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Abstract

The present thesis deals with the approximation behavior of various linear positive op-

erators, their modifications, and approximation properties like rate of convergence, error

estimation, and graphical comparison.

We segregate the thesis in seven chapters.

Chapter 1 is an introduction that contains a history of approximation theory, basic

definitions, and converging tools which play an important role in approximation theory.

Chapter 2 is divided into three sections. In the first section, we have considered

the Kantorovich form of α−Bernstein operators introduced by Chen et al. [36]. We

discussed some auxiliary properties and study the direct local approximation theorem,

Voronovskaya type asymptotic, and function of bounded variation for α−Bernstein-

Kantorovich operators.

In the second section, we have considered the q-analogue of α-Bernstein Kantorovich

operators. For these proposed operators, we studied some convergence properties by

using first and second-order modulus of continuity.

In the last section, we have proposed the Stancu type generalization of the family of Bern-

stein Kantorovich operators involving parameter α ∈ [0,1] with Shifted Knots. These

operators provide the pliability to approximate on the interval [0,1] and over its subinter-

vals. For the proposed operators, we investigate some basic results of approximation and

their rate of convergence in terms of first and second-order modulus of continuity, Lips-

chitz class, and Lipschitz-type function. We also estimate the global rate of convergence

of the operators with the help of the Ditzian-Totik modulus of smoothness. Moreover,

the pth order generalization of the operators is established. Some numerical simulation

and graphical comparisons are given for a better depiction of theoretical results.
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In chapter 3, we propose the Kantorovich type generalized Szász-Mirakyan operators

based on Jain and Pethe operators [101]. We study local approximation results in terms

of classical modulus of continuity as well as Ditzian-Totik moduli of smoothness. Fur-

ther, we establish the rate of convergence in a class of absolutely continuous functions

having a derivative coinciding a.e. with a function of bounded variation.

In chapter 4, we propose the integral form of Jain and Pethe operators associated with

the Baskakov operators and study some basic properties. We estimate the rate of con-

vergence, Voronovskaja type asymptotic estimate formula, and weighted approximation

of these operators.

In chapter 5, we consider new operators, which are defined by Gupta and Srivastava [90].

They considered a general sequence of positive linear operators and gave the modified

form of their previous operators [142]. As these operators preserve linear functions,

we call these operators as genuine Gupta-Srivastava operators. Here we discuss some

basic properties, direct results, rate of convergence for a class of functions whose deriva-

tives are of bounded variation, and weighted approximation for our considered operators.

In chapter 6, we propose the Bézier variant of the Gupta-Srivastava operators [90] and

discuss some direct convergence results by using Lipschitz type spaces, Ditzian-Totik

modulus of smoothness, weighted modulus of continuity, and for functions whose deriva-

tives are of bounded variation. In the end, some graphical representation for comparison

with other variants has been presented.

In chapter 7, we consider mixed approximation operators based on the second-kind beta

transform by using Szász-Mirakyan operators. For the proposed operators, we estab-

lish direct result, Voronovskaya type theorem, quantitative Voronovskaya type theorem,

Grüss Voronovskaya type theorem, weighted approximation, and functions of bounded

variation.
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Chapter 1

Introduction

In this introductory chapter, we present an extensive literature of the title of doctoral

thesis, a part of the field approximation theory. Concretely, we present with essential

definitions and certain rudimentary properties in connection with linear positive opera-

tors which plays a significant role in approximation theory. This chapter easily explains

our interest in the field.

Approximation Theory is a branch of mathematical analysis that allows us to approx-

imate the given real-valued continuous functions to simple functions like algebraic and

trigonometric polynomials. For over the decades, the convergence of such sequences is a

broad and useful area in approximation theory.

Approximation theory plays an important role in both aspects computational as well

as theoretical. In a computational aspect, it deals with computational practicalities,

precise error estimation, the order of approximation, and many more. On the other

side, it plays an important role in concern with existence and uniqueness questions, and

applications in other theoretical parts. Mainly, based on theoretical aspects, we begin

our introduction with a short history.

1.1 Historical background

The foundation of approximation theory was laid down by P. L. Chebyshev in 1853 by

introducing an interesting problem:

A continuous function ϕ in [a,b] can be written by a polynomials p(x) =
n
∑
j=0

d jx j with

1



at most degree n (n ∈ N). In such condition, the maximum error can be minimized for

any x ∈ [a,b] by controlling error max
x∈[a,b]

|ϕ(x)− p(x)|.

For better understanding, the fundamental development of Chebyshev problem was re-

alized by Karl Weierstrass in 1885 in such a way:

For ϕ ∈C[a,b] and ε > 0, then ∃ a real polynomial p(x) in such a way

|ϕ(x)− p(x)|< ε, x ∈ [a,b].

For ϕ ∈C[a,b] and ε > 0, then ∃ a real polynomial p(x) in such a way

|ϕ(x)− p(x)|< ε, x ∈ [a,b].

The proof provided by Weierstrass was complicated and not easy to understand. In 1905,

E. Borel [33] introduced the interpolation process which provides a polynomial p(x) that

converges uniformly in [a,b]. For a detailed explanation and to enhance the knowledge

in approximation theory, we refer some books to readers [14,51].

1.2 Positive linear operators

Let A be the space of linear functions, then the mapping Ln : A→ A is said to be

positive linear operators if it fulfills the properties given below:

(i) Ln(aϕ +bψ;x) = aLn(ϕ;x)+bLn(ψ;x)

(ii) Ln(ϕ;x)≥ 0, ∀ ϕ ≥ 0,

where ϕ,ψ ∈ A and a,b ∈ R.

Proposition 1.2.1. Let Ln : A→ A be a positive linear operators. Then the following inequal-

ities holds:

(i) If ϕ,ψ ∈ A with ϕ ≤ ψ , then Ln(ϕ;x)≤ Ln(ψ;x).

(ii) ∀ ϕ ∈ A, we have |Ln(ϕ;x)| ≤ Ln (|ϕ| ;x).

1.2.1 The Bernstein operators

The simple and easy proof of Weierstrass theorem was provided by S.N. Bernstein [30]

in 1912 by proposing polynomials known as Bernstein polynomials or operators:

2



Bn(ϕ;x) =
n

∑
k=0

pn,k(x)ϕ
(

k
n

)
, x ∈ [0,1] , (1.1)

and pn,k(x) =

 n

k

xk(1− x)n−k. These operators prove Weierstrass theorem in C[0,1]

and can be extended to C[a,b] by linear substitution.

1.2.2 The Szász-Mirakyan operators

In 1941 S. Mirakyan and 1950 O. Szász [147] introduced the extension of the Bernstein

operators for half non-negative real axis R+ as:

If ϕ ∈C(R+), the Szász-Mirakyan operators Qn are given by

Qn(ϕ;x) =
∞

∑
k=0

e−nx (nx)k

k!
ϕ

(
k
n

)
, x ∈ R+. (1.2)

1.2.3 The Baskakov operators

Another extension of Bernstein operators for R+ given by Baskakov [29] in 1957 are

as follows:

Vn(ϕ;x) =
∞

∑
k=0

 n+ k−1

k

 xk

(1+ x)n+k ϕ

(
k
n

)
, x ∈ R+. (1.3)

1.2.4 The Bernstein-Kantorovich operators

To approximate Lebesgue integral functions, the above-proposed operators are not

suitable. For such functions L. V. Kantorovich [110] proposed the integral form of (1.1)

as:

P̂n(ϕ;x) = (n+1)
n

∑
k=0

pn,k (x)

k+1
n+1∫
k

n+1

ϕ(t)dt. (1.4)

3



1.2.5 The Szász-Kantorovich operators

Totik [149] proposed the integral form of (1.2) which are given as:

Q̂n(ϕ;x) = n
∞

∑
k=0

sn,k (x)

k+1
n∫

k
n

ϕ(t)dt, (1.5)

where

sn,k (x) = e−nx (nx)k

k!
.

1.2.6 The Baskakov-Kantorovich operators

Introduced by Totik [149], the Kantorovich form of Baskakov operators (1.3) are given

by

V̂n(ϕ;x) = (n−1)
∞

∑
k=0

vn,k (x)

k+1
n−1∫
k

n−1

ϕ(t)dt, (1.6)

where

vn,k (x) =

 n+ k−1

k

 xk

(1+ x)n+k .

1.2.7 The Bernstein-Durrmeyer operators

A more generalized integral modification of Bernstein operators obtained by replacing

ϕ
( k

n

)
over integral basis function in operators (1.1). This integral form introduced by

Durrmeyer [58] and known as Bernstein-Durrmeyer operators are given by

T̃n(ϕ;x) = (n+1)
n

∑
k=0

pn,k (x)
∫ 1

0
pn,k (t)ϕ (t)dt. (1.7)

1.2.8 The Szász-Durrmeyer operators

Mazhar & Totik [121] in 1985 studied the integral modification of (1.2) and termed as

Szász-Durrmeyer operators. They are represented by

S̃n(ϕ;x) = n
∞

∑
k=0

sn,k (x)
∫

∞

0
sn,k (t)ϕ (t)dt. (1.8)

4



1.2.9 The Baskakov-Durrmeyer operators

Sahai & Prasad [140] in 1985 introduced the Durrmeyer form of Baskakov operators,

which are given as:

M̃n(ϕ;x) = (n−1)
∞

∑
k=0

vn,k (x)
∫

∞

0
vn,k (t)ϕ (t)dt. (1.9)

1.3 Qualitative result

The next result provides the most impactful conditions for which the function approx-

imation process by linear positive operators is realizable. This is a qualitative problem

and the result is known as Bohman-Korovkin theorem:

If these three conditions Ln (e0;x) = 1 + pn (x), Ln (e1;x) = x + qn (x) and Ln (e2;x) =

x2 + rn (x) are satisfied by the sequence of linear positive operators Ln : C[a,b]→C[a,b]

such that pn (x) ,qn (x) and rn (x) uniformly converges to 0 in [a,b] then Ln (ϕ;x)→ ϕ(x)

uniformly for any function ϕ ∈C[a,b]. This outcome was presented by three mathemati-

cians autonomously in three succeeding years T. Popoviciu [136] in 1551, H. Bohman [32]

in 1952, and P. P. Korovkin [113] in 1953 individually. The contribution of T. Popoviciu

was acknowledged after a very long time, therefore, this result remained as Bohman-

Korovkin theorem.

This result fails to establish uniform convergence in unbounded interval therefore some

limitations are required. Introduce

C∗(R+) =

{
ϕ ∈C(R+) : |ϕ(x)| ≤Cϕ(1+ x2) and lim

x→∞

|ϕ(x)|
1+ x2 = Kϕ < ∞

}
.

epped with the norm

‖ϕ‖∗ = sup
x≥0

|ϕ(x)|
1+ x2

and Cϕ is a positive constant that depends on function ϕ .

In view of Gadjiev papers [63, 64], the Korovkin type theorem in unbounded interval

holds in the space C∗(R+) and has the following form:
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“A sequence of positive linear operators Ln which satisfy the conditions

lim
n→∞

∥∥Ln(ei;x)− xi∥∥
∗ = 0, i = 0,1,2,

we get that for any function ϕ ∈C∗(R+)

lim
n→∞
‖Ln(ϕ(t;x)−ϕ‖∗ = 0,”

where em(x) = xm, for m ∈ N0 = N∪{0} are the test functions.

1.4 Preliminaries

Definition 1.4.1. H. Lebesgue in 1910 introduced the modulus of continuity for ϕ ∈ C[a,b]

and j ∈ N as follows:

ω j(ϕ;δ ) = sup
{∣∣∣∆ j

kϕ(x)
∣∣∣ ; |k| ≤ δ ,x ∈ [a,b]

}
,δ ≥ 0. (1.10)

For j = 1, it denotes the first order modulus of continuity ω(.;δ ) and given by

ω(ϕ;δ ) = max
|x−t|≤δ

|ϕ(x)−ϕ(t)| ,x, t ∈ [a,b]. (1.11)

This definition is also shown in Ph.D. thesis of Jackson [100] in 1911.

Proposition 1.4.1. For ϕ ∈C[a,b], ω(ϕ; .) hold following properties:

(i) ω(ϕ; .) is non-decreasing, non-negative and uniformly continuous function in R+.

(ii) When δ+→ 0 then ω(ϕ,δ ) = 0.

(iii) For each s≥ 0, the following inequality holds:

ω(ϕ,sδ )≤ (1+ s)ω(ϕ,δ ), δ ≥ 0.

(iv) For each x, t ∈ [a,b], it follows:

|ϕ(x)−ϕ(t)| ≤ ω (ϕ, |x− t|)≤
(

1+
|x− t|

δ

)
ω(ϕ,δ ), δ ≥ 0.

Definition 1.4.2. In 1963, Peetre [134] introduced another tool to estimate the smoothness of
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function for ϕ ∈CB[a,b] termed as Peetre-K-Functional and given by

K2(ϕ;δ ) = inf
ψ∈C2

B[a,b]

{
‖ϕ−ψ‖+δ

∥∥ψ
′′∥∥} ,δ > 0 (1.12)

where C2
B[a,b] = {ψ ∈CB[a,b] : ψ ′,ψ ′′ ∈CB[a,b]}. There exists M > 0 such that

K2
(
ϕ,δ 2)≤Mω2 (ϕ,δ ) (1.13)

conformable from( [52]).

Definition 1.4.3. Let λ ∈ [0,1], φ(x) : R+ → R is an admissible weight function and ϕ ∈

CB(R+), conformable ( [79], p. 51) or [103], the Ditzian-Totik modulus of smoothness are

defined as

ω
φ λ (ϕ,δ ) = sup

0≤h≤δ

sup
x± hφλ (x)

2 ∈R+

∣∣∣∣∣ϕ
(

x+
hφ λ (x)

2

)
−ϕ

(
x− hφ λ (x)

2

)∣∣∣∣∣ , (1.14)

ω
2
φ λ (ϕ,δ ) = sup

0<h≤δ

sup
x±hφ λ (x)∈R+

∣∣∣∆2
hφ λ ϕ (x)

∣∣∣ ,δ > 0, (1.15)

where

∆
2
hφ λ ϕ (x) = ϕ

(
x+hφ

λ (x)
)
−2ϕ (x)+ϕ

(
x−hφ

λ (x)
)
.

and their K-functionals are:

K
φ λ (ϕ,δ ) = inf

ψ∈Wλ

{
‖ϕ−ψ‖−δ

∥∥∥φ
λ g′
∥∥∥} , (1.16)

K2
φ λ

(
ϕ,δ 2)= inf

ψ∈D2
λ

{
‖ϕ−ψ‖+δ

2
∥∥∥φ

2λ
ψ
′′
∥∥∥} , (1.17)

where Wλ =
{

ϕ ∈CB(R+) : ϕ ′ ∈ A.C.loc(R+),
∥∥∥φ λ ϕ ′

∥∥∥< ∞

}
,

D2
λ
=
{

ϕ ∈CB(R+) : ϕ ′ ∈ A.C.loc(R+),
∥∥∥φ 2λ ϕ ′′

∥∥∥< ∞

}
. and A.C.loc means locally abso-

lutely continuous functions ϕ on R+.

In [ [55], Theorem 2.1.1], there exists a constant M > 0 such that

M−1
ω

φ λ (ϕ,λ )≤ K
φ λ (ϕ,δ )≤Mω

φ λ (ϕ,δ ). (1.18)

and

M−1
ω

2
φ λ (ϕ,δ )≤ K2

φ λ (ϕ,δ
2)≤Mω

2
φ λ (ϕ,δ ). (1.19)
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Definition 1.4.4. In [131, 132], the Lipschitz-type spaces are as follows:

LipM (ξ ) =

{
ϕ ∈CB(R+) : |ϕ (t)−ϕ (x)| ≤M

|t− x|ξ

(t + x)ξ
/

2

}
. (1.20)

For fixed a,b > 0, we have

Lipa,b
M (ξ ) :=

{
ϕ ∈CB(R+) : |ϕ(t)−ϕ(x)| ≤M

|t− x|ξ

(t +ax2 +bx)ξ/2
;x, t ∈ R+

}
, (1.21)

where M > 0 and ξ ∈ (0,1].

Definition 1.4.5. For ϕ ∈C2(R+), Ispir [97] introduced the weighted modulus of continuity

Ω(ϕ;δ ) as:

Ω(ϕ;δ ) = sup
0≤β<δ

|ϕ(x+β )−ϕ(x)|
(1+β 2)(1+ x2)

. (1.22)

Yüksal and Ispir [154] also considered the alternate form of above definition as follows:

Ω(ϕ;δ ) = sup
x∈R+,0<β<δ

ϕ(x+β )−ϕ(x)

1+(x+β )2 . (1.23)

Proposition 1.4.2. It is shown in [ [97] ,p.359-360] that for every ϕ ∈ C2(R+), Ω(.;δ ) has

the properties:

(i) lim
δ→0

Ω(ϕ;δ ) = 0;

(ii) Ω(ϕ;dδ )≤ 2(1+d)(1+δ 2)Ω(ϕ;δ ) p > 0. ;

(iii) |ϕ(t)−ϕ(x)| ≤ (1+(t− x)2)(1+ x2)Ω(ϕ; |t− x|)

≤ 2
(

1+ |t−x|
δ

)
(1+δ 2)Ω(ϕ;δ )(1+(t− x)2)(1+ x2).

Definition 1.4.6. Let DBV[a,b] denotes the class of all absolutely continuous functions ϕ

defined on the interval [a,b], having a derivative ϕ
′

equivalent with a function of bounded

variation on [a,b]. It may be observed that for ϕ ∈ DBV [a,b], we may write

ϕ(x) =
x∫

0

ψ(t)dt +ϕ(0),

where ϕ(t) is a function of bounded variation on [a,b].
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Chapter 2

The family of Bernstein-Kantorovich

operators

2.1 α-Bernstein-Kantorovich operators

2.1.1 Introduction

Chen et al. [36] in the year 2018, introduced the generalization of Bernstein operators

for fixed α , 0≤ α ≤ 1, ϕ ∈C [0,1] and n ∈ N as follows:

Bn,α(ϕ;x) =
n

∑
k=0

ϕk p(α)
n,k (x), x ∈ [0,1] , (2.1)

where ϕk = ϕ
( k

n

)
. For n > 2 the basis function p(α)

n,k (x) of degree n is defined by p(α)
1,0 (x) =

1− x, p(α)
1,1 (x) = x, and

p(α)
n,k (x) = (1−α)(pn−2,k(x)+ pn−2,k−2(x))+α pn,k(x). (2.2)

Where pn,k(x) given in (1.1) and they studied another interesting proof of the Weier-

strass approximation theorem [152]. They also studied its fundamental properties, the

rate of convergence, and the Voronovskaya type asymptotic estimate formula. When

α = 1, the operators (2.1) reduce to the classical Bernstein operators (1.1).

Many authors have discussed Kantorovich modification of various linear positive op-

erators see [3, 8, 13, 21, 54, 69, 91, 106, 116, 124, 130] and studied several approximation
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results.

Here, we consider the Kantorovich form of operators (2.1) as follows:

K̂n,α (ϕ(t);x) = (n+1)
n

∑
k=0

p(α)
n,k (x)

∫ k+1
n+1

k
n+1

ϕ (t)dt, (2.3)

Very recently, Acar et al. [3] introduced the genuine Bernstein-Durrmeyer type operators

with parameter α . They studied several approximation results and also shown graphi-

cally.

This section aims to give some basic properties and study the direct local approxi-

mation theorem, Voronovskaya type asymptotic estimate formula, and functions whose

derivatives are of bounded variation for our considered operators (2.3).

2.1.2 Preliminaries

Here, we give some auxiliary results which help us to prove main results

Lemma 2.1.1. [124] For 0≤ x≤ 1 and n ∈ N, we have

i) K̂n,α (1;x) = 1;

ii) K̂n,α (t;x) = 2nx+1
2(n+1);

iii) K̂n,α
(
t2;x

)
= 1

3(n+1)2

[
3
{(

n2−n−2(1−α)
)

x2 +(4n+2(1−α))x
}
+1
]
.

Lemma 2.1.2. [124] The mth moments are as follows:

µ
m
n (x) = K̂n,α ((t− x)m;x) ,

then we have

(i) µ1
n (x) =

1−2x
2(n+1);

(ii) µ2
n (x) =

1
3(n+1)2

{
3(−n+2α−1)x2 +3(n−2α +1)x+1

}
;

(iii) µ4
n (x) =

1
5(n+1)4

{
5
(
3n2−4(2+3α)n− (131−132α)

)
x4

+10
(
−3n2 +4(2+3α)n+(131−132α)

)
x3

+5
(
3n2− (13+12α)n−2(80−81α)

)
x2 +5(5n+(33−32α))x+1

}
.

Lemma 2.1.3. For adequately large n, we have
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(i) lim
n→∞

nµ1
n (x) =

1−2x
2 ;

(ii) lim
n→∞

nµ2
n (x) = x(1− x);

(iii) lim
n→∞

n2µ4
n (x) = 3(x(1− x))2.

Lemma 2.1.4. The following inequalities hold as a consequence of Lemma 2.1.2 for ade-

quately large n:

(i) µ1
n (x)≤ 1

2(n+1);

(ii) µ2
n (x)≤ 1

4(n+1) .

Proof. From Lemma 2.1.2, we have

µ
1
n (x) =

(1−2x)
2(n+1)

.

The maximum value of (1−2x) is 1 on [0,1], therefore

µ
1
n (x)≤

1
2(n+1)

.

Also

µ
2
n (x)≤

1
(n+1)

x(1− x)≤ 1
4(n+1)

.

Maximum value of x(1− x) is 1
4 in [0,1].

Lemma 2.1.5. Let ϕ ∈C[0,1] and α be a fixed number then, we have

∥∥K̂n,α(ϕ(t);x)
∥∥≤ ‖ϕ‖ .

Proof. From the operators (2.3), we obtain

∣∣K̂n,α (ϕ(t);x)
∣∣= ∣∣∣∣∣(n+1)

n

∑
k=0

p(α)
n,k (x)

∫ k+1
n+1

k
n+1

ϕ(t)dt

∣∣∣∣∣
≤ (n+1)

n

∑
k=0

p(α)
n,k (x)

∫ k+1
n+1

k
n+1

|ϕ(t)|dt

≤ K̂n,α (1;x)‖ϕ‖= ‖ϕ‖ .
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2.1.3 Direct results

Here, we discuss the rate of convergence for the proposed operators (2.3) in terms of

the usual Lipschitz class Lipξ M

Theorem 2.1.6. For every ϕ ∈ Lipξ M, we have

∣∣K̂n,α(ϕ(t);x)−ϕ(x)
∣∣≤M

(
µ

2
n (x)

) ξ

2 ,

where

µ
2
n (x) =

1

3(n+1)2

{
3(−n+2α−1)x2 +3(n−2α +1)x+1

}
,

and ξ > 0.

Proof. By monotonicity property of the operators K̂n,α (.;x), we get

∣∣K̂n,α(ϕ(t);x)−ϕ(x)
∣∣≤ K̂n,α (|ϕ(t)−ϕ(x)| ;x)

≤ (n+1)
n

∑
k=0

p(α)
n,k (x)

∫ k+1
n+1

k
n+1

|ϕ(t)−ϕ(x)|dt

≤ (n+1)
n

∑
k=0

p(α)
n,k (x)

∫ k+1
n+1

k
n+1

|t− x|ξ dt.

Making use of Hölder’s inequality, we acquire

∣∣K̂n,α(ϕ(t);x)−ϕ(x)
∣∣≤M

[
(n+1)

n

∑
k=0

p(α)
n,k (x)

∫ k+1
n+1

k
n+1

(t− x)2dt

] ξ

2

×

[
(n+1)

n

∑
k=0

p(α)
n,k (x)

∫ k+1
n+1

k
n+1

dt

] 2−ξ

2

= M
(
µ

2
n (x)

) ξ

2

2.1.4 Function of bounded variation

For our convenience the alternative form of the operators (2.3) may be written as:

K̂n,α (ϕ(t);x) =
∫ 1

0
Un,α (x; t)ϕ(t)dt, (2.4)
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where

Un,α (x, t) = (n+1)
n

∑
k=0

p(α)
n,k (x)χn,k (t),

and χn,k (t) indicates the characteristic function in
[ k

n+1 ,
k+1
n+1

]
w.r.t [0,1].

Lemma 2.1.7. For 0≤ x≤ 1 and for adequately large n, we obtain

(i) Since 0≤ y < x, therefore

βn (x,y) =
∫ y

0
Un,α (x, t)dt ≤ C

4(n+1)(x− y)2 .

(ii) If x < z≤ 1, we get

1−βn (x,z) =
∫ 1

z
Un,α (x, t)dt ≤ C

4(n+1)(z− x)2 .

Theorem 2.1.8. For each x ∈ (0,1), ϕ ∈ DBV [0,1] and adequately large n, we have

∣∣K̂n,α (ϕ(t);x)−ϕ (x)
∣∣≤ 1

4(n+1)

∣∣ϕ ′ (x+)+ϕ
′ (x−)

∣∣+ 1
4

√
1

(n+1)

∣∣ϕ ′ (x+)−ϕ
′ (x−)

∣∣
+

x√
n

V x
x− x√

n
(ϕ
′
x)+

C
4(n+1)x

[
√

n]

∑
s=1
∨x

x− x
k

(
ϕx
′).

+
(1− x)√

n

x+(1−x)
/√

n
V
x

(ϕ ′)x +
C

4(n+1)(1− x)

[
√

n]

∑
s=1

x+(1−x)/k
V
x

((ϕ ′)x),

where ∨b
a ϕ(x) denotes the total variation of ϕ on [0,1] and ϕx is an auxiliary operator given

by

ϕx (t) =


ϕ (t)−ϕ (x−) , 0≤ t < x

0, t = x

ϕ (t)−ϕ (x+) , x < t < 1.

Proof. Since K̂n,α (1;x) = 1, for all x ∈ [0,1], we have

K̂n,α (ϕ(t);x)−ϕ(x) =
∫ 1

0
(ϕ(t)−ϕ(x))Un,α (x; t)dt

=
∫ 1

0
Un,α (x; t)

(∫ t

x
ϕ
′(u)du

)
dt, (2.5)
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for ϕ ∈ DBV [0,1] , we can write

ϕ
′ (u) =

1
2
(
ϕ
′ (x+)+ϕ

′ (x−)
)
+ϕx

′ (u)+
1
2
(
ϕ
′ (x+)−ϕ

′ (x−)
)

sgn(u− x)

+δx (u)
(

ϕ
′ (u)− 1

2
(
ϕ
′ (x+)+ϕ

′ (x−)
))

, (2.6)

where

δx (u) =

 1, u = x,

0, u 6= x.

It is obvious that

∫ 1

0

(∫ t

x

(
ϕ
′ (u)− 1

2
(
ϕ
′ (x+)+ϕ

′ (x−)
))

δx (u)du
)

Un,α (x, t)dt = 0. (2.7)

Using (2.4), we have

∫ 1

0

(∫ t

x

1
2
(
ϕ
′ (x+)+ϕ

′ (x−)
)

du
)

Un,α (x, t)dt

=
1
2
(
ϕ
′ (x+)+ϕ

′ (x−)
)

K̂n,α ((t− x) ;x) . (2.8)

Moreover,

∫ 1

0

(∫ t

x

1
2
(
ϕ
′ (x+)−ϕ

′ (x−)
)

sgn(u− x)du
)

Un,α (x, t)dt

=
∫ 1

0

1
2
(
ϕ
′ (x+)−ϕ

′ (x−)
)
(t− x)Un,α (x, t)dt

≤ 1
2

∣∣ϕ ′ (x+)−ϕ
′ (x−)

∣∣∫ 1

0
|t− x|Un,α (x, t)dt

≤ 1
2

∣∣ϕ ′ (x+)−ϕ
′ (x−)

∣∣ K̂n,α (|t− x| ;x)

≤ 1
2 |ϕ

′ (x+)−ϕ ′ (x−)|
(

K̂n,α

(
(t− x)2;x

))1/2
. (2.9)
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Using Lemma 2.1.3 and from equation (2.6) to (2.9), we obtain

K̂n,α (ϕ;x)−ϕ (x)≤ 1
2
(
ϕ
′ (x+)+ϕ

′ (x−)
)

K̂n,α ((t− x) ;x)

+
1
2

∣∣ϕ ′ (x+)−ϕ
′ (x−)

∣∣(K̂n,α

(
(t− x)2;x

))1/2

+
∫ 1

0

(∫ t

x
ϕx
′ (u)du

)
Un,α (x, t)dt

≤ 1
4(n+1)

(
ϕ
′ (x+)+ϕ

′ (x−)
)
+

1
4

√
1

(n+1)

∣∣ϕ ′ (x+)−ϕ
′ (x−)

∣∣
+
∫ 1

0

(∫ t

x
ϕx
′ (u)du

)
Un,α (x, t)dt.

Therefore

∣∣K̂n,α (ϕ;x)−ϕ (x)
∣∣≤ 1

4(n+1)

∣∣ϕ ′ (x+)+ϕ
′ (x−)

∣∣+ 1
4

√
1

(n+1)

∣∣ϕ ′ (x+)−ϕ
′ (x−)

∣∣
+ J1,n,x + J2,n,x, (2.10)

where

J1,n,x =

∣∣∣∣∫ x

0

(∫ t

x
ϕx
′ (u)du

)
Un,α (x, t)dt

∣∣∣∣ ,
and

J2,n,x =

∣∣∣∣∫ 1

x

(∫ t

x
ϕx
′ (u)du

)
Un,α (x, t)dt

∣∣∣∣ .
Applying Lemma 2.1.5, by integrating by parts and take y = x− x√

n , we acquire

J1,n,x =

∣∣∣∣∫ x

0

(∫ t

x
ϕx
′ (u)du

)
Un,α (x, t)dt

∣∣∣∣
=

∣∣∣∣∣∣
x∫

0

βn(x, t)ϕ
′
x(t)dt

∣∣∣∣∣∣
≤

y∫
0

βn(x, t)
∣∣∣ϕ ′x(t)∣∣∣dt +

x∫
y

βn(x, t)
∣∣∣ϕ ′x(t)∣∣∣dt
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Since ϕ
′
x(x) = 0 and βn(x, t)≤ 1, it implies

x∫
x− x√

n

βn(x, t)
∣∣∣ϕ ′x(t)∣∣∣dt =

x∫
x− x√

n

∣∣∣ϕ ′x(t)−ϕ
′
x(x)

∣∣∣βn(x, t)dt

≤
x∫

x− x√
n

V x
t (ϕ

′
x)dt ≤ x√

n
V x

x− x√
n
(ϕ
′
x).

Again using Lemma 2.1.5 and put y = x− x√
n ,

∫ x− x√
n

0

∣∣ϕx
′ (t)
∣∣βn (x, t)dt ≤ C

4(n+1)

∫ x− x√
n

0

|ϕx
′ (t)|

(x− t)2 dt

≤ C
4(n+1)x

∫ √n

1
∨x

x− x
u

(
ϕx
′)du

≤ C
4(n+1)x

[
√

n]

∑
k=1
∨x

x− x
k

(
ϕx
′).

Thus

J1,n,x ≤
x√
n

V x
x− x√

n
(ϕ
′
x)+

C
4(n+1)x

[
√

n]

∑
k=1
∨x

x− x
k

(
ϕx
′). (2.11)

By using Lemma 2.1.5 we can write

J2,n,x ≤ J(1)2,n,x + J(2)2,n,x,

where

J(1)2,n,x =

∣∣∣∣∣∣
z∫

x

 x∫
t

ϕ
′
x(u)du

dt (1−βn(x, t))

∣∣∣∣∣∣ ,
and

J(2)2,n,x =

∣∣∣∣∣∣
1∫

z

 x∫
t

ϕ
′
x(u)du

dt (1−βn(x, t))

∣∣∣∣∣∣ .
Applying integration by parts as well as using Lemma 2.1.5, since (1− βn(x, t)) ≤ 1 and
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putting z = x+ (1−x)√
n , we have

J(2)2,n,x =

∣∣∣∣∣∣
1∫

z

 x∫
t

ϕ
′
x(u)du

dt (1−βn(x, t))

∣∣∣∣∣∣
≤ C

4(n+1)

1∫
z

t
V
x
(ϕ ′)x

1

(t− x)2 dt

≤ C
4(n+1)

1∫
x+ (1−x)√

n

t
V
x
(ϕ ′)x

1

(t− x)2 dt.

By substituting u = (1− x)
/
(t− x), we obtain

J(2)2,n,x ≤
C

4(n+1)(1− x)

√
n∫

1

x+(1−x)/u
V
x

(ϕ ′)xdu

≤ C
4(n+1)(1− x)

[
√

n]

∑
k=1

k+1∫
k

x+(1−x)/k
V
x

(ϕ ′)xdu

≤ C
4(n+1)(1− x)

[
√

n]

∑
k=1

x+(1−x)/k
V
x

((ϕ ′)x).

Again applying integration by parts as well as using Lemma 2.1.5, for calculating J(1)2,n,x, since

(1−βn(x, t))≤ 1 and putting z = x+ (1−x)√
n , we get

J(1)2,n,x =

∣∣∣∣∣∣
z∫

x

 x∫
t

ϕ
′
x(u)du

dt (1−βn(x, t))

∣∣∣∣∣∣≤
z∫

x

t
V
x
(ϕ ′)xdt

≤ (1− x)√
n

x+(1−x)
/√

n
V
x

(ϕ ′)x = J(1)2,n,x + J(2)2,n,x.

Now

J2,n,x ≤
(1− x)√

n

x+(1−x)
/√

n
V
x

(ϕ ′)x +
C

4(n+1)(1− x)

[
√

n]

∑
k=1

x+(1−x)/k
V
x

((ϕ ′)x) (2.12)
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From equation (2.10) to (2.12), we get

∣∣K̂n,α (ϕ;x)−ϕ (x)
∣∣≤ 1

4(n+1)

∣∣ϕ ′ (x+)+ϕ
′ (x−)

∣∣+ 1
4

√
C

(n+1)

∣∣ϕ ′ (x+)−ϕ
′ (x−)

∣∣
+

x√
n

V x
x− x√

n
(ϕ
′
x)+

C
4(n+1)x

[
√

n]

∑
k=1
∨x

x− x
k

(
ϕx
′).

+
(1− x)√

n

x+(1−x)
/√

n
V
x

(ϕ ′)x +
C

4(n+1)(1− x)

[
√

n]

∑
k=1

x+(1−x)/k
V
x

((ϕ ′)x).

The Theorem is proved.

2.1.5 Voronovskaya type theorem

Theorem 2.1.9. Let ϕ ∈C[0,1]. If ϕ is twice differentiable in x ∈ [0,1] and ϕ
′′

is continuous

at x, then the following limit holds:

lim
n→∞

n
[
K̂n,α(ϕ(t);x)−ϕ(x)

]
= (1−2x)

2 ϕ ′(x)+ (1−x)x
2 ϕ ′′(x) .

Proof. Using Taylor’s formula there exists η lying between x and t such that

ϕ(t) = ϕ(x)+(t− x)ϕ ′(x)+
(t− x)2

2!
ϕ
′′(x)+ξ (t,x)(t− x)2,

where

ξ (t,x) =
ϕ ′′ (η)−ϕ ′′ (x)

2
,

and ϕ is a continuous function which vanishes as t → x. Applying the operator K̂n,α to the

above equality, we get

K̂n,α (ϕ(t)−ϕ(x);x) = ϕ
′(x)K̂n,α ((t− x);x)+

ϕ ′′(x)
2!

K̂n,α

(
(t− x)2;x

)
+ K̂n,α

(
ξ (t,x)(t− x)2;x

)
.

Therefore

lim
n→∞

n
[
K̂n,α (ϕ(t)−ϕ(x);x)

]
= ϕ

′(x) lim
n→∞

n
[
K̂n,α ((t− x);x)

]
+

ϕ ′′(x)
2!

lim
n→∞

[
K̂n,α

(
(t− x)2;x

)]
+ lim

n→∞
n
[
K̂n,α

(
ξ (t,x)(t− x)2;x

)]
. (2.13)
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In order to estimate the last term of equation (2.13), for each given ε > 0, choose δ > 0 in

such a way

ξ (t,x)< ε for |t− x|< δ .

Therefore, if we take |t− x|< δ then

∣∣∣ξ (t,x)(t− x)2
∣∣∣< ε(t− x)2.

Since ξ (t,x)< M, while if |t− x| ≥ δ , we obtain

∣∣∣ξ (t,x)(t− x)2
∣∣∣≤ M

δ 2 (t− x)4.

Therefore, we get

K̂n,α

(
ξ (t,x)(t− x)2;x

)
≤ εµ

2
n +

M
δ 2 µ

4
n .

By direct calculations, we obtain

µ
4
n (x) = O

(
1
n2

)
,

and we conclude

lim
n→∞

n
[
K̂n,α

(
ξ (t,x)(t− x)2;x

)]
= 0.

Therefore, we achieve the required result.

2.2 Q-analogue of generalized Bernstein-Kantorovich oper-

ators

2.2.1 Introduction

The first time in 1987, Bernstein operators based on q-integers were introduced by

Lupas [117] and they are rational functions. Again in 1997, Phillips [135] introduced the

q-Bernstein polynomials known as Phillips q-Bernstein operators. In the past decade,

linear positive operators based on q-integers is an active area of research. For more

articles related to this approach, we refer to readers [16, 35,86,155].
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For any n ∈ N0 the q-integer [n]q is defined by

[n]q = 1+q+q2 +q3 + ...+qn−1 =
1−qn

1−q
(n ∈ N), [0]q = 0

and the q-factorial [n]q! by

[n]q! = [1]q[2]q...[n]q, [0]q! = 1

. For integer 0≤ k ≤ n the q−binomial, or the Gaussian coefficient is defined is by n

k


q

=
[n]q!

[k]q![n− k]q!
.

In [26] (on page no. 11), the Jackson definite integral of the function f is denoted by

a∫
0

f (t)dqt = (1−q)
∞

∑
n=0

f (aqn)qn, a ∈ R.

Notice that the series on the right hand side is guaranteed to be convergent as soon as

the function f is such that for some M > 0, l >−1, | f | ≤Mxl in a right neighborhood of

x = 0.

The Jackson integral in a generic interval [a,b]:

b∫
a

f (t)dqt =
b∫

0

f (t)dqt−
a∫

0

f (t)dqt.

Chai et al. [35] have considered the q-analogue of (2.1) are as follows:

B(α)
n,q (ϕ;x) =

n

∑
k=0

ϕk p(α)
n,q,k(x), (2.14)

where

p(α)
n,q,k(x) =

 n−2

k


q

(1−α)x+

 n−2

k−2


q

(1−α)qn−k−2
(

1−qn−k−1x
)

+

 n

k


q

αx
(

1−qn−k−1x
)xk−1(1− x)n−k−1

q ,
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q ∈ (0,1] and ϕk = ϕ

(
[k]q
[n]q

)
. For detailed explanation (see [26]).

Motivated from the above stated work, we consider the q-analogue of the operators

(2.3) as follows:

K(α)
n,q (ϕ;x) = [n+1]q

n

∑
k=0

p(α)
n,q,k(x)

[k+1]q
[n+1]q∫

q[k]q
[n+1]q

ϕ(t)dqt, (2.15)

and p(α)
n,q,k(x) is given in (2.14). For α = 1 and q = 1 the operators (2.15) reduce to Bern-

stein Kantorovich operators.

In this section, we estimate the moments of the proposed operators and discuss the

rate of convergence using usual and second-order modulus of smoothness.

2.2.2 Preliminaries

Here, we prove some auxiliary results to show our main results.

Lemma 2.2.1. From [35], we have

B(α)
n,q (1;x) = 1, B(α)

n,q (t;x) =x and

B(α)
n,q (t2;x) = x2 +

x(1− x)
[n]q

+
(1−α)qn−1[2]qx(1− x)

[n]2q
.

Lemma 2.2.2. The moments of the proposed operators:

(i) K(α)
n,q (1;x) = 1;

(ii) K(α)
n,q (t;x) =

2q[n]q
[2]q[n+1]q

x+ 1
[2]q[n+1]q

;

(iii) K(α)
n,q (t2;x) =

3q2[n]2q
[3]q[n+1]2q

x2 + 3q2

[3]q[n+1]2q

(
[n]q +(1−α)qn−1[2]q

)
x(1− x)

+
3q[n]qx

[3]q[n+1]2q
+ 1

[3]q[n+1]2q
.
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Proof. From [129],

[k+1]q
[n+1]q∫
q[k]q
[n+1]q

1dqt = 1
[n+1]q

,

[k+1]q
[n+1]q∫
q[k]q
[n+1]q

tdqt =
2q[k]q

[2]q[n+1]2q
+ 1

[2]q[n+1]2q
and

[k+1]q
[n+1]q∫

q[k]q
[n+1]q

t2dqt =
3q2 [k]2q

[3]q [n+1]3q
+

3q[k]q
[3]q [n+1]3q

+
1

[3]q [n+1]3q
.

It is easy to say that K(α)
n,q (1;x) = 1.

In view of Lemma 2.2.1 and for f (t) = t, we have

K(α)
n,q (t;x) =[n+1]q

n

∑
k=0

p(α)
n,q,k(x)

[k+1]q
[n+1]q∫

q[k]q
[n+1]q

tdqt

=[n+1]q
n

∑
k=0

p(α)
n,q,k(x)

(
2q[k]q

[2]q[n+1]2q
+

1
[2]q[n+1]2q

)

=
[n]q

[n+1]q

(
2q
[2]q

n

∑
k=0

p(α)
n,q,k(x)

[k]q
[n]q

+
1

[2]q[n]q

n

∑
k=0

p(α)
n,q,k(x)

)

=
2q[n]qx+1

[2]q[n+1]q
.

Similarly, for f (t) = t2, we can estimate. So here we skip the proof.

Lemma 2.2.3. The central moments for the operators (2.15) are as follows:

(i) K(α)
n,q (t− x;x) =

2q[n]q
[2]q[n+1]q

x+ 1
[2]q[n+1]q

;

(ii) K(α)
n,q ((t− x)2;x) =

(
3q2[n]2

[3]q[n+1]2q
− 4q[n]q

[2]q[n+1]q
+1
)

x2

+ 3q2

[3]q[n+1]q

(
[n]q +[2]q(1−α)qn−1

)
x(1− x)+

(
3q[n]q

[3]q[n+1]2q
− 2

[2]q[n+1]q

)
x

+ 1
[3]q[n+1]2q

.

Proof. Using linearity property of the operators (2.15) and Lemma 2.2.2, we get the required

results.

Lemma 2.2.4. Let 0 < q < 1 and c ∈ [0,qd], d > 0. Then the inequality

d∫
c

|t− x|dqt ≤

 d∫
c

(t− x)2dqt

 1
2
 d∫

c

dqt

 1
2

.
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Proof. For the proof of the Lemma (see [129]).

2.2.3 Direct results

Theorem 2.2.5. For 0 < q≤ 1, q = {qn} be a sequence converging to 1 as n→ ∞. Then, for

all ϕ ∈ C[0,1] and α ∈ [0,1], it implies K(α)
n,q (ϕ;x) converges to ϕ(x) uniformly on [0,1] for

sufficiently large n.

Proof. From Lemma 2.2.2, limn→∞ qn = 1, we get

limn→∞ K(α)
n,q (1;x) = 1, limn→∞ K(α)

n,q (t;x) = x and limn→∞ K(α)
n,q (t2;x) = x2. Then by Bohaman-

Korovokin theorem limn→∞ K(α)
n,q (ϕ(t);x) = ϕ(x) converges uniformly on [0,1].

Theorem 2.2.6. For ϕ ∈C[0,1], q ∈ (0,1), λ > 0 and α ∈ [0,1], we have

∣∣∣K(α)
n,q (ϕ;x)−ϕ(x)

∣∣∣≤ λω2

(
ϕ;
√

µ
q
n,2(x)+(µ

q
n,1(x))

2
)
+ω

(
ϕ; µ

q
n,1(x)

)
,

where µ
q
n,1(x) and µ

q
n,2(x) are first and second order central moments of the operators (2.15).

Proof. We define the auxiliary operators

K̂(α)
n,q (ϕ;x) = K(α)

n,q (ϕ;x)−ϕ

(
2q[n+1]qx+1

[2]q[n+1]q

)
+ϕ(x). (2.16)

From (2.16), we have

K̂(α)
n,q (t− x;x) = 0.

Suppose ψ ∈C2[0,1], x, t ∈ [0,1], by Tylor’s expansion

ψ(t) = ψ(x)+(t− x)ψ ′(x)+
t∫

x

(t−u)ψ ′′(u)du.

Applying K̂(α)
n,q (.;x) in above equation, we have

K̂(α)
n,q (ψ;x) = ψ(x)+ K̂(α)

n,q

 t∫
x

(t−u)ψ
′′
(u)du;x

 .
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Therefore,

∣∣∣K̂(α)
n,q (ψ;x)−ψ(x)

∣∣∣≤
∣∣∣∣∣∣K(α)

n,q

 t∫
x

(t−u)ψ ′′(u)du;x

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣


2q[n+1]qx+1
[2]q[n+1]q∫

x

(
2q[n+1]qx+1

[2]q[n+1]q
− x

)
ψ
′′
(u)du;x


∣∣∣∣∣∣∣∣∣

≤K(α)
n,q

 t∫
x

|t− x|ψ
′′
(u)du;x



+

∣∣∣∣∣∣∣∣∣


2q[n+1]qx+1
[2]q[n+1]q∫

x

∣∣∣∣∣2q[n+1]qx+1

[2]q[n+1]q
−u

∣∣∣∣∣ ∣∣ψ ′′(x)∣∣du;x


∣∣∣∣∣∣∣∣∣

≤

K(α)
n,q ((t− x)2;x)+

(
2q[n+1]qx+1

[2]q[n+1]q
− x

)2
∥∥ψ

′′∥∥ . (2.17)

From (2.16), we have

∣∣∣K(α)
n,q (ϕ;x)

∣∣∣≤ ‖ϕ‖K(α)
n,q (1;x)+2‖ϕ‖= 3‖ϕ‖ . (2.18)

From (2.16), (2.17) and (2.18), we have

∣∣∣K(α)
n,q (ϕ;x)−ϕ(x)

∣∣∣≤ ∣∣∣K(α)
n,q (ϕ−ψ;x)

∣∣∣+ |ϕ−ψ|

+

∣∣∣∣∣ϕ
(

2q[n+1]qx+1

[2]q[n+1]q

)
−ϕ(x)

∣∣∣∣∣
≤4‖ϕ−ψ‖+

(
µ

q
n,2(x)+µ

q
n,1

2
(x)
)
+

∣∣∣∣∣ϕ
(

2q[n+1]qx+1

[2]q[n+1]q

)
−ϕ(x)

∣∣∣∣∣ .
Now taking infimum on the right hand side of the above inequality over ψ ∈C2[0,1], we get

≤ 4K2

(
ϕ; µ

q
n,2(x)+µ

q
n,1

2
(x)
)
+ω

(
ϕ; µ

q
n,1(x)

)
From (1.13), we get

∣∣∣K(α)
n,q (ϕ;x)−ϕ(x)

∣∣∣≤ λω2

(
ϕ;
√

µ
q
n,2(x)+µ

q
n,1

2
(x)
)
+ω

(
ϕ;ω

q
n,1(x)

)
.

Hence the result.
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Theorem 2.2.7. Let qn ∈ (0,1) be a sequence converging to 1 and α is fixed. Then for ϕ ∈

C[0,1], we have ∣∣∣K(α)
n,q (ϕ;x)−ϕ(x)

∣∣∣≤ 2ω(ϕ; µ
q
n,2(x)),

where µ
q
n,2(x) =

(
K(α)

n,q ((t− x)2;x)
) 1

2
.

Proof. For non-decreasing function ϕ ∈C[0,1]. Using linearity and monotonicity of K(α)
n,q , we

have

∣∣∣K(α)
n,q (ϕ;x)−ϕ(x)

∣∣∣≤K(α)
n,q (|ϕ(t)−ϕ(x)| ;x)

≤ω(ϕ;δ )

(
1+

1
δ

K(α)
n,q (|t− x| ;x)

)
.

Applying Lemma 2.2.4 with c =
q[k]q
[n+1]q

and d =
[k+1]q
[n+1]q

, we get

∣∣∣K(α)
n,q (ϕ;x)−ϕ(x)

∣∣∣≤ ω(ϕ;x)

1+
[n+1]q

δ

n

∑
k=0

p(α)
n,q,k(x)


[k+1]q
[n+1]q∫

q[k]q
[n+1]q

(t− x)2dqt


1
2

×


[k+1]q
[n+1]q∫

q[k]q
[n+1]q

dqt


1
2
 .

Using Hölder’s inequality for sums, we have

∣∣∣K(α)
n,q (ϕ;x)−ϕ(x)

∣∣∣=ω(ϕ;x)

1+
1
δ

[n+1]q
n

∑
k=0

p(α)
n,q,k(x)

[k+1]q
[n+1]q∫

q[k]q
[n+1]q

(t− x)2dqt


1
2

×

[n+1]q
n

∑
k=0

p(α)
n,q,k(x)

[k+1]q
[n+1]q∫

q[k]q
[n+1]q

dqt


1
2


=ω(ϕ;x)
{

1+
1
δ

(
K(α)

n,q ((t− x)2;x)
) 1

2
}
.

By choosing δ = µ
q
n,2(x), we get required result.
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2.3 The family of Bernstein-Stancu-Kantorovich operators

with shifted knots

2.3.1 Introduction

Recently, Gadjiev and Ghorbanalizadeh [65] proposed another generalization of Bernstein-

Stancu operators with shifted knots. These shifted knots provide the pliability to the

operators and also allow us to approximate in the interval [0,1] and over its subintervals.

These operators are defined as follows

B(r,s)
n (ϕ;x) =

(
n+ s2

n

)n n

∑
k=0

b(r2,s2)
n (x)ϕ

(
k+ r1

n+ s1

)
, (2.19)

where

b(r2,s2)
n (x) =

 n

k

(x− r2

n+ s2

)k(n+ r2

n+ s2
− x
)n−k

and r2
n+s2

≤ x ≤ n+r2
n+s2

, r j,s j ≥ 0 ( j = 1,2) with condition 0 ≤ r1 ≤ r2 ≤ s1 ≤ s2. For

r2 = s2 = 0, we obtain Bernstein-Stancu operators and for r1 = r2 = s1 = s2 = 0, we

get classical Bernstein operators. Içöz and Kantorovich [94] considered the Kantorovich-

type modification of (2.19) and discussed its rate of convergence using usual modulus of

continuity. Recently, Rahman et al. [137] defined the λ -Bernstein-Kantorovich operators

with shifted knots and discussed some basic results along with its rate of convergence,

graphical comparisons, and error estimation tables. For more articles, we refer to read-

ers [16, 96,98,102,125,143,150,156,157].

Motivated from the above stated work, we consider the family of Bernstein-Stancu-

Kantorovich operators with shifted knots. For ϕ ∈C[0,1], the operators are defined as

follows:

K(r,s)
n,α (ϕ;x) =

(
n+ s

n

)n

(n+ s+1)
n

∑
k=0

p(r,s)n,k,α(x)

k+r+1
n+s+1∫
k+r

n+s+1

ϕ(t)dt, (2.20)
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where

p(r,s)n,k,α(x) =

 n−2

k−1

(1−α)

(
x− r

n+ s

)
+

 n−2

k−2

(1−α)

(
n+ r
n+ s

− x
)

+

 n

k

α

(
x− r

n+ s

)(
n+ r
n+ s

− x
)(x− r

n+ s

)k−1(n+ r
n+ s

− x
)n−k−1

,

x ∈
[ r

n+s ,
n+r
n+s

]
and r,s≥ 0 with condition 0≤ r ≤ s. In particular cases:

Case1. For r = s = 0, the operators (2.20) reduce to family of Bernstein Kantorovich

operators (2.3).

Case2. For r = s = 0 and α = 1 the operators (2.20) reduce to classical Bernstein-

Kantorovich operators (1.4).

The aim here to define the family of Bernstein-Stancu-Kantorovich operators with shifted

knots and estimate its moments and central moments to study local and global rate of

convergence and discuss the pth order generalization of operators (2.20). In support

of theoretical results, we have also shown numerical and graphical comparisons for the

proposed operators.

2.3.2 Preliminareis

Lemma 2.3.1. The moments of the operators (2.20) are given as:

(i) K(r,s)
n,α (1;x) = 1;

(ii) K(r,s)
n,α (t;x) = 1

n(n+s+1) [(n+ s)x+1)(n+(1−α)s];

(iii) K(r,s)
n,α (t2;x)= 1

3n3(n+s+1)2

[
(3n5 +3((3−α)s+(3α−4)) n4+3((3−2α)s2+(10α−12)s+

4(1− α))n3 + 3((1− α)s3 + (12− 11α)s2 + 12(1− α)s)n2 + 12(1− α)(s− 3)s2n−

12(1−α)s3)x2+((12−6α)n4+(21−15α−6(1−α)r)s+6(3−2α)r−3(1−α))n3+

((9−6r)(1−α)s2−3((1−α)−2(7−6α)r)s−24(1−α)r)n2+24(1−α)(s−2)srn−

24(1−α)rs2)x+(4− 3α − 6r)n3 +(3(1−α)(3− r)rs+ 3r((1−α)− (2−α)r))n2−

12(1−α)s(s−2)rn+12(1−α)r2s].

Lemma 2.3.2. The central moments µ
(r,s)
n,α, j(x) = K(r,s)

n,α ((t− x) j;x) for j = 1,2 of the operators

(2.20) are given as:

(i) µ
(r,s)
n,α,1(x) =

1
n(n+s+1) [(((1−α)s−1)n+(1−α)s2)x+(n+(1−α)s)]
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(ii) µ
(r,s)
n,α,2(x) =

1
3n3(n+s+1)2 [(−3((1−α)s+(4−3α)) n4 − 6((1− α)s2 + (7− 6α)s)n3 −

3((1−α)s3 +(14− 13α)s2 + 4(1−α)s)n2− 12(1−α)(s− 3)s2n+ 12(1−α)s3)x2 +

(6(1−α)n4 + 3((1−α)(3− 2r)s+ 2(3− 2α)r− (3−α))n3 +(3(1−α)(1− 2r)s2 +

(−9(1−α)+ 6(7− 6α)r)s− 24(1−α)r)n2 + 24(1−α)(s− 2)rn− 24(1−α)rs2)x+

(4−3α−6r)n3+3((1−α)(r−3)rs+(r−2)r2+(1−α)r)n2−12(1−α)(s−1)r2n+

12(1−α)r2s].

Lemma 2.3.3. For α ∈ [0,1], x ∈
[ r

n+s ,
n+r
n+s

]
and ϕ ∈C[0,1], we have

∣∣∣K(r,s)
n,α (ϕ;x)

∣∣∣≤ ‖ϕ‖ .
Proof. From (2.20) and Lemma 2.3.1, we have

∣∣∣K(r,s)
n,α (ϕ;x)

∣∣∣≤(n+ s
n

)n

(n+ s+1)
n

∑
k=0

p(r,s)n,k,α(x)

k+r+1
n+s+1∫
k+r

n+s+1

|ϕ|dt

≤‖ϕ‖
(

n+ s
n

)n

(n+ s+1)
n

∑
k=0

p(r,s)n,k,α(x)

k+r+1
n+s+1∫
k+r

n+s+1

1dt

≤‖ϕ‖ .

2.3.3 Direct results

Theorem 2.3.4. For ϕ ∈C[0,1] and α ∈ [0,1], we acquire

lim
n→∞

max
r

n+s≤x n+r
n+s

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣= 0.

Proof. From Lemma 2.3.1 and for i = 0,1,2, we obtain

lim
n→∞

max
r

n+s≤x≤ n+r
n+s

∣∣∣K(r,s)
n,α (t i;x)− xi

∣∣∣= 0. (2.21)

Now consider a sequence of operators:

K(r,s)
n,α (ϕ(t);x) =

 K(r,s)
n,α (ϕ(t);x) i f r

n+s ≤ x≤ n+r
n+s ,

ϕ(x) i f x ∈
[
0, r

n+s

]⋃[n+r
n+s ,1

]
.
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Then, ∣∣∣K(r,s)
n,α (ϕ(t);x)−ϕ(x)

∣∣∣= max
r

n+s≤x≤ n+r
n+s

∣∣∣K(r,s)
n,α (ϕ(t);x)−ϕ(x)

∣∣∣ . (2.22)

Using (2.21) and (2.22), we get

lim
n→∞

∣∣∣K(r,s)
n,α (t i;x)− xi

∣∣∣= 0, k = 0,1,2.

Using well-known Korovkin theorem [24,63,113] and in view of (2.22) follows the result.

Theorem 2.3.5. For α ∈ [0,1], x ∈
[ r

n+s ,
n+r
n+s

]
and ϕ ∈C[0,1], we acquire

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣≤Cω2

ϕ;
µ
(r,s)
n,α,2(x)

4

+ω

(
ϕ;
∣∣∣µ(r,s)

n,α,1(x)
∣∣∣) ,

where µ
(r,s)
n,α,1(x) and µ

(r,s)
n,α,2(x) are given in Lemma 2.3.2.

Proof. Define an auxiliary operators as follows:

K̂(r,s)
n,α (ϕ;x) = K(r,s)

n,α (ϕ;x)−ϕ

(
x+µ

(r,s)
n,α,1(x)

)
+ϕ(x). (2.23)

On account of Lemma 2.3.1, we obtain

K̂(r,s)
n,α (1;x) = 1, K̂(r,s)

n,α (t;x) = x.

For ψ ∈C2[0,1], by Taylor’s expansion

ψ(t) = ψ(x)+(t− x)ψ ′(x)+
t∫

x

(t− v)ψ ′′(v)dv.

Applying K̂(r,s)
n,α (.;x) in above equation, we obtain

K̂(r,s)
n,α (ψ(t);x)−ψ(x) =K̂(r,s)

n,α ((t− x);x)ψ ′(x)+ K̂(r,s)
n,α

 t∫
x

(t− v)ψ ′′(v)dv;x


=K̂(r,s)

n,α

 t∫
x

(t− v)ψ ′′(v)dv;x



− K̂(r,s)
n,α


x+µ

(r,s)
n,α,1(x)∫
x

(
x+µ

(r,s)
n,α,1(x)− v

)
ψ
′′(v)dv;x

 .
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∣∣∣∣K̂(r,s)
n,α (ψ(t);x)−ψ(x)

∣∣∣∣≤K̂(r,s)
n,α

∣∣∣∣∣∣
t∫

x

(t− v)ψ ′′(v)dv

∣∣∣∣∣∣ ;x



+ K̂(r,s)
n,α


x+µ

(r,s)
n,α,1(x)∫
x

∣∣∣(x+µ
(r,s)
n,α,1(x)− v

)∣∣∣ ∣∣ψ ′′(v)∣∣dv;x


≤K(r,s)

n,α ((t− x)2;x)
∥∥ψ
′′∥∥+(µ

(r,s)
n,α,1(x)

)2∥∥ψ
′′∥∥

≤
(

µ
(r,s)
n,α,2(x)+

(
µ
(r,s)
n,α,1(x)

)2
)∥∥ψ

′′∥∥ . (2.24)

From (2.23), we have ∣∣∣∣K̂(r,s)
n,α (ϕ(t);x)

∣∣∣∣≤ 3‖ϕ‖ . (2.25)

Since

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣= ∣∣∣∣K̂(r,s)
n,α (ϕ(t);x)−ϕ(x)+ϕ

(
x+µ

(r,s)
n,α,1(x)

)
−ϕ(x)

∣∣∣∣
≤
∣∣∣∣K̂(r,s)

n,α (ϕ−ψ;x)
∣∣∣∣+ ∣∣∣∣K̂(r,s)

n,α (ψ;x)−ψ(x)
∣∣∣∣

+ |ϕ(x)−ψ(x)|+
∣∣∣ϕ (x+µ

(r,s)
n,α,1(x)

)
−ϕ(x)

∣∣∣ .
From (2.24) and (2.25), we have

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣≤4‖ϕ−ψ‖+
(

µ
(r,s)
n,α,2(x)+

(
µ
(r,s)
n,α,1(x)

)2
)∥∥ψ

′′∥∥
+ω

(
ϕ;
∣∣∣µ(r,s)

n,α,1(x)
∣∣∣) .

Taking infimum over ϕ ∈C2[0,1], we have

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣≤ 4K2

ϕ;
µ
(r,s)
n,α,2(x)

4

+ω

(
ϕ;
∣∣∣µ(r,s)

n,α,1(x)
∣∣∣) .

In view of relation (1.13), we obtain the required result.

Theorem 2.3.6. For ϕ ∈ Lipξ M, α ∈ [0,1] and for each x ∈
[ r

n+s ,
n+r
n+s

]
, we have

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣≤M
(

µ
(r,s)
n,α,2(x)

) ξ

2
,

where µ
(r,s)
n,α,2(x) is given in Lemma 2.3.2.
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Proof. By linearity and monotonicity of the operators K(r,s)
n,α , we have

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣= ∣∣∣K(r,s)
n,α (ϕ(t)−ϕ(x);x)

∣∣∣≤K(r,s)
n,α (|ϕ(t)−ϕ(x)| ;x)

≤MK(r,s)
n,α

(
|t− x|ξ ;x

)
.

Owing to Hölder’s inequality with p = ξ

2 , q = 2−ξ

2 , we have

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣≤M
(

K(r,s)
n,α ((t− x)2;x)

) ξ

2
(

K(r,s)
n,α (1;x)

) 2−ξ

2

≤M
(

µ
(r,s)
n,α,2(x)

) ξ

2
.

Hence the proof.

Theorem 2.3.7. For ϕ ∈ Lip(a,b)M (ξ ) , we have

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣≤M

µ
(r,s)
n,α,2(x)

ax2 +bx


ξ

2

,

where µ
(r,s)
n,α,2(x) provided in Lemma 2.1.2.

Proof. First, we show the statement is true for ξ = 1.

we can write

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣
≤ K(r,s)

n,α (|ϕ(t)−ϕ(x)| ;x)

≤
(

n+ s
n

)n

(n+ s+1)
n

∑
k=0

p(r,s)n,k,α(x)

k+r+1
n+s+1∫
k+r

n+s+1

|ϕ(t)−ϕ(x)|dt

≤M
(

n+ s
n

)n

(n+ s+1)
n

∑
k=0

p(r,s)n,k,α(x)

k+r+1
n+s+1∫
k+r

n+s+1

|t− x|

(ax2 +bx+ t)
1
2

dt.

Since (ax2 +bx+ t)−
1
2 ≤ (ax2 +bx)−

1
2 , we have

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣≤ M

(ax2 +bx)
1
2

(
n+ s

n

)n

(n+ s+1)
n

∑
k=0

p(r,s)n,k,α(x)

k+r+1
n+s+1∫
k+r

n+s+1

|t− x|dt.
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Applying Cauchy-Schwarz inequality in above, we obtain

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣≤M

√
µ
(r,s)
n,α,2(x)

ax2 +bx
.

Hence the statement is true for ξ = 1. Next, we prove the same for ξ ∈ (0,1). Owing to

Hölder’s inequality with p = ξ

2 , q = 2−ξ

2 , we acquire

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣≤ (n+ s
n

)n

(n+ s+1)
n

∑
k=0

p(r,s)n,k,α(x)

k+r+1
n+s+1∫
k+r

n+s+1

|ϕ(t)−ϕ(x)|dt

≤ M

(ax2 +bx)
ξ

2

(
n+ s

n

)n

(n+ s+1)
n

∑
k=0

p(r,s)n,k,α(x)

k+r+1
n+s+1∫
k+r

n+s+1

|t− x|ξ dt

≤
M
(

K(r,s)
n,α ((t− x)2;x)

) ξ

2

(ax2 +bx)
ξ

2

= M

µ
(r,s)
n,α,2(x)

ax2 +bx


ξ

2

.

which is clearly true for 0 < ξ < 1. Hence the proof.

Theorem 2.3.8. Let α ∈ [0,1], ϕ ∈C[0,1] and for concave function φ 2 (φ 6= 0), we have

∣∣∣∣K̂(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣∣≤Cω
φ

2

ϕ;

(
µ
(r,s)
n,α,2(x)+

(
µ
(r,s)
n,α,1(x)

)2
) 1

2

2φ(x)

+ωη

ϕ;
µ
(r,s)
n,α,1(x)

η(x)

 ,

where µ
(r,s)
n,α,1(x) and µ

(r,s)
n,α,2(x) are given in Lemma 2.3.2.

Proof. From (2.23), it is clear that K̂(r,s)
n,α (1;x) = 1, K̂(r,s)

n,α (t;x) = x and K̂(r,s)
n,α (t− x;x) = 0. Let

y = λx + (1− λ )t, λ ∈ [0,1]. Since φ 2 (φ 6= 0) is concave function in [0,1] implies that

φ 2(y)≥ λφ 2(x)+(1−λ )φ 2(t) and hence

|t− y|
φ 2(y)

≤ λ |x− t|
λφ 2(x)+(1−λ )φ 2(t)

≤ |t− x|
φ 2(x)

. (2.26)

We can write∣∣∣∣K̂(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣∣≤ ∣∣∣∣K̂(r,s)
n,α (ϕ−ψ;x)

∣∣∣∣+ ∣∣∣∣K̂(r,s)
n,α (ψ;x)−ψ(x)

∣∣∣∣+ |ϕ(x)−ψ(x)|

≤4‖ϕ−ψ‖+
∣∣∣∣K̂(r,s)

n,α (ψ;x)−ψ(x)
∣∣∣∣ . (2.27)
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By Taylor’s formula and operating K̂(r,s)
n,α (.;x), we have∣∣∣∣K̂(r,s)

n,α (ψ;x)−ψ(x)
∣∣∣∣

≤ K(r,s)
n,α

 t∫
x

|t− y|
∣∣ψ ′′(y)∣∣dy;x

+

∣∣∣∣∣∣∣∣
x+µ

(r,s)
n,1,α (x)∫
x

∣∣∣x+µ
(r,s)
n,α,1(x)− y

∣∣∣ ∣∣ψ ′′(y)∣∣dy

∣∣∣∣∣∣∣∣
≤
∥∥∥φ

2
ψ
′′
∥∥∥

C[0,1]
K(r,s)

n,α

 t∫
x

|t− y|
φ 2(y)

dy;x

+
∥∥∥φ

2
ψ
′′
∥∥∥

C[0,1]

∣∣∣∣∣∣∣∣
x+µ

(r,s)
n,α,1(x)∫
x

∣∣∣x+µ
(r,s)
n,α,1(x)− y

∣∣∣
φ 2(y)

dy

∣∣∣∣∣∣∣∣
≤ φ

−2(x)
∥∥φ

2
ψ
′′∥∥

C[0,1]

(
µ
(r,s)
n,α,2(x)+

(
µ
(r,s)
n,α,1(x)

)2
)
. (2.28)

From (2.26), (2.27) and using the definition of K-functional, we obtain∣∣∣∣K̂(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣∣≤φ
−2(x)

∥∥φ
2
ψ
′′∥∥

C[0,1]

(
µ
(r,s)
n,α,2(x)+

(
µ
(r,s)
n,α,1(x)

)2
)
+4‖ϕ−ψ‖C[0,1]

≤Cω
φ

2

ϕ;

(
µ
(r,s)
n,α,2(x)+

(
µ
(r,s)
n,α,1(x)

)2
) 1

2

2φ(x)

 .

Using (1.14), we have

∣∣∣ϕ (x+µ
(r,s)
n,α,1(x)

)
−ϕ(x)

∣∣∣=
∣∣∣∣∣∣ϕ
x+η(x)

µ
(r,s)
n,α,1(x)

η(x)

−ϕ(x)

∣∣∣∣∣∣
≤ωη

ϕ;
µ
(r,s)
n,α,1(x)

η(x)


Therefore the following inequality satisfy:

∣∣∣K(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣≤ ∣∣∣∣K̂(r,s)
n,α (ϕ;x)−ϕ(x)

∣∣∣∣+ ∣∣∣ϕ (x+µ
(r,s)
n,α,1(x)

)
−ϕ(x)

∣∣∣
≤Cω

φ

2

ϕ;

(
µ
(r,s)
n,α,2(x)+

(
µ
(r,s)
n,α,1(x)

)2
) 1

2

2φ(x)

+ωη

ϕ;
µ
(r,s)
n,α,1(x)

η(x)

 .
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2.3.4 Generalization of pth order of the operators

In this section, we consider the pth order generalization of the operators (2.20) as

follows:

K(r,s)
n,α,p(ϕ;x) =

(
n+ s

n

)n

(n+ s+1)
n

∑
k=0

p(r,s)n,k,α(x)

k+r+1
n+s+1∫
k+r

n+s+1

p

∑
j=0

ϕ
( j)(u)

(x−u) j

j!
du, (2.29)

where ϕ ∈Cp[0,1] and p ∈N0. For the generalized operators (2.29), it can be easily seen

that at p = 0 reduces to the operators (2.20). For more details, the readers can refer

to [56,94,133,137].

Theorem 2.3.9. Suppose α ∈ [0,1], ϕ ∈Cp[0,1] and ϕ(p) ∈LipM(ξ ), then for all x∈
[ r

n+s ,
n+r
n+s

]
,

we have

∣∣∣K(r,s)
n,α,p(ϕ;x)−ϕ(x)

∣∣∣≤ M
(p−1)!

ξ

ξ + p
B(ξ , p) .

∥∥∥K(r,s)
n,α (ϕ;x)−ϕ(x)

∥∥∥ ,
where B is a Beta function.

Proof. From (2.29), we have

ϕ(x)−K(r,s)
n,α,p(ϕ;x) =

(
n+ s

n

)n

(n+ s+1)
n

∑
k=0

p(r,s)n,k,α(x)

×

k+r+1
n+s+1∫
k+r

n+s+1

(
ϕ(x)−

p

∑
j=0

ϕ
( j)(u)

(x−u) j

j!

)
du. (2.30)

By Taylor’s theorem (see [112]), we get

ϕ(x)−
p

∑
j=0

ϕ
( j)(u)

(x−u) j

k!
=

(x−u)p

(p−1)!

1∫
0

(1− y)p−1
(

ϕ
(p)(u+ y(x−u))−ϕ

(p)(u)
)

dy

(2.31)

Since ϕ(p) ∈ Lipξ M, we have

∣∣∣ϕ(p)(u+ y(x−u))−ϕ
(p)(u)

∣∣∣≤Myξ |x−u|ξ . (2.32)
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From the definition of Beta function, we get

1∫
0

yξ (1− y)p−1dy = B(1+ξ , p) =
ξ

ξ + p
B(ξ , p) . (2.33)

Using relation (2.32) and (2.33) in (2.31), we get

∣∣∣∣∣ϕ(x)− p

∑
j=0

ϕ
( j)(u)

(x−u) j

k!

∣∣∣∣∣≤M
|x−u|p

(p−1)!

1∫
0

yξ |x−u|ξ (1− y)p−1dy

= M
|x−u|p+ξ

(p−1)!

1∫
0

yξ (1− y)p−1dy = M
|x−u|p+ξ

(p−1)!
ξ

ξ + p
B(ξ , p) . (2.34)

From (2.30) and (2.34), we obtain required result.

2.3.5 Graphical results

Example 1. Let ϕ(x) = x3 cos(3πx), α = 0.2, r = 4, s = 5 and n ∈ {10,15,30}. The conver-

gence of the defined operators K(r,s)
n,α towards the function ϕ(x) and the absolute error ε

(r,s)
n,α of

the operators are shown in figure 2.1 and figure 2.2 respectively. The absolute error of the

operators are also computed in table 2.1 for some values in
[ r

n+s ,
n+r
n+s

]
.

Example 2. Let ϕ(x) = x2 sin
(

2π
(
x+ 1

2

)2
)

and n = 50. The comparison of convergence of

proposed operators K(r,s)
n,α (cyan, α = 0.25, r = 4, s = 5), family of Bernstein-Kantorovich

operators (2.4) (black, α = 0.25, r = 0, s = 0), classical Bernstein-Kantorovich operators (2.3)

(red, α = 1.0, r = 0, s = 0) and absolute errors ε
(r,s)
n,α of the operators are shown in figure 2.3

and figure 2.4 respectively. The absolute error of the operators are also computed for some

values in
[ r

n+s ,
n+r
n+s

]
which is shown in table 2.2.
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n=10

n=15

n=30

f(x)

0.0 0.2 0.4 0.6 0.8

-0.1

0.0

0.1

0.2

0.3

0.4

Figure 2.1: Convergence of the operator K(r,s)
n,α (ϕ;x) towards function ϕ(x) for (α = 0.2, r = 4,

s = 5).

n=10

n=15

n=30

0.0 0.2 0.4 0.6 0.8
0.00

0.02

0.04

0.06

0.08

0.10

Figure 2.2: The absolute error ε
(r,s)
n,α for (α = 0.2, r = 4, s = 5).
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α=.25,r=0, s=0

α=.25,r=2, s=5

α=.25,r=3, s=4

f(x)

0.0 0.2 0.4 0.6 0.8

-0.2

-0.1

0.0

0.1

0.2

0.3

Figure 2.3: x for (n = 50)

α=.25,r=0, s=0

α=.25,r=2, s=5

α=.25,r=3, s=4

0.0 0.2 0.4 0.6 0.8

0.05

0.10

0.15

0.20

0.25

Figure 2.4: The absolute error ε
(r,s)
n,α for (n = 50).
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Table 2.1: Absolute error of the operators K(r,s)
n,α with function ϕ(x) = x3 cos(3πx) for α = 0.2,

r = 4, s = 5.
x n=10 n=15 n=30
0.1 .030426 .004204 .000300
0.2 .006182 .003235 .004314
0.3 .013229 .007541 .004520
0.4 .025076 .025405 .018002
0.5 .066466 .056224 .038098
0.6 .023637 .015840 .008822
0.7 .066703 .062968 .046879
0.8 .056277 .053033 .039276

Table 2.2: Absolute error of the operators with function ϕ = x2 sin
(

2π
(
x+ 1

2

)2
)

for n = 50.

x α = 0.25, r = 0, s = 0 α = 0.25, r = 2, s = 5 α = 0.25, r = 3, s = 4
0.1 .000904 .000260 .003880
0.2 .013064 .011202 .000805
0.3 .002768 .008868 .015166
0.4 .053540 .037694 ..032918
0.5 .043356 .042120 .002801
0.6 .118005 ..080048 .098996
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Chapter 3

Approximation by Kantorovich form of

modified Szász-Mirakyan operators

3.1 Introduction

In 1977, Jain and Pethe [101] generalized the well-known Szász-Mirakyan operators

[147] as:

S[α]
n (ϕ;x) = (1+nα)−

x
α

∞

∑
k=0

(
α +

1
n

)−k x(k,−α)

k!
ϕ

(
k
n

)
=

∞

∑
k=0

s[α]
n,k (x)ϕ

(
k
n

)
, (3.1)

where

s[α]
n,k (x) = (1+nα)−

x
α

(
α +

1
n

)−k x(k,−α)

k!
,

x(k,−α) = x(x+α) . . .(x+(k−1)α), x(0,−α) = 1 and ϕ is any function of exponential

type such that

|ϕ (t)| ≤ KeAt (t ≥ 0) ,

for some finite constants K,A > 0. Here α = (αn)n∈N is such that

0≤ αn ≤
1
n
.

Notice that as n→ ∞ α tends to zero.

The operators S[α]
n have also been considered by Stancu [145], Mastroianni [120], Della
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Vecchia and Kocic [44] and Finta [61,62].

Abel and Ivan [1] gave the following alternate form of operators (3.1) (by putting

c = 1
nα

):

Sn,c (ϕ;x) =
∞

∑
k=0

(
c

1+ c

)ncx
 ncx+ k−1

k

(1+ c)−k
ϕ

(
k
n

)
, x≥ 0, (3.2)

where c = cn ≥ β (n = 0,1,2, ......) for certain constant β > 0. Also, for a particular case

α = 1
n , the operators (3.1) reduce to another form, which was considered by Agratini [19]

as follows:

S[
1
n ]

n (ϕ;x) = 2−nx
∞

∑
k=0

(nx)k
2kk!

ϕ

(
k
n

)
, (3.3)

where

(nx)k = nx(nx+1) . . .(nx+ k−1) , k ≥ 1,

and (nx)0 = 1. These operators (3.3) are special cases of Lupaş operators [118]. The

operators (3.3) have also been studied in [60] and [122].

Agratini [20] modified the operators (3.3) into integral form in Kantorovich sense as:

Tn (ϕ;x) = n
∞

∑
k=0

2−nx (nx)k
2kk!

∫ (k+1)/n

k/n
ϕ (t)dt, (3.4)

and studied some approximation properties. Very recently, Dhamija and Deo considered

generalized positive linear operators based on Pólya-Eggenberger and inverse Pólya-

Eggenberger distribution in [54] and they gave Kantorovich variant of these generalized

operators in [50]. Several researchers have given some interesting results on Kantorovich

variant of various operators see [11, 27, 28, 34, 37–43, 46, 83, 105, 128]. Motivated by the

above works, for any bounded and integrable function ϕ defined on R+, we also modify

the operators (3.1) in Kantorovich form:

L[α]
n (ϕ;x) = n

∞

∑
k=0

s[α]
n,k (x)

∫ k+1
n

k
n

ϕ (t)dt. (3.5)

Special Cases:

1. For α = 0 in (3.5), we get Szász Kantorovich operators given by Totik in [149].

2. For α = 1
n in (3.5), we obtain another Kantorovich operators considered by Agra-

tini [20].
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The focus of this chapter is to study the approximation properties of modified Kan-

torovich operators (3.5). First, we obtain local approximation formula via modulus of

continuity of second-order then we use Ditzian-Totik moduli of smoothness to discuss

the rate of convergence of our operators. Finally, we establish the rate of convergence

for functions having derivatives of bounded variation. The properties discussed in this

article can be found in some recent papers and books like [17,23,48,57,72,73,79,80,85,

95,98,103,108,141].

3.2 Preliminaries

In order to prove the main convergence properties of operators (3.5), we need the

following basic results:

Lemma 3.2.1. [145] For the generalized Szász-Mirakyan operators (3.1) hold

(i) S[α]
n (1;x) = 1;

(ii) S[α]
n (t;x) = x;

(iii) S[α]
n
(
t2;x

)
= x2 +

(
α + 1

n

)
x.

Proposition 3.2.2. For the operators (3.1), there hold the following higher order moments:

(i) S[α]
n
(
t3;x

)
= x3 +3

(
α + 1

n

)
x2 +

(
2α2 + 3α

n + 1
n2

)
x;

(ii) S[α]
n
(
t4;x

)
= x4 +6

(
α + 1

n

)
x3 +

(
11α2 + 18α

n + 7
n2

)
x2

+
(

6α3 + 12α2

n + 7α

n2 + 1
n3

)
x.

Proof. By definition we can write

S[α]
n
(
t3;x

)
= (1+αn)−

x
α

∞

∑
k=1

x(x+α) . . .(x+(k−1)α)nk

k!(1+αn)k
k3

n3

=
(1+αn)−

x
α

n3

∞

∑
k=1

x
α

( x
α
+1
)
. . .
( x

α
+ k−1

)
αknk

(k−1)!(1+αn)k (k (k−1)+ k)

=
(1+αn)−

x
α

n3

∞

∑
k=2

x
α

( x
α
+1
)
. . .
( x

α
+ k−1

)
αknk

(k−2)!(1+αn)k k

+
1
n

S[α]
n
(
t2;x

)
=

(1+αn)−
x
α

n3

∞

∑
k=3

x
α

( x
α
+1
)
. . .
( x

α
+ k−1

)
αknk

(k−3)!(1+αn)k
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+
2(1+αn)−

x
α

n3

∞

∑
k=2

x
α

( x
α
+1
)
. . .
( x

α
+ k−1

)
αknk

(k−2)!(1+αn)k

+
1
n

S[α]
n
(
t2;x

)
=

(1+αn)−
x
α

n3

∞

∑
k=0

( x
α
+ k+2

)
!αk+3nk+3

k!
( x

α
−1
)
!(1+αn)k+3

+
2(1+αn)−

x
α

n3
x
α

( x
α
+1
) ∞

∑
k=0

( x
α
+ k+1

)
!

k!
( x

α
+1
)
!

(
αn

1+αn

)k+2

+
1
n

S[α]
n
(
t2;x

)
=

(1+αn)−
x
α

n3

∞

∑
k=0

( x
α
+ k+2

)
!αk+3nk+3

k!
( x

α
−1
)
!(1+αn)k+3

+
2(1+αn)−

x
α

n
x
α

( x
α
+1
)

α
2
(

1− αn
1+αn

)−( x
α
+2)

+
1
n

S[α]
n
(
t2;x

)
=

(1+αn)−
x
α

n3

∞

∑
k=0

( x
α
+ k+2

)
!αk+3nk+3

k!
( x

α
−1
)
!(1+αn)k+3 +

2
n

x
α

( x
α
+1
)

α
2

+
1
n

[
x2 +

(
α +

1
n

)
x
]

= x3 +3
(

α +
1
n

)
x2 +

(
2α

2 +
3α

n
+

1
n2

)
x.

Similarly, we can prove the expression for S[α]
n
(
t4;x

)
.

Lemma 3.2.3. For Kantorovich operators (3.5), we have

(i) L[α]
n (1;x) = 1;

(ii) L[α]
n (t;x) = x+ 1

2n ;

(iii) L[α]
n
(
t2;x

)
= x2 +

(
α + 2

n

)
x+ 1

3n2 ;

(iv) L[α]
n
(
t3;x

)
= x3 +3

(
α + 3

2n

)
x2 +

(
2α2 + 9α

2n + 7
2n2

)
x+ 1

4n3 ;

(v) L[α]
n
(
t4;x

)
= x4 +

(
6α + 8

n

)
x3 +

(
11α2 + 24α

n + 15
n2

)
x2

+
(

6α3 + 16α2

n + 15α

n2 + 6
n3

)
x+ 1

5n4 .

Proof. Taking into account of Lemma 3.2.3 and Proposition 3.2.2, we can easily get the de-

sired result.
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Remark 3.2.4. By simply applying Lemma 3.2.3, we have

L[α]
n (t− x;x) = x+

1
2n
− x =

1
2n

,

L[α]
n

(
(t− x)2;x

)
= L[α]

n
(
t2;x

)
−2xL[α]

n (t;x)+ x2L[α]
n (1;x)

= x2 +

(
α +

2
n

)
x+

1
3n2 −2x

(
x+

1
2n

)
+ x2

=

(
α +

1
n

)
x+

1
3n2 ,

L[α]
n

(
(t− x)3;x

)
= L[α]

n
(
t3;x

)
−3xL[α]

n
(
t2;x

)
+3x2L[α]

n (t;x)− x3L[α]
n (1;x)

= x3 +3
(

α +
3

2n

)
x2 +

(
2α

2 +
9α

2n
+

7
2n2

)
x+

1
4n3

−3x
(

x2 +

(
α +

2
n

)
x+

1
3n2

)
+3x2

(
x+

1
2n

)
− x3

=
3x2

n
+

(
2α

2 +
9α

2n
+

5
2n2

)
x+

1
4n3 ,

and

L[α]
n

(
(t− x)4;x

)
= L[α]

n
(
t4;x

)
−4xL[α]

n
(
t3;x

)
+6x2L[α]

n
(
t2;x

)
−4x3L[α]

n (t;x)+ x4L[α]
n (1;x)

= x4 +

(
6α +

8
n

)
x3 +

(
11α

2 +
24α

n
+

15
n2

)
x2

+

(
6α

3 +
16α2

n
+

15α

n2 +
6
n3

)
x+

1
5n4

−4x
(

x3 +3
(

α +
3

2n

)
x2 +

(
2α

2 +
9α

2n
+

7
2n2

)
x+

1
4n3

)
+6x2

(
x2 +

(
α +

2
n

)
x+

1
3n2

)
−4x3

(
x+

1
2n

)
+ x4

=

(
3α

2 +
6α

n
+

3
n2

)
x2 +

(
6α

3 +
16α2

n
+

15α

n2 +
5
n3

)
x+

1
5n4 .

Lemma 3.2.5. Let ϕ be a bounded function defined on R+ with

‖ϕ‖= sup
x∈R+
|ϕ(x)|, then ∣∣∣L[α]

n (ϕ;x)
∣∣∣≤ ‖ϕ‖.
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Lemma 3.2.6. For n ∈ N, we have

L[α]
n

(
(t− x)2;x

)
≤ C

n
δ

2
n (x) ,

where δ 2
n (x) = φ 2 (x)+ 1

n and φ 2 (x) = x.

Now we can write the operators (3.5) in other form as:

L[α]
n (ϕ;x) =

∫
∞

0
K[α]

n (x, t)ϕ (t)dt, (3.6)

where

K[α]
n (x, t) = n

∞

∑
k=0

s[α]
n,k (x)χn,k (t),

and χn,k (t) indicates the characteristic function on
[ k

n ,
k+1

n

]
w.r.t. R+.

Lemma 3.2.7. For adequately large n and x ∈ R+:

(i) Since 0≤ y < x, therefore

βn (x,y) =
∫ y

0
K[α]

n (x, t)dt ≤ Cδ 2
n (x)

n(x− y)2 .

(ii) If x < z < ∞ then we get

1−βn (x,z) =
∫

∞

z
K[α]

n (x, t)dt ≤ Cδ 2
n (x)

n(z− x)2 .

3.3 Direct results

Theorem 3.3.1. Let ϕ ∈C(R+)∩E and α(n) be a sequence converging to zero for adequately

large n,

lim
n→∞

L(α)
n (ϕ;x) = ϕ(x)

uniformly on each compact subset of R+, where C(R+) is the space of all real-valued contin-

uous functions on R+ and

E :=
{

ϕ : x ∈ R+,
ϕ (x)
1+ x2 is convergent as x→ ∞

}
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Proof. Taking Lemma 3.2.3 into the account and the fact that α → 0 as n→ ∞, it is clear that

lim
n→∞

L(α)
n (ei;x) = xi, i = 0,1,2

uniformly on each compact subset of R+. Hence, applying the well-known Korovkin-type

theorem [24] regarding the convergence of a sequence of positive linear operators, we get the

desired result.

Theorem 3.3.2. Let ϕ ∈CB(R+), then for any x ∈ R+ it follows

∣∣∣L[α]
n (ϕ;x)−ϕ (x)

∣∣∣≤Mω2
(
ϕ, 1

2δn(x)
)
+ω(ϕ,βn),

where M is an absolute constant and

δn (x) =
(

L[α]
n

(
(t− x)2;x

)
+
(

L[α]
n (t− x;x)

)2
) 1

2

, βn = L[α]
n (t− x;x)

such that both terms δn and βn tends to zero as n→ ∞.

Proof. For x ∈ R+, consider the operators

L̂[α]
n (ϕ;x) = L[α]

n (ϕ;x)−ϕ

(
x+

1
2n

)
+ϕ (x) . (3.7)

Since constants and linear functions are preserved by the operators L̂[α]
n . Therefore,

L̂[α]
n (t− x;x) = 0. (3.8)

Let ψ ∈C2
B(R+) and x, t ∈ R+. By Taylor’s expansion, we have

ψ (t) = ψ (x)+(t− x)ψ
′ (x)+

∫ t

x
(t−u)ψ

′′ (u)du.

Applying L̂[α]
n on both sides of the above Taylor’s expansion, we get

L̂[α]
n (ψ;x)−ψ(x) = ψ

′(x) · L̂[α]
n (t− x;x)+ L̂[α]

n

(∫ t

x
(t−u)ψ

′′ (u)du;x
)

= L[α]
n

(∫ t

x
(t−u)ψ

′′ (u)du;x
)
−
∫ x+ 1

2n

x

(
x+

1
2n
−u
)

ψ
′′(u)du.

Observe that ∣∣∣∣∫ t

x
(t−u)g′′(u)

∣∣∣∣≤ (t− x)2 · ‖ψ ′′‖.
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Thus ∣∣∣L̂[α]
n (ψ;x)−ψ(x)

∣∣∣≤ (L[α]
n ((t− x)2;x)+

(
L[α]

n (t− x;x)
)2
)
· ‖ψ ′′‖.

Making use of definition (3.7) of the operators L̂[α]
n and Lemma 3.2.5, we have

∣∣∣L[α]
n (ϕ;x)−ϕ (x)

∣∣∣≤ ∣∣∣L̂[α]
n (ϕ−ψ;x)

∣∣∣+ ∣∣∣L̂[α]
n (ψ;x)−ψ (x)

∣∣∣
+ |ψ (x)−ϕ (x)|+

∣∣∣∣ϕ(x+
1

2n

)
−ϕ (x)

∣∣∣∣
≤ 4‖ϕ−ψ‖+δ

2
n (x)

∥∥ψ
′′∥∥+ω (ϕ,βn) ,

with δ 2
n (x) = L[α]

n
(
(t− x)2;x

)
+
(

L[α]
n (t− x;x)

)2
and βn = L[α]

n (t− x;x).

Now taking infimum on the right-hand side over all ψ ∈ C2
B(R+) and using the relation

(1.13), we get

∣∣∣L[α]
n (ϕ;x)−ϕ (x)

∣∣∣≤ 4K2

(
ϕ,

δn
2 (x)
4

)
+ω (ϕ,βn)

≤Mω2
(
ϕ, 1

2δn(x)
)
+ω (ϕ,βn) .

Hence the proof.

Theorem 3.3.3. Let ϕ ∈CB(R+), then for any x ∈ R+ we have

∣∣∣L[α]
n (ϕ;x)−ϕ(x)

∣∣∣≤Cω
ϕλ

2

(
ϕ,

δ
(1−λ )
n (x)√

n

)
+ω

(
ϕ,

1
2n

)
,

where C is an absolute constant and

δn (x) =
(

L[α]
n

(
(t− x)2;x

)
+
(

L[α]
n (t− x;x)

)2
) 1

2

.

Proof. Consider the operators defined by (3.7)

L̂[α]
n (ϕ;x) = L[α]

n (ϕ;x)+ϕ (x)−ϕ

(
x+

1
2n

)
(3.9)

For above considered operators, we can write L̂[α]
n (1;x) = 1 and L̂[α]

n (t;x) = x.

Therefore, definition (3.9), Lemma 3.2.5 and Lemma 3.2.6 gives

L̂[α]
n (t− x;x) = 0, L̂[α]

n

(
(t− x)2;x

)
≤ C

n
δ

2
n (x) (3.10)

and
∥∥∥L̂[α]

n (ϕ;x)
∥∥∥≤ 3‖ϕ‖ .
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Again, from ( [55], p.141), for t < u < x, we have

|t−u|
ϕ2λ (u)

≤ |t− x|
ϕ2λ (x)

and
|t−u|
δ 2λ

n (u)
≤ |t− x|

δ 2λ
n (x)

. (3.11)

Now

∣∣∣L̂[α]
n (ϕ;x)−ϕ(x)

∣∣∣≤ ∣∣∣L̂[α]
n (ϕ−ψ;x)

∣∣∣+ ∣∣∣L̂[α]
n (ψ;x)−ψ(x)

∣∣∣ (3.12)

+ |ϕ (x)−ψ (x)|

≤ 4‖ϕ−ψ‖+
∣∣∣L̂[α]

n (ψ;x)−ψ(x)
∣∣∣ .

For ψ ∈ D2
λ

and t,x ∈ R+, using Taylor’s expansion with integral remainder,

ψ (t) = ψ (x)+(t− x)ψ
′ (x)+

∫ t

x
(t−u)ψ

′′ (u)du.

Operating L̂[α]
n and using (3.10) and (3.11), we get

∣∣∣L̂[α]
n (ψ;x)−ψ(x)

∣∣∣= ∣∣∣∣L̂[α]
n

(∫ t

x
(t−u)ψ

′′ (u)du;x
)∣∣∣∣ (3.13)

≤
∣∣∣∣L[α]

n

(∫ t

x
(t−u)ψ

′′ (u)du;x
)∣∣∣∣+

∣∣∣∣∣
∫ x+ 1

2n

x

(
x+

1
2n
−u
)

ψ
′′ (u)du

∣∣∣∣∣
≤
∥∥∥δ

2λ
n ψ

′′
∥∥∥L[α]

n

(
(t− x)2

δ 2λ
n (x)

;x

)
+
∥∥∥δ

2λ
n ψ

′′
∥∥∥ ( 1

2n

)2

δ 2λ
n (x)

= δ
−2λ
n (x)

∥∥∥δ
2λ
n ψ

′′
∥∥∥L[α]

n

(
(t− x)2;x

)
+
∥∥∥δ

2λ
n g′′

∥∥∥δ
−2λ
n (x)

1

(2n)2

≤C

(
δ

2(1−λ )
n (x)

n

∥∥∥δ
2λ
n ψ

′′
∥∥∥)+

δ
2(1−λ )
n (x)

n

∥∥∥δ
2λ
n ψ

′′
∥∥∥

≤C
δ

2(1−λ )
n (x)

n

∥∥∥δ
2λ
n ψ

′′
∥∥∥ .

From (3.12), (3.13) and then using definition of K-functional (corresponding to Ditzian-Totik)

along with the relation (1.19),

∣∣∣L̂[α]
n (ϕ;x)−ϕ(x)

∣∣∣≤ 4‖ϕ−ψ‖+C
δ

2(1−λ )
n (x)

n

∥∥∥ϕ
2λ

ψ
′′
∥∥∥

≤Cω
2
ϕλ

(
ϕ,

δ
(1−λ )
n (x)√

n

)
.
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Hence

∣∣∣L[α]
n (ϕ;x)−ϕ(x)

∣∣∣≤ ∣∣∣L̂[α]
n (ϕ;x)−ϕ(x)

∣∣∣+ ∣∣∣∣ϕ(x+
1
2n

)
−ϕ (x)

∣∣∣∣
≤Cω

2
ϕλ

(
ϕ,

δ
(1−λ )
n (x)√

n

)
+ω

(
ϕ,

1
2n

)
.

Thus the proof is complete.

3.4 Function of bounded variation

Theorem 3.4.1. Let ϕ ∈ DBV (R+). Then for adequately large n and for each x ∈ R+, we get

∣∣∣L[α]
n (ϕ;x)−ϕ (x)

∣∣∣
≤ 1

4n

∣∣ϕ ′ (x+)+ϕ
′ (x−)

∣∣+ 1
2

√
C
n

∣∣ϕ ′ (x+)−ϕ
′ (x−)

∣∣
+

Cδ 2
n (x)

nx2

∣∣ϕ (2x)−ϕ (x)− xϕ
′ (x+)

∣∣
+

x√
n
∨

x+ x√
n

x− x√
n

(
ϕx
′)+ Cδ 2

n (x)
nx

[
√

n]

∑
k=1
∨x+ x

k
x− x

k

(
ϕx
′) (3.14)

+M (γ,r,x)+
|ϕ (x)|

nx2 Cδ
2
n (x)+

√
C
n

δn (x)ϕ
′ (x+) ,

where ∨b
a ϕ(x) denotes the total variation of ϕ on [a,b], ϕx is an auxiliary operator given by

ϕx (t) =


ϕ (t)−ϕ (x−) , 0≤ t < x

0, t = x

ϕ (t)−ϕ (x+) , x < t < ∞

and

M (γ,r,x) = M2γ

(∫
∞

0
(t− x)2rK[α]

n (x, t)dt
) γ

2r

.

Proof. Because L[α]
n (1;x) = 1, therefore for all x ∈ R+, we obtain

L[α]
n (ϕ;x)−ϕ (x) =

∫
∞

0
(ϕ (t)−ϕ (x))K[α]

n (x, t)dt

=
∫

∞

0
K[α]

n (x, t)
∫ t

x
ϕ
′ (u)dudt. (3.15)

48



For ϕ ∈ DBV (R+), we may write

ϕ
′ (u) =

1
2
(
ϕ
′ (x+)+ϕ

′ (x−)
)
+ϕx

′ (u)+
1
2
(
ϕ
′ (x+)−ϕ

′ (x−)
)
(u− x)

+δx (u)
(

ϕ
′ (u)− 1

2
(
ϕ
′ (x+)+ϕ

′ (x−)
))

, (3.16)

where

δx (u) =

 1, u = x

0, u 6= x.

From the last term of (3.16) and using the property of δx, we acquire

∫
∞

0

(∫ t

x

(
ϕ
′ (u)− 1

2
(
ϕ
′ (x+)+ϕ

′ (x−)
))

δx (u)du
)

K[α]
n (x, t)dt = 0. (3.17)

Using (3.6), we obtain

∫
∞

0

(∫ t

x

1
2
(
ϕ
′ (x+)+ϕ

′ (x−)
)

du
)

K[α]
n (x, t)dt

=
1
2
(
ϕ
′ (x+)+ϕ

′ (x−)
)

L[α]
n ((t− x) ;x) . (3.18)

Moreover,

=
∫

∞

0

1
2
(
ϕ
′ (x+)−ϕ

′ (x−)
)
(t− x)K[α]

n (x, t)dt

≤ 1
2

∣∣ϕ ′ (x+)−ϕ
′ (x−)

∣∣∫ ∞

0
|t− x|K[α]

n (x, t)dt

=
1
2

∣∣ϕ ′ (x+)−ϕ
′ (x−)

∣∣L[α]
n (|t− x| ;x)

≤ 1
2

∣∣ϕ ′ (x+)−ϕ
′ (x−)

∣∣(L[α]
n

(
(t− x)2;x

))1/2
. (3.19)

Using equations (3.15)-(3.19) with Lemma 3.2.7, we have

L[α]
n (ϕ;x)−ϕ (x)≤ 1

2
(
ϕ
′ (x+)+ϕ

′ (x−)
)

L[α]
n ((t− x) ;x)

+
1
2

∣∣ϕ ′ (x+)−ϕ
′ (x−)

∣∣(L[α]
n

(
(t− x)2;x

))1/2

+
∫

∞

0

(∫ t

x
ϕx
′ (u)du

)
K[α]

n (x, t)dt

≤ 1
4n

(
ϕ
′ (x+)+ϕ

′ (x−)
)
+

1
2

√
C
n

δn (x)
∣∣ϕ ′ (x+)−ϕ

′ (x−)
∣∣

+
∫

∞

0

(∫ t

x
ϕx
′ (u)du

)
K[α]

n (x, t)dt.
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Therefore

∣∣∣L[α]
n (ϕ;x)−ϕ (x)

∣∣∣≤ 1
4n

∣∣ϕ ′ (x+)+ϕ
′ (x−)

∣∣+ 1
2

√
C
n

δn (x)
∣∣ϕ ′ (x+)−ϕ

′ (x−)
∣∣

+Anx +Bnx, (3.20)

where

Anx =

∣∣∣∣∫ x

0

(∫ t

x
ϕx
′ (u)du

)
K[α]

n (x, t)dt
∣∣∣∣ ,

and

Bnx =

∣∣∣∣∫ ∞

x

(∫ t

x
ϕx
′ (u)du

)
K[α]

n (x, t)dt
∣∣∣∣ .

Applying Lemma 3.2.7, integrating by parts and taking y = x− x√
n , we obtain

Anx =

∣∣∣∣∫ x

0

(∫ t

x
ϕx
′ (u)du

)
dtβn (x, t)

∣∣∣∣= ∣∣∣∣∫ x

0
βn (x, t)ϕx

′ (t)dt
∣∣∣∣

≤
∫ y

0
|βn (x, t)|

∣∣ϕ ′x (t)∣∣dt +
∫ x

y
|βn (x, t)|

∣∣ϕ ′x (t)∣∣dt

=
∫ x− x√

n

0
βn (x, t)

∣∣ϕ ′x (t)∣∣dt +
∫ x

x− x√
n

βn (x, t)
∣∣ϕ ′x (t)∣∣dt.

Since ϕx
′ (x) = 0 and βn (x, t)≤ 1, it follows

∫ x

x− x√
n

∣∣ϕx
′ (t)
∣∣βn (x, t)dt =

∫ x

x− x√
n

∣∣ϕx
′ (t)−ϕx

′ (x)
∣∣βn (x, t)dt

≤
∫ x

x− x√
n

∨x
t
(
ϕx
′)dt ≤ x√

n
∨x

x− x√
n

(
ϕx
′) .

Again using Lemma 3.2.7 and substituting t = x− x
u ,

∫ x− x√
n

0

∣∣ϕx
′ (t)
∣∣βn (x, t)dt ≤ Cδ 2

n (x)
n

∫ x− x√
n

0

|ϕx
′ (t)|

(x− t)2 dt

≤ Cδ 2
n (x)
nx

∫ √n

1
∨x

x− x
u

(
ϕx
′)du

≤ Cδ 2
n (x)
nx

[
√

n]

∑
k=1
∨x

x− x
k

(
ϕx
′).

Thus, Anx ≤ x√
n ∨

x
x− x√

n
(ϕx
′)+ Cδ 2

n (x)
nx

[
√

n]
∑

k=1
∨x

x− x
k
(ϕx
′).

Now, we can write

Bn,x ≤
∣∣∣∣∫ 2x

x

(∫ t

x
ϕx
′ (u)du

)
K[α]

n (x, t)dt
∣∣∣∣+ ∣∣∣∣∫ ∞

2x

(∫ t

x
ϕx
′ (u)du

)
K[α]

n (x, t)dt
∣∣∣∣
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Also from part (ii) of Lemma 3.2.7, we have

K[α]
n (x, t) = dt (1−βn (x, t)) for t > x

Thus,

Bnx ≤ B1,n,x +B2,n,x,

where

B1,n,x =

∣∣∣∣∫ 2x

x

(∫ t

x
ϕx
′ (u)du

)
dt (1−βn (x, t))

∣∣∣∣
and

B2,n,x =

∣∣∣∣∫ ∞

2x

(∫ t

x
ϕx
′ (u)du

)
K[α]

n (x, t)dt
∣∣∣∣ .

Making use of integration by parts as well as using Lemma 3.2.7, (3.16), 1−βn (x, t)≤ 1 and

putting t = x+ x
u successively,

B1,n,x =

∣∣∣∣∫ 2x

x
ϕx
′ (u)du(1−βn (x,2x))−

∫ 2x

x
ϕx
′ (t)(1−βn (x, t))dt

∣∣∣∣
≤
∣∣∣∣∫ 2x

x

(
ϕ
′ (u)−ϕ

′ (x+)
)

du
∣∣∣∣ |1−βn (x,2x)|

+
∫ 2x

x

∣∣ϕx
′ (t)
∣∣ |1−βn (x, t)|dt

≤ Cδ 2
n (x)

nx2

∣∣ϕ (2x)−ϕ (x)− xϕ
′ (x+)

∣∣
+
∫ x+ x√

n

x

∣∣ϕx
′ (t)
∣∣ |1−βn (x, t)|dt +

∫ 2x

x+ x√
n

∣∣ϕx
′ (t)
∣∣ |1−βn (x, t)|dt

≤ Cδ 2
n (x)

nx2

∣∣ϕ (2x)−ϕ (x)− xϕ
′ (x+)

∣∣
+

Cδ 2
n (x)
n

∫ 2x

x+ x√
n

∨t
x (ϕx

′)

(t− x)2 dt +
∫ x+ x√

n

x
∨t

x
(
ϕx
′)dt

≤ Cδ 2
n (x)

nx2

∣∣ϕ (2x)−ϕ (x)− xϕ
′ (x+)

∣∣
+

Cδ 2
n (x)
n

∫ 2x

x+ x√
n

∨t
x (ϕx

′)

(t− x)2 dt +
x√
n
∨

x+ x√
n

x
(
ϕx
′)

≤ Cδ 2
n (x)

nx2

∣∣ϕ (2x)−ϕ (x)− xϕ
′ (x+)

∣∣
+

Cδ 2
n (x)
nx

[
√

n]

∑
k=1
∨x+ x

k
x
(
ϕx
′)+ x√

n
∨

x+ x√
n

x
(
ϕx
′) .
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Finally, Remark 3.2.4 implies

B2,n,x =

∣∣∣∣∫ ∞

2x

(∫ t

x

(
ϕ
′ (u)−ϕ

′ (x+)
)

du
)

K[α]
n (x, t)dt

∣∣∣∣
≤
∫

∞

2x
|ϕ (t)−ϕ (x)|K[α]

n (x, t)dt +
∫

∞

2x
|t− x|ϕ ′ (x+)K[α]

n (x, t)dt

≤M
∫

∞

2x
tγK[α]

n (x, t)dt + |ϕ (x)|
∫

∞

2x
K[α]

n (x, t)dt

+

√
C
n

δn (x)ϕ
′ (x+) .

As it is obvious that t ≤ 2(t−x) and x≤ t−x when t ≥ 2x, applying Holder’s inequality,

we get

B2,n,x ≤M2γ

(∫
∞

0
(t− x)2rK[α]

n (x, t)dt
) γ

2r

+
Cδ 2

n (x) |ϕ (x)|
nx2

+

√
C
n

δn (x)ϕ
′ (x+)

= M (γ,r,x)+
Cδ 2

n (x) |ϕ (x)|
nx2 +

√
C
n

δn (x)ϕ
′ (x+) .

Estimates of B1,n,x and B2,n,x results

Bn,x ≤
Cδ 2

n (x)
nx2

∣∣ϕ (2x)−ϕ (x)− xϕ
′ (x+)

∣∣

+
Cδ 2

n (x)
nx

[
√

n]

∑
k=1
∨x+ x

k
x
(
ϕx
′)+ x√

n
∨

x+ x√
n

x
(
ϕx
′)

+M (γ,r,x)+
Cδ 2

n (x) |ϕ (x)|
nx2 +

√
C
n

δn (x)ϕ
′ (x+) .

Hence values of An,x and Bn,x in (3.20), we get the required result.
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Chapter 4

Approximation by integral form of Jain

and Pethe operators

4.1 Introduction

In 1957, Baskakov [29] introduced the Baskakov operators for ϕ ∈C(R+) and its Dur-

rmeyer form proposed by Sahai and Prasad [140]. In the literature, Durrmeyer forms of

several operators are available, which have been studied by many researchers and have

presented interesting results, see [2, 15,25,53,58,75,76,78,80–82,140].

In the previous chapter, we studied the Kantorovich form of Jain and Pethe operators

(3.1). Now we consider the Durrmeyer form of Jain and Pethe operators associated with

Baskakov operators (JPDB operators), defined as:

Pn,α(ϕ(t);x) = (n−1)
∞

∑
k=0

s[α]
n,k(x)

∞∫
0

 n+ k−1

k

 tk

(1+ t)n+k ϕ(t)dt. (4.1)

The main objective of this chapter is to discuss some direct results, Voronovskaja type

theorem and weighted approximation properties for the JPDB operators (4.1).

4.2 Preliminaries

This section is based on some basic results that will be used later for the proof of the

main theorems.
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Lemma 4.2.1. The following are some moments of JPDB operators:

(i) Pn,α(1;x) = 1;

(ii) Pn,α(t;x) = (n−3)!
(n−2)! (nx+1!);

(iii) Pn,α(t2;x) = (n−4)!
(n−2)! ((nx)2 +(αn+4)(nx)+2!);

(iv) Pn,α(t3;x) = (n−5)!
(n−2)! ((nx)3 +(3αn+2)(nx)2 +(2α2n2

+9αn+19)(nx)+3!);

(v) Pn,α(t4;x) = (n−6)!
(n−2)! ((nx)4 +2(3αn+8)(nx)3 +(11(αn)2

+48αn+72)(nx)2 +(6(αn)3 +32(αn)2 +72αn

+96)(nx)+4!).

Proof. Making use of Lemma 3.2.1 and Proposition 3.2.2, we obtain

Pn,α(ϕ;x) = (n−1)
∞

∑
k=0

s(α)
n,k (x)

∞∫
0

 n+ k−1

k

 tk

(1+ t)n+k ϕ(t)dt.

For ϕ(t) = 1

Pn,α(1;x) = (n−1)
∞

∑
k=0

s(α)
n,k (x)

∞∫
0

 n+ k−1

k

 tk

(1+ t)n+k dt = 1.

For ϕ(t) = t

Pn,α(t;x) = (n−1)
∞

∑
k=0

s(α)
n,k (x)

∞∫
0

 n+ k−1

k

 tk+1

(1+ t)n+k dt

=
∞

∑
k=0

s(α)
n,k (x)

(k+1)
(n−2)

=
n

n−2

{
∞

∑
k=0

s(α)
n,k (x)

k
n
+

1
n

∞

∑
k=0

s(α)
n,k (x)

}
=

nx+1
n−2

.
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For ϕ(t) = t2

Pn,α(t2;x) = (n−1)
∞

∑
k=0

s(α)
n,k (x)

∞∫
0

 n+ k−1

k

 tk+2

(1+ t)n+k dt

=
∞

∑
k=0

s(α)
n,k (x)

k2 +3k+2
(n−2)(n−3)

=
n2

(n−2)(n−3)

{
∞

∑
k=0

s(α)
n,k (x)

k2

n2 +
3
n

∞

∑
k=0

s(α)
n,k (x)

k
n
+

2
n2

∞

∑
k=0

s(α)
n,k (x)

}

=
n2

(n−2)(n−3)

{
x2 +

(
α +

4
n

)
x+

2
n2

}
.

Higher order terms follow in similar manner.

Lemma 4.2.2. The central moments for the JPDB operators are denoted by µα
n,m(x)=Pn,α((t− x)m;x)

and given as:

(i) µα
n,1(x) =

(n−3)!
(n−2)! (1+2x);

(ii) µα
n,2(x) =

(n−4)!
(n−2)! ((n+6)x2 +(n(αn+1)−2(n−1))x+2);

(iii) µα
n,4(x) =

(n−6)!
(n−2)! ((3n2 +86n+120)x4 +2(3αn3 +(60α +6)n2 +146n+120)x3

+(3α2n4 +4α(10α +3)n2 +12(15α +1)n2 +252n+240)x2

+2(3α3n4 +16α2n3 +36αn2 +36n+60)x+4!),

Lemma 4.2.3. Let limn→∞ nα = l, for l ∈ R. The central moments of Lemma 4.2.2 have the

limiting values:

(i) limn→∞ n µα
n,1(x) = 1+2x;

(ii) limn→∞ n µα
n,2(x) = x(x+ l−1);

(iii) limn→∞ n2 µα
n,4(x) = 3x2(x2 +(l +2)x+(l +2)2).

Lemma 4.2.4. Let ϕ be a bounded function defined on R+ with

‖ϕ‖= sup
x∈R+
|ϕ(x)|, then

|Pn,α(ϕ;x)| ≤ ‖ϕ‖.

4.3 Direct results

Theorem 4.3.1. Let C(R+) be the space of all real-valued continuous functions in R+. Let

E =

{
ϕ : x ∈ R+,

ϕ(x)
1+ x2 is convergent asx→ ∞

}
.
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For ϕ ∈C(R+)∩E and α = (αn)n∈N be such that the limit

lim
n→∞

Pn,α(ϕ;x) = ϕ(x)

is uniform on each compact subset of R+.

Proof. Taking Lemma 4.2.1 into the account and the fact that α → 0 as n→ ∞, it is clear that

lim
n→∞

Pn,α
(
t i;x
)
= xi, i = 0,1,2

uniformly on each compact subset of R+. Hence, making use of the well-known Korovkin-

type theorem [24], we get the required result.

Theorem 4.3.2. Let ϕ ∈CB(R+), then for any x ∈ R+ it follows that

|Pn,α(ϕ(t);x)−ϕ(x)| ≤M ω2

(
ϕ,

βn(x)
2

)
+ω(ϕ,µα

n,1(x)),

where M is an absolute constant, βn(x) =
√

µα
n,2(x)− (µα

n,1(x))
2, and the terms βn and µα

n,1(x)

tend to zero as n→ ∞.

Proof. For x ∈ R+, consider the auxiliary operators

P̂n,α (ϕ(t);x) = Pn,α (ϕ(t);x)−ϕ

(
nx+1
n−2

)
+ϕ (x) . (4.2)

Since the constants and linear functions are preserved by the operators P̂n,α , therefore,

P̂n,α (t− x;x) = 0. (4.3)

Let ψ ∈C2
B(R+) and x, t ∈ R+. By Taylor’s expansion, we have

ψ (t) = ψ (x)+(t− x)ψ ′ (x)+
∫ t

x
(t−u)ψ

′′ (u)du.

Applying, P̂n,α to both sides of the expansion, we get

P̂n,α (ψ(t);x)−ψ(x) = ψ
′(x) · P̂n,α(t− x;x)+ P̂n,α

(∫ t

x
(t−u)ψ

′′ (u)du;x
)

= Pn,α

(∫ t

x
(t−u)ψ

′′ (u)du;x
)
−
∫ nx+1

n−2

x

(
nx+1
n−2

−u
)

ψ
′′(u)du.
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We observe that ∣∣∣∣∫ t

x
(t−u)ψ ′′(u)du

∣∣∣∣≤ (t− x)2‖ψ ′′‖,

thus ∣∣P̂n,α (ψ(t);x)−ψ(x)
∣∣≤ β

2
n (x)‖ψ ′′‖.

Making use of (4.2) and Lemma 4.2.2, we obtain

|Pn,α (ϕ(t);x)−ϕ (x)| ≤
∣∣P̂n,α (ϕ−ψ;x)

∣∣+ ∣∣P̂n,α (ψ(t);x)−ψ (x)
∣∣

+ |ψ (x)−ϕ (x)|+
∣∣∣∣ϕ(nx+1

n−2

)
−ϕ (x)

∣∣∣∣
≤ 4‖ϕ−ψ‖+β

2
n (x)

∥∥ψ
′′∥∥+ω

(
ϕ,µα

n,1(x)
)
. (4.4)

Now taking infimum in (4.4) over ψ ∈C2
B(R+), we get

|Pn,α (ϕ(t);x)−ϕ (x)| ≤ 4K2

(
ϕ,

βn
2 (x)
4

)
+ω

(
ϕ,µα

n,1(x)
)

≤Mω2
(
ϕ, 1

2βn(x)
)
+ω

(
ϕ,µα

n,1(x)
)
.

Theorem 4.3.3. Let ϕ ∈ LipM(ξ ), 0 < ξ ≤ 1 and for every positive x, we have

|Pn,α(ϕ(t);x)−ϕ(x)| ≤Mϕ

(
µα

n,2(x)

x

)ξ/2

.

Proof. Making the use of definition (1.20) and ϕ ∈ LipM(ξ ), then we obtain

|Pn,α(ϕ(t);x)−ϕ(x)| ≤ (n−1)
∞

∑
k=0

s(α)
n,k (x)

∞∫
0

 n+ k−1

k

 tk

(1+ t)n+k |ϕ(t)−ϕ(x)|dt

≤ (n−1)Mϕ

∞

∑
k=0

s(α)
n,k (x)

∞∫
0

 n+ k−1

k

 tk

(1+ t)n+k

(
|t− x|ξ

(t + x)
ξ

2

)
dt.

With p = 2/(2−ξ ),q = 2/ξ , we apply the Hölder inequality for integration and get

|Pn,α(ϕ(t);x)−ϕ(x)| ≤(n−1)Mϕ

∞

∑
k=0

s(α)
n,k (x)

(n−1)
∞∫

0

 n+ k−1

k

 tk

(1+ t)n+k dt

(2−ξ )/2

57



×

(n−1)
∞∫

0

 n+ k−1

k

 tk

(1+ t)n+k
(t− x)2

(t + x)
dt

ξ/2

Now, applying the Hölder inequality for summation with p and q, we get

|Pn,α(ϕ(t);x)−ϕ(x)| ≤Mϕ

(n−1)
∞

∑
k=0

s(α)
n,k (x)

∞∫
0

 n+ k−1

k

 tk

(1+ t)n+k dt


(2−ξ )/2

×

(n−1)
∞

∑
k=0

s(α)
n,k (x)

∞∫
0

 n+ k−1

k

 tk

(1+ t)n+k

(
(t− x)2

(t + x)

)
dt


ξ/2

≤
Mϕ

x
ξ/2

(
Pn,α

(
(t− x)2;x

))ξ/2
.

Since µα
n,2(x) = Pn,α

(
(t− x)2;x

)
. Hence the result follows.

The Steklov-mean of second-order for sufficiently small h associated with the function

ϕ ∈CB(R+) is as follows:

ϕh(x) =
4
h2

h/2∫
0

h/2∫
0

(2ϕ(x+u+ v)−ϕ(x+2u+2v))dudv, h > 0 (4.5)

The definition of Steklov-mean and its properties can be seen in these references [92,148,

157] for detailed explanation .

Proposition 4.3.4. Some properties of Steklov-mean are as follows:

(i) |ϕ−ϕh| ≤ 13
4 ω2(ϕ;h),

(ii) |ϕ ′|∞ ≤ 5
h ,ω2( f ;h),

(iii) |ϕ ′′ |∞ ≤ 9
h2 ω2(ϕ;h).

Theorem 4.3.5. Let ϕ ∈CB(R+), then

|Pn,α(ϕ(t);x)−ϕ(x)| ≤ 13
2

ω2(ϕ; µ
α
n,2(x))+ω(ϕ; µ

α
n,2(x)).

Proof. Let ϕ ∈C2
B(R+), using Taylor’s expansion

ϕh(t) = ϕh(x)+(t− x)ϕ
′
h(x)+

(t− x)2

2
ϕ
′′
h(η),
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where t ≤ η ≤ x. Applying Pn,α(·;x) in above and use Cauchy-Schwarz inequality, we get

|Pn,α(ϕh(t);x)−ϕh(x)| ≤
√

Pn,α((t− x)2;x) ||ϕ
′
h||∞ +

1
2

Pn,α((t− x)2;x) ||ϕ
′′
h ||∞. (4.6)

For ϕ ∈C2
B(R+), using Proposition 4.3.4 and (4.6), we get

|Pn,α(ϕ(t);x)−ϕ(x)| ≤ |Pn,α(ϕ;x)−Pn,α(ϕh;x)|+ |Pn,α(ϕh;x)−ϕh(x)|+ |ϕh(x)−ϕ(x)|

≤ 2‖ϕ−ϕh‖∞
+ |Pn,α(ϕh;x)−ϕh|

≤ 13
2

ω2(ϕ; µ
α
n,2(x))+ω(ϕ; µ

α
n,2(x)).

Choosing h = µα
n,2(x), we obtain the desire outcome.

Theorem 4.3.6. For any ϕ ∈CB(R+), x > 0, and φ(x) =
√

x, we have

|Pn,α(ϕ(t);x)−ϕ(x)| ≤M ωφ

(
ϕ,

µα
n,2(x)√

x

)
.

Proof. For any ψ ∈Wφ (R+), by Taylor’s theorem

ψ(t) = ψ(x)+
t∫

x

ψ
′
(u)du,

we have

|ψ(t)−ψ(x)| ≤
∥∥∥φψ

′
∥∥∥

∞

∣∣∣∣∣∣
t∫

x

1
φ(u)

du

∣∣∣∣∣∣= 2
∥∥∥φψ

′
∥∥∥

∞

∣∣√t−
√

x
∣∣ ,

therefore

|ψ(t)−ψ(x)| ≤ 2
∥∥∥φψ

′
∥∥∥

∞

|t− x|√
t +
√

x
≤ 2
∥∥∥φψ

′
∥∥∥

∞

|t− x|√
x

= 2
∥∥∥φψ

′
∥∥∥

∞

|t− x|
φ(x)

.

By the property |Pn,α (ϕ;x)| ≤ ‖ϕ‖, using Lemma 4.2.2, and the above equation, we get

|Pn,α((ϕ(t);x)−ϕ(x)| ≤ |Pn,αϕ(t)−ψ(x)|+ |Pn,α(ψ;x)−ψ(x)|+ |ψ(x)−ϕ(x)|

≤ 2‖ϕ−ψ‖
∞
+

∥∥∥φψ
′
∥∥∥

∞

φ(x)
Pn,α (|t− x| ;x) .

With the use of Cauchy-Schwarz inequality, we get

|Pn,α(ϕ(t);x)−ϕ(x)| ≤ 2‖ϕ−ψ‖
∞
+

∥∥∥φψ
′
∥∥∥

∞

φ(x)
µ

α
n,2(x).
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Taking the infimum over ψ ∈W (R+) yields

|Pn,α(ϕ(t);x)−ϕ(x)| ≤ 2Kφ

(
ϕ,

µα
n,2(x)√

x

)
.

The desired outcome is obtained by using the equivalence between the Peetre’s K-functional

and the Ditzian-Totik modulus of smoothness which is given in (1.18).

4.4 Voronovskaja type theorem

Theorem 4.4.1. Let ϕ ∈C2(R+) and α = αn→ 0 as n→ ∞. If there exists first and second

derivatives of the function ϕ at a fixed point x ∈ R+ and lim
n→∞

nαn = l ∈ R, then

lim
n→∞

n [Pn,α (ϕ(t);x)−ϕ(x)] = (1+2x)ϕ ′(x)+
(
x2 +(l +2)x

)
ϕ
′′(x),

uniformly in [0,a], a > 0.

Proof. By the Taylor’s series expansion, we have

ϕ(t) = ϕ(x)+(t− x)ϕ
′
(x)+

(t− x)2

2!
ϕ
′′
(x)+ ε(t,x)(t− x)2, (4.7)

where ε(t,x) is a bounded function approaches to 0 as t→ x.

Applying Pn,α(;x) on both side of (4.7), we have

Pn,α(ϕ(t)−ϕ(x);x) = ϕ
′
(x)Pn,α((t− x);x)+

ϕ
′′
(x)

2!
Pn,α((t− x)2;x)

Pn,α(ε(t,x)(t− x)2;x).

Now,

lim
n→∞

nPn,α(ϕ(t)−ϕ(x);x) = lim
n→∞

nϕ
′
(x)Pn,α((t− x);x)+ lim

n→∞
nPn,α((t− x)2;x)ϕ

′′
(x)

+ lim
n→∞

nPn,α(ε(t,x)(t− x)2;x). (4.8)

From Theorem 4.3.1, Lemma 4.2.3 and applying cauchy-Schwarz in the last term of (4.8) then,

we get

lim
n→∞

nPn,α(ε(t,x)(t− x)2;x) = 0. (4.9)

Again using Lemma 4.2.3, (4.8) and (4.9) then, we get required result.
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4.5 Weighted approximation

Theorem 4.5.1. Let ϕ ∈ C2(R+) and ωd be its modulus of continuity on the finite interval

[0,d],d > 0. Then

||Pn,α(ϕ)−ϕ||C[0,d] ≤ 4M(1+d2)κn(d)+2ωd+1(ϕ,
√

κn(d)),

where κn(d) = maxx∈[0,d]µ
α
n,2(x) and || · ||C[0,d] represents the sup norm in C[0,d].

Proof. In [93], for each 0≤ x≤ d, δ > 0 and t ≥ 0 the inequality holds:

|ϕ(t)−ϕ(x)| ≤ 4M(1+ x2)(t− x)2 +

(
1+
|t− x|

δ

)
ωb+1(ϕ;δ ), (4.10)

With the use of Cauchy-Schwarz inequality and applying Pn,α(.;x), we have

|Pn,α(ϕ(t);x)−ϕ(x)| ≤ 4M(1+d2)Pn,α((t− x)2;x)+
(

1+
1
δ

Pn,α(|t− x|;x)
)

ωd+1(ϕ,δ )

≤ 4M(1+d2)κn(d)+ωb+1(ϕ,δ )

(
1+

1
δ

√
κn(d)

)
.

For our suitability if we choose δ =
√

κn(d), the result follows.

Theorem 4.5.2. For ς > 0 and ϕ ∈C∗2(R+), we have

lim
n→∞

sup
x∈R+

|Pn,α)(ϕ(t);x)−ϕ(x)|
(1+ x2)

1+ς
= 0.

Proof. Suppose x0 is an arbitrary and fixed belongs to the set R+, we obtain

sup
x∈R+

|Pn,α(ϕ(t);x)−ϕ(x)|
(1+ x2)

1+ς
≤ sup

x≤x0

|Pn,α(ϕ(t);x)−ϕ(x)|
(1+ x2)

1+ς
+ sup

x>x0

|Pn,α(ϕ(t);x)−ϕ(x)|
(1+ x2)

1+ς

≤ ||Pn,α(ϕ(t);x)−ϕ||C[0,x0]+ ||ϕ||2 sup
x>x0

|Pn,α(1+ t2;x)|
(1+ x2)

1+ς
+ sup

x>x0

|ϕ(x)|
(1+ x2)1+ς

.

Since |ϕ(x)| ≤ ||ϕ||2(1+ x2), we obtain

sup
x>x0

|ϕ(x)|
(1+ x2)1+ς

≤ ||ϕ||2
(1+ x2

0)
ς
.
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We choose x0 is sufficiently large and suppose ε > 0, we get

||ϕ||2
(1+ x2

0)
ς
<

ε

6
. (4.11)

Since lim
n→∞

sup
x>x0

Pn,α(1+ t2;x)
1+ x2 = 1, we obtain

sup
x>x0

Pn,α(1+ t2;x)
1+ x2 ≤

(1+ x2
0)

ς

‖ϕ‖2

ε

3
+1,

for adequately large n, we get

‖ϕ‖2 sup
x>x0

Pn,α(1+t2;x)
(1+x2)ς+1 ≤

‖ϕ‖2

(1+x2
0)

ς
sup
x>x0

Pn,α(1+t2;x)
(1+x2)

≤ ε

3
+
||ϕ||2

(1+x2
0)

ς
. (4.12)

Applying Theorem 4.5.2, we can find for adequately large n

||Pn,α(ϕ(t);x)−ϕ(x)||C[0,x0] <
ε

3
. (4.13)

Combining the relations (4.11)-(4.13), we obtain

sup
x∈R+

|Pn,α(ϕ(t);x)−ϕ(x)|
(1+ x2)1+ς

< ε.

Theorem 4.5.3. Let ϕ ∈C∗2(R+) and for adequately large n, we acquire

sup
x∈R+

|Pn,α(ϕ(t);x)−ϕ(x)|
(1+ x2)

5
2

≤ ˜η(l)Ω
(

ϕ;
1√
n

)
, (4.14)

where ˜η(l)> 0.

Proof. For x ∈ R+, δ > 0 and using the property (iii) of Proposition (1.4.2), we have

|ϕ(t)−ϕ(x)| ≤
(
1+(x+ |x− t|)2)

Ω(ϕ; |t− x|)

≤ 2(1+ x2)(1+(t− x)2)

(
1+
|t− x|

δ

)
Ω(ϕ;δ ).

Using Pn,α(·;x) in above inequality, we obtain

|Pn,α(ϕ;x)−ϕ(x)| ≤ 2(1+ x2)Ω(ϕ;δ ) (4.15)
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×
(

1+Pn,α((t− x)2;x)+Pn,α

(
(1+(t− x)2)

|t− x|
δ

;x
))

.

From Lemma 4.2.3, for adequately large n, we obtain the following inequlities

nPn,α((t− x)2;x)≤ η(l)(1+ x2) and n2Pn,α((t− x)4;x)≤ η(l)(1+ x2)2, (4.16)

where η(l)> 0.

Using Cauchy-Schwarz inequality in (4.15), we have

Pn,α

(
(1+(t− x)2)

|t− x|
δ

;x
)
≤ 1

δ

√
Pn,α((t− x)2;x)+

1
δ

√
Pn,α((t− x)4;x)Pn,α((t− x)2;x).

(4.17)

Combining the estimates (4.15)-(4.17) and assume

˜η(l) = 2
(

1+
√

η(l)+2η(l)
)

and δ =
1√
n
,

the result holds.
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Chapter 5

Approximaton by genuine

Gupta-Srivastava operators

5.1 Introduction

In 2003, Srivastava and Gupta [142] proposed a general sequence of positive linear

operators and studied the rate of convergence for the function of bounded variation. Two

years later Ispir and Yuksel [99] considered the Bézier variant of these operators and

established the rate of convergence. The operators defined in [142] reproduced constant

function only except for the special case c = 0, which provides the well-known Phillips

operators. These operators and related versions were studied by several researchers, see

for instance [4,47,77,89,99,114,119,127,151,153], where many interesting results, like the

rate of convergence for functions having derivatives of bounded variation, Voronovskaja

type asymptotic formula, better estimates and simultaneous approximation of these op-

erators were established. It is well-known that if operators preserve the linear function,

one may get a better approximation. In this direction very recently Gupta and Srivas-

tava [90] proposed a general family of positive linear operators, which preserve constant,

as well as linear functions for all c ∈ N∪{0}∪{−1}, which may be termed as Gupta-

Srivastava operators and for all integers m, are defined as:

Ln,c (ϕ (t) ;x) = {n+(m+1)c}
∞

∑
k=1

pn+mc,k(x;c)
∞∫

0

pn+(m+2)c,k−1(t;c)ϕ(t)dt

+ pn+mc,0(x;c)ϕ(0), (5.1)
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where

pn,k (x;c) =
(−x)k

k!
φ
(k)
n,c (x).

The special cases of operators (5.1) are as follows:

(i) For c = 0 and φn,0(x) = e−nx, we get Phillips operators

Ln,0 (ϕ (t) ;x) = n
∞

∑
k=1

pn,k(x;0)
∞∫

0

pn,k−1(t;0)ϕ(t)dt + pn,0(x;0)ϕ(0),

where

pn,k(x,0) =
e−nx(nx)k

k!
and x ∈ [0,∞).

(ii) For c ∈ N and φn,c(x) = (1+ cx)−
n
c , we get genuine Baskakov-Durrmeyer type op-

erators. These operators are similar to (5.1), where

pn,k(x;c) =

(n
c

)
k

k!
(cx)k

(1+ cx)
n
c+k and x ∈ [0,∞)

with (n)i denotes the rising factorial given by

(n)i = n(n+1)(n+2)...(n+ i−1) & (n)0 = 1(i ∈ N).

(iii) For c = −1 and φn,−1(x) = (1− x)−n, we have sequence of Bernstein-Durrmeyer

operators

Ln,−1 (ϕ;x) = (n−m−1)
n−m−1

∑
k=1

pn−m,k (x,−1)
1∫

0

pn−m−2,k−1 (t,−1)ϕ(t)dt

+ pn−m,0 (x,−1)ϕ(0)+ pn−m,n−m (x,−1) ,

where

pn,k(x;−1) =

 n

k

xk(1− x)n−k and x ∈ [0,1].

Recently Acu and collaborators [6, 7] and Deo-Dhamija in [50] studied and many in-

teresting approximation properties and provide a better degree of approximation over

the classical operators, direct approximation theorem using the Ditzian-Totik modulus

of smoothness and a Voronovskaja type theorem and many more.
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In this chapter, we consider operators (5.1) and study fundamental properties, the

rate of convergence in terms of second-order modulus of continuity, Lipschitz type space,

Voronovskaya type estimates, convergence estimates for the function having derivatives

of bounded variation and weighted approximation.

5.2 Preliminaries

In this section, we prove some basic results which are useful to prove several theorems

and results.

Lemma 5.2.1. Let ϕ(t) = t i, i = 0,1,2,3,4 and c ∈ N∪{0}∪{−1}, then we have

(i) Ln,c (1;x) = 1;

(ii) Ln,c (t;x) = x;

(iii) Ln,c
(
t2;x

)
= (n+(m+1)c)

(n+(m−1)c)x
2 + 2

(n+(m−1)c)x;

(iv) Ln,c
(
t3;x

)
= (n+(m+1)c)(n+(m+2)c)

(n+(m−1)c)(n+(m−2)c)x
3 + 6(n+(m+1)c)

(n+(m−1)c)(n+(m−2)c)x
2 + 6

(n+(m−1)c)(n+(m−2)c)x;

(v) Ln,c
(
t4;x

)
= (n+(m+1)c)(n+(m+2)c)(n+(m+3)c)

(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)x
4 + 12(n+(m+1)c)(n+(m+2)c)

(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)x
3

+ 36(n+(m+1)c)
(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)x

2 + 24
(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)x.

Proof. All the moments of operators (5.1), can be obtained in terms of hyper geometric func-

tion of order r ∈ N for details see [90].

Lemma 5.2.2. The central moment of the operators (5.1) is given as:

µn,c,s(x) = Ln,c((t− x)s;x),

for s = 1,2,4 then, we have

(i) µn,c,1(x) = 0;

(ii) µn,c,2(x) =
2x(1+cx)

(n+(m−1)c) ;

(iii) µn,c,4(x) =
12c2(n+(m+7)c)

(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)x
4 + 24c2(13n+(13m+1)c)

(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)x
3

+ 12(n+(m+9)c)
(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)x

2 + 24
(n+(m−1)c)(n+(m−2)c)(n+(m−3)c)x.

Lemma 5.2.3. For n ∈ N then, we have

Ln,c

(
(t− x)2;x

)
≤ 2φ 2 (x)

n
,
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where φ 2 (x) = x(1+ cx).

Lemma 5.2.4. For ϕ ∈CB(R+) and sufficient large n, then we have

(i) lim
n→∞

nµn,c,2(x) = 2x(1+ cx);

(ii) lim
n→∞

n2µn,c,4(x) = 12x2(c2x2 +26c2x+1).

Lemma 5.2.5. For ϕ ∈CB(R+) then, we have

|Ln,c(ϕ;x)| ≤ ‖ϕ‖ .

5.3 Direct results

Theorem 5.3.1. Let ϕ ∈ CB(R+) and n→ ∞. Then lim
n→∞

Ln,c(ϕ(t);x) = ϕ(x), uniformly in

each compact subset of R+.

Proof. From Lemma 5.2.1, Ln,c(1;x) = 1, Ln,c(t;x) = x, Ln,c(t2;x) = x2, as n → ∞. By

Bohman-Korovkin theorem, we have

Ln,c(ϕ(t);x) = ϕ(x), as n→ ∞,

uniformly in each compact subset of R+.

Theorem 5.3.2. For the function ϕ ∈CB(R+) we have

|Ln,c(ϕ(t);x)− f (x)| ≤Cω2(ϕ;δn(x)),

where δ 2
n (x) = µn,c,2(x) =

2x(1+cx)
(n+(m−1)c) .

Proof. Let the function ψ ∈C2
B(R+), and using Taylor’s expression then we have

ψ(t) = ψ(x)+ψ
′(x)(t− x)+

t∫
x

(t−u)ψ ′′(u)du. (5.2)

Applying Ln,c(.;x) on both side of the expression (5.2) then, we have

Ln,c (ψ(t);x)−ψ(x) = ψ
′(x)Ln,c ((t− x);x)+Ln,c

 t∫
x

(t−u)ψ ′′(u)du;x

 .
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Using Lemma 5.2.3 then, we have

Ln,c (ψ(t);x)−ψ(x) = Ln,c

 t∫
x

(t−u)ψ ′′(u)du;x

 (5.3)

and we know that
t∫

x

(t−u)ψ ′′(u)du≤ (t− x)2∥∥ψ
′′∥∥ . (5.4)

From (5.3) & (5.4) and Using Lemma 5.2.3, we have

|Ln,c (ψ(t);x)−ψ(x)| ≤ Ln,c((t− x)2;x)
∥∥ψ
′′∥∥= 2x(1+ cx)

(n+(m−1)c)

∥∥ψ
′′∥∥ . (5.5)

From Lemma 5.6.1, we have

|Ln,c (ϕ(t);x)|6 ‖ϕ‖ . (5.6)

Hence from (5.5) and (5.6), we get

|Ln,c(ϕ(t);x)−ϕ(x)| ≤ |Ln,c(ϕ(t)−ψ(t);x)− (ϕ(x)−ψ(x))|+ |Ln,c(ψ(t);x)−ψ(x)|

≤ 2‖ϕ−ψ‖+ 2x(1+ cx)
(n+(m−1)c)

∥∥ψ
′′∥∥ .

Taking infimum on the right hand side of for all ψ ∈ C2
B(R+) and using (1.13), we get the

desired result.

Theorem 5.3.3. If ϕ ∈ Lipξ M, x ∈ R+ and n > (m−1)c, we have

|Ln,c(ϕ(t);x)−ϕ(x)| ≤Mδn(x).

Proof. Since ϕ ∈ Lipξ M, x ∈ R+ and applying the Hölder’s inequality with p = 2/ξ and

q = 2/(2−ξ ), we have

|Ln,c(ϕ(t);x)−ϕ(x)| ≤ Ln,c(|ϕ(t)−ϕ(x)| ;x)

≤MLn,c(|t− x|ξ ;x)

≤M(Ln,c((t− x)2;x)ξ/2

≤Mδn(x),

which is required result.
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5.4 Voronovskaya type theorem

Here, we present the Voronovskaya type theorem for Gupta-Srivastava operators:

Theorem 5.4.1. Let ϕ ∈CB(R+) and if there exists second derivatives of function ϕ at a fixed

point x ∈ R+, then we have

lim
n→∞

n [Ln,c(ϕ;x)−ϕ(x)] = x(1+ cx)ϕ
′′
(x).

Proof. By the Taylor’s series expansion, we have

ϕ(t) = ϕ(x)+(t− x)ϕ
′
(x)+

(t− x)2

2!
ϕ
′′
(x)+ ε(t,x)(t− x)2, (5.7)

where ε(t,x)→ 0 as t→ x.

Applying Ln,c(;x) on both side of (7.11), then we have

Ln,c(ϕ(t)−ϕ(x);x) = ϕ
′
(x)Ln,c((t− x);x)+

ϕ
′′
(x)

2!
Ln,c((t− x)2;x)

Ln,c(ε(t,x)(t− x)2;x).

From Lemma 5.2.2, we get

Ln,c((t− x);x) = 0

,

lim
n→∞

nLn,c(ϕ(t)−ϕ(x);x) = lim
n→∞

nLn,c((t− x)2;x)ϕ
′′
(x)

+ lim
n→∞

nLn,c(ε(t,x)(t− x)2;x). (5.8)

From theorem 5.3.1, Lemma 5.2.4 and applying cauchy-Schwarz in the last term of (5.8) then,

we get

lim
n→∞

nLn,c(ε(t,x)(t− x)2;x) = 0. (5.9)

Using Lemma 5.2.4 and (5.8), (5.9) then, we get required result.

5.5 Quantitative Voronovskaya type theorem

With the help of weighted modulus of continuity Ω(.;δ ), here we establish the degree

of approximation of the function ϕ ∈C∗2(R+) for the proposed operators (5.1). Several
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researchers have discussed this result. For more details see [66,68,75,109].

Theorem 5.5.1. Let ϕ ∈C∗2(R+) such that ϕ
′
,ϕ
′′ ∈C∗2(R+) and c ∈ N∪{0}∪{−1} then for

sufficient large n and for each x ∈ R+,

∣∣∣n(Ln,c(ϕ;x)−ϕ(x))− x(1+ cx)ϕ
′′
(x)
∣∣∣= O(1)Ω

(
ϕ
′′
,

1√
n

)
,

as n→ ∞ holds true.

Proof. By Taylor’s theorem

ϕ(t) = ϕ(x)+ϕ
′(x)(t− x)+

ϕ ′′(x)
2!

(t− x)2 +h2(t,x), (5.10)

where

h2(t,x) =
ϕ ′′(η)−ϕ ′′(x)

2!
(t− x)2, (5.11)

here η is a number lies between t and x.

From the well-known property of the weighted modulus of continuity, we get

∣∣ϕ ′′(η)−ϕ
′′(x)

∣∣≤ 4(1+ x2)(1+δ
2)2

(
1+

(t− x)4

δ 4

)
Ω
(
ϕ
′′,δ
)
. (5.12)

From (5.11) and (5.12), we get

h2(t,x)≤ 8(1+ x2)Ω
(
ϕ
′′,δ
)(

1+
(t− x)4

δ 4

)
(t− x)2, (5.13)

for 0 < δ < 1.

Applying Ln,c(;x) on both side of in (5.10) and using Lemma 5.2.2, we get∣∣∣∣Ln,c(ϕ;x)−ϕ(x)− ϕ ′′(x)
2!

Ln,c

(
(t− x)2;x

)∣∣∣∣≤ Ln,c (|h2(t,x)| ;x) (5.14)

From [90], the order of the convergence of operators

Ln,c((t− x)s;x) = O
(

n−[
s+1

2 ]
)
. (5.15)
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From (5.13), (5.15) and Lemma 5.2.4, we get

Ln,c (|h2(t,x)| ;x)≤8(1+ x2)Ω
(
ϕ
′′;δ
)

Ln,c

(
(t− x)2 +

(t− x)6

δ 4 ;x

)

=8(1+ x2)Ω
(
ϕ
′′;δ
)(

Ln,c

(
(t− x)2;x

)
+

1
δ 4 Ln,c

(
(t− x)6;x

))
=8(1+ x2)Ω

(
ϕ
′′;δ
)(

O
(

1
n

)
+

1
δ 4 O

(
1
n3

))
as n→ ∞.

By Choosing δ = 1√
n , we get

Ln,c (|h2(t,x)| ;x) = O(1)Ω
(

ϕ
′′,

1√
n

)
. (5.16)

From (5.14), (5.16) and Lemma 5.2.4, we get

∣∣n(Ln,c(ϕ;x)−ϕ(x))− x(1+ cx)ϕ ′′(x)
∣∣= O(1)Ω

(
ϕ
′′,

1√
n

)
,

as n→ ∞.

5.6 Function of bounded variation

The operators (5.1) can be written in the following form:

Ln,c(ϕ(t);x) =
∞∫

0

Un,c(x; t)ϕ(t)dt,

where

Un,c(x; t) = {n+(m+1)c}
∞

∑
k=1

pn+mc,k(x;c)pn+(m+2)c,k−1(t;c)+ pn+mc,0(x;c)δ (t),

δ (t) is dirac-delta function.

Lemma 5.6.1. For fixed x ∈ R+ and if n is sufficient large then, we have

(i) χn,c(x;y) =
y∫

0
Un,c(x; t)dt ≤ 2 φ 2(x)

(x−y)2 , 0≤ y≤ x;

(ii) 1−χn,c(x;y) =
0∫
z

Un,c(x; t)dt ≤ 2 φ 2(x)
n(z−x)2 , x < z < ∞.
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Theorem 5.6.2. Let ϕ ∈ DBV (0,∞) then for all x > 0 and sufficiently large n, we have

|Ln,c (ϕ;x)−ϕ (x)|

≤
√

1
2n

φ(x)
∣∣ϕ ′ (x+)−ϕ

′ (x−)
∣∣+ x√

n
∨x

x− x√
n

(
ϕx
′)

+
2φ 2(x)

nx

[
√

n]

∑
k=1
∨x

x− x
k
(ϕ
′
x)+

2φ 2 (x)
nx2

∣∣ϕ (2x)−ϕ (x)− xϕ
′ (x+)

∣∣
+

2φ 2 (x)
nx

[
√

n]

∑
k=1
∨x+ x

k
x
(
ϕx
′)+ x√

n
v

x+ x√
n

x (ϕ
′
x)+M (r,α,x)

+2
|ϕ (x)|

nx2 φ
2 (x)+

√
2
n

φ (x)ϕ
′ (x+) ,

where ∨b
a ϕ(x) denotes the total variation of ϕ on [a,b] and ϕx is an auxiliary operator given

by

ϕx (t) =


ϕ (t)−ϕ (x−) , 0≤ t < x

0, t = x

ϕ (t)−ϕ (x+) , x < t < ∞

Proof. Using Lemma 5.6.1, the proof of this theorem closely follows the idea which is devel-

oped in [119]. Therefore here we skip the proof.

5.7 Weighted approximation

Theorem 5.7.1. For each ϕ ∈C∗2(R+) then, we have

|Ln,c(ϕ(t);x)−ϕ(x)| ≤ 4Mϕ(1+ x2)δ 2
n (x)+2ωd+1(ϕ;δn(x)),

where δ 2
n (x) = Ln,c((t− x)2;x) and ωd+1(ϕ;δn(x)) is usual modulus of continuity in [0,d+1].

Proof. From [93], for each x ∈ [0,d] and t ≥ 0, the accompanying inequality holds:

|ϕ(t)−ϕ(x)| ≤ 4Mϕ(1+ x2)(t− x)2 +

(
1+
|t− x|

δ

)
ωd+1(ϕ;δn(x)),δ > 0.

With the use of Cauchy Schwarz inequality, we obtain

|Ln,c(ϕ(t);x)−ϕ(x)| ≤ 4Mϕ(1+ x2)Ln,c((t− x)2;x)+
(

1+
Ln,c |t− x|

δ

)
ωd+1(ϕ;δn(x))

≤ 4Mϕ(1+ x2)δ 2
n (x)+

(
1+

δn(x)
δ

)
ωd+1(ϕ;δn(x)).
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Now choosing δ = δn(x), we get required results.

Theorem 5.7.2. Let ϕ ∈C∗2(R+),then, we have

lim
n→∞
‖Ln,c(ϕ(t);x)−ϕ(x)‖2 = 0

Proof. From [63], it suffices to prove that

lim
n→∞
‖Ln,c(tr;x)− xr‖2 = 0, r = 0,1,2. (5.17)

From lemma 5.2.1, the condition (5.17) is true for r = 0,1.

Now for r = 2 then, we have

∥∥Ln,c(t2;x)− x2∥∥
2 = Sup

x≥0

(
1

1+ x2

)
.

∣∣∣∣(n+(m+1)c)
(n+(m−1)c)

x2 +
2x

(n+(m−1)c)
− x2

∣∣∣∣
≤ Sup

x≥0

(
x2

1+ x2

)
.

∣∣∣∣ 2c
n+(m−1)c

∣∣∣∣+Sup
x≥0

(
x

1+ x2

)
.

∣∣∣∣ 2
n+(m−1)c

∣∣∣∣
which implies that

lim
n→∞

∥∥Ln,c(t2;x)− x2∥∥
2 = 0.

Hence the proof is completed.

Theorem 5.7.3. For each ϕ ∈C∗2(R+) and ς > 0, we have

lim
n→∞

sup
x∈R+

|Ln,c(ϕ;x)−ϕ(x)|
(1+ x2)

1+ς
= 0.

Proof. Suppose x0 is an arbitrary and fixed belongs to the set R+, we obtain

sup
x∈R+

|Ln,c(ϕ;x)−ϕ(x)|
(1+ x2)

1+ς
≤ sup

x≤x0

|Ln,c(ϕ;x)−ϕ(x)|
(1+ x2)

1+ς
+ sup

x>x0

|Ln,c(ϕ;x)−ϕ(x)|
(1+ x2)

1+ς

≤ ||Ln,c(ϕ)−ϕ||C[0,x0]+ ||ϕ||2 sup
x>x0

|Ln,c(1+ t2;x)|
(1+ x2)

1+ς
+ sup

x>x0

| f (x)|
(1+ x2)1+ς

. (5.18)

Since |ϕ(x)| ≤ ||ϕ||2(1+ x2) implies sup
x>x0

|ϕ(x)|
(1+ x2)1+ς

≤ ||ϕ||2
(1+ x2

0)
ς
.

We choose x0 is sufficiently large and suppose ε > 0, we get

||ϕ||2
(1+ x2

0)
ς
<

ε

6
. (5.19)
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Since lim
n→∞

sup
x>x0

Ln,c(1+ t2;x)
1+ x2 = 1. Therefore, we acquire

sup
x>x0

Ln,c(1+ t2;x)
1+ x2 ≤

(1+ x2
0)

ς

‖ϕ‖2

ε

3
+1,

for adequately large n, we have

‖ϕ‖2 sup
x>x0

Ln,c(1+t2;x)
(1+x2)ς+1 ≤

‖ϕ‖2

(1+x2
0)

ς
sup
x>x0

Ln,c(1+t2;x)
(1+x2)

≤ ε

3
+
||ϕ||2

(1+x2
0)

ς
.

Applying Theorem 5.7.1, we can find for adequately large n

||Ln,c(ϕ;x)−ϕ(x)||C[0,x0] <
ε

3
. (5.20)

Combining the relations (5.19)-(5.20), we obtain

sup
x∈R+

|Ln,c(ϕ;x)−ϕ(x)|
(1+ x2)1+ς

< ε.
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Chapter 6

Approximation by Bézier variant of

Gupta-Srivastava operators with certain

parameters

6.1 Introduction

Recently, Gupta and Srivastava [90] proposed a general family of a positive linear

operators, which preserve constant functions as well as linear functions for all c ∈

N∪{0}∪{−1} are given in (5.1). We have discussed several approximation results of

these operators in the previous chapter and termed these operators as Gupta-Srivastava

operators.

In the year 1972, Bézier [31] have introduced the curves to design the Renault Car

known as Bézier curves. These curves are symmetric in nature and also useful in

Computer-Aided Design. Motivated by this idea, many researchers have proposed the

Bézier variant of positive linear operators and discussed several approximation results

see [18, 67,71,99,127].

Inspired from the above-stated work, we propose here the Bézier variant of the operators

(5.1), depending upon parameter α ≥ 1 as follows:

Fc,α
n,m (ϕ (t) ;x) = {n+(m+1)c}

∞

∑
k=1

Q(α)
n+mc(x;c)

∞∫
0

pn+(m+2)c,k−1(t;c)ϕ(t)dt

+Q(α)
n+mc,0(x;c)ϕ(0), (6.1)
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where Q(α)
n+mc,k(x;c)=

(
Jn+mc,k(x,c)

)α−
(
Jn+mc,k+1(x,c)

)α , α ≥ 1 with Jn+mc,k(x,c)=
∞

∑
j=k

pn+mc,k(x,c),

where k < ∞ and otherwise zero. It is obvious that the operators Fc,α
n,m (.;x) are the linear

positive operators. For α = 1 the operators (6.1) immediately reduce to the form (5.1).

The special cases of operators (6.1) are given below:

(i) For c = 0, α = 1 and φn,0(x) = e−nx, we get Phillips operators

L0
n,m (ϕ (t) ;x) =n

∞

∑
k=1

pn+mc,k(x;0)
∞∫

0

pn+mc,k−1(t;0)ϕ(t)dt

+ pn,0(x;0)ϕ(0),

where

pn,k(x,0) =
e−nx(nx)k

k!
and x ∈ [0,∞).

(ii) For c ∈ N, α = 1 and φn,c(x) = (1+ cx)−
n
c , we get genuine Baskakov-Durrmeyer

type operators. These operators are similar to (5.1) except for c = {0,−1}, called

summation integral type of operators, where

pn,k(x;c) =

(n
c

)
k

k!
(cx)k

(1+ cx)
n
c+k ,

and (n)i denotes the rising factorial given by

(n)i = n(n+1)(n+2)...(n+ i−1) & (n)0 = 1(i ∈ N).

(iii) For c = −1, α = 1 and φn,−1(x) = (1− x)n, we have a sequence of Bernstein-

Durrmeyer operators

L−1
n,m (ϕ;x) = (n−m−1)

n−m−1

∑
k=1

pn−m,k (x,−1)
1∫

0

pn−m−2,k−1 (t,−1)ϕ(t)dt

+ pn−m,0 (x,−1)ϕ(0)+ pn−m,n−m (x,−1) , (6.2)

where

pn,k(x;−1) =

 n

k

xk(1− x)n−k.

The purpose of this chapter is to investigate the approximation results by using Lipchitz

type space, Ditzian-Totik modulus of smoothness, weighted modulus of continuity, and
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functions whose derivatives are of bounded variation.

6.2 Preliminaries

In this section, we give some auxiliary results to study our main results.

Lemma 6.2.1. If n is sufficiently large then the central moment of the operators (5.1) are:

(i) µc
n,2(x)≤C x(1+cx)

n ;

(ii) µc
n,4(x)≤C (x(1+cx))2

n2 ;

where C > 0 is constant.

Lemma 6.2.2. We know that
∞

∑
j=0

pn+mc, j(x,c) = 1 and from (6.1), we have

Fc,α
n,m (1;x) = {n+(m+1)c}

∞

∑
k=1

Q(α)
n+mc(x;c)

∞∫
0

pn+(m+2)c,k−1(t;c)dt

+Q(α)
n+mc,0(x;c)

=
∞

∑
k=0

Q(α)
n+mc(x;c) = (Jn+mc,0(x,c))

(α)

=

(
∞

∑
k=0

pn+mc, j(x,c)

)(α)

= 1.

Lemma 6.2.3. For each ϕ ∈CB(R+) then, we have

∣∣Fc,α
n,m (ϕ(t);x)

∣∣≤ ‖ϕ‖ .
Proof. It is easy to prove the above result by using Lemma 6.2.2, therefore we skip the proof.

Lemma 6.2.4. For every ϕ ∈CB(R+) then, we have

∣∣Fc,α
n,m (ϕ(t);x)

∣∣≤ αLc
n,m (‖ϕ‖ ;x) .

Proof. For 0≤ c≤ d ≤ 1, α ≥ 1, using the inequality

|cα −dα | ≤ α |c−d| ,
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from the definition of Q(α)
n+mc,k(x;c), for all k ∈ N∪{0}, we get

0 <
(
Jn+mc,k(x,c)

)α −
(
Jn+mc,k+1(x,c)

)α

≤ α
(
Jn+mc,k(x,c)− Jn+mc,k+1(x,c)

)
= α pn+mc(x,c).

Hence ∣∣Fc,α
n,m (ϕ(t);x)

∣∣≤ αLc
n,m (‖ϕ‖ ;x) .

6.3 Direct results

Now we estimate the rate of convergence of the function ϕ ∈ LipM(ξ ) by the operators

Fc,α
n,m (.;x).

Theorem 6.3.1. For ϕ ∈ LipM(ξ ) and 0 < ξ ≤ 1. Then for x ∈ R+, we obtain

∣∣Fc,α
n,m (ϕ(t);x)−ϕ(x)

∣∣≤ αM
(

δ c
n,m(x)

x

)ξ/2
,

where δ c
n,m(x) =

√
2x(1+cx)

(n+(m−1)c) .

Proof. Using Lemma 6.2.4, we get

∣∣Fc,α
n,m (ϕ(t);x)−ϕ(x)

∣∣≤ Fc,α
n,m (|ϕ(t)−ϕ(x)| ;x)

≤ αLc
n,m (|ϕ(t)−ϕ(x)| ;x)

≤ αMLc
n,m

 |t− x|ξ

(t + x)
ξ/

2
;x


≤ αM

x
ξ/

2
Lc

n,m

(
|t− x|ξ ;x

)
. (6.3)

Using Hölder’s inequality by taking p = 2ξ and q = 2/(2−ξ ), we get

Lc
n,m

(
|t− x|ξ ;x

)
≤
{

Lc
n,m

(
(t− x)2;x

)} ξ

2
.
{

Lc
n,m

(
1

2
(2−ξ ) ;x

)} (2−ξ )
2

≤
{

Lc
n,m

(
(t− x)2;x

)} ξ

2
=
(
δ

c
n,m(x)

) ξ

2 . (6.4)
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From (6.3) and (6.4), we get

∣∣Fc,α
n,m (ϕ(t);x)−ϕ(x)

∣∣6 αM
(

δ c
n,m(x)

x

) ξ

2

.

Hence the proof.

Theorem 6.3.2. For ϕ ∈CB(R+) and 0≤ λ ≤ 1, we get

∣∣Fc,α
n,m (ϕ(t);x)−ϕ(x)

∣∣≤Cω
φ λ

(
ϕ;

φ 1−λ (x)√
n

)
,

for sufficient large n and C is a positive constant independent from ϕ and n.

Proof. For ψ ∈Wλ , we get

ψ(t) = ψ(x)+
t∫

x

ψ
′(u)du. (6.5)

Applying Fc,α
n,m in (6.5) and using Hölder’s inequality then, we have

∣∣Fc,α
n,m (ψ(t);x)−ψ(x)

∣∣≤ Fc,α
n,m

 t∫
x

∣∣ψ ′∣∣du;x


≤
∥∥∥φ

λ
ψ
′
∥∥∥Fc,α

n,m

∣∣∣∣∣∣
t∫

x

du
φ λ (u)

∣∣∣∣∣∣ ;x


≤
∥∥∥φ

λ
ψ
′
∥∥∥Fc,α

n,m

|t− x|1−λ

∣∣∣∣∣∣
t∫

x

du
φ(u)

∣∣∣∣∣∣
λ

;x

 . (6.6)

Let us take A =

∣∣∣∣ t∫
x

du
φ(u)

∣∣∣∣ then, we get

A≤

∣∣∣∣∣∣
t∫

x

du√
u

∣∣∣∣∣∣
∣∣∣∣( 1√

1+ cx
+

1√
1+ ct

)∣∣∣∣
≤ 2

∣∣√t−
√

x
∣∣( 1√

1+ cx
+

1√
1+ ct

)
≤ 2

|t− x|
√

x+
√

t

(
1√

1+ cx
+

1√
1+ ct

)
≤ 2
|t− x|√

x

(
1√

1+ cx
+

1√
1+ ct

)
. (6.7)
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The inequality |a+b|λ ≤ |a|λ + |b|λ holds for 0≤ λ ≤ 1 then from (6.7), we get

∣∣∣∣∣∣
t∫

x

du
φ(u)

∣∣∣∣∣∣
λ

≤ 2λ |t− x|λ

x
λ/2

 1

(1+ cx)
λ/2

+
1

(1+ ct)
λ/2

 . (6.8)

From (6.6),(6.8) and using Cauchy inequality then, we get

∣∣Fc,α
n,m (ψ(t);x)−ψ(x)

∣∣≤2λ

∥∥∥φ λ ψ ′
∥∥∥

x
λ/2

Fc,α
n,m

|t− x|

 1

(1+ cx)
λ/2

+
1

(1+ ct)
λ/2

 ;x


+

√
Fc,α

n,m ((t− x)2;x).
√

Fc,α
n,m ((1+ ct)−λ ;x). (6.9)

If n is sufficiently large then we get

(
Fc,α

n,m

(
(t− x)2;x

))1/2 ≤
√

2α

n
φ(x), (6.10)

where φ(x) =
√

x(1+ cx).

For each x ∈ R+, Fc,α
n,m

(
(1+ ct)−λ ;x

)
→ (1+ cx)−λ as n→ ∞. Thus for ε > 0, there exist

n0 ∈ N such that

Fc,α
n,m

(
(1+ ct)−λ ;x

)
≤ (1+ cx)−λ + ε, for all n≥ n0

By choosing ε = (1+ cx)−λ then, we get

Fc,α
n,m

(
(1+ ct)−λ ;x

)
≤ 2(1+ cx)−λ , for all n≥ n0. (6.11)

From (6.9) to (6.11), we have

∣∣Fc,α
n,m (ψ(t);x)−ψ(x)

∣∣≤ 2λ

∥∥∥φ
λ

ψ
′
∥∥∥√2α

n
φ(x)

(
φ
−λ (x)+

√
2x−

λ

2 (1+ cx)−
λ

2

)
≤ 2λ+ 1

2 (1+
√

2)
∥∥∥φ

λ
ψ
′
∥∥∥√α

n
φ

1−λ (x). (6.12)

We may write

∣∣Fc,α
n,m (ϕ(t);x)−ϕ(x)

∣∣≤ ∣∣Fc,α
n,m (ϕ(t)−ψ(t);x)

∣∣
+
∣∣Fc,α

n,m (ψ(t);x)−ψ(x)
∣∣+ |ψ(x)−ϕ(x)|

≤ 2‖ϕ−ψ‖+
∣∣Fc,α

n,m (ψ(t);x)−ψ(x)
∣∣ . (6.13)
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From (6.12) to (6.13) and for sufficiently large n, we get

∣∣Fc,α
n,m (ϕ(t);x)−ϕ(x)

∣∣≤ 2‖ϕ−ψ‖+2λ+ 1
2 (1+

√
2)
√

α

n
φ

1−λ (x)
∥∥∥φ

λ
ψ
′
∥∥∥

≤C1

{
‖ϕ−ψ‖+ φ 1−λ (x)√

n

∥∥∥φ
λ

ψ
′
∥∥∥}

≤CK
φ λ

(
ϕ,

φ 1−λ (x)√
n

)
, (6.14)

where C1 = max(2,2λ+ 1
2 (1 +

√
2)
√

α) and C = 2C1. From (1.18) and (6.14), we get the

required result.

6.4 Weighted approximation

Theorem 6.4.1. Let ϕ ∈C2(R+), α > 0, for fixed m and sufficiently large n then, we have

sup
x∈[0,∞)

∣∣Fc,α
n,m (ϕ;x)−ϕ(x)

∣∣
(1+ x)5/2 6CΩ

(
ϕ;

1√
n

)
,

where C is positive constant depends on n and ϕ .

Proof. From the property (iii) of Proposition 1.4.2, we have

|ϕ(t)−ϕ(x)| ≤
(

1+(x+ |t− x|)2
)

Ω(ϕ; |t− x|)

≤ 2(1+ x2)
(

1+(t− x)2
)(

1+
|t− x|

δ

)
Ω(ϕ;δ ). (6.15)

Applying Fc,α
n,m (.;x) on both side of (6.15), we get

∣∣Fc,α
n,m (ϕ;x)−ϕ(x)

∣∣≤ [1+Fc,α
n,m ((t− x)2;x)

+Fc,α
n,m

(
(1+(t− x)2)

|t− x|
δ

;x
)]

. (6.16)

From Remark 6.2.1, and apply Cauchy-Schwarz inequality in (6.16), we get

Fc,α
n,m

(
(1+(t− x)2)

|t− x|
δ

;x
)
≤ 1

δ

(
αµ

c
n,2(x)

)1/2

+
1
δ

(
αµ

c
n,4(x)

)1/2(
αµ

c
n,2(x)

)1/2
. (6.17)

Combining the estimate from (6.15) to (6.17) and taking C = 2(1+
√

αC+ 2C) and δ = 1√
n
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then we get the required result.

6.5 Function of bounded variation

The operators (6.1) can be rewritten in the following form:

Fc,α
n,m (ϕ(t);x) =

∞∫
0

M(α)
n,m,c(x, t)ϕ(t)dt, (6.18)

where

M(α)
n,m,c(x, t) = {n+(m+1)c}

∞

∑
k=1

Q(α)
n+mc,k(x;c)pn+(m+2)c,k(t,c)+Q(α)

n+mc,0(x;c)δ (t),

where δ (t) is Dirac delta function.

Lemma 6.5.1. For a fixed x ∈ R+ and n is sufficient large then, we have

(i) ζ
(α)
n,c (x;y) =

y∫
0

M(α)
n,m,c(x; t)dt ≤ 2αx(1+cx)

n(x−y)2 , 0≤ y≤ x;

(ii) 1−ζ
(α)
n,c (x;z) =

∞∫
z

M(α)
n,m,c(x; t)dt ≤ 2αx(1+cx)

n(z−x)2 , x≤ z≤ ∞.

Proof. From (6.18), and using Lemma 6.2.1 then, we have

ζ
(α)
n,c (x;y)≤

y∫
0

M(α)
n,m,c(x; t)

(
x− t
x− y

)2

dt

≤ α

(x− y)2 Ln,c

(
(e1− x)2;x

)
≤ 2αx(1+ cx)

n(x− y)2 .

We can prove the second part of Lemma in same way.
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Theorem 6.5.2. Let ϕ ∈ DBV (R+), x > 0 and for adequately large n large, we have

∣∣Fc,α
n,m (ϕ;x)−ϕ(x)

∣∣≤ 1
α +1

∣∣ϕ ′(x+)+αϕ
′(x−)

∣∣√2αx(1+ cx)
n

+
α

α +1

∣∣ϕ ′(x+)−ϕ
′(x−)

∣∣√2αx(1+ cx)
n

+
2α(1+ cx)

n

[
√

n]

∑
k=1

x
V

x− x
k

ϕ
′
x +

x√
n

x
V

x− x√
n

ϕ
′
x

+
2α(1+ cx)

nx
|ϕ(2x)−ϕ(x)− xϕ(x+)|

+
2αx(1+ cx)

n

[
√

n]

∑
k=1

x+ x
k

V
x

ϕ
′
x +

x√
n

x+ x√
n

V
x

(ϕ ′x)

+M(γ,r,x)+
2α(1+ cx)

nx
|ϕ(x)|+

√
2αx(1+ cx)

n
|ϕ(x+)| .

where
b

V
a

ϕ(x) denotes the total variation of ϕ on [a,b], ϕx is an auxiliary operator given by

ϕx (t) =


ϕ (t)−ϕ (x−) , 0≤ t < x

0, t = x

ϕ (t)−ϕ (x+) , x < t < ∞

. (6.19)

Proof. From Remark 6.2.2, Fc,α
n,m (1;x) = 1 and using the alternative form of the operators

(6.18) for each x ∈ R+ then, we have

Fc,α
n,m (ϕ(t);x)−ϕ(x) =

∞∫
0

M(α)
n,m,c(x, t)

(
ϕ(t)−ϕ(x)

)
dt

=

∞∫
0

M(α)
n,m,c(x, t)

 t∫
x

ϕ
′(u)du

dt (6.20)

For each ϕ ∈ DBV (R+) and from (6.19), we can write

ϕ
′(u) =ϕ

′
x(u)+

1
α +1

(ϕ ′(x+)+αϕ
′(x−))

+
1
2
(
ϕ
′(x+)+αϕ

′(x−)
)(

sgn(u− x)+
α−1
α +1

)
×δx(u)

[
ϕ
′(u)−

(
ϕ
′(x+)+ϕ

′(x−)
)]
, (6.21)
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where

δx(u) =

 1, u = x

0, u 6= x.

From (6.20) and (6.21), we have

Fc,α
n,m (ϕ(t);x)−ϕ(x) =

∞∫
0

M(α)
n,m,c(x, t)

t∫
x

(
ϕ
′
x(u)+

1
α +1

(ϕ ′(x+)+αϕ ′(x−))

+
1
2
(ϕ ′(x+)+αϕ

′(x−))
(

sgn(u− x)+
α−1
α +1

)
×δx(u)[ϕ ′(u)−

1
2
(ϕ ′(x+)+ϕ

′(x−)]
)

dudt. (6.22)

It is easy to say that

∞∫
0

M(α)
n,m,c(x, t)

t∫
x

[ϕ ′(u)− 1
2
(ϕ ′(x+)+ϕ

′(x−)]δx(u)dudt = 0. (6.23)

Now

B1 =

∞∫
0

M(α)
n,m,c(x, t)

t∫
x

1
α +1

(ϕ ′(x+)+αϕ
′(x−))dudt.

=
1

α +1
(ϕ ′(x+)+αϕ

′(x−))
∞∫

0

M(α)
n,m,c(x, t)(t− x)dt

=
1

α +1
(ϕ ′(x+)+αϕ

′(x−))F(α)
n,c ((t− x);x) , (6.24)

and

B2 =

∞∫
0

M(α)
n,m,c(x, t)

t∫
x

1
2
(ϕ ′(x+)+αϕ

′(x−))
(

sgn(u− x)+
α−1
α +1

)
dudt

=
1
2
(ϕ ′(x+)+αϕ

′(x−))

− x∫
0

M(α)
n,m,c(x, t)

t∫
x

(
sgn(u− x)+

α−1
α +1

)
dudt

+

∞∫
x

M(α)
n,m,c(x, t)

t∫
x

(
sgn(u− x)+

α−1
α +1

)
≤ α

α +1
(ϕ ′(x+)+αϕ

′(x−))
∞∫

0

M(α)
n,m,c(x, t) |t− x|dt

≤ α

α +1
(ϕ ′(x+)+αϕ

′(x−))
(

F(α)
n,c

(
(e1− x)2;x

)) 1
2
, (6.25)
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By using Lemma 6.2.1 and Lemma 6.2.4, from (6.22)− (6.25) then, we have

Fc,α
n,m (ϕ;x)−ϕ(x)≤

∣∣∣A(α)
n (ϕ ′;x)+B(α)

n (ϕ ′;x)
∣∣∣

+
2α

α +1

∣∣ϕ ′(x+)+αϕ
′(x−)

∣∣ x(1+ cx)
n

+
α

α +1

∣∣ϕ ′(x+)−ϕ
′(x−)

∣∣√2αx(1+ cx)
n

, (6.26)

where

A(α)
n (ϕ ′;x) =

x∫
0

 t∫
x

ϕ
′
x(u)du

M(α)
n,m,c(x, t)dt,

and

B(α)
n (ϕ ′;x) =

∞∫
x

 t∫
x

ϕ
′
x(u)du

M(α)
n,m,c(x, t)dt.

To estimate A(α)
n (ϕ ′;x), using integration by parts and applying Lemma 6.5.1 with y = x− x√

n ,

we obtain

A(α)
n (ϕ ′;x) =

∣∣∣∣∣∣
x∫

0

 t∫
x

ϕ
′
x(u)du

dtζ
(α)
n,c (x; t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
x∫

0

ζ
(α)
n,c (x; t)ϕ ′x(t)dt

∣∣∣∣∣∣

≤
y∫

0

∣∣ϕ ′x(t)∣∣ ∣∣∣ζ (α)
n,c (x; t)

∣∣∣dt +

y∫
0

∣∣ϕ ′x(t)∣∣ ∣∣∣ζ (α)
n,c (x; t)

∣∣∣dt

≤ 2αx(1+ cx)
n

y∫
0

x
V
t

ϕ
′
x(x− t)2dt +

x∫
y

x
V
t

ϕ
′
xdt

≤ 2αx(1+ cx)
n

x− x√
n∫

0

x
V
t

ϕ
′
x(x− t)2dt +

x√
n

x
V

x− x√
n

ϕ
′
x. (6.27)
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Substituting u = x
x−t , we get

2αx(1+ cx)
n

x− x√
n∫

0

x
V
t

ϕ
′
x(x− t)2dt =

2αx(1+ cx)
nx

√
n∫

1

x
V

x− x
u

ϕ
′
xdu

≤ 2α(1+ cx)
n

[
√

n]

∑
k=1

k+1∫
k

x
V

x− x
k

ϕ
′
xdu

≤ 2α(1+ cx)
n

[
√

n]

∑
k=1

x
V

x− x
k

ϕ
′
x. (6.28)

From (6.27) and (6.28), we get

A(α)
n (ϕ ′;x) =

2α(1+ cx)
n

[
√

n]

∑
k=1

x
V

x− x
k

ϕ
′
x +

x√
n

x
V

x− x√
n

ϕ
′
x. (6.29)

We can write

B(α)
n (ϕ ′;x)≤

∣∣∣∣∣∣
2x∫

x

 t∫
x

ϕ
′
x(u)du

dt(1−ζ
(α)
n,c (x; t))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∞∫

2x

 t∫
x

ϕ
′
x(u)du

dtM
(α)
n,m,c(x, t)

∣∣∣∣∣∣ .
From the second part of the Lemma 6.5.1, we get

M(α)
n,m,c(x, t) = dt((1−ζ

(α)
n,c (x; t)) f or t > x.

Hence

B(α)
n ( f ′;x) = B(α)

n,1 (ϕ
′;x)+B(α)

n,2 (ϕ
′;x),

where

B(α)
n,1 (ϕ

′;x) =

∣∣∣∣∣∣
2x∫

x

 t∫
x

ϕ
′
x(u)du

dt(1−ζ
(α)
n,c (x; t))

∣∣∣∣∣∣ ,
and

B(α)
n,2 ( f ′;x) =

∣∣∣∣∣∣
∞∫

2x

 t∫
x

ϕ
′
x(u)du

dtM
(α)
n,m,c(x, t)

∣∣∣∣∣∣ .
Using integration by parts, applying Lemma 6.5.1, 1−ζ

(α)
n,c (x; t) ≤ 1 and taking t = x+ x

u
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successively,

B(α)
n,1 (ϕ

′;x) =

∣∣∣∣∣∣
2x∫

x

ϕ
′
x(u)du(1−ζ

(α)
n,c (x;2x))−

2x∫
x

f ′x(t)(1−ζ
(α)
n,c (x; t))dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
2x∫

x

(ϕ ′(u)−ϕ
′(x+))du

∣∣∣∣∣∣
∣∣∣1−ζ

(α)
n,c (x;2x)

∣∣∣+
∣∣∣∣∣∣

2x∫
x

ϕ
′
x(t)(1−ζ

(α)
n,c (x; t))dt

∣∣∣∣∣∣
≤2α(1+ cx)

nx
|ϕ(2x)−ϕ(x)− xϕ(x+)|

+
2αx(1+ cx)

n

2x∫
x+ x√

n

t
V
x

ϕ ′x

(t− x)2 dt +

x+ x√
n∫

x

t
V
x

ϕ
′
xdt

≤2α(1+ cx)
nx

|ϕ(2x)−ϕ(x)− xϕ(x+)|

+
2αx(1+ cx)

n

[
√

n]

∑
k=1

x+ x
k

V
x

ϕ
′
x +

x√
n

x+ x√
n

V
x

(ϕ ′x). (6.30)

Using Lemma 6.2.1 then, we have

B(α)
n,2 (ϕ

′;x) =

∣∣∣∣∣∣
∞∫

2x

 t∫
x

(ϕ ′(u)−ϕ
′(x+))du

M(α)
n,m,c(x, t)dt

∣∣∣∣∣∣
≤

∞∫
2x

|ϕ(t)−ϕ(x)|M(α)
n,m,c(x, t)dt +

∞∫
2x

|t− x| |ϕ(x+)|M(α)
n,m,c(x, t)dt

≤

∣∣∣∣∣∣
∞∫

2x

ϕ(t)M(α)
n,m,c(x, t)dt

∣∣∣∣∣∣+ |ϕ(x)|
∣∣∣∣∣∣

∞∫
2x

M(α)
n,m,c(x, t)dt

∣∣∣∣∣∣
+ |ϕ(x+)|

 ∞∫
2x

(e1− x)2M(α)
n,m,c(x, t)dt

 1
2

≤M
∞∫

2x

tγM(α)
n,m,c(x, t)dt + |ϕ(x)|

∣∣∣∣∣∣
∞∫

2x

M(α)
n,m,c(x, t)dt

∣∣∣∣∣∣
+

√
2αx(1+ cx)

n
|ϕ(x+)| . (6.31)
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For t ≥ 2x, we get t ≤ 2(t− x) and x≤ t− x, applying Hölder’s inequality, we have

B(α)
n,2 (ϕ

′;x)≤M2γ

 ∞∫
2x

(e1− x)2rM(α)
n,m,c(x, t)dt


γ

2r

+
2α(1+ cx)

nx
|ϕ(x)|+

√
2αx(1+ cx)

n
|ϕ(x+)|

=M(γ,c,r,x)+
2α(1+ cx)

nx
|ϕ(x)|+

√
2αx(1+ cx)

n
|ϕ(x+)| . (6.32)

From (6.30) and (6.32), we get

B(α)
n (ϕ ′;x) =

2α(1+ cx)
nx

|ϕ(2x)−ϕ(x)− xϕ(x+)|

+
2αx(1+ cx)

n

[
√

n]

∑
k=1

x+ x
k

V
x

ϕ
′
x +

x√
n

x+ x√
n

V
x

(ϕ ′x)

+M(γ,c,r,x)+
2α(1+ cx)

nx
|ϕ(x)|+

√
2αx(1+ cx)

n
|ϕ(x+)| . (6.33)

From (6.26), (6.29) and (6.33), we get our desired result.

6.6 Graphical results

In operators (6.1) by taking m = −1, we obtain Bézier variant of Srivastava-Gupta

operators which were propoesd by Ispir and Yüksel [99] and its modification by Neer

et al. [127]. For m = 1 in (6.1), we obtain another Bézier form of Srivastava-Gupta

operators considered by Kajla [108]. The proposed operators (6.1) have generalized

form with different values of m. Here, we show graphical comparison between operators

(6.1) for m= 20 with discussed operators [99,108,127] for the function ϕ(x) = x3−2x2+x.

From the graphs we observe here that we have better approximation for the Bézier

variant of Gupta-Srivastava operators (6.1), discussed in the present chapter than the

other variants of [142], therefore it is justified to study this form of operators.
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Figure 6.1: Comparison between Bézier variant of Srivastava-Gupta operators [99] (red) with
operators (6.1)(cyan) along with function ϕ(x) (blue).
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Figure 6.2: Comparison between Bézier variant of Srivastava-Gupta Operators [108] (red)
with operators (6.1) (cyan) along with function ϕ(x) (blue).
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Figure 6.3: Comparison between Bézier variant of modified Srivastava-Gupta operators [127]
(red) with operators (6.1) (cyan) along with function ϕ(x) (blue).
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Chapter 7

Approximation by mixed positive linear

operators based on Second-Kind Beta

transform

7.1 Introduction

We know that the probability density function of second-kind beta distribution with

positive parameters c > 0 and d > 0 is given by

bc,d(t) =
tc−1

β (c,d)(1+ t)c+d , t > 0, (7.1)

where β (c,d) is the Euler’s beta function.

In 1970, Stancu [144] modified of Baskakov operators [29] using a novel idea of in-

verse Pólya Eggenberger distribution [59]. Gupta et al. [87] also introduced the Dur-

rmeyer modification of Baskakov operators and established some well-known qualitative

and quantitative approximation results. Many researchers studied the different types

of linear positive operators by using Pólya Eggenberger distribution and inverse Pólya

Eggenberger [59] distribution sees [9, 45,48,50,84,107,115,139].

Stancu [146] defined the second-kind beta transform with the help of distribution (7.1).

In similar way for α > 0 and x ∈ R+, we consider operators M[α]
n as:

M[α]
n (ϕ;x) =

1
β
( x

α
, 1

α

) ∫ ∞

0

t
x
α
−1

(1+ t)
1+x

α

Mn (ϕ;x)dt, (7.2)
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where

Mn (ϕ;x) = np
∞

∑
k=0

e−nt (nt)k

k!

∫
∞

0
e−npt (npt)kp

(kp)!
ϕ(t)dt.

Several researchers introduced and studied different types of linear positive operators

using second-kind Euler’s beta function see [9, 10,72,122,123,138,146].

In this chapter, we establish some approximation properties for our proposed opera-

tors like direct results, asymptotic estimates, weighted approximation, and also rate of

convergence for the class of functions whose derivatives are of bounded variation.

7.2 Preliminaries

This section deals with some basic results to discuss our main results.

Lemma 7.2.1. For the operators (7.2), p > 0 and α = α(n) be a sequence converging to 0

then, we have

(i) M[α]
n (1;x) = 1;

(ii) M[α]
n (t;x) = x

1−α
+ 1

np ;

(iii) M[α]
n (t2;x) = x(x+α)

(1−α)(1−2α) +
(

p+3
np

)
x

(1−α) +
2

n2 p2 ;

(iv) M[α]
n (t3;x) = x(x+α)(x+2α)

(1−α)(1−2α)(1−3α) +
(

3p+6
np

)
x(x+α)

(1−α)(1−2α)

+
(

p2+6p+11
n2 p2

)
x

(1−α) +
6

n3 p3 ;

(v) M[α]
n (t4;x) =

[
x(x+α)(x+2α)(x+3α)

(1−α)(1−2α)(1−3α)(1−4α) +
(

6
n +

10
np

)
x(x+α)(x+2α)

(1−α)(1−2α)(1−3α)

+
(

7
n2 +

30
n2 p +

35
n2 p2

)
x(x+α)

(1−α)(1−2α) +
(

1
n3 +

10
n3 p +

35
n3 p2 +

50
n3 p3

)
x

1−α
+ 24

n4 p4

]
;

(vi) M[α]
n (t5;x) =

[
x(x+α)(x+2α)(x+3α)(x+4α)

(1−α)(1−2α)(1−3α)(1−4α)(1−5α) +
(

10
n + 15

np

)
x(x+α)(x+2α)(x+3α)

(1−α)(1−2α)(1−3α)(1−4α)

+
(

25
n2 +

90
n2 p +

85
n2 p2

)
x(x+α)(x+2α)

(1−α)(1−2α)(1−3α) +
(

15
n3 +

105
n3 p +

225
n3 p2 +

225
n3 p3

)
x(x+α)

(1−α)(1−2α)

+
(

1
n4 +

15
n4 p +

85
n4 p2 +

225
n4 p3 +

274
n4 p4

)
x

(1−α) +
120
n5 p5

]
;

(vii) M[α]
n (t6;x) =

[
x(x+α)(x+2α)(x+3α)(x+4α)(x+5α)

(1−α)(1−2α)(1−3α)(1−4α)(1−5α)(1−6α)

+
(

15
n + 21

np

)
x(x+α)(x+2α)(x+3α)(x+4α)

(1−α)(1−2α)(1−3α)(1−4α)(1−5α)

+
(

65
n2 +

210
n2 p +

175
n2 p2

)
x(x+α)(x+2α)(x+3α)

(1−α)(1−2α)(1−3α)(1−4α)

+
(

90
n3 +

525
n3 p +

1050
n3 p2 +

735
n3 p3

)
x(x+α)(x+2α)

(1−α)(1−2α)(1−3α)
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+
(

31
n4 +

315
n4 p +

1225
n4 p2 +

2205
n4 p3 +

1625
n4 p4

)
x(x+α)

(1−α)(1−2α)

+
(

1
n5 +

21
n5 p +

175
n5 p2 +

735
n5 p3 +

1624
n5 p4 +

1764
n5 p5

)
x

(1−α) +
720
n6 p6

]
.

Proof. We estimate the moments of the operators (7.2) by direct computation. So here, we

skip the proof.

Lemma 7.2.2. The central moments of the operators (7.2) are as follows:

(i) M[α]
n (t− x;x) = αx

1−α
+ 1

np ;

(ii) M[α]
n ((t− x)2;x) = (2α2+α)

(1−α)(1−2α)x
2 + (p+3)(1−2α)+npα−2(1−α)(1−2α)

np(1−α)(1−2α) x+ 2
n2 p2 ;

(iii) M[α]
n ((t− x)4;x) = 1

(1−α)(1−2α)(1−3α)(1−4α)n3 p3

[
α2(24α2 +46α +3)n3 p3x4

+2α(−48α3 +3(1+ p)+4α2(−29+9(n−2)p))+α(20+3(n+2)p))n2 p2x3

+
(

288α4 +3(1+ p)2 +α(31+6(n+1)p+(6n−13)p2)

+8α3(57−36(n−2)p+2(2n2−9n+6)p2)+α2(−304+24(2n−11)p

+(3n2 +12n−20)p2)npx2 +
(
−24+240α−840α2 +1200α3−576α4

+6α3n3 p3 +4(α2−4α3)(3p+5)n2 p2 +(12α3−7α2 +α)(7p2 +30p+35)np

+ (1−9α +26α2−24α3) (p3 +10p2 +35p+50)
)

x
]
+ 24

n4 p4 .

Proof. We estimate the central moments by direct computation, using the linearity property of

the operators (7.2) and Lemma 7.2.1. Similarly, we can obtain higher-order central moments.

Lemma 7.2.3. If for large n the sequence α = α(n) approaches to 0 and nα(n) to l ∈ R, we

have

(i) lim
n→∞

nM[α]
n ((t− x);x) = lx+ 1

p ;

(ii) lim
n→∞

nM[α]
n ((t− x)2;x) = lx2 +

(
l +1+ 1

p

)
x;

(iii) lim
n→∞

n2M[α]
n ((t− x)4;x) = 3x2

(
l(1+ x)+1+ 1

p

)2
;

(iv) lim
n→∞

n3M[α]
n ((t− x)6;x) = 15l3x6 +45l2

(
1+ 1

p + l
)

x5 +45l
(

1+ 1
p + l

)2
x4

+(15(1+15p+3p2 + p3)−3l p(1+2p− p2)+ l2 p2(3+3p+ l p))x3.

Proof. These results are obtained by straightforward computation. Therefore, the details are

omitted.

Lemma 7.2.4. For ϕ ∈CB(R+), we have

∣∣∣M[α]
n (ϕ;x)

∣∣∣≤ ‖ϕ‖ .
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7.3 Direct results

Theorem 7.3.1. Let ϕ ∈C∗2(R+) and for adequately large n, α = α(n) approaches to 0. Then

lim
n→∞

M[α]
n (ϕ(t);x) = ϕ(x),

converges in every compact subset of R+ uniformly.

Proof. From Lemma 7.2.1, we have

(i) lim
n→∞

M[α]
n (1;x) = 1;

(ii) lim
n→∞

M[α]
n (t;x) = x;

(iii) lim
n→∞

M[α]
n (t2;x) = x2,

Then according to Bohman-Korovkin theorem, we can say that lim
n→∞

M[α]
n (ϕ(t);x) = ϕ(x) con-

verges in each compact subset of R+ uniformly.

Theorem 7.3.2. Let ϕ ∈C∗2(R+) and α = α(n) converges to zero as n→ ∞ and

lim
n→∞

nα(n) = l ∈ R.

Then for each x≥ 0, we have

M[α]
n (ϕh(t)−ϕh(x))≤ 5ω (ϕ,δn(x))+

9
2

ω2 (ϕ,δn(x)) ,

where δ 2
n (x) is second order central moments of considered operators.

Proof. From (4.5), using the Steklov-mean ϕh, we have

ϕh(t) = ϕh(x)+ϕ
′
h(x)(t− x)+

ϕ ′′h (x)
2

(t− x)2 + r(t,x)(t− x)2, (7.3)

where r(t,x) is bounded function and converging to 0 as t→ x.

Applying M[α]
n (.;x) in (7.3), we get

M[α]
n (ϕh(t)−ϕh(x)) = ϕ

′
h(x)M

[α]
n ((t− x);x)+

ϕ ′′h (x)
2

M[α]
n

(
(t− x)2;x

)
+M[α]

n

(
r(t,x)(t− x)2;x

)
. (7.4)
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Applying Cauchy-Schwarz inequality in the last term of (7.4), we have

M[α]
n

(
r(t,x)(t− x)2;x

)
≤
√

M[α]
n (r2(t,x);x)

√
M[α]

n

(
(t− x)4;x

)
. (7.5)

In view of Theorem 7.3.1, we get

lim
n→∞

M[α]
n (r2(t,x);x) = r2(x,x) = 0. (7.6)

From Lemma 7.2.4 ∣∣∣M[α]
n (ϕ(t);x)

∣∣∣≤ ‖ϕ‖ . (7.7)

From (7.4)-(7.7), we get

∣∣∣M[α]
n (ϕh(t)−ϕh(x))

∣∣∣≤ ∥∥ϕ
′
h
∥∥√M[α]

n ((t− x)2;x)+
1
2

∥∥ϕ
′′
h
∥∥M[α]

n ((t− x)2;x)

Applying (ii) and (iii) property of Proposition 4.3.4 for sufficiently large n, we have

∣∣∣M[α]
n ϕh(t)−ϕh(x)

∣∣∣≤ 5
h

ω (ϕ,h)δn(x)+
9

2h2 ω2 (ϕ,h)δ
2
n (x).

By taking h = δn(x) and substituting in above estimate, we get the required result.

Theorem 7.3.3. Let ϕ ∈C1
B(R+) and α = α(n) converges to 0 and nα(n) = l ∈ R for large

n. Then for each x≥ 0, we have

∣∣∣M[α]
n (ϕ(t);x)−ϕ(x)

∣∣∣≤ |βn(x)|ϕ(x)+2δn(x)ω
(
ϕ
′,δn(x)

)
,

where βn(x) = M[α]
n ((t− x);x).

Proof. For x, t ∈ R+, the Taylor’s expansion is given as

ϕ(t)−ϕ(x) = ϕ
′(x)(t− x)+

∫ t

x

(
ϕ
′(u)−ϕ

′(x)
)
du. (7.8)

Applying M[α]
n (.;x) in (7.8), we get

M[α]
n (ϕ(t)−ϕ(x);x) = ϕ

′(x)M[α]
n ((t− x);x)+M[α]

n

(∫ t

x
(ϕ ′(u)−ϕ

′(x))du;x
)
. (7.9)

Using (iv) property of Proposition 1.4.1, we get

|ϕ(u)−ϕ(x)| ≤ ω (ϕ,δ )

(
|u− x|

δ
+1
)
, δ > 0,
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we obtain ∣∣∣∣∫ t

x
(ϕ ′(u)−ϕ

′(x))du
∣∣∣∣≤ ω

(
ϕ
′,δ
)((t− x)2

δ
+ |t− x|

)
. (7.10)

Therefore, from (7.9) and (7.10), we get

∣∣∣M[α]
n (ϕ(t)−ϕ(x);x)

∣∣∣≤ ∣∣ϕ ′(x)∣∣ ∣∣∣M[α]
n ((t− x);x)

∣∣∣+ω
(
ϕ
′,δ
)( 1

δ
M[α]

n ((t− x)2;x)

+ M[α]
n (|t− x| ;x)

)
.

In above expression, applying Cauchy-Schwarz inequality, we get

∣∣∣M[α]
n (ϕ(t)−ϕ(x);x)

∣∣∣≤ ∣∣ϕ ′(x)∣∣ ∣∣∣M[α]
n ((t− x);x)

∣∣∣
+ω

(
ϕ
′,δ
){ 1

δ

√
M[α]

n

(
(t− x)2;x

)
+1

}√
M[α]

n

(
(t− x)2;x

)
.

When we choose δ = δn(x) then we get the required result.

7.4 Voronovskaya type theorem

Theorem 7.4.1. Let ϕ ∈CB(R+) and if there exists second derivatives of function ϕ at a fixed

point x ∈ R+. The sequence α = α(n) converges to 0 for large n, p > 0 and lim
n→∞

nα(n) = l,

we have

lim
n→∞

n
[(

M[α]
n (ϕ;x)−ϕ(x)

)]
=

(
lx+

1
p

)
ϕ
′(x)+

x
2

(
lx+

(
l +

1
p
+1
))

ϕ
′′(x).

Proof. By the Taylor’s series expansion, we have

ϕ(t) = ϕ(x)+(t− x)ϕ
′
(x)+

(t− x)2

2!
ϕ
′′
(x)+ ε(t,x)(t− x)2, (7.11)

where ε(t,x)→ 0 as t→ x.

Applying M[α]
n , ;x on both side of (7.11), then we have

M[α]
n (ϕ(t)−ϕ(x);x) = ϕ

′
(x)M[α]

n ((t− x);x)+
ϕ
′′
(x)

2!
M[α]

n ((t− x)2;x)

M[α]
n (ε(t,x)(t− x)2;x).
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Now

lim
n→∞

nM[α]
n (ϕ(t)−ϕ(x);x) = lim

n→∞
nM[α]

n ((t− x);x)ϕ
′
(x)+ lim

n→∞
nM[α]

n ((t− x)2;x)ϕ
′′
(x)

+ lim
n→∞

nM[α]
n (ε(t,x)(t− x)2;x). (7.12)

From Theorem 7.3.1, Lemma 7.2.3 and applying cauchy-Schwarz in the last term of (7.12)

then, we get

lim
n→∞

nM[α]
n (ε(t,x)(t− x)2;x) = 0. (7.13)

Using Lemma 7.2.3 and (7.12), (7.13) then, we get required result.

7.5 Quantitative Voronovskaya type theorem

With the help of weighted modulus of continuity Ω(.;δ ), here we establish the degree

of approximation of the function ϕ ∈C∗2(R+) for the proposed operators (7.2).

Theorem 7.5.1. Let ϕ ∈C∗2(R+) such that ϕ ′(x),ϕ ′′(x) ∈C∗2(R+), α = α(n) be a sequence

converging to 0 for sufficient large n and p is any fixed positive real number, then∣∣∣∣n(M[α]
n (ϕ;x)−ϕ(x)

)
−ϕ

′(x)
(

nαx
1−α

+
1
p

)
− ϕ ′′(x)

2!
n
(

2α2 +α

(1−α)(1−2α)
x2

+
(p+3)(1−2α)+npα−2(1−α)(1−2α)

np(1−α)(1−2α)
x+

2
n2 p2

)∣∣∣∣= O(1)Ω
(

ϕ
′′;

1√
n

)
as n→ ∞.

Proof. By the Taylor’s expansion

ϕ(t) = ϕ(x)+ϕ
′(x)(t− x)+

ϕ ′′(x)
2!

(t− x)2 +
ϕ ′′(ξ )−ϕ ′′(x)

2!
(t− x)2. (7.14)

Let

h2(ϕ,x) =
ϕ ′′(ξ )−ϕ ′′(x)

2!
(t− x)2. (7.15)

Using the well-known property of weighted modulus of continuity, we have

∣∣ϕ ′′(ξ )−ϕ
′′(x)

∣∣≤ 4
(
1+ x2)(1+δ

2)2
(

1+
(t− x)4

δ 4

)
Ω(ϕ ′′,δ ). (7.16)
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From (7.15) and (7.16)

h2(ϕ,x)≤ 2
(
1+ x2)(1+δ

2)2
Ω(ϕ ′′;δ )

(
1+

(t− x)4

δ 4

)
(t− x)2 (7.17)

Applying M[α]
n (.;x) on both side of (7.14), we get∣∣∣∣(M[α]

n (ϕ;x)−ϕ(x)
)
−ϕ

′(x)M[α]
n ((t− x);x)− ϕ ′′(x)

2!
M[α]

n ((t− x)2;x)
∣∣∣∣

≤M[α]
n (|h2(ϕ,x)| ;x) . (7.18)

From (7.17) and (7.18), we have

M[α]
n (|h2(ϕ,x)| ;x)≤ 8(1+ x2)Ω(ϕ ′′;δ )M[α]

n

((
(t− x)2 +

(t− x)6

δ 4

)
;x

)

≤ 8(1+ x2)Ω(ϕ ′′;δ )

(
M[α]

n

(
(t− x)2;x

)
+

1
δ 4 M[α]

n

(
(t− x)6;x

))
≤ 8(1+ x2)Ω(ϕ ′′;δ )

(
O
(

1
n

)
+

1
δ 4 O

(
1
n3

))
,

as n→ ∞.

By choosing δ = 1√
n , we get

nM(α)
n (|h2(ϕ,x)| ;x)≤ O(1)Ω

(
ϕ
′′,

1√
n

)
. (7.19)

From (7.18) and (7.19) and using Lemma 7.2.3, we obtain the required result.

7.6 Grüss Voronovskaya type theorem

Grüss [74] had taken into account an inequality, known as Grüss inequality. The main

significance of this inequality is to find the difference between the integral of a product

of two functions and the product of integrals of the two functions. To know more about

the Grüss inequality and its application see [5, 66, 68].

Theorem 7.6.1. Let ϕ,ψ ∈C∗2(R+) such that ϕ ′,ψ ′,ϕ ′′,ψ ′′ ∈C∗2(R+) then, for each x ∈ R+,

lim
n→∞

n
{

M[α]
n (ϕ.ψ;x)−M[α]

n (ϕ;x)M[α]
n (ψ;x)

}
= x
(

lx+
(

l +1+
1
p

))
ϕ
′(x)ψ ′(x).

Proof. For each x ∈ R+,
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n
{

M[α]
n (ϕ.ψ;x)−M[α]

n (ϕ;x)M[α]
n (ψ;x)

}

= n
[{

M[α]
n (ϕ.ψ;x)−ϕ(x)ψ(x)− (ϕψ)′M[α]

n ((t− x);x)− (ϕψ)′′

2!
M(α)

n ((t− x)2;x)
}

−g(x)

{
M[α]

n (ϕ;x)−ϕ(x)−ϕ
′M[α]

n ((t− x);x)− ϕ
′′

2!
M[α]

n ((t− x)2;x)

}

−M[α]
n (ϕ;x)

{
M[α]

n (ψ;x)−ψ(x)−ψ
′M[α]

n ((t− x);x)− ψ ′′

2!
M[α]

n ((t− x)2;x)
}

+
1
2!

M[α]
n ((t− x)2;x)

{
ϕ(x)ψ ′′(x)+2ϕ

′(x)ψ ′(x)−ψ
′′(x)M[α]

n (ϕ;x)
}

+ M[α]
n ((t− x);x)

{
ϕ(x)ψ ′(x)−ψ

′(x)M[α]
n (ϕ;x)

}]
.

Applying Theorem 7.3.1 for each x ∈ R+, M[α]
n (ϕ;x)→ ϕ(x) as n→ ∞ and for ϕ

′′ ∈C∗2(R+),

x ∈ R+ by Theorem 7.3.2 and using Lemma 7.2.3, we get the desired result.

7.7 Weighted approximation

Theorem 7.7.1. For every ϕ ∈C∗2(R+), d is fixed positive real number then, we have

∣∣∣M[α]
n (ϕ(t);x)−ϕ(x)

∣∣∣≤ 4Mϕ(1+ x2)δ 2
n (x)+2ωd+1(ϕ;δn(x)),

where δ 2
n (x) = M[α]

n

(
(t− x)2;x

)
.

Proof. From [48], for each x ∈ [0,d] and t ∈ R+ then, we have

|ϕ(t)−ϕ(x)| ≤ 4Mϕ(1+ x2)(t− x)2 +

(
1+
|t− x|

δ

)
ωd+1(ϕ;δn(x)).

Applying M[α]
n (.;x) then using Cauchy-Schwarz inequality, we get

∣∣∣M[α]
n (ϕ(t);x)−ϕ(x)

∣∣∣≤ 4Mϕ(1+ x2)M[α]
n

(
(t− x)2;x

)

+

1+

(
M[α]

n

(
(t− x)2;x

)) 1
2

δ

ωd+1(ϕ;δn(x))

≤ 4Mϕ(1+ x2)δ 2
n (x)+

(
1+

δn(x)
δ

)
ωd+1(ϕ;δn(x)).

By choosing δ = δn(x), the required result follows.

Theorem 7.7.2. For ϕ ∈ C∗2(R+), α = α(n) be a sequence converging to 0 for adequately
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large n and lim
n→∞

nα(n) = l ∈ R, ∃ n0 ∈ N and
∼
C(l, p), the positive constant depends on p and

l then, we have

sup
x∈R+

∣∣∣M[α]
n (ϕ(t);x)−ϕ(x)

∣∣∣
(1+ x2)

5/2 ≤
∼
C(l, p)Ω(ϕ;n−1/2),

for n > n0.

Proof. From (iii) property of Proposition 1.4.2 and x, t ∈ R+, we have

|ϕ(t)−ϕ(x)| ≤ 4(1+ x2)(1+(t− x)2)

(
1+
|t− x|

δ

)
Ω(ϕ;δ ) (7.20)

Applying M[α]
n (;x) in (7.20), we get

∣∣∣M[α]
n (ϕ(t);x)−ϕ(x)

∣∣∣≤ 4(1+ x2)Ω(ϕ;δ ){1+ M[α]
n ((t− x)2;x)

+M[α]
n

(
(1+(t− x)2) |t− x|

δ
;x

)}
(7.21)

From Lemma 7.2.3, for sufficient large n, we have

M[α]
n ((t− x)2;x)≤ C(l, p)(1+ x2)

n

and M[α]
n ((t− x)4;x)≤ C(l, p)(1+ x2)

2

n2 , (7.22)

where C(l, p)> 0 depends on l and p.

Applying Cauchy-Schwarz inequality in (7.21), we have

M[α]
n


(

1+(t− x)2
)
|t− x|

δ
;x

≤ 1
δ

(
M[α]

n ((t− x)2;x)
) 1

2

+
1
δ

(
M[α]

n ((t− x)4;x)
) 1

2
(

M[α]
n ((t− x)2;x)

) 1
2
. (7.23)

Combing (7.21)− (7.23) and taking δ = 1√
n , we have

∼
C(l, p) = 2(1+

√
C(l, p)+2C(l, p)).

We obtain the required result.
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7.8 Function of bounded variation

For our convenience, the operators (7.2) can be written in the following form

M[α]
n (ϕ;x) =

∫
∞

0
U (α)

n,p (t,x)ϕ(t)dt (7.24)

where

U (α)
n,p (t;x) =

∞

∑
k=0

v(α)
n,k sp

n,k(t),

v(α)
n,k = t

x
α −1e−nt(nt)−k

β( x
α
, 1

α )k!(1+t)
1+x

α

and sp
n,k(t) =

npe−npt(npt)kp

Γkp+1 .

Lemma 7.8.1. For each x ∈ R+ and for large n, we get

(i) βn,p(x, t) =
t∫

0
U (α)

n,p (x,u)du≤ C(l,p)(1+x2)
n(x−t)2 , 0≤ t < x.

(ii) 1−βn,p(x, t) =
∞∫
t

U (α)
n,p (x,u)du≤ C(l,p)(1+x2)

n(t−x)2 x≤ t < ∞,

where C(l, p)> 0 depends on p and l.

Theorem 7.8.2. Let ϕ ∈DBV (R+), let α =α(n) be a sequence converging to 0 for adequately

large n, and let lim
n→∞

nα(n) = l. Then, for x ∈ R+ and large n, we acquire

∣∣∣M[α]
n (ϕ;x)−ϕ(x)

∣∣∣≤( αx
1−α

+
1

np

)∣∣∣∣ϕ ′ (x+)+ϕ ′ (x−)
2

∣∣∣∣
+

√
C(l, p)(1+ x2)

n

∣∣∣∣ϕ ′ (x+)−ϕ ′ (x−)
2

∣∣∣∣
+

C(l, p)
(
1+ x2)

nx

[
√

n]

∑
k=1

(
x

V
x− x

k

ϕx
′

)
+

x√
n

(
x

V
x− x√

n

ϕx
′

)

+

(
4M+

M+ |ϕ(x)|
x2

)
C(l, p)

(
1+ x2)

n

+
∣∣ϕ ′(x+)

∣∣√C(l, p)(1+ x2)

n

+
C(l, p)

(
1+ x2)

nx2

∣∣ϕ(2x)−ϕ(x)− xϕ
′(x+)

∣∣
+

C(l, p)
(
1+ x2)

nx

[
√

n]

∑
k=1

(
x+ x

k
V
x

ϕx
′

)
,

where ∨b
a ϕ(x) denotes the total variation of ϕ on [a,b] and ϕx is an auxiliary operator given
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by

ϕx (t) =


ϕ (t)−ϕ (x−) , 0≤ t < x

0, t = x

ϕ (t)−ϕ (x+) , x < t < ∞

Proof. The proof of this theorem closely follows the idea which is developed in [87]. There-

fore here we skip the proof.
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Chapter 8

Conclusion and Future Scope

8.1 Conclusion

In the year 2017, Chen et. al [36] generalized the Bernstein operators with shape pa-

rameter α ∈ [0,1]. For these operators they established several approximation results.

We have considered the Kantorovich variant of these operators and studied rate of con-

vergence for functions whose derivatives are of bounded variation and Voronovskaya type

theorem. We have also introduced the q-analogue and shifted knots of our considered

Kantorovich operators. These operators play an important role to show better conver-

gence with existing operators. We have also studied several approximation properties

for these operators.

The Kantorovich and integral form of Jain and Pethe operators [101] have been intro-

duced by us in chapter 3 and chapter 4 respectively. These operators can approximate

integrable functions. We have also established local and global approximation proper-

ties by using second-order modulus of continuity, Ditzian-Totik modulus of smoothness,

Lipchitz type space, Voron-ovskaya type theorem, weighted modulus of continuity and

also rate of convergence for functions whose derivatives are of bounded variation.

In 2003, Srivastava and Gupta proposed a sequence of linear positive operators and

studied the rate of convergence for functions whose derivatives are of bounded variation.

Several mathematicians proposed the modifications of these operators and established

approximation results. In 2018, Gupta and Srivastava introduced another modification

of their previous operators. For these operators, we have discussed several approxima-

tion results. We have also proposed the new generalization of these operators known as

the Bézier variant of Gupta-Srivastava operators. For these operators, we have studied
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local and global approximation properties, weighted approximation and functions whose

derivatives are of bounded variation.

The hybrid types of operators are also playing an important role in approximation the-

ory. These operators proposed by several researchers [70,88] and established many local

and global approximation properties . We have also introduced hybrid type operators

based on second kind beta transform and discussed some approximation properties like

direct results, Voronovskaya, Grüss Voronovskaya type theorem.

8.2 Future Scope

In the future, we have more opportunities to introduce new generalizations of our

considered operators with certain parameters and establish some local and global ap-

proximation results. These operators also can be considered in different spaces like (set

of complex numbers, Lp space, etc.) to make them more realizable and discuss many

qualitative and quantitative properties.

In the year 2003, J. P. King [111] modified linear positive operators which preserves x2.

In several papers, King type modifications have been introduced by many researchers

(see [49, 126]) and discussed some approximation properties. This approach can also be

applied for our considered operators to extend the study in approximation theory.
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