1.074 15.388 0 272.882 338.493 11.78 

1.074 15.136 0 272.757 339.015 11.499 

1.074 14.958 0 272.644 339.257 11.301 

1.074 14.772 0 272.519 339.949 11.093 

1.075 14.428 0 272.412 341.46 10.861 

1.075 14.181 0 272.29 341.91 10.733 

1.075 13.915 0 272.165 340.735 10.596 

1.075 12.984 0 271.973 339.114 10.113 

1.076 11.378 0 271.765 339.85 9.463 

1.077 9.42 0 271.442 342.251 8.752 

1.077 7.719 0 271.198 343.877 8.142 

1.078 6.707 0 271.051 343.926 7.779 

1.078 6.29 0 271.033 343.492 7.614 

1.079 6.149 0 271.009 344.454 7.55 

1.079 6.306 0 271.03 345.739 7.62 

1.079 6.848 0 270.984 346.47 7.827 

1.079 7.649 0 270.932 347.283 8.114 

1.078 8.298 0 270.923 348.217 8.346 

1.079 8.597 0 270.887 349.266 8.453 

1.079 8.674 0 270.914 350.431 8.481 

1.079 8.846 0 271.006 351.606 8.542 

1.079 8.975 0 271.051 352.727 8.587 

1.079 8.993 0 271.048 353.902 8.594 
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Sample training and testing data used from Indian wind farms 
 

Wind power 

in KW 

Wind speed in 

m/s 

  5.833 4.289 

4.74 4.058 

1.955 3.267 

0.229 2.201 

0.025 1.613 

0.323 2.325 

1.39 3.038 

2.943 3.592 

4.635 4.027 

5.401 4.206 

4.66 4.038 

3.685 3.799 

2.671 3.506 

1.865 3.225 

1.678 3.161 

2.656 3.496 

5.282 4.18 

9.824 5.013 

14.929 5.724 

19.277 6.223 

22.258 6.536 

24.915 6.794 

27.228 7.004 

28.355 7.1 

28.53 7.118 

23.926 6.699 

10.856 5.171 

5.403 4.207 

7.282 4.581 

7.765 4.66 

6.84 4.498 

6.51 4.434 

6.299 4.383 

5.611 4.251 

4.113 3.899 

3.692 3.801 

4.554 4.015 
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Sample training and testing data used from Indian solar PV plants 
 

Solar PV 

power in KW 

Direct irradiance 

in kW/m2 

Diffuse 

irradiance in 
kW/m2 

Temperature 

ºC 

0 0 0.001 10.303 

12.233 0.087 0.061 11.994 

36.482 0.312 0.108 14.58 

55.625 0.545 0.121 17.237 

66.892 0.716 0.126 21.518 

72.346 0.805 0.13 23.498 

70.081 0.761 0.143 24.208 

65.007 0.686 0.142 24.485 

54.152 0.535 0.137 24.318 

35.653 0.301 0.128 23.489 

14.051 0.094 0.08 21.417 

0.211 0.003 0.007 18.16 

0 0 0 17.187 

0 0 0 16.832 

0 0 0 16.621 

0 0 0 16.3 

0 0 0 15.744 

0 0 0 14.983 

0 0 0 14.261 

0 0 0 13.734 

0 0 0 13.327 

0 0 0 12.962 

0 0 0 12.605 

0 0 0 12.262 

0 0 0.001 11.957 

11.733 0.082 0.062 13.822 

34.972 0.291 0.114 16.051 

53.408 0.512 0.131 19.126 

64.633 0.676 0.139 22.79 

69.92 0.759 0.145 24.686 

65.07 0.662 0.172 25.41 

60.033 0.59 0.171 25.733 

49.366 0.45 0.161 25.643 

32.779 0.258 0.139 25.01 

12.584 0.078 0.081 23.244 

0.19 0.003 0.007 20.34 

0 0 0 19.441 

0 0 0 18.929 
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Sample training and testing data used from Austrian electricity market 
 

Load in  

MW 

Price in Euros solar power 

generation in 
MW 

wind power 

generation 
in MW 

5977 18 0 152 

5727 17 0 110 

5407 14 0 56 

5314 13 0 39 

5401 14 0 34 

5406 16 0 32 

5761 18 8 34 

5954 23 13 32 

6325 26 37 42 

6645 27 71 50 

6797 29 100 46 

6727 29 116 50 

6589 28 114 50 

6552 28 87 57 

6604 29 45 60 

6903 32 15 52 

7382 37 7 46 

7438 38 7 44 

7163 36 0 58 

6831 32 0 110 

6460 28 0 103 

6552 27 0 50 

6214 24 0 20 

5975 26 0 14 

5680 25 0 29 

5531 22 0 50 

5379 20 0 101 

5462 16 0 148 

5784 17 0 159 

6091 19 0 146 

6714 25 8 159 

7182 27 14 207 

7545 29 36 292 

7732 29 61 408 

7870 28 79 448 

7691 26 87 532 

7714 24 81 601 

7557 24 60 605 

7664 22 31 652 

 



 Appendix 

 

178 

 

Data links 
 

https://data.open-power-system-data.org/time_series/2019-05-15 
 

www.weather-and-climate.com/average-monthly-Rainfall-Temperature-
Sunshine,Brussels,Belgium 

 

http://www.elia.be/en/grid-data/power-generation/wind-power   
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Answers to the questions and suggestions of the examiners 

 

Examiner 1 

  
Suggestions: 

 

Minor modifications related to data inconsistency as also in sentence syntax aspect at a 

number of places are required to be incorporated in the theses. In a sense, I would 

recommend the author to reread the theses and correct the grammatical aspects specifically in 

sentence syntax as also bring consistency in data taken from various literatures but reference 

year of data taken and source are not mentioned. Some statements are not clearly understood 

such as, “India’s power sector is one of the largest and has a capacity of 156092.23MW”. In 

the immediate next sentence, the India’s installed capacity is shown 369 GW. Such data 

inconsistency needs to be corrected by taking such data from only one reference year and 

authentic source rather than taking from various sources using different reporting years. 

 

Answer: The data presented has been corrected as per latest statistics in the power sector in 

India and world-wide and proper sources are referred. To the best of my knowledge, the 

grammatical aspects have been corrected. 

 

Examiner 2 

 

Chapter 1 
 Questions:  

1. Scholar has summarized the research gaps but not sure how many of them addressed 

in this dissertation?  

Answer 

The following five research gaps have been addressed in the research work. 

1. Many authors analyzed the performance of the models of wind power forecasting either by 

calculating MAPE or RMSE, but not with both the evaluation factors. (Chapter 2) 
2. As renewable power forecasting has a great role in the operation of a smart grid, the 

reliability of forecasting model has to be checked with the analysis of uncertainty in the 
prediction. (Chapter 3) 
3. The uncertainty in wind speed forecasting and wind power forecasting shall be analysed 

using the developed hybrid model. (Chapter 3) 
4. Many authors tested and validated the forecasting model developed using the data of one 

location. Further, the location dependency of the model can be verified using the data from 
more than one location. (Chapter 2) 
5. In Smart grid scenario, the effect of renewable energy on Electricity Market price could be 

investigated. (Chapter 5 and Chapter 6) 
2. Also there are many gaps are loosely defined and one approach could be that only 

highlight those gaps which are being addressed in this work.  
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Answer: Most of the gaps are addressed in the thesis work. 
 

Chapter 2 
Suggestions: 

1. Show and describe the training and testing data; Belgium wind farm, US wind farm 

and Indian wind farm.  

Answer: As per the reviewer suggestion, sample testing and training data is included in the 
appendix of the thesis. 

Questions:  

1. During the training section, the researcher fine-tuned the NARX model to achieve 

maximum accuracy result. However, the number of nodes and hidden layers is not 

presented in discussion or conclusion part. Similar to one day ahead forecasting, the 

fine-tuned parameter of GRNN, RBFN and SVR are not presented.  

Answer: The tuned parameters are presented in table 2.1 for NARX model. For GRNN, 

RBFN and SVR models, values of tuned parameters are mentioned in section 2.3.4 

(Simulations & results). 

2. Why the researcher considered both MAPE and RMSE?  

Answer: MAPE stands for mean absolute percentage error and RMSE stands for root mean 

squared error. The MAPE is popular as it is easy to both understand and compute. A forecast 

method that minimises the MAPE will lead to forecasts of the median in percentage form, 

while minimising the RMSE will lead to forecasts of the mean. In some cases, where actual 

values are lower, MAPE will be higher values and accuracy and reliability of the forecasting 

model may not be evaluated correctly. Thus along with MAPE, calculation of RMSE is used 

to improve the prediction accuracy. 

Chapter 3 
Suggestions:  

1. Add labels of blue and green line in Figures 3.5, 3.6.  

2. Show how uncertainty analysis help to evaluate the forecasting models in conclusion 

part.  

3. The research should mention that other hybrid GRNN-RBFN’s topology should be 

add in further study.  

Answer: All the above suggestions are incorporated in the thesis. 

Questions:  

1. Why the research selected only the parallel hybrid GRNN-RBFN the test in this 

study?  

Answer: The parallel topology has come out to be better than series topology.  

2.  In Equation 3.9, MAPE value always be positive value. But in Table 3.6, there are 

negative value MAPE in RBFN model. Why it happened?  

Answer: Table 3.6 projects confidence intervals (CI) computed on the set of MAPE values.  

The calculation steps of confidence intervals are shown in equations 3.11, 3.12 and 3.13 as 

mentioned below. As per equation 3.13, if Mean(X) is less than margin of error (E), the lower 

boundary can be negative.  
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SE= σ/√n                                                                         (3.11) 
Where n is the sample size. 

Margin of error E = t * SE                              (3.12)                                            
CI= Mean (X) ± E                            (3.13)   

 

Chapter 4 
Suggestions:  

1. Shows results of both training and testing part. The researcher can analyze more on 

under fitting and overfitting model.  

Answer: As per the suggestion, the training results are included in figure 4.5(b). 

 
Questions:  

1. After interpreting with the one-day ahead simulation results, it seems like if the 

research developed K-mean based SVR. The result of K-mean based SVR might be 

better than K-mean based ANN-PSO.  

Answer: K-means technique is mainly used to classify or group the data. SVR is itself a 

classifier. Thus, K-means along with ANN-PSO model was used. 

 

Chapter 5 
Suggestions:  

1. Figures 5.6 and 5.7 are not clear. The researcher may re-plot the graphs.  

 
Answer: Figures 5.6 and 5.7 are redrawn but as they represent hourly clustered data for the 

whole year which is a large data set, they may lack clarity. The importance of the figures is to 
project three different clusters.  

 

Chapter 6 
 

Suggestions:  
1. Due to this chapter focus on short-term forecasting, the researcher may present 

computational time for each model.  

Answer: Computational time for proposed model is 135 sec where as for other models it 
ranges from 60 sec to 120 sec.  
 

Questions:  
1.  What are the input parameters for training and testing the forecasting models? The 

researcher mentioned that day-head price, load consumption, humidity, temperature, 

etc. will be used to train the model but not clearly described in methodology part.  

Answer: The discussion on the selection of input parameters is presented separately in the 

section 6.2, Dataset and feature engineering. The input parameters considered are electricity 

generation, solar generation, wind generation, load demand, historical electricity price, 

calendar pointers, wind speed and temperature. 

2. What if there are error on input parameter, is it will affect to the forecasting model’s 

performance?  



 Appendix 

 

182 

 

Answer: The error on input parameter definitely affects the forecasting model’s performance. 

The impact varies as per the number of samples with error. 

Chapter 7 
 
Questions:  

1. What is the current production in non-fossil source in India electricity market? There 

mentions only installed capacity in introduction part.  

Answer: Renewable energy has a share of 23.39 % in the total installed generation capacity in 

India i.e. 368.98 GW, up to 29th February 2020.  

2. The results in Table 7.1 are presented in term of quality not quantity. What indicators 

of each matrix that the researcher measure for different proposed market models? For 

example; how do the researcher define null, less and more congestion?  

Answer: Table 7.1 compares various market models proposed in the research work among 
some features such as implementation, competition, congestion, tariff and reliability. All the 

above features describe the quality of the specified market model. Quality depends on the 
type of the market model, but quantity depends on the specified electricity market.  

 

 

 

  


