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ABSTRACT 
 

Fractional order harmonic oscillators are sinusoidal oscillators in which, the reactive 

element, instead of being an integer order capacitor/inductor, is a fractional order 

reactive element, also referred as a constant phase element (CPE). The interest in these 

fractional order oscillators have stemmed from the fact that, unlike a conventional RC 

oscillator, the frequency and phase relationships in a fractional order oscillator are 

functions of the fractional order parameters α, β, γ… defining the CPE. Though the 

concept of a fractional order oscillator was introduced in the context of an FM 

demodulation system long back, it could not gather much attention till the early 2000s. 

The detailed theoretical framework for the general fractional order oscillators, 

however, was developed during the early years of the last decade, when wherein the 

design equations for CO and FO of fractional order oscillators were presented. Since 

then, many fractional order oscillator circuits employing different types of amplifiers 

and other active building blocks have been presented. Out of the fractional order 

oscillators reported, those oscillators which employ the OTA, are of special interest, 

as the control over the FO, CO and phase in these oscillator circuits can be 

implemented very easily by changing the bias currents of the OTAs. Very little work 

is available in open literature, wherein, fractional order oscillators have been realized 

with OTAs. In this work, we have  presented  OTA based fractional order oscillators, 

which employ two/three fractional order capacitors and five OTAs, providing 

two/three output voltages with electronically controllable phase difference between 

them. The dependence of FO, CO and phase difference between the output voltages 

on α, β and γ has been investigated in detail. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 Origin of Fractional Calculus 

This dissertation deals with realization of fractional order oscillators using operational 

transconductance amplifiers (OTA). 

Fractional order calculus and conventional (integer order) calculus are more than three 

centuries old mathematical tools. Fractional order calculus is, in a way, more 

comprehensive than integer order calculus to the extent that the latter is a special case 

of the former. The possibility of existence of non-integer derivative of a function was 

discussed between Leibniz and L’Hospital. Several other mathematicians, notable 

among them being, Euler, Laplace, Fourier, Lacroix, Abel, Riemann and Liouville, 

have contributed to the development of fractional order calculus. In 1819, the first 

paper was published on fractional derivative by mathematician Lacroix [1].  

Beginning with 
my x , where m is a positive integer, Lacroix found the nth derivative 

of y as: 

 
!

!

n
m n

n

d y m
x m n

dx m n

 


 1.1 

 

and using Legendre’s symbol ᴦ, for the generalized factorial, he expressed 

 

 

1

1

n
m n

n

md y
x m n

dx m n


 

 
  

 1.2 
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 Definition of Fractional Calculus 

Fractional calculus does not imply fraction of any conventional differentiation, 

integration, or calculus of variations. It may be defined as the theory of integrations 

and derivatives of arbitrary order. The non-integer integration or derivative have been 

defined over the years. Several mathematicians have used their own notations and 

approaches. A popular version that has been most widely accepted in the world of 

fractional calculus is the Riemann-Liouville definition. The same result were arrived 

at, by Riemann-Liouville definition of a fractional derivative that were obtained by 

Lacroix. Some of the fractional order calculus definition are given as follow: 

(i) Riemann-Liouville: 

Integral:  

 
 

 

 
1

1
C

c

f
J f t d

t









 



 

  1.3 

                Derivative:    

 
 

 

 
10

1
, , 1

m

mm

fd
D f t d m m m

dt m t







 

 



 

 
     

    
  1.4 

 

(ii) Caputo 

 
 

   

 
10

1
m

m

f
D f t d

m t









 
 


  

  1.5 

 

Some other tools of interest for engineers are the classical transforms of Laplace and 

Fourier, that are valid and used in order to simplify operations like convolution and 

can be applied to solve fractional calculus differential equations.  

1.2.1 Laplace Transform of Fractional Order Integral 

The fractional integral of y(t) of order is defined as: 
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 
 

 
1

0

1
( ) , 0

V

t v
D y t t z y z dz v    

   1.6 

Using Laplace transform in above equation 1.6 

ℒ{𝐷−𝜈𝑦(𝑡)} =
1

Γ(𝑉)
ℒ{𝑡𝜈−1}ℒ{𝑦(𝑡)} = 𝑠−𝜈𝑌(𝑠)      𝑣 > 0 1.7 

 

Equation (1.7) is the Laplace transform of the fractional integral. As an example, we 

see for ν > 0, μ > -1 

ℒ{𝐷−𝒱𝑡𝜇} =
Γ(𝜇 − 1)

𝑠𝜇+𝒱+1
 and   ℒ{𝐷−𝒱𝑒𝑎𝑡} =

1

𝑠𝒱(𝑠 − 𝑎)
 1.8 

 

1.2.2 Laplace Transform of Fractional Order Derivative  

The fractional derivative operator can be defined using the definition of the fractional 

integral. To this end, suppose that 𝒱 = 𝑛 − 𝑢, where 0 < 𝒱 < 1 and 𝑛 is the smallest 

integer greater than 𝑢. Then, the fractional derivative of f(x) of order is 𝑢. 

𝐷𝑢𝑓(𝑥) = 𝐷𝑛[𝐷−𝑣𝑓(𝑥)] 1.9 

 

We recall that in the integer order operations, the Laplace transform of y(n) is given 

by 

ℒ{𝐷𝑛𝑦(𝑛)} = 𝑠𝑛𝑌 − 𝑠𝑛−1𝑦(0) − 𝑠𝑛−2𝑦′(0)−𝑠𝑛−3𝑦′′(0) … … . 𝑦𝑛−1(0) 

                                              = 𝑠𝑛𝑌(𝑠) − ∑ 𝑠𝑛−1
𝑘=0

𝑛−𝑘−1
𝑦𝑘(0)                  1.10 

Using above equation, we can write,  𝐷𝑣𝑓(𝑥) = 𝐷𝑛[𝐷−(𝑛−𝑣)𝑓(𝑥)]        1.11 

Now, if we assume that the Laplace transform of y(t) exists, then by the use of (1.10) 

we have 

ℒ{𝐷𝑣𝑦(𝑡)} = ℒ{𝐷𝑛[𝐷−(𝑛−𝑣)𝑦(𝑡)]} 
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= 𝑠𝑛ℒ[𝐷−(𝑛−𝑣)𝑦(𝑡)] − ∑ 𝑠𝑛−𝑘−1𝐷𝑘[𝐷−(𝑛−𝑣)𝑦(𝑡)]
𝑡=0

𝑛−1

𝑘=0

 

= 𝑠𝑛[𝑠−(𝑛−𝑣)𝑌(𝑠)] − ∑ 𝑠𝑛−𝑘−1𝐷𝑘−𝑛+𝑣𝑦(0)

𝑛−1

𝑘=0

 

                                                   = 𝑠𝑣𝑌(𝑠) − ∑ 𝑠𝑛−𝑘−1𝐷𝑘−𝑛+𝑣𝑦(0)𝑛−1
𝑘=0          1.12 

 Engineering Applications 

The systems with higher-order dynamics and complex nonlinearities can be modeled 

easily by fractional order calculus using few coefficients [3-5], since it offers 

additional degree of freedom, in the choice of arbitrary order of the derivatives, to fit 

an specific behavior. Another important quality of the fractional order derivatives is 

that it depends not only on local conditions of the evaluated time, but also on all the 

history of the function.  

Fractional order calculus has been employed to design analog signal processing and 

generation circuits during the last two decades. The following classes of analog 

circuits have been designed using (i) either the fractional order immittance element, 

popularly known as the constant phase element (CPE), or (ii) realizing a rational 

transfer function resulting from substitution of an approximation for the fractional 

order transfer function: 

(i) Fractional order filters- The general methods for realization of first and second 

order filters in fractional order form were presented in [6-7]. Since then, fractional 

order filters using various active building block like the operational amplifier [8], 

current feedback operational amplifier [9], current conveyors [10], operational trans-

resistance amplifier [11] and various other types of amplifiers have been presented in 

the open literature. Most of these filter circuits have been realized using one of the 

two approached mentioned above. the characterizing parameters of these filters have 

been shown to be controlled by appropriately choosing the order, ‘α’ of the fractional 

order transfer function.  
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(ii) Fractional order universal filters- A universal filter is a filter circuit in which 

all the generic filtering functions, namely, low pass, band pass, high pass, band reject 

and all pass, are available simultaneously. In open literature, various fractional order 

universal filters realized with different active building blocks viz. the classical 

operational amplifiers [12], operational transconductance amplifier [13], balanced 

output transconductance amplifier, adjustable current amplifier [14], voltage 

differencing transconductance amplifier [15] and the current differencing buffered 

amplifier [16], etc. 

(iii) Fractional order Oscillator-Several realizations of fractional order oscillators 

have also appeared in open literature in recent past [17-22]. It has been shown in these 

works that it is possible to initiate and maintain sustained oscillations at a given 

frequency in an autonomous circuit with more than one fractional order capacitors. 

The frequency of oscillation and the condition of oscillation can be controlled over a 

much wider range because of the extra degree of freedom provided by the order α the 

fractional order elements. 

(iv) Fractional order inverse filters- Inverse filters are frequency selective circuits 

whose frequency response is reciprocal of the frequency response of a conventional 

filter [23]. Several fractional order inverse filter circuits have been reported 

previously, realized with various active building blocks viz. operational amplifier 

[24], current feedback operational amplifier [25], operational trans-resistance 

amplifier [26], and second generation current conveyor [27] etc. 

 

 Objectives 

On the basis of literature survey, it has been noted that compare to 

fractional order filters and inverse filters, relatively less work has been reported on the 

realization of fractional order oscillators. We have, thus framed the following 

objectives for this work: 

i. Review of various methods of design of fractional order capacitors in 

general and implementation of fractional order capacitors for different 
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values of the order of the capacitor using the Oustaloup, Levron, Mathieu 

and Nanot method. 

ii. Design, simulation and experimental validation of an electronically 

tunable fractional order oscillator with two fractional order capacitors and 

OTAs. 

iii. Design, simulation and experimental validation of an electronically 

tunable fractional order oscillator with three fractional order capacitors and 

OTAs. 

 Thesis Organization 

Contents of the dissertation have been presented in five chapters as given below: 

i. Chapter 1 provides us with the general introduction of fractional order 

systems and a brief review of some of the research works carried out in 

this area. 

ii. Chapter 2 gives a detailed description about definitions and methods of 

designing fractional element used in engineering. Simulation results for the 

design of fractional order capacitor using the Oustaloup, Levron, Mathieu 

and Nanot method have also been included.  

iii. In Chapter 3, a fractional order oscillator realized with two fractional order 

capacitors and three operational transconductance amplifiers has been 

presented. Simulation and experimental results have also been included. 

iv. In Chapter 4, we have presented a new realization of an electronically 

tunable fractional order oscillator realized with three fractional order 

capacitors and five operational transconductance amplifiers.   

Chapter 5 includes summary and scope for future work. 

 

  



7 
 

REFERENCES 

[1] B. ed. Ross, 2006. Fractional calculus and its applications: proceedings of the 

international conference held at the University of New Haven, June 1974 (Vol. 

457). Springer. 

[2] C. Ma and Y. Hori, “Fractional order control and its application of PIαD 

controller for robust two inertia speed control,” in Proceedings of the 4th 

International Power Electronics and Motion Control Conference (IPEMC ’04), 

vol. 3, pp. 1477–1482, August 2004. 

[3] J. De Esp´ındola, C. Bavastri, and E. De Oliveira Lopes, “Design of optimum 

systems of viscoelastic vibration absorbers for a given material based on the 

fractional calculus model,” Journal of Vibration and Control, vol. 14, no. 9-

10, pp. 1607–1630, 2008. 

[4] F. B. M. Duarte and J. A. T. Machado, “Fractional dynamics in the describing 

function analysis of nonlinear friction,” in Proceedings of the 2nd IFAC 

Workshop on Fractional Differentiation and Its Applications, vol. 2, July 2006. 

[5] P. J. Torvik and R. L. Bagley, “On the appearance of the fractional derivative 

in the behaviour of real materials,” Journal of Applied Mechanics, vol. 51, no. 

2, pp. 294–298, 1984. 

[6] A. G. Radwan, A. M. Soliman, and A. S. Elwakil. “First-order filters 

generalized to the fractional domain,” Journal of Circuits, Systems, and 

Computers, 17, no. 1, pp. 55-66, 2008. 

[7] A. G. Radwan, A. S. Elwakil, and A. M. Soliman. “On the generalization of 

second-order filters to the fractional-order domain.” Journal of Circuits, 

Systems, and Computers, 18, no. 2, pp. 361-386, 2009. 

[8] A. S. Ali, A. G. Radwan, and A. M. Soliman, “Fractional order Butterworth 

filter: active and passive realizations,” IEEE journal on emerging and selected 

topics in circuits and systems, 3, no. 3, pp. 346-354, 2013. 

[9] G. Tsirimokou, S. Koumousi, and C. Psychalinos, “Design of fractional-order 

filters using current feedback operational amplifiers,” Journal of Engineering 

Science and Technology Review, 9, no. 4, pp. 71-81, 2016. 



8 
 

[10] F. Khateb, D. Kubánek, G. Tsirimokou, and C. Psychalinos, “Fractional-order 

filters based on low-voltage DDCCs,” Microelectronics Journal, 50, pp. 50-

59, 2016. 

[11] G.Kaur, A. Q. Ansari, and M. S. Hashmi, “Fractional order high pass filter 

based on operational transresistance amplifier with three fractional capacitors 

of different order,” Advances in Electrical and Electronic Engineering, 17, no. 

2, pp. 155-166, 2019. 

[12] M. C. Tripathy, K. Biswas, and S. Sen, “A design example of a fractional-

order Kerwin–Huelsman–Newcomb biquad filter with two fractional 

capacitors of different order,” Circuits, Systems, and Signal Processing, 32, 

no. 4, pp. 1523-1536, 2013. 

[13] G. Singh, Garima, and P. Kumar, “Fractional Order Capacitors Based Filters 

Using Three OTAs,” In 2020 6th International Conference on Control, 

Automation and Robotics (ICCAR), 2020, pp. 638-643. 

[14] J. Dvorak, J. Jerabek, Z. Polesakova, D. Kubanek, and P. Blazek, 

“Multifunctional Electronically Reconfigurable and Tunable Fractional-Order 

Filter,” Elektronika ir Elektrotechnika, 25, no. 1, 2019, pp. 26-30. 

[15] P. Rani, and R. Pandey, “Voltage differencing transconductance amplifier 

based fractional order multiple input single output universal filter,” Solid State 

Electronics Letters, 1, no. 2, pp. 110-118, 2019. 

[16] A. Q. Ansari, G. Kaur, and M. S. Hashmi, “Current Differencing Buffered 

Amplifier (CDBA) based Current Mode Universal Fractional Order Filter,” 

Proc. Nat. Con. on Adv. in Microelectronics, Instrumentation and 

Communication (MICOM), BITS Pilani, India, 2015. 

[17] A. G. Radwan, A. S. Elwakil, and A. M. Soliman, “Fractional-order sinusoidal 

oscillators: design procedure and practical examples,” IEEE Transactions on 

Circuits and Systems I, Regular Papers, 55, no. 7, pp. 2051-2063, 2008. 

[18] W. Ahmad, R. El-Khazali, and A. S. Elwakil, “Fractional-order Wien-bridge 

oscillator,” Electronics Letters, 37, no. 18, pp. 1110-1112, 2001. 

[19] A. G. Radwan, A. M. Soliman, and A. S. Elwakil, “Design equations for 

fractional‐order sinusoidal oscillators: Four practical circuit examples,” 



9 
 

International Journal of Circuit Theory and Applications, 36, no. 4, pp. 473-

492, 2008. 

[20] V. Singh, and P. Kumar, “Fractional Order Oscillator Using OTAs,” In 2020 

6th International Conference on Control, Automation and Robotics (ICCAR), 

2020, pp. 27-32. 

[21] L. A. Said, A. G. Radwan, A. H. Madian, and A. M. Soliman, “Fractional order 

oscillators based on operational transresistance amplifiers,” AEU-

International Journal of Electronics and Communications, 69, no. 7, pp. 988-

1003, 2015. 

[22] A. Kartci, N. Herencsar, J. Koton, L. Brancik, K. Vrba, G. Tsirimokou, and C. 

Psychalinos, “Fractional-order oscillator design using unity-gain voltage 

buffers and OTAs,” In 2017 IEEE 60th International Midwest Symposium on 

Circuits and Systems (MWSCAS), 2017, pp. 555-558. 

[23] S. S. Gupta, D. R. Bhaskar and R. Senani, “New analogue inverse filters 

realised with current feedback op-amps,” international Journal of electronics, 

98, no. 8, pp.1103-1113, 2011. 

[24] D. R. Bhaskar, Manoj Kumar, and Pragati Kumar, “Fractional order inverse 

filters using operational amplifier,” Analog Integrated Circuits and Signal 

Processing, 97, no. 1, pp. 149-158, 2018. 

[25] E. M. Hamed, L. A. Said, A. H. Madian, and A. G. Radwan, “On the 

approximations of CFOA-based fractional-order inverse filters," Circuits, 

Systems, and Signal Processing, 39, no. 1, pp. 2-29, 2020. 

[26] N. A. Khali, L. A. Said, A. G. Radwan, and A. M. Soliman, “Multifunction 

Fractional Inverse Filter Based on OTRA,” In 2019 Novel Intelligent and 

Leading Emerging Sciences Conference (NILES), vol. 1, 2019, pp. 162-165. 

[27] N. A. Khalil, L. A. Said, A. G. Radwan, and A. M. Soliman, “Fractional Order 

Inverse Filters Based on CCII Family,” In 2019 Fourth International 

Conference on Advances in Computational Tools for Engineering 

Applications (ACTEA), 2019, pp. 1-4. 

  



10 
 

CHAPTER 2  

 

 

METHODS OF REALIZING OF FRACTIONAL ORDER 

ELEMENT 

 Introduction 

Fractional order elements (FOE) are the most important component of a fractional 

order system. These elements, however, are not yet available commercially, as 

standard components for different values of the fractional order parameters. As a 

result, these fractional order elements are realized using various approximation 

methods, which approximate the admittance of a fractional order element by a rational 

function in the complex variable ‘s’.  The methods for realization of fractional order 

elements are categorized into: (a) single component-based realizations and (b) Multi-

component -based realizations. Both of these methods have their advantages and 

limitations. In the present chapter, we present a brief review of these methods. We 

have also simulated fractional order capacitors for different values of the fractional 

order parameter using one of the widely used methods available in the literature. 

 Fractional Order Element 

A fractional order immittance element follows fractional order differential equation 

which relates the voltage and current in it. The impedance of a fractional order element 

in the complex ‘s’ plane may be represented by any one of the following expressions 

[1]-[4]: 

 

 
 

F

R
Z s

s



  2.1 

 
 

1
F

F

Z s
C s


  2.2 
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 
1

FZ s
Fs

  2.3 

 

Units of R and τ are Ω and second, α is a real number in equation (2.1). A fractional 

order capacitor, sometimes referred as fractional capacitor, CF used in equation (2.2) 

has the unit of Farad/s1-α. The FOE is sometimes also referred as a fractor whose 

fractance ‘F’ expressed in equation (2.3) has the unit of Ʊsα. In all the above cases, 

the unit of the impedance of the FOE must be in Ohm. 

 

 

 Frequency Response of the Fractional Order Element 

The fractional order element in frequency domain can be written as shown in equation 

below: 

 

1 1

2
FZ

FF j
 




    2.4 

 

The phase of impedance is independent of frequency relation. The magnitude can be 

varied by fractional number α. the phase, however, will remain constant for any value 

of frequency. For this reason, the fractional order element is also known as constant 

phase element (CPE) as, unlike a conventional reactive element, the phase of the 

element does not change with frequency (like lossy reactive elements). An interesting 

analogy between a conventional, lossless, capacitor/inductor and a fractor may be 

drawn in terms of the phase angle; in case of lossless capacitor/inductor, the phase 

angle is always fixed ( ±90°), whereas in case of a fractor, the phase angle is given by   

± α90°[5]. 

 Pseudo-CPE and Constant Phase Zone 

In ideal case [6], the fractional order element is having a constant phase for all 

frequency values, but practically it does not happen. The phase remains constant in a 

particular frequency range only, which is known as constant phase zone. The 
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practically realized FOE is called as pseudo-CPE. There is some oscillation in that 

constant phase zone in phase of fractional order element that is called ripple. The 

amount of ripple in phase and the frequency range of the approximation are the design 

parameters for several approximation techniques used to realize the CPE. 

 Realization of Fractional Order Element 

Several methods of realization of fractional order element have been proposed in 

literature [2]. They may be categorized in two groups: 

i. Multi component realization  

ii. Single component realization 

2.5.1 Multi Component Realization 

Phase shifting networks are used for realizing a fractional order element in constant 

phase zone. It is the best possible way of determining phase differencing function in 

[7]. It works in two sections, first one is to achieve constant phase with the help of 

phase shifter and second one is to define frequency range by using all pass sections. 

It requires large number of inductors and capacitors.  

RC Ladder - based fractional order element: Several approximatins of 

the fractional order operator sα, namely, Valsa Dobrak and Friedel Approximation [8], 

Oustaloup, Levron, Mathieu, and Nanot Recursive approximation [9], Continued 

Fraction Expansion (CFE) [10], El-Khazali reduced-order approximation [11], 

Carlson and Halijak approximation [12], Matsuda and Fujii approximation [13], 

Modified Oustaloup, Laveron, Mathieu and Nanot [14], Charef, Sun, Tsao, and Onaral 

approximation [15], and Squared Magnitude Function [16-17] have been used to 

realize an immittance function which resembles a Foster/Cauer like network. The 

element values of the network are determined, based on the frequency range and the 

amount of ripple specified. Higher the number of series/parallel branches, in RC 

network, the more accurate is the approximation.  

The concept of the generalized impedance converter (GIC) has been used 

to propose realization of a fractional order inductor [18].  
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2.5.2 Single Component Realization  

Several attempts are being made to realize the fractional order element as a single 

component device, available off-the shelf, for desired values of the parameter α so that 

this element could be used in real circuit applications. Physical CPE using 

electrochemical methods, fractal structure on silicon, lithographic processes have been 

reported in [4], [5], [20]-[25].  

2.5.3 Oustaloup, Levron, Mathieu and Nanot Approximation Method 
 

We have used, the approximation method proposed by, Oustaloup, Leveron, Mathieu 

and Nanot [9] to realize the fractional order capacitors  used in the oscillator circuits 

proposed in this work. In the following, we explain this method with a design example. 

The method approximates the operator s  for non-integer values of the exponent ‘α’ 

by a rational function given below: 




 




Nk

k k
s

ks
cs

1 /1

'/1



  2.5 

 

Where N, is the order of the approximation and ‘c’ is a constant, whose value 

depends upon the maximum frequency upto which the approximation is valid. 

 maxc


  2.6 

 

                  max =maximum frequency range,                            

                   min =minimum frequency range 

   2 1 / 2

' max
min

min

k N

k




 



 

 
  

 
 2.7 
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   N2/1k2

min

max
mink























  2.8 

 

 The fractional order operator s , thus is expressed by the following rational function, 

if the values of α, minimum and maximum frequency are specified. 

( )

( )

N s
s

D s

   2.9 

 

The above rational function, when representing the immittance of an FOE, can be 

realized either by partial fraction expansion (Foster-I/II, forms) or continued fraction 

expansion (Cauer-I/II). An exemplary realization in the Foster form has been shown 

in fig 2.1 whose driving point impedance is given by: 

  
 



N

1n

nn

n
0

RC

1
s

C

1

R
Cs

1
sZ




 2.10 

Ro = series resistor  

Rn, Cn= resistors and capacitors in parallel network 

 

 

Figure 2.1 Fractional capacitor network  
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Design example: Let α=0.5 ωmin=10Hz, ωmax=1MHz, Cα=1uf, N=5 

   
1

Z s
C s

 =
6

1

1 10 s 
 

Putting Laplacian operator sα equation (2.5) in above equation  

  6
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= '
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

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6 '

1 /1

10 1 /1

sk N
k

c sk k







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Using equation (2.6)-equation (2.8) , given , ωmin=10Hz, ωmax=1MHz,  N=5, α=0.5, 

we obtain c=1000, 

   2 1 0.5 / 2
6

' 10
10

10

k N

k

 

 
  

 
   and 

   2 1 0.5 / 2
610
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10

k N
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 

 
  

 
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 
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Then driving point impedance thus turns out to be: 

Z(s) =

8 4 13 3 17 2 20 21

5 5 4 9 3 12 2 15 16

5 6.248 10 3.549 10 1.996 10 11 .11 10 5.623 10

1.976 10 3.549 10 6.311 10 1.111 10 1.77

0

8 10

00 s s s s

s s s s s

s        

       

 

 
 

The values of Resistors and capacitors of the ladder has been found as:  

Ro=1000Ω, R1=1.6kΩ R2=5.4kΩ, R3=17.4kΩ, R4=56.3kΩ,R5=234.5kΩ 

C1=3.5nF, C2=10nF, C3=32nF, C4=99.8nF, C5=0.23uF 
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We have simulated the magnitude and phase response of the RC impedance network 

realized with the above values of components in PSPICE. The AC responses are 

shown below: 

 

 

 

Figure 2.2 Impedance gain response 

 

 

 

 

Figure 2.3 Phase response 
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From the phase response it is noted that there are ripples in the response around the 

desired phase value (45° as α =0.5) but we can reduce the ripple amplitude by 

increasing the value of N, the order of approximation. It was found that the decrease 

in the amplitude was not significant for N> 8. The complexity of ladder structure 

increase for increase in N. We have computed the values of all the passive components 

for ladder for which N =8 and values of α = 0.1-0.9, in steps of 0.1 and the desired 

capacitor value is 0.01uF. 

Table 2.1 Value of resistors and capacitor of FC 

𝜶 = 𝟎. 𝟏 N=8 𝜶 = 𝟎. 𝟐  N=8 𝜶 = 𝟎. 𝟑 N=8 

𝑹𝟎(𝜴) =16M 𝑅0(𝛺)=2.75M 𝑅0(𝛺)=0.45M 

Rn(M𝛺) Cn(p𝐹) Rn(M𝛺) Cn(p𝐹) Rn(M𝛺) Cn(p𝐹) 

4.16 0.013 1.49 0.042 0.40 0.17 

5.36 0.10 2.47 0.25 0.843 0.84 

6.76 0.835 3.93 1.612 1.69 4.20 

8.51 6.63 6.23 10.171 3.37 21.05 

10.72 52.69 9.87 64.16 6.74 105.5 

13.50 418.47 15.66 404.64 13.46 528.35 

17.04 3315.3 24.97 2538.0 27.13 2621.4 

22.09 25577.0 42.33 14973.0 60.8 11685.0 

 

Table 2.2 Values of resistors and capacitor of FC for alpha 0.4 to 0.6 

𝜶 = 𝟎. 𝟒 N=8 𝜶 = 𝟎. 𝟓 N=8 𝜶 = 𝟎. 𝟔 N=8 

𝑹𝟎(𝜴) =76K 𝑹𝟎(𝜴) =12K 𝑹𝟎(𝜴) =2.09K 

R(M𝛺) C(p𝐹) R(M𝛺) C(p𝐹) R(M𝛺) C(p𝐹) 

0.093 0.84 0.020 4.42 0.0040 24.8 

0.25 3.16 0.068 13.01 0.017 57 

0.63 12.5 0.21 40.85 0.069 14.3 

1.59 49.88 0.69 129.1 0.27 36.1 

4.0 198.5 2.19 408.1 1.10 906.5 
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10.11 789.2 6.95 1288.8 4.42 2270.8 

25.7 3094.1 22.47 3984 18.16 5531.3 

77.8 10249.0 93.55 9571 108.1 9291.8 

 

Table 2.3 Values of resistors and capacitor of FC for alpha 0.6 to 0.9 

𝜶 = 𝟎. 𝟕 N=8 𝜶 = 𝟎. 𝟖 N=8 𝜶 = 𝟎. 𝟗 N=8 

𝑹𝟎(𝜴) =347.8 𝑹𝟎(𝜴) =57.76 𝑹𝟎(𝜴) =9.59 

R(M𝛺) C(n𝐹) R(M𝛺) C(n𝐹) R(M𝛺) C(n𝐹) 

0.000738 0.15 0.00011 1.06 0.000014 10.1 

0.004 0.27 0.00081 1.54 0.00012 11.5 

0.02 0.55 0.005 2.43 0.0009 14.4 

0.10 1.1 0.03 3.85 0.007 18.2 

0.512 2.19 0.207 6.10 0.06 22.8 

2.57 4.37 1.31 9.62 0.4 28.6 

13.47 8.36 8.75 14.42 4.2 33.5 

121.8 9.25 134.77 9.38 142.2 9 

 

 

 

Figure 2.4 Phase response of FC for alpha 0.1 to 0.9 
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2.5.4 Conclusion 

In the present chapter, a brief account of the fractional order element and various 

approaches for its realization has been presented. We have also reviewed the 

Oustaloup, Leveron, Mathieu and Nanot method which has been used to realize the 

fractional order capacitors used in the oscillator circuits proposed in this work. The 

values of passive components used in the realization of an 8th order approximation of 

the FOC of 0.01uF, for values α = 0.1-0.9, in steps of 0.1. 
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CHAPTER 3  

 

 

SECOND ORDER OSCILLATOR USING OTAs1 

 

  Introduction 

In the previous chapter we have presented various approached of realization of a 

fractional order capacitor. In the present chapter we have proposed a fractional order 

oscillator using two fractional order capacitors 

Analog circuit realization of fractional order signal processing and signal 

generation circuits have started receiving renewed interest during the last decade [1]-

[38]. Several fractional order filters and fractional order oscillators have been 

introduced in the open-literature wherein different types of amplifiers and fractional 

order capacitors have been used to realize these circuits. As fractional order capacitors 

are yet not available as standard circuit elements, these fractional order capacitors, 

have been realized using various approximation techniques which give a rational 

function approximation of the operator sα(0<α≤1) resulting in a Foster-like network 

emulating the behavior of a fractional order capacitor. Compared to fractional order 

filters, relatively less research work has been carried out on the realization of fractional 

order oscillators [3]-[4], [6], [13], [16-18], [21]-[33], [36]-[38]. In a fractional order 

oscillator, unlike a conventional oscillator, the FO, CO and the phase relationship 

between different voltages can be controlled with the help of the fractional order 

parameter ‘α’. A control over the phase relationship is a very useful feature in    

applications like PSK modulation-demodulation, music synthesizers etc. Fractional 

order oscillators have been realized with various active building blocks like 

operational amplifiers [3]-[4], [6], [13], [16], [24]-[25], [32], [38], operational 

                                                           
1 The contents of this chapter presented in the 6th International conference on Control, Automation 
and Robotics (ICCAR), Singapore, 2020.  V. Singh, and P. Kumar, “Fractional Order Oscillators Using 
OTAs,” 2020, ,27-32]. 
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transresistance amplifiers [17], [32] current conveyors and their different variants 

[18], [21-23], [33], [29] current feedback amplifiers [28], voltage differencing 

inverting buffered amplifier [36], operational transconductance amplifiers [24] and 

current mirrors [30]. In most of these realizations the conventional capacitor(s) in an 

integer order realization of an existing oscillator has (ve) been replaced by fractional 

order capacitor(s). From the study of various fractional order oscillator circuits, it has 

been observed that    very little work has been reported on the realization of fractional 

order oscillator circuits using operational transconductance amplifiers (OTAs). In 

such oscillator using control over the CO and FO of the fractional order oscillator can 

very easily be implemented.   

 Proposed Fractional Order Oscillator Circuit 

The proposed circuit uses five OTAs and two fractional order capacitors. An 

OTA is a differential voltage controlled current source whose circuit symbol is shown 

below in Fig.3.1 while its terminal relationships are given in equation (3.1). 

 

 

Figure 3.1 OTA symbol 

 

  Bias

0 m 1 2 m

T

I
I g V V , g

2V
    3.1     

 

A fractional order capacitor, on the other hand, whose circuit symbol is shown below 

in Fig. 3.2 is characterized by the driving point impedance 
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 
1

Z s
s C 

  3.2 

 

 

 

Figure 3.2 Fractional order capacitor symbol 

 

The proposed fractional order oscillator is shown below in Fig. 3.3. The state 

equations of the oscillator circuit can be described by equation (3.3): 

 

 

Figure 3.3 Fractional order oscillator 
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 3.3 

 

where Dα and Dβ represent the fractional order derivative operator. By using the basic 

definition of the Laplace transform applicable to the fractional order derivative 

operator [4] the characteristic equation (CE) of the autonomous circuit represented by 

the fractional order state equations given above is as follows: 

2 3 3 5 1 5 3

4 2 4 1 4 1 2

0
g g g g g g g

s s s
g c g c g c c

         3.4 

 

Putting   in equation (3.4) and separating real and imaginary part with help of Euler's 

relation we get the following two relationships: 

  2 3 3 5 1 5 3

4 2 4 1 4 1 2

cos cos cos 0
2 2 2

g g g g g g g

g c g c g c c
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 3.5 

 

  2 3 3 5

4 2 4 1

sin sin sin 0
2 2 2

g g g g

g c g c
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       
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 3.6 

 

The CO and FO of the fractional order oscillator must satisfy both (3.5) and (3.6) and 

are expressed as follows: 
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From the above two equations (3.7) and (3.8) it may be observed that the 

transconductance g2 may be selected in such a way that the circuit oscillates for a 

specified value of ω rad/sec for predefined values of α and β. We have shown below 

in Table 3.1 the CO, FO and the phase relationships between the two capacitor 

voltages for different values of α and β. 

Table 3.1 Different cases of generalized relation of CO, FO and phase 
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The electronic tunability of CO and FO for different values of ‘α’by changing ‘g3’ 

have been illustrated in Fig3.4 –Fig3.6 
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Figure 3.4 Tunability of CO with g3 and α for case 2 

 

 

 

 

Figure 3.5 Tunability of FO with g3 and α for case 2 
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Figure 3.6 Tunability of FO with g1 and α for case 2 

 

 Stability Analysis 

Stability of fractional order systems has been studied in detail [7], [20]. As the stability 

of any linear dynamic system depends on the location of the roots of the CE in the s-

plane. It is necessary to know about the location of the poles in the s-plane. For 

analysis of the stability of fractional order systems the CE of the system is transformed 

into W-plane using the transformation 
1

kW s  where k is a positive integer related to 

the non-integer order ‘α’ by the relation α =  n/k (n being another positive integer). 

The stable and unstable regions for system in W-PLANE are defined as k/wk2/  

and w / 2k   respectively where w represents the angle of the roots in the W-plane 

measured from the +ve real axis of the W-plane. Stability of fractional order oscillators 

have been studied in the W-plane for different values of ‘α’ by finding the location of 

the roots of the CE in W-plane. At least one pole must lie on the line k2/w    for 

system to be oscillatory and remaining poles should lie in the stable region as shown 

in Fig.3.7. If even one pole lies in the region k2/w    the system become unstable. 
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Figure 3.7 W-plane 

 

We have selected the value of k = 10 and plotted the location of the roots of the CE of 

the fractional order oscillator in the W-plane for different values of ‘α’. And shown 

them in Fig.3 8-3.10. It is noted from Fig. 3.8 that the fractional order oscillators 

presented in this paper are indeed stable! 

 

 

 

Figure 3.8 Poles in W-plane of oscillator for α=β=0.8 
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Figure 3.9 Poles in W-plane of oscillator for α=β=0. 

 

 

 

 

Figure 3.10 Poles in W-plane of oscillator for α=β=0.7 
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 Simulation and Experiment Results 

Workability of the fractional order oscillator presented in this paper has been verified 

by PSPICE simulations and experimental results. We have used CMOS 

implementation of an OTA [10] to test the design of the fractional order oscillator. 

Two identical valued fractional order capacitors of value 0.95µF(rad/sec)(1-α) designed 

using the Oustaloup approximation method were used in simulation studies (α = β= 

0.9, 0.8 0.7).  We have simulated the fractional order oscillator represented by case 2 

from Table 3.1 (equal fractional-order capacitors) with (i)   =0.7 (ii)   =0.8 (iii) 

  =0.9 .The designed FO and the corresponding values of transconductances 

meeting the CO and FO are given below in Table 3.2. 

 

Table 3.2 Values of transconductance at different order 

C=0.95uF 

α=β 

Values of transconductance 

(mS) 

Theoretical 

value of 

FO(ω0) g1 g2 g3 g4 g5 

0.7 3.98 0.26 3.98 3.98 3.98 23.7KHz 

0.8 4.13 1.33 4.13 4.13 4.13 5.61KHz 

0.9 4.13 2.80 4.13 4.13 4.13 1.75KHz 

 

Fig 3.11-Fig 3.13 show the output voltage waveforms for different values of the 

fractional order parameters.  
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Figure 3.11 α=β=0.7 PSPICE Simulation of oscillator 

 

 

 

Figure 3.12 α=β =0.8 PSPICE Simulation of oscillator 
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Figure 3.13 α=β =0.9 PSPICE Simulation of oscillator 

 

In Table 3.3 we have shown the values of FO measured in simulation along with the 

values of theoretical FO for different values of the fractional order parameters. From 

this table it is observed that the values obtained from simulation are very close to their 

theoretical counterparts. 

 

Table 3.3 PSPICE and Theoretical values of FO at different α=β 

C=0.95uFr(ad/sec) 

α=β 

PSPICE 

value of 

FO(ω0) 

Theoretical 

value of 

FO(ω0) 

0.7 22KHz 23.7KHz 

0.8 5.42KHz 5.61KHz 

0.9 1.74KHz 1.75KHz 

 

We have also realized a fractional order oscillator using LM13700 IC OTA biased 

with ± 15V. A fractional order oscillator with a nominal frequency of oscillation of 

1.4MHz was designed by selecting two identical valued fractional order capacitors for 

α=β=0.8, with C1=C2=10nF(rad/sec)(0.2). An eighth order approximation of the 

fractional order capacitor of value 10nF (rad/sec)0.2 corresponding to ‘α’ = 0.8 using 
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Oustaloup, Levron, Mathieu and Nanot method [2] resulting into the circuit given 

below in Fig.3.14 was used to realize these capacitors. Values of different capacitors 

and resistors used in Fig 3.14 are given in Table 3.4.  

 

Table 3.4 RC ladder values using Oustaloup approximation 

R(Ω) 

10 56 330 1.7K 8.2K 39K 220K 3.3M 

R0=7Ω 

C(nF) 0.6 1 1.5 2 3 4 6.5 3.8 

 

 

 

Figure 3.14 RC ladder approximating the fractional order capacitor 

 

The required values of different transconductances g1=5.5mS, g3=g4=g5=1.2mS, 

g2=0.8mS were set by controlling the bias current of all the OTAs. The experimental 

set up of the oscillator circuit is shown below in Fig.3.15. The output waveform of the 

oscillator is shown in Fig. 3.16. Fig. 3.17 shows the Lissajous pattern showing the 

phase relationship between the two output voltages while Fig.3.18 shows the 

frequency spectrum of the voltage V1. It may be observed from the experimental 

results indicated on the output waveform (obtained on Keysight DSOX3034T) that 

the values of experimentally obtained FO is equal to 1.456 MHz and the phase 

difference between the two output voltages is equal to 71.728º) that these results are 

in very close agreement with the corresponding designed value (1.4MHz and 72º).   
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Figure 3.15 Circuit implementation 

 

 

 

Figure 3.16 Experiment result for α=β=0.8 of fractional order oscillator 
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Figure 3.17 Lissajous pattern for α=β= 0.8 of fractional order oscillator 

 

 

 

Figure 3.18 Frequency spectrum for α=β=0.8 of fractional order oscillator 

 

 Conclusion 

In this chapter, an OTA based fractional order oscillator with electronic tunability of 

CO and FO has been presented. PSPICE simulation results and experimental results 

validating the operation of the presented circuit have also been include.  
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CHAPTER 4  

 

 

FRACTIONAL ORDER OSCILLATOR USING THREE 

FRACTIONAL ORDER CAPACITORS2 

 Introduction  

In the previous chapter we had presented an introductory fractional order oscillator 

employing five OTAs and two fractional order capacitors. In this chapter we have 

extended the concept to realize fractional order oscillators using three fractional order 

capacitors in which the phase relationship between different output voltages can be 

controlled electronically by changing the bias currents of different OTAs as per 

specified tuning relationships.  

Fractional order harmonic oscillators are sinusoidal oscillators, in which, the reactive 

element, instead of being an integer order capacitor/inductor, is a fractional order 

reactive element, also referred as a constant phase element (CPE). The interest in these 

fractional order oscillators have stemmed from the fact that, unlike a conventional RC 

oscillator, the frequency and phase relationships in a fractional order oscillator are 

functions of the fractional order parameters α, β, γ… defining the CPE. Though the 

concept of a fractional order oscillator was introduced in the context of an FM 

demodulation system long back [1], it could not gather much attention till the early 

2000s. A fractional order Wein-Bridge oscillator was proposed in [2], wherein, the 

conventional capacitors in the classical Wein-Bridge oscillator circuit were replaced 

by fractional order capacitors. It was shown that sustained oscillations were possible 

in this circuit and the FO and CO were dependent, not only on the values of the 

resistors and capacitors, but also, on the values of α, β, the parameters, defining the 

fractional order capacitors. Numerical simulations were carried out for the solution of 
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the fractional order differential equations to verify the theoretical propositions. This 

work was followed by yet another work [3] in which the necessary conditions for latch 

up in sinusoidal oscillators were presented. The detailed theoretical framework for the 

general fractional order oscillators, however, was developed in [4], [5] wherein the 

design equations for CO and FO of fractional order oscillators were presented. Since 

then, many fractional order oscillator circuits employing different types of amplifiers 

and other active building blocks have been presented [6-20]. It has also been noted 

from the literature survey that, most of the fractional order oscillator circuits presented 

above, are generalizations of an existing conventional oscillator    circuits.  

Out of the fractional order oscillators reported above, those oscillators which employ 

the OTA, are of special interest, as the control over the FO, CO and the phase in these 

oscillator circuits can be implemented very easily by changing the bias currents of the 

OTAs. Very little work is available in open literature, wherein, fractional order 

oscillators have been realized with OTAs [19], [21]. 

Recently, an OTA based realization of a fractional order oscillator utilizing two 

fractional order capacitors was reported [21]. The circuit, unlike the previously 

reported fractional order oscillator circuits [6]-[20] was not derived from an existing 

operational transconductance amplifier based oscillator circuit. It had employed 3 

OTAs and two fractional order capacitors.  It was shown that for a given value of FO, 

α and β, suitable values of the transconductances could be set by varying the bias 

currents of the OTAs, resulting in sustained oscillations in the circuit. In this paper, 

we present yet another OTA based fractional order oscillator, which employs three 

fractional order capacitors and five OTAs, providing three output voltages with 

electronically controllable phase difference between them. The dependence of FO, CO 

and phase difference between the output voltages on α, β and γ has been investigated 

in detail. 

 

 

 

 



44 
 

 Fractional Order Oscillator using three fractional order 

capacitor  

 

4.2.1 Fractional order oscillator theory 

The general theory and design equations for fractional order oscillators with 2/3 

fractional order capacitors have been presented in [4-5]. The dynamics of a linear 

autonomous system with three fractional order capacitors may be expressed by the 

following fractional order state equations: 
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The CO and FO can be obtained by simultaneously solving the following set of 

equations [16]: 
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Where 22 33 23 32A a a a a   ,
31133311 aaaaA 

 and 
11 22 12 21A a a a a    

 

 

 

 

4.2.2  Proposed Fractional Order Oscillator   
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The proposed fractional order oscillator with three fractional order capacitors is shown 

in Fig.4 1. A routine analysis of the circuit using the classical relationship between the 

voltage and current for the fractional order capacitor and the OTA [21], we obtain the 

following set of fractional order state equations: 

1 2

2 2

1 1
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3 3
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4.4 

 

 

 
 

Figure 4.1 Proposed fractional order oscillator 

 

 

The characteristic equation derived from the above equations is expressed as follows: 
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After putting s = jω, and separating the real part and imaginary parts, we obtain two 

design equations given below in Eq. 4.6 and 4.7: 
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 4.7 

 

From the above equations, it may be noted that it is possible to design the oscillator 

for a given value of α, β, γ and ω, by choosing suitable values for various 

transconductances (g1-g5). We have used different combinations of these three 

fractional order capacitor parameters to realize eight cases which are summarized in 

Table 4.1 including the most general case (𝛼 ≠ 𝛽 ≠ 𝛾 ≠ 1)  described in Eq. 4.6 and 

4.7. 
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 Phase Difference Between output Voltages 

To obtain the phase difference between the three output voltages, first we have to 

determine the transfer functions between the three output voltages, which are taken 

across the three fractional order capacitors, and therefrom, determine the phase 

difference between these voltages [16]. We have presented the transfer functions and 

the corresponding phase difference in Table 4.2. It may be noted that the sum of the 

phase difference between the three voltages is 2π. The value of the phase angles, can, 

thus be changed by changing the values of α, β, γ. 

Table 4.2 Transfer function and phase relation of voltages 
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Figure 4.2 Phase relation of voltages 

4.3.1 Design example 

The procedure to determine the values of transconductances required for sustained 

oscillations in the proposed circuit for the given values of the FO, α, β, γ and C1, C2, 

C3 is illustrated with an example. Let the values of α =0.9, β =0.8, γ=0.7, C1 = C2 = 

C3= 0.95uF and FO =1.1 KHz, be specified. The values of different transconductances 

are to be determined so that sustained oscillations are produced in the circuit. Let us 

assume g1 = g3 = g4 = g5 = g, and C1= C2 = C3 = C. The CO and FO equations as 

expressed in Eq. 4.8 - 4.9 reduce to : 
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Solving these two equations, we may obtain the values of g = g1= g3= g4= g5 and g2 

as1.7mS and 3.4mS respectively. 

 Simulation results 

We now present PSPICE simulation results to establish the workability of the 

proposed fractional order oscillator circuit. We have used the CMOS implementation 

of the OTA [21]. The three fractional order capacitors were realized using the 
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approximation method suggested by Oustaloup, Leveron, Mathieu and Lanot [22] and 

values were taken as 0.95μF(rad/sec) (1-α). Table 4.3 shows the values of different 

transconductances used for various Combinations of α, β and γ. The time responses of 

the fractional order oscillators have been depicted in Table 4.4 given below. 

Table 4.3 Transconductance values of five OTA at different values for α, β and γ 

α β γ g1(mS) g2(mS) g3(mS) g4(mS) g5(mS) 

1 1 0.9 3.23 4.22 3.23 3.23 3.23 

1 1 0.8 3.93 4.22 3.93 4.22 3.93 

1 1 0.7 4.13 4.02 4.13 4.13 4.13 

1 1 0.6 4.12 4.22 4.12 4.12 4.12 

1 1 0.5 3.98 4.02 3.98 3.98 3.98 

0.9 1 1 2.49 2.80 2.49 2.49 2.49 

0.8 1 1 4.34 1.09 4.34 4.34 4.34 

0.9 0.9 0.9 3.23 4.22 3.23 3.23 3.23 

0.9 0.9 0.8 3.23 3.15 3.23 3.23 3.23 

0.9 0.9 0.7 3.23 2.66 3.23 3.23 3.23 

0.9 0.9 0.6 3.23 2.62 3.23 3.23 3.23 

0.9 0.9 0.5 3.9 2.46 3.9 3.9 3.9 

0.9 0.9 0.4 2.97 2.08 2.97 2.97 2.97 

0.9 0.9 0.3 2.97 2.07 2.97 2.97 2.97 

0.9 0.9 0.2 3.23 2.45 3.23 3.23 3.23 

0.9 0.9 0.1 3.50 2.39 3.50 3.50 3.50 

0.8 0.8 0.9 4.22 4.13 4.22 4.22 4.22 

0.8 0.8 0.8 3.23 3.06 3.23 3.23 3.23 

0.8 0.8 0.7 3.50 1.92 3.50 3.50 3.50 

0.8 0.8 0.6 4.02 1.5 4.02 1.5 4.02 

0.8 0.8 0.5 4.02 1.37 4.02 4.02 4.02 

0.8 0.9 0.8 4.13 1.33 4.13 4.13 4.13 

0.7 0.8 0.8 4.13 0.56 4.13 4.13 4.13 

0.6 0.8 0.8 3.94 0.17 3.94 3.94 3.94 

0.7 0.7 0.9 4.31 4.13 4.31 4.31 4.31 

0.7 0.7 0.8 4.13 2.97 4.13 4.13 4.13 

0.7 0.7 0.7 4.13 1.75 4.13 4.13 4.13 

0.7 0.7 0.6 4.13 0.78 4.13 4.22 4.13 

0.7 0.7 0.5 4.13 0.49 4.13 4.13 4.13 

0.7 0.9 0.7 2.13 0.48 2.13 2.13 2.13 

0.7 0.8 0.7 2.63 0.29 2.63 2.63 2.63 

0.7 0.7 0.9 3.5 4.13 4.31 4.31 4.31 
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Table 4.4 Time response of the fractional order oscillators 

α=1,β=1,γ=0.9 

 

 
ϕ12=-35.903,ϕ31=141.25,ϕ32=-87.19 

α=1,β=1,γ=0.8 

 

 
ϕ12=-42.41,ϕ31=137.01ϕ32=-89.43 

α=1,β=1,γ=0.7 

 

 
ϕ12=-45.88,ϕ31=134.17,ϕ32=-90.04 

α=1,β=1,γ=0.6 

 

 
ϕ12=-46.71,ϕ31=134.49,ϕ32=-91.12 

α=1,β=1,γ=0.5 

 

 
ϕ12=-46.65,ϕ31=134.15,ϕ32=-90.80 

α=0.9,β=1,γ=1 

 

 
ϕ12=-63.11,ϕ31=118.14,ϕ32=-91.02 

α=0.8,β=1,γ=1 

 

 
ϕ12=-64.35,ϕ31=136.11,ϕ32=-69.54 

α=0.9,β=0.9,γ=0.9 

 

 
ϕ12=-33.84,ϕ31=119.65,ϕ32=-85.50 

α=0.9,β=0.9,γ=0.8 

 

 
ϕ12=-43.04,ϕ31=124.9,ϕ32=-81.22 

α=0.9, β=0.9, γ=0.7 

 

 
ϕ12=-47.20, ϕ31=128.1, ϕ32=-81.38 

α=0.9, β=0.9, γ=0.6 

 

 
ϕ12=-48.56, ϕ31=136.98, ϕ32=-82.54 

α=0.9, β=0.9, γ=0.5 

 

 
ϕ12=-47.66, ϕ31=136.24, ϕ32=-89.90 
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α=0.9, β=0.9,γ=0.2 

 

 
ϕ12=-50.19,ϕ31=132.71,ϕ32=-89.91 

α=0.9, β=0.9, γ=0.1 

 

 
ϕ12=-51.62,ϕ31=132.59,ϕ32=-80.21 

α=0.8, β=0.8, γ=0.8 

 

 
ϕ12=-41.4,ϕ31=116.60,ϕ32=-74.04 

α=0.8, β=0.8,γ=0.7 

 

 
ϕ12=-44.6,ϕ31=132.6,ϕ32=-88.03 

α=0.8,β=0.8,γ=0.6 

 

 
ϕ12=-55.5,ϕ31=127.49,ϕ32=-71.02 

α=0.8,β=0.8,γ=0.5 

 

 
ϕ12=-56.97,ϕ31=128.39,ϕ32=-71.36 

α=0.8,β=0.9,γ=0.8 

 

 
ϕ12=-50.34,ϕ31=133.21,ϕ32=-82.02 

α=0.7,β=0.8,γ=0.8 

 

 
ϕ12=-52.22,ϕ31=125.97,ϕ32=-72.19 

α=0.6,β=0.8,γ=0.8 

 

 
ϕ12=-52.08,ϕ31=125.90,ϕ32=-71.9 

α=0.7,β=0.7,γ=0.9 

 

 
ϕ12=-39.23,ϕ31=105.25,ϕ32=-68.49 

α=0.7,β=0.7,γ=0.8 

 

 
ϕ12=-43.54,ϕ31=111.16,ϕ32=-68.70 

α=0.7,β=0.7,γ=0.7 

 

 
ϕ12=-57.35,ϕ31=123.28,ϕ32=-66.6 
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α=0.7,β=0.7,γ=0.6 

 

 
ϕ12=-51.78,ϕ31=118.34,ϕ32=-78.75 

 

α=0.7,β=0.7,γ=0.5 

 

 
ϕ12=-61.27,ϕ31=126.47,ϕ32=-66.75 

α=0.7,β=0.9,γ=0.7 

 

 
ϕ12=-64.10,ϕ31=146.22,ϕ32=-81.32 

α=0.7,β=0.8,γ=0.7 

 
ϕ12=-60.94,ϕ31=133.42,ϕ32=-72.36 

 

The details of the variation of the FO and the phase difference between the three output 

voltages  with the  fraqctional order parameters  α ,β and γ   are given below in Table. 

4.5 and Table. 4.6 respectively 

 

Table 4.5 Simulated and Theoretical values of FO for different values of α ,β and γ 

      f0 (Hz) 

(PSPICE) 

f0 (Hz) 

(Theoretical) 

1 1 0.9 480 448.3 

1 1 0.8 600 611.4 

1 1 0.7 625 637.5 

1 1 0.6 663 667.1 

1 1 0.5 675 679.3 

0.9 1 1 538 555 

0.8 1 1 1.08k 1.29k 

0.9 0.9 0.9 1.10k 0.7k 

0.9 0.9 0.8 1.18k 1.11k 

0.9 0.9 0.7 1.26k 1.32k 

0.9 0.9 0.6 1.42k 1.81k 

0.9 0.9 0.5 1.43k 1.35k 
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0.9 0.9 0.2 1.43k 1.73k 

0.9 0.9 0.1 1.39k 1.44k 

0.8 0.8 0.8 3.05k 3.51k 

0.8 0.8 0.7 3.39k 3.72k 

0.8 0.8 0.6 4.55k 4.45k 

0.8 0.8 0.5 4.71k 5.30k 

0.8 0.9 0.8 2.44k 2.50k 

0.7 0.8 0.8 6.76k 5.64k 

0.6 0.8 0.8 11k 9.28k 

0.7 0.7 0.9 7.45k 3.38k 

0.7 0.7 0.8 12.06k 10.34k 

0.7 0.7 0.7 19.336k 17.69k 

0.7 0.7 0.6 17.336k 20.9k 

0.7 0.7 0.5 19.04K 18.9k 

0.7 0.9 0.7 1.94k 1.61k 

0.7 0.8 0.7 4.59k 4.17k 

 

Table.4.6 The different order of α, β, γ given phase (ϕ) in simulation and MATLAB 

      
12  32  31  12  32  31  

Different combinations PSPICE Theoretical 

1 1 0.9 -35.93 -87.19 141.25 -40.9 -90 124.9 

1 1 0.8 -42.41 -89.43 137.01 -45.71 -90 129.77 

1 1 0.7 -45.88 -90.04 134.17 -48.69 -90 131.34 

1 1 0.6 -46.71 -91.12 134.49 -48.69 -90 133.56 

1 1 0.5 -46.65 -90.80 134.15 -46.5 -90 134.26 

0.9 1 1 -63.11 -91.02 118.14 -24.84 -90 115.84 

0.8 1 1 -64.35 -69.54 136.11 -51.53 -90 114.87 

0.9 0.9 0.9 -33.84 -85.50 119.65 -38.01 -81 115.20 

0.9 0.9 0.8 -43.04 -81.22 124.9 -43.95 -81 122.79 

0.9 0.9 0.7 -47.20 -81.383 128.1 -46.6 -81 127.43 

0.9 0.9 0.6 -48.56 82.544 136.98 -44.33 -81 133.93 

0.9 0.9 0.5 -47.66 -89.90 136.24 -54.93 -81 126.77 

0.9 0.9 0.2 -50.19 -82.913 132.71 -41.68 -81 138.17 

0.9 0.9 0.1 -51.62 -80.21 132.59 -49.86 -81 130.07 

0.8 0.8 0.8 -41.4 -74.04 116.60 -39.91 -72 115.55 

0.8 0.8 0.7 -44.6 -88.03 132.6 -50.80 -72 119.05 

0.8 0.8 0.6 -55.5 -71.02 127.49 -56.59 -72 120.82 

0.8 0.8 0.5 -56.97 -71.36 128.39 -57.44 -72 121.87 

0.8 0.9 0.8 -50.34 -82.02 133.21 -50.19 -81 130.44 

0.7 0.8 0.8 -52.22 -72.19 125.97 -54.9 -72 119.57 

0.6 0.8 0.8 -52.08 -71.9 125.90 -49.78 -72 121.71 

0.7 0.7 0.9 -39.23 -68.49 105.25 -46.46 -63 94.46 

0.7 0.7 0.8 -43.54 -68.70 111.16 -45.20 -63 104.03 

0.7 0.7 0.7 -57.35 -66.6 123.28 -49.26 -63 111.20 

0.7 0.7 0.6 -51.78 -78.75 118.34 -56.00 -63 112.27 

0.7 0.7 0.5 -61.27 -66.74 126.47 -58.33 -63 112.26 

0.7 0.9 0.7 -64.10 -81.32 146.22 -62.98 -81 144.87 

0.7 0.8 0.7 -60.94 -72.36 133.42 -62.9 -72 130.93 
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Fig. 4.3 shows the variation, of the FO with γ when α=β=1, while Fig. 4.4 displays the 

variation of g2 with γ when α=β=1. Fig. 4.5 depicts the variation of g2 and g1 with γ 

when α=β=1.  Fig. 4.6 shows the variation in g2 with α and β for γ =1. Fig. 4.7 show 

the variation in ϕ12 with α and β whereas variation in ϕ31 with β and γ has been depicted 

in Fig. 4.8. 

 

 
Figure 4.3 Variation of FO with α=β=1, γ 
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Figure 4.4 Variation of CO (g2) with α=β=1, γ  

 

 

 
Figure 4.5 Variation of g1, g2 with γ 
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Figure 4.6 Variation in CO ( g2) , α and β 

 

 

 
Figure 4.7 Variation of ϕ12 with α and β 
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Figure 4.8 Variation of ϕ31, with β and γ 

 

 

 Experiment Work 

We have also tested the proposed fractional order oscillator experimentally, using 

LM13700 OTA IC biased with ± 15V and fractional order capacitors realized using 

the approximation method proposed by Oustaloup, Levron, Mathieu and Nanot [22]. 

A fractional order oscillator with a nominal frequency of oscillation of 1.2MHz was 

designed by selecting three identical valued fractional order capacitors for α = β = γ = 

0.8, with C1 = C2 = C3 = 10nF(rad/sec)(0.2) g1=3.5mS, g2=3.9mS, g3=3.5mS, g4=3.5mS, 

g5=3.5mS. The experiment and theoretical results of phase difference in voltages of 

oscillator is mentioned in Table 4.7. 

 

Table 4.7 Experiment and Theoretical values in phase difference of voltages 

Frequecy1.2MHz Frequency=1.1MHz 

Experimental Theoretical 

12  32  31  12  32  31  

-9.906 -71.36 81.23 -10 -72 82 

 

A snapshot of the experimental set up is shown in Fig. 4.9, while the output put 

waveforms obtained are shown in Fig. 4.10 respectively. The difference in the 
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experimental values and the theoretical values may be attributed to the non-exact 

values of the realized fractional order capacitors. 

 

 

 
Figure 4.9 Circuit implementation of fractional order oscillator 

 

 

 

 
Figure 4.10 Experiment result at α=β=γ=0.8 of fractional order oscillator 
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 Conclusion 

In this chapter, a fractional order oscillator realized with five OTAs and three 

fractional order capacitors has been presented. General design equations representing 

eight different cases for α, β and γ have been derived. The CO, FO and the phase 

difference between the different output voltages can be tuned electronically by 

changing the values of transconductaces of different OTAs for specified values of α, 

β and γ. PSPICE simulations using CMOS OTAs [21] and fractional order capacitors 

designed using the approximation method proposed by Oustaloup, Levron, Mathieu 

and Nanot [22] and experimental results obtained using IC OTA LM13700 have also 

presented to establish the workability of the presented circuit. 
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CHAPTER 5  

 

 

SUMMARY AND FUTURE SCOPE 

 Summary 

Chapter 1 provides us with the general introduction of fractional order systems and a 

brief review of some of the research works carried out in this area 

 In Chapter 2, a brief account of the fractional order element and various approaches 

for its realization has been presented. We have also reviewed the Oustaloup, Leveron, 

Mathieu and Nanot method which has been used to realize the fractional order 

capacitors used in the oscillator circuits proposed in this work. The values of passive 

components used in the realization of an 8th order approximation of the FoCof 0.01uF, 

for values α = 0.1-0.9, in steps of 0.1. 

 In Chapter 3, after a very brief introduction of some of the important works on 

realization of fractional order analog signal processing circuits using different active 

building blocks, an OTA based fractional order oscillator with electronic tunability of 

CO and FO has been presented. Detailed expressions for CO, FO and stability of the 

oscillator have been discussed. PSPICE simulation results and experimental results 

validating the operation of the presented circuit have also been included in the chapter.  

  

In Chapter 4 a fractional order oscillator realized with five OTAs and three fractional 

order capacitors has been presented. General design equations representing eight 

different cases for α, β and γ have been derived. The CO, FO and the phase difference 

between the different output voltages can be tuned electronically by changing the 

values of transconductaces of different OTAs for specified values of α, β and γ. 

PSPICE simulations using CMOS OTAs and fractional order capacitors designed 

using the approximation method proposed by Oustaloup, Levron, Mathieu and Nanot 
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[22] and experimental results obtained using IC OTA LM13700 have also presented 

to establish the workability of the presented circuit.   

 Future scope 

The work carried out in this dissertation may be extended in several directions. Some 

of these are listed below: 

I. Different methods of realization of fractional order capacitor may be used in 

the realization of the same oscillator structure and  the relative performance of 

fractional order oscillators  thus realized may be compared. 

II. In case of multi-phase fractional order oscillators, condition of stability may 

be studied in detail. 

III. Methods for electronic tuning of the fractional order capacitor parameters (α, 

β and γ) by changing some voltage/current may be investigated. 
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APPENDIX 
 

CMOS OTA PSPICE library file 

 

CMOS OTA [1] 

v+ v- out vbias 

.subckt ota 8 5 10 11 

.MODEL NMOS NMOS  (                           

+VERSION = 3.1            TNOM    = 27             TOX     = 4.1E-9  

+XJ      = 1E-7           NCH     = 2.3549E17      VTH0    = 0.3932664  

+K1      = 0.5826058      K2      = 6.016593E-3    K3      = 1E-3  

+K3B     = 1.4046112      W0      = 1E-7           NLX     = 1.755425E-7  

+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0  

+DVT0    = 1.3156832      DVT1    = 0.397759       DVT2    = 0.0615187  

+U0      = 280.5758609    UA      = -1.208176E-9   UB      = 2.159494E-18  

+UC      = 5.340577E-11   VSAT    = 9.601364E4     A0      = 1.7852987  

+AGS     = 0.4008594      B0      = -3.73715E-9    B1      = -1E-7  

+KETA    = -1.136459E-3   A1      = 2.580625E-4    A2      = 0.9802522  

+RDSW    = 105.472458     PRWG    = 0.5            PRWB    = -0.2  

+WR      = 1              WINT    = 0              LINT    = 1.571909E-8  

+XL      = 0              XW      = -1E-8          DWG     = -7.918114E-9  

+DWB     = -3.223301E-9   VOFF    = -0.0956759     NFACTOR = 2.4447616  

+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0  

+CDSCB   = 0              ETA0    = 2.489084E-3    ETAB    = -2.143433E-5  

+DSUB    = 0.0140178      PCLM    = 0.7533987      PDIBLC1 = 0.1966545  

+PDIBLC2 = 3.366782E-3    PDIBLCB = -0.1           DROUT   = 0.7760158  

+PSCBE1  = 8E10           PSCBE2  = 9.204421E-10   PVAG    = 5.676338E-3  

+DELTA   = 0.01           RSH     = 6.5            MOBMOD  = 1  

+PRT     = 0              UTE     = -1.5           KT1     = -0.11  

+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9  
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+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4  

+WL      = 0              WLN     = 1              WW      = 0  

+WWN     = 1              WWL     = 0              LL      = 0  

+LLN     = 1              LW      = 0              LWN     = 1  

+LWL     = 0              CAPMOD  = 2              XPART   = 0.5  

+CGDO    = 7.83E-10       CGSO    = 7.83E-10       CGBO    = 1E-12  

+CJ      = 9.969364E-4    PB      = 0.8            MJ      = 0.376826  

+CJSW    = 2.618614E-10   PBSW    = 0.8321894      MJSW    = 0.1020453  

+CJSWG   = 3.3E-10        PBSWG   = 0.8321894      MJSWG   = 0.1020453  

+CF      = 0              PVTH0   = -1.428269E-3   PRDSW   = -4.3383092  

+PK2     = 8.440537E-5    WKETA   = 2.341504E-3    LKETA   = -9.397952E-3  

+PU0     = 15.2496815     PUA     = 5.74703E-11    PUB     = 1.593698E-23  

+PVSAT   = 857.5761302    PETA0   = 1.003159E-4    PKETA   = -1.378026E-3)  

.MODEL PMOS PMOS (     

+VERSION = 3.1            TNOM    = 27             TOX     = 4.1E-9  

+XJ      = 1E-7           NCH     = 4.1589E17      VTH0    = -0.4045149  

+K1      = 0.5513831      K2      = 0.0395421      K3      = 0  

+K3B     = 5.7116064      W0      = 1.003172E-6    NLX     = 1.239563E-7  

+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0  

+DVT0    = 0.6078076      DVT1    = 0.2442982      DVT2    = 0.1  

+U0      = 116.1690772    UA      = 1.536496E-9    UB      = 1.17056E-21  

+UC      = -9.96841E-11   VSAT    = 1.324749E5     A0      = 1.9705728  

+AGS     = 0.4302931      B0      = 2.927795E-7    B1      = 6.182094E-7  

+KETA    = 2.115388E-3    A1      = 0.6455562      A2      = 0.3778114  

+RDSW    = 168.4877597    PRWG    = 0.5            PRWB    = -0.4990495  

+WR      = 1              WINT    = 0              LINT    = 3.029442E-8  

+XL      = 0              XW      = -1E-8          DWG     = -3.144339E-8  

+DWB     = -1.323608E-8   VOFF    = -0.1008469     NFACTOR = 1.9293877  

+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0  

+CDSCB   = 0              ETA0    = 0.0719385      ETAB    = -0.0594662  

+DSUB    = 0.7367007      PCLM    = 1.0462908      PDIBLC1 = 2.709018E-4  

+PDIBLC2 = 0.0326163      PDIBLCB = -1E-3          DROUT   = 9.231736E-4  

+PSCBE1  = 1.060432E10    PSCBE2  = 3.062774E-9    PVAG    = 15.0473867  

+DELTA   = 0.01           RSH     = 7.6            MOBMOD  = 1  

+PRT     = 0              UTE     = -1.5           KT1     = -0.11  

+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9  

+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4  

+WL      = 0              WLN     = 1              WW      = 0  

+WWN     = 1              WWL     = 0              LL      = 0  

+LLN     = 1              LW      = 0              LWN     = 1  

+LWL     = 0              CAPMOD  = 2              XPART   = 0.5  

+CGDO    = 6.54E-10       CGSO    = 6.54E-10       CGBO    = 1E-12  

+CJ      = 1.154124E-3    PB      = 0.8414529      MJ      = 0.406705  

+CJSW    = 2.50766E-10    PBSW    = 0.8            MJSW    = 0.3350647  

+CJSWG   = 4.22E-10       PBSWG   = 0.8            MJSWG   = 0.3350647  

+CF      = 0              PVTH0   = 2.252845E-3    PRDSW   = 7.5306858  

+PK2     = 1.57704E-3     WKETA   = 0.0355518      LKETA   = 7.806536E-3  



68 
 

+PU0     = -1.6701992     PUA     = -5.63495E-11   PUB     = 1E-21  

+PVSAT   = 49.8423856     PETA0   = 9.968409E-5    PKETA   = -3.957099E-3) 

m1 1 5 6 4 nmos w=3.6u l=.36u 

m3 7 8 6 4 nmos w=3.6u l=.36u 

m2 1 1 2 2 pmos w=1.44u l=.36u 

m4 7 7 2 2 pmos w=1.44u l=.36u 

m5 3 3 4 4 nmos w=1.44u l=.36u 

m6 3 1 2 2 pmos w=2.88u l=.36u 

m8 10 7 2 2 pmos w=2.88u l=.36u 

m7 10 3 4 4 nmos w=1.44u l=.36u 

m9 6 11 4 4 nmos w= 5.4u l=.36u 

vdd 2 0 dc 0.9 

vss 0 4 dc 0.9 

.ends ota 
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