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ABSTRACT 

 

.  

Today smartphones become a vital part of every individual in the world and smartphones 

have tied the users with a strong bond for every day to day task like setting alarm, order 

food, making payments and many more. A user never knows what going on inside their 

phones. A user cannot detect a mobile application whether it is having any malicious 

behaviour by its appearance, say you have downloaded an application from play store or 

any third-party store and that app is transmitting your personal data to a remote server 

without your knowledge. Even google play store sometimes cannot detect these 

applications due to code obfuscation techniques. In this research, we are analysing the 

behaviour of mobile sensors in malicious and benign mode and we are trying to detect if 

any application performs any malicious activity based on our analysis. We are using 

sherlock dataset for the behavioural analysis and applied four supervised machine 

learning techniques to detect unusual behaviour and comparing the results to find which 

technique is most accurate. We have taken 2 feature sets first contains only application 

features and other contain global features with application features. We have used F1 

score as a deciding parameter for best performance. In results, we have found that 

XGBoost performs best with F1 score of 98.82 and 98.86 on applications global dataset 

respectively.   
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CHAPTER 1 

 

INTRODUCTION 

 

 

In 2020, there are 4.8 billion users out of which 3.5 billion users use smartphones 

worldwide [1]. Smartphones provide a way to communication, as well as a prime location 

for store and organizing information. As the number of applications increases for user’s 

convenience, the amount of malicious applications harming users or breaching their 

privacy has also risen significantly. Currently there are 2.96 million apps on google play 

store and there are some other sources available for downloading the android applications. 

Many applications have acquired a place in our daily routine like an alarm application, 

messengers, email clients, gaming applications etc. A user never knew how an application 

operates in background. It is very difficult for a user to detect any malicious activity 

perform by an application; it is very possible that an application sends personal 

information of the user to a remote server without the consent of user. 

 

In late 2012, a mobile malware was found on google play store named 

Android Dropdialer [3], this malware has self-updating capabilities. Applications infected 

with this malware that are present on google play store managed to bypass google play 

store security named bouncer because initially applications seem absolutely benign, had 

no malicious feature and malicious components were separately downloaded from 

internet known as remote payload technique. This feature made it possible for malware 

to stay on the market for long time and produce large number of downloads. 

 

In 2017, another malware has managed to bypass google bouncer [4] known 

as Bankbot. This application has the capability to hide using code obfuscation time delay 

techniques. Many times, this application has taken down from google play store but every 

time this application found with its updated versions. This application was designed to 

steal user credentials from android devices, it is capable of bypassing two-factor 

authentication because it can monitor text messages. Smart phone users believe that 
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applications on google play store are safe but their belief makes them more vulnerable to 

social engineering. 

 

Generally, any malware can be installed on a device using remote payload 

technique. Malicious applications like Android Dropdialor and Bankbot uses remote 

payload technique. These types of applications are self-updating applications and cannot 

be detected using standard static techniques because original package of application does 

not contain any malicious component which appear as a benign application. Using 

dynamic code loading to transform a non-malicious application into a malicious 

application makes static analysis irrelevant. By using a time delayed or filtered 

deployment of the malicious payload dynamic analysis techniques get collapsed. For 

example, a hacker may provide friendly update on 1-5 days and on 6th day provide the 

malicious one. Moreover a experienced hacker can be code obfuscation techniques or 

code encryption to deter and complicate the dynamic or static analysis methods. These 

type of malware applications are difficult to detect because self-updating techniques are 

often used for benign purposes by lawful applications as well. 

 

Many malwares are employed for stealing personal information, credentials 

or for ransom. So, our aim is to detect malicious applications which steals user 

information or spy on users. For this purpose, we have presented a method for detecting 

malicious applications using the behavioural analysis of applications i.e. how they are 

using the mobile resources and sensors. Proposed solution is intended to protect mobile 

device users from malicious applications that steal personal information and spies on 

users. 

 

For conducting this research, we have used a rich dataset called Sherlock 

Dataset [11] provided by Ben-Gurion University. Dataset collected by two agents called 

Sherlock and Moriarty, there are 12 versions of Moriarty applications which are the 

replica of 12 different type of malwares, These Moriarty applications are known to be 

benign in conjunction with malicious behaviour. Moriarty change their behaviour 

malicious to benign and vice versa every few weeks. These application leave clues for the 

benign and malicious activities it performs and logged in raw Json format.     
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Our methodology is based on monitoring applications that run on a device 

and analysis the sensors behaviour. Any application that runs on a device consumes 

resources and operate on some sensors. For example, if a messenger application is running 

then it consumes some CPU usage, it will send and receive data from network sensors, it 

will consume some memory, battery and some other resources or sensors as per its 

requirements. For the purpose of anomaly in behaviour detection, we have proceeded the 

work in two steps. First, we analyse the behaviour pattern of these Moriarty applications 

in benign and malicious mode and in second, we use different models and train them on 

the dataset and find the best model who is able to predict the behaviour of application 

most accurately. We have shown the comparison of the classifier that we have used. We 

have used F1 score to select the best performing model. F1 score can be defined as the 

harmonic mean of precision and recall. We haven’t used accuracy for selection of best 

performing model because accuracy is dependent on dataset we have used or on non-

generalized factors. In the upcoming chapters we have presented background study, 

dataset exploration and analysis, behavioural analysis, model set up that we have used for 

our research and at last results and conclusion.  
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CHAPTER 2 

 

BACKGROUND 

 

2.1  MOBILE SECURITY THREATS 

Usage mobile devices is on the ascent which lures the attackers to steal data from users. 

This put the devices at high risk of being attacked, It was found by the University of 

Cambridge that 87 percent of all android devices are vulnerable to at least one crucial 

flaw, while Zimperium Labs found not so long ago that with a straight forward instant 

SMS 95 percent of android devices could be hacked. 

 

2.2  TYPES OF MALWARE 

Any malicious application having some unusual behaviour like stealing data, lock the 

device for some ransom, showing ads, spying on user etc. On the basis of behaviour 

malwares are categorised as follows 

 

Category Description 

Banking malwares Collects the login and password details of social media applications, 

banking applications which are then sent to remote server without 

consent of users.  

Mobile Ransomware Ransomware “bolts out” critical user information, for example, 

documents, photographs and recordings by encrypting this data and 

afterward requesting a ransom to be paid to the malware producers. 

In the event that the ransom isn’t paid on schedule asa rule in bitcoin 

all data are erased or essentially bolted up perpetually difficult to 

reach to the client. 
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Spyware Spyware screens your actions, records your location and lifts basic 

data, for example, usernames and passwords for email accounts or 

web based business locales. By and large, spyware is bundled with 

other apparently benign applications and discreetly gathers 

information out of sight. 

Adware Adware shows irritating pop-ups and ads, now adware has made 

some amazing progress, attackers have now created malvertising 

code that can root and infect your device, constraining it to install 

different form of adware and facilitating attackers to access sensitive 

information.  

Hostile Downloader Initially benign, after installation it downloads the malicious 

components. 

 

Table 2.1 Different types of malware 

 

2.3  MACHINE LEARNING 

Machine learning is the branch of artificial intelligence (AI) that gives systems the ability 

to automatically learn and improve on their experience without being directly 

programmed. Machine learning focuses on the development of computer programs that 

can access data and use it for learning. The learning process begins with observations or 

data, such as direct experience or teaching, to look at patterns in the data and make good 

decisions in future based on the examples we give. The primary goal is to allow computers 

to automatically learn without human assistance and to optimize operations accordingly. 

Machine learning can be divided into supervised learning and unsupervised learning.  

 

In supervised learning, algorithm supposed to learn from the input variable 

(x) and produce the output variable (Y) and the mapping function from input to output is: 

Y = f(X) 

The goal is to better evaluate the mapping function, when you have new input data (x) 

you can estimate the output variable (Y) for that data. 

In unsupervised Learning, we have only input data (X) and no relevant output 

variables. The goal of unsupervised learning is to model the underlying structure or 

distribution of data to learn more about data. unlike supervised learning above there is no 

correct answers. 
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Semi supervised learning is an approach in which model is trained on 

combination of and large amount of unlabelled data (Y) and small amount of labelled data 

(X).  

Throughout this research, there has been a focus on supervised learning, we 

have tried to predict if there is any malicious application based on the behaviour of trained 

model with labelled data. The next section describes the classification of machine 

learning used in this research. The metric used to estimate the classification is then 

described in Section 2.4. Then section 2.5, explained detection methods by using machine 

learning and finally section 2.6 gives an insight of previous studies. 

 

2.3.1 Logistic regression 

Logistic regression is most appropriate 

for binary classification: datasets where 

y = 0 or 1, where 1 indicates the default 

class. [] For instance, in predicting 

whether an event will happen or not, 

there are just two prospects: that it 

happens (which we mean as 1) or that it 

doesn't (0). logistic regression uses 

logistic function  

h(x) =
1

1 + ex
 

so, it is called as logistic regression. this equation 

forms an S-shaped curve. 

In logistic regression, the yield appears as probabilities of the default class. As it is a 

probability, the yield lies in the range of 0-1. it is exceptionally effective, doesn't require 

such a large number of computational resources, it's profoundly interpretable. 

 

2.3.2 KNN (k- Nearest Neighbours) 

Classification and regression problems can be solved by using KNN. It is a algorithm that 

stores all the possible cases and classifies new cases by majority votes of its k neighbours. 

Figure 2.1 Logistic regression for 
binary classification 
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A case assigned to a class is most common among its k nearest neighbours measured by 

distance function. These distance functions can be Euclidean, Manhattan, Minkowski and 

Hamming distance. For continuous function first three functions are used and fourth one 

(Hamming) for categorical variables. If K = 1, then the case is simply assigned to the 

class of its nearest neighbour. At times, it turns out to be a challenge to choosing K while 

performing KNN modelling. 

 

 

 

 

 

 

 

 

 

The algorithm is simple and implementation is easy. As tuning of parameter 

is not required, no need to develop a model or to make additional assumptions. But if 

dataset is too large then algorithm take larger time in training and testing i.e. algorithm 

becomes slow. 

 

2.3.3 XGBoost 

XGBoost is an implementation of Gradient Boosting Machines (GBM) and is used for 

supervised learning. XGBoost is an optimizd gradient boosting library intended to be 

exceptionally proficient, adaptable and versatile. Algorithm provides a parallel tree 

boosting (also known as GBDT, GBM) that solve huge problems with a fast and accurate 

method. It uses gradient descent in minimizing the loss function. 

The XGBoost has very strong predictive capabilities which makes it the best option for 

accuracy in events as it has both linear model and tree learning algorithm, rendering the 

algorithm nearly 10x faster than current gradient booster techniques. It has ability to 

handle thousands of input variables without deleting variable(s). Also, In the 

classification it can give estimates of variables which are important. But It take more time 

Figure 2.2 working of KNN 
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to train because of the fact trees are built sequentially and if the data is noisy XGBoost is 

more sensitive to overfitting. 

 

2.3.4 Ensemble 

In machine learning, we have a technique called Ensemble. It has the ability to combine 

multiple base models with the aim to create optimized predictive model. When making 

decision trees, rather of depending exclusively on one decision tree and assuming that we 

made the correct choice at each split, Ensemble methods helps one to take into 

consideration a set od decision trees, determine the features to use or ask questions at each 

split and create a final prediction dependent on the aggregated outcomes of the test 

decision trees. Ensemble has two types (i) bagging, it incorporates Bootstrapping and 

aggregation to create a single configuration ensemble. Multiple bootstrapped subsamples 

are pulled based on a sample of results. On each of the bootstrapped subsamples a 

Figure 2.4 Bagging, most accurate prediction is choosen among all 

predictions 

Figure 2.3 Description of XGBoost 
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decision tree is created. After the creation of each sub-sample of decision tree an 

algorithm is used to sum across the decision trees to shape the most effective predictor.  

 

 

 

 

 

 

 

 

Another type is Random forest, we might think of random forest as bagging 

with a minor adjustment bagged decision trees have complete collection of options to 

pick from when deciding where to split and how to take decisions. Furthermore, while 

the bootstrapped samples vary significantly, the data will essentially break off at the same 

features in each model 

On the contrary, Random Forest models determine where to split, depending 

on a random set feature. Rather of splitting at identical characteristics within each node, 

random forest models enforce a degree of separation as each tree can divide depending 

on different characteristics. This degree of distinction offers a larger whole for 

aggregating around, providing a more reliable indicator for ergo. 

 

 

 

Figure 2.5 A random forest takes a random subset of features and create n random 

tree from each subset. Trees aggregated together at end 
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2.4 EVALUATING CLASSIFIERS 

How can be measure the 

performance of a classifier? The 

obvious answer is to use Accuracy 

i.e. the number of given problems a 

model can classify correctly. There 

are many performance measures 

available to evaluate a classifier. 

The most basic performance metric 

is confusion metric [8]. A confusion matrix is as 

shown. Confusion matrix evaluated as: 

• If a malicious application is predictive as malicious then this is True Positive. 

• If a benign application is predictive as benign then this is True Negative. 

• If a benign application is predicted as malicious then this is a False Positive. 

• If a malicious application is predicted as benign then this is a False Negative. 

Accuracy can be defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

Table 2.2 Performance Metrics 

However, to measure the performance of a classifier accuracy might not be 

the best factor. In a skewed dataset there is higher records of first class than the other 

class. So by predicting the majority class high accuracy can be achieved. In such cases 

the performance metric Precision (PPV) or Recall (TPR) produce the more realistic 

Metrics Formula  

True Positive rate (TPR) 𝑇𝑃

𝑇𝑃+𝐹𝑁
  Also known as Recall 

False Positive rate (FPR) 𝐹𝑃

𝐹𝑃+𝑇𝑁
  

True Negative rate (TNR) 𝑇𝑁

𝑇𝑁+𝐹𝑃
  

Precision (PPV) 𝑇𝑃

𝑇𝑃+𝐹𝑃
  

F-Score 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  F-Score is defined as the harmonic 

mean of precision and recall. 

Figure 2.6 Confusion matrix 
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results. The F1-Score shows the harmonic mean of recall and precision. Other Metrics 

are shown in Table 2.2 

 

2.5  DETECTION APPROACHES 

Below we have listed multiple techniques to detect mobile malwares which are as follows: 

 

2.5.1 Static analysis 

Static analysis is an easy and cheap way to detect malicious behaviour without running 

your app. The app is disassembled and either extracts system calls or creates a flow graph 

to detect if the app is malicious or harmless. The application is decompiled and the 

decompiled code is analysed. But this approach is limited to the number of new malware 

or malware variants [12]. 

 

2.5.2 Dynamic Analysis 

In dynamic analysis, the applications are executed in sandbox or in an emulator to 

comprehend the dynamic behaviour like usage permission, system api call tracing, CPU 

usage, battery behaviour, RAM usage. Pollute following includes information stream 

investigation from sensitive sources like GPS, camera, Microphone and so on. In contrast 

to static investigation, it avoids the issues emerging from code obfuscation techniques 

and polymorphic behaviour [12]. 

 

2.5.3 Cloud based 

The identification framework is enormously affected by the constrained processing power, 

restricted assets, limited battery. The analysis and identification some portion of 

calculation is moved to the cloud which has gigantic handling power. The monitoring part 

lies in the mobile environment. The monitoring part screens the Applications behave and 

procedures it before sending it to the cloud for location [12]. 
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2.5.4 Anomaly based 

In anomaly-based detection, the general behaviour of applications is compared to that of 

new applications. This approach can also detect new attacks or variants of known attacks 

with a high false alarm rate error. It uses machine learning algorithms that learn from 

trained data and determine whether the new test model is malicious or benign. It uses an 

unsupervised learning approach [12]. 

 

2.5.5 Signature based 

The behaviour of known attacks or malware is kept in the database as a signature model 

and the behaviour of new applications is checked against this database. Detection of this 

type can only be used for attacks which are known and has a low false alarm rate [12]. 

 

Figure 2.8 Signature based detection 

Figure 2.7 Anomaly based detection 
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2.6  RELATED WORK  

For past many years many approaches are used to detect the malicious applications using 

different detection methods. Here we have listed some approaches. In 2011, shabtai et al 

published a paper in 2012 [13]. The authors of this paper have developed a framework 

named Andromaly with the purpose of detecting malicious applications using its 

behaviour. for this detection framework, they used total 88 features which were divided 

into 14 categories which are related to hardware, keyboard, touch screen, schedular. 

messaging, power consumption, memory usage, CPU load, applications, network, calls, 

processes, led and binder. Authors have utilized 4 self-developed malicious applications 

and 40 benign applications for data collection. These four malicious applications 

developed by them were a Spyware Trojan, DOS trojan, Spyware malware. and SMS 

Trojan. Authors have conducted four different experiments, on different devices with 

different models. Models were trained and tested on different sets of malicious and benign 

applications. The classifiers were used for train their model is Bayesian Network, J48, 

Histogram, K-means, Naïve Bayes and Logistic Regression. In both experiments, they 

have used same devices to train and test their model. Here J48 decision tree classifier has 

performed the best. For first experiment entire set of malicious and benign applications 

were taken in the ratio of 80% and 20% for training and testing. The experiment results 

in 99% of TPR and 0% of FPR. In second experiment, partial set of benign and malicious 

applications had taken. Training set were having 75% malicious, 75% benign applications 

and remaining set was used for testing which gives a TPR of 91% and an FPR of 11%. 

The Naïve Bayes classifier comes out as best performer in both the experiments. When 

complete set of benign and malicious applications had included in training set, as a result 

it leads to 91.3% of TPR and 14.7% of FPR. In another experiment where 75% of 

malicious applications used for the purpose of training and for testing remaining set was 

used from one device gives a TPR of 82.5% and an FPR of 17.8%. 

Andromaly proved its capability of detecting malicious applications based on 

dynamic features using machine learning. Firmness of Andromaly also tested with 

changing the training devices from testing devices, by training and testing on different 

sets of training and testing. Yet the study is pretty outdated and since 2012 a lot has 

changed in terms of malware detection. 

In [14], published in 2013, Author has proposed a method which is an 

anomaly-based detection method. This method uses behavioural features of an 
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application. dataset used in this research contains features from 408 benign applications 

and 1330 malicious applications presented on google play store and database of malware 

genome project respectively. After evaluation of dataset, author found that network 

features and battery features were the same across dataset so only CPU, memory and 

Binder features were used. Another finding was that the benign features vectors were less 

in number compared to the malicious feature vectors so for balancing the dataset a 

technique was used called SMOTE. Naïve Bayes, Bayesian Network, Random Forest, 

Multilayer Perceptron, Logistic Regression, Decision Stump and J48 classifiers were used 

for research. Performance results were shown only for Random forest with different 

parameters. For the purpose of training and testing the model author used 5-fold cross 

validation method. The classifier which performs best had 8 different features, had 160 

trees and had a depth of 16. These characteristics leads to root MSE of 0.0183%, accuracy 

of 99.9857%, and False positive were 2% only. 

This study demonstrates the potential for using dynamic features and random 

forest classification. But in the real-world behaviour of model is not known. 

In [15], published in 2013, For detection model, authors examined multiple 

machine learning techniques. Their model uses network, CPU usage, memory and SMS 

features. The author has used thirty benign and 5 malicious applications but source of 

these application is not mentioned. The malicious application set includes a Hostile 

Downloader, a Spyware, a Root1, Spyware and two trojan Spywares. Both malicious 

applications and benign applications were run and monitored under real environment 

however time duration of feature collection is not known. Dataset was too large so feature 

set size was reduced; the authors used an algorithm named information Gain algorithm. 

The reduced feature set contains features related to memory usage, Virtual memory, SMS 

and CPU usage. Logistic Regression, Naïve Bayes, SVM and Random Forest were used 

for evaluation. For a variety of malwares Random Forest shows excellent performance 

with TPR over 98.8% and FPR below 1%. 

Research demonstrates the capability to use dynamic features but description 

of feature collection is insufficient which raise the question on reliability of performance.  

 

In [16], published in 2014, For anomaly-based detection multiple hardware 

features were used, features related to battery, CPU, memory, ICMP requests and amount 

of connection requests. Data Collector is a data collector application which were installed 

in 12 smartphones for data collection. These smart phones have popular applications as 
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benign ad three malicious applications. A Gaussian Mixture Model is used for detection 

with a Cluster-Based Local Outlier Factor which results in 100% TPR and 0% FPR. 

Research demonstrate the ability of using user behavioural features with 

Gaussian Mixture Model for the detection of malicious applications. But reliability of the 

performance evaluation in hard to estimate because description of the feature collection 

is not given. Moreover, only three malicious applications were used in this research.   

 

In [17], published in 2016, The authors had used memory usage and CPU 

usage features for dynamic detection of malicious applications. The model proposed in 

this research used a dataset of 1220 malicious applications from Malware Genome Project 

dataset and 952 benign applications from Google Play store. By running every application 

for 10 minutes separately in Android emulator Memory and CPU features were tracked. 

The emulator had run with Monkey application for user like inputs. The initial feature set 

consisted of 57 features and after data cleaning optimized dataset contained only 7 

features. Logistic Regression algorithm was used with the use of sliding window 

technique. For training, authors had used 571 benign applications from Google Play store 

and 727 malicious applications from Genome project. There are 275 benign and 304 

malware applications were used for testing. Finally, they used a validation set of 94 

benign and 89 unseen malicious applications (previously means refers here that the 

malicious applications were neither in testing nor training set). The experiment results in 

TPR of 95.7% and FPR of 25% which is quite high. The detection model achieved TPR 

of 85.5% and FPR of 17.2% with highest F-score. 

 

The research shows the capability of dynamic detection using memory usage 

and CPU usage for malicious application detection. But the model has shown the quite 

high FPR. Moreover, it is hard to estimate if the performance of model in real 

environment would be same or not as the authors had used android emulator with Monkey 

application to mimic the user behaviour.  

 

In [18], published in 2016, In this research features used are related to CPU 

usage, system calls and Memory usage. Authors have found the three type of CPU 

features namely i) CPU user, ii) CPU kernel and iii) CPU total. Authors also observed 

three types of memory consumptions namely i) total memory usage, ii) native memory 

usage and iii) memory consumption by the Dalvik Virtual Machine. From per type of 
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memory consumption, five features were taken out namely i) the private RAM, ii) the 

Heap allocation, iii) the Heap free, iv) the shared RAM and v) total proportional set size. 

A set of applications were made containing benign and malicious application where 

benign applications are from Google Play store and malicious applications are from 

Drebin dataset. The dataset was collected by running the set of applications in an Android 

emulator with Monkey application for 10 minutes and features were collected in every 

two seconds. Authors proceed with K-means clustering algorithm first to cluster 

applications based on similarity of CPU usage and memory usage. After that authors have 

applied Random Forest classification on applications cluster classified according to their 

system calls. to train their model, authors have used a set of 1000 benign applications and 

1000 malicious applications. As results, the 7-means clustering and a Random Forest 

classifier of 50 trees had performed the best with FPR of 28% and an accuracy of 67%. 

 

Research shows the ability of using Memory, CPU and system calls features 

for malicious application detection. But with the usage of an emulator with monkey 

application to mimic real user behaviour it is not known if the performance outcomes 

would be same in real environment or not. Moreover, this detection method uses System 

calls which requires root permission and performance is relatively low in comparison 

with other techniques. 

 

In [19], published in 2016, authors use features related to Memory usage, 

CPU usage, Network usage and Storage for detecting malicious applications. A set of 

applications is prepared having benign applications from the Google Play store and 

malicious applications were taken from Drebin data. These Applications were run on 

android emulator with Monkeyrunner for 60 seconds. The authors have used Random 

Forest Classifiers with different type of parameters and Discrete cosine Transformation 

on features. Moreover, the authors amended the identification system using only global 

features, all features or only application features. The classifier uses a global features was 

comes out as a best performer, this model was trained with ten-fold cross-validations. The 

model led with 99.52% accuracy and FPR of 0.74%. 

Research shows the ability to use Storage, memory usage, network and CPU 

usage features for the detection of malicious applications. An android simulator with the 

monkey application is used for monitoring behave of malicious applications separately 



17 
 

that raise the question if the performance of model would be same in real environment or 

not. 

In [20], published in 2017 A detection model had been proposed by authors 

using SVM which was based on CPU, memory and network usage of mobile phone 

devices. The features had system-wide and application specific monitoring. It is not 

known that how many malicious applications were there in the experiment as they had 

used drebin dataset but has not mentioned the amount. But drebin dataset has 5560 

malware applications, the amount of malicious applications used is less than 5560. For 

the experiment, an android emulator was used with monkey application to mimic the real 

user environment. The C-SVM classifier has been used with a kernel for radial base 

function. the model was 82% accurate but the FPR is not mentioned and the precision 

ranges from 10% to 90% depending on the malware family. 

By this research the Author has shown that his proposition has the ability to 

use Hardware features, but this model has done very poor, as FPR is much higher 

compared to other models. In addition, the authors have used the emulator and 

monkeyrunner to mimic a real user behavior that raises the question of how the model 

will work in the real world. 

From the above researches it can be concluded that by using hardware 

features detection of malicious applications could be an effective way. It has been seen 

that K-Nearest Neighbour, Naïve Bayes, and Random Forest Classifier are most effective 

techniques. Many research papers have used emulators and the Monkey application to 

mimic the behaviour of real users in order to measure their performance on real devices. 

We also found that most researchers have run the malicious and benign applications for 

few minutes which limit the detection because if any malware shows the malicious 

behaviour after sometime it will not get detected. Moreover, limited research has shown 

high-performance outcomes.  

Article Features Performance 

Ref Year  Classifier Accuracy TPR FPR 

[13] 2012 Various(14) BN, Histo, J48, 

Kmeans, LR, 

NB 

0.809 0.786 0.475 
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[14] 2013 Binder, CPU, Memory, RF, BN, NB, 

MLP, J48, DS, 

LR 

1.000 - 0.02 

[15] 2013 CPU, Network, Memory, 

SMS 

NB, RF, LR. 

SVM 

- 0.990 0.001 

[16] 2014 Bat, CPU, Memory, 

Network 

Gaussian mix-

ture+LDCBOF 

~1 ~1 ~0 

[17] 2016 CPU, Memory LR - 0.855 0.172 

[18] 2016 SC, CPU, Mem Kmeans+RF 0.670 0.610 0.280 

[19] 2016 Memory, Network, 

Storage, CPU 

RF 0.995 0.820 0.007 

[20] 2017 CPU, Memory, Network C-SVM 0.820 - - 

 

Table 2.3: shows the different researches and their results 
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CHAPTER 3 

 

 

DATASET EXPLORATION 

 

 

In this chapter, we have portrayed the dataset used for this research. Section 3.1 explains 

dataset collection after that section 3.2 describes the available feature sets and features 

we are using for this research and last section describes our finding on the data. 

 

3.1  DATA AGGREGATION 

The data set [21] that we have used for the purpose of this research is provided by Cyber 

security center of Ben-Gurion University. For collection of datasets Mirskey et al. 

conducted data collection by providing Samsung S5 smart phones to 50 users and ask 

them to use these devices as their primary device. These smart phones were installed with 

self-written malicious applications which act like different malware types. The sherlock 

dataset collection starts from January 2015 and collected till December 2017, dataset for 

a year is divided into four quarters namely Q1, Q2, Q3 and Q4. One quarter contains the 

data for about four months. This dataset contains very precise information which show 

how smart phones are used. This data set contains usage data of different mobile sensors 

like cpu usage, battery usage, location related data, memory storage etc. Participants were 

instructed to use malicious applications at least ones in a day for few minutes. These is 

able to change their behave from benign to malicious and vice versa. Table 3.1 shows the 

self-written malicious applications and their description. 

 

3.2 DATA DESCRIPTION 

In [21], the features which are monitored are called as sensors, these sensors are group 

together so that at the same time they can be sampled together. These groups are named 

as probes, these probes are triggered in a fix time interval. Here sensors are divided into 
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two categories i.e. PUSH and PULL where PUSH sensors are event based; it triggers 

when a button is tapped or any call arrives etc. PULL sensors collects data periodically 

like sampling the battery utilization or memory usage etc. There are 6 pull probes and 7 

push probes. Table 3.2 shows the probes and description. 

2016 Version Application Behaviour Description 
Malware 

Type 

Q1 

 Benign Malicious   

1 
Puzzle 

game 
Contacts Theft Steals and transmits contacts Spyware 

2 
Web 

Browser 
Spyware 

Either, Location and audio spy 

Or, history spy and Web traffic 
Spyware 

3 
Utiliz. 

Widget 
Photo Theft Steals photos Spyware 

Q2 

4 Sports App 
SMS Bank 

Thief 
Spies on SMS Spyware 

5 Angry Bird Phishing 

Shows fake notifications to 

login in different apps like 

gmail, facebook etc. 

Phishing 

6 Game Adware 
data gathering and shows 

popups, ads and banners. 
Adware 

Q3 

7 Game Madware 

Information gathering, shows 

notifications and places 

shortcyts and triesto install new 

applications. 

Spyware, 

Adware, 

Hostile 

Downloade

r 

8 
Lock 

Screen 
Ransomeware Locks the screen 

Ransomwar

e 

9 
File 

Manager 
Clickjacking 

Useris tricked to trigger 

accessibility services and then it 

hijack the user interface. 

Privilege 

escalation 

Q4 

10 None Device Theft 
Records the event when devices 

is stolen 
 

11 
Music 

Player 
Botnet 

Either SMS botnet activities  or 

DDoS attacks  
DOS 
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12 

Web 

Media 

Player 

Recon. 

Infiltration 

Maps the connected local 

network and searches for files 

and vulnerabilities 

Other 

Table 3.1 Type of self-written application and description 

  

Probe No. of Field Description 

Call Log 5 
Address, time, duration, outgoing or incoming, and an 

indication if number is from user’s contacts. 

SMS Log 5 

Address, time, outgoing or incoming, and an indication if 

number is from user’s contacts and if the content contains 

a URL. 

Screen Status 2 Log of when the screen turns on or off. 

User Presence 1 
Android USER_PRESENT intent log: a record of when the 

user begins interacting with the device. 

Broadcast 

Intents 
3 

All Android broadcast intents (events): changes in 

password, Bluetooth, network, RSSI, app packages, 

wallpaper, volume. Actions of button presses, 

picture/video taken, startup, shutdown, reboot, headset, 

phone ringing, notifications, TTS, and more. 

App Packages 11 

Log of when applications are installed, updated, or 

removed: provides the app’s version, hash of the APK, and 

list of permissions. 

Moriarty 6 All clues left by the Moriarty malware agent. 

 

Table 3.1 Description of the PUSH probes 

 

Probes 
Sample 

Interval 
Sensors 

No. 

of 

fields 

Description 

T0 1 day 

Telephony 

Information 
15 

current telephony configuration 

information. 

Hardware 

Information 
6 Device’s hardware configuration 

System 

Information 
5 

Kernel, SDK, baseband, and 

general information. 
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T1 1 minute 

Location 15 

{longitude, latitude, altitude, 

(anonymized via clustering)}, 

speed, and accuracy. 

Cell Tower 5 
Cell tower ID, type and reception 

info 

Device Status 14 
Brightness, volume levels, 

orientation and modes 

WiFi Scan 4 

For each visible AP: identifiers, 

encryption, frequency, and signal 

strength. 

Bluetooth 

Scan 
9 

For each visible device: 

identifiers, device class (type), 

parameters, and signal strength. 

T2 15 seconds 

Accelerometer 51 Statistics on 800 samples captured 

over a duration of 4 seconds at 

200Hz 

For each respective axis: mean, 

median, variance, covariance 

between axis, middle sample, FFT 

components and their statistics. 

A subset of these features is 

extracted from the orientation, 

rotation and barometer sensors. 

Linear 

Accelerometer 
51 

Gyroscope 51 

Orientation 9 

Rotation 

Vector 
12 

Magnetic 

Field 
51 

Barometer 16 

T3 10 seconds 
Audio 21 Statistics over 5 seconds 

Light 3 Luminosity 

T4 5 seconds 

 
Global App 

stats 
98 

Information on the CPUs, memory, 

network traffic, IO interrupts, and 

connected WiFi AP. 

 
Battery 

 

14 

 

statistical data and configuration 

on temperature and power 

consumption. 

Apps 
5 

seconds 
  

Local App 

stats 
70 

For every running application:  

network traffic, CPU, memory. 
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Table 3.2 Description of PULL probes 

 

This research uses hardware sensor features for analysis of behaviour of 

malicious application and its detection, so we are using T4 probe, Apps probe and 

Moriarty probe for conceptual reference we have referred T4 probe as systems probe 

because it contains data for system. We have collected data for year 2016 for all four 

quarters which is of about 1TB but we are only using data of moriarty applications which 

is most relevant for our research and size of dataset reduced to about 9gb. In next 

subsection we have described about the probes which we are using for our research. 

 

3.2.1 Moriarty Probe 

Moriarty probe contains the data related to self-developed malicious applications 

described in Table 3.1. Each malicious application has the ability to change it behave 

from benign to malicious and vice versa in sometime we have identified three modes. In 

first mode, the session between benign and malicious for versions 1 and 11 are constantly 

changed. In second mode, the behaviour of version 2, 6 and 7 is changed after two 

malicious sessions to benign. In third mode, version 4, 5 and 8 are continuously remains 

in malicious session. Every malicious application has its behaviour exactly matched to a 

real malware as described in Table 3.1. Sherlock log every action and its details taken by 

the Moriarty applications. For user’s data privacy and security sensitive information is 

encrypted. We have found that every record is mapped to a unique timestamp to track the 

action perform at a specific time. Moriarty performs solely benign actions in benign 

session, and in malicious session it can perform both benign and malicious actions. We 

excluded version 10 from this research because version 10 is for device theft simulation 

so it has no significance for this research. 

 

3.2.2 System Probe (T4 probe) 

System probes have global device data which is collected in every 5 seconds. The features 

logged are from CPU, battery, I/O interrupts, network, memory and storage there is also 

two columns which contains unique timestamp and userid. Each row contains global data 

Linux level process data from the 

android system /proc folder 
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for hardware sensors at a point of time for a user. Data of device had taken from /proc 

folder of android OS. 

 

3.2.3 Apps probe 

The Applications probe or apps probe contains data collected at every 5 seconds for every 

app that is installed on device. Each row contains data for user’s application at a given 

time. There is also two columns one is unique timestamp and other is Userid for each 

record. For our research we have used data for Moriarty applications only. The app data 

is collected from /proc folder of android OS. 

 

3.3 DATA SURVEY 

To understand the contents of dataset, we have explored the all three probes individually 

and we find that ratio of malicious to benign records is 90:10. We have balanced the 

dataset by up sampling the data. Moreover, we also find that for Q1 and Q2 some data is 

columns are missing which are present in Q3 and Q4. We have omitted the columns which 

have constant values throughout the dataset and we have selected the columns having 

values related to CPU usage, memory usage, Network usage and battery consumption. 
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CHAPTER 4 

 

DATA FEATURE ANALYSIS 

 

This chapter has focused on data analysis and preparation for the modelling phase, section 

4.1 describes the data selection procedure after that section 4.2 gives us the look towards 

the data cleaning methods, section 4.3 tells about the data integration phase and at last 

section 4.4 elaborate about the data balancing. 

 

4.1  DATA SELECTION 

For analysis of data, for training and testing of model data is selected related to CPU 

usage, network usage, memory usage. Data for Moriarty application is selected and data 

for other applications are dropped. Columns which are null, empty of having constant 

values are dropped. We have also selected UUID and userId for data integration but there 

is no need for these columns for data modelling. 

 

4.2  DATA CLEANING 

Imperfections of data are resolved so that it will not affect our final result. For overcoming 

data imperfections following steps are taken: 

 

4.2.1 Removal of unwanted data 

Unwanted data can be null values, duplicate values or irrelevant values. we have removed 

the columns which are entirely null and we convert the null values to 0 if exist in between of 

column. Duplicate values may be arise at the time of data collection. We have not found duplicate 

value before data integration but after integration there are duplicate values and we have removed 

them by selecting row on the basis of unique UUIDs. Irrelevant data is the data that does not fit 

for the solution of our problem and we have not found such data.
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4.2.2 Resolving structural errors 

Structural errors arise at the time of measurement, data transfer or other types of data 

handling activities. No such errors are found. 

 

4.2.3 Filter unwanted outliers 

Outliers are the observations that lie outside of the observation. Outliers distort and 

confuse the training cycle machine learning algorithm, leads to longer training times, less 

accurate models and worse performance. At the time of data analysis we find the 

unwanted outliers and we have successfully remove the outliers. 

 

4.2.4 Handling missing data 

Sometimes data is not present in some columns or rows, it is most tricky part to handle in 

data cleaning. To handle missing data, we have two ways one is to dropping the 

observations with missing values and other one is to fill the missing values from the past 

observations. In this dataset we have not found missing data. The features we have 

selected have not any missing data. 

 

4.3  DATA INTEGRATION 

System probe, Application prove and Moriarty probe are the three probes used through 

this research. For handling the dataset, we have used amazon Elastic Map Reduce cluster 

of 5 nodes with apache pyspark. As apache pyspark is capable of handling large amount 

of data, we have processed the data of one quarter at a time. All three probes are cleaned 

and features are selected from these probes and joined on the basis of UserId and UUID.  

 

Data integration proceed with taking inner join between systems probe and 

application probe, we named it as system_apps_probe and after that this probe is merged 

with moriarty probe on UserId and UUID for one quarter and for other quarter we have 

repeat the same process and at last data of all quarter is joined to get a final clean dataset.  

 

Merging of system_apps_probes is not so straight, as we have discussed 

earlier that records for applications probe and systems probes have collected in every 5 
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seconds so we have use the threshold of 5 seconds to join the Moriarty and 

system_apps_probes.  

 

We have selected data of Moriarty application from applications probe 

because this data is most relevant to our research. Moriarty probes contains data from 

moriarty applications. 

 

The final dataset is not so large so it can be fir into memory so the pyspark 

dataframe is converted into pandas dataframe and use pandas and python for modelling. 

We also have used the same dataset to analyse the behaviour of mobile sensors in benign 

and malicious modes using R. 

 

4.4  BALANCING THE DATASET  

As describes in section 3.3, The malicious data points are higher is number as compared 

to benign data points, they are in the ratio of 9:1. In real life malicious data points are 

lower than benign data points because malicious application work in a ay so that it can be 

hide among the benign behave. To balance the dataset we have two ways, these are i) to 

upsample the benign data points or downsample the malicious datapoints. We do not want 

any kind of data losses. So, we have upsample the benign datapoints. We have got the 

data points in the ratio of 50:50 for both benign and malicious. 
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CHAPTER 5 

 

BEHAVIOURAL ANALYSIS 

 

This chapter focus on the analysis of sensors which show how the sensors are working in 

benign and malicious mode. We have shown the analysis of cpu usage, bytes received 

and transmitted over the network and how memory is used by moriarty applications in 

malicious and benign modes. 

 

5.1   CPU USAGE ANALYSIS 

Every application that is running on your phone has some CPU utilization. For effective 

device performance CPU consumption by any application plays an crucial role. If an 

application consumes high CPU then it hampers the performance and slow down the 

phone. Moreover, if CPU consumption is high then it will also consume high battery. It 

is not necessary if an application is malicious then it will consume more CPU resources. 

It is worth noting that any benign application can have high CPU utilization say gaming 

applications but we need to portrait the behaviour pattern of CPU consumption for 

malicious and benign applications

Figure 5.1 CPU usage behaviour 
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During the CPU usage analysis, we have found too high and too low values 

but for information we have clean the data, omitted the too low values and too high values 

were acting as outliers so we have adjusted them Figure 5.1 shows the CPU usage 

behaviour it can be clearly seen that CPU usage between 15 to 30 having very high 

frequency which tell in this interval CPU usage is very high. For interval 0 to 5 and 40 

and above CPU usage is very low. Lastly For intervals 5 to 15 and 30 to 40 CPU usage is 

moderate, using the above information from the histogram we have plotted an Association 

plot in R to clearly visualize the CPU usage behaviour. 

 

An Association plot is a good choice to plot the proportion of observations 

for different categorical variables. Assocplot has a set of bar charts, showing the deviation 

of each combination of factors from independence. In figure 5.2, shows an Association 

plot between the CPU usage and benign and malicious behaviour. Here CPU usage is 

categorised in Low, Medium and High. It is clearly visible from the plot that if the CPU 

utilization is low or high then the behaviour is malicious and if the CPU usage is moderate 

then the behaviour is benign. In conclusion, We have found that if CPU malicious 

applications have too high or too low memory usage. 

 

 

 

Figure 5.2 Association plot for CPU usage behaviour 
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5.2   NETWORK USAGE ANALYSIS  

In this section, we have focused on the received and transmitted bytes over network of 

android device. We have taken the total bytes received and transmitted over Wi-Fi or 

mobile data. In section 5.2.1 the behaviour of bytes transmission is described and section 

5.2.2 describes the behaviour of bytes received. 

 

5.2.1 Bytes transmitted analysis 

In this section, we have highlighted the behave of bytes transmitted over the network. 

Today almost every application interacts with network and has some data transmission to 

remote server. For example, whatsapp, Ludo etc. These apps continuously sync with the 

server to prevent the data loss. In our research, Moriarty applications show both benign 

and malicious behave some of them are spywares which transmits the data to remote 

server but this data is in encrypted form to prevent user privacy. We have plot a histogram 

to show the bytes transmitted over the network. 

 

 

In figure 5.3, it is clearly shown that bytes transmitted frequency is either very 

high or very low, for intervals 600 to 700 and 1300 to 1400 bytes transmission frequency 

is very high and for other intervals bytes transmission frequency is very low. For clear 

Figure 5.3 Histogram for bytes transmission analysis 
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visualization of bytes transmission, we have plotted an Association graph for which 

shows the behaviour between the categorical variables that is benign and malicious. 

 

Figure 5.4 shows the categorical distribution of bytes transmission, it is 

clearly seen that in malicious mode the transmission frequency of bytes is high rather than 

in benign mode the transmission frequency is low. In conclusion, we can say that 

malicious application tends to transmit higher data than the benign applications. A 

spyware has its prime goal of data collection from user device and send it to remote server 

whereas any benign applications have lower frequency of data transmission. 

 

5.2.2  Bytes received analysis 

Every byte transmitted over the network have got acknowledgement in return to ensure 

that data packet has been received successfully. We also try to analyse the received bytes 

in both benign and malicious modes. We have plotted a histogram to see the byte 

reception over the network on a android device. 

 

 

Figure 5.4 Association graph for bytes transmission analysis 
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Figure 5.5 shows that the frequency of receiving bytes over the network is 

very high in 600 to 800 and 1400 to 1600 and for other intervals the frequency is very 

low. Using the information from above histogram we have plotted a Association graph. 

 

Figure 5.6 Association plot for bytes received over the network 

 

Figure 5.5 Histogram shows the bytes received over the network 
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In figure 5.6, It can be clearly seen that in benign mode receiving frequency 

of bytes in benign mode is low and in malicious mode frequency is very high. 

 

Here, we have found that in malicious mode data transmission over the 

network is high as compared to benign mode, the fact behind this is malicious application 

tends to transfer data to a remote server without the consent of user. Moreover, frequency 

of data transmission is not so frequent, in figure 5.4 and figure 5.2, data transmission 

frequency is high between two intervals. In conclusion we can say that malicious 

applications send data but not in a frequent manner. 

 

5.3  MEMORY USAGE ANALYSIS 

Every application that is running on a mobile device has some memory consumption that 

is, it requires RAM for execution. If there are many running application in the background 

then it overloads the RAM. Every process that is run by any application is associated with 

a CPU thread and CPU requires data for processing, this data is accumulated in RAM 

from ROM. When process completes its execution CPU threads are released and RAM 

become free. For a malicious application it is not necessary that it will overloads the RAM 

or CPU usage but it may be possible that malicious application try to stop execution for 

other process and force the CPU to act maliciously which can lead to memory overheads. 

 

Figure 5.7 Memory usage analysis 
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Figure 5.7, shows the memory usage pattern, for this histogram we divide 

the bars in two categories that is high and low. For the intervals where memory usage 

has frequency less than 500, we have put them in low and above 500 we have put them 

in high and we plot an association plot for deep analysis. 

 

From Association plot in figure 5.8, it can be clearly deduced that in malicious 

mode memory usage is low and in benign mode memory usage is high. So, we can 

conclude that Moriarty applications that are acting as a malicious application does no 

effect memory. 

 

In this chapter, we have seen the analysis of CPU usage, network and memory 

and how malicious and benign applications effect device sensors. In next chapter we will 

see the modelling algorithms that we have used to train and test our model. 

 

 

 

 

 

 

Figure 5.8 Association plot for memory usage 
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CHAPTER 6 

 

MODELLING 

 

In this chapter, we have focused on modelling phase of this research. We have described 

how the dataset is used for the purpose of training and testing of the classification model. 

Selection of machine learning algorithms is described in first section. Section second 

describes the setup used for the research. Section third describes the training and testing 

of machine learning classifiers. 

 

6.1  SELECTION OF MACHINE LEARNING ALGORITHMS 

On the basis of analysis of previous studies, we have selected logistic regression, KNN, 

XGBoost and random forest. In our we have found that these algorithms have high TPR 

rate and low FPR and FNR and these algorithms have shown promising results for binary 

classification. Therefore, we have used above specified algorithms. 

 

6.2  EXPERIMENT SETUP 

6.2.1 Label 

We are using binary classification for this research as we are classifying the application 

in Benign or malicious. Benign is indicated by 0 and malicious is indicated by 1. So 

Benign and malicious can be refer as labels that a classifier tries to predict. In moriarty 

file there are two fields called ActionType and SessionType. ActionType indicates that if 

a action taken by application is benign or malicious and SessionType indicates the current 

session under which an application is running as describes in section 3.2.1. As classifier 

requires numerical values to perform any operation so we have transformed the string 

values to numerical values where Benign is 0 and Malicious is 1. 

We have labelled each row of the dataset as malicious or benign where 

ActionType and SessionType both are malicious as malicious else benign. 
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6.2.2 Feature set 

The set of features that we have used for training and testing of our classifier referred as 

feature set. Our feature set includes Battery features, CPU usage features, network 

transmission features and memory usage features. These features are from global usage 

and application specific usage.  

We have removed all metadata features which are UUID, UserId, Version 

from final merged dataset. We have appended a column which is a label field called label. 

We have assigned the label malicious if ActionType and SessionType both are malicious 

(1) else we label other rows as benign (0). We have then removed the ActionType and 

SessionType columns also as they serve no purpose after labelling the dataset. Final 

labelled dataset is in ratio of 10:90 w.r.t benign and malicious, so we have up-sampled 

the dataset to balance the dataset as described in section 4.4. 

We have used two datasets for training and testing first comprises application 

features only and second comprises global features with application features. We have 

train and test model for both the models and compare their results. 

 

6.2.3 Technologies 

For this research, we have used AWS Elastic Map Reduce with Apache Pyspark with 5 

node cluster with 32GB of RAM and 8 cores of CPU. Apache Spark use Hadoop for file 

management and Hadoop is built over Yarn and HDFS which give the capability to 

Hadoop to store, replicate and retrieve large amount of data. For data processing we have 

used pyspark as it can process data among multiple nodes. To train and test the model 

Scikit-learn is used  which is a machine learning classifier package. Lastly, we have used 

zeppelin note book for code the classifier as it is provided by EMR. We have extracted 

the usable clean dataset for model training and testing which is smaller in amount so we 

have processed the model on the local system only to reduce the cost of AWS EMR. 

Locally we have used jupyter and same libraries for classification. Jupyter and zeppelin 

are almost same but both are good in their own way. For Data analysis we have used R. 
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Figure 6.1 Data Analysis Tool structure 

 

 

6.3 TRAINING AND TESTING 

For training and testing and used the setup we have described in previous section. We 

have split the data in the ratio of 80:20 for training and testing. For testing we have 

removed label field. We have used F1 score for the selection of best model. F1-Score is 

the harmonic mean of the precision and recall. We have set the metrics of different 

classifiers in the table for final conclusion.  
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CHAPTER 7 

 

RESULTS AND DISCUSSIONS 

 

In this chapter, results of experiment have shown. We have described the result for every 

classifier one by one. In first section we have described the result of KNN then in section 

second, we have described the results of logistic regression. In section third we have 

described XGBoost, in fourth section we have ensemble. In fourth section, we have state 

the final verdict and finally we have described the usability and limitations. 

 

7.1  KNN 

The performance of KNN with both datasets has shown below. Confusion matrix for 

KNN is shown in figure 7.1 for applications features only and the normalized confusion 

matrix shown in figure 7.2.

Figure 7.1 KNN confusion matrix using applications features 
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For applications featureset, we can see from figure 7.1 and figure 7.2 that 

True positive is 90%, i.e. 90% of the malicious applications are classified as malicious 

and True negative is 10% which tells that 10% of malicious applications are miss 

classified. For benign applications False negative is 98% i.e., 98% of benign applications 

are predicted as benign and 2% of benign applications are miss classified as shown by 

false positive. 

 

For global featureset, we can see from figure 7.3 and figure 7.4 that True 

positive is 72% i.e., 72% malicious applications are predicted correctly and 28% of 

malicious applications are miss classified as True negative is 28%. Whereas False 

negative is 96% means 96% benign applications are classified correctly and 4% are miss 

classified as show by False positive is 4%. 

Figure 7.2 KNN normalized confusion matrix using applications features 
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Figure 7.3 KNN confusion matrix using global features 

Figure 7.4 KNN normalized confusion matrix for global features 
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Figure 7.5 KNN ROC AUC using application features 

 

 

Figure 7.6 KNN ROC AUC using global features 

 

Figure 7.5 and figure 7.6 show the AUC ROC curve for application feature 

set and global feature set respectively. We have found ROC for application feature set is 
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95.89% and for global feature set is 87.27% respectively. From the figure and ROC values 

we have find that application feature set are more promising for malicious application 

detection whereas global feature introduces noise in data and reduce the prediction ability 

for the model. Table 7.1 gives a result over view for the KNN. 

 

From Table 7.1, we can clearly see that Application feature set has greater accuracy, F1 

score, Recall and precision which shows that we will find good results if we use 

applications feature set with KNN for detection. 

 

7.2  LOGISTIC REGRESSION 

The performance of logistic regression with both the feature set is described in this 

section. Figure 7.7 and figure 7.8 show the confusion matrix and normalized confusion 

matrix of applications feature set for logistic regression. We can clearly conclude from 

confusion matrix that True positive is 83% and False negative is 84% which means 83% 

of malicious applications predicted as malicious and 84% of benign applications 

predicted as benign where 17% is True negative and 16% is False positive which tells 

17% malicious applications and 16% benign applications are misclassified.   

 

 

Table 7.1 Results for KNN 
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Figure 7.7 Logistic regression confusion matrix for applications features 

Figure 7.8 Logistic regression normalized confusion matrix for 

applications features 
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Figure 7.9 Logistic regression confusion matrix for global feature set 

Figure 7.10 Logistic regression normalized confusion matrix for global 

feature set 
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Figure 7.9 and figure 7.10 for global feature set, we can clearly conclude from 

confusion matrix that True positive is 79% and False negative is 90% which means 79% 

of malicious applications predicted as malicious and 90% of benign applications 

predicted as benign where 21% is True negative and 10% is False positive which tells 

10% malicious applications and 10% benign applications are misclassified. 

 

   

Figure 7.11 and 7.12, show the AUC ROC curve for application feature set 

and global feature set respectively. We have found ROC for application feature set is 

90.02% and for global feature set is 92.18% respectively. From the figure and ROC values 

we have found that logistic regression with global feature set are more promising for 

malicious application detection whereas applications feature set is not so efficient for 

prediction. 

 

We have summarized the results for logistic regression in table 7.2 and 

compare the results of logistic regression with applications feature set and global feature 

set. 

Figure 7.11 Logistic regression ROC AUC using applications features 
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From table 7.2, logistic regression for application feature set has less accuracy 

the global feature set, however we are using F1 score to select the model. As we can 

deduced from table F1 score for global feature set is higher than application feature set. 

Precision is less quiet lesser for global feature set, but overall result parameters suggest 

that logistic regression perform well for global application features. 

Results for logistic regression 

Feature set Applications features Global features 

Accuracy 84% 89% 

F1 score 90.62% 94.01% 

Recall 84.26% 90.38% 

Precision 98.01% 97.92% 

AUC 90.02% 92.18% 

Table 7.2 Results for logistic regression 

Figure 7.12 Logistic regression ROC AUC for global feature set for  
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7.3  XGBOOST 

The performance of XGBoost with both the feature set is described in this section. Figure 

7.13 and figure 7.14 show the confusion matrix and normalized confusion matrix of 

applications feature set for XGBoost. We can clearly conclude from confusion matrix that 

True positive is 92% and False negative is 98% which means 92% of malicious 

applications predicted as malicious and 98% of benign applications predicted as benign 

where 8% is True negative and 2% is False positive which tells 8% malicious applications 

and 2% benign applications are misclassified. 

Figure 7.13 XGBoost confusion matrix using application features 
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Figure 7.14 XGBoost normalized confusion matrix using applications features 

Figure 7.15 XGBoost confusion matrix using global features 
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Figure 7.15 and figure 7.16 for global feature set, we can clearly conclude 

from confusion matrix that True positive is 90% and False negative is 99% which means 

90% of malicious applications predicted as malicious and 99% of benign applications 

predicted as benign where 10% is True negative and 1% is False positive which tells 10% 

malicious applications and 1% benign applications are misclassified. Here results are 

quite high, XGBoost is an extension of random forest which is a tree-based algorithm. 

 

From the confusion matrix of both the feature sets there is not a noticeable 

difference, both exhibits almost same results. On analysing AUC curves for both the 

feature sets in figure 7.17 and 7.18, we can see that ROC curve for applications feature 

set is little better than the global feature set, we got AUC value for application feature set 

is 99.54 and for global feature set is 99.46. AUC tells us that XGBoost work better for 

application feature set than the global feature set. In table 7.3, we summarize the result 

for the XGBoost.  

 

Figure 7.16 XGBoost normalized confusion matrix using global features 
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Figure 7.18 XGBoost ROC AUC for global features 

 

 

Figure 7.17 XGBoost ROC AUC for application features  
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Table 7.3 Results for XGBoost 

 

From table 7.3, we can see that result parameters for both the feature sets are 

almost same. Accuracy does not have any difference but AUC gives us the clear sight 

that the XGboost is better for applications features set then global feature set but F1 score 

says with a very minute difference that XGboost has worked good for global feature sets. 

 

7.4  ENSEMBLE  

The performance of ensemble with both the feature set is described in this section. Figure 

7.19 and figure 7.20 show the confusion matrix and normalized confusion matrix of 

applications feature set for ensemble. We can clearly conclude from confusion matrix that 

True positive is 94% and False negative is 96% which means 94% of malicious 

applications predicted as malicious and 96% of benign applications predicted as benign 

where 6% is True negative and 4% is False positive which tells 6% malicious applications 

and 4% benign applications are misclassified. 

 

Figure 7.21 and figure 7.22 for global feature set, we can clearly conclude 

from confusion matrix that True positive is 94% and False negative is 97% which means 

94% of malicious applications predicted as malicious and 97% of benign applications 

predicted as benign where 6% is True negative and 3% is False positive which tells 6% 

malicious applications and 3% benign applications are misclassified. Ensemble uses 

voting mechanism to select the best result, here results are quite high and reliable. 

 

 

XGBoost results 

Feature set Applications features Global features 

Accuracy 98% 98% 

F1 score 98.82% 98.86% 

Recall 98.43% 98.63% 

Precision 99.20% 99.10% 

AUC 99.54% 99.46% 
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Figure 7.19 Ensemble confusion matrix using application features 

Figure 7.20 Ensemble normalized confusion matrix using application features 
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Figure 7.21 Ensemble confusion matrix using global features 

Figure 7.22 Ensemble normalized confusion matrix using global features 
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Figure 7.23 Ensemble ROC AUC for application features 

Figure 7.24 Ensemble ROC AUC for global features 
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Figure 7.23 and 7.24, show the AUC ROC curve for application feature set 

and global feature set respectively. We have found ROC for application feature set is 

98.42% and for global feature set is 98.97% respectively. From the figure and ROC values 

we have found that ensemble with global feature set are more promising for malicious 

application detection whereas applications feature set is lagging quite behind. 

 

We have summarized the results for ensemble in table 7.4 and compare the 

results of logistic regression with applications feature set and global feature set. 

 

 

 

From table 7.4, we have seen that resulting parameters are almost same, there 

is not so much difference but ensemble work better with global features rather than with 

application features. Ensemble gives 97% accuracy and 98.07% F1 score but AUC is little 

lesser in the case if global features. As we are concluding our result on F1 score as F1-

score is the harmonic mean of precision and recall so Ensemble work better with global 

features. 

7.5  THE VERDICT 

In this chapter, in preceding section we have seen KNN, Logistic regression, XGBoost 

and ensemble. These techniques we have selected on the basis of related work and our 

research for binary classification. We have seen the results for all four classifiers. In this 

section we have summarized all the results for all the classifiers and extract a verdict for 

better performance on the basis of F1 score. We have listed all the parameters in Table 

7.5 for comparison. 

Ensemble results 

Feature set Applications features Global features 

Accuracy 96% 97% 

F1 score 97.78% 98.07% 

Recall 96.20% 96.76% 

Precision 99.42% 99.42% 

AUC 99.54% 98.97% 

Table 7.4 Results for ensemble 
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From table 7.5, we can conclude that XGBoost has performed best among all 

four classifiers. It has high accuracy for both global and application feature set of 98%. 

Moreover, as we are using F1 score for best performance metric so XGBoost has highest 

F1 score of 98.82% and 98.86% for application and global features respectively. Lastly, 

for AUC it is nearest to 1 that means XGBoost is giving highest probability of predicting 

correct results. So, The Final verdict we can state that for a binary classification problem 

like ours of classification and prediction of malicious and benign applications XGBoost 

which is a tree-based classifier has performed best and produces best result. 

 

7.6  USABILITY 

Usability obviously refers to how the model can be used, how the model can be deployed 

on a real device for malicious application detection. Usability of model are effected by 

three factors: i) train and test time, ii) model size and iii) memory usage. Lower values 

for these metrics show the low storage, less train, test time and low memory usage. We 

have two methods for deployment for this model either we deploy model on the device 

which require lower values for above metrics or we can deploy on the cloud but it will 

increase the latency as it will take time to import data to server, processing cost and then 

response goes to device.  

 

Paramete

rs 
KNN 

Logistic 

regression 
XGBoost Ensemble 

Feature 

set 

Applicat

ion 

Global 
Applic

ation 

Global Applicat

ion 

Global Applicat

ion 

Global 

Accuracy 97% 94% 84% 89% 98% 98% 96% 97% 

F1 Score 98.58% 96.65% 90.62% 94% 98.82% 98.86% 97.78% 98.07% 

Recall 9818% 95.90% 84.26% 90.38% 98.43% 98.63% 96.20% 96.76% 

Precision 98.97% 97.41% 98.01% 97.92% 99.20% 99.10% 99.42% 99.42% 

AUC 95.89% 87.27% 90.02% 92.18% 99.54% 99.46% 98.42% 98.97% 

Table 7.5 Result comparison for classifiers 
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7.7  LIMITATIONS 

There are some limitations for this model which are as follows: 

1 Dataset is collected from the Samsung galaxy S5, so it is not known that how the 

model performs on other devices. 

2 For data collection self-written malicious applications are used. These 

applications are developed for research purpose only, so it is not known how 

model performs with real malwares. 

3 We have found a smaller number of data points for some moriarty versions, so it 

could affect the results. 

4 The method used for this research is behaviour based, behaviour analysis of the 

benign and malicious applications have carried out. On the basis of behaviour, we 

have drawn the results. In real scenario a benign application may use sensors like 

malicious application which leads to incorrect result. 

 

 

 

 

 

 

 



58 
 

CHAPTER 8 

 
 

CONCLUSION AND DISCUSSIONS 

 
 

In this chapter, we have conclude the findings of our research and discussed about the 

improvements which can be entertain in future. 

 

8.1  FINDINGS 

We have analysed the CPU usage, network usage and memory usage in presence of a 

malicious application and with benign application as described in chapter 5. We have 

seen the association plots for all three features and got an idea how the sensors are 

behaving in presence of malicious applications. As the malicious applications are self-

written and behave like a real malware we can rely on the dataset because it is collected 

in real environment. We haven’t used any emulator to mock the behaviour of real 

scenarios. We have seen that  

1 CPU usage can be high or low with malicious applications   

2 Network usage is high with malicious applications and low with benign 

applications 

3 Memory usage is low with malicious applications and normal with benign 

applications. 

 

We have analysed the performances of KNN, Logistic regression, XGBoost 

and ensemble method and find that XGBoost work best with global features resulting F1 

score of 98.86% where other classifier are also very near to this score. We also find that 

AUC of XGboost is high with value of 99.58% with application features which tells that 

probability of predicting correct results is very high. There are 48 features in global 

feature set and 27 in applications feature set related to CPU, network, memory and 

battery. Our results have shown that our model can predict the malicious application with 
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good accuracy. Moreover, XGBoost is a tree-based classifier which perform really good 

with our binary classification problem. 

 

8.2  FUTURE WORK 

There is so much scope has left to improve the detection method and to overcome the 

limitations as new methods and techniques can be introduce to increase the efficiency. 

For future we can entertain following points: 

1. Conducting the research with real malware applications to improve the efficiency 

and reliability. 

2. Data collection from multiple devices of different models so that a huge dataset 

from different plate-forms can be collected to analyse the real-world scenarios. 

3. Dynamic detection methods can be improved in future research with real 

malwares. 

4. Focus on optimize the resource requirements for detection methods, for training 

and testing time and memory usage. 

5. We will deploy the model on real devise to test the model under real scenarios. 
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