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ABSTRACT 
 

 

Comprehensive knowledge of base pairing in RNA secondary structure would usher novel 

insights and develop greater understanding of their role in regulation of cellular processes and 

in disease. These could then be tackled in a more holistic manner. In pursuit of this objective, 

probabilistic models, especially those employing machine learning have come to dominate 

RNA secondary structure prediction, proving better than previous tools which were based upon 

comparative sequence analysis or folding algorithms employing thermodynamic and stochastic 

parameter schemes. This study is aimed at developing a machine learning technique better than 

the previously developed models, which have accelerated the research in RNA secondary 

structure prediction in the past two decades. The proposed model consists Embedding, CNN 

and Bidirectional GRU layers which prove effective, when together, for the objective of site 

accessibility estimation. Specifically, the Gated Recurrent Units (GRUs) are noteworthy since 

they tackle the problem of vanishing gradient by including the previous and far away time steps 

for prediction. Data was collected from RNA STRAND database (4666 experimentally 

determined RNA structures) and Comparative RNA Web (CRW) Site (17032 structures 

obtained through comparative sequence analysis). From these 4400 structures were curated 

after cleaning and clustering using CD-Hit. The model was trained, validated, and tested on 

divisions of this data to give a ROC curve with sensitivity of 0.75 and precision of 0.78, higher 

than the best compared state-of-the-art RNA structure prediction models, by 11% and 31%, 

respectively. The ROC values for class 0 with ‘bound’ residues and class 1 with ‘free’ residues 

were 0.90 and 0.90 respectively, indicating high accuracy in site accessibility prediction. An 

elaboration on RNA types, functions, and their functional mechanisms in diseases, is intended 

to provide the reader with the prerequisite knowledge to understand the vitality of unearthing 

structural information of RNA. Added to this a review of earlier and alternative RNA structure 

prediction techniques and models is incorporated for a better understanding of the history and 

scope of RNA structure prediction, through literature.
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CHAPTER 1   INTRODUCTION 

RNA are single stranded nucleic acid molecules – which along with DNA, proteins, lipids and 

carbohydrates constitute the basic macromolecules that are required by all living organisms.  The 

single stranded nature makes RNA less stable when compared to DNA and therefore more 

chemically reactive due to which different types of RNA are responsible for carrying out several 

functions in the cellular mechanisms. Initially RNA structure and functions were limited to the 

study of mRNA, tRNA and the rRNA. However recent discoveries have determined and 

established the vitality of the roles of noncoding regulatory RNA, such as, the miRNA, siRNA, 

piRNA and snRNA. These noncoding RNAs constitute majority of RNA and facilitate 

mechanisms to inhibit diseases. RNA also exist as enzymes – Ribozymes, and in-conjugation with 

proteins called RNA binding proteins (RBP). All this is possible due to the highly complex self-

folding secondary and tertiary structures formed by RNA. It burgeons the potential of RNA 

functions and opens avenues for new interactions. Since tertiary structures are very difficult to 

predict from primary structures due to their dynamic nature and the highly chaotic biological 

environment in a cell, an attempt is underway to determine the plausible and if possible the best 

RNA secondary structures from their primary structures and sequences [1]. An RNA strand can 

self-fold by itself in various ways, forming canonical and nested base pairs, making bulges and 

helices including stem loops, hairpin loops, internal and external loops, multiloops, pseudoknots, 

along with non-canonical and non-nested base pairs. 

In this endeavor to predict RNA secondary structures several developments have taken place in 

the past century. Experimental techniques like X-ray crystallography and NMR were used to obtain 

nucleic acid structures, however since these were too expensive, time taking, and laborious, semi-

computational and computational methods came to be developed. Prominent among these are: 

Mfold (2003), RNAstructure (2010), RNAfold (2011) and RNAshape (2014) – which use 

experimentally acquired thermodynamic parameters to score structures; and Sankoff method 

(1985), Knudsen & Hein method (1999) and Alali & Sagot method (2005) – which perform 

Comparative Sequence Analysis. Additionally, novel experimental techniques like PARS (2010), 

and those involving DMS (2014) and SHAPE reagents (2008, 2013) were researched.  

In this context, it has also been observed over the years that neural networks and deep learning 
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techniques have been quite successful in generating models for the prediction of biological 

sequences, functions, and for performing classification. In Artificial Neural Networks (ANNS), 

CNNs and RNNs prove to be robust in extracting features and generating sequences, which has 

drawn the attention of the RNA biology academia worldwide. Today, an image classification 

model without CNNs is difficult to imagine; RNNs on the other hand are highly useful in analyzing 

sequence data and time series data. Employing such deep neural networks, several tools and 

models to predict RNA secondary structure have come up over the years. Noteworthy among these 

being – CONTRAfold (2006), CentroidFold (2009), ContextFold (2011) and SPOT-RNA (2019). 

However, among all the methods there remains a performance sealing with respect to accuracy of 

prediction. A major contributing factor to this is the fact that base pairs, including – lone 

(unstacked), pseudoknotted (non-nested), and noncanonical (other than A–U, G–C, and G–U) base 

pairs as well as triplet interactions – are not considered during RNA secondary structure prediction. 

In fact, separate tools have been developed to predict RNA secondary structures with pseudoknots 

and others to predict noncanonical base pairs.  pknotsRG (2005), Probknot (2010), IPknot (2011), 

Knotty (2018) and MC-Fold (2008), MC-Fold-DP (2011), and CycleFold (2019) – are some of the 

profound ones among these. This creates a requirement for a robust method to predict RNA 

secondary structure with high accuracy, without neglecting its pseudoknots and non-canonical 

base pairs. For achieving this aim, the foremost requirement is prediction of site accessibility of 

RNA to estimate the sites that would be available for any binding induced functional roles. The 

same has been tried to be achieved in this project which employs the Embedded CNN-GRU layers 

to extract structural features and predicts site accessibility of base pairs with a higher accuracy.   
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CHAPTER 2   REVIEW OF LITERATURE 

2.1 RNA  

 

 
2.1.1 RNA functions 

 

RNA primary structure is in the form of chains of ribose sugars bound by nucleotide bases and 

joined by phosphodiester bonds. According to the central dogma of molecular biology RNA 

primarily function as carriers which enable transfer of genetic information encoded in the DNA into 

protein molecules. While this is true, recent discoveries point to the existence of RNA largely in 

the form of non-coding sporadic stretches which play major roles in micro-managing cellular 

processes, regulating genes and facilitating protein synthesis being a part of ribosomes [2].  

 

Traditionally RNA functions were thought to be confined to three popular RNAs namely – the 

mRNA: synthesized as a result of transcription, the rRNA: molecules responsible for building the 

cellular machinery ‘ribosomes’ along with proteins and the tRNA: adapter molecules, made up of 

fewer than 100 nucleotides, that facilitate translation of genetic code in mRNA into proteins. In 

protein synthesis, the genetic code in the messenger RNA (mRNA), produced from DNA as a result 

of transcription, is in the form of short stretches of 3 nucleotides called ‘codons.’ Based on the 

sequence of codons tRNA link corresponding amino acids together to form a polypeptide chain. 

The entire process is facilitated by Ribosomes and is called ‘Translation’ [3]. The sequence is 

popularly known as ‘The Central Dogma’ – DNA makes RNA makes Protein, given by Watson and 

Crick in 1958 [4]. The mRNA are synthesized in the nucleus and the rRNA are synthesized in the 

nucleolus and they travel to the cytoplasm for translation; rRNA form the translational unit 

‘Ribosomes’ in the cytoplasm with RNA binding proteins (RBP).  

 

 

Figure 1:  The Central Dogma (Image Source: Koonin, E.V., 2012 [5]) 

However, in the last three to four decades it has been established that RNA function in higher 

capacity, with more diverse functions, such as – regulation of DNA replication, facilitating RNA 



4 | P a g e  

splicing (post-transcriptional processes) and carrying out biochemical reactions by behaving as 

catalysts known as ‘Ribozymes’. In Eukaryotes they can inhibit, upregulate or downregulate gene 

expression (Riboswitches) [6] and modify other types of RNA while in prokaryotes they carry out 

a wide range of process from regulation of bacterial growth to virulence [2]. Furthermore, RNA are 

known to play crucial roles by serving as biomarkers for several diseases, which emphasizes upon 

the need to predict RNA secondary structures and understand their functions in a more detailed 

manner [7].  

 

2.1.2 Types of RNA 

 

Several types of RNA exist in the cellular environment. The mRNA encoded by DNA are referred 

to as coding RNA (cRNA) – those that code for proteins; besides these the RNA that do not translate 

to proteins are called noncoding RNA (ncRNA). Noncoding RNA, discovered to be profusely 

existing, are of two types – the housekeeping RNA, which include the tRNA and rRNA: and the 

regulatory RNA. Depending upon their sequence length regulatory ncRNA can be divided into long 

ncRNA (more than 200 nucleotides long) and small ncRNA (less than 200 nucleotides long). The 

small regulatory ncRNA are of particular functional significance, as it is observed. They are majorly 

of five kinds – small-interfering RNA (siRNA), microRNA (miRNA), PIWI-interacting RNA 

(piRNA), small nuclear RNA (snRNA) and small nucleolar RNA (snoRNA).  

    

Figure 2: RNA classification (Image Source: Inamura, K., 2017 [8]) 

The miRNA are endogenous and found in Eukaryotes with a usually 22 nucleotide long sequence; 
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they attach target mRNA stretches and prevent translation to proteins, thus causing gene silencing. 

Also, miRNAs are increasingly being used to serve as potential biomarkers for diagnosis of several 

diseases such as human cancer, while their dysregulation, researches have indicated, can lead to 

neurological diseases such as Alzhiemer’s [9],[10]. Added to miRNAs, the primarily exogenous 

siRNAs have also been found to cause RNA interference or gene silencing. piRNA are 26-32 

nucleotides long RNA which regulate the gene expression of Transposons or ‘jumping genes’; they 

do this by preventing transcription of these genes into germ cells. They are target particular due to 

specific complementarity and lead to transposon silencing. The snRNA are found in the nucleus 

and are usually bound to proteins forming complexes called snRNPs or “snurps”; they play a role 

in gene regulation by splicing pre-mRNA to form mature mRNA. snoRNAs are found in the 

nucleolus and they consist of RNA families which process rRNA molecules and cause their 

maturation often by methylation and isomerization of uradine in specific nucleosides [11],[12]. 

Circular RNA are formed by the fusion of its 3’ and 5’ loops during alternate splicing; they facilitate 

protein synthesis but can also bind miRNA, thus preventing miRNAs from carrying out silencing. 

They also regulate transcription and alternate splicing [13], [14]. 

 

2.1.3 RNA diseases 
 

RNA are essential to identifying, understanding, treating and in few cases even supporting human 

diseases. An example is the case of some types of miRNA that regulate cancer associated genes, in 

a manner that advances tumour development. Additionally, miRNA dysregulation has been 

correlated with several neurodegenerative disorders, in particular – the Alzheimer’s disease. 

Besides mRNA other RNA types such as the tRNA are also linked with diseases; for example, the 

tRNAs have been found to inhibit apoptosis by binding to ‘caspases’ – the proteins primarily 

responsible for causing programmed cell death. This facilitates the unhindered proliferation of cells 

leading to cancer. Also, tRNA-derived Fragments (tRFs) are also being researched as cancer 

causing agents [10]. Due to the latest RNA sequencing technologies, MALAT1 or “metastasis-

associated lung adenocarcinoma transcript 1” – a new groups of RNA transcripts specific to 

tumours, have been identified; their increased levels point towards growth in quantity and spread 

of tumour cells because they are found in high amounts in cancerous tissues [15]. Furthermore, few 

types of RNA have been discovered which are causative in isolating RBPs (RNA-binding proteins) 

that accumulate in neural tissues of the brain and cause neurological diseases such as ALS 

(amyotrophic lateral sclerosis) and myotonic dystrophy [16]. 
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2.1.4 RNA Structure 
 

RNA is a single stranded molecule, unlike DNA, its two stranded complementarily bound and more 

stable cousin. This makes the RNA highly unstable; it possesses high energy and affinity for 

chemical reactions. Also, the 2′-hydroxyl group on the ribose ring of RNA add to its instability 

because it enables RNA hydrolysis – where cleavage of phosphodiester bonds linking ribose sugars 

and phosphate groups takes place, causing the RNA to break. However, RNA are being synthesized 

in the cell at the same pace as it is being degraded, which holds our cellular makeup and functions. 

An RNA strand can self-fold by itself in various ways, forming canonical and nested base pairs, 

making bulges and helices including stem loops, hairpin loops, internal and external loops, 

multiloops, pseudoknots, along with non-canonical and non-nested base pairs. This self-folding 

results in three dimensional secondary and tertiary structures, which increase RNA stability and 

more importantly, it enables RNA to carry out its regulatory functions more suitably. Furthermore, 

chemical groups such as, methyl, upon binding to RNA three-dimensional structure, further 

stabilize it. For example, a tRNA sequence with a methyl group bound to its 58th position in 

molecule make the tRNA more functional and stable when compared to an unstable tRNA molecule 

devoid of methyl group at the 58th position which eventually gets degraded due to lack of 

functionality. RNA also forms three dimensional structures by binding to proteins known as 

ribonucleoproteins (RNPs). In such structures both the RNA and the RBPs function as catalysts 

[17], [18]. 

 
Figure 3: Diagrammatic representation of primary, secondary and tertiary structures of RNA; PDB:1KH6 (Image 

Source: Kim N. et al., 2013 [19]) 
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Figure 4: RNA secondary structure with various kinds of loops formed due to self-folding (Image Source: Andronescu 

M. et al., 2008 [20]) 

 

2.2 RNA Secondary Structure Prediction 
 

The discovery of the existence of RNA folding and three-dimensional structures brought with an 

understanding of RNA functions in greater detail. It became evident that the surfeit of functions of 

noncoding RNA could be ascribed to the participation of ‘free sites’ of 3D RNA structures in 

binding to proteins (RBPs) or other nucleic acid chains (DNA or RNA). Moreover, it is important 

to note that since tertiary structures are very difficult to predict from primary structures due to their 

dynamic nature and the highly chaotic biological environment in cells, study of RNA secondary 

structures from their primary structures and sequences came to be undertaken [1]. To identify the 

accessible sites on an RNA structure it was important to known how RNAs fold to form structures. 

This, as was proposed, could be done by obtaining the 3D structures of RNA through experimental 

techniques, such as, nuclear magnetic resonance (NMR), X-ray crystallography, or cryogenic 

electron microscopy. However, over time it dawned upon researchers that these techniques are 

highly time consuming and require adept handling by experts. So much so that only about <0.01% 
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of the 14 million noncoding RNAs having experimentally determined structures are collected in 

RNAcentral [21]. Therefore, the need arose to predict RNA secondary structures and thereby 

identify accessible sites on RNA by non-experimental means. Post this, identifying the nucleic acid 

bases at these sites would empower us to identify the functions wherein these RNA sites may, or 

already, play a role – but this would be a subsequent step.   

 

Many other genome-wide structure mapping techniques and computer based techniques have come 

to be devised over the past several decades for RNA secondary structure prediction. Computational 

techniques can broadly be divided into two categories – comparative sequence analysis methods 

and methods involving folding algorithms with scoring schemes of statistical, thermodynamic, or 

probabilistic nature [22][23]. These are studied in the subsequent sub-sections in the increasing 

order of relevance. 

 
    

2.2.1 Physical Methods for Genome Wide RNA Structure ‘Mapping’ 
 

Apart from the more successful experimental methods to obtain RNA secondary structures, namely, 

Nuclear Magnetic Resonance (NMR), and the X-ray crystallography, several other experimental 

attempts were also made to ‘map’ or ‘profile’ RNA structure throughout a genome. These are as 

described below. 

 

2.2.1.1 PARS Technique 
 

PARS, which stands for “parallel analysis of RNA structure”, is a technique developed for 

measurement of an RNA structure at the genome-scale. It employs separate structure-specific 

endonucleases (enzymes) which cleave double-stranded and single-stranded regions of an RNA to 

generate a dual library of RNA fragments. Then using deep sequencing, the model analyses the two 

RNA fragment libraries to identify if the inspected bases were in a double or single-stranded shape, 

thereby adding to the mapping of entire RNA secondary structure [24]. While the authors used the 

technique to profile the mRNA secondary structure of Saccharomyces cerevisiae (budding yeast), 

claiming that the coding regions contribute more to the secondary structure than the untranslated 

regions, they propose that the PARS technique can be used for predicting RNA structures for other 

species in equal capacity and in diverse conditions.  
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Figure 5: Using PARS technique to acquire RNA structure (Image Source: Kertesz, M., 2010 [24]) 

However, since the endonucleases are unable to permeate the membrane of a cell, RNA must be 

extricated out of cells for the technique to be carried out. This causes structural damage in RNA 

and even induces changes in the RNA natural structure. This remains a major drawback of the 

PARS technique. 

2.2.1.2 DMS Method and the Structure-Seq Model 
 

This method improves upon the problem of endonucleases not being able to enter cell membrane, 

by using dimethyl sulphate (DMS) that easily enters cells. Going further, the method maps RNA 

structure, by combining the technique with next-generation sequencing (deep sequencing) to 

develop a model called ‘structure-seq’ which enables one to perform in vivo quantitative profiling 

of RNA secondary structure at nucleotide resolution at the  genome-wide scale. The method was 

applied to the genome of Arabidopsis thaliana seedlings where initially DMS was used to methylate 

unpaired adenine and cytosine residues. The RNA sequences were then subjected to reverse 

transcription, her the methylated As and Cs were not reverse transcribed. This was followed by 

single stranded DNA ligation, PCR and deep sequencing of the obtained strands, to generate DMS 
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libraries – positive and control. Upon normalization and subtraction of the ‘Reverse Transcription 

stops’ and upon comparing the libraries mapped and unmapped nucleotides of the RNA structure 

were stated in terms of mRNA and rRNA percentages. The idea  behind the method is that 

constraining even a few nucleotides (As and Cs) – enhances prediction of other regions and this 

also enables structural ,aping of As and Cs which helps us note the base-pairing status of Us and 

Gs [25].  

 

Figure 6: An overview of structure-seq technique (Image Source: Ding, Y., 2014 [25]) 

While the technique improves RNA structure mapping, it can only identify two paired nucleotides 

from a molecule of RNA and the estimation of the rest requires simulation using computer 

algorithms.  
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2.2.1.3 SHAPE Technique 
 

The current technique was invented in 2008 with the objective of developing a high-throughput, 

comprehensive and quantitative RNA structure-mapping approach which locates unpaired 

(flexible) nucleotides within a folded RNA by assessing hundreds of nucleotides at the same time. 

The study was done by analyzing the genomic RNA structure of HIV-1 virus existing in four 

biologically significant states, since the function (virulence) depends on shape of RNA folding 

(structure) and its interactions with proteins [26]. Another study in 2013 employed a 3S (Shotgun 

Secondary Structure) strategy, that makes use of SHAPE technology, to determine secondary 

structures of long noncoding RNAs (lncRNA) – the class of RNAs that have emerged as playing a 

significant role in disease, epigenetics and development [27]. SHAPE (selective 2’-hydroxyl 

acylation analyzed by primer extension) technology involves acylation of the 2’-hydroxyl of the 

nucleotide bases A, U, G, C, that exist in an unpaired state; this enables identification of the paired 

or unpaired nature of bases at a particular position of the RNA structure and also contributes to 

better understanding flexibility of RNA single strand. However, as a limitation of this method the 

object of pairing among the paired nucleotides cannot be determined, if it was so then it could have 

been clearly stated if the bases have self-folded (paired) or are paired to another RNA or protein, 

which would have remarkably increased its relevance to RNA structure determination. 

Drawbacks of Physical Methods for Genome Wide RNA Structure ‘Mapping’ 

Besides the individual limitations of each of the above methods, a larger drawback exists. All the 

methods propose structure determination through mapping of a single RNA and none of them 

propose prediction of RNA secondary structure in large quantities. This emphasizes upon the need 

for computational prediction algorithms to achieve the same. 

 

2.2.2 Thermodynamic Folding Algorithms 
 

First computational algorithms for RNA secondary structure prediction can be traced back to the 

devising of folding algorithms with thermodynamic scoring schemes. Two major types of 

mainstream prediction techniques were developed in this regard, as described in the subsequent 

subsections. 

 

2.2.2.1 Deterministic Dynamic Programming Algorithm 
 

The Dynamic Programming Algorithm till date remains one of the most popular RNA folding 
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algorithm created by Nussinov et al. in 1978 [28]. It is a simple yet instructive model that aims to 

predict maximum matching size (MMS) from a given RNA sequence without considering 

‘crossing’ between match loops i.e. the algorithm attempts to predict the maximum number of base 

pairs forming by means of ‘nesting’ without considering pseudoknots (crossing) formation. The 

model claims that the effort to alienate pseudoknots is enforced by base pair maximization which 

in turn means free energy minimization [28]. As a major improvement over previous methods the 

algorithm showed promise of being used to predict secondary structure of longer RNA sequences. 

 

   a.       b. 

Figure 7: Comparison of RNA folding, one with only nested base pairing (a.) and one with both nested base pairing 

and crossing i.e. pseudoknots (b.). 

However, the algorithm has a low prediction accuracy due to the fact that in reality base pairs do 

not just form non-crossing ‘nested’ stem regions; they form multi-loops, internal loops, bulges and 

pseudoknots – none of which they algorithm encompasses. Furthermore, stacking of base pairs has 

not been considered and pseudoknots have not been considered. Also, base pair minimization does 

not give biologically relevant structures, it does not give sub-optimal structures rather focuses on 

obtaining an optimal structure, which is not natural considering the dynamic nature of RNA tertiary 

structures. 

2.2.2.2 Minimum Free Energy Algorithm 
 

The Minimum Free Energy algorithm (MFE) was developed by Zuker et al. in 1981 [29] and it was 

modelled after gaining inspiration and insight from the Dynamic Programming Algorithm [28]. The 

computational technique promised identification of a conformation for a sequence of RNA with the 

least (minimum) free energy which could be considered as the optimal secondary structure for that 

RNA. Furthermore, the algorithm made use of efficiency and speed of dynamic programming and 

combined it with published values of destabilizing and base stacking of RNA to obtain MFE. 

Moreover, the algorithm incorporated ‘additional parameters’ that contributed to identification of 

optimal structure, these being – data on chemical reactivity of RNA and its enzyme susceptibility 
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[30]. For example, if there is information through enzymatic studies that reflect that under partial 

hydrolysis condition which phosphodiester bonds are most vulnerable to cleavage, then this 

information would automatically be built onto the MFE algorithm and together with dynamic 

programming algorithm RNA optimal structure would be predicted. The efficacy of the model has 

been shown by demonstrating the folding of a l heavy chain mRNA fragment that is 496 nucleotide 

long and has a free energy of -181.4 kcal/mole, a 15% improvement over the minimum free energy 

found by Rogers et at. [31]. The amalgamation of thermodynamic parameters to perform better 

prediction has been exemplified by taking two major fragments from 16S ribosomal RNA of 

Escherichia coli. As a positive addition, the model claimed that the energy values are different for 

different types of folding in an RNA structure (hairpin loop, internal loop, etc) besides being 

affected by the type of base pairing and the adjacent base pairs. This further appreciates the 

efficiency of the algorithm. 

 

Figure 8: Diagrammatic Representation of an RNA structure including a mathematical graph on the right denoting 

multiple loop formations. (Image Source: Zuker et al.1981 [29]) 

Several successful tools came to be developed with the discovery of MFE algorithm. 

Mfold – A tool to predict RNA secondary structure using Thermodynamic methods, which is 

replaced by UNAfold, a tool that replicated and extends mfold by also predicting DNA folding 

[32],[33],[34]. 

RNAfold – The tool was proposed as a part of the Vienna RNA Package [35] and was aimed 

predicting secondary structure of RNA using MFE algorithm along with computations of the 

equilibrium partition functions and base pairing probabilities. The tool was upgraded with the 

release of Vienna RNA Package 2.0 [36]. 

RNAstructure – It is a software package to predict RNA secondary structure, including 

pseudoknots, and base-pair probabilities based on MFE algorithms and thermodynamic 
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parameters including ‘nearest neighbor parameters’ compiled by the Turner group in 2003 

[37],[38] and including enzymatic cleavage data, SHAPE data, and chemical modification 

accessibility. 

RNAshape – It came to be understood with time that an MFE structure does is not essentially 

biologically relevant, so RNAshape tool introduced ‘abstract shapes’ characteristic which 

incorporates arrangement of RNA helices while predicting structures [39]. In addition, other 

works such as maximum expected accuracy (MEA) were also included [40]. 

 

Limitations of Thermodynamic Folding Algorithms 

Dynamic programming algorithms and subsequent minimum free energy algorithms and further 

tools improving upon these techniques remarkably increased the overall accuracy of prediction of 

RNA secondary structure, when compared to earlier methods. However, they mostly focus on 

obtaining an optimal RNA structure, whereas in natural cellular environment RNA almost never 

exists in a conformation with minimum free energy. The complex atmosphere in cells induce RNA 

to stay in suboptimal conformations. Furthermore, Zuker algorithms had a better prediction 

accuracy for shorter sequences and not for longer RNA sequences.  

 

2.2.3 Comparative Sequence Analysis 

 

Conserved base pairs among sequences that are homologous are determined by comparative 

sequence analysis. It is commonly believed in biological experiments that among homologous RNA 

molecules there is a greater conservation of RNA structure than sequence. For example, all tRNA 

molecules have a clover leaf structure and are homologous despite having less conserved sequences. 

This is how comparative sequence methods improve accuracy of RNA secondary structure 

prediction. Some of the popular methods in this study are as follows. 

 

2.2.3.1 Sequence Comparison followed by Structural Prediction 
 

The method predicts secondary structure of RNA by making use of Stochastic Context-Free 

Grammars (SCFGs) and evolutionary history i.e. homology among sequences. It was proposed by 

Knudsen and Hein in 1999 [41] which introduces a KH-99 algorithm that first assumes an alignment 

for all the given sequences and then predicts a single structure based on the alignment. The tool 

Pfold [42] proposed in 2003 improves upon this model, making it more robust and reducing errors. 

However, the method does not predict pseudoknots and assumes loop and stem lengths to be 
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symmetrical. Furthermore, a good alignment is required prior to structure prediction and the time 

complexity of the model is high. 

  

 

Figure 9: Comparison of accuracy of prediction with and without phylogeny. 

Diamonds () denote prediction curve with phylogeny, square boxes () 

denote prediction curve without phylogeny and crosses (×) denote prediction 

curve using CLUSTAL W alignments and phylogeny estimation. Maximum 

possible prediction accuracy with regards to pseudoknots is represented by the 

dotted line at 94%. (Image Source: Knudsen & Hein, 1999 [41]). 

 

 

 

 

 

2.2.3.2 Simultaneous Sequence Comparison and Structural Prediction 

 

This method of RNA secondary structure prediction through comparative sequence analysis 

proposed by David Sangoff in 1985 concentrated on reducing time rather than memory 

requirements. It simultaneously performs structural prediction and sequence comparison. However, 

in its attempt to quicken the process of prediction the model demands excessive computational 

resources [1]. It’s memory requirements escalate to the order of n2N, which serves as a major 

limitation [43].   

 

2.2.3.3 Structural Prediction followed by Sequence Comparison 

 

The current method proposed by Allali and Sagot in 2005 establishes its model upon the objective 

to initially predict RNA secondary structure from multiple sequences and then align these structure 

to identify the most conserved structure to be optimal or to identify common substructures, which 

could then be used to study unknown structures of potentially similar sequences [44]. The model 

employs dynamic programming to predict secondary structures from sequences using an algorithm 

like Mfold [32] and uses tree representation to compare the secondary structures of RNA obtained 

from the prediction by comparing the distance between them. A novel contribution of the method 

is an algorithm that introduces ‘edge fusion’ and ‘node fusion’ while performing comparative 

analysis of trees. While this addresses some of the shortcomings of previous classical tree edit 

operations, the model still does not consider pseudoknots in RNA secondary structure prediction. 

Additionally, even though the model can predict several candidate structures [1], their validity as 
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real structures cannot be guaranteed. 

 

Figure 10: Different tree representation ((b), (c), (d), (e)) of a single RNA (a). (Image Source: Allali et al., 2005 [44]) 

 

Drawbacks of Comparative Sequence Analysis Methods 

Availability of a large number of such homologous sequences make this method highly successful 

and precise. However, only about 3000 families are known in Rfam [45], which is insufficient. 

Furthermore, these methods are not inclusive of pseudoknots and therefore more holistic models 

are required. 

 

2.2.4 Probabilistic Folding Algorithms 
 

Artificial Intelligence has contributed largely to various fields in the last several decades and with 

its advent it found applications in RNA secondary structure predictions as well. This was in the 

form of development of folding algorithms with probabilistic scoring schemes (parameters). In 

2003 a unique GPRM model employing a genetic programming method was employed to find 

common secondary structure elements in a large family with at least 15 members of unaligned RNA 

sequences [46]. The model did not however find global alignment or single sequence folding. 

Likewise, in 2006 a neural network method for prediction of RNA folding was proposed with the 

major advantage of reduced time by improving upon computation complexity of previous stochastic 

context-free grammar models. Due to the use of heuristic neural network models there was an 

increased prediction accuracy and the model could be used to predict folding of sequences with 
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greater than 1000 bases, unlike previous algorithms [47].  

Similarly, many other successful probabilistic models were developed generating good results 

however, they were created on the basis of small sample of data and the accuracy, which though 

significant, was low for data samples from a single class of RNA. Subsequently, the emergence of 

deep learning (machine learning) models in the domain of artificial intelligence promised a higher 

prediction accuracy and a potential for greater inclusion of data for model training to contribute to 

that prediction. Deep learning models have already showed remarkable performance in predicting 

protein secondary structure [48], resulting in several advances in the field. While such is the case, 

it is evident that achieving RNA secondary structure prediction is a more complicated endeavor 

than protein secondary structure prediction, for the simple reason that while base pairing has to be 

very specific in RNA (bases can only pair with certain other bases) this is not the case with amino 

acids, which require no specificity for intermolecular binding. Several successful deep learning 

models have been developed in the last two decades keeping this complexity in mind. Some of them 

are described in the following subsections.  

 

2.2.4.1 CONTRAfold 
 

In 2006 researchers from Stanford University proposed CONTRAfold – a novel RNA secondary 

structure prediction model [49]. This was a landmark model which veered the RNA biology 

academia into conducting deeper research into probabilistic models for structure prediction. Before 

CONTRAfold the experimental assays for studying base pairing in RNA sequences were still 

considered the most reliable [50] even though they proved to be arduous and expensive. After them 

minimum free energy techniques based on dynamic programming and physics-based empirical 

methods for thermodynamic parameter determination were the most popular since their 

performance was unparalleled when compared with any other developed methodologies [29], [32]. 

However, with increasing advancements in computers and algorithms, SCFGs or ‘Stochastic 

Context-Free Grammars’ gained popularity as alternative methodologies for RNA structure 

determination based on probabilistic algorithms [41], [42]. When energy-based methods employing 

RNA structural energy based empirical constraints proved insufficient in cases where it was 

difficult to impose limits on the measurability of certain parameters, the scoring models of SCFGs 

offered efficient alternatives. The SCFG methods specified grammar rules that encourage joint 

probability distribution over plausible RNA sequences and structures.  The parameters arrived at 
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through them were governed by standard mathematical constraints of probability distributions. 

These parameters could be easily formulated computationally by analyzing clusters of RNA 

sequences with known RNA structures using SCFGs.  

However, even the most complex SCFG models could only show a modest improvement in 

prediction, which remained much lower than that of empirical thermodynamic models. This 

propagated a belief among researchers that probabilistic models could never embody the underlying 

physics that stabilizes RNA structure, in the manner thermodynamic models could. CONTRAfold, 

however, disapproving this belief, proposed a conditional log-linear model (CLLM) – a flexible 

probabilistic method to predict RNA secondary structure. CCLMs like SCFGs employ parameter 

learning and optimization that is driven computationally. But improving over SCFGs, CCLMs 

generalize by also including complex scoring schemes such as those used in Mfold [32] and other 

energy-based structure prediction models. They do this through feature rich scoring and 

discriminative training [49]. This championed CONTRAfold as the pioneer model in the domain 

of RNA single sequence secondary structure prediction, which used a probabilistic scoring scheme 

to give the highest accuracy, that was even greater than empirical thermodynamic models. As a 

limitation, the model does not accommodate for pseudoknots while predicting structure. 

  

2.2.4.2 CENTROIDFOLD 
 

With a focus on predicting noncoding RNA secondary structure, CentroidFold [51] improved upon 

the previous folding algorithms. The minimum free energy techniques, such as Mfold [32] and 

RNAfold [52] performed prediction after estimating thermodynamic parameters experimentally. 

Alternative techniques thereafter were based on probabilistic frameworks which employed 

stochastic context-free grammars (SCFGs) but did not cater for pseudoknots. These algorithms 

utilized the popular “Cocke–Younger–Kasami (CYK) algorithm” and calculated the structure with 

maximum likelihood (ML) and minimum free energy (MFE). However, multiple studies shed light 

upon the low probabilities of prediction using MFE/ML estimators and lack of optimal prediction 

of base-pairs. To tackle this limitation several SCFG models considered an ensemble of possible 

structures as solutions rather than just considering one solution with maximum probability. 

Alternative estimators facilitated this, for example the Sfold model used centroid estimator [53]–

[55] and the CONTRAfold model used minimum expected accuracy (MEA) estimator [49]. These 

methods maximized the accuracy of prediction. In CentroidFold, the authors proposed a novel 
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estimator called -centroid estimator which promised a higher accuracy of prediction and a superior 

performance, proven both experimentally and theoretically, when compared to the MEA estimator 

[51]. The server takes as input both single sequence RNA data (in FASTA or text with plain 

sequence) or data comprising multiple sequence alignment of RNAs (in CLUSTAL-W format).  

 

a.                   b.          c. 

Figure 11: A comparison of a predicted tRNA secondary structure – using RNAfold (a.) and using CentroidFold (b.). 

(c.) is the reference structure. (Image Source: Sato, K. et al., 2009 [51]) 

 

The predicted structures in Figure 11 signify the importance of posterior methods for decoding 

RNA secondary structures, including -centroid estimator and their ability to provide more reliable 

predictions since several noncoding RNAs do not form reliable secondary structures using MFE 

algorithms. Notwithstanding its several advantages, the CentroidFold model, like its predecessor 

does not account for pseudoknots in its predictions. 

 

2.2.4.3 ContextFold 
 

The ContextFold tool was developed in 2011 because of ‘rich parameterization’ of RNA data [18]. 

In the race to ever improve the efficacy of prediction models, the authors observed that while 

methodologies started shifting towards machine learning based probabilistic models, the ‘features’, 

the ‘parameters’ obtained to facilitate structure prediction generally remained consistent in terms 

of numbers. To increase accuracy the authors aimed at increasing the number of parameters by 

several fold. What resulted was a model with features for enabling prediction in the order of about 

70,000 free parameters and a far more significant improvement in accuracy of prediction; better 

than the previous best model [56]. Previously the parameters used to be derived from experimental 

methods [57]–[59] based on the minimum free energy and thermodynamic feature extraction. 
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However, the increasing availability of both RNA sequential and empirically determined structural 

data in novel databases [60], the accelerations in RNA folding algorithms [61],[62] and added to 

this the advancements in machine learning techniques [63],[64] had all collectively made it feasible 

to improve parameter-estimation remarkably, ensuing greater prediction accuracies. This proved to 

be appropriate since successful machine learning models are based on large training data [20] which 

the RNA databases now provided to a significant extent [60]. The structural elements defined by 

the ContextFold tool are based on those of the Turner99 model [65] for enabling effective 

interfacing. However, unlike any previous scoring models more structural elements and longer 

sequences comprise the structure of this model.  

 

 

Figure 12: A demonstration of increase in validation set accuracies with increase in training set size (Image Source:  

Zakov S. et al., 2011 [18]) 

Moreover, while earlier models assigned only a single score to each element, ContextFold assigned 

score elements as a summation of scores of various sub features encompassing the wide array of 

structural and sequential data. This made the model more detailed and robust with a higher accuracy 

for prediction. ContextFold boasted an ensemble of 70,000 parameters, which is a remarkable 

improvement over parameters in previous models by manifold. The model claimed an error 

reduction rate of about 50% compared to previously known best models, a remarkable feat [18]. 

Like CONTRAfold and CentroidFold models however, ContextFold accounted only for 

pseudoknot-free RNA folding.  
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2.2.5 Additional Methods 

2.2.5.1 Developments for RNA tertiary structure prediction 
 

In any of models described in the above methods, the accuracy of prediction could not cross 80%. 

This ceiling in performance existed largely due to the exclusion of base pair interactions that result 

in the formation of tertiary structures in RNA [22], [66], [67]. Such interactions can be – unstacked 

base pairs, pseudoknots (non-nested base pairs) - especially kissing hairpins, noncanonical base 

pairs (that do not follow base-pairing proposed by Watson-Crick i.e. G-C, A-U and G-U) and triplet 

interfaces [13], [21]. In context of this realization some noteworthy RNA secondary structure web-

tools were developed encompassing these interactions.  

 

pknotsRG – It employs an algorithm for prediction of RNA secondary structures including 

pseudoknots under the minimum free energy (MFE) model in O(N4) time, where N is the length of the 

sequence. The class of pseudoknots considered by the algorithm are ‘simple recursive’ which are 

restricted by the three canonization rules [68]. 

 

Probknot – A tool for predicting RNA secondary structure with pseudoknots with a reduced time of 

O(N2), where N is the length of the sequence. Probknot assembles MEA structures from calculated 

probabilities of base pairing [69]. 

 

IPknot – Another RNA secondary structure prediction tool including pseudoknots. It improves upon 

the limitation of analyzing only certain types of pseudoknots by studying a wider class of pseudoknots 

with decreased time. It further shifts from an MEA based algorithm to a heuristic integer programming 

algorithm to refine base-pairing probabilities. IPknot can also predict consensus secondary structure 

from a multiple sequence alignment input and it gives a better prediction accuracy [70]. 

  

Knotty – It improves upon the preceding models on predicting RNA secondary structures including 

pseudoknots in terms of space and time consumption. Previously the authors proposed a CCJ 1.0 

algorithm that essentially involved recognizing and predicting TGB (three-groups of bands) 

pseudoknot structures [71]. In Knotty (CCJ 2.0) the authors claim improved space complexity due to 

the technique of ‘sparsification’. The model outperforms CCJ 1.0 [71] and Pknots [72] in terms of run-

time. Moreover, it employs ‘HotKnots DP09’ [73], a state-of-the-art energy model, for a superior 
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accuracy of prediction [74]. 

 

MC-Fold and MC-Sym Pipeline – The authors propose a model for predicting non-canonical base 

pairings (i.e. other than A-U, G-C and the occasional G-U wobble) in RNA secondary structures, in 

an effort to understand the tertiary structures of RNA. The model considers all base-pairing 

possibilities as scoring functions for RNA folding. MC-Fold and MC-Sym are two algorithms based 

after cyclic motifs of nucleotides, which upon considering these scoring functions showed promising 

folding prediction results from sequences [75].   

 

MC-Fold-DP – It is a theoretical model that captures extended structural motifs of RNA that share 

nucleotides and RNA pair families, thereby predicting non-canonical base pairing in RNA secondary 

structures. The model adds dynamic programming to add sparse corrections of data to the earlier MC-

Fold method [75] for better performance and proposes a number of programs for optimizing 

parameters and predicting structures [76].  

 

CycleFold – A knowledge-based model is the thrust of this method which predicts non-canonical base 

pairing by scoring nucleotide cyclic motifs (NCMs). A partition function algorithm is proposed which 

estimates, for both non-canonical and canonical base pairs, the base-pairing probabilities. A further 

improvement of these base-pairing probabilities estimations is facilitated by the previously published 

TurboFold algorithm [77]. Complementing this the previous knowledge of canonical secondary 

structures result in greater prediction accuracy of non-canonical base-pairs, resulting in a more precise 

prediction of complete tertiary structures [78]. 

 
 

2.2.5.2 Hybrid Methods 
 

While research aimed towards predicting RNA structure diverged into different classes depending 

on type of algorithms used, some researchers attempted at applying a hybrid approach towards 

solving the problem. These studies are far more recent and are increasing, propagating ideas to 

develop better techniques and algorithms. One such example is the CDP-Fold algorithm [1] that 

employs convolutional neural network and dynamic programming along with sequence alignment. 

While the method results in a higher accuracy compared to previous singular algorithms, they still 

hold some drawbacks. For example, the problem of G-U swing pairs (or wobble) is not well-

explained and integrated in the algorithm. The results yet do not give a satisfactory secondary 

structure, which the authors feel can be improved through better optimization. Also, the model 

considers very few numbers of longer sequences in input data which must be increased; and a better  
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prediction of pseudoknots must be incorporated. Another technique, called SPOT-RNA [23] was 

proposed, aimed at enhancing the modeling of RNA structure, their sequence alignments and their 

functional annotations. The model employs techniques of deep learning, such as convolutional 

neural networks, two-dimensional Bidirectional Long Short-Term Memory (2D-BLSTM) and 

combines it with transfer learning on data from bpRNA – a large repository of about 10,000 RNA 

sequences. The algorithm proposed, claims to include all sorts of RNA structural interactions 

including those involved in forming a tertiary structure. These are – unstacked (lone) base-pairs, 

pseudoknots, non-canonical base-pairs, and triplet interactions. A limitation is that the data used as 

input does not have many large RNA sequences, however the computational time taken by the 

model is favorably decent for genome-scale studies.  

 

 

2.2.5.3 RNA Inverse Folding 
 

In pursuit of attaining structure from sequence to understand function of RNA, researchers tried 

another approach on the side: designing desired RNA sequences depending on the target secondary 

structure required for specific functions. Several top-of-the-line algorithms have been developed in 

this approach, such as, the local search algorithms, constraint programming and structure algorithm, 

downhill simplex algorithm, multi-objective genetic algorithm, etc. Some of the popular tools for 

inverse folding are RNAinverse [52], EteRNABot [79], Frnakestein [80], RNAiFold [81], 

IncaRNAtion [82] and MODENA [83]. All these, though moderately satisfactory in complicated 

cases, are found to be decent overall for RNA inverse folding [84].   
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Table 1: Comparison of Popular RNA Secondary Structure Prediction Methods in last 20 years. 

Name Algorithm Machine 

learning used 

Pseudoknot 

Prediction 

Reference 

PARS (2010) Comparative Sequence 

Analysis 

No No [24] 

DMS (2014) Comparative Sequence 

Analysis 

No No [25] 

SHAPE (2008) Comparative Sequence 

Analysis 

No No [26] 

RNAshapes (2014) Thermodynamic  No No [40],[39] 

RNAstructure (2010) Thermodynamic  No Yes [38] 

RNAfold (2011) Thermodynamic  No No [36] 

CONTRAfold (2006) Probabilistic Yes No [49] 

CentroidFold (2009) Probabilistic Yes No [51] 

ContextFold (2011) Probabilistic Yes No [18] 

SPOT-RNA (2019) Probabilistic Yes Yes [23] 

Knotty (2018) CCJ 2.0  No Yes [74] 

IPknot (2011) MEA and Heuristic Integer 

Programming  

No Yes [70] 

MC-Fold and MC-Sym 

Pipeline (2008) 

MC-Fold and MC-Sym  No Yes [75] 

CDP-Fold (2019) Probabilistic and Dynamic 

Programming 

Yes Yes [1] 
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2.3 Neural Networks 

 

 
2.3.1 Machine Learning General 

 

Machine learning can be defined as a branch of artificial intelligence in which systems, trained on 

known data, facilitate prediction of patterns in unknown data due to generation of mathematical 

models. Techniques of machine learning are approaches to study data and gain operational 

relationships from them without defining them beforehand [85], [86]. Coming to computational 

biology, the appeal of machine learning is its ability to deduce prescient models without requiring 

any solid knowledge concerning the causal processes, that are much of the time obscure or 

inadequately characterized. For example, most precise forecasts of expression of gene levels are 

presently produced by a wide range of epigenetic characters utilizing random forests [87] or sparse 

linear models [88]; the mechanism behind obtaining transcript levels from the chosen features, 

however, remains a topic of active study. Machine learning methods remain integral for predictions 

in the fields of biotechnology. Be it metabolomics [89], genomics [90], proteomics [91], or 

assessing drug sensitivity [92]. 

Four stages comprise the general machine learning methodology which describes the above 

applications. These are: cleaning of data and its preprocessing, mining and determination of 

attributes (features), ascertaining fitting of model and finally assessment, which gives results 

(Figure 13). As per convention the sample of one data is demarcated as info x, which is usually 

more than one number, and its output value is labelled as y (output), which is usually a solitary 

number [93]. 

 

Figure 13: The standard machine learning model can be divided into four steps: pre‐processing of data, feature 

extraction, model learning and evaluation of model (Image Source: Angermueller C, et al., 2016 [93]). 

Machine learning models are popularly divided into supervised and unsupervised. A supervised 

model attempts at obtaining relationships (functions) like F(x) = y, from recorded data pairs used 

for training, such as (x1, y1) and (x2, y2) and so on.  For example, in biology this can be classically 

applied to study the effect of a compound (drug) on cancer cells [92]. Variants in sequence in 
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somatic cells of the cell line would be encapsulated by x (input features), along with the drug’s 

concentration and chemical composition, while the effect on cell lines (viability) would be 

represented by the label y (output). These labels together can train a random forest classifier or an 

SVM (support vector machine) or other similar methods to determine the relationship F. In the 

future, the trained function F(x’) can be used to determine the output label y’ for a new cell line 

with input data x’. This occurs, even if the series of steps bringing about the relationship identified 

by the function F, between sequence mutation and cell line viability are not clear, which is often 

referred to as the ‘black box’ problem. This form of representation stands for both classification 

and regression, where y is a definite class label and a real number, respectively. In unsupervised 

learning models, however, label y for output is not required and the models attempt at obtaining 

patterns directly from the input data x. Few examples of biological models employing unsupervised 

learning are – PCA (principal component analysis), detection of outlier and clustering. 

 

 

Figure 14: Classification of Machine Learning Techniques. (Image Source: A. Jabeen et al., 2018 [94]). 

It proves to be an arduous, and a skillful task to derive input features x from raw data. So much so 

that the process is highly specific to the problem, nevertheless, it is vital for efficient model 

performance. For data of higher dimensions this is an even bigger problem. Lately, the problem 

has been tackled by the use of deep artificial neural networks [95] to represent the data, which 

automate the process. In a deep neural network, data is taken from the input layer and converted 

into a representation of theoretical features by sequentially and repeatedly accumulating outputs 

from previous layers in a manner that is information-driven, in the process capturing and 

formulating complex functions. Deep learning techniques and their variations are widely used 

today in the domains of natural language processing [96], speech and image recognition [97], and 

in bioinformatics and computational biology [98], [99].  
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2.3.2 Artificial Neural Networks 

Inspired by biological neural networks in the human brain, an artificial neural network comprises 

multiple layers of neurons (interconnected mathematical units) [100]. While the width of a neural 

network signifies the number of neurons in a single layer, the depth indicates the number of hidden 

layers in the neural network. ‘Deep networks’ is a term that denotes artificial neural networks, 

consisting of large number of hidden layers, that can be trained.  

The workflow of deep networks is such that first the input data is received in the initial layer, then 

the data is processed through multiple hidden layers in a non-linear manner and it emerges 

converted, and finally an output layer computes the data to present (Figure 15 Part A). A neuron 

in a hidden layer is connected to every single neuron of the previous layer. Every neuron 

determines a sum of its input data which comes from weights and estimates output F(x) by 

employing a non-linear activation function (Figure 15 Part B). The ReLU (rectified linear unit) 

sets a limit for negative signals to ‘0’ and it goes through a positive signal; it is most prevalent 

activation function and is open to learning quickly as opposed to substitute functions, such as tanh 

unit and sigmoid function [101]. 

From the samples of inputs and outputs, weights (w(i)) are obtained among neurons, as factors, 

which encapsulate the data as represented by the model. Loss function i.e. L(w) measures the extent 

of fitness of output of the model to original sample label (Figure 15 Part A, down). Training 

minimizes L(w), however, minimization is difficult due to greater dimensionality and non-convex 

nature of the loss function, like the crests and troughs in graph (Figure 15 Part C).  Decades later 

it became possible to estimate the loss function gradient through chain rules for derivatives using 

the ‘backward propagation algorithm’ [102]. This enabled use of stochastic gradient descent for 

more effective training of neural networks. Learning involves comparison of true label and 

predicted label to estimate current model weights loss, then backward propagating that loss through 

network to estimate loss function gradients and upgradation (Figure 15 Part A). Gradient based 

descent has been used to optimize loss function L(w) in a classical manner. At every stage, the 

weight vector (red dot), follows down the slope, dw signifying the downwards arrow, by learning 

the rate η (vector length). Various spheres pertaining to the loss function are explored by the 

decaying of the learning rate with time, such as fine-tuning factors (parameters) with even minute 

rates of learning in subsequent stages of training of model. Already known and existing 
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mathematical models could be used for studying deep learning further. 

With the advent of artificial neural networks, certain architectures have come to be developed, 

which serve as alternatives for specific applications. For example, CNN (convoluted neural 

networks) for image processing, RNN (recurrent neural network) for sequential data [103], or 

autoencoders [104] or Boltzmann machines [105] for unsupervised learning. Characteristics that 

enable network architecture are extracted in an information-driven manner by assessing 

performance of model and that of its validation data set. 

 
Figure 15: An Artificial Neural Network and its working (Image Source: Angermueller C, et al., 2016 [93]) 

 

2.3.3 Convolutional Neural Network 

CNNs or Convolutional neural networks were initially greatly used in neuroscience laboratories 

to study visual cortex of cats. They were invented by Hubel and Wiesel and it was found that 

felines had a visual cortex characterized by neurons of smaller size that react to smaller subjects 

in the field of vision, and larger and intricate neurons that react to a bigger subjects [106].   

CNNs display data in the form of multidimensional exhibit models, for example, two‐ dimensional 

pictures with three channels of different shades [107], [108] or genomic sequences which are 

unidimensional and contain a single channel per nucleotide [109]. However, the great number of 

dimensions that the algorithm considers from the input, say for example, a million pixels denoting 

an image of high resolution: makes it complicated to train a completely linked neural network, 

since in such a model the number of factors (parameters) would then exceed the quantity of data 
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used for their fitting. CCNs sidestep this problem by studying the structure of the network and 

making further assumptions on it, thus constraining the number of factors of import to learn. 

A single layer in a CNN consists of a consists of multiple filters, also known as character (feature) 

maps, or neuron maps; size of a filter equals image dimension from input (Figure 16 Part A). Local 

connectivity and sharing of parameters – these two incorporations facilitate the reduction in 

parameters in the model. Each neuron in a feature map is linked only to neighboring patch of 

neurons of the preceding layer which is known as the ‘receptive field’; this is unlike what happens 

in a completely correlated network. Also, within a feature map all neurons share the same 

parameters. Therefore, within a feature map all neurons share identical features as those in the 

preceding layer, albeit at locations which are distinct. For example, in a sequence motif from a 

sequence in genome, or in an image, different feature maps can detect edges with distinct 

orientation.  By estimating a separate convolution of its receptive field, a particular neuron activity 

is achieved, which applies an activation function and computes the weighted sum of neurons from 

input (Figure 16 Part B).  

 

Figure 16: Working of a Convolutional Neural Network (Image Source: Angermueller C, et al., 2016 [93]) 

To achieve prediction in the final stage, for example, in identifying objects from an image, the 

frequency of features and their precise position is insignificant in most applications. The pooling 

layer makes use of this theory and recapitulates neighboring neurons through computation, 
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resulting in presentation of feature activities which is smoother (Figure 16 Part C). The image from 

input is significantly sampled down, when a similar pooling function is applied to small patches 

of images which are moved by greater than a pixel. This reduces the parameters of the model 

further. 

A classic convolutional neural network therefore comprises numerous convolutional layers and 

pooling layers; these enable the discovery of increasing number of intangible features at a 

progressive scale – from small edges to parts of objects, and from them to whole objects. A single 

layer or multiple linked ones can follow the final pooling layer (Figure 16 Part A). In a model, the 

super factors i.e. the hyper-parameters, which essentially control the learning process, such as the 

quantity of feature maps, number of convolutional layers and receptive field size, all depend upon 

the application and therefore should explicitly be chosen from a dataset for validation.  

 
2.3.4 Recurrent Neural Network 

Unlike the human brain, which connect events of previous events while addressing current events, 

neural networks of the traditional kind (before RNNs) lack this ability. Say, for example a story from 

a novel is to be classified according to events happening at every page in the novel. Conventional 

neural networks are unable to identify later events in the pages of novel based upon previous events. 

Researchers developed Recurrent neural networks to tackle the problem. RNNs contain loops, which 

allows retention of previous information.  

 

(a)            (b) 

Figure 17: (a) RNN with loop representation and (b) Unrolled RNN. 

Figure 17 (a) represents a part of a neural network (A), which takes an input xt and gives an output of 

a value ht. A loop in the diagram enables data transfer from one part of the network to another part. 

An RNN can be thought of as several copies of one single network, with each copy transferring some 

information to the next copy.  

Figure 17 (b) represents the representation if the loop is unrolled. This structure of RNNs like a chain 
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indicates that they are closely related to sequences (think, genomic sequences), and lists, and would 

find major applications by formulating natural architectures in these domains. As a result in the last 

few decades RNNs have found a range of applications [110], be it in speech and language recognition 

models, translation, captioning images or computational biology.  

The Problem of Long-Term Dependencies 

 

While RNNs can link previous information to current task, the success of such performance is 

varying depending upon the gap between the relevant information (in the past) and the current task 

where prediction is needed. It was found that if this gap is extensive, i.e. if the relevant information 

needed for prediction is in a repeating module of the network that is much in the past then RNN 

fails. This problem is referred to as the Long-Term dependency problem. In theory, RNNs can 

handle such problems. However, in practice, they do not seem to be able to learn them. LSTMs 

and GRUs do not have this problem. 

              

(a)                                                                             (b) 

Figure 18: (a) RNN without long-term dependency problem, (b) RNN with long-term dependency problem. 

 

2.3.4.1 Long Short-Term Memory (LSTM) Networks 
 

LSTMs are a type of RNN specifically made for circumventing the long-term dependency problem 

in traditional RNNs. They were first incorporated by Hochreiter & Schmidhuber in 1997 [111] after 

which they were popularly used and refined in the years that followed. 

LSTMs by default explicitly remember data for long time periods. Like simple RNNs they also have 

a chain like structure however the repeating module is structurally different – in place of just one layer 

of neural network (like ‘tanh’ layer in simple RNN) there are four layers of neural networks interacting 

in a unique manner. 

2.3.4.2 Gated Recurrent Units (GRUs) 
 

GRUs are a variation of LSTMs that were introduced by Cho et al. in 2014 [112]. They are also 

aimed at ameliorating the problem of long-term dependencies. Gated Recurrent Units do this by 
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incorporating a forget gate with input gate to form an ‘update gate’, however the number of 

parameters are fewer than LSTM since an output gate is absent. GRU also merges the hidden and 

the cell state. It has a simpler architecture than LSTMs and is gaining increasing popularity. 

   

(a)  

(b)  

(c)                                 
 

Figure 19: (a) RNN architecture, (b) LSTM architecture, (c) GRU architecture.   
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CHAPTER 3   METHODOLOGY 
 

3.1 Data Curation 
 

The objective of the study, which was to determine site accessibility (bound or unbound) of 

nucleotides in RNA by prediction, was achieved through a neural network architecture comprising 

of embedding, CNN and GRU layers. For building the model known structural data on RNA 

sequences was required. 

Structures of RNA were obtained from two popular RNA secondary structure databases namely  

RNA STRAND [20] and Comparative RNA Web (CRW) Site [113]. The databases are as 

described below. 

The RNA STRAND database is a comprehensive collection of known RNA secondary structures 

that have been carefully assembled from trusted databases. It further provides easy online tools 

that facilitate searching, analyzing, and downloading of data as per selection. RNA STRAND – 

the “RNA secondary STRucture and statistical ANalysis Database” is publicly available and it 

consists of total 4666 RNA structures obtained from different databases, as listed in Table 2. 

Table 2: Provenience of structures in RNA STRAND 

Source database Number of RNA structures 

RCSB Protein Data Bank 1059 

Gutell Lab CRW Site 1056 

tmRNA Database 726 

Sprinzl tRNA Database 622 

RNase P Database 454 

SRP database 383 

Rfam database 313 

Nucleic Acid Database 53 

TOTAL 4666 

 

• The list of types of RNA in the database is as follows: Transfer Messenger RNA, 

 16S Ribosomal RNA, Transfer RNA, Ribonuclease P RNA, Synthetic RNA, Signal 

Recognition Particle RNA, 23S Ribosomal RNA, 5S Ribosomal RNA, Group I Intron, 

Hammerhead Ribozyme, Other Ribosomal RNA, Other Ribozyme, Group II Intron, and  
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 Cis-regulatory element. Among these Transfer Messenger RNA,  16S Ribosomal RNA 

and Transfer RNA are predominant with 726, 723 and 707 entries, respectively.  

• In all the 4666 RNA structures different structural motifs were found. They were – 

pseudoknots, multibranched loops, internal loops, bulge loops, hairpin loops and non-

canonical base pairs. Among these the most predominant were hairpin loops which were 

found in about 4575 RNA structures, with 43442 total occurrences [20]. 

• The RNA structures are not limited to human beings as source but are attributed to a wide 

range of organisms for their provenance. 

• Link to the database: http://www.rnasoft.ca/strand/ 

 

The CRW or the “Comparative RNA Web Site” is a database consisting of wide range of entries 

of several different kinds of RNA in terms of sequence and structure, obtained through 

comparative sequence analysis. The database aims to shed light on RNA structural information 

through analysis of phylogenetic relationships between them. 

 

Figure 20: Homepage of CRW site when it was launched in 2002 (Image Source: Cannone, J.J. et al., 2002 [113]). 
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• The database consists of four key comparative information systems. These are: Current 

Comparative Structure Models, Sequence and Structure Data, Data Access Systems, and 

Nucleotide Frequency & Conservation Information.  

• The sequence and structural information is from three types of ribosomal RNA, namely, 

5S, 16S, and 23S rRNA, two kinds of catalytic intron RNAs (group I, group II) and the 

adaptor molecule - transfer RNA (tRNA). CRW site predominantly contains 16S rRNA 

data. 

• Link to the website: http://www.rna.icmb.utexas.edu/ 

 

For our study, ‘.ct’ files (which secondary structure information for a sequence)  were taken from 

both the databases. All 4666 files were obtained from the RNA STRAND database while 17032 

files were obtained from Comparative RNA Web (CRW) Site – all of them containing 16S rRNA 

structures. Therefore, total 21698 sequences from both databases were collected.  

 

3.2 Data Preparation 
 

 

3.2.1 Data Cleaning 
 

Of the 21698 sequences taken from both the databases, many consisted of unknown nucleotides. 

Such sequences were filtered out using Python. Only the sequences with letters ‘A’, ‘U’, ‘G’, and 

‘C’ were retained. This resulted in curated set of 21145 sequences.  

 

3.2.2 Data Clustering 
 

Among the remaining 21145 entries, majority were of 16S rRNA, since about 17032 entries were 

from the CRW site which were all of the type16S rRNA. Therefore, there was a need to remove 

sequences which were largely similar and retain only the unique sequences. This was achieved 

through CD-Hit-EST program. 

• CD-HIT is a popular program used for comparing and subsequently clustering nucleotide 

or protein sequences [114], [115]. The program is extraordinarily fast and can handle 

exceptionally large databases. It can eliminate bias in datasets and facilitate improved 

understanding of structure in data, while can greatly reducing manual and computational 
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efforts in sequence analysis. Popular tools such as Uniprot, SWISS-MODEL, FFAS and 

CAMERA, all indirectly employ CD-Hit for clustering data. 

The CD-Hit-EST clustering performed upon the 21145 RNA entries reduced the number of 

sequences significantly. CD-Hit clusters sequences according to user define similarity cut-off 

value. Stringent Parameters used for clustering, including an 85% cut off, are enlisted in Table 3. 

Table 3: Parameters for Sequence Clustering. 

 Parameters Symbols Value 

Word length n 12 

Global sequence identity G 0 

Length of throw away sequences L 12 

Length difference cut-off in nucleotides S 0.80 

Alignment coverage for the shorter sequence aS 0.98 

Number of threads T 0 

 

After clustering and reducing sequences with similarity as per Table 3, 4400 sequences were 

obtained. Among these the minimum sequence length was 13 nucleotides and maximum sequence 

length was 4379 nucleotides. Median sequence length was 463 and all in all the sequences 

contained 29.7 million nucleotides. All sequences were padded up to the maximum length, i.e. 

4379 with ‘<pad>’ tag before training the model. 

 

3.3 Building the Model 
 

3.3.1 Python for model implementation 

Python Keras library (2.4.2) for deep learning, using TensorFlow (1.14) was used in the 

background for model development and training. 

TensorFlow is an open-source programming library widely finding application in dataflow 

programming across a broad array of possible undertakings. It is a representative math library, and 

is similarly used for machine learning applications, for example, neural systems. In Google 

browsing, it finds application in both research and generation. 
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Keras is a high-level neural networks API, written in Python and capable of running on the top of 

TensorFlow, CNTK, or Theano. It was developed with the aim of enabling rapid experimentation. 

Being able to go from an idea to result stage, in minimum time and the least possible delay is 

crucial for good research. Keras offers simple and rapid prototyping, in terms of - user friendliness, 

modularity, and extensibility. It supports both CNNs and RNNs, as well as combinations of the 

two; and runs effortlessly on CPU and GPU. 

 

 

3.3.2 Steps in building the model 

The model was created in such a manner that single nucleotide features, global contributing 

features, and local window features; can all be extracted.  

• Initial step was the introduction of an embedded layer in the model so that it may learn or 

extract features of single nucleotides. 

• As a second step, a one-dimensional CNN layer (Conv1D) was added upon the embedding 

layer. It was meant to function as a sliding window with user-defined window length to 

extract locally contributing features. 

• On top of the Conv1D layer, a layer of bidirectional Gated Recurrent Units (GRU) was 

superimposed. GRUs are a type of RNN which contain a separate memory channel to deal 

with the problem of ‘vanishing gradient’; this memory channel contains updated and reset 

gates for retaining impacts for values far way in the time step. The bidirectional GRU layer 

would learn and extract global features from both the direction of the sequence. 

• The next step was the concatenation of the previous two layers i.e. the integration of the 

learned features in Cov1D and GRU layers.  

• The results from concatenation i.e. all the neuron extract features were fed to a time 

distributed dense layer of 4379 time-steps and 3 dense layers in each time-step with 

application of ‘SoftMax activation function’. 

• Finally, the nucleotide distributed dense layer resulted in an output where the last time-step 

gives probability of each nucleotide being ‘bound’, ‘free’ or a ‘pad’ (no nucleotide), as the 

sequences were padded up to the maximum length of 4379. The ‘start’ and ‘pad’ tag in the 

start of a sequence take the maximum length of sequences to 4381 in the network. 
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Figure 21: Architecture of the proposed model: an ensemble of Embedding, CNN and GRU layers for extracting features. 

Extracted features were fed to step distributed dense layer with softmax function for determining the pairing probability of 

nucleotide. 

 

3.3.3 Neural Network created 

 
Figure 22: A workflow depicting the neural network model consisting of Embedding, Cov1D and GRU layers. 

 

The python code for the model training and prediction is shown in APPENDIX I and II, 

respectively. 
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3.4 Training the Model 
 

 

 

Figure 23: Classic approach for training a neural network model (Image Source: C. Angermueller., 2016 [93]) 

Training of a machine learning model is done to discover parameters (w) which minimize the 

objective function L(w), which measures the fit between model predictions parameterized by w 

and the actual observations. The most common objective functions are mean-squared error for 

regression and cross-entropy for classification. Minimizing L(w) is a challenging task because of 

its non-convex and high dimensional nature. Refer section 2.3.2 to gain a more elaborate 

explanation. 

 

3.4.1 Establishing Hyperparameters in the Network 

The most challenging part for training a deep learning model is to decide the hyperparameters such 

as the number of neurons in layers, features to extract, window length and filters of CNN etc. A 

lower number of neurons will not be able to learn all the features and the model will not perform 

well, on the other hand, a larger number of neurons tend to memorize the training dataset leading 

to overfitting. For deciding the hyperparameters, we used a grid search method on various 

combinations of the above stated hyperparameters and selected the combination which showed the 

best performance on the validation dataset. It was found that 64 features per nucleotide in the 

embedding layer, a window size of 100 and 64 filters in 1D CNN, and bidirectional GRU with 256 

recurrent units, all perform best on the validation set.   

 

3.4.2 Apportioning Data into Training, Validation and Testing 

 
Machine learning models need to be not just trained but also must be validated and tested on 

independent sets of data to avoid overfitting and assure that the model will perform well on 
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unknown data. This is the standard practice for deep neural networks. The training set is used by 

the model to learn with different hyper‐parameters imposed, which the validation set evaluates 

later. Model giving the greatest execution , such as ‘prediction accuracy’ or ‘mean‐squared error’, 

is chose; it is additionally assessed on the test dataset to calculate its execution on unknown data 

and in order to compare to other methods. Out of 4379 data files we used 70% for training, 20% 

for validation and 10% for testing, i.e. 3080 sequences for training, 880 for validation and rest 440 

for testing. 

 

3.4.3 Learning Rate and Batch size 

 

The clump size and learning rate of a model should be picked with deliberation since their values 

can largely affect its training rate and performance. Different rates of learning are employed in a 

typical model, such as, 0.1, 0.01 or 0.001, with 0.01 considered as default. Most common clump 

size for applications is of 128 samples for training. Increasing batch size accelerates training while 

a reduced batch size would decrease utilization of memory. Classical models work well with the 

relation of smaller batch size with larger rate of learning and vice-versa. In our work we used a 

default learning rate of 0.01 with a minimum learning rate of 0.00001 and a batch size of 64. 

 

3.4.4 Avoiding Overfitting 
 

Overfitting is quite a common problem that occurs while attempting to create deep neural 

networks. A major contributing factor to this is the non-linear nature of the network with multiple 

parameters. As a result, an overly complex model that is corresponding to the size of the training 

data can lead to overfitting. The problem can be tackled by either increasing the training data size, 

such as, through augmentation, or by reducing the model complexity, for example by decreasing 

the number of units and hidden layers. In our model we had a 50% dropout rate between layers to 

prevent overfitting. ‘Early stopping’ function has also been applied which stops training when 

validation accuracy is consistent, in maximum 3 epochs, with an increasing training accuracy. 

Furthermore, learning rate reduces (‘reduced lr’) when there is no increase in validation accuracy 

in subsequent epochs. 

3.4.5 Technical Specifications 

The model was trained on a server with configuration 32GB RAM, 11GB NVIDIA Tesla K80 
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GPU and Intel Xeon 8 Cores CPU with Adam optimizer, Categorical-crossentropy loss function, 

learning rate decomposition and early stopping method. Learning rate decomposition decreases 

the learning rate of the optimizer whenever the model halts improving on the training set. Early 

stopping technique stops the training of the model when the model tends to overfit by comparing 

the training and validation accuracies.  

 

3.5 Model Evaluation 

Model was evaluated on the test set in terms of Area under ROC curve, sensitivity, specificity, and 

Matthews correlation coefficient which are the well-accredited measurements for evaluation of 

any classification-based model. The proposed model was compared with other states of art models 

by evaluating their sensitivity and precision on test data. 

 

3.6 Predicting Site Accessibility of RNA Secondary Structures 
 

After training for 50 epochs overfitting was successfully curtailed and model showed sufficient 

training and validating to be tested on test data. The model was optimized to predict the probability 

of a nucleotide being ‘bound’ or ‘free’. Results in this regard gave a high Q2 accuracy and amicable 

results as shown in the next section. 
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CHAPTER 4   RESULTS 

• After training and validation, the model was tested on test data and its Q2 accuracy was 

calculated. Q2 accuracy is a two state per residue accuracy which measures the percentage of 

precisely anticipated nucleotides in all the three classes. It is given by the sum Ci/N which is 

the ratio of number of precisely predicted nucleotides in a class (Ci) to the total number of 

nucleotides (N). Q2 accuracy is the optimized test accuracy that is correctly representative of 

probability of site accessibility of a nucleotide, from the given sequence, after removing ‘pad’ 

regions. The model acquired a Q2 accuracy of 0.89 on the test data.  

• The Receiver Operating Characteristic curve is a classifier estimator that is produced by 

plotting the true positive rate (TPR) against the false positive rate (FPR). The TPR is a 

representation of the ‘probability of detection’. It can also be referred as sensitivity or recall. 

FPR on the other hand is the ‘probability of false alarm’ in the model and is also known as 1-

specificity. The model achieved a ROC of 0.90 (Figure 23) for both class 0 and class 1. Here 

class 0 denotes residues which are bound (B), while class 1 denotes residues which are free 

(F).  

 

Figure 24: ROC curve of the proposed model on test set; class 0 is ‘B’ and class 1 is ‘F’. 
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• A Precision-Recall Curve represents the tradeoff between precision and recall. The higher the 

area under the curve, the higher is the recall and precision. High precision score translates to a 

low false positive rate, while a high recall score relates to a low false negative rate. Higher 

scores for both assure that the classifier is returning accurate results (indicated by high 

precision), as well as returning a majority of all positive results (indicated by high recall). On 

calculating Precision-Recall Curve for our model it was seen that area under the curve for 

predicting a residue that is free (class 1) was 0.87, whereas for residue that is bound (class 0), 

area under the curve was 0.92 (Figure 25).  

 

Figure 25: Precision-Recall curve of the proposed model on test set; class 0 is ‘B’ and class 1 is ‘F’. 

• Table 4 represents the model’s diagnostic capability upon testing on test set in terms of 

sensitivity, specificity, precision, and Matthews correlation coefficient (MCC). The values for 

these are 0.75, 0.79, 0.78, and 0.55, respectively. 

Table 4: Evaluation of the model on test data. 

 

 

 

ROC Sensitivity Specificity Precision MCC 

0.90 0.75 0.79 0.78 0.55 
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• The proposed model was compared with other state-of-the-art prediction tools and servers in 

terms of sensitivity and precision, shown in table 5. The proposed model outperforms other 

models with a significant margin. 

Table 5: Comparison of the proposed model with various state of the art models on test dataset. 

 

Method Sensitivity Precision Reference 

RNAshapes 0.635 0.57 [116] 

Mfold 0.64 0.57 [32] 

RNAfold 0.625 0.545 [36] 

RNAstructure 0.675 0.595 [38] 

Proposed Model 0.75 0.78  

• Upon running the model for a sequence an output file is generated named "results.txt" 

containing the input RNA Sequence, predicted free residues ('F') and bound residues (‘B’) and 

the probability of each position of nucleotide being free. Figure 26 depicts an example output 

file. 

 

Figure 26: Output file of model with probability of being free and annotation ‘B’ and ‘F’ per nucleotide position.  
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CHAPTER 5   DISCUSSION AND CONCLUSION 

 
Previous works on RNA site accessibility prediction were largely based on comparative sequence 

analysis, experimentally measured thermodynamic parameters or those based on stochastic context 

free grammars (SCFE) and more lately based on either of local or global folding machine learning-

based algorithms. The current method providing probability of site accessibility with higher 

accuracy is an improvement over these methods. It utilizes both local features (CNN Layer) and 

global features (GRU layer) while optimizing on their individual drawbacks and at the same time 

it also considers all types of RNA folding, including pseudoknots and non-canonical base pairing. 

Use of RNN layers in probabilistic models, like GRUs, may offer greater accuracy since they 

tackle the issue of long-term dependency, which the RNA secondary prediction methods can 

greatly benefit from. Moreover, unlike one-hot encoding-based machine learning algorithms for 

inputs, the Embedded-CNN-GRU based algorithm in the current model positions nearest 

neighbours in the embedding space. This helps cluster them into categories and to visualize 

relations between those categories.  

However, the proposed model has specific and generic limitations that must be addressed. While 

the model quite precisely ascertains the bound, unbound nature of a nucleotide site, it does not 

predict with which nucleotides the bound site interacts and in what manner. A model capable of 

predicting this would shed light on the RNA secondary structure and its conformations directly 

predicted from the sequence; this is the scope of current model. In machine learning models, 

biasness to training data leads to overfitting – which in turn decreases the veracity of the 

predictions. Overfitting has been known to exist in many models, including ContextFold [48]. A 

reason for this is also because of the dominance of RNA databases with a single RNA type. While 

a 50% dropout rate has been incorporated in the proposed model to deal with overfitting, it’s also 

important to understand that the limited diversity of well-curated single-sequence RNA secondary 

structures contributes to the problem and prevents improvement in statistical models for RNA 

secondary structure prediction. Furthermore, there is a longstanding need for a greater number of 

experimentally identified RNA structures with high-resolution – a number which would be 

optimum to train probabilistic models and further increase their efficacy. In retrospect, a futuristic 

model with sufficient experimentally determined RNA secondary structures and a robust 

probabilistic model for predicting unknown structures could be ideal. Finally, the universal 
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problem of ‘black box’ in machine learning models prevents an understanding of how features are 

extracted till the output layer, which robs one of the potentials of improving the models from a 

more biological perspective.  

Predicting RNA site accessibility would find several applications with the academia working on 

RNA. It would help predict sites for potentially binding of ribosome, on the mRNA which would 

open avenues for disease regulation. It would also help determine protein binding sites on the 

mRNA which play a role in post-transcriptional gene regulation, translation, and splicing. 

Furthermore, the study would enable prediction of RNA sites playing a role in RNA interference, 

namely miRNA binding sites in Eukaryotes and siRNA binding sites in Prokaryotes. The 

knowledge of the pairing probability of RNA nucleotides would further add to the bigger goal of 

RNA secondary structure prediction with higher accuracy [42]. RNA therapy, involving drugs 

designed to act on specific RNAs, is another area where RNA site accessibility has much to 

contribute to. 

The scope of the present study encompasses prediction of RNA site pair probability by employing 

an ensemble of embedding, 1D CNN and GRU layers. This would help in establishing the positions 

at which RNA nucleotides are participating in self-folding, forming loops, stems, and pseudoknots. 

However, subsequent work on predicting which residues among A, U, G and C are binding at these 

positions would greatly help the research community in the field. This vision from the current 

study can be carried forward. 

Additionally, exploring hybrid methods which make use of computational methods (probabilistic 

algorithms) and other techniques such as RNA chemical probing, dynamic programming, or 

comparative methods, could offer novel solutions and increment in prediction accuracy. This could 

help create reactivity profiles for RNA structures which combined with computational algorithms 

may help in predicting RNA structure more accurately.  In the long run RNA secondary structure 

prediction has much potential in contributing to gaining insights into RNA-disease relationships, 

thrusting RNA biology towards improving human healthcare. 
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CHAPTER 7 APPENDIX 
 

7.1 APPENDIX I: Code for Training the Model 
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Initializing Training 
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Defining Layers and Setting Parameters 

 
 

Estimating Q2 accuracy, Optimization and Compiling 
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7.2 APPENDIX II: Code for Predicting Site Accessibility (Final Package) 
 

As published on Code Ocean. DOI: https://doi.org/10.24433/CO.4001375.v1 

 

 
Importing Python Libraries 

 
 
Initializing Model 

 
 
Defining Layers and Setting Parameters 

 
 

One-Hot Encoding for Output 
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Site Accessibility Prediction 

 
 

Note: User can define sequence in line 84 (seq = ‘ ’) to estimate site accessibility. 
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