
Electrical Load Forecasting using Machine Learning
Techniques and their comparison

DISSERTATION/THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE

OF

 MASTER OF TECHNOLOGY

IN
 POWER SYSTEMS

Submitted by:

 Apoorva Mishra
2K18/PSY/02

 Under the supervision of

Prof. J.N Rai

 DEPARTMENT OF ELECTRICAL ENGINEERING

 DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of
Engineering) Bawana Road,

Delhi-110042

DEPARTMENT OF ELECTRICAL ENGINEERING

 DELHI TECHNOLOGICAL UNIVERSITY
 (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

 CERTIFICATE

I, APOORVA, Roll No. 2K18/PSY/02 student of M. Tech. (Power System),

hereby declare that the dissertation titled “Electrical Load forecasting using

Machine Learning Techniques and their Comparison” under the supervision

of Prof. J.N Rai of Electrical Engineering Department Delhi Technological

University in partial fulfillment of the requirement for the award of the

degree of Master of Technology has not been submitted elsewhere for the

award of any Degree.

Place: Delhi APOORVA MISHRA

Date: 15.09.2020

 Professor J.N Rai

 Electrical Engineering

1

 ABSTRACT

The work presented gives hourly electrical load forecasting as a

time series forecasting model using multilayer deep learning Long

Short-Term Memory neural network Technique and its detailed

comparative study with various Machine Learning Techniques

based on their Mean Squared Error, Mean Absolute Percentage

Error and Training time. Load Forecasting has immense potential

to help in modulating the generation and distribution potentials of

our smart grids in accordance to the requirement so that optimum

power is generated and supplied through various channels which

would be effective in grid management and operations. The

MAPE of the model presented below is 0.41.

2

CONTENTS:

CHAPTER 1: INTRODUCTION

1.1 Need for forecasting ………………………………………. 7

1.2 Time series forecasting …………………………………….. 8

1.3 Literature Survey …………………………………………. 9

1.4 Objective ……………………………………. …………... 11

CHAPTER 2: LSTM

2.1 Recurrent neural network(RNN).. 12

2.2 Long short term memory (LSTM)..................................... 15

2.3 LSTM Algorithm………………………………………… 17

CHAPTER 3: HYPERPARAMETERS

3.1)Hyperparameters involved in the optimisation of the

model during the training process……………………... 19

 3.1.1)Splitting estimator of Train ,Test data…….19
 3.1.2)Learning Rate…………………………… 19

3.1.3)Batch size………………………………... 20

3

3.1.4)Number of epochs………………………….. 20

 3.2)Parameters that determine the structure of the model…… 21

3.2.1)No. Of hidden units in a layer ………………..21
3.2.2)First Hidden layer of the network…………….21
3.2.3)Total number of layers in the network………..21

 3.3)Hyperparameter optimization…………………………….21

3.3.1)Grid search technique……………………….............22
3.3.2)Random search technique…………………………...22

CHAPTER 4: ALGORITHMS USED FOR OTHER MACHINE
LEARNING TECHNIQUES

4.1)Model used for algorithm…………………………………… 23
4.2)Description of various regressors…………………………... 23

4.2.1)Ridge regressor …………………………...................23
4.2.2)Random forest……………………………………….24
4.2.3)Gradient boosting…………………………………....26
4.2.4)K-nearest Neighbour……………………………….. 29
4.2.5)Multi-layer perceptron……………………………… 32
4.2.6)Logistic regression classifier……………………….. 34
4.2.7)Support vector machine…………………………… . 34
4.2.8)Extra trees regressor ………………………………. 35

 4.2.9)Linear regression…………………………………... 36

CHAPTER 5 : BACKPROPAGATION AND EVALUATION INDEX
EQUATIONS

5.1)Backpropagation……………………………….……...37
5.2)Key performance Indicators…………………………...41

4

CHAPTER 6 : OPTIMIZERS

6.1)Gradient Descent optimizer………………….. ……. 42

CHAPTER 7: RESULTS ………………………………………....… 45

CONCLUSION ……………………………………………………... 49

REFERENCES ……………………………………………………... 50

5

LIST OF FIGURES

Fig.1 MLP representation of a neural network…………………………. 13

Fig 2. RNN network basis idea when all the layers have same weight and go ina
recurrent loop………………………………………………………….. 14

Fig 3. Complete structure of RNN………………………………….... 14
Fig 4. LSTM Structure………………………………………………... 16
Fig 5. KNN example 1………………………………………………... 29
Fig 6. KNN example 2 ………………………………………………... 30
Fig 7. RMSE values of all the Regressors ……………………………. 45
Fig 8. MAPE values of all the Regressors ……………………………. 45
Fig 9. MAE values of all the Regressors ……………………………... 46
Fig 10. Training Time of all the Regressors ………………………….. 46
Fig 11. Comparison of regressors MAE and RMSE ………………….. 47
Fig 12. Table for all the values ………………………………………… 47
Fig 13. Output of LSTM Predictions VS original power …………….... 48

6

 CHAPTER 1

1.1)INTRODUCTION: Need of forecasting

In many of the business models nowadays, forecasting is used exceedingly and
is very crucial whether we are to predict the revenue or load for any
organisation or institutional set up. Artificial intelligence has grown up to such
extents now that we can predict parameters with an accuracy upto 1%. While
using proper technique we can save many resources and a considerable amount
of money [1]. Taking an example if we are to suppose an appliance or utility
used for load forecasting with 1 gigawatt annual peak load, the risk of
oversizing and undersizing would be 0.01∗1, 000MW =10MW . Assuming the
capital cost of $10, 000/KW , the overnight capital cost would be $10, 000/KW
∗ 10MW = $10 million. The savings of deferring $10 million in spending for 1
year with 5 % interest rate would be $10million − $10million/(1 + 0.5) = $476,
000 ≈ $500, 000. If the utility uses forecasting for obtaining energy from the
day ahead market, they might save around $300, 000 per year by improving the
accuracy by 1%.

The optimum planning and management of energy distribution is a very crucial
task when dealing with smart grids. There has been immense evolution in the
smart grid, using the developments of information and communication
technologies, and it is becoming a productive and durable system progressively.
The smart grid systems are contrived so as to counter the problem of energy
management and also to monitor, optimize and control the distribution of
power. The decision for the flow or exchange of energy among all the utilities
or devices connected to the grid is made after the governance and assessment of
demand; which is an indispensable constituent of the energy management
system of the electrical grid , thereby assuring the operational functionality,
stability and dependency of the entire interconnected electrical system [1]. This
will be beneficial in Strategizing the supply according to the demand therefore

7

the reliability of the grid is increased. It will also be economical as renewable
energy sources are integrated with greater efficiency and lower costs.

1.2 TIME SERIES FORECASTING:

Time series forecasting is done over successive time intervals using sequent
data points. Over the years many time-series forecasting techniques have been
proposed. The most recent, optimized and accurate method of time-series
forecasting has been used in this work combined with regression measures[2] .A
lot of memory is consumed by the model while using these techniques so many
of the useful is lost so most of the useful information is lost. The most recent
one recently introduced is the Recurrent Neural Network(RNN) which used
recurrent back propagation but was time consuming as well as with increasing
information,it has many problems like the vanishing gradient problem.The
measurements are arranged in a sequential manner and the forecasting can be
univariate or multivariate in nature. In our problem statement we will be using
univariate analysis with time as one variable and power the other. The Long
Short term memory (LSTM) Technique learns and tracks all the past
dependencies of a variable in relation with the new observations. Normally in a
neural network input is given to a hidden layer and output is obtained, but
LSTM is based on the recurrent neural networks where input is given to a set of
hidden layers which contain information of the previous inputs also and then
output is obtained.

To overcome these problems Long Short Term Memory cells (LSTM) was
introduced [10] which solved complex, artificial long time lags tasks. A variant
of LSTM which is widely used in time-series forecasting is introduced which
reduces the number of variables used in the Gradient Recurrent Unit (GRU)
[20]. Furthermore, the problems that still prevailed in the deeper networks were
fixed by the utilization of relu and Xavier initialization ,of vanishing or
exploding gradients .

8

A major problem with the RNN was that the input length was equal to the
output length , therefore the number of features could not be reduced in the
subsequent operations or layers which might be unnecessary and time
consuming . Sometimes the number of outputs might have to be in condensed
form. For that generally the output of RNN is connected to a Dense network (a
layer with its all element connected to the every input features) but with identity
activation and zero biasing (weighted summation). But still the weight of that
layer needs to be learned. This added layer could also be used as an extra hidden
layer with proper type of activation and initialization. This paper proposes one
such type of initialization technique that could be used at this dense layer for
faster convergence speed in training. To prove this hypothesis, a simple
Feed-forward Long Short Term Memory Neural Network with 3 hidden layers
was trained.

1.3 LITERATURE SURVEY

Load forecasting , according to Gross and Galiana (1987), is also concerned
with the prediction of hourly, daily, weekly and monthly values of the system
load, peak system load and the system energy[2]. Srinivasan and Lee (1995)
classified load forecasting in terms of the planning horizon’s duration: up to 1
day for short-term load forecasting (STLF), 1 day to 1 year for medium-term
load fore- casting (MTLF), and 1±10 years for long-term load forecasting
(LTLF)[4]. Load forecasting when done properly saves a lot of utilities,
resources and money . According to Bunn and Farmer (1985), these savings are
realised when load forecasting is used to control operations and decisions such
as dispatch, unit commitment, fuel allocation and o-line network
analysis[5].The model developed by Papalexopulos and Hesterberg (1990)
produces an initial daily peak forecast and then uses this initial peak forecast to
produce initial hourly forecasts further again , it uses the maximum of the initial
hourly forecast, the most recent initial peak forecast error, and exponentially
smoothed errors as variables in a regression model to produce an adjusted peak

9

forecast[8]. A regression-based daily peak load forecasting method with a
transformation technique was introduced by Haida and Muto. They use a
regression model which predicts the nominal load and also they predict the
residual load using a learning method [9]. Haida also reduced the errors in the
prediction of transitional seasons by introducing and designing such processing
techniques. Trend cancellation removes annual growth by subtraction or
division, while trend estimation evaluates growth by the variable transformation
technique.A least-squares approach was used by Varadan and Makram (1996)
which was used at power lines and substations so that the different kinds of
loads can be identified and quantified[11] .Later an adaptable regression model
was developed by Hyde and Hodnett for 1-day-ahead forecasts,which was able
to identify and distinguish between weather-insensitive and weather-sensitive
load components. Linear regression of past data is used to estimate the
parameters of the two components[12]. In order to support future smart grid
applications, effective load forecasting techniques for electricity users are
gaining increasing interest. Zhang et al. [13] developed a big data architecture
that combines load clustering based on smart meter data and decision tree to
select corresponding load forecasting models for prediction. Stephen et al. [14]
clustered and labelled daily historical data of individual households. The
individual households were deemed as label sequences, which are further fit to
Markov chains. Then the day ahead label can be sampled, and cluster means at
each time points were used for the day ahead prediction. These works all
showed that the forecasting errors could be reduced by effectively grouping
different customers. However, they all only reported the aggregated load
forecasting error at the system or community level where individual customer
prediction errors could be offset by the diversity of different end users. In the
existing literature, Chaouch’s work [15] and the work of Ghofrani et al. [16] are
the first two examples that focus on load forecasting for individual users.In
these works functional time series forecasting approach was proposed, and the
daily median absolute errors were reported . Very recently, deep learning based
methods start to emerge in the load forecasting community. Ryu et al showed

10

that the load forecasting accuracy for industrial customers could be improved by
using deep neural networks [17]. In fact, the industrial electricity consumption
patterns are much more regular than residential ones, so that much more
accurate results are obtained using deep learning techniques .Later in 2016,
Marino et al. attempted to solve the load forecasting issue using LSTM [18] and
showed good results as all the other methods. However, the effectiveness of the
two pioneering works was only verified on the metric of root mean square error
(RMSE) instead of the more common metric of mean absolute percentage error
(MAPE), which makes it hard to contrast to other works. Later Weicong Kong
and Zhao Yang Don proposed a Long Short term(LSTM) Recurrent neural
network based load forecasting framework for this extremely challenging task
of individual residential load forecasting, because LSTM has been proven to
learn the long term temporal connections.The inconsistency in daily
consumption profiles generally affects the predictability of the customers. The
higher the inconsistency is, the more the LSTM can contribute to the forecasting
improvement compared to the simple back propagation neural network [19].

1.4 OBJECTIVE

The objective of this study is to do hourly electrical load forecasting as a time
series forecasting model using multilayer deep learning Long Short-Term
Memory neural network Technique and its detailed comparative study with
various Machine Learning Techniques based on their Mean Squared Error,
Mean Absolute Percentage Error and Training time.

11

 CHAPTER 2: LONG SHORT TERM MEMORY

2.1 Recurrent neural network

Normally neural networks could not retain long term information and whenever
the training is run it learns from scratch. Recurrent Neural Network(RNN)
addresses this issue . The recurrent neural networks can be considered as a loop
where each predecessor network passes the previous information to the
successor networks .Long short term memory(LSTM) are a special kind of
neural networks.
It is an improvement of the Recurrent neural network which can operate and
keep a track of long term dependencies. In a RNN network output of the hidden
layers is fed back again to the network itself unlike the normal feed forward
network which does not work in loop . The RNN can be many to many or many
to one but It is to be noted that unlike normal neural networks these RNNs have
the same weights for all the time steps as they operate in a loop . The problem
that recurrent neural networks face is that due to large scale dependencies on the
previous data , if we want our model to learn better, as we increase our time
steps , the problem of vanishing or exploding gradients becomes increasingly
inevitable .

To understand how RNN works, let's take an example, whenever we write an
email, Always the word that could come next is predicted beforehand . So , how
do we predict the next word in a sentence? Let's try to analyse using the
Multilayer Perceptron network.

In a simple Multilayer perceptron (MLP) there is an input layer , hidden layer
and output layer. When we want a deeper network, there are multiple layers of
hidden neural networks . It is to be noted that all the hidden layers have their
own weights , biases and activation functions which are different in nature. Due
to this property the hidden layers can not be combined together unless the
weight and biases for all the hidden layers are the same.

12

Fig.1 MLP representation of a neural network

When the weights and biases are the same for all the layers . We combine the
layers into a single recurrent neural network layer. Therefore this recurrent
neural network also stores the information of the previous layer , thereby
establishing a relationship between the current and the previous inputs.

Next state is given as :

= f(,)ht ht−1 xt

13

New hidden state is given by and the current input is given by .ht xt

 Fig 2. RNN network basis idea when all the layers have same weight and
go in a recurrent loop

 Fig 3. Complete structure of rnn

14

2.2 Long short-term Memory (LSTM)

It consists of the forget gate, with the purpose of altering the portion of input or

the previous stage which is to be passed to the next stage . It helps us to decide
what percentage of the data of the previous stage we need to remember in the
next stage . The forget gate is made up of a sigmoid layer which outputs a
number between 0 and 1 for each state depending on how much to keep and
how much to discard.The output of this forget gate can also be thought of as
weights to the internal state for each input.
The inner state of the LSTM is defined by a variable s which is delayed by a
one-time step and is used by the network to learn the relationship between the
inputs and their sequence time thereby creating a recurrent loop. This filtering
done by the forget gate also helps to reduce the effect of the vanishing gradient
problem encountered in the recurrent neural network.

 = (* [,] +)f t+1 σ W fo ht it+1 bfo

Then comes the input gate which decides which values are to be updated and
what new information is added to the cell state and is also a sigmoid layer .

= (*[,] +)it+1 σ W input ht xt+1 binput

The input layer if followed by a tanh layer the results of these two layers are
multiplied together to get the new updated scaled value and is then added to
the output from the forget gate to make a new cell state. This new state is again
fed to tanh which gives values between –1 and 1 to again decide which values
are to be passed.
Thus LSTM provides the advantage of adding or removing any information in
the cell through gates.

= tanh (*[,] +)C t+1 W new ht xt+1 bnew

15

* + *C t+1 = f t+1 C t it +1
C t+1

= (*[,] +)Ot+1 σ W output ht xt+1 boutput

* tanh (ht+1 = Ot+1)C t+1

Fig 4. LSTM Structure

LSTM parameters:
a)activation : The default activation function if nothing is given is set as tanh. If
we do not want to change any inputs then we can give the activation function as
NONE , which implies the activation is linear f(x)=x.

b)units : Specifies the dimensions of the output layer.

16

c)dropout : Dropout value gives the value between 0 and 1. This gives how
much value is to be dropped of the input or the layer specified.

d)recurrent_activation : The activation function to be used in the next layers. If
we do not specify anything then it is sigmoid by default . If we do not want to
change any coming values from the previous layers then we can give the
activation function as NONE , which implies the activation is linear f(x)=x.

To call the LSTM :
a) input : input is given as a 3D tensor of shape [number of samples ,dimensions
of each element , features].

b)training : This function indicates whether the layer will be utilized for training
or inference.

2.3 LSTM ALGORITHM

After dividing the entire dataset into training and test data in the ratio 9:1 and
reshaping the input in the form (number of samples, dimension of elements) we
start building a sequential model.
Layer 1:
Add a LSTM layer with input dimension as 1 and output dimension as 50 with
return sequence as True.
Add a Drop out layer to prevent overfitting.
Layer 2:
Add a LSTM layer with output dimension as 50 and return sequence as False.
Add a Dropout layer to prevent overfitting.
Layer 3:

17

Add a Dense neural network layer with output dimension as 1 and activation
linear.
While compiling the model, the optimizer used “rmsprop “and loss to be
minimized is specified as “mse”. The gradient descent optimizers are used to
reach the global minima by finding the gradient and updating the weights and
biases such that the cost functions can attain minimum value. However,
sometimes non-convex functions arise due to which the optimizer is stuck in the
local minima hence the global minimum value is not achieved by the cost
function. Rmsprop optimizer is used as it solves this problem. Rmsprop restricts
the oscillations in one direction, basically the vertical direction thereby
converging faster to the solution as higher learning rates can be used .

18

 CHAPTER 3: HYPERPARAMETERS

Normally In machine learning we have two types of parameters model and
hyperparameters:

1)Model Parameters: Model parameters are those which the model fits after the
training from the data. For example, weights of classes , biases, split points or
the nodes are the model parameters that the model fits after training.

2)Hyperparameters: Hyperparameters are those which we have to tune in order
for the model to perform well and give optimal results.For example , learning
rate and number of iterations are something that we tune and provide to the
model in order to train according to our requirement.

Some Examples of the hyperparameters available in the scikit learn package:

3.1)Hyperparameters involved in the optimisation of the model during the
training process :

3.1.1)Splitting estimator of Train ,Test data:
train_test_split(X, y, test_size=0.4, random_state=0)
a)Over here, test_size gives the percentage or portion of the data to
be included for testing.

b)Random_state is used for random number generation for
shuffling the data

3.1.2)Learning Rate:
Learning rate gives the steps to be taken to reach the global minima
during optimisation. If we take very small values of learning rate it
takes very long times i.e more number of steps to reach the global

19

minima however if we take a very large learning rate then we may
suffer the problem of overshoot and the algorithm might not reach
the global minima and hence may not converge .It is very
important to keep in mind that the models have lot many
parameters and each one has a different kind of curve for the error
and not necessarily u-shape so our learning rate has to cater to all
them.

3.1.3)Batch size:
Batch size determines a lot of things while training like the
requirement of resources , speed , epochs required .
We earlier used to calculate the gradient by feeding the entire data
to one particular training epoch, by using the errors of all the data
in the data set. Nowadays, we do not feed the entire data at once
instead data is fed in bathes as specified by the user.
If we keep a large batch size, we require more memory to run the
training but we get the advantage of boosts in computations . If we
keep a smaller batch size, it introduces more deviations in the error
calculations .However a small batch size is quite instrumental in
stopping the optimizer from being stuck at the local minima.

3.1.4)Number of epochs :

The number of epochs or the number of training steps is usually
determined by the validation error. We should run our training as
long as the validation error keeps on decreasing .We can go for
early stopping the training if the error does not decrease for 30-40
epochs .

20

3.2)Parameters that determine the structure of the model:

3.2.1)No. Of hidden units in a layer :
One of the most complex parameters is the number of hidden units.
Neural networks should have enough capacity or we can say
enough number of units to learn and fit a particular function which
is given by this parameter.When we have to fit a simple function
we need very less amount of hidden units but for a larger function
the model should have a lot number of hidden units . However it is
to be kept in mind that if we give a very large number of units , the
model learns everythings and fails to generalise i.e it overfits. So
we need to keep an optimal number of hidden layers .

3.2.2)First Hidden layer of the network:

We always need to keep in mind that the first hidden layer should
be such that the total number of hidden units is always more than
the input. It preserves the input data thus giving a better output .

3.2.3)Total Number of layers in the network:

Normally more number of layers give better results in cases like
convolutional neural networks . But in normal neural networks a
three layer network does the job just fine .

3.3)Hyperparameter optimisation:

Now we have seen that these hyperparameters are useful only when we find an
optimal value for them else, they degrade the model. We find the correct and
optimal value for these parameters using various techniques called the
hyperparameter optimisation method . These methods include :

21

3.3.1)Grid search Technique:
Grid search works by training the algorithm with a combination of
learning rate and number of layers and evaluates the performance
using the cross-validation technique. Also one of the methods is
K-fold cross validation technique where a set of randomly taken
data is trained on the model for many times . and training and
validation sets are different all the time. This is a very useful
algorithm unless the data has very high dimensionality in that case
it fails and has the problem called curse of dimensionality.

3.3.2)Random search Technique:

Random search randomly allocated data into the validation and
training dataset.And selecting randomly the dimensions and
parameters, it sometimes does not give good results as it does not
take the information from the former models to use.

22

CHAPTER 4: ALGORITHMS USED FOR OTHER
MACHINE LEARNING TECHNIQUES

After dividing the entire dataset into training and testing in the ratio 9:1, we get
properties of all the regressors Ridge, K nearest Neighbors, Random forest
regressor, Gradient Boosting Regressor, MLP regressor and Extra trees
Regressor. We fit the model, take out the training time, testing score and
training score, rmse , MAPE and MAE, store them in a dataframe for
comparison purposes and plot each of them .

4.1 Model used for the algorithms :
Divide the entire dataset into 9:1

BEGIN

Get the property of the regressor

Fit the model

Get the properties, take out the training time,

testing score and t raining score, rmse , MAPE and

MAE

Store all the values in a dataframe

REPEAT

Plot and compare each of them

END

4.2 Description of the various kinds of regressors

4.2.1)Ridge regressor : is used in the cases when there is no unique solution
available and the answer is to be calculated using approximation.Ridge

23

regression (RSS) operation is performed using L2 regularization which is the
sum of squares of coefficients .

Function to be optimized= RSS + * (sum of square of coefficients) α

is used to give weightage to the term which is to be minimised to greater α
extent.Various values that can be taken by alpha:
1) =0: α

The function serves the same purpose and the same values of coefficients
a as simple linear regression are obtained
2) =infinity: α

As non-zero coefficients would nake the function infinite,The coefficients
q will be zero.
3) 0< <infinity: α

Weightage to be given to the l2 regulariser or the cost function to be a a
a optimized is decided by alpha.

4.2.2)Random Forest : Random forest, a supervised learning Algorithm works
by constructing multiple layers of decision trees, also called ensemble, by
training often using the bagging technique which outputs the mode in case of
classification and the mean in case of regression problems.
An advantage of the Random forest algorithm is that without any
hyper-parameter tuning also, we can achieve required results exploiting the
benefits of all the best algorithms available.
Therefore, it works by constructing an ensemble of decision trees and then
merge the outputs thereby increasing the accuracy of the prediction.This
algorithm when searching through the features while forming the trees instead
of selecting the most important feature , selects the best feature from the subset
of features while slipping the node thereby adding some randomness.
This algo is one of the best as we can measure the importance of each feature at
every prediction. It calculates the score as to how much is the impurity reduced

24

by the nodes in the complete forest which uses that particular feature . This
score for all the features is scaled and added such that the sum is equal to 1.

Now , in machine learning since we generally try to keep the number of features
really low in order to avoid overfitting, the feature importance detection
provided by random forest algorithms really contributes a lot in deciding which
feature to drop depending upon its contribution to the model.
However it is to be noted that there is difference between decision trees and
random forest, they should not be confused to be the same
The first difference is that the decision tree collets the labels and the training
data and on that basis makes some rules, and generates the predictions abiding
by those rules , however , the random forest gives the average results by
building many decision trees by taking random features and observations
..therefore not particular set of rules are followed.
The second difference is that because of this feature of random forest algorithm
of introducing so much of randomness, a big problem of the deep decision
trees,overfitting is solved. The algorithm takes subsets and build many small
trees using those, thus solving the problem of deep decision trees and combining
those subsets further. Though it solves many problems giving better results,
makes computation a little slow and consumes some time.

The hyperparameters used in ransom forest are those which are normally used
to increase the predictive power of the model or to make the model faster:

a)N_estimator :One of the hyperparameters which gives the number of trees
built by the algorithm before taking the average of the predicted values is
n_estimator. Higher the number of trees better is the prediction but it slows
down the computation so n_estimator assigns an optimum number of trees
which gives good results under considerable time.

25

b)max_features: max_features gives the number of features that the random
forest decides to select while splitting a node.

c)min_sample_leaf: min_sample_leaf gives the min number of leafs that the
decision trees makes while splitting a node

d) n_jobs :The n_jobs hyperparameter alots the number of processors which
can be used. For example if the value is 2 , it can use 2 processors but if it is -1,
it can use all of it

e)random_state : If we give the same training data, observations,
hyperparameters and labels the model will produce the same predictions and
outputs everytime if a definite srandom_state is set every time.

f)oob_score: One of the methods often used is cross-validation in which
one-third of data is set aside for evaluation and testing the results ,its accuracy
and the performance , it is also called oob_sampling

Therefore, the random forest algorithm is versatile in that it works on both
classification and regression problems and solves the problem of overfitting if
there are optimum trees in the forest. But due to many trees it makes the
algorithm slow in predictions which can be inefficient in some real-time
applications.It has many uses like in medicine it is used to examine the medical
history of patients and determine the type or cause of disease.Also ,it is used in
banks and e-commerce trades.

4.2.3) Gradient boosting : The Gradient boosting algorithm works on the
method of minimization of error. The prediction model given by the gradient
boosting algorithm is generally the ensemble of many models arranged in the
sequence which may produce the minimum error, mostly a set of decision trees.

26

It works like the adagrad algorithm which trains a decision tree by assigning
equal weights to all the observations. Further as we proceed, after the first
iteration and evaluation of the first decision tree, we assign higher weights to
those data which are difficult to classify and lower weight to the data that is
easy to classify so that we can improve upon the predictions from the first
iteration. Our model now is the combination of the both 1st tree and the second
tree, then, the errors in classification from this iteration of the 2-tree model are
calculated and a third tree is formed to decrease the error further by adjusting
the weights on the observations as we had done for the 2nd tree. Repeating this
for a particular number of iterations, each coming tree focuses on the data that
was not classified correctly by the previous tree. Therefore the model finally
gives the weighted sum of the predictions .

However the gradient boosting algorithm proceeds to train the models in a
sequential, gradual and additive way. The two algorithms adagrad and gradient
boosting are different in way such that adagrad acknowledged the weak decision
trees by giving them a higher weight, the gradient boosting algorithm
acknowledges them by introducing a gradient in the loss function.
The ability of the model coefficients to fit the data is measured by the loss
function. Gradient boosting comes with an advantage of optimising the cost
functions given by the user. For example , if we predict the prices of a
commodity using regression methods , the loss function will be formed by the
difference of the true and predicted prices of the commodity.

The algorithm follows as :

27

BEGIN

Calculate average of the target label

Calculate the error Actual - Predicted

REPEAT (until n_estimators)

Construct a decision tree whose leaves give the

error

Use all trees in ensemble to predict the target

a label

Calculate new errors

Use all the trees to make final prediction

END

Parameters used for a decision tree:
a)Over here, criterion gives the parameter which decides the quality of the split.
This means that we set a particular threshold for the purity or the parameter
beyond which we do not want our node to split. Like we specified entropy so
those nodes will not split after which more information gain could not be
achieved . Also we use gini impurity .

b)Splitter is the strategy to split , i.e it can be either the best split or random split
of the nodes

c)max_depth gives the depth of the tree. If we do not give any value for
max_depth then the tree will expand upto the point where either the leaves are
pure or contain samples less than specified min_samples_split.

28

d)Min_samples_split gives the minimum number of samples that are required to
split a node. If the samples are less , the node does not split.

e)Min_sampe_leaf if specifies that at a node, a leaf will be considered for
training only if it has the specified number of samples

f)Min_impurity_split gives a threshold value after which we need the tree
growth to stop early if the impurity level exceeds the given value. The node will
not split further and remain as a leaf .

4.2.4)K-Nearest Neighbor : K-Nearest Neighbor works on the measured
Euclidean distances between the query and the data points and then operating on
a particular number (K) of data samples then finds the most suitable class for it
in case of classification or takes the average of the points in case of regression.It
works on the idea that similar things are placed together .

To understand how it works let's take a classification model with two sets of
data points one is positive denoted be re dnad the other is negative denoted by
green :

 Fig 5. KNN example 1

29

We have to find out the label of the point in blue denoted by the star taking the
value of k as 3.

Fig 6. KNN example 2

Algorithm of K-Nearest Neighbour:
BEGIN

Load the data

Initialize k to your chosen number of neighbours

REPEAT

Calculate distance between the current chosen

A data point and the query

Keep appending the distance and data point

A index into a list

Sort this list in ascending order of distances

Choose first k distances

Take the labels of these chosen entries

IF regression

RETURN mean of labels

IF classification

RETURN mode of labels

END

30

Choosing the correct K value is very important in order for the algorithm to
work property. We train the dataset many times with different values of k and
find those values of k at which the error is minimum when the algorithm is
subjected to unseen data, i.e the data at which it has not been trained.
However the important points that we need to keep in mind are :

a) K can not be taken as 1, for example if we have an entire portion of area
surrounded by red, our guess should be that the answer is the label
indicated by the red points, but instead, if we have a green point in close
proximity to the query, and it has the shortest distance , then our answer
will be the label corresponding to the green point which is incorrect .

b) However as we keep on increasing the value of k , the errors are reduced
and we get better results by taking the majority voting or average label
whichever method we tend to choose.

c) It is to be noted, after a particular value of K , the error starts increasing
again. This is the point where we should understand that we have taken
the value of k too much and it is not just taking the neighbours , but a
large amount of data points beyond the considered area as well .

d) Now, it is to be kept in mind when the problem of classification is
considered, we take the majority vote or mode of the labels. We should
always take an odd value of k.

KNeighborsClassifier(n_neighbors=5,p=2,metric='minkowski',n_jobs,algorithm

a)Over here, n_neighbours is the number of neighbours, or the value of K that
we use in most the nearest neighbour algorithm.

b)Minkowski is the formula for the distance calculation .

31

c) p gives the power for the distance formula , if it is 1, that means our metric
for distance calculator is the manhattan distance and if it two, it means the
metric for calculator is the euclidean distance.

d)n_jobs gives the number of parallel processors or jobs that we want to run to
search for the value of k.

e)algorithm gives the algorithm which is used to determine k ..it can be brute
search or kd-tree etc.

Therefore K-NN is a versatile model which can be used for classification and
regression and even in searching problems and also it is very easy to implement
without having to tune and train many hyperparameters and make numerous
assumptions . But sometimes it becomes really slow as the data points increases.
There are many applications of k-nn in the real world like finding whether a
review on an ecommerce site for a review is positive or negative .

4.2.5)Multi-layer Perceptron (MLP): MLP regressor is a multi-layer
perceptron supervised learning, non-linear training technique that uses
backpropagation to update weights.

Firstly let's describe how does an neural network layer is formed:

1. We have a perceptron which has 4 parts , an input layer, weights
and biases, summation and an activation function

32

2. This perceptron receives the input,It take a set of features Let's say

X=x1,x2......xn and a label or an output Y ,this regressor can also

form a model for both classification and regression which can be
non-linear in nature.However , it is not to be mistaken for logistic
regression, it can have many non-linear layer in between input and
output layers.

3. The input layer mostly consists of neurons {xi |
x1,x2,.........................xm} where m gives the number of features or
dimensions of the input .The hidden layer works in the manner
such that each neuron gives the output which is the weighted linear
sum of the inputs from the previous layers , given as:

1 * x1 + 2 * x2 +.............................. m * xm ω ω ω

4. This weighted sum is then passed to an activation function whose
role is to map the input according to our requirements between
(0,1) or (-1,1).The activation function is usually non-linear in
nature .

5. These layers of perceptrons are added to create a Neural network.
This is known as a multi-layer perceptron network.

6. Learning in the MLP is generally done through the
backpropagation method , where the weights are updated after each
iteration.

Though it serves a great advantage of learning non-linear functions and it has
many uses in speech recognition and natural language processing , It has many
disadvantages too.

1. It has a loss function which is non-convex in nature in the hidden
layers and it might have more than 1 local minima. Hence, if we
give different or random weights each time , it gives different
validation accuracy.

2. It gives different outputs and is very sensitive to scaling of the
features .

33

3. A lot of hyperparameter tuning is required . The different
parameters would be the number of hidden layers, the number of
hidden neurons in each hidden layer and the total number of
epochs.

4.2.6)Logistic regression classifier:
LogisticRegression(C=1000.0, random_state=0)
a)Over here, C is the inverse of regularization strength. The smaller the
value higher is the regularization strength.

b)penalty gives the l1 or l2 norm used as a penalizer

c)fit_intercept gives whether we want to add a constant value to the
deciding function whether it is a bias or an intercept
d)class_weight gives the balance or the weights that we provide to each
class….i.e which one is more important . If we do not give this then it is
presumed that all the classes have the same weights snare treated as
equal.

e)max_iter gives the number of iterations that the solver requires to
converge .

4.2.7)Support vector machine classifier
SVC(kernel='linear', C=1.0, random_state=0)
a)Over here, the kernel gives the type of kernel, linear or non-linear that
we want . Linear is used for linear classification and rbf for non-linear.

b) C is the regularization or the penalty parameter used whether we want
the L1 or L2 norm.

34

c)degree gives the degree of the kernel polynomial .

4.2.8)Extra Trees Regressor: Extra Trees Regressor is also a variation of the
Random Forest where instead of selecting a optimal feature we select a random
feature for split .It is built from random forest with the following changes :

a)Each decision branch is built by using all the training data.
b)To form any node we take a subset of random features and then
determine their best split.
c) Maximum depth of 1 is allowed for the decision branch .
It consumes more computational power than random forest.

The major hyperparameters used are :
a)n_estimators: number of trees that we want in the forest.
b)criterion: it is the measure by which we decide to reduce the error and
optimise out function

c)max_depth gives the depth of the tree. If we do not give any value for
max_depth then the tree will expand upto the point where either the leaves are
pure or contain samples less than specified min_samples_split.

d)Min_samples_split gives the minimum number of samples that are required to
split a node. If the samples are less , the node does not split.

e)Min_sampe_leaf if specifies that at a node, a leaf will be considered for
training only if it has the specified number of samples

f)Min_impurity_split gives a threshold value after which we need the tree
growth to stop early if the impurity level exceeds the given value. The node will
not split further and remain as a leaf .

35

g)bootstrap: Whether we want to build the trees using bootstrap samples or the
entire dataset.
h)max_Samples: IT gives the number of samples of the training data..that is X
which can be used to train the estimators , if the value of bootstrap is true.

Therefore , It is a more randomised form of a decision tree.

4.2.9)Linear regression : basically is represented by a linear equation which
takes a set of linear inputs and predicts corresponding outputs. It works similar
to a linear relation in statistics. In machine learning since we have a larger
number of dimensions of the inputs we call it a hyperplane instead of a line.
This algorithm works on the assumption that the relationship between your
input and input is linear in nature and does not have any noises in data. Also we
need to make sure that we remove all the collinearity in data as those may
overfit our model. For better predictions through linear regression we can
normalize our input. The regularization methods of the linear regression include
lasso and ridge regularization depending upon whether we want L1 or L2
regularization

36

CHAPTER 5:BACKPROPAGATION AND
EVALUATION INDEX EQUATION

5.1)Backpropagation:

The backpropagation algorithm uses the chain rule to train a neural network
efficiently. Whenever we move in the forward direction, after completion of
each forward movement the algorithm goes backwards also, altering the
weights and biases.

Discussing the backpropagation in detail along with the training procedure :

Let's say we have n-layer neural network modelling . This would mean that the
input layer has n neurons and also the hidden layer has n neurons. The output
has 1 neuron . The input can be of any type scalar ,vector or complex. The input
values are the activation of the first layer . The activation function which is
normally non-linear when applied to the input gives activation values ..i.e which
values and to what extent is to be passed through the layer . We normally use
sigmoid , tanh or Relu functions .
The hidden layer gives the output after multiplication of weights and inputs.
The output layer has one single neuron which produces the final value.

Here we show how the forward propagation is evaluated :

X1 = i1

Z2 = W1 * X1 +b1
i2 = f(Z2)

Z3 = W2 * i2 + b2
i3 = f(Z3)

S= W3 * i3

37

Now , we determine the relation between this predicted output value S and the
expected value y from the corresponding training data. We generally give a cost
function which is either MSE value or RMSE value depending on our
requirements . Now based upon the value that we get from this cost function the
model determines how much is the predicted value deviated from the input
value and accordingly the model adjusts the weights and biases to get the output
value close to the actual value . This process is done through the back
propagation process which is explained below.

The aim of backpropagation is to minimise the error or the cost function value.
Now how much change or adjustment is needed is calculated using the
derivatives of the error function with respect to all the inputs of the layer.
The gradient or derivative of a function gives the change or the partial
derivative of the target function in relation to the parameter with which it is
calculated .
The gradient is given as :

=[, , ……….]δi
∂C δC

δi 1

δC
δi 2

δC
δi 3

δC
δi m

This derivative gives the measure as to how much is the function sensitive when
the output changes with respect to the change in the inputs. Therefore the value
of the derivative will give the direction and the value by how much the input
needs to change in order to keep the error as low as possible .

= ………………………………………….....equation 6
δC

δW t
jk

δC
δZ t

j

δZ t
j

δW t
jk

38

Here m gives the number of neurons in the t-1 layer.

= + ……………………………………....equation 7Zδ t
j ∑

m

k=1
wt

jk * ik
t−1 bt

j

When we differentiate the equation 7 with respect to weight:

= …………………………...………………………..equation 8
δZ t

j

δW t
jk

ik
t−1

Putting values of from equation 8 to equation 6, we get the error or the
δZ t

j

δW t
jk

cost function for weights as :

= ………………..………………………....….equation 9
δC

δW t
jk

δC
δZ t

j
ik
t−1

Similarly when we differentiate for bias:

= ……………………………………....………equation 10
δC
δbt

jk

δC
δZ t

j

δZ t
j

δbt
jk

= 1 ………………………....……………..………………..equation 11
δZ t

j

δbt
jk

Substituting the value of gradient from equation 11 into equation 10 we get the
partial derivative as :

= ………………………………………….….…..equation 12
δC
δbt

jk

δC
δZ t

j
1

Taking the values from the equation 12 and 9 , our cost function becomes:

39

= + ………………………………..…equation 13
δC

δW t
jk

δC
δZ t

j
ik
t−1 δC

δZ t
j

Now, these gradients when subjected to a particular condition or a particular
error value help in updating the function and optimizing it. This loop is
terminated once the cost function archives its minimum value :

 WHILE (condition)

W = W - ε δC
δW

b = b - ε δb
δC

 END

The initial value of weights and biases are randomly chosen at the starting of the
training process and then brought down to the correct value after the
optimization is complete .The W and b mentioned in the loop are the matrices.

Over here , gives the learning rate which was discussed earlier in the ε

hyperparameters chapter.It determines how much weightage is to be given to
gradient so as to decrease the value of weights or biases less or more.

Therefore this is how we optimize and minimise the error using
backpropagation.

40

5.2)KPI(Key performance Indicator)

Key performance Indicator gives the measure of the performance of our model
on the data. The key performance indicators that we use over here are :

MAPE: In forecasting MAPE or Mean absolute percentage error is the most
commonly used KPI to measure accuracy . We take out absolute errors for each
data point individually and divide it by total in that demand period. It can also
be called the average of errors of percentages. However MAPE can be skewed
sometimes ,because we calculate each error individually.

 MAPE = (1/n) * Σ [abs (actual – predicted)/actual]

MAE: Mean absolute error is one of best measures for forecast accuracy. It is
the absolute error divided by all the data points .It is always good to get the
percentage values of these indices as they are not scaled to the demand so you
would not know whether it is good or bad.

 MAE = [Σ abs (actual – predicted)] / n

RMSE: Root mean square error is given by the square root of the average of
individual squares of the errors.Many algorithms of machine learning are based
on MSE which is related to RMSE. However , if we have even one big error,
RMSE will give a very big value for it.

 RMSE = [Σ(predicted – actual)2 /n]1/2

41

 CHAPTER 6 : OPTIMIZERS

Gradient Descent Algorithm

The gradient descent optimizers are used to reach the global minima by finding
the gradient and updating the weights and biases such that the cost functions can
attain minimum value.
The algorithm for gradient descent :

BEGIN

-Prediction values of the neural network are taken

-The loss function is used to calculate the losses

-The loss functions are differentiated and the

gradients are obtained; these are also the partial

derivatives.

-These gradients update the values of weights and f

s biases
REPEAT

Whenever we update the weights and biases after finding the gradients we reach
closer to the optimum value Therefore as the training of neural networks
progresses The function that is to be minimised moves closer to its global
minima. However , sometimes the function gets stuck in local minima for
non-convex function therefore preventing it from reaching its global minima.To
come out of such situations we use methods like learning rate , momentum, etc.
The learning rate, being the most crucial part of the optimizers, can be thought
of the steps we take to reach the bottom of the global minima. Depending on the
learning rate the weights and biases are updated, if we take larger values of the
learning rate it is a possibility that we might skip the global minima and move
about it thereby never converging. But, Taking a smaller value of learning rate

42

takes a lot of time to converge.Also we need to keep in mind that it does not get
trapped in local minima.

Gradient descent with momentum:
When the gradient descent algorithm is used with momentum,it converges fast
.The momentum function works such that we move fast or take larger steps in
the x coordinate direction therefore restricting and slows down movement in the
y coordinate direction, unlike the standard algorithm which takes larger steps in
the y coordinate direction thereby proceeding slowly in the x direction.

RMSprop Optimizer:
RMSprop optimizer is the combination of the gradient descent algorithm with
momentum . When we restrict the movement and take shorter steps in the
vertical direction , we can increase our learning rate therefore it can converge
fast. The momentum is generally denoted by beta (and its value is 0.9) b
generally.

Values calculated for gradient descent momentum:

 v = b.v + (1-b) . dw ……………..equation 14wd wd

 v = b.v + (1-b) . db ……………..equation 15b d wd

 W = W - . v …………………...…….equation 16α wd

 b = b - . v ……………...……………….equation 17α b d

The values calculated for RMSprop optimizer:

 v = .v + (1-b) . dw2 ... …....…… ….equation 18wd b wd

 v = b .v + (1-b) . db2 …....……..….equation 19b d wd

43

The values obtained from v from equations 18 and 19 of the rmsprop optimizer
are used in equations 20 and 21 to update weights and biases during the training.

 W = W - . .……..…....equation 20α dw
 + ε√v

 b = b - . .……………..….equation 21α db
 + ε√v

The following notations are used here :
W: weights
b : biases
dw : partial derivative of the weights
db : partial derivative of the biases

: momentum valueβ
: learning rate α
: constant epsilon ε

44

 CHAPTER 7 : RESULTS

 Fig 7. RMSE values of all the Regressors

 Fig 8. MAPE values of all the regressors

45

Fig 9. MAE of Regressors

Fig 10. Training time of Regressors

46

 Fig 11. All regressors MAE and RMSE

 Fig 12. Comparison table of all the regressors

Seaborn and matplotlib are used to plot the results .From the Figures 7,8,9 and
10 where we are comparing the RMSE, MAE and MAPE value of all the
regressors it is clear that the lowest RMSE, MAPE, Testing score and MAE
value is for MLP regressor .Training score is not the highest but not too low for
MLP regressor. Therefore, the MLP regressor is better than the other techniques
which signify that a perceptron based network or a neural network would give
the best performance on forecasting problems. Now we know LSTM is also
composed of neural networks and is an improvement of the MLP networks.
Comparing the MLP regressor to the LSTM network

47

LSTM results:

TestMAPE: 0.41 MAPE
TestMSE: 0.27 MSE
Test_RMSE: 0.51 RMSE

MLP results:

TestMAPE: 0.311283 MAPE
TestMSE: 0.311283 MSE
Test_RMSE: 0.40978 RMSE

Though MAPE and RMSE values of MLP are better than LSTM . But, for the
purpose of forecasting we would require the properties of learning information
from the previous layers and a long chain , offered by LSTM . In Fig.13 we can
see that the dotted black line represents the original data for power and the
green line represents the predicted power using the LSTM algorithm. Hence our
model forecasts power correctly.

Fig 13. output of LSTM Network predictions vs original power.

48

CONCLUSION

We can see from the data that MLP is always a better choice as compared to all
other algorithms for forecasting as the key performance values of MLP method
are better than the rest of the algorithms .
However, MLP alone does not support the operation of remembering long term
datas . Therefore we introduced a looping or recurrent loop method where all
the weights and biases for all the layers were the same unlike MLP . Recurrent
Neural Network was an improvement of the MLP network.
This Recurrent Neural Network However faces the problem of vanishing
gradient when the data to be remembered becomes too large. To counter this
problem LSTM was introduced which provided the benefits of MLP and
Recurrent neural networks and is an improvised form of both the networks
which support larger data memory and we can anytime use the forget gate and
input gate to remove or add new data as per our requirements .
Hence We have successfully implemented LSTM neural networks to forecast
load power studying and implementing all the other algorithms that can be used
for forecasting . Concluding that LSTM is the best algorithm till now for load
forecasting purposes.

49

REFERENCES

1. Fangchen Su, Yinliang Xu, Xiaoying Tang , “Short and mid-term load
forecasting using machine learning techniques”, IEEE 2017 china
International Electrical and Energy Conference. 21 June 2018 .

2. Gross, G., and Galiana, F. D., 1987, “Short term load forecasting”,
Proceedings of the IEEE, 75, 1558±1573.

3. Tomas Vantuch, Aurora Vidal, Alfonso P. Ramallo-Gonzalez, Antonio F.
Skarmeta, “Machine learning based electric load forecasting for short and
long-term period”, 2018 IEEE 4th World Forum on Internet of
Things(WF-IoT).

4. SRINIVASA N, D., and LEE, M. A., 1995, “Survey of hybrid fuzzy
neural approaches to electric load forecasting”, Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, Part
5,Vancouver, BC, pp. 4004±4008.

5. BUNN, D. W., and FARMER, E. D., 1985, “Review of
Short-termForecasting Methods in the Electric Power Industry” ,New
York:Wiley, pp. 13±30

6. Stefan Hosein, Patrick Hosein, “Load forecasting using deep neural
networks”, 2017 IEEE Power and Energy Society Innovative Smart Grid
Technologies Conference(ISGT).

7. Wan He, “Load Forecasting via Deep Neural Networks”, Published in
Procedia Computer Science, volume 122, 2017, pages 308-314, Elsevier.

8. Papalexopoulos, A. D., and Hesterberg, T. C., 1990, “ A regression-based
approach to short-term load forecasting”, IEEE Transactions on Power
Systems, 5, 1214±1221.

9. Haida, T., Muto, S., Takahasi, Y., and Ishi, Y., 1998, “Peak load
forecasting using multiple-year data with trend data processing
techniques”, Electrical Engineering in Japan, 124 , 7±16

10.Chujie Tian, Jian Ma, Chunhong Zhang and Panpan Zhan, "A Deep
Neural Network Model for Short-Term Load Forecast Based on Long
Short-Term Memory Network and Convolutional Neural Network”,
Energies 2018,11,3493; doi:10.3390/en11123493.

11.Vardan, S., and Makra M, E. B., 1996, “Harmonic load identification and
determination of load composition using a least squares method”, Electric
Power Systems Research, 37, 203±208.

50

12.HYDE, O., and HOD N ETT, P. F., 1997b, “Adaptable automated
procedure for short-term electricity load forecasting”, IEEE Transactions
on Power Systems, 12, 84±94.

13.P. Zhang, X. Wu, X. Wang, and S. Bi, "Short-term load forecasting based
on big data technologies," CSEE Journal of Power and Energy Systems,
vol. 1, pp. 59-67, 2015

14.B. Stephen, X. Tang, P. R. Harvey, S. Galloway, and K. I. Jennett,
"Incorporating Practice Theory in Sub-Profile Models for Short Term
Aggregated Residential Load Forecasting," IEEE Transactions on Smart
Grid, vol. PP, pp. 1-8, 2016.

15.M. Chaouch, "Clustering-Based Improvement of Nonparametric
Functional Time Series Forecasting: Application to Intra-Day
Household-Level Load Curves," IEEE Transactions on Smart Grid, vol.5,
pp. 411-419, 2014.

16.M. Ghofrani, M. Hassanzadeh, M. Etezadi-Amoli, and M. S. Fadali,
"Smart meter based short-term load forecasting for residential
customers," in North American Power Symposium (NAPS), 2011, pp.
1-5.

17.S. Ryu, J. Noh, and H. Kim, "Deep neural network based demand side
short term load forecasting," in 2016 IEEE International Conference on
Smart Grid Communications (SmartGridComm), 2016, pp. 308-313.

18.D. L. Marino, K. Amarasinghe, and M. Manic, "Building energy load
forecasting using Deep Neural Networks," in IECON 2016 - 42nd Annual
Conference of the IEEE Industrial Electronics Society, 2016, pp.
7046-7051.

19.Weicong Kong,Zhao Yang Dong,David J. Hill,Yuan Zhang ,
“Short-Term Residential Load Forecasting based on LSTM Recurrent
Neural Network”,DOI 10.1109/TSG.2017.2753802, IEEE Transactions
on Smart Grid.

20.Sumit Kumar, Lasani Hussain, Sekhar Banarjee, Motahar Reza, “Energy
Load Forecasting using Deep Learning Approach-LSTM and GRU in
Spark Cluster”, 2018 Fifth International Conference on Emerging
Applications of Information Technology. DOI
10.1109/EAIT.2018.8470406.

21.Long C.Nguyen , H. Nguyen-Xuan, “Deep learning for computational
structure optimization”, ISA Transactions Volume 103,August 2020,
Pages 177-191.

22.N.Amral, C.S. Ozveren, D. King , “Short term load forecasting using
Multiple Linear Regression”, 2007 42nd International Universities Power
Engineering Conference.

51

23.Grzegorz Dudek, “Short-Term Load Forecasting Using Random Forests”,
Intelligent Systems 2014 pp 821-828, Part of Advances in Intelligent
systems and computing, Elsevier.

24.Xianlong Lv, Xingong Cheng,YanShuang,TANG Yan-mei, “Short-term
Power Load Forecasting Based on Balanced KNN”, IOP Conf. Series:
Materials Science and Engineering 322 (2018) 072058
doi:10.1088/1757-899X/322/7/072058.

25.Grzegorz Dudek, “Multilayer perceptron for short-term load
forecasting:from global to local approach”, Neural Computing and
Applications 32, 3695-3707(2020), 14th March 2019, Elsevier.

26.Muhammad Waseem Ahmad, Monjur Mourshed, Yacine Rezgui,
“Tree-based ensemble methods for predicting PV power generatio and
their comparison with support vector regression”, Energy, Volume 164, 1
December 2018, Pages 465-474, Elsevier.

27.Chung Ming Cheung, Rajgopal Kannan, Viktor K. Prasanna, “Temporal
ensemble learning of univariate methods for short term load forecasting”,
2018 IEEE Power and Energy Society Innovative Smart Grid
Technologies Conference(ISGT).

28.Park, Dong C. et al. “Electric load forecasting using an artificial neural
network”. IEEE transactions on Power Systems, Vol. 6, Is- sue 2, 1991,
pp 442-449.

29.Hecht-Nielsen, Robert. “Theory of the backpropagation neural net-
work”. Neural networks for perception, 1992, pp 65-93.

30.Bakirtzis, A. G., et al. “A neural network short term load fore- casting
model for the Greek power system”. IEEE Transactions on power
systems, Vol 11, Issue 2, 1996, pp 858-863.

31.Park, Dong C., et al. “Electric load forecasting using an artificial neural
network”. IEEE transactions on Power Systems, Vol 6, Issue 2, 1991, pp
442-449.

32.Hao, Alex D. Papalexopoulos Shangyou. “An implementation of a neural
network based load forecasting model for the EMS”. IEEE transactions
on Power Systems, Vol 9, Issue 4, 1994.

33.Paatero, Jukka V., and Peter D. Lund. “A model for generating household
electricity load profiles”. International journal of energy research, Vol 30,
Issue 5, 2006, pp 273-290.

52

34.Pardo, Angel, Vicente Meneu, and Enric Valor. “Temperature and
seasonality influences on Spanish electricity load”. Energy Eco- nomics,
Vol 24, Issue 1, 2002, pp 55-70.

35.Hong, Tao, and Shu Fan. “Probabilistic electric load forecasting: A
tutorial review”. International Journal of Forecasting, Vol 32, Issue 3,
2016, pp 914-938.

36.Soares, Lacir J., and Marcelo C. Medeiros. “Modeling and fore- casting
short-term electricity load: A comparison of methods with an application
to Brazilian data”. International Journal of Forecast- ing Vol 24, Issue 4,
2008, pp 630-644.

37.Amaral, Luiz Felipe, Reinaldo Castro Souza, and Maxwell Steven- son.
“A smooth transition periodic autoregressive (STPAR) model for
short-term load forecasting”. International Journal of Forecast- ing, Vol
24, Issue 4, 2008, pp 603-615.

38.Antoniadis, Anestis, et al. “A prediction interval for a function- valued
forecast model: Application to load forecasting”. Interna- tional Journal
of Forecasting, Vol 32, Issue 3, 2016, pp 939-947.

39.Wang, Pu, Bidong Liu, and Tao Hong. “Electric load forecasting with
recency effect: A big data approach”. International Journal of
Forecasting, Vol 32, Issue 3, 2016, pp 585-597.

40.Berk, K., A. Hoffmann, and A. Müller. “Probabilistic forecasting of
industrial electricity load with regime switching behavior”. In- ternational
Journal of Forecasting, Vol 34, Issue 2, 2018, pp 147-162

41.Quan, Hao, Dipti Srinivasan, and Abbas Khosravi. “Short-term load and
wind power forecasting using neural network-based pre- diction
intervals”. IEEE transactions on neural networks and learn- ing systems,
Vol 25, Issue 2, 2014, pp 303-315.

42.Jurado, Sergio, et al. “Hybrid methodologies for electricity load
forecasting: Entropy-based feature selection with machine learning and
soft computing techniques”. Energy Vol 86, 2015, pp 276-291.

43.Chae, Young Tae, et al. “Artificial neural network model for fore- casting
sub-hourly electricity usage in commercial buildings”. En- ergy and
Buildings Vol 111, 2016, pp 184-194.

53

44.Panapakidis, Ioannis P., and Athanasios S. Dagoumas. “Day-ahead
electricity price forecasting via the application of artificial neural network
based models”. Applied Energy Vol 172, 2016, pp 132- 151.

45.Hippert, H. S., D. W. Bunn, and R. C. Souza. “Large neural net- works
for electricity load forecasting: Are they overfitted?”. Inter- national
Journal of forecasting Vol 21, Issue 3, 2005, pp 425-434.

46.Tripathi, M. M., K. G. Upadhyay, and S. N. Singh. “Short-term load
forecasting using generalized regression and probabilistic neural
networks in the electricity market”. The Electricity Journal Vol 21, Issue
9, 2008, pp 24-34.

54

