
BEHAVIOUR ANALYSIS OF MOBILE SENSORS AND DETECTING

UNUSUAL BEHAVIOUR

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

Submitted By:

SUKHDEV MATHUR

(2K18/SWE/20)

Under the supervision of

Dr. AKSHI KUMAR

DEPARTMENT OF COMPUTER SCIENCE

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

JUNE, 2020

ii

DEPARTMENT OF COMPUTER SCIENCE

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, SUKHDEV MATHUR Roll No. 2K18/SWE/20 student of M.Tech Software

Engineering, hereby declare that the project Dissertation titled “BEHAVIOUR

ANALYSIS OFMOBILE SENSORS AND DETECTING UNUSUAL BEHAVIOUR”

which is submitted by me to the Department of Computer Science, Delhi Technological

University, Delhi in partial fulfilment of the requirement for the award of the degree of

Master of Technology, is original and not copied from any source without proper citation.

This work has not previously formed the basis for the award of any degree, Diploma

Associateship, Fellowship or other similar title or recognition.

Place: Delhi SUKHDEV MATHUR

Date:

iii

DEPARTMENT OF COMPUTER SCIENCE

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “BEHAVIOUR ANALYSIS

OFMOBILE SENSORS AND DETECTING UNUSUAL BEHAVIOUR” which is

submitted by Sukhdev Mathur, Roll No 2K18/SWE/20 Computer Science, Delhi

Technological University, Delhi in partial fulfilment of the requirement for the award of

the degree of Master of Technology, is a record of the project work carried out by the

student under my supervision. To the best of my knowledge this work has not been

submitted in part or full for any Degree or Diploma to this University or elsewhere.

Place: Delhi Dr. AKSHI KUMAR

Date: SUPERVISOR

24-09-2020

iv

DEPARTMENT OF COMPUTER SCIENCE

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

ACKNOWLEDGEMENT

I express my gratitude to my major project guide Dr. Akshi Kumar, Department of

Computer Science, Delhi Technological University, for the valuable support and

guidance she provided in making this major project. It is my pleasure to record my sincere

thanks to my respected guide for his constructive criticism and insight without which the

project would not have shaped as it has.

I humbly extend my words of gratitude to other faculty members of this department for

providing their valuable help and time whenever it was required.

SUKHDEV MATHUR

Roll No. 2K18/SWE/20

Masters of Technology

(Software Engineering)

v

ABSTRACT

.

Today smartphones become a vital part of every individual in the world and smartphones

have tied the users with a strong bond for every day to day task like setting alarm, order

food, making payments and many more. A user never knows what going on inside their

phones. A user cannot detect a mobile application whether it is having any malicious

behaviour by its appearance, say you have downloaded an application from play store or

any third-party store and that app is transmitting your personal data to a remote server

without your knowledge. Even google play store sometimes cannot detect these

applications due to code obfuscation techniques. In this research, we are analysing the

behaviour of mobile sensors in malicious and benign mode and we are trying to detect if

any application performs any malicious activity based on our analysis. We are using

sherlock dataset for the behavioural analysis and applied four supervised machine

learning techniques to detect unusual behaviour and comparing the results to find which

technique is most accurate. We have taken 2 feature sets first contains only application

features and other contain global features with application features. We have used F1

score as a deciding parameter for best performance. In results, we have found that

XGBoost performs best with F1 score of 98.82 and 98.86 on applications global dataset

respectively.

vi

CONTENTS

CANDIDATE’S DECLARATION ii

CERTIFICATE iii

ACKNOWLEDGEMENT iv

ABSTRACT v

CONTENTS vi

LIST OF FIGURES ix

LIST OF TABLES XI

LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE XII

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 BACKGROUND 4

2.1 MOBILE SECURITY THREATS 4

2.2 TYPES OF MALWARE 4

2.3 MACHINE LEARNING 5

2.3.1 Logistic regresson 6

2.3.2 KNN (k- Nearest Neighbours) 7

2.3.3 XGBoost 7

2.3.4 Ensemble 8

2.4 EVALUATING CLASSIFIERS 10

2.5 DETECTION APPROACHES 11

2.5.1 Static Analysis 11

2.5.2 Dynamic Analysis 11

vii

2.5.3 Cloud Based 11

2.5.4 Anomaly Based 12

2.5.5 Signatures Based 12

2.6 Related Work 13

CHAPTER 3 DATASET EXPLORATION 19

3.1 DATA COLLECTION 19

3.2 DATA DESCRIPTION 19

3.2.1 Moriart Probe 23

3.2.2 System Probe (T4 probe) 23

3.2.3 Apps Probe 24

3.3 DATA SURVEY 24

CHAPTER 4 DATA FEATURE ANALYSIS 25

4.1 DATA SELECTION 25

4.2 DATA CLEANING 25

4.2.1 Removal of unwanted data 25

4.2.2 Resolving structural errors 26

4.2.3 Filter unwanted outliers 26

4.2.4 Handling missing data 26

4.3 DATA INTEGRATION 26

4.4 BALANCING THE DATASET 27

CHAPTER 5 BEHAVIOURAL ANALYSIS 28

5.1 CPU USAGE ANALYSIS 28

5.2 NETWORK USAGE ANALYSIS 30

5.2.1 Bytes transmitted analysis 30

viii

5.2.2 Bytes received analysis 31

5.3 MEMORY USAGE ANALYSIS 33

CHAPTER 6 MODELLING 35

6.1 SELECTION OF MACHINE LEARNING ALGORITHMS 35

6.2 EXPERIMENT SETUP 35

6.2.1 Label 35

6.2.2 Feature set 36

6.2.3 Technologies 36

6.3 TRAINING AND TESTING 37

CHAPTER 7 RESULTS AND DISCUSSIONS 38

7.1 KNN 38

7.2 LOGISTIC REGRESSION 42

7.3 XGBOOST 47

7.4 ENSEMBLE 51

7.5 THE VERDICT 55

7.6 USABILITY 56

7.7 LIMITATIONS 57

CHAPTER 8 DISCUSSION AND CONCLUSION 58

8.1 FINDINGS 58

8.2 FUTURE WORK 59

REFERENCES 60

ix

LIST OF FIGURES

Figure 2.1 Logistics regression for binary classification 6

Figure 2.2 Working of KNN 7

Figure 2.3 Description of XGBoost 8

Figure 2.4 Bagging, most accurate prediction is choosen among all predictions 8

Figure 2.5 Random forest 9

Figure 2.6 Confusion matrix 10

Figure 2.7 Anomaly based detection 12

Figure 2.8 Signature based detection 12

Figure 5.1 CPU usage behaviour 28

Figure 5.2 Association plot for CPU usage behaviour 29

Figure 5.3 Histogram for bytes transmission analysis 30

Figure 5.4 Association graph for bytes transmission analysis 31

Figure 5.5 Histogram shows the bytes received over the network 32

Figure 5.6 Association plot for bytes received over the network 32

Figure 5.7 Memory usage analysis 33

Figure 5.8 Association plot for memory usage 34

Figure 6.1 Data Analysis Tool structure 37

Figure 7.1 Confusion matrix for KNN for applications features only 38

Figure 7.2 Confusion matrix for KNN for applications features only 39

Figure 7.3 KNN confusion matrix for global feature set 40

Figure 7.4 KNN normalized confusion matrix for global featureset 40

Figure 7.5 AUC ROC for applications feature set for KNN 41

Figure 7.6 AUC ROC for global feature set for KNN 31

Figure 7.7 Logistic regression confusion matrix for applications features only 43

Figure 7.8 Logistic regression normalized confusion matrix for applications features 43

Figure 7.9 Logistic regression confusion matrix for global feature set 44

Figure 7.10 Logistic regression normalized confusion matrix for global feature set 44

Figure 7.11 AUC ROC for applications feature set for logistic regression 45

x

Figure 7.12 AUC ROC for global feature set for logistic regression 46

Figure 7.13 XGBoost confusion matrix for application feature set 47

Figure 7.14 XGBoost normalized confusion matrix for applications feature 48

Figure 7.15 XGBoost confusion matrix for feature set 48

Figure 7.16 XGBoost normalized confusion matrix for global feature 49

Figure 7.17 AUC ROC for application features XGBoost 50

Figure 7.18 AUC ROC for global feature set XGBoost 50

Figure 7.19 Ensemble confusion matrix for application features 47

Figure 7.20 Ensemble normalized confusion matrix for application features 48

Figure 7.21 Ensemble confusion matrix for global features 48

Figure 7.22 Ensemble normalized confusion matrix for global features 49

Figure 7.23 Ensemble AUC ROC for application features 48

Figure 7.24 Ensemble AUC ROC for global features 49

xi

LIST OF TABLES

Table 2.1 Different types of malware 5

Table 2.2 Performance metrics 10

Table 2.3 Shows the different researches and their results 18

Table 3.1 Type of self-written application and description 21

Table 3.2 Description of the PUSH probes 21

Table 3.3 Description of PULL probes 23

Table 7.1 Results for KNN 42

Table 7.2 Results for logistic regression 10

Table 7.3 Results for XGBoost 18

Table 7.4 Results for ensemble 21

Table 7.5 Result comparison for classifiers 21

xii

LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE

ABBREVIATIONS FULL FORM

TPR True Positive Rate

TNR True Negative Rate

FPR False Positive Rate

PPV Positive Predictive Value

MSE Root Mean Square Error

1

CHAPTER 1

INTRODUCTION

In 2020, there are 4.8 billion users out of which 3.5 billion users use smartphones

worldwide [1]. Smartphones provide a way to communication, as well as a prime location

for store and organizing information. As the number of applications increases for user’s

convenience, the amount of malicious applications harming users or breaching their

privacy has also risen significantly. Currently there are 2.96 million apps on google play

store and there are some other sources available for downloading the android applications.

Many applications have acquired a place in our daily routine like an alarm application,

messengers, email clients, gaming applications etc. A user never knew how an application

operates in background. It is very difficult for a user to detect any malicious activity

perform by an application; it is very possible that an application sends personal

information of the user to a remote server without the consent of user.

In late 2012, a mobile malware was found on google play store named

Android Dropdialer [3], this malware has self-updating capabilities. Applications infected

with this malware that are present on google play store managed to bypass google play

store security named bouncer because initially applications seem absolutely benign, had

no malicious feature and malicious components were separately downloaded from

internet known as remote payload technique. This feature made it possible for malware

to stay on the market for long time and produce large number of downloads.

In 2017, another malware has managed to bypass google bouncer [4] known

as Bankbot. This application has the capability to hide using code obfuscation time delay

techniques. Many times, this application has taken down from google play store but every

time this application found with its updated versions. This application was designed to

steal user credentials from android devices, it is capable of bypassing two-factor

authentication because it can monitor text messages. Smart phone users believe that

2

applications on google play store are safe but their belief makes them more vulnerable to

social engineering.

Generally, any malware can be installed on a device using remote payload

technique. Malicious applications like Android Dropdialor and Bankbot uses remote

payload technique. These types of applications are self-updating applications and cannot

be detected using standard static techniques because original package of application does

not contain any malicious component which appear as a benign application. Using

dynamic code loading to transform a non-malicious application into a malicious

application makes static analysis irrelevant. By using a time delayed or filtered

deployment of the malicious payload dynamic analysis techniques get collapsed. For

example, a hacker may provide friendly update on 1-5 days and on 6th day provide the

malicious one. Moreover a experienced hacker can be code obfuscation techniques or

code encryption to deter and complicate the dynamic or static analysis methods. These

type of malware applications are difficult to detect because self-updating techniques are

often used for benign purposes by lawful applications as well.

Many malwares are employed for stealing personal information, credentials

or for ransom. So, our aim is to detect malicious applications which steals user

information or spy on users. For this purpose, we have presented a method for detecting

malicious applications using the behavioural analysis of applications i.e. how they are

using the mobile resources and sensors. Proposed solution is intended to protect mobile

device users from malicious applications that steal personal information and spies on

users.

For conducting this research, we have used a rich dataset called Sherlock

Dataset [11] provided by Ben-Gurion University. Dataset collected by two agents called

Sherlock and Moriarty, there are 12 versions of Moriarty applications which are the

replica of 12 different type of malwares, These Moriarty applications are known to be

benign in conjunction with malicious behaviour. Moriarty change their behaviour

malicious to benign and vice versa every few weeks. These application leave clues for the

benign and malicious activities it performs and logged in raw Json format.

3

Our methodology is based on monitoring applications that run on a device

and analysis the sensors behaviour. Any application that runs on a device consumes

resources and operate on some sensors. For example, if a messenger application is running

then it consumes some CPU usage, it will send and receive data from network sensors, it

will consume some memory, battery and some other resources or sensors as per its

requirements. For the purpose of anomaly in behaviour detection, we have proceeded the

work in two steps. First, we analyse the behaviour pattern of these Moriarty applications

in benign and malicious mode and in second, we use different models and train them on

the dataset and find the best model who is able to predict the behaviour of application

most accurately. We have shown the comparison of the classifier that we have used. We

have used F1 score to select the best performing model. F1 score can be defined as the

harmonic mean of precision and recall. We haven’t used accuracy for selection of best

performing model because accuracy is dependent on dataset we have used or on non-

generalized factors. In the upcoming chapters we have presented background study,

dataset exploration and analysis, behavioural analysis, model set up that we have used for

our research and at last results and conclusion.

4

CHAPTER 2

BACKGROUND

2.1 MOBILE SECURITY THREATS

Usage mobile devices is on the ascent which lures the attackers to steal data from users.

This put the devices at high risk of being attacked, It was found by the University of

Cambridge that 87 percent of all android devices are vulnerable to at least one crucial

flaw, while Zimperium Labs found not so long ago that with a straight forward instant

SMS 95 percent of android devices could be hacked.

2.2 TYPES OF MALWARE

Any malicious application having some unusual behaviour like stealing data, lock the

device for some ransom, showing ads, spying on user etc. On the basis of behaviour

malwares are categorised as follows

Category Description

Banking malwares Collects the login and password details of social media applications,

banking applications which are then sent to remote server without

consent of users.

Mobile Ransomware Ransomware “bolts out” critical user information, for example,

documents, photographs and recordings by encrypting this data and

afterward requesting a ransom to be paid to the malware producers.

In the event that the ransom isn’t paid on schedule asa rule in bitcoin

all data are erased or essentially bolted up perpetually difficult to

reach to the client.

5

Spyware Spyware screens your actions, records your location and lifts basic

data, for example, usernames and passwords for email accounts or

web based business locales. By and large, spyware is bundled with

other apparently benign applications and discreetly gathers

information out of sight.

Adware Adware shows irritating pop-ups and ads, now adware has made

some amazing progress, attackers have now created malvertising

code that can root and infect your device, constraining it to install

different form of adware and facilitating attackers to access sensitive

information.

Hostile Downloader Initially benign, after installation it downloads the malicious

components.

Table 2.1 Different types of malware

2.3 MACHINE LEARNING

Machine learning is the branch of artificial intelligence (AI) that gives systems the ability

to automatically learn and improve on their experience without being directly

programmed. Machine learning focuses on the development of computer programs that

can access data and use it for learning. The learning process begins with observations or

data, such as direct experience or teaching, to look at patterns in the data and make good

decisions in future based on the examples we give. The primary goal is to allow computers

to automatically learn without human assistance and to optimize operations accordingly.

Machine learning can be divided into supervised learning and unsupervised learning.

In supervised learning, algorithm supposed to learn from the input variable

(x) and produce the output variable (Y) and the mapping function from input to output is:

Y = f(X)

The goal is to better evaluate the mapping function, when you have new input data (x)

you can estimate the output variable (Y) for that data.

In unsupervised Learning, we have only input data (X) and no relevant output

variables. The goal of unsupervised learning is to model the underlying structure or

distribution of data to learn more about data. unlike supervised learning above there is no

correct answers.

6

Semi supervised learning is an approach in which model is trained on

combination of and large amount of unlabelled data (Y) and small amount of labelled data

(X).

Throughout this research, there has been a focus on supervised learning, we

have tried to predict if there is any malicious application based on the behaviour of trained

model with labelled data. The next section describes the classification of machine

learning used in this research. The metric used to estimate the classification is then

described in Section 2.4. Then section 2.5, explained detection methods by using machine

learning and finally section 2.6 gives an insight of previous studies.

2.3.1 Logistic regression

Logistic regression is most appropriate

for binary classification: datasets where

y = 0 or 1, where 1 indicates the default

class. [] For instance, in predicting

whether an event will happen or not,

there are just two prospects: that it

happens (which we mean as 1) or that it

doesn't (0). logistic regression uses

logistic function

h(x) =
1

1 + ex

so, it is called as logistic regression. this equation

forms an S-shaped curve.

In logistic regression, the yield appears as probabilities of the default class. As it is a

probability, the yield lies in the range of 0-1. it is exceptionally effective, doesn't require

such a large number of computational resources, it's profoundly interpretable.

2.3.2 KNN (k- Nearest Neighbours)

Classification and regression problems can be solved by using KNN. It is a algorithm that

stores all the possible cases and classifies new cases by majority votes of its k neighbours.

Figure 2.1 Logistic regression for
binary classification

7

A case assigned to a class is most common among its k nearest neighbours measured by

distance function. These distance functions can be Euclidean, Manhattan, Minkowski and

Hamming distance. For continuous function first three functions are used and fourth one

(Hamming) for categorical variables. If K = 1, then the case is simply assigned to the

class of its nearest neighbour. At times, it turns out to be a challenge to choosing K while

performing KNN modelling.

The algorithm is simple and implementation is easy. As tuning of parameter

is not required, no need to develop a model or to make additional assumptions. But if

dataset is too large then algorithm take larger time in training and testing i.e. algorithm

becomes slow.

2.3.3 XGBoost

XGBoost is an implementation of Gradient Boosting Machines (GBM) and is used for

supervised learning. XGBoost is an optimizd gradient boosting library intended to be

exceptionally proficient, adaptable and versatile. Algorithm provides a parallel tree

boosting (also known as GBDT, GBM) that solve huge problems with a fast and accurate

method. It uses gradient descent in minimizing the loss function.

The XGBoost has very strong predictive capabilities which makes it the best option for

accuracy in events as it has both linear model and tree learning algorithm, rendering the

algorithm nearly 10x faster than current gradient booster techniques. It has ability to

handle thousands of input variables without deleting variable(s). Also, In the

classification it can give estimates of variables which are important. But It take more time

Figure 2.2 working of KNN

8

to train because of the fact trees are built sequentially and if the data is noisy XGBoost is

more sensitive to overfitting.

2.3.4 Ensemble

In machine learning, we have a technique called Ensemble. It has the ability to combine

multiple base models with the aim to create optimized predictive model. When making

decision trees, rather of depending exclusively on one decision tree and assuming that we

made the correct choice at each split, Ensemble methods helps one to take into

consideration a set od decision trees, determine the features to use or ask questions at each

split and create a final prediction dependent on the aggregated outcomes of the test

decision trees. Ensemble has two types (i) bagging, it incorporates Bootstrapping and

aggregation to create a single configuration ensemble. Multiple bootstrapped subsamples

are pulled based on a sample of results. On each of the bootstrapped subsamples a

Figure 2.4 Bagging, most accurate prediction is choosen among all

predictions

Figure 2.3 Description of XGBoost

9

decision tree is created. After the creation of each sub-sample of decision tree an

algorithm is used to sum across the decision trees to shape the most effective predictor.

Another type is Random forest, we might think of random forest as bagging

with a minor adjustment bagged decision trees have complete collection of options to

pick from when deciding where to split and how to take decisions. Furthermore, while

the bootstrapped samples vary significantly, the data will essentially break off at the same

features in each model

On the contrary, Random Forest models determine where to split, depending

on a random set feature. Rather of splitting at identical characteristics within each node,

random forest models enforce a degree of separation as each tree can divide depending

on different characteristics. This degree of distinction offers a larger whole for

aggregating around, providing a more reliable indicator for ergo.

Figure 2.5 A random forest takes a random subset of features and create n random

tree from each subset. Trees aggregated together at end

10

2.4 EVALUATING CLASSIFIERS

How can be measure the

performance of a classifier? The

obvious answer is to use Accuracy

i.e. the number of given problems a

model can classify correctly. There

are many performance measures

available to evaluate a classifier.

The most basic performance metric

is confusion metric [8]. A confusion matrix is as

shown. Confusion matrix evaluated as:

• If a malicious application is predictive as malicious then this is True Positive.

• If a benign application is predictive as benign then this is True Negative.

• If a benign application is predicted as malicious then this is a False Positive.

• If a malicious application is predicted as benign then this is a False Negative.

Accuracy can be defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Table 2.2 Performance Metrics

However, to measure the performance of a classifier accuracy might not be

the best factor. In a skewed dataset there is higher records of first class than the other

class. So by predicting the majority class high accuracy can be achieved. In such cases

the performance metric Precision (PPV) or Recall (TPR) produce the more realistic

Metrics Formula

True Positive rate (TPR) 𝑇𝑃

𝑇𝑃+𝐹𝑁
 Also known as Recall

False Positive rate (FPR) 𝐹𝑃

𝐹𝑃+𝑇𝑁

True Negative rate (TNR) 𝑇𝑁

𝑇𝑁+𝐹𝑃

Precision (PPV) 𝑇𝑃

𝑇𝑃+𝐹𝑃

F-Score 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 F-Score is defined as the harmonic

mean of precision and recall.

Figure 2.6 Confusion matrix

11

results. The F1-Score shows the harmonic mean of recall and precision. Other Metrics

are shown in Table 2.2

2.5 DETECTION APPROACHES

Below we have listed multiple techniques to detect mobile malwares which are as follows:

2.5.1 Static analysis

Static analysis is an easy and cheap way to detect malicious behaviour without running

your app. The app is disassembled and either extracts system calls or creates a flow graph

to detect if the app is malicious or harmless. The application is decompiled and the

decompiled code is analysed. But this approach is limited to the number of new malware

or malware variants [12].

2.5.2 Dynamic Analysis

In dynamic analysis, the applications are executed in sandbox or in an emulator to

comprehend the dynamic behaviour like usage permission, system api call tracing, CPU

usage, battery behaviour, RAM usage. Pollute following includes information stream

investigation from sensitive sources like GPS, camera, Microphone and so on. In contrast

to static investigation, it avoids the issues emerging from code obfuscation techniques

and polymorphic behaviour [12].

2.5.3 Cloud based

The identification framework is enormously affected by the constrained processing power,

restricted assets, limited battery. The analysis and identification some portion of

calculation is moved to the cloud which has gigantic handling power. The monitoring part

lies in the mobile environment. The monitoring part screens the Applications behave and

procedures it before sending it to the cloud for location [12].

12

2.5.4 Anomaly based

In anomaly-based detection, the general behaviour of applications is compared to that of

new applications. This approach can also detect new attacks or variants of known attacks

with a high false alarm rate error. It uses machine learning algorithms that learn from

trained data and determine whether the new test model is malicious or benign. It uses an

unsupervised learning approach [12].

2.5.5 Signature based

The behaviour of known attacks or malware is kept in the database as a signature model

and the behaviour of new applications is checked against this database. Detection of this

type can only be used for attacks which are known and has a low false alarm rate [12].

Figure 2.8 Signature based detection

Figure 2.7 Anomaly based detection

13

2.6 RELATED WORK

For past many years many approaches are used to detect the malicious applications using

different detection methods. Here we have listed some approaches. In 2011, shabtai et al

published a paper in 2012 [13]. The authors of this paper have developed a framework

named Andromaly with the purpose of detecting malicious applications using its

behaviour. for this detection framework, they used total 88 features which were divided

into 14 categories which are related to hardware, keyboard, touch screen, schedular.

messaging, power consumption, memory usage, CPU load, applications, network, calls,

processes, led and binder. Authors have utilized 4 self-developed malicious applications

and 40 benign applications for data collection. These four malicious applications

developed by them were a Spyware Trojan, DOS trojan, Spyware malware. and SMS

Trojan. Authors have conducted four different experiments, on different devices with

different models. Models were trained and tested on different sets of malicious and benign

applications. The classifiers were used for train their model is Bayesian Network, J48,

Histogram, K-means, Naïve Bayes and Logistic Regression. In both experiments, they

have used same devices to train and test their model. Here J48 decision tree classifier has

performed the best. For first experiment entire set of malicious and benign applications

were taken in the ratio of 80% and 20% for training and testing. The experiment results

in 99% of TPR and 0% of FPR. In second experiment, partial set of benign and malicious

applications had taken. Training set were having 75% malicious, 75% benign applications

and remaining set was used for testing which gives a TPR of 91% and an FPR of 11%.

The Naïve Bayes classifier comes out as best performer in both the experiments. When

complete set of benign and malicious applications had included in training set, as a result

it leads to 91.3% of TPR and 14.7% of FPR. In another experiment where 75% of

malicious applications used for the purpose of training and for testing remaining set was

used from one device gives a TPR of 82.5% and an FPR of 17.8%.

Andromaly proved its capability of detecting malicious applications based on

dynamic features using machine learning. Firmness of Andromaly also tested with

changing the training devices from testing devices, by training and testing on different

sets of training and testing. Yet the study is pretty outdated and since 2012 a lot has

changed in terms of malware detection.

In [14], published in 2013, Author has proposed a method which is an

anomaly-based detection method. This method uses behavioural features of an

14

application. dataset used in this research contains features from 408 benign applications

and 1330 malicious applications presented on google play store and database of malware

genome project respectively. After evaluation of dataset, author found that network

features and battery features were the same across dataset so only CPU, memory and

Binder features were used. Another finding was that the benign features vectors were less

in number compared to the malicious feature vectors so for balancing the dataset a

technique was used called SMOTE. Naïve Bayes, Bayesian Network, Random Forest,

Multilayer Perceptron, Logistic Regression, Decision Stump and J48 classifiers were used

for research. Performance results were shown only for Random forest with different

parameters. For the purpose of training and testing the model author used 5-fold cross

validation method. The classifier which performs best had 8 different features, had 160

trees and had a depth of 16. These characteristics leads to root MSE of 0.0183%, accuracy

of 99.9857%, and False positive were 2% only.

This study demonstrates the potential for using dynamic features and random

forest classification. But in the real-world behaviour of model is not known.

In [15], published in 2013, For detection model, authors examined multiple

machine learning techniques. Their model uses network, CPU usage, memory and SMS

features. The author has used thirty benign and 5 malicious applications but source of

these application is not mentioned. The malicious application set includes a Hostile

Downloader, a Spyware, a Root1, Spyware and two trojan Spywares. Both malicious

applications and benign applications were run and monitored under real environment

however time duration of feature collection is not known. Dataset was too large so feature

set size was reduced; the authors used an algorithm named information Gain algorithm.

The reduced feature set contains features related to memory usage, Virtual memory, SMS

and CPU usage. Logistic Regression, Naïve Bayes, SVM and Random Forest were used

for evaluation. For a variety of malwares Random Forest shows excellent performance

with TPR over 98.8% and FPR below 1%.

Research demonstrates the capability to use dynamic features but description

of feature collection is insufficient which raise the question on reliability of performance.

In [16], published in 2014, For anomaly-based detection multiple hardware

features were used, features related to battery, CPU, memory, ICMP requests and amount

of connection requests. Data Collector is a data collector application which were installed

in 12 smartphones for data collection. These smart phones have popular applications as

15

benign ad three malicious applications. A Gaussian Mixture Model is used for detection

with a Cluster-Based Local Outlier Factor which results in 100% TPR and 0% FPR.

Research demonstrate the ability of using user behavioural features with

Gaussian Mixture Model for the detection of malicious applications. But reliability of the

performance evaluation in hard to estimate because description of the feature collection

is not given. Moreover, only three malicious applications were used in this research.

In [17], published in 2016, The authors had used memory usage and CPU

usage features for dynamic detection of malicious applications. The model proposed in

this research used a dataset of 1220 malicious applications from Malware Genome Project

dataset and 952 benign applications from Google Play store. By running every application

for 10 minutes separately in Android emulator Memory and CPU features were tracked.

The emulator had run with Monkey application for user like inputs. The initial feature set

consisted of 57 features and after data cleaning optimized dataset contained only 7

features. Logistic Regression algorithm was used with the use of sliding window

technique. For training, authors had used 571 benign applications from Google Play store

and 727 malicious applications from Genome project. There are 275 benign and 304

malware applications were used for testing. Finally, they used a validation set of 94

benign and 89 unseen malicious applications (previously means refers here that the

malicious applications were neither in testing nor training set). The experiment results in

TPR of 95.7% and FPR of 25% which is quite high. The detection model achieved TPR

of 85.5% and FPR of 17.2% with highest F-score.

The research shows the capability of dynamic detection using memory usage

and CPU usage for malicious application detection. But the model has shown the quite

high FPR. Moreover, it is hard to estimate if the performance of model in real

environment would be same or not as the authors had used android emulator with Monkey

application to mimic the user behaviour.

In [18], published in 2016, In this research features used are related to CPU

usage, system calls and Memory usage. Authors have found the three type of CPU

features namely i) CPU user, ii) CPU kernel and iii) CPU total. Authors also observed

three types of memory consumptions namely i) total memory usage, ii) native memory

usage and iii) memory consumption by the Dalvik Virtual Machine. From per type of

16

memory consumption, five features were taken out namely i) the private RAM, ii) the

Heap allocation, iii) the Heap free, iv) the shared RAM and v) total proportional set size.

A set of applications were made containing benign and malicious application where

benign applications are from Google Play store and malicious applications are from

Drebin dataset. The dataset was collected by running the set of applications in an Android

emulator with Monkey application for 10 minutes and features were collected in every

two seconds. Authors proceed with K-means clustering algorithm first to cluster

applications based on similarity of CPU usage and memory usage. After that authors have

applied Random Forest classification on applications cluster classified according to their

system calls. to train their model, authors have used a set of 1000 benign applications and

1000 malicious applications. As results, the 7-means clustering and a Random Forest

classifier of 50 trees had performed the best with FPR of 28% and an accuracy of 67%.

Research shows the ability of using Memory, CPU and system calls features

for malicious application detection. But with the usage of an emulator with monkey

application to mimic real user behaviour it is not known if the performance outcomes

would be same in real environment or not. Moreover, this detection method uses System

calls which requires root permission and performance is relatively low in comparison

with other techniques.

In [19], published in 2016, authors use features related to Memory usage,

CPU usage, Network usage and Storage for detecting malicious applications. A set of

applications is prepared having benign applications from the Google Play store and

malicious applications were taken from Drebin data. These Applications were run on

android emulator with Monkeyrunner for 60 seconds. The authors have used Random

Forest Classifiers with different type of parameters and Discrete cosine Transformation

on features. Moreover, the authors amended the identification system using only global

features, all features or only application features. The classifier uses a global features was

comes out as a best performer, this model was trained with ten-fold cross-validations. The

model led with 99.52% accuracy and FPR of 0.74%.

Research shows the ability to use Storage, memory usage, network and CPU

usage features for the detection of malicious applications. An android simulator with the

monkey application is used for monitoring behave of malicious applications separately

17

that raise the question if the performance of model would be same in real environment or

not.

In [20], published in 2017 A detection model had been proposed by authors

using SVM which was based on CPU, memory and network usage of mobile phone

devices. The features had system-wide and application specific monitoring. It is not

known that how many malicious applications were there in the experiment as they had

used drebin dataset but has not mentioned the amount. But drebin dataset has 5560

malware applications, the amount of malicious applications used is less than 5560. For

the experiment, an android emulator was used with monkey application to mimic the real

user environment. The C-SVM classifier has been used with a kernel for radial base

function. the model was 82% accurate but the FPR is not mentioned and the precision

ranges from 10% to 90% depending on the malware family.

By this research the Author has shown that his proposition has the ability to

use Hardware features, but this model has done very poor, as FPR is much higher

compared to other models. In addition, the authors have used the emulator and

monkeyrunner to mimic a real user behavior that raises the question of how the model

will work in the real world.

From the above researches it can be concluded that by using hardware

features detection of malicious applications could be an effective way. It has been seen

that K-Nearest Neighbour, Naïve Bayes, and Random Forest Classifier are most effective

techniques. Many research papers have used emulators and the Monkey application to

mimic the behaviour of real users in order to measure their performance on real devices.

We also found that most researchers have run the malicious and benign applications for

few minutes which limit the detection because if any malware shows the malicious

behaviour after sometime it will not get detected. Moreover, limited research has shown

high-performance outcomes.

Article Features Performance

Ref Year Classifier Accuracy TPR FPR

[13] 2012 Various(14) BN, Histo, J48,

Kmeans, LR,

NB

0.809 0.786 0.475

18

[14] 2013 Binder, CPU, Memory, RF, BN, NB,

MLP, J48, DS,

LR

1.000 - 0.02

[15] 2013 CPU, Network, Memory,

SMS

NB, RF, LR.

SVM

- 0.990 0.001

[16] 2014 Bat, CPU, Memory,

Network

Gaussian mix-

ture+LDCBOF

~1 ~1 ~0

[17] 2016 CPU, Memory LR - 0.855 0.172

[18] 2016 SC, CPU, Mem Kmeans+RF 0.670 0.610 0.280

[19] 2016 Memory, Network,

Storage, CPU

RF 0.995 0.820 0.007

[20] 2017 CPU, Memory, Network C-SVM 0.820 - -

Table 2.3: shows the different researches and their results

19

CHAPTER 3

DATASET EXPLORATION

In this chapter, we have portrayed the dataset used for this research. Section 3.1 explains

dataset collection after that section 3.2 describes the available feature sets and features

we are using for this research and last section describes our finding on the data.

3.1 DATA AGGREGATION

The data set [21] that we have used for the purpose of this research is provided by Cyber

security center of Ben-Gurion University. For collection of datasets Mirskey et al.

conducted data collection by providing Samsung S5 smart phones to 50 users and ask

them to use these devices as their primary device. These smart phones were installed with

self-written malicious applications which act like different malware types. The sherlock

dataset collection starts from January 2015 and collected till December 2017, dataset for

a year is divided into four quarters namely Q1, Q2, Q3 and Q4. One quarter contains the

data for about four months. This dataset contains very precise information which show

how smart phones are used. This data set contains usage data of different mobile sensors

like cpu usage, battery usage, location related data, memory storage etc. Participants were

instructed to use malicious applications at least ones in a day for few minutes. These is

able to change their behave from benign to malicious and vice versa. Table 3.1 shows the

self-written malicious applications and their description.

3.2 DATA DESCRIPTION

In [21], the features which are monitored are called as sensors, these sensors are group

together so that at the same time they can be sampled together. These groups are named

as probes, these probes are triggered in a fix time interval. Here sensors are divided into

20

two categories i.e. PUSH and PULL where PUSH sensors are event based; it triggers

when a button is tapped or any call arrives etc. PULL sensors collects data periodically

like sampling the battery utilization or memory usage etc. There are 6 pull probes and 7

push probes. Table 3.2 shows the probes and description.

2016 Version Application Behaviour Description
Malware

Type

Q1

 Benign Malicious

1
Puzzle

game
Contacts Theft Steals and transmits contacts Spyware

2
Web

Browser
Spyware

Either, Location and audio spy

Or, history spy and Web traffic
Spyware

3
Utiliz.

Widget
Photo Theft Steals photos Spyware

Q2

4 Sports App
SMS Bank

Thief
Spies on SMS Spyware

5 Angry Bird Phishing

Shows fake notifications to

login in different apps like

gmail, facebook etc.

Phishing

6 Game Adware
data gathering and shows

popups, ads and banners.
Adware

Q3

7 Game Madware

Information gathering, shows

notifications and places

shortcyts and triesto install new

applications.

Spyware,

Adware,

Hostile

Downloade

r

8
Lock

Screen
Ransomeware Locks the screen

Ransomwar

e

9
File

Manager
Clickjacking

Useris tricked to trigger

accessibility services and then it

hijack the user interface.

Privilege

escalation

Q4

10 None Device Theft
Records the event when devices

is stolen

11
Music

Player
Botnet

Either SMS botnet activities or

DDoS attacks
DOS

21

12

Web

Media

Player

Recon.

Infiltration

Maps the connected local

network and searches for files

and vulnerabilities

Other

Table 3.1 Type of self-written application and description

Probe No. of Field Description

Call Log 5
Address, time, duration, outgoing or incoming, and an

indication if number is from user’s contacts.

SMS Log 5

Address, time, outgoing or incoming, and an indication if

number is from user’s contacts and if the content contains

a URL.

Screen Status 2 Log of when the screen turns on or off.

User Presence 1
Android USER_PRESENT intent log: a record of when the

user begins interacting with the device.

Broadcast

Intents
3

All Android broadcast intents (events): changes in

password, Bluetooth, network, RSSI, app packages,

wallpaper, volume. Actions of button presses,

picture/video taken, startup, shutdown, reboot, headset,

phone ringing, notifications, TTS, and more.

App Packages 11

Log of when applications are installed, updated, or

removed: provides the app’s version, hash of the APK, and

list of permissions.

Moriarty 6 All clues left by the Moriarty malware agent.

Table 3.1 Description of the PUSH probes

Probes
Sample

Interval
Sensors

No.

of

fields

Description

T0 1 day

Telephony

Information
15

current telephony configuration

information.

Hardware

Information
6 Device’s hardware configuration

System

Information
5

Kernel, SDK, baseband, and

general information.

22

T1 1 minute

Location 15

{longitude, latitude, altitude,

(anonymized via clustering)},

speed, and accuracy.

Cell Tower 5
Cell tower ID, type and reception

info

Device Status 14
Brightness, volume levels,

orientation and modes

WiFi Scan 4

For each visible AP: identifiers,

encryption, frequency, and signal

strength.

Bluetooth

Scan
9

For each visible device:

identifiers, device class (type),

parameters, and signal strength.

T2 15 seconds

Accelerometer 51 Statistics on 800 samples captured

over a duration of 4 seconds at

200Hz

For each respective axis: mean,

median, variance, covariance

between axis, middle sample, FFT

components and their statistics.

A subset of these features is

extracted from the orientation,

rotation and barometer sensors.

Linear

Accelerometer
51

Gyroscope 51

Orientation 9

Rotation

Vector
12

Magnetic

Field
51

Barometer 16

T3 10 seconds
Audio 21 Statistics over 5 seconds

Light 3 Luminosity

T4 5 seconds

Global App

stats
98

Information on the CPUs, memory,

network traffic, IO interrupts, and

connected WiFi AP.

Battery

14

statistical data and configuration

on temperature and power

consumption.

Apps
5

seconds

Local App

stats
70

For every running application:

network traffic, CPU, memory.

23

Table 3.2 Description of PULL probes

This research uses hardware sensor features for analysis of behaviour of

malicious application and its detection, so we are using T4 probe, Apps probe and

Moriarty probe for conceptual reference we have referred T4 probe as systems probe

because it contains data for system. We have collected data for year 2016 for all four

quarters which is of about 1TB but we are only using data of moriarty applications which

is most relevant for our research and size of dataset reduced to about 9gb. In next

subsection we have described about the probes which we are using for our research.

3.2.1 Moriarty Probe

Moriarty probe contains the data related to self-developed malicious applications

described in Table 3.1. Each malicious application has the ability to change it behave

from benign to malicious and vice versa in sometime we have identified three modes. In

first mode, the session between benign and malicious for versions 1 and 11 are constantly

changed. In second mode, the behaviour of version 2, 6 and 7 is changed after two

malicious sessions to benign. In third mode, version 4, 5 and 8 are continuously remains

in malicious session. Every malicious application has its behaviour exactly matched to a

real malware as described in Table 3.1. Sherlock log every action and its details taken by

the Moriarty applications. For user’s data privacy and security sensitive information is

encrypted. We have found that every record is mapped to a unique timestamp to track the

action perform at a specific time. Moriarty performs solely benign actions in benign

session, and in malicious session it can perform both benign and malicious actions. We

excluded version 10 from this research because version 10 is for device theft simulation

so it has no significance for this research.

3.2.2 System Probe (T4 probe)

System probes have global device data which is collected in every 5 seconds. The features

logged are from CPU, battery, I/O interrupts, network, memory and storage there is also

two columns which contains unique timestamp and userid. Each row contains global data

Linux level process data from the

android system /proc folder

24

for hardware sensors at a point of time for a user. Data of device had taken from /proc

folder of android OS.

3.2.3 Apps probe

The Applications probe or apps probe contains data collected at every 5 seconds for every

app that is installed on device. Each row contains data for user’s application at a given

time. There is also two columns one is unique timestamp and other is Userid for each

record. For our research we have used data for Moriarty applications only. The app data

is collected from /proc folder of android OS.

3.3 DATA SURVEY

To understand the contents of dataset, we have explored the all three probes individually

and we find that ratio of malicious to benign records is 90:10. We have balanced the

dataset by up sampling the data. Moreover, we also find that for Q1 and Q2 some data is

columns are missing which are present in Q3 and Q4. We have omitted the columns which

have constant values throughout the dataset and we have selected the columns having

values related to CPU usage, memory usage, Network usage and battery consumption.

25

CHAPTER 4

DATA FEATURE ANALYSIS

This chapter has focused on data analysis and preparation for the modelling phase, section

4.1 describes the data selection procedure after that section 4.2 gives us the look towards

the data cleaning methods, section 4.3 tells about the data integration phase and at last

section 4.4 elaborate about the data balancing.

4.1 DATA SELECTION

For analysis of data, for training and testing of model data is selected related to CPU

usage, network usage, memory usage. Data for Moriarty application is selected and data

for other applications are dropped. Columns which are null, empty of having constant

values are dropped. We have also selected UUID and userId for data integration but there

is no need for these columns for data modelling.

4.2 DATA CLEANING

Imperfections of data are resolved so that it will not affect our final result. For overcoming

data imperfections following steps are taken:

4.2.1 Removal of unwanted data

Unwanted data can be null values, duplicate values or irrelevant values. we have removed

the columns which are entirely null and we convert the null values to 0 if exist in between of

column. Duplicate values may be arise at the time of data collection. We have not found duplicate

value before data integration but after integration there are duplicate values and we have removed

them by selecting row on the basis of unique UUIDs. Irrelevant data is the data that does not fit

for the solution of our problem and we have not found such data.

26

4.2.2 Resolving structural errors

Structural errors arise at the time of measurement, data transfer or other types of data

handling activities. No such errors are found.

4.2.3 Filter unwanted outliers

Outliers are the observations that lie outside of the observation. Outliers distort and

confuse the training cycle machine learning algorithm, leads to longer training times, less

accurate models and worse performance. At the time of data analysis we find the

unwanted outliers and we have successfully remove the outliers.

4.2.4 Handling missing data

Sometimes data is not present in some columns or rows, it is most tricky part to handle in

data cleaning. To handle missing data, we have two ways one is to dropping the

observations with missing values and other one is to fill the missing values from the past

observations. In this dataset we have not found missing data. The features we have

selected have not any missing data.

4.3 DATA INTEGRATION

System probe, Application prove and Moriarty probe are the three probes used through

this research. For handling the dataset, we have used amazon Elastic Map Reduce cluster

of 5 nodes with apache pyspark. As apache pyspark is capable of handling large amount

of data, we have processed the data of one quarter at a time. All three probes are cleaned

and features are selected from these probes and joined on the basis of UserId and UUID.

Data integration proceed with taking inner join between systems probe and

application probe, we named it as system_apps_probe and after that this probe is merged

with moriarty probe on UserId and UUID for one quarter and for other quarter we have

repeat the same process and at last data of all quarter is joined to get a final clean dataset.

Merging of system_apps_probes is not so straight, as we have discussed

earlier that records for applications probe and systems probes have collected in every 5

27

seconds so we have use the threshold of 5 seconds to join the Moriarty and

system_apps_probes.

We have selected data of Moriarty application from applications probe

because this data is most relevant to our research. Moriarty probes contains data from

moriarty applications.

The final dataset is not so large so it can be fir into memory so the pyspark

dataframe is converted into pandas dataframe and use pandas and python for modelling.

We also have used the same dataset to analyse the behaviour of mobile sensors in benign

and malicious modes using R.

4.4 BALANCING THE DATASET

As describes in section 3.3, The malicious data points are higher is number as compared

to benign data points, they are in the ratio of 9:1. In real life malicious data points are

lower than benign data points because malicious application work in a ay so that it can be

hide among the benign behave. To balance the dataset we have two ways, these are i) to

upsample the benign data points or downsample the malicious datapoints. We do not want

any kind of data losses. So, we have upsample the benign datapoints. We have got the

data points in the ratio of 50:50 for both benign and malicious.

28

CHAPTER 5

BEHAVIOURAL ANALYSIS

This chapter focus on the analysis of sensors which show how the sensors are working in

benign and malicious mode. We have shown the analysis of cpu usage, bytes received

and transmitted over the network and how memory is used by moriarty applications in

malicious and benign modes.

5.1 CPU USAGE ANALYSIS

Every application that is running on your phone has some CPU utilization. For effective

device performance CPU consumption by any application plays an crucial role. If an

application consumes high CPU then it hampers the performance and slow down the

phone. Moreover, if CPU consumption is high then it will also consume high battery. It

is not necessary if an application is malicious then it will consume more CPU resources.

It is worth noting that any benign application can have high CPU utilization say gaming

applications but we need to portrait the behaviour pattern of CPU consumption for

malicious and benign applications

Figure 5.1 CPU usage behaviour

29

During the CPU usage analysis, we have found too high and too low values

but for information we have clean the data, omitted the too low values and too high values

were acting as outliers so we have adjusted them Figure 5.1 shows the CPU usage

behaviour it can be clearly seen that CPU usage between 15 to 30 having very high

frequency which tell in this interval CPU usage is very high. For interval 0 to 5 and 40

and above CPU usage is very low. Lastly For intervals 5 to 15 and 30 to 40 CPU usage is

moderate, using the above information from the histogram we have plotted an Association

plot in R to clearly visualize the CPU usage behaviour.

An Association plot is a good choice to plot the proportion of observations

for different categorical variables. Assocplot has a set of bar charts, showing the deviation

of each combination of factors from independence. In figure 5.2, shows an Association

plot between the CPU usage and benign and malicious behaviour. Here CPU usage is

categorised in Low, Medium and High. It is clearly visible from the plot that if the CPU

utilization is low or high then the behaviour is malicious and if the CPU usage is moderate

then the behaviour is benign. In conclusion, We have found that if CPU malicious

applications have too high or too low memory usage.

Figure 5.2 Association plot for CPU usage behaviour

30

5.2 NETWORK USAGE ANALYSIS

In this section, we have focused on the received and transmitted bytes over network of

android device. We have taken the total bytes received and transmitted over Wi-Fi or

mobile data. In section 5.2.1 the behaviour of bytes transmission is described and section

5.2.2 describes the behaviour of bytes received.

5.2.1 Bytes transmitted analysis

In this section, we have highlighted the behave of bytes transmitted over the network.

Today almost every application interacts with network and has some data transmission to

remote server. For example, whatsapp, Ludo etc. These apps continuously sync with the

server to prevent the data loss. In our research, Moriarty applications show both benign

and malicious behave some of them are spywares which transmits the data to remote

server but this data is in encrypted form to prevent user privacy. We have plot a histogram

to show the bytes transmitted over the network.

In figure 5.3, it is clearly shown that bytes transmitted frequency is either very

high or very low, for intervals 600 to 700 and 1300 to 1400 bytes transmission frequency

is very high and for other intervals bytes transmission frequency is very low. For clear

Figure 5.3 Histogram for bytes transmission analysis

31

visualization of bytes transmission, we have plotted an Association graph for which

shows the behaviour between the categorical variables that is benign and malicious.

Figure 5.4 shows the categorical distribution of bytes transmission, it is

clearly seen that in malicious mode the transmission frequency of bytes is high rather than

in benign mode the transmission frequency is low. In conclusion, we can say that

malicious application tends to transmit higher data than the benign applications. A

spyware has its prime goal of data collection from user device and send it to remote server

whereas any benign applications have lower frequency of data transmission.

5.2.2 Bytes received analysis

Every byte transmitted over the network have got acknowledgement in return to ensure

that data packet has been received successfully. We also try to analyse the received bytes

in both benign and malicious modes. We have plotted a histogram to see the byte

reception over the network on a android device.

Figure 5.4 Association graph for bytes transmission analysis

32

Figure 5.5 shows that the frequency of receiving bytes over the network is

very high in 600 to 800 and 1400 to 1600 and for other intervals the frequency is very

low. Using the information from above histogram we have plotted a Association graph.

Figure 5.6 Association plot for bytes received over the network

Figure 5.5 Histogram shows the bytes received over the network

33

In figure 5.6, It can be clearly seen that in benign mode receiving frequency

of bytes in benign mode is low and in malicious mode frequency is very high.

Here, we have found that in malicious mode data transmission over the

network is high as compared to benign mode, the fact behind this is malicious application

tends to transfer data to a remote server without the consent of user. Moreover, frequency

of data transmission is not so frequent, in figure 5.4 and figure 5.2, data transmission

frequency is high between two intervals. In conclusion we can say that malicious

applications send data but not in a frequent manner.

5.3 MEMORY USAGE ANALYSIS

Every application that is running on a mobile device has some memory consumption that

is, it requires RAM for execution. If there are many running application in the background

then it overloads the RAM. Every process that is run by any application is associated with

a CPU thread and CPU requires data for processing, this data is accumulated in RAM

from ROM. When process completes its execution CPU threads are released and RAM

become free. For a malicious application it is not necessary that it will overloads the RAM

or CPU usage but it may be possible that malicious application try to stop execution for

other process and force the CPU to act maliciously which can lead to memory overheads.

Figure 5.7 Memory usage analysis

34

Figure 5.7, shows the memory usage pattern, for this histogram we divide

the bars in two categories that is high and low. For the intervals where memory usage

has frequency less than 500, we have put them in low and above 500 we have put them

in high and we plot an association plot for deep analysis.

From Association plot in figure 5.8, it can be clearly deduced that in malicious

mode memory usage is low and in benign mode memory usage is high. So, we can

conclude that Moriarty applications that are acting as a malicious application does no

effect memory.

In this chapter, we have seen the analysis of CPU usage, network and memory

and how malicious and benign applications effect device sensors. In next chapter we will

see the modelling algorithms that we have used to train and test our model.

Figure 5.8 Association plot for memory usage

35

CHAPTER 6

MODELLING

In this chapter, we have focused on modelling phase of this research. We have described

how the dataset is used for the purpose of training and testing of the classification model.

Selection of machine learning algorithms is described in first section. Section second

describes the setup used for the research. Section third describes the training and testing

of machine learning classifiers.

6.1 SELECTION OF MACHINE LEARNING ALGORITHMS

On the basis of analysis of previous studies, we have selected logistic regression, KNN,

XGBoost and random forest. In our we have found that these algorithms have high TPR

rate and low FPR and FNR and these algorithms have shown promising results for binary

classification. Therefore, we have used above specified algorithms.

6.2 EXPERIMENT SETUP

6.2.1 Label

We are using binary classification for this research as we are classifying the application

in Benign or malicious. Benign is indicated by 0 and malicious is indicated by 1. So

Benign and malicious can be refer as labels that a classifier tries to predict. In moriarty

file there are two fields called ActionType and SessionType. ActionType indicates that if

a action taken by application is benign or malicious and SessionType indicates the current

session under which an application is running as describes in section 3.2.1. As classifier

requires numerical values to perform any operation so we have transformed the string

values to numerical values where Benign is 0 and Malicious is 1.

We have labelled each row of the dataset as malicious or benign where

ActionType and SessionType both are malicious as malicious else benign.

36

6.2.2 Feature set

The set of features that we have used for training and testing of our classifier referred as

feature set. Our feature set includes Battery features, CPU usage features, network

transmission features and memory usage features. These features are from global usage

and application specific usage.

We have removed all metadata features which are UUID, UserId, Version

from final merged dataset. We have appended a column which is a label field called label.

We have assigned the label malicious if ActionType and SessionType both are malicious

(1) else we label other rows as benign (0). We have then removed the ActionType and

SessionType columns also as they serve no purpose after labelling the dataset. Final

labelled dataset is in ratio of 10:90 w.r.t benign and malicious, so we have up-sampled

the dataset to balance the dataset as described in section 4.4.

We have used two datasets for training and testing first comprises application

features only and second comprises global features with application features. We have

train and test model for both the models and compare their results.

6.2.3 Technologies

For this research, we have used AWS Elastic Map Reduce with Apache Pyspark with 5

node cluster with 32GB of RAM and 8 cores of CPU. Apache Spark use Hadoop for file

management and Hadoop is built over Yarn and HDFS which give the capability to

Hadoop to store, replicate and retrieve large amount of data. For data processing we have

used pyspark as it can process data among multiple nodes. To train and test the model

Scikit-learn is used which is a machine learning classifier package. Lastly, we have used

zeppelin note book for code the classifier as it is provided by EMR. We have extracted

the usable clean dataset for model training and testing which is smaller in amount so we

have processed the model on the local system only to reduce the cost of AWS EMR.

Locally we have used jupyter and same libraries for classification. Jupyter and zeppelin

are almost same but both are good in their own way. For Data analysis we have used R.

37

Figure 6.1 Data Analysis Tool structure

6.3 TRAINING AND TESTING

For training and testing and used the setup we have described in previous section. We

have split the data in the ratio of 80:20 for training and testing. For testing we have

removed label field. We have used F1 score for the selection of best model. F1-Score is

the harmonic mean of the precision and recall. We have set the metrics of different

classifiers in the table for final conclusion.

38

CHAPTER 7

RESULTS AND DISCUSSIONS

In this chapter, results of experiment have shown. We have described the result for every

classifier one by one. In first section we have described the result of KNN then in section

second, we have described the results of logistic regression. In section third we have

described XGBoost, in fourth section we have ensemble. In fourth section, we have state

the final verdict and finally we have described the usability and limitations.

7.1 KNN

The performance of KNN with both datasets has shown below. Confusion matrix for

KNN is shown in figure 7.1 for applications features only and the normalized confusion

matrix shown in figure 7.2.

Figure 7.1 KNN confusion matrix using applications features

39

For applications featureset, we can see from figure 7.1 and figure 7.2 that

True positive is 90%, i.e. 90% of the malicious applications are classified as malicious

and True negative is 10% which tells that 10% of malicious applications are miss

classified. For benign applications False negative is 98% i.e., 98% of benign applications

are predicted as benign and 2% of benign applications are miss classified as shown by

false positive.

For global featureset, we can see from figure 7.3 and figure 7.4 that True

positive is 72% i.e., 72% malicious applications are predicted correctly and 28% of

malicious applications are miss classified as True negative is 28%. Whereas False

negative is 96% means 96% benign applications are classified correctly and 4% are miss

classified as show by False positive is 4%.

Figure 7.2 KNN normalized confusion matrix using applications features

40

Figure 7.3 KNN confusion matrix using global features

Figure 7.4 KNN normalized confusion matrix for global features

41

Figure 7.5 KNN ROC AUC using application features

Figure 7.6 KNN ROC AUC using global features

Figure 7.5 and figure 7.6 show the AUC ROC curve for application feature

set and global feature set respectively. We have found ROC for application feature set is

42

95.89% and for global feature set is 87.27% respectively. From the figure and ROC values

we have find that application feature set are more promising for malicious application

detection whereas global feature introduces noise in data and reduce the prediction ability

for the model. Table 7.1 gives a result over view for the KNN.

From Table 7.1, we can clearly see that Application feature set has greater accuracy, F1

score, Recall and precision which shows that we will find good results if we use

applications feature set with KNN for detection.

7.2 LOGISTIC REGRESSION

The performance of logistic regression with both the feature set is described in this

section. Figure 7.7 and figure 7.8 show the confusion matrix and normalized confusion

matrix of applications feature set for logistic regression. We can clearly conclude from

confusion matrix that True positive is 83% and False negative is 84% which means 83%

of malicious applications predicted as malicious and 84% of benign applications

predicted as benign where 17% is True negative and 16% is False positive which tells

17% malicious applications and 16% benign applications are misclassified.

Table 7.1 Results for KNN

43

Figure 7.7 Logistic regression confusion matrix for applications features

Figure 7.8 Logistic regression normalized confusion matrix for

applications features

44

Figure 7.9 Logistic regression confusion matrix for global feature set

Figure 7.10 Logistic regression normalized confusion matrix for global

feature set

45

Figure 7.9 and figure 7.10 for global feature set, we can clearly conclude from

confusion matrix that True positive is 79% and False negative is 90% which means 79%

of malicious applications predicted as malicious and 90% of benign applications

predicted as benign where 21% is True negative and 10% is False positive which tells

10% malicious applications and 10% benign applications are misclassified.

Figure 7.11 and 7.12, show the AUC ROC curve for application feature set

and global feature set respectively. We have found ROC for application feature set is

90.02% and for global feature set is 92.18% respectively. From the figure and ROC values

we have found that logistic regression with global feature set are more promising for

malicious application detection whereas applications feature set is not so efficient for

prediction.

We have summarized the results for logistic regression in table 7.2 and

compare the results of logistic regression with applications feature set and global feature

set.

Figure 7.11 Logistic regression ROC AUC using applications features

46

From table 7.2, logistic regression for application feature set has less accuracy

the global feature set, however we are using F1 score to select the model. As we can

deduced from table F1 score for global feature set is higher than application feature set.

Precision is less quiet lesser for global feature set, but overall result parameters suggest

that logistic regression perform well for global application features.

Results for logistic regression

Feature set Applications features Global features

Accuracy 84% 89%

F1 score 90.62% 94.01%

Recall 84.26% 90.38%

Precision 98.01% 97.92%

AUC 90.02% 92.18%

Table 7.2 Results for logistic regression

Figure 7.12 Logistic regression ROC AUC for global feature set for

47

7.3 XGBOOST

The performance of XGBoost with both the feature set is described in this section. Figure

7.13 and figure 7.14 show the confusion matrix and normalized confusion matrix of

applications feature set for XGBoost. We can clearly conclude from confusion matrix that

True positive is 92% and False negative is 98% which means 92% of malicious

applications predicted as malicious and 98% of benign applications predicted as benign

where 8% is True negative and 2% is False positive which tells 8% malicious applications

and 2% benign applications are misclassified.

Figure 7.13 XGBoost confusion matrix using application features

48

Figure 7.14 XGBoost normalized confusion matrix using applications features

Figure 7.15 XGBoost confusion matrix using global features

49

Figure 7.15 and figure 7.16 for global feature set, we can clearly conclude

from confusion matrix that True positive is 90% and False negative is 99% which means

90% of malicious applications predicted as malicious and 99% of benign applications

predicted as benign where 10% is True negative and 1% is False positive which tells 10%

malicious applications and 1% benign applications are misclassified. Here results are

quite high, XGBoost is an extension of random forest which is a tree-based algorithm.

From the confusion matrix of both the feature sets there is not a noticeable

difference, both exhibits almost same results. On analysing AUC curves for both the

feature sets in figure 7.17 and 7.18, we can see that ROC curve for applications feature

set is little better than the global feature set, we got AUC value for application feature set

is 99.54 and for global feature set is 99.46. AUC tells us that XGBoost work better for

application feature set than the global feature set. In table 7.3, we summarize the result

for the XGBoost.

Figure 7.16 XGBoost normalized confusion matrix using global features

50

Figure 7.18 XGBoost ROC AUC for global features

Figure 7.17 XGBoost ROC AUC for application features

51

Table 7.3 Results for XGBoost

From table 7.3, we can see that result parameters for both the feature sets are

almost same. Accuracy does not have any difference but AUC gives us the clear sight

that the XGboost is better for applications features set then global feature set but F1 score

says with a very minute difference that XGboost has worked good for global feature sets.

7.4 ENSEMBLE

The performance of ensemble with both the feature set is described in this section. Figure

7.19 and figure 7.20 show the confusion matrix and normalized confusion matrix of

applications feature set for ensemble. We can clearly conclude from confusion matrix that

True positive is 94% and False negative is 96% which means 94% of malicious

applications predicted as malicious and 96% of benign applications predicted as benign

where 6% is True negative and 4% is False positive which tells 6% malicious applications

and 4% benign applications are misclassified.

Figure 7.21 and figure 7.22 for global feature set, we can clearly conclude

from confusion matrix that True positive is 94% and False negative is 97% which means

94% of malicious applications predicted as malicious and 97% of benign applications

predicted as benign where 6% is True negative and 3% is False positive which tells 6%

malicious applications and 3% benign applications are misclassified. Ensemble uses

voting mechanism to select the best result, here results are quite high and reliable.

XGBoost results

Feature set Applications features Global features

Accuracy 98% 98%

F1 score 98.82% 98.86%

Recall 98.43% 98.63%

Precision 99.20% 99.10%

AUC 99.54% 99.46%

52

Figure 7.19 Ensemble confusion matrix using application features

Figure 7.20 Ensemble normalized confusion matrix using application features

53

Figure 7.21 Ensemble confusion matrix using global features

Figure 7.22 Ensemble normalized confusion matrix using global features

54

Figure 7.23 Ensemble ROC AUC for application features

Figure 7.24 Ensemble ROC AUC for global features

55

Figure 7.23 and 7.24, show the AUC ROC curve for application feature set

and global feature set respectively. We have found ROC for application feature set is

98.42% and for global feature set is 98.97% respectively. From the figure and ROC values

we have found that ensemble with global feature set are more promising for malicious

application detection whereas applications feature set is lagging quite behind.

We have summarized the results for ensemble in table 7.4 and compare the

results of logistic regression with applications feature set and global feature set.

From table 7.4, we have seen that resulting parameters are almost same, there

is not so much difference but ensemble work better with global features rather than with

application features. Ensemble gives 97% accuracy and 98.07% F1 score but AUC is little

lesser in the case if global features. As we are concluding our result on F1 score as F1-

score is the harmonic mean of precision and recall so Ensemble work better with global

features.

7.5 THE VERDICT

In this chapter, in preceding section we have seen KNN, Logistic regression, XGBoost

and ensemble. These techniques we have selected on the basis of related work and our

research for binary classification. We have seen the results for all four classifiers. In this

section we have summarized all the results for all the classifiers and extract a verdict for

better performance on the basis of F1 score. We have listed all the parameters in Table

7.5 for comparison.

Ensemble results

Feature set Applications features Global features

Accuracy 96% 97%

F1 score 97.78% 98.07%

Recall 96.20% 96.76%

Precision 99.42% 99.42%

AUC 99.54% 98.97%

Table 7.4 Results for ensemble

56

From table 7.5, we can conclude that XGBoost has performed best among all

four classifiers. It has high accuracy for both global and application feature set of 98%.

Moreover, as we are using F1 score for best performance metric so XGBoost has highest

F1 score of 98.82% and 98.86% for application and global features respectively. Lastly,

for AUC it is nearest to 1 that means XGBoost is giving highest probability of predicting

correct results. So, The Final verdict we can state that for a binary classification problem

like ours of classification and prediction of malicious and benign applications XGBoost

which is a tree-based classifier has performed best and produces best result.

7.6 USABILITY

Usability obviously refers to how the model can be used, how the model can be deployed

on a real device for malicious application detection. Usability of model are effected by

three factors: i) train and test time, ii) model size and iii) memory usage. Lower values

for these metrics show the low storage, less train, test time and low memory usage. We

have two methods for deployment for this model either we deploy model on the device

which require lower values for above metrics or we can deploy on the cloud but it will

increase the latency as it will take time to import data to server, processing cost and then

response goes to device.

Paramete

rs
KNN

Logistic

regression
XGBoost Ensemble

Feature

set

Applicat

ion

Global
Applic

ation

Global Applicat

ion

Global Applicat

ion

Global

Accuracy 97% 94% 84% 89% 98% 98% 96% 97%

F1 Score 98.58% 96.65% 90.62% 94% 98.82% 98.86% 97.78% 98.07%

Recall 9818% 95.90% 84.26% 90.38% 98.43% 98.63% 96.20% 96.76%

Precision 98.97% 97.41% 98.01% 97.92% 99.20% 99.10% 99.42% 99.42%

AUC 95.89% 87.27% 90.02% 92.18% 99.54% 99.46% 98.42% 98.97%

Table 7.5 Result comparison for classifiers

57

7.7 LIMITATIONS

There are some limitations for this model which are as follows:

1 Dataset is collected from the Samsung galaxy S5, so it is not known that how the

model performs on other devices.

2 For data collection self-written malicious applications are used. These

applications are developed for research purpose only, so it is not known how

model performs with real malwares.

3 We have found a smaller number of data points for some moriarty versions, so it

could affect the results.

4 The method used for this research is behaviour based, behaviour analysis of the

benign and malicious applications have carried out. On the basis of behaviour, we

have drawn the results. In real scenario a benign application may use sensors like

malicious application which leads to incorrect result.

58

CHAPTER 8

CONCLUSION AND DISCUSSIONS

In this chapter, we have conclude the findings of our research and discussed about the

improvements which can be entertain in future.

8.1 FINDINGS

We have analysed the CPU usage, network usage and memory usage in presence of a

malicious application and with benign application as described in chapter 5. We have

seen the association plots for all three features and got an idea how the sensors are

behaving in presence of malicious applications. As the malicious applications are self-

written and behave like a real malware we can rely on the dataset because it is collected

in real environment. We haven’t used any emulator to mock the behaviour of real

scenarios. We have seen that

1 CPU usage can be high or low with malicious applications

2 Network usage is high with malicious applications and low with benign

applications

3 Memory usage is low with malicious applications and normal with benign

applications.

We have analysed the performances of KNN, Logistic regression, XGBoost

and ensemble method and find that XGBoost work best with global features resulting F1

score of 98.86% where other classifier are also very near to this score. We also find that

AUC of XGboost is high with value of 99.58% with application features which tells that

probability of predicting correct results is very high. There are 48 features in global

feature set and 27 in applications feature set related to CPU, network, memory and

battery. Our results have shown that our model can predict the malicious application with

59

good accuracy. Moreover, XGBoost is a tree-based classifier which perform really good

with our binary classification problem.

8.2 FUTURE WORK

There is so much scope has left to improve the detection method and to overcome the

limitations as new methods and techniques can be introduce to increase the efficiency.

For future we can entertain following points:

1. Conducting the research with real malware applications to improve the efficiency

and reliability.

2. Data collection from multiple devices of different models so that a huge dataset

from different plate-forms can be collected to analyse the real-world scenarios.

3. Dynamic detection methods can be improved in future research with real

malwares.

4. Focus on optimize the resource requirements for detection methods, for training

and testing time and memory usage.

5. We will deploy the model on real devise to test the model under real scenarios.

60

REFERENCES

[1] “total smartphone users in the world” https://www.bankmycell.com/blog/how-many-

phones-are-in-the-world

[2] “total number of apps on google play store”

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-

google-

playstore/#:~:text=The%20number%20of%20available%20apps,under%20the%20na

me%20Android%20Market.

[3] “Drop dialer” https://www.androidauthority.com/dropdialer-premum-rate-sms-

malware-android-100783/

[4] “Google bouncer” https://www.theverge.com/2012/2/2/2766674/google-unveils-

bouncer-service-to-automatically-detect-android-market

[5] “bankbot bypass google play stores bouncer” https://www.blackhat.com/docs/eu-

17/webcast/10052017-scaling-security-operations.pdf

[6] “threats to android/ types of malwares” https://kaspersky.co.in/resource-

center/threats/mobile

[7] “machine learning algorithms”

https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-

algorithms/

[8] “performance metrics” https://www.svds.com/the-basics-of-classifier-evaluation-

part-1/

61

[9] “Association plot”

http://guianaplants.stir.ac.uk/seminar/resources/R_in_a_Nutshell_Second_Edition.pdf

[10] K. Patel and B. Buddadev, “Detection and mitigation of android malware through

hybrid approach,” in Security in Computing and Communications, vol. 536

of Communications in Computer and Information Science, pp. 455–463, Springer,

Basel, Switzerland, 2015.

[11] Y. Mirsky, A. Shabtai, L. Rokach, B. Shapira, and Y. Elovici, “Sherlock vs moriarty:

A smartphone dataset for cybersecurity research”, in Proceedings of the 2016 ACM

workshop on Artificial intelligence and security, ACM, 2016, pp. 1–12.

[12] Malware detection techniques “A Survey on Rise of Mobile Malware and Detection

Methods”

[13] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y.Weiss, ““andromaly”: A

behavioral malware detection framework for android devices”, Journal of Intelligent

Information Systems, vol. 38, no. 1, pp. 161–190, 2012.

[14] M. S. Alam and S. T. Vuong, “Random Forest Classification for Detecting Android

Malware”, in 2013 IEEE International Conference on Green Computing and

Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social

Computing, Aug. 2013, pp. 663–669. DOI: 10.1109/GreenCom-iThings-

CPSCom.2013.122.

[15] H.-S. Ham and M.-J. Choi, “Analysis of android malware detection performance using

machine learning classifiers”, in ICT Convergence (ICTC), 2013 International

Conference on, IEEE, 2013, pp. 490–495.

[16] A. E. Attar, R. Khatoun, and M. Lemercier, “A Gaussian mixture model for dynamic

detection of abnormal behavior in smartphone applications”, in 2014 Global

Information Infrastructure and Networking Symposium (GIIS), Sep. 2014, pp. 1–6.

DOI: 10.1109/GIIS.2014.6934278.

[17] J. Milosevic, A. Ferrante, and M. Malek, “Malaware: Effective and efficient run-time

mobile malware detector”, in Dependable, Autonomic and Secure Computing, 14th

Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data

Intelligence and Computing and Cyber Science and Technology Congress

62

(DASC/PiCom/DataCom/CyberSciTech), 2016 IEEE 14th Intl C, IEEE, 2016, pp.

270–277.

[18] A. Ferrante, E. Medvet, F. Mercaldo, J. Milosevic, and C. A. Visaggio, “Spotting the

malicious moment: Characterizing malware behavior using dynamic features”, in

Availability, Reliability and Security (ARES), 2016 11th International Conference on,

IEEE, 2016, pp. 372–381.

[19] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio, “Acquiring and analyzing

app metrics for effective mobile malware detection”, in Proceedings of the 2016 ACM

on International Workshop on Security And Privacy Analytics, ACM, 2016, pp. 50–

57.

[20] L. Massarelli, L. Aniello, C. Ciccotelli, L. Querzoni, D. Ucci, and R. Baldoni,

“Android malware family classification based on resource consumption over time”,

arXiv preprint arXiv:1709.00875, 2017

