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                                   ABSTRACT 
 

The work presented gives hourly electrical load forecasting as a          

time series forecasting model using multilayer deep learning Long         

Short-Term Memory neural network Technique and its detailed        

comparative study with various Machine Learning Techniques       

based on their Mean Squared Error, Mean Absolute Percentage         

Error and Training time. Load Forecasting has immense potential         

to help in modulating the generation and distribution potentials of          

our smart grids in accordance to the requirement so that optimum           

power is generated and supplied through various channels which         

would be effective in grid management and operations. The         

MAPE of the model presented below is 0.41. 
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                                               CHAPTER 1 

1.1)INTRODUCTION: Need of forecasting 

In many of the business models nowadays, forecasting is used exceedingly and            
is very crucial whether we are to predict the revenue or load for any              
organisation or institutional set up. Artificial intelligence has grown up to such            
extents now that we can predict parameters with an accuracy upto 1%. While             
using proper technique we can save many resources and a considerable amount            
of money [1]. Taking an example if we are to suppose an appliance or utility               
used for load forecasting with 1 gigawatt annual peak load, the risk of             
oversizing and undersizing would be 0.01∗1, 000MW =10MW . Assuming the           
capital cost of $10, 000/KW , the overnight capital cost would be $10, 000/KW              
∗ 10MW = $10 million. The savings of deferring $10 million in spending for 1               
year with 5 % interest rate would be $10million − $10million/(1 + 0.5) = $476,               
000 ≈ $500, 000. If the utility uses forecasting for obtaining energy from the              
day ahead market, they might save around $300, 000 per year by improving the              
accuracy by 1%. 

The optimum planning and management of energy distribution is a very crucial            
task when dealing with smart grids. There has been immense evolution in the             
smart grid, using the developments of information and communication         
technologies, and it is becoming a productive and durable system progressively.           
The smart grid systems are contrived so as to counter the problem of energy              
management and also to monitor, optimize and control the distribution of           
power. The decision for the flow or exchange of energy among all the utilities              
or devices connected to the grid is made after the governance and assessment of              
demand; which is an indispensable constituent of the energy management          
system of the electrical grid , thereby assuring the operational functionality,           
stability and dependency of the entire interconnected electrical system [1]. This           
will be beneficial in Strategizing the supply according to the demand therefore            
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the reliability of the grid is increased. It will also be economical as renewable              
energy sources are integrated with greater efficiency and lower costs. 

1.2  TIME SERIES FORECASTING: 

Time series forecasting is done over successive time intervals using sequent           
data points. Over the years many time-series forecasting techniques have been           
proposed. The most recent, optimized and accurate method of time-series          
forecasting has been used in this work combined with regression measures[2] .A            
lot of memory is consumed by the model while using these techniques so many              
of the useful is lost so most of the useful information is lost. The most recent                
one recently introduced is the Recurrent Neural Network(RNN) which used          
recurrent back propagation but was time consuming as well as with increasing            
information,it has many problems like the vanishing gradient problem.The         
measurements are arranged in a sequential manner and the forecasting can be            
univariate or multivariate in nature. In our problem statement we will be using             
univariate analysis with time as one variable and power the other. The Long             
Short term memory (LSTM) Technique learns and tracks all the past           
dependencies of a variable in relation with the new observations. Normally in a             
neural network input is given to a hidden layer and output is obtained, but              
LSTM is based on the recurrent neural networks where input is given to a set of                
hidden layers which contain information of the previous inputs also and then            
output is obtained.  

To overcome these problems Long Short Term Memory cells (LSTM) was           
introduced [10] which solved complex, artificial long time lags tasks. A variant            
of LSTM which is widely used in time-series forecasting is introduced which            
reduces the number of variables used in the Gradient Recurrent Unit (GRU)            
[20]. Furthermore, the problems that still prevailed in the deeper networks were            
fixed by the utilization of relu and Xavier initialization ,of vanishing or            
exploding gradients . 
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A major problem with the RNN was that the input length was equal to the               
output length , therefore the number of features could not be reduced in the              
subsequent operations or layers which might be unnecessary and time          
consuming . Sometimes the number of outputs might have to be in condensed             
form. For that generally the output of RNN is connected to a Dense network (a               
layer with its all element connected to the every input features) but with identity              
activation and zero biasing (weighted summation). But still the weight of that            
layer needs to be learned. This added layer could also be used as an extra hidden                
layer with proper type of activation and initialization. This paper proposes one            
such type of initialization technique that could be used at this dense layer for              
faster convergence speed in training. To prove this hypothesis, a simple           
Feed-forward Long Short Term Memory Neural Network with 3 hidden layers           
was trained.  

1.3 LITERATURE SURVEY  

Load forecasting , according to Gross and Galiana (1987), is also concerned            
with the prediction of hourly, daily, weekly and monthly values of the system             
load, peak system load and the system energy[2]. Srinivasan and Lee (1995)            
classified load forecasting in terms of the planning horizon’s duration: up to 1             
day for short-term load forecasting (STLF), 1 day to 1 year for medium-term             
load fore- casting (MTLF), and 1±10 years for long-term load forecasting           
(LTLF)[4]. Load forecasting when done properly saves a lot of utilities,           
resources and money . According to Bunn and Farmer (1985), these savings are             
realised when load forecasting is used to control operations and decisions such            
as dispatch, unit commitment, fuel allocation and o-line network         
analysis[5].The model developed by Papalexopulos and Hesterberg (1990)        
produces an initial daily peak forecast and then uses this initial peak forecast to              
produce initial hourly forecasts further again , it uses the maximum of the initial              
hourly forecast, the most recent initial peak forecast error, and exponentially           
smoothed errors as variables in a regression model to produce an adjusted peak             
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forecast[8]. A regression-based daily peak load forecasting method with a          
transformation technique was introduced by Haida and Muto. They use a           
regression model which predicts the nominal load and also they predict the            
residual load using a learning method [9]. Haida also reduced the errors in the              
prediction of transitional seasons by introducing and designing such processing          
techniques. Trend cancellation removes annual growth by subtraction or         
division, while trend estimation evaluates growth by the variable transformation          
technique.A least-squares approach was used by Varadan and Makram (1996)          
which was used at power lines and substations so that the different kinds of              
loads can be identified and quantified[11] .Later an adaptable regression model           
was developed by Hyde and Hodnett for 1-day-ahead forecasts,which was able           
to identify and distinguish between weather-insensitive and weather-sensitive        
load components. Linear regression of past data is used to estimate the            
parameters of the two components[12]. In order to support future smart grid            
applications, effective load forecasting techniques for electricity users are         
gaining increasing interest. Zhang et al. [13] developed a big data architecture            
that combines load clustering based on smart meter data and decision tree to             
select corresponding load forecasting models for prediction. Stephen et al. [14]           
clustered and labelled daily historical data of individual households. The          
individual households were deemed as label sequences, which are further fit to            
Markov chains. Then the day ahead label can be sampled, and cluster means at              
each time points were used for the day ahead prediction. These works all             
showed that the forecasting errors could be reduced by effectively grouping           
different customers. However, they all only reported the aggregated load          
forecasting error at the system or community level where individual customer           
prediction errors could be offset by the diversity of different end users. In the              
existing literature, Chaouch’s work [15] and the work of Ghofrani et al. [16] are              
the first two examples that focus on load forecasting for individual users.In            
these works functional time series forecasting approach was proposed, and the           
daily median absolute errors were reported . Very recently, deep learning based            
methods start to emerge in the load forecasting community. Ryu et al showed             
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that the load forecasting accuracy for industrial customers could be improved by            
using deep neural networks [17]. In fact, the industrial electricity consumption           
patterns are much more regular than residential ones, so that much more            
accurate results are obtained using deep learning techniques .Later in 2016,           
Marino et al. attempted to solve the load forecasting issue using LSTM [18] and              
showed good results as all the other methods. However, the effectiveness of the             
two pioneering works was only verified on the metric of root mean square error              
(RMSE) instead of the more common metric of mean absolute percentage error            
(MAPE), which makes it hard to contrast to other works. Later Weicong Kong             
and Zhao Yang Don proposed a Long Short term(LSTM) Recurrent neural           
network based load forecasting framework for this extremely challenging task          
of individual residential load forecasting, because LSTM has been proven to           
learn the long term temporal connections.The inconsistency in daily         
consumption profiles generally affects the predictability of the customers. The          
higher the inconsistency is, the more the LSTM can contribute to the forecasting             
improvement compared to the simple back propagation neural network [19]. 

1.4 OBJECTIVE 

The objective of this study is to do hourly electrical load forecasting as a time               
series forecasting model using multilayer deep learning Long Short-Term         
Memory neural network Technique and its detailed comparative study with          
various Machine Learning Techniques based on their Mean Squared Error,          
Mean Absolute Percentage Error and Training time. 
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          CHAPTER 2:  LONG SHORT TERM MEMORY  

2.1 Recurrent neural network 

Normally neural networks could not retain long term information and whenever           
the training is run it learns from scratch. Recurrent Neural Network(RNN)           
addresses this issue . The recurrent neural networks can be considered as a loop              
where each predecessor network passes the previous information to the          
successor networks .Long short term memory(LSTM) are a special kind of           
neural networks. 
It is an improvement of the Recurrent neural network which can operate and             
keep a track of long term dependencies. In a RNN network output of the hidden               
layers is fed back again to the network itself unlike the normal feed forward              
network which does not work in loop . The RNN can be many to many or many                 
to one but It is to be noted that unlike normal neural networks these RNNs have                
the same weights for all the time steps as they operate in a loop . The problem                 
that recurrent neural networks face is that due to large scale dependencies on the              
previous data , if we want our model to learn better, as we increase our time                
steps , the problem of vanishing or exploding gradients becomes increasingly           
inevitable .  

To understand how RNN works, let's take an example, whenever we write an             
email, Always the word that could come next is predicted beforehand . So , how               
do we predict the next word in a sentence? Let's try to analyse using the               
Multilayer Perceptron network. 

In a simple Multilayer perceptron (MLP) there is an input layer , hidden layer              
and output layer. When we want a deeper network, there are multiple layers of              
hidden neural networks . It is to be noted that all the hidden layers have their                
own weights , biases and activation functions which are different in nature. Due             
to this property the hidden layers can not be combined together unless the             
weight and biases for all the hidden layers are the same. 
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Fig.1 MLP representation of a neural network 

 

 

When the weights and biases are the same for all the layers . We combine the                
layers into a single recurrent neural network layer. Therefore this recurrent           
neural network also stores the information of the previous layer , thereby            
establishing a relationship between the current and the previous inputs. 

Next state is given as : 

= f( , )ht ht−1 xt  
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New hidden state is given by and the current input is given by .ht xt   

 

          Fig  2. RNN network basis idea when all the layers have same weight and 
go in a recurrent loop 

 
 

 
                                Fig 3. Complete structure of rnn 
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2.2 Long short-term Memory (LSTM) 
  
It consists of the forget gate, with the purpose of altering the portion of input or                 

the previous stage which is to be passed to the next stage . It helps us to decide                  
what percentage of the data of the previous stage we need to remember in the               
next stage . The forget gate is made up of a sigmoid layer which outputs a                
number between 0 and 1 for each state depending on how much to keep and               
how much to discard.The output of this forget gate can also be thought of as               
weights to the internal state for each input.  
The inner state of the LSTM is defined by a variable s which is delayed by a                 
one-time step and is used by the network to learn the relationship between the              
inputs and their sequence time thereby creating a recurrent loop. This filtering            
done by the forget gate also helps to reduce the effect of the vanishing gradient               
problem encountered in the recurrent neural network.  
 

 =  ( * [ , ] + )f t+1 σ W fo ht it+1 bfo   
    

Then comes the input gate which decides which values are to be updated and              
what new information is added to the cell state and is also a sigmoid layer . 

= ( *[ , ] + )it+1 σ W input ht xt+1 binput  
 
The input layer if followed by a tanh layer the results of these two layers are                
multiplied together to get the new updated scaled value and is then added to              
the output from the forget gate to make a new cell state. This new state is again                 
fed to tanh which gives values between –1 and 1 to again decide which values               
are to be  passed.  
Thus LSTM provides the advantage of adding or removing any information in            
the cell through gates.  
 

= tanh ( *[ , ] + )C t+1 W new ht xt+1 bnew  
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* + *C t+1 = f t+1 C t it +1 
C t+1  

= ( *[ , ] + )Ot+1 σ W output ht xt+1 boutput  

* tanh (ht+1 = Ot+1 )C t+1  
 
 
 

 
 

Fig 4. LSTM Structure 
 
 
 
LSTM parameters: 
a)activation : The default activation function if nothing is given is set as tanh. If               
we do not want to change any inputs then we can give the activation function as                
NONE , which implies the activation is linear f(x)=x. 
 
b)units : Specifies the dimensions  of the output layer. 
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c)dropout : Dropout value gives the value between 0 and 1. This gives how              
much value is to be dropped  of the input or the layer specified. 
 
d)recurrent_activation : The activation function to be used in the next layers. If             
we do not specify anything then it is sigmoid by default . If we do not want to                  
change any coming values from the previous layers then we can give the             
activation function as NONE , which implies the activation is linear f(x)=x. 
 
To call the LSTM : 
a) input : input is given as a 3D tensor of shape [number of samples ,dimensions                
of each element , features]. 
 
b)training : This function indicates whether the layer will be utilized for training             
or inference. 
 

 

2.3 LSTM ALGORITHM  
 
After dividing the entire dataset into training and test data in the ratio 9:1 and               
reshaping the input in the form (number of samples, dimension of elements) we             
start building a sequential model.  
Layer 1:  
Add a LSTM layer with input dimension as 1 and output dimension as 50 with               
return sequence as True.  
Add a Drop out layer to prevent overfitting.  
Layer 2:  
Add a LSTM layer with output dimension as 50 and return sequence as False.  
Add a Dropout layer to prevent overfitting.  
Layer 3:  
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Add a Dense neural network layer with output dimension as 1 and activation             
linear.  
While compiling the model, the optimizer used “rmsprop “and loss to be            
minimized is specified as “mse”. The gradient descent optimizers are used to            
reach the global minima by finding the gradient and updating the weights and             
biases such that the cost functions can attain minimum value. However,           
sometimes non-convex functions arise due to which the optimizer is stuck in the             
local minima hence the global minimum value is not achieved by the cost             
function. Rmsprop optimizer is used as it solves this problem. Rmsprop restricts            
the oscillations in one direction, basically the vertical direction thereby          
converging faster to the solution as higher learning rates can be used . 
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             CHAPTER 3: HYPERPARAMETERS 
 
Normally In machine learning we have two types of parameters model and            
hyperparameters: 
 
1)Model Parameters: Model parameters are those which the model fits after the            
training from the data. For example, weights of classes , biases, split points or              
the nodes  are the model parameters that the model fits after training. 
 
2)Hyperparameters: Hyperparameters are those which we have to tune in order           
for the model to perform well and give optimal results.For example , learning             
rate and number of iterations are something that we tune and provide to the              
model in order to train according to our requirement. 
 
Some Examples  of the hyperparameters available in the scikit learn package: 
 
3.1)Hyperparameters involved in the optimisation of the model during the          
training process : 
 

3.1.1)Splitting estimator of Train ,Test data: 
train_test_split( X, y, test_size=0.4, random_state=0) 
a)Over here, test_size gives the percentage or portion of the data to            
be included for testing. 
 
b)Random_state is used for random number generation for        
shuffling the data 
 

3.1.2)Learning Rate: 
Learning rate gives the steps to be taken to reach the global minima             
during optimisation. If we take very small values of learning rate it            
takes very long times i.e more number of steps to reach the global             
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minima however if we take a very large learning rate then we may             
suffer the problem of overshoot and the algorithm might not reach           
the global minima and hence may not converge .It is very           
important to keep in mind that the models have lot many           
parameters and each one has a different kind of curve for the error             
and not necessarily u-shape so our learning rate has to cater to all             
them. 
 

3.1.3)Batch size: 
Batch size determines a lot of things while training like the           
requirement of resources , speed  , epochs required . 
We earlier used to calculate the gradient by feeding the entire data            
to one particular training epoch, by using the errors of all the data             
in the data set. Nowadays, we do not feed the entire data at once              
instead data is fed in bathes as specified by the user.  
If we keep a large batch size, we require more memory to run the              
training but we get the advantage of boosts in computations . If we             
keep a smaller batch size, it introduces more deviations in the error            
calculations .However a small batch size is quite instrumental in          
stopping the optimizer from being stuck at the local minima. 

 
3.1.4)Number of epochs : 

The number of epochs or the number of training steps is usually            
determined by the validation error. We should run our training as           
long as the validation error keeps on decreasing .We can go for            
early stopping the training if the error does not decrease for 30-40            
epochs . 

 
 
 
 

20 



 
 
  
3.2)Parameters that determine the structure of the model: 

3.2.1)No. Of hidden units in a layer : 
One of the most complex parameters is the number of hidden units.            
Neural networks should have enough capacity or we can say          
enough number of units to learn and fit a particular function which            
is given by this parameter.When we have to fit a simple function            
we need very less amount of hidden units but for a larger function             
the model should have a lot number of hidden units . However it is              
to be kept in mind that if we give a very large number of units , the                 
model learns everythings and fails to generalise i.e it overfits. So           
we need to keep an optimal number of hidden layers . 

 
3.2.2)First Hidden layer of the network: 

We always need to keep in mind that the first hidden layer should             
be such that the total number of hidden units is always more than             
the input. It preserves the input data thus giving a better output . 

 
3.2.3)Total Number of layers in the network: 

Normally more number of layers give better results in cases like           
convolutional neural networks . But in normal neural networks a          
three layer network does the job just fine . 
 
 

3.3)Hyperparameter optimisation: 
 
Now we have seen that these hyperparameters are useful only when we find an              
optimal value for them else, they degrade the model. We find the correct and              
optimal value for these parameters using various techniques called the          
hyperparameter optimisation method . These methods include : 
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3.3.1)Grid search Technique:  
Grid search works by training the algorithm with a combination of           
learning rate and number of layers and evaluates the performance          
using the cross-validation technique. Also one of the methods is          
K-fold cross validation technique where a set of randomly taken          
data is trained on the model for many times . and training and             
validation sets are different all the time. This is a very useful            
algorithm unless the data has very high dimensionality in that case           
it fails and has the problem called curse of dimensionality. 

 
3.3.2)Random search Technique: 

Random search randomly allocated data into the validation and         
training dataset.And selecting randomly the dimensions and       
parameters, it sometimes does not give good results as it does not            
take the information from the former models to use.  
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CHAPTER 4: ALGORITHMS USED FOR OTHER 
MACHINE LEARNING TECHNIQUES 

 
After dividing the entire dataset into training and testing in the ratio 9:1, we get               
properties of all the regressors Ridge, K nearest Neighbors, Random forest           
regressor, Gradient Boosting Regressor, MLP regressor and Extra trees         
Regressor. We fit the model, take out the training time, testing score and             
training score, rmse , MAPE and MAE, store them in a dataframe for             
comparison purposes and plot each of them . 
 
4.1 Model used for the algorithms : 
Divide the entire dataset into 9:1 

BEGIN 

Get the property of the regressor 

 

Fit the model 

 

Get the properties, take out the training time,        

testing score and t raining score, rmse , MAPE and      

MAE 

 

Store all the values in a dataframe 

 

REPEAT 

 

Plot and compare each of them 

END 

 
 
4.2 Description of the various kinds of regressors  
 
4.2.1)Ridge regressor : is used in the cases when there is no unique solution              
available and the answer is to be calculated using approximation.Ridge          
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regression (RSS) operation is performed using L2 regularization which is the           
sum of squares of coefficients . 
 
Function to be optimized= RSS +  * ( sum of square of coefficients)    α  

is used to give weightage to the term which is to be minimised to greater α                 
extent.Various values that can be taken by alpha:  
1) =0: α  

The function serves the same purpose and the same values of coefficients            
a         as simple linear regression are obtained 
2) =infinity: α  

As non-zero coefficients would nake the function infinite,The coefficients         
q        will be zero. 
3) 0< <infinity: α  

Weightage to be given to the l2 regulariser or the cost function to be a a                  
a         optimized is decided by alpha. 
 

 
4.2.2)Random Forest : Random forest, a supervised learning Algorithm works          
by constructing multiple layers of decision trees, also called ensemble, by           
training often using the bagging technique which outputs the mode in case of             
classification and the mean in case of regression problems.  
An advantage of the Random forest algorithm is that without any           
hyper-parameter tuning also, we can achieve required results exploiting the          
benefits of all the best algorithms available. 
Therefore, it works by constructing an ensemble of decision trees and then            
merge the outputs thereby increasing the accuracy of the prediction.This          
algorithm when searching through the features while forming the trees instead           
of selecting the most important feature , selects the best feature from the subset              
of features while slipping the node thereby adding some randomness. 
This algo is one of the best as we can measure the importance of each feature at                 
every prediction. It calculates the score as to how much is the impurity reduced              
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by the nodes in the complete forest which uses that particular feature . This              
score for all the features  is scaled and added such that the sum is equal to 1. 
 
Now , in machine learning since we generally try to keep the number of features               
really low in order to avoid overfitting, the feature importance detection           
provided by random forest algorithms really contributes a lot in deciding which            
feature to drop depending upon its contribution to the model. 
However it is to be noted that there is difference between decision trees and              
random forest, they should not be confused to be  the same  
The first difference is that the decision tree collets the labels and the training              
data and on that basis makes some rules, and generates the predictions abiding             
by those rules , however , the random forest gives the average results by              
building many decision trees by taking random features and observations          
..therefore not particular set of rules are followed. 
The second difference is that because of this feature of random forest algorithm             
of introducing so much of randomness, a big problem of the deep decision             
trees,overfitting is solved. The algorithm takes subsets and build many small           
trees using those, thus solving the problem of deep decision trees and combining             
those subsets further. Though it solves many problems giving better results,           
makes computation a little slow and consumes some time. 
 
The hyperparameters used in ransom forest are those which are normally used            
to increase the predictive power of the model or to make the model faster: 
 
a)N_estimator :One of the hyperparameters which gives the number of trees           
built by the algorithm before taking the average of the predicted values is             
n_estimator. Higher the number of trees better is the prediction but it slows             
down the computation so n_estimator assigns an optimum number of trees           
which gives good results under considerable time. 
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b)max_features: max_features gives the number of features that the random          
forest decides to select while splitting a node. 
 
c)min_sample_leaf: min_sample_leaf gives the min number of leafs that the          
decision trees makes while splitting a node  
 
d) n_jobs :The n_jobs hyperparameter alots the number of processors which           
can be used. For example if the value is 2 , it can use 2 processors but if it is -1,                     
it can use all of it  
 
e)random_state : If we give the same training data, observations,          
hyperparameters and labels the model will produce the same predictions and           
outputs everytime if a definite srandom_state is set every time. 
 
f)oob_score: One of the methods often used is cross-validation in which           
one-third of data is set aside for evaluation and testing the results ,its accuracy              
and the performance , it is also called oob_sampling 
 
Therefore, the random forest algorithm is versatile in that it works on both             
classification and regression problems and solves the problem of overfitting if           
there are optimum trees in the forest. But due to many trees it makes the               
algorithm slow in predictions which can be inefficient in some real-time           
applications.It has many uses like in medicine it is used to examine the medical              
history of patients and determine the type or cause of disease.Also ,it is used in               
banks and e-commerce trades. 
 
 
4.2.3) Gradient boosting : The Gradient boosting algorithm works on the           
method of minimization of error. The prediction model given by the gradient            
boosting algorithm is generally the ensemble of many models arranged in the            
sequence which may produce the minimum error, mostly a set of decision trees.  
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It works like the adagrad algorithm which trains a decision tree by assigning             
equal weights to all the observations. Further as we proceed, after the first             
iteration and evaluation of the first decision tree, we assign higher weights to             
those data which are difficult to classify and lower weight to the data that is               
easy to classify so that we can improve upon the predictions from the first              
iteration. Our model now is the combination of the both 1st tree and the second               
tree, then, the errors in classification from this iteration of the 2-tree model are              
calculated and a third tree is formed to decrease the error further by adjusting              
the weights on the observations as we had done for the 2nd tree. Repeating this               
for a particular number of iterations, each coming tree focuses on the data that              
was not classified correctly by the previous tree. Therefore the model finally            
gives the weighted sum of the predictions . 
 
However the gradient boosting algorithm proceeds to train the models in a            
sequential, gradual and additive way. The two algorithms adagrad and gradient           
boosting are different in way such that adagrad acknowledged the weak decision            
trees by giving them a higher weight, the gradient boosting algorithm           
acknowledges them by introducing a gradient in the loss function. 
The ability of the model coefficients to fit the data is measured by the loss               
function. Gradient boosting comes with an advantage of optimising the cost           
functions given by the user. For example , if we predict the prices of a               
commodity using regression methods , the loss function will be formed by the             
difference of the true and predicted prices of the commodity. 
 
The algorithm follows as : 
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BEGIN 

Calculate average of the target label 

 

Calculate the error Actual - Predicted 

 

REPEAT (until n_estimators) 

Construct a decision tree whose leaves give the        

error 

 

Use all trees in ensemble to predict the target         

a         label 
 

Calculate new errors 

 

Use all the trees to make final prediction 

END 

 

 

Parameters used for a decision tree:  
a)Over here, criterion gives the parameter which decides the quality of the split.             
This means that we set a particular threshold for the purity or the parameter              
beyond which we do not want our node to split. Like we specified entropy so               
those nodes will not split after which more information gain could not be             
achieved . Also we use gini impurity . 
 
b)Splitter is the strategy to split , i.e it can be either the best split or random split                  
of the nodes 
 
c)max_depth gives the depth of the tree. If we do not give any value for               
max_depth then the tree will expand upto the point where either the leaves are              
pure or contain samples less than specified min_samples_split. 
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d)Min_samples_split gives the minimum number of samples that are required to           
split a node. If the samples are less , the node does not split. 
 
e)Min_sampe_leaf if specifies that at a node, a leaf will be considered for             
training only if it has the specified number of samples 
 
f)Min_impurity_split gives a threshold value after which we need the tree           
growth to stop early if the impurity level exceeds the given value. The node will               
not split further and remain as a leaf . 
 

 

4.2.4)K-Nearest Neighbor : K-Nearest Neighbor works on the measured         
Euclidean distances between the query and the data points and then operating on             
a particular number (K) of data samples then finds the most suitable class for it               
in case of classification or takes the average of the points in case of regression.It               
works on the idea that similar things are placed together . 
 
To understand how it works let's take a classification model with two sets of              
data points one is positive denoted be re dnad the other is negative denoted by               
green : 
 

 
                                             Fig 5. KNN example 1 
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We have to find out the label of the point in blue denoted by the star taking the                  
value of k as 3. 

 
Fig 6. KNN example 2 

 
 
Algorithm of K-Nearest Neighbour: 
BEGIN 

Load the data 

 

Initialize k to your chosen number of   neighbours 

 

REPEAT  

Calculate distance between the current chosen      

A              data point and the query 
  

Keep appending the distance and data point       

A    index  into a list 
 

Sort this list in ascending order of distances 

 

Choose first k distances  

 

Take the labels of these chosen entries 

 

IF regression  

RETURN mean of labels 

IF classification 

RETURN mode of labels 

END 
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Choosing the correct K value is very important in order for the algorithm to              
work property. We train the dataset many times with different values of k and              
find those values of k at which the error is minimum when the algorithm is               
subjected to unseen data, i.e the data at which it has not been trained. 
However the important points that we need to keep in mind are : 

a) K can not be taken as 1, for example if we have an entire portion of area                 
surrounded by red, our guess should be that the answer is the label             
indicated by the red points, but instead, if we have a green point in close               
proximity to the query, and it has the shortest distance , then our answer              
will be the label corresponding to the green point which is incorrect . 

b) However as we keep on increasing the value of k , the errors are reduced               
and we get better results by taking the majority voting or average label             
whichever method we tend to choose.  

c) It is to be noted, after a particular value of K , the error starts increasing                
again. This is the point where we should understand that we have taken             
the value of k too much and it is not just taking the neighbours , but a                 
large amount of data points beyond the considered area as well . 

d) Now, it is to be kept in mind when the problem of classification is              
considered, we take the majority vote or mode of the labels. We should             
always take an odd value of k. 

 
KNeighborsClassifier(n_neighbors=5,p=2,metric='minkowski',n_jobs,algorithm 
 
a)Over here, n_neighbours is the number of neighbours, or the value of K that              
we use in most the nearest neighbour algorithm.  
 
b)Minkowski is the formula for the distance calculation . 
 

31 



 
 
  
c) p gives the power for the distance formula , if it is 1, that means our metric                  
for distance calculator is the manhattan distance and if it two, it means the              
metric for calculator is  the euclidean distance. 
 
d)n_jobs gives the number of parallel processors or jobs that we want to run to               
search for the value of k. 
 
e)algorithm gives the algorithm which is used to determine k ..it can be brute              
search or kd-tree etc.  
 
Therefore K-NN is a versatile model which can be used for classification and             
regression and even in searching problems and also it is very easy to implement              
without having to tune and train many hyperparameters and make numerous           
assumptions . But sometimes it becomes really slow as the data points increases. 
There are many applications of k-nn in the real world like finding whether a              
review on an ecommerce site for a review is positive or negative . 
 
 

4.2.5)Multi-layer Perceptron (MLP): MLP regressor is a multi-layer         
perceptron supervised learning, non-linear training technique that uses        
backpropagation to update weights.  
 
Firstly let's describe how does an neural network layer is formed: 
 

1. We have a perceptron which has 4 parts , an input layer, weights             
and   biases,  summation and an activation function 
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2. This perceptron receives the input,It take a set of features Let's say            

X=x1,x2......xn and a label or an output Y ,this regressor can also             

form a model for both classification and regression which can be           
non-linear in nature.However , it is not to be mistaken for logistic            
regression, it can have many non-linear layer in between input and           
output layers. 

3. The input layer mostly consists of neurons {xi |         
x1,x2,.........................xm} where m gives the number of features or         
dimensions of the input .The hidden layer works in the manner           
such that each neuron gives the output which is the weighted linear            
sum of the inputs from the previous layers , given as: 

1 * x1 + 2 * x2 +.............................. m * xm ω  ω  ω  

4. This weighted sum is then passed to an activation function whose           
role is to map the input according to our requirements between           
(0,1) or (-1,1).The activation function is usually non-linear in         
nature . 

5. These layers of perceptrons are added to create a Neural network.           
This is known as a multi-layer perceptron network. 

6. Learning in the MLP is generally done through the         
backpropagation method , where the weights are updated after each          
iteration. 

Though it serves a great advantage of learning non-linear functions and it has             
many uses in speech recognition and natural language processing , It has many             
disadvantages too.  

1. It has a loss function which is non-convex in nature in the hidden             
layers and it might have more than 1 local minima. Hence, if we             
give different or random weights each time , it gives different           
validation accuracy. 

2. It gives different outputs and is very sensitive to scaling of the            
features . 
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3. A lot of hyperparameter tuning is required . The different          
parameters would be the number of hidden layers, the number of           
hidden neurons in each hidden layer and the total number of           
epochs. 

 
 

4.2.6)Logistic regression classifier: 
LogisticRegression(C=1000.0, random_state=0) 
a)Over here, C is the inverse of regularization strength. The smaller the            
value higher is the regularization strength. 
 
b)penalty gives the l1 or l2 norm used as a penalizer  
 
c)fit_intercept gives whether we want to add a constant value to the            
deciding function whether it is a bias or an intercept 
d)class_weight gives the balance or the weights that we provide to each            
class….i.e which one is more important . If we do not give this then it is                
presumed that all the classes have the same weights snare treated as            
equal. 
 
e)max_iter gives the number of iterations that the solver requires to           
converge . 
 

4.2.7)Support vector machine classifier 
SVC(kernel='linear', C=1.0, random_state=0) 
a)Over here, the kernel gives the type of kernel, linear or non-linear that             
we want . Linear is used for linear classification and rbf for non-linear. 
 
b) C is the regularization or the penalty parameter used whether we want             
the L1 or L2 norm. 
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c)degree gives the degree of the kernel polynomial . 
 

4.2.8)Extra Trees Regressor: Extra Trees Regressor is also a variation of the            
Random Forest where instead of selecting a optimal feature we select a random             
feature for split .It is built from random forest with the following changes : 
 

a)Each decision branch is built by using all the training data. 
b)To form any node we take a subset of random features and then             
determine their best split. 
c) Maximum depth of 1 is allowed for the decision branch . 
It consumes more computational power than random forest. 

 
The major hyperparameters used are : 
a)n_estimators: number of trees that we want in the forest. 
b)criterion: it is the measure by which we decide to reduce the error and              
optimise out function 
 
c)max_depth gives the depth of the tree. If we do not give any value for               
max_depth then the tree will expand upto the point where either the leaves are              
pure or contain samples less than specified min_samples_split. 
  
d)Min_samples_split gives the minimum number of samples that are required to           
split a node. If the samples are less , the node does not split. 
 
e)Min_sampe_leaf if specifies that at a node, a leaf will be considered for             
training only if it has the specified number of samples 
 
f)Min_impurity_split gives a threshold value after which we need the tree           
growth to stop early if the impurity level exceeds the given value. The node will               
not split further and remain as a leaf . 
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g)bootstrap: Whether we want to build the trees using bootstrap samples or the             
entire dataset. 
h)max_Samples: IT gives the number of samples of the training data..that is X             
which can be used to train the estimators , if the value of bootstrap is true. 
 
 

Therefore , It is a more randomised form of a decision tree. 
 

4.2.9)Linear regression : basically is represented by a linear equation which           
takes a set of linear inputs and predicts corresponding outputs. It works similar             
to a linear relation in statistics. In machine learning since we have a larger              
number of dimensions of the inputs we call it a hyperplane instead of a line.               
This algorithm works on the assumption that the relationship between your           
input and input is linear in nature and does not have any noises in data. Also we                 
need to make sure that we remove all the collinearity in data as those may               
overfit our model. For better predictions through linear regression we can           
normalize our input. The regularization methods of the linear regression include           
lasso and ridge regularization depending upon whether we want L1 or L2            
regularization 
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CHAPTER 5:BACKPROPAGATION AND 
EVALUATION INDEX EQUATION  

 
5.1)Backpropagation: 
 
The backpropagation algorithm uses the chain rule to train a neural network            
efficiently. Whenever we move in the forward direction, after completion of           
each forward movement the algorithm goes backwards also, altering the             
weights and biases. 
 
Discussing the backpropagation in detail along with the training procedure : 
 
Let's say we have n-layer neural network modelling . This would mean that the              
input layer has n neurons and also the hidden layer has n neurons. The output               
has 1 neuron . The input can be of any type scalar ,vector or complex. The input                 
values are the activation of the first layer . The activation function which is              
normally non-linear when applied to the input gives activation values ..i.e which            
values and to what extent is to be passed through the layer . We normally use                
sigmoid , tanh or Relu functions . 
The hidden layer gives the output after  multiplication of weights and inputs. 
The output layer has one single neuron which produces the final value. 
 
Here we show how the forward propagation is evaluated : 

X1 = i1 

Z2 = W1 * X1 +b1  
i2 = f(Z2) 

Z3 = W2 * i2 + b2  
i3 = f(Z3) 

S= W3 * i3  
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Now , we determine the relation between this predicted output value S and the              
expected value y from the corresponding training data. We generally give a cost             
function which is either MSE value or RMSE value depending on our            
requirements . Now based upon the value that we get from this cost function the               
model determines how much is the predicted value deviated from the input               
value and accordingly the model adjusts the weights and biases to get the output              
value close to the actual value . This process is done through the back              
propagation process which is explained below. 
 
The aim of backpropagation is to minimise the error or the cost function value.              
Now how much change or adjustment is needed is calculated using the            
derivatives of the error function with respect to all  the inputs of the layer. 
The gradient or derivative of a function gives the change or the partial             
derivative of the target function in relation to the parameter with which it is              
calculated . 
The gradient is given as : 
 

=[ , , ………. ]δi
∂C δC

δi 1 

δC
δi 2 

δC
δi 3 

δC
δi m 

 

 
This derivative gives the measure as to how much is the function sensitive when              
the output changes with respect to the change in the inputs. Therefore the value              
of the derivative will give the direction and the value by how much the input               
needs to change in order to keep the error as low as possible . 
 

= ………………………………………….....equation 6
δC

δW t
jk

δC
δZ t

j

δZ t
j

δW t
jk
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Here m gives the number of neurons in the t-1 layer. 

= + ……………………………………....equation 7Zδ t
j ∑

m

k=1
wt

jk * ik
t−1 bt

j  

 
When we differentiate the equation 7 with respect to weight: 

= …………………………...………………………..equation 8
δZ t

j

δW t
jk

ik
t−1  

Putting values of from equation 8 to equation 6, we get the error or the   
δZ t

j

δW t
jk

            

cost function for weights as : 
 

= ………………..………………………....….equation 9
δC

δW t
jk

δC
δZ t

j
ik
t−1  

 
Similarly when we differentiate for bias: 

= ……………………………………....………equation 10
δC
δbt

jk

δC
δZ t

j

δZ t
j

δbt
jk

 

= 1 ………………………....……………..………………..equation 11
δZ t

j

δbt
jk

  

 
Substituting the value of gradient from equation 11 into equation 10 we get the              
partial derivative as : 
 

= ………………………………………….….…..equation 12
δC
δbt

jk

δC
δZ t

j
1  

 
Taking the values from the equation 12 and 9 , our cost function becomes: 
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= + ………………………………..…equation 13
δC

δW t
jk

δC
δZ t

j
ik
t−1 δC

δZ t
j

 

 
Now, these gradients when subjected to a particular condition or a particular            
error value help in updating the function and optimizing it. This loop is             
terminated once the cost function archives its minimum value  : 
 
                    WHILE (condition) 

W = W - ε δC
δW  

 
 

b = b - ε δb
δC  

                   END 
 
The initial value of weights and biases are randomly chosen at the starting of the               
training process and then brought down to the correct value after the            
optimization is complete .The W and b mentioned in the loop are the matrices. 

Over here , gives the learning rate which was discussed earlier in the   ε           

hyperparameters chapter.It determines how much weightage is to be given to           
gradient so as to decrease the value of weights or biases less or more.  
 
Therefore this is how we optimize and minimise the error using           
backpropagation. 
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5.2)KPI(Key performance Indicator) 
 
Key performance Indicator gives the measure of the performance of our model            
on the data.  The key performance indicators that we use over here are : 
 
MAPE: In forecasting MAPE or Mean absolute percentage error is the most            
commonly used KPI to measure accuracy . We take out absolute errors for each              
data point individually and divide it by total in that demand period. It can also               
be called the average of errors of percentages. However MAPE can be skewed             
sometimes ,because we calculate each error individually. 
 

 MAPE = (1/n) * Σ [ abs (actual – predicted)/actual]  
 

MAE: Mean absolute error is one of best measures for forecast accuracy. It is              
the absolute error divided by all the data points .It is always good to get the                
percentage values of these indices as they are not scaled to the demand so you               
would not know whether it is good or bad. 

 
                           MAE = [Σ abs (actual – predicted) ] / n  
 

RMSE: Root mean square error is given by the square root of the average of               
individual squares of the errors.Many algorithms of machine learning are based           
on MSE which is related to RMSE. However , if we have even one big error,                
RMSE will give a very big value for it. 
 

                           RMSE = [ Σ(predicted – actual)2  /n]1/2  
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                            CHAPTER 6 : OPTIMIZERS  

Gradient Descent Algorithm 

 
The gradient descent optimizers are used to reach the global minima by finding             
the gradient and updating the weights and biases such that the cost functions can              
attain minimum value. 
The algorithm for gradient descent : 
 

BEGIN 

-Prediction values of the neural network are taken 

-The loss function is used to calculate the losses 

-The loss functions are differentiated and the       

gradients are obtained; these are also the partial        

derivatives. 

-These gradients update the values of weights and f         

s          biases 
REPEAT 

 

Whenever we update the weights and biases after finding the gradients we reach             
closer to the optimum value Therefore as the training of neural networks            
progresses The function that is to be minimised moves closer to its global             
minima. However , sometimes the function gets stuck in local minima for            
non-convex function therefore preventing it from reaching its global minima.To          
come out of such situations we use methods like learning rate , momentum, etc. 
The learning rate, being the most crucial part of the optimizers, can be thought              
of the steps we take to reach the bottom of the global minima. Depending on the                
learning rate the weights and biases are updated, if we take larger values of the               
learning rate it is a possibility that we might skip the global minima and move               
about it thereby never converging. But, Taking a smaller value of learning rate             
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takes a lot of time to converge.Also we need to keep in mind that it does not get                  
trapped in local minima. 
 
Gradient descent with momentum: 
When the gradient descent algorithm is used with momentum,it converges fast           
.The momentum function works such that we move fast or take larger steps in              
the x coordinate direction therefore restricting and slows down movement in the            
y coordinate direction, unlike the standard algorithm which takes larger steps in            
the y coordinate direction thereby proceeding slowly in the x direction. 
 
RMSprop Optimizer: 
RMSprop optimizer is the combination of the gradient descent algorithm with           
momentum . When we restrict the movement and take shorter steps in the             
vertical direction , we can increase our learning rate therefore it can converge             
fast. The momentum is generally denoted by beta ( and its value is 0.9        )  b       
generally. 
 
Values calculated for gradient descent momentum: 
 

                            v = b.v +  (1-b) . dw ……………..equation 14wd wd  

                      v    = b.v  + (1-b) . db ……………..equation 15b  d wd  

                      W   = W -  . v …………………...…….equation 16α  wd  

                                    b  = b -  . v  ……………...……………….equation 17α b  d  
 

The values calculated for RMSprop optimizer: 
 
 

                                    v = .v +  (1-b) . dw2 ... …....…… ….equation 18wd b wd  

 

                      v    = b .v  + (1-b) . db2    …....……..….equation 19b  d wd  
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The values obtained from v from equations 18 and 19 of the rmsprop optimizer              
are used in equations 20 and 21 to update weights and biases during the training. 

 

           W    = W   -   .  .……..…....equation 20α dw
  + ε√v

 

                       b  = b  -   .  .……………..….equation 21α db
 + ε√v

 

 
 
The following notations are used here : 
W: weights 
b  : biases 
dw : partial derivative of the weights 
db : partial derivative of the biases 

: momentum valueβ  
: learning rate α  
: constant epsilon ε  
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 CHAPTER 7 : RESULTS 

 

 
  
                                Fig 7. RMSE values of all the Regressors  
 
 

 
 
                                  Fig 8. MAPE values of all the regressors 
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Fig 9. MAE of Regressors 
 

 
 

 
Fig 10. Training time of Regressors 
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                             Fig 11. All regressors MAE and RMSE  
 
 
 
 

 
                             Fig 12. Comparison table of all the regressors  
 
 
Seaborn and matplotlib are used to plot the results .From the Figures 7,8,9 and              
10 where we are comparing the RMSE, MAE and MAPE value of all the              
regressors it is clear that the lowest RMSE, MAPE, Testing score and MAE             
value is for MLP regressor .Training score is not the highest but not too low for                
MLP regressor. Therefore, the MLP regressor is better than the other techniques            
which signify that a perceptron based network or a neural network would give             
the best performance on forecasting problems. Now we know LSTM is also 
composed of neural networks and is an improvement of the MLP networks.            
Comparing the MLP regressor to the LSTM network 
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LSTM results: 
 
TestMAPE: 0.41 MAPE 
TestMSE: 0.27 MSE 
Test_RMSE: 0.51 RMSE 
 
MLP results: 
 
TestMAPE: 0.311283 MAPE 
TestMSE: 0.311283 MSE 
Test_RMSE: 0.40978 RMSE 
 
 
Though MAPE and RMSE values of MLP are better than LSTM . But, for the               
purpose of forecasting we would require the properties of learning information           
from the previous layers and a long chain , offered by LSTM . In Fig.13 we can 
see that the dotted black line represents the original data for power and the              
green line represents the predicted power using the LSTM algorithm. Hence our            
model forecasts power correctly.  
 

 
Fig 13. output of LSTM Network predictions vs original power. 
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CONCLUSION 
 
We can see from the data that MLP is always a better choice as compared to all                 
other algorithms for forecasting as the key performance values of MLP method            
are better than the rest of the algorithms . 
However, MLP alone does not support the operation of remembering long term            
datas . Therefore we introduced a looping or recurrent loop method where all             
the weights and biases for all the layers were the same unlike MLP . Recurrent               
Neural Network was an improvement of the MLP network. 
This Recurrent Neural Network However faces the problem of vanishing          
gradient when the data to be remembered becomes too large. To counter this             
problem LSTM was introduced which provided the benefits of MLP and           
Recurrent neural networks and is an improvised form of both the networks            
which support larger data memory and we can anytime use the forget gate and              
input gate to remove or add new data as per our requirements . 
Hence We have successfully implemented LSTM neural networks to forecast          
load power studying and implementing all the other algorithms that can be used             
for forecasting . Concluding that LSTM is the best algorithm till now for load              
forecasting purposes. 
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