
SANET: A Deep Learning Approach for Style Fusion

and Transformation of Arbitrary Images

 A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS

FOR THE AWARD OF THE DEGREE
OF

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

Submitted by:

Pratibha Rathi

(Roll No. 2K18/SWE/12)

Under the supervision of

Dr. Manoj Kumar
(Associate Professor)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)

 Bawana Road, Delhi – 110042

JULY, 2020

ii

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)

 Bawana Road, Delhi – 110042

CANDIDATE’S DECLARATION

I, Pratibha Rathi, Roll No. 2K18/SWE/12 student of M.Tech (Software Engineering), hereby

declare that the project Dissertation titled “SANET: A Deep Learning Approach for Style

Fusion and Transformation of Arbitrary Images” which is submitted by me to the

Department of Computer Science and Engineering, Delhi Technological University, Delhi in

partial fulfillment of the requirement for the award of the degree of Master of Technology, is

original and not copied from any source without proper citation. This work has not previously

formed the basis for the award of any Degree, Diploma Associateship, Fellowship or other

similar title or recognition.

Place: Delhi Pratibha Rathi

Date: 26/06/2020 (2K18/SWE/12)

iii

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)

 Bawana Road, Delhi – 110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “SANET: A Deep Learning Approach for

Style Fusion and Transformation of Arbitrary Images” which is submitted by Pratibha

Rathi, 2K18/SWE/12 Department of Computer Science & Engineering, Delhi Technological

University, Delhi in partial fulfillment of the requirement for the award of the degree of Master

of Technology, is a record of the project work carried out by the students under my supervision.

To the best of my knowledge this work has not been submitted in part or full for any Degree

or Diploma to this University or elsewhere.

Place: Delhi Dr. Manoj Kumar

Date: 27/06/2020 SUPERVISOR

 (Associate Professor)

Department of Computer Science & Engineering

Delhi Technological University

iv

ACKNOWLEDGEMENT

The success of the Major II project requires help and contribution from numerous individuals

and the organization. Writing the report of this project work gives me an opportunity to express

my gratitude to everyone who has helped in shaping up the outcome of the project.

I express my heartfelt gratitude to my project guide Dr. Manoj Kumar for giving me an

opportunity to do my project work under his guidance. I am deeply indebted to him for the

support, advice and encouragement he provided without which the project could not have been

a success. His constant support and encouragement has made me realize that it is the process

of learning which weighs more than the end result.

I would like to express my gratitude to the university and staff for providing us with the library,

laboratories, infrastructure, testing facilities, right academic resources and environment which

allowed us to work without any obstructions.

I also reveal my thanks to all my classmates and friends for constant support. They helped me

throughout by giving new ideas, providing necessary information and pushing me forward to

complete the work. I would also like to express sincere gratitude to my parents for constantly

encouraging me during the completion of work.

Pratibha Rathi

Roll No – 2K18/SWE/12

M. Tech (Software Engineering)

Delhi Technological University

v

ABSTRACT

For real-time applications of arbitrary style transformation, there is a trade-off between the

quality of results and the running time of existing algorithms. Hence, it is required to maintain

the equilibrium of the quality of generated artwork with the speed of execution. It's complicated

for the present arbitrary style-transformation procedures to preserve the structure of content-

image while blending with the design and pattern of style-image. This project presents the

implementation of a network using SANET models for generating impressive artworks. It is

flexible in the fusion of new style characteristics while sustaining the semantic-structure of the

content-image. The identity-loss function helps to minimize the overall loss and conserves the

spatial-arrangement of content. The results demonstrate that this method is practically

efficient, and therefore it can be employed for real-time fusion and transformation using

arbitrary styles.

Keywords: image processing; deep learning; neural style transfer; computer vision;

arbitrary image stylization; SANET; ASPM; convolutional neural networks.

vi

TABLE OF CONTENTS

a) Title Page ... i

b) Candidate’s Declaration… .. ii

c) Certificate… ... iii

d) Acknowledgement ... iv

e) Abstract… ... v

f) Table of Contents… .. vi-vii

g) List of Figures .. viii

h) List of Tables .. ix

i) List of Abbreviations and Nomenclature .. x

1. INTRODUCTION… ... 01-04

1.1 Overview .. 01

1.2 Scope of Project ... 02

1.3 Problem Statement ... 03

1.4 Objective of work .. 03

1.5 Organization of the Dissertation .. 04

2. BACKGROUND ... 05-07

2.1 Stroke-based rendering .. 05

2.2 Region-based techniques ... 06

2.3 Image-processing and filtering .. 06

2.4 Example based techniques ... 07

3. LITERATURE REVIEW .. 08-20

3.1 Online neural methods ... 09

3.1.1 Parametric online neural methods ... 09

3.1.2 Non parametric online neural methods ... 10

3.2 Offline neural methods... 11

3.2.1 Offline neural model generating single style-PSPM ... 11

3.2.2 Offline neural model generating multiple styles-MSPM 12

3.2.3 Offline neural model generating arbitrary styles-ASPM 14

3.2.3.1 Style-Swap ... 14

3.2.3.2 Adaptive-Instance Normalization (AdaIN) ... 15

3.2.3.3 Whitening-Coloring-Transformation (WCT) .. 16

3.2.3.4 Avatar-net ... 16

vii

3.3 Comparison of Optimization Algorithms .. 17

3.4 Expansion of Neural Style Transformation ... 18

3.4.1 Video-Style Transfer .. 19

3.4.2 Audio-Style Transfer .. 19

3.4.3 Photorealistic-Style Transfer ... 19

3.4.4 Character-Style Transfer .. 19

3.4.5 Semantic-Style Transfer .. 20

3.4.6 Fashion-Style Transfer ... 20

4. PROPOSED APPROACH ... 21-34

4.1 Style-Attentional Network Model (SANET) ... 21

4.2 Calculation of Loss Functions ... 23

4.2.1 Content-Loss Function .. 23

4.2.2 Style-Loss Function ... 23

4.2.3 Identity-Loss Function .. 24

4.2.4 Total-Loss Function .. 24

4.3 Implementation Details .. 25

4.3.1 Hardware Requirements ... 25

4.3.2 Software Requirements ... 25

4.3.3 Data Set Used ... 26

4.3.4 Description of Implementation .. 27

4.3.5 Steps of Implementation ... 27

5. RESULTS AND DISCUSSION .. 35-41

5.1 Analysis of various approaches of NST ... 35

5.2 Implementation Results ... 37

5.3 Comparison of SANET with other ASPM approaches.. 40

5.4 Conclusion and Future Scope .. 41

6. REFERENCES .. 42-44

7. PUBLICATION ... 45-45

viii

LIST OF FIGURES

Figure 2.1 Categorization of IBAR techniques... 05

Figure 3.1 Categorization of NST techniques... 08

Figure 3.2: Representation of style-swap for training inverse network .. 14

Figure 3.3: Architecture of AdaIN method of parametric-ASPM .. 15

Figure 3.4: Architecture of WCT model ... 16

Figure 3.5: Expansion of NST in various applications ... 18

Figure 4.1: Network Architecture of SANET model .. 21

Figure 4.2: Internal Architecture of SANET model ... 22

Figure 4.3: Calculation of Identity-Loss Function .. 24

Figure 5.1: Comparison of run-time of NST approaches on 256×256 dimensional images 35

Figure 5.2: Comparison of run-time of NST approaches on 512×512 dimensional images 36

Figure 5.3: Comparison of run-time of NST approaches on 1024×1024 dimensional images 36

Figure 5.4: Experimental results 1 and 2 of style transformation using SANET model 37

Figure 5.5: Experimental results 3 and 4 of style transformation using SANET model 38

Figure 5.6: Experimental results 5 and 6 of style transformation using SANET model 39

Figure 5.7: Comparison of execution time of SANET with other ASPM models 40

ix

LIST OF TABLES

Table 3.1: Analysis and Comparison of Optimization Algorithms .. 17-18

Table 4.1: VOC 2012 Data Set ... 26

x

List of Abbreviations and Nomenclature

1. CNN- Convolutional Neural Network

2. PSPM- Per Style Per Model

3. MSPM- Multiple Style Per Model

4. ASPM- Arbitrary Style Per Model

5. IBAR- Image Based Artistic Rendering

6. SBR- Stroke Based Rendering

7. RBT- Region Based Techniques

8. IPF- Image Processing and Filtering

9. EBR- Example Based Rendering

10. NST- Neural Style Transfer

11. MGAN- Markovian Generative Adversarial Networks

12. AdaIN- Adaptive Instance Normalization

13. WCT- Whitening and Coloring Transformation

14. SANET- Style Attentional Networks

15. MRF- Markov Random Field

16. CPU- Central Processing Unit

17. RAM- Random Access Memory

18. ReLu- Rectified Linear Unit

19. GPU- Graphics Processing Unit

20. IDE- Integrated Development Environment

1

CHAPTER 1

INTRODUCTION

1.1 Overview

The art of clicking photos involves the realization of the proper background, decent lighting,

and editing to make them beautiful. Adequate editing for photographs can add life to our still

postures or actions and deliver us a creative artwork to relive and cherish those moments.

Nowadays, this art has been spread to all of the people with the smartphone revolution.

Wherever we go, we can see people holding their phones and clicking random photographs to

gather their memories. For improving the quality of those pictures, many picture editing tools

are available. The editing of ordinary photographs can make them look extraordinary. The

editing of the photographs can make our memories even more memorable. Most people edit

their photos before posting them on social networking sites to look more attractive and vibrant.

Picture editing is also helpful for real-estate services firms, for increasing the generous

attractiveness of properties by improving and intensifying images displayed on their websites.

It will help in attracting numerous clients and also help in selling that property quicker. Photo

editing can make any occasion look much lively and pleasant. We can also convert our old

black and white photographs into colorful pictures by applying unlimited effects to simple ones.

A newly developed mobile application called Prisma is an industrial application that applies

the NST algorithms to edit photographs. This application has achieved great success and

popularity around the world due to the much better quality of stylization. Few similar

applications provide similar services like Ostagram is paid but offers faster stylization speed.

With these automated applications, people can build their artwork and paintings to share with

others on twitter, instagram, and facebook, which is a new method of social communication.

These methods are much favorable for artists and widely used by them to impose their art works

on digital photographs.

2

1.2 Scope of Project

In the recent few years, various research works contributed to improve and accelerate the

development of deep learning methods for continuous reformations of style transformation

procedures. Arbitrary style transformation is the process of fusing new artistic styles with the

content of the given image to create impressive artworks. NST was first introduced and

explained by Leon A. gatys in 2015. On the basis of this idea presented by Gatys, many NST

applications like deepdream, prisma, and ostagram, etc. have been released to generate amazing

artworks.

The method proposed by Gatys [1] [2] follows an iterative procedure for the optimization of

the generated image, which makes it computationally expensive and slow. However, the quality

of the generated output is quite impressive. After that, numerous models have been proposed

based on the optimization of the employed model. Johnson et al. [3] and Ulyanov et al. [4] [5]

proposed fast offline approaches for generating output in a single feed-forward-pass, but their

model is limited in the number of styles, and the quality of the result is also reduced.

For fusing arbitrary styles using a single model, some ASPM approaches have been introduced.

The style-swap model [6] was stated that employs the patch match procedure to substitute the

features of content by the nearest match of characteristics of the style. Li et al. [7] specified

multilevel stylization by recursively employing whitening-colour-transformation to enhance

the quality of output and to protect the content-structure. AdaIN [8] model changes the mean-

variance of the content-image to match with style-image for transforming features. Avatar-net

[9] model contains a style-decoder model based on patch-match and an hourglass network for

adapting styles on multiscale. To solve the trade-off between content and style losses, this

project presents a new loss function identity-loss and implementation of a network consist of

an integration of two SANET models for preserving both content-structures and style-

characteristics.

3

1.3 Problem Statement

There is a trade-off between the quality of resulting output and the execution time of existing

algorithms for real-time applications of arbitrary style transformation. After thoroughly

examining the properties of various procedures for neural-style fusion and transformation, we

can see that the online method algorithm based on optimization of image proposed by Gatys et

al. takes a significant amount of time to calculate results compared with offline methods that

apply the procedure of optimization of employed models. However, the quality of results

generated by online methods is better in comparison to the quality of output produced by offline

methods. Therefore, it is required to create a network capable of producing resulting artworks

for any arbitrary image while maintaining a balance between the quality of output-images and

speed of execution of the model.

1.4 Objective of work

The given research project work is presented with the following given objectives.

 To study all the existing significant works that have already been done in this field of

style fusion and transformation, before and after the emergence of deep learning.

 Analysis of the quality of results and execution time of various NST approaches and to

demonstrate the analysis graphically.

 To examine the categorization of NST algorithms based on their working.

 To implement a new model consisting of style-attentional networks for generating

artwork using arbitrary style-images while sustaining both style-features as well as the

spatial distribution of content-image.

 To introduce a new loss function named identity-loss function that helps to minimize

the overall loss and conserves the spatial-arrangement of content.

 To analyze the proposed mechanism and compare its output and execution time with

other ASPM approaches.

 The ultimate goal of arbitrary style-transformation is to simultaneously achieve and

preserve generalization, quality, and efficiency.

4

1.5 Organization of Dissertation

The arrangement of the dissertation is as follows. In chapter 1, the need and importance of this

project work are explained in detail. Below in chapter 2, background information of style

transformation methods is given, which covers the explanation of some IBAR methods along

with their drawbacks. In chapter 3, a detailed literature review has been done explaining all the

major work that has already been done in this field of work. Section 3.1 and 3.2 provide

information about the existing neural methods of style transformation and their categorization

into online and offline divisions. Section 3.3 illustrates the analysis of optimization approaches,

and section 3.4 gives expansion areas of NST by providing some detailed information about

them. Chapter 4 describes the proposed method in which section 4.1 explains the architecture

of the SANET model, and section 4.2 shows the calculation of loss-functions. Section 4.3

illustrates the hardware requirements, software requirements, and data set used in training, and

the model's testing is listed along with the description of the detailed implementation procedure.

In section 4.3.5, all the steps of implementation are described. Then in Chapter 5, in-depth

analysis and review of the implemented method have been done. In section 5.1, the analysis of

the execution time of various NST approaches is displayed with the help of graph plots. Section

5.2 demonstrates the implementation results, and section 5.3 describes the comparison of

implemented SANET network with other existing ASPM models. Finally, section 5.4

summarizes the conclusion. Then Chapter 6 contains the references to all the resources that

have been used to gather the information to work on this project.

5

CHAPTER 2

BACKGROUND

In this chapter, we will explain the background information of the approaches used in style

transformation before the evolution of deep learning. The techniques in the taxonomy of image

based artistic rendering (IBAR) were employed for the stylization of two-dimensional images.

First, we describe the procedure of some IBAR [10] methods and then review their drawbacks.

Fig.2.1: Categorization of IBAR techniques

2.1 Stroke-based rendering

It is the process of integrating portraits, paintings, and artworks by providing the strokes or

marks on a digital canvas using brushes, lines, and tiles [11]. For converting a photograph into

a particular style, virtually some brush strokes are superimposed at some positions on a digital

canvas. It can create conventional arts based on the brush, for instance, an oil painting. This

6

procedure generally starts from a source picture by sequentially adding strokes to modify that

picture and ultimately composing a nonphotorealistic image that looks like the original

photograph carrying an exquisite style. The limitation of SBR methods is that all SBR

approaches are intended to create a single distinct style and therefore is not proficient for

composing arbitrary styles. It illustrates the nonflexibility of this approach.

2.2 Region-based techniques

RBT is used to accommodate the effects on the basis of the content in regions. Previous RBT

algorithms [12] deteriorate the shape of structures in managing the arrangement of strokes. The

latter method introduces an IBAR procedure [13] based on regions to alter the semantic geometry

of photographs for generating creative effects. This algorithm replaces parts of the picture by many

canonical patterns for constructing uncomplicated shape rendering results. In this approach, a

source image and target photograph is distributed into many areas using the method based on

graphs. The semantic conformity is estimated between them on the basis of colours, patterns, and

texture. Ultimately, the colours and textures are transferred for each area by employing a patch

match method. Drawbacks of RBT methods is similar to SBR, all RBT approaches are intended

to create a single distinct style and therefore is not proficient for composing arbitrary styles. It

represents the nonflexibility of this approach.

2.3 Image-processing and filtering

Usually, the IPF approach for rendering is simple to implement and effective in application. IPF

techniques [14] are applicable to real time rendering and accommodate multicore CPU and GPU.

Bilateral and gaussian filters are employed to compose the effects of cartoons. Kuwahara filter is

an exciting range of filters for preserving edges. It works relatively well on pictures of high

contrast. These filters eliminate features in sharp regions and preserve shape outlines in areas of

low contrast. Some other filters are morphological, diffusion, and shock filter. Gradient domain

techniques are also utilized in which the result is interpreted by creating a gradient field. The

drawback of IPF is that style variety, and diversity is inadequate.

7

2.4 Example based techniques

EBR [15] understands the mapping within the prototype pairs containing the source photograph

and the corresponding styled artwork. The learned mapping is employed to style arbitrary pictures.

EBR can work in two categories by performing texture transformation and colour transformation.

The proposed framework named image analogy is a supervised method containing two stages,

namely the design stage and application stage. In the design stage, it intends to study the analogous

mapping between the pairs of source pictures and target outputs. The data used for training in

image-analogy contains combinations of input-pictures along with the corresponding stylized

output-pictures. In the application phase, learned mapping is applied to new target photographs to

produce relevant analogous results. The main drawback of this method is the unavailability of

training data. This method fails to capture the structure of images accurately and uses only low

level features of the picture.

8

CHAPTER 3

LITERATURE REVIEW

Neural Style-Transfer is a machine learning technique that takes two images in input, one of

which is content-input image and another one is called style-input image, for example, the

artwork in a famous painting and blend them in order to transform the input images into an

output image that looks like the picture called content-image but it will be painted in a similar

fashion to the picture called style-image. Neural style transfer uses deep learning and its

convolution neural networks to perform this amazing task. It is much propitious for artists and

widely used by them to impose their art work on digital photographs.

Fig.3.1: Categorization of NST techniques

It was first introduced and explained by Leon A. Gatys in 2015. After the Gayts, several

endeavours are in progress related to the style transfer and its algorithms to perform training

9

and learning faster as much as possible and to extend the procedure of style transfer techniques

from static images to videos, audios, and other mediums. Neural methods of style transfer are

broadly divided into two categories. One of which is the online method and the other one is the

offline method.

3.1 Online neural methods

One of the famous applications in the field of style transfer is Deep-dream, which is based on

online approach of NST. The online method focuses on the optimization of the generated output

image but not on the improvement of the applied model. This approach employed several

iterations for enhancing the quality of the output image. Due to the multiple iterations, this

procedure is much time consuming and computationally expansive. Therefore it is also known

as the slow neural method for style transformation. The process is to extract the content

information and style representation from input images and then apply this extracted

information to the CNN model for recombining both components to generate the artistic output.

Gradient descent algorithm is used for the optimization of the result by minimizing the value

of loss function. These online methods differ in the approach of applying the content and style

representation to the CNN model so categorized into two classes.

3.1.1 Parametric online neural methods

These methods employed spatial representation summary and statistics to generate artworks.

Gatys et al. [1] [2] in 2015 proposed an algorithm that applies deep CNN model VGG 19 for

extracting structure, shape, and texture, etc. related information of content and style features

from preprocessed input pictures. This information is spatially modelled in different layers of

VGG 19 and used for the reconstruction of target artwork. VGG nineteen network is composed

of sixteen layers of convolution and five layers for pooling, where higher layers are handled to

represent the content characteristics. Style-image input is passed through the VGG network,

and the gram matrix is employed to store style characteristics.

The overall loss is a linear combination of both content and style losses balanced by parameters

calculated through the one thousand iterations of gradient descent. Content loss is computed in

10

terms of mean squared difference. The α and β hyper parameters provide the appropriate

weights to both components of loss for balancing the equation of total loss function.

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝛽𝐿𝑠𝑡𝑦𝑙𝑒 (3.1)

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝐶, 𝐺, 𝐿) = 0.5 ∑ (𝑎[𝐿](𝐶)𝑖𝑗 − 𝑎[𝐿](𝐺)𝑖𝑗)
2

𝑖𝑗 (3.2)

𝐿𝐺𝑀(𝑆, 𝐺, 𝑙) =
1

4𝑁𝑙
2𝑀𝑙

2 ∑ (𝐺𝑀[𝑙](𝑆)𝑖𝑗 − 𝐺𝑀[𝑙](𝐺)𝑖𝑗)
2

𝑖𝑗 (3.3)

𝐿𝑠𝑡𝑦𝑙𝑒(𝑆, 𝐺) = ∑ 𝑤𝑙
𝐿
𝑙=0 × 𝐿𝐺𝑀(𝑆, 𝐺, 𝑙) (3.4)

Here S, C, G, and GM are used to represent style-image, content-image, output generated-

image, and gram-matrix, respectively. Activation of layer L is used for the calculation of

content-loss. 𝑁𝑙 is the number of channels in the feature map, and 𝑀𝑙 is the product of the

height and width of the feature map. After that demystifying approach [16] of NST was

introduced that employs a different method for the statistical representation of style features.

In this procedure, the gram matrix was replaced by MMD. It states that the minimization of

maximum-mean-dispersion is comparable to the matching of gram-matrices. Several different

methods for the representation of style were used, which include gaussian, linear, polynomial

and batch-normalization, etc.

In 2017, Lapstyle NST was presented [17], which added a laplacian-loss function to calculate

the overall loss. This laplacian-loss preserves the low-level fine details of the content

characteristics and is aimed to reduce the distortion of edges, shapes, structure, contour, and

colours of original input when converted to artistic output.

3.1.2 Non parametric online neural methods

In 2016, Li and wand [18] proposed a method of style transformation that employed a

combination of markov-random-field models and deep CNN for synthesizing two dimensional

artworks. This approach works well with both photo-realistic and non-photo-realistic

transformation of style. For minimizing loss, it uses limited memory BFGS algorithm. This

algorithm matches style on the level of neural-patches. Hence, it is suitable for preserving fine

11

details of the structure. They formed a new function for calculating the style-loss and content-

loss by calculating euclidean distance between patches using the energy function of MRF-

neural-patch-matching given in (3.5).

𝐸𝑠(𝜑(𝑥), 𝜑(𝑥𝑠)) = ∑ ‖𝜓𝑖(𝜑(𝑥)) − 𝜓𝑁𝑁(𝑖)(𝜑(𝑥𝑠))‖
2𝑚

𝑖=1 (3.5)

The characteristic of this algorithm is that it produces considerably well resulting artwork for

photo-realistic styles, especially if the shape, structure, and panorama of both content-image

and style-image are alike. Though, it usually doesn't work well if there is a great difference in

view and arrangement of structures of content-image and style-image because the patches in

both pictures could not be paired accurately.

3.2 Offline neural methods

Earlier explained online method uses the iterative approach of gradient descent for improving

the quality of generated output. Therefore it consumes a large amount of computation time

when image size is considerably large. To overcome this limitation of speed, offline neural

methods were introduced. This approach is much speedy compared to the previous procedure

because it generates the output artwork in a single feed-forward-pass by optimizing the adopted

model. As it mainly focuses on the optimization of the applied model, hence it is also known

as the model-optimization-based offline method of NST. This offline approach is further

divided into three categories based on the number of styles generated by the model in its output

artwork.

3.2.1 Offline neural model generating single style-PSPM

For adopting an individual style, this approach optimizes the employed model. Johnson et al. [3]

proposed a parametric method of training a feed-forward-network for the task of style

transformation. This method replaces the perpixel losses by perceptual losses computed using high

level features of images. The system contains two components of the network, which are image-

style transformation network and loss-network. Image-style transformation network is a deep

residual CNN that can convert input images to an artistic output by understanding the mapping. It

12

is trained using stochastic-gradient-descent for minimizing the weighted combination of loss-

functions, which is computed by employing loss-network. Perceptual losses measure the

similarities and dissimilarities of images more precisely compared to perpixel losses.

Another similar approach proposed by Ulyanov et al. [4] uses multi-scale architectures that can

be trained faster and result in a smaller loss in content and texture characteristics and better visual

quality while working with comparatively few parameters. These are very lightweight models that

are capable of generating artworks comparable to the quality of output produced by Gatys et al.,

and their speed is almost 100 times faster. However, these are also limited in considering the small

details and depth information. After that, a new advance concept was introduced, which is known

as instance-normalization [5]. It means normalization is applied to each single image in place of

the batch of images. It converges faster, learns quickly, and significantly improves the visual

quality of generated stylized artwork. This model can be trained rapidly, reduces the overall loss,

and enhances the diversity of network output.

The non-parametric approach of single-style per model offline neural methods uses MGAN [19].

It is a markovian model applied to generative adversarial networks for learning the mapping

between different representations of the same content-image. MGAN utilized the imagenet dataset

for adversarial-training. It successfully preserved the coherent texture of compact content-images,

and the speed of synthesis is remarkably fast. MGAN network consists of two subnetworks,

namely discriminator and generator, for improving the model in iterations. This method lacks in

transferring non-texture style, such as facial-features of two different face-pictures. Facial-features

cannot be interpreted as texture because these require the understanding of expression, poses, and

gender, etc. semantic characteristics.

3.2.2 Offline neural model generating multiple styles-MSPM

Above mentioned PSPM procedures can generate artistic output hundred times speedier than

previous offline neural methods based on image-optimization. But it needs to train several network

models individually to generate output for every distinct style-image. It exhibits inflexibility and

excessive time consumption in training for each style. For reducing the irrelevant time

consumption during the separate training of various models in PSPM, a new approach was

introduced for consolidating multiple-styles into a single model, which is known as MSPM.

13

In 2017, Dumoulin et al. [20] proposed that it is possible to model different styles at the same time

by using the same parameters in the convolutional network. For incorporating different styles,

shifting and scaling of parameters is required in the layers of instance normalization, which is

called conditional-instance-normalization. CIN is an alteration of style-transformation networks

that is uncomplicated, scalable, flexible, and efficient for incorporating diversity in output artwork.

By consolidating affine parameters of different styles, it can be applied to incorporate multiple-

styles in one output artwork.

𝐶𝐼𝑁(𝐹(𝐼𝑐), 𝑠) = 𝛾𝑠 (
𝐹(𝐼𝑐) − 𝜇(𝐹(𝐼𝑐))

𝜎(𝐹(𝐼𝑐))
) + 𝛽𝑠 (3.6)

Here, β and γ are the parameters of CIN. After this style-bank method [21] was introduced, that is

an aggregate of various convolution filter-banks. One style is expressed by every filter-bank

explicitly in that combination. For converting a picture to a specific style, the corresponding filter-

bank is turned over the intermediate feature-embedding generated by a single auto encoder. While

keeping a fix auto encoder, it is possible to carry out incremental-learning for appending a new

style by training a new filter-bank.

This style-bank fusion approach works in two ways, linear and region-based. In linear fusion, the

style-bank layer is fed with a linear combination of multiple styles. While in region-based fusion,

content-image is disintegrated into some disjoint regions using automatic k-means clustering, and

then combined style transformation can be conducted using more than one style simultaneously.

But the size of the model expands as the number of styles learned by it increases, that is a

drawback.

To eliminate this limitation, Zhang and Dana [22] explored the capabilities of a single CNN model

VGG 16 for consolidating both content and style in one network. The Multiple-style-generative

network was introduced, which can control the size of brush strokes in real time transfer of style.

In MSG-Net, the comatch layer was used to represent styles in two dimensional ways. For the

comatch layer, it is possible to differentiate and train end to end, but tough to conserve the fine

details of structures.

14

3.2.3 Offline neural model generating arbitrary styles-ASPM

The third type of offline neural method is ASPM that intends to build one model for all styles.

It states that a single model can be trained to transfer any arbitrary style. ASPM is also divided

into two types. Parametric-ASPM employed spatial representation summary and statistics to

generate artworks while nonparametric-ASPM applies MRF for texture-modelling.

3.2.3.1 Style-Swap

Chen and Schmidt [6] proposed the first algorithm for nonparametric-ASPM in which they

introduced the concept of style-swap for training an inverse network to generate the stylized

output for any arbitrary style.

Fig.3.2: Representation of style-swap for training inverse network

At first, a set of patches having sufficient overlap for both content and style activations are

extracted for computing in a previously trained VGG network. Each content patch is matched

with style patches to find the closest and similar match for swapping. Then content activation

is reconstructed by averaging areas of overlapping. This approach of one-model-for-any-style

is more flexible than the previous methods but generates less appealing results in which the

content is preserved thoroughly, whereas the style is not reflected adequately.

15

3.2.3.2 Adaptive-Instance Normalization (AdaIN)

In parametric-ASPM, Huang and Belongie [8] modified conditional-instance-normalization

(CIN) to adaptive-instance-normalization (AdaIN) instead of training a network for parameter

prediction. The above mentioned style swap method takes a considerable amount of time and

occupies much memory, but AdaIN is a simplistic approach with the low cost of computation.

Here, 𝐼𝑐, 𝐼𝑠, and 𝐼𝑔represents content-image, style-image and generated output-image respectively.

𝐴𝑑𝑎𝐼𝑁(𝐹(𝐼𝑐), 𝐹(𝐼𝑠) = 𝜎(𝐹(𝐼𝑠)) (
𝐹(𝐼𝑐) − 𝜇(𝐹(𝐼𝑠))

𝜎(𝐹(𝐼𝑐))
) + 𝜇(𝐹(𝐼𝑠)) (3.7)

𝐼𝑔 = 𝐷𝑒𝑐 (𝐴𝑑𝑎𝐼𝑁(𝐹(𝐼𝑐), 𝐹(𝐼𝑠))) (3.8)

Fig.3.3: Architecture of AdaIN method of parametric-ASPM

For the given input pictures, AdaIN modifies the mean value and variance value of both content-

image and style-image for matching. AdaIN layer efficiently transfers the feature-characteristic

statistics for performing style transformation. After that, a decoder is used for inverting the output

of AdaIN layer, and the VGG encoder is utilized for measuring loss. It is a good parametric-ASPM

approach for performing stylization in real time, but it is insufficient in the generalization of new

styles. Therefore, it is challenging to synthesize intricate style patterns consist of fine details and

complex structures.

16

3.2.3.3 Whitening-Coloring-Transformation (WCT)

Li et al. [7] changed the AdaIN-layer of the above described model by a combination of the

whitening-colour-transformation network. The objective is to protect the arrangement and

composition of content. Whitening-transformation receives content-activations from the

encoder and then produces a filtered representation of content-image.

After that, colouring-transformation is applied for consolidating the style-patterns into the

filtered content design, and the decoder provides stylized output artwork. This method is good

in generalizing distinct styles as learning is not required of every style, but not useful in

delivering sharp-features and small strokes-details.

Fig.3.4: Architecture of WCT model

3.2.3.4 Avatar-net

It blends the images based on the semantic-arrangement of content and employs multi scale

stylization in a single feed forward pass [9]. It is better than WCT that requires several recursive

feed forward passes. Avatar-net uses a style-decorator and an hourglass-network. Patch based

style decorator module is used to decorate the content features with style patterns while

retaining the semantic properties of content. The hourglass network is employed for multi scale

adaptation of style. But its output depends on the patch size, and therefore usually, it is unable

to express the local and global styles simultaneously.

17

3.3 Comparison of Optimization Algorithms

Optimization algorithms are applied to optimize the output of NST by minimizing the value of

loss-function. They work during training and learning of the model to update the weights and

finding the relevant values for parameters to get an optimal solution. In Table 3.1, we have

discussed some popular optimization methods with their merits and drawbacks.

Table 3.1: Analysis and Comparison of Optimization Algorithms

Type Description Merits Drawbacks

Gradient Descent-

optimizer

It is a traditional

algorithm for the

optimization of neural

network models. It

updates weights and

tunes the parameters of

the model iteratively to

minimize the value of

loss function.

Updates weights

in neural

network models

iteratively.

It is very slow and

takes ample

computation time for

huge datasets. It is

difficult to regulate

the learning rate as

the algorithm

sometimes stuck in

local minima.

AdaGrad-optimizer It applies a separate

learning-rate for each

parameter. It modifies

the learning rate of the

parameter at each step

on the basis of the

computation of the

previous gradients of

that parameter.

Very helpful for

handling

scattered data

and we don't

need to set the

learning rate

manually.

Its main limitation is

the decrease and

decay in its learning

rate value.

AdaDelta-optimizer It is an improvement of

AdaGrad-optimizer. It

entirely replaces the

learning-rate parameter

by the exponential

moving-average of

squared-deltas.

No need of the

learning-rate

parameter.

There is a necessity

of two-state

variables for saving

the second-moments

of gradients and the

variation in

parameters.

Adam-optimizer It is an adaptive-method

for defining separate

learning-rates for every

parameter using

momentum and

therefore termed as

adaptive-moment-

estimation.

It separately

defines the

learning-rate for

every parameter.

Its gives better result

in the starting of

training, but

performance

diminishes as the

time increases.

Therefore, for some

tasks, it does not

converge to an

optimum value.

18

L-BFGS-optimizer It is a limited-memory-

BFGS algorithm in the

family of QUASI-

Newton-methods

because it takes a small

amount of memory.

It uses a line-search

approach, which makes

it much steady in

training and more

accessible to examine

for convergence.

It is the most

efficient, speedy,

and popular

approach of

optimization

compared to

previous

methods.

It does not scale well

while updating and

calculating

gradients. Hence,

there is a necessity

of mini-batch-

training that needs to

estimate gradients on

small subsets of

data.

3.4 Expansion of Neural Style Transformation

Neural style transfer has an influence ahead art and entertainment. In medicine, the pattern-

matching technique helps in the diagnostic domain and in the design of unique molecules and

proteins. NST techniques are already becoming popular in entertainment and social

communication. Some websites allow users to create their artwork using different photographs.

There is a rising concern in style tools that enhance the field of digital art. However, the real

strength of this procedure goes ahead of image creation. Similarly, video, audio/music style

transformation has also made some progress.

Fig.3.5: Expansion of NST in various applications

19

3.4.1 Video-Style Transfer

Several approaches of NST are expanded to style transformation of audio, video, and characters,

etc. For altering the style of videos, the requirement is to achieve a smooth variation among

contiguous frames of video. A method [25] based on iterative optimization of images uses

temporal-consistency loss obtained by calculating optical-flow. It produces stylized videos by

excluding temporal-artifacts but requires significant time for computing results. Another approach

[26] was suggested that applies a flow-subnetwork to compose feature-flow and to consolidate the

knowledge of optical-flow. This model is based on a network that contains a previously trained

combination of encoder and decoder.

3.4.2 Audio-Style Transfer

Another expansion is to generate distinct sound effects by allotting the desired style from the

target-audios [29]. It is called the style transformation of audio. It uses two approaches based on

iterative optimization of audio and optimization of the employed model. One approach iteratively

optimizes a noise signal applying back propagation. Another method develops efficiency by

transforming audio in a feed-forward manner and can provide the output in real time.

3.4.3 Photorealistic-Style Transfer

Photorealistic transformation [30] refers to the transfer of style of arrangements of colors. Its

primary intent is to conserve the fundamental structure of the content-image by utilizing a two

stage optimization method, namely stylization and smoothing. Hence, for decreasing the

deformation of content-image, it employs photorealism-regularization.

3.4.4 Character-Style Transfer

Style transformation is also operated on characters [28] for producing unique fonts and unusual

text-effects. By collectively training the conditional-generative model and an ornamentation-

network model, the style transformation of characters can be accomplished.

20

3.4.5 Semantic-Style Transfer

The semantic transformation [27] of style is an expansion of NST, which is applied to a pair of

input images holding analogous content. The method is to obtain a semantic correlation between

content-image and style-image. Hence, the style of every region of style-image is applied to the

corresponding semantically analogous part of the content-image.

3.4.6 Fashion-Style Transfer

Another expansion of NST approaches is in the field of fashion [31] to create clothes containing

the desired styles of fashion. In the synthesized output, the applied GAN-model should protect the

basic design of cloth while blending with the given target style.

21

CHAPTER 4

PROPOSED APPROACH

As there exist a trade-off between the quality of results and the running time of existing

algorithms. Hence, we need to maintain a balance between quality and speed. Therefore, in this

chapter, we will explain the proposed approach used in arbitrary image style transformation

using SANET models. The hardware requirements, software requirements and data set used in

training and testing of model is listed along with the description of detailed procedure of

implementation.

4.1 Style-Attentional Network Model (SANET)

It stands for the style-attentional network that can blend style-patterns in the content-image

efficiently and flexibly. It uses a kernel that can learn similarities rather than fixed kernel. This

neural-network model modifies the self-attention mechanism to understand the mapping

between content and style features.

Fig.4.1: Network Architecture of SANET model

For synthesizing artworks, this model takes two images in input, which are content-image 𝐼𝑐

and style-image 𝐼𝑠. By applying the encoder module, which is a previously trained VGG

nineteen network, both the input-images are encoded into an intermediate representation. After

22

encoding both input-images, we apply both the obtained feature-maps 𝐹𝑐 and 𝐹𝑠, to two distinct

style attentional networks to produce the combined feature-map 𝐹𝑐𝑠.

𝐹𝑐 = 𝐸(𝐼𝑐) (4.1)

𝐹𝑠 = 𝐸(𝐼𝑠) (4.2)

𝐹𝑐𝑠
𝑟41 = 𝑆𝐴𝑁𝐸𝑇𝑟41(𝐹𝑐, 𝐹𝑠) (4.3)

𝐹𝑐𝑠
𝑟51 = 𝑆𝐴𝑁𝐸𝑇𝑟51(𝐹𝑐, 𝐹𝑠) (4.4)

𝐹𝑐𝑠𝑐
𝑟41 = 𝐹𝑐 + 𝑊𝑐𝑠𝐹𝑐𝑠

𝑟41 (4.5)

𝐹𝑐𝑠𝑐
𝑟51 = 𝐹𝑐

′ + 𝑊𝑐𝑠
′ 𝐹𝑐𝑠

𝑟51 (4.6)

𝐹𝑐𝑠𝑐 = 𝑐𝑜𝑛𝑣3×3(𝐹𝑐𝑠𝑐
𝑟41 + 𝑢𝑝𝑠𝑎𝑚𝑙𝑒(𝐹𝑐𝑠𝑐

𝑟51)) (4.7)

𝐼𝑜 = 𝐷(𝐹𝑐𝑠𝑐) (4.8)

Here 𝐹𝑐𝑠𝑐
𝑟41 and 𝐹𝑐𝑠𝑐

𝑟51 are the synthesized feature-map values generated by applying 1x1 conv-

net to the output feature-maps of SANETs. 𝐹𝑐𝑠𝑐 is the integrated output feature-map achieved

by applying 3x3 conv-net to the resulting feature-maps obtained by relu_4_1 SANET and

upsampled relu_5_1 SANET. The combined output of these SANETs is concatenated by

passing through a symmetric-decoder, which produces the final output-image 𝐼𝑜.

Fig.4.2: Internal Architecture of SANET model

23

4.2 Calculation of Loss Functions

This method is both effective and practically efficient. It flexibly performs style transformation

using the loss function that unites traditional style-reconstruction-losses and the newly

introduced identity-loss.

4.2.1 Content-Loss Function

Content-loss represents the decline of spatial-structure and arrangement of content during the

formation of resulting output-image. It is calculated in terms of euclidean distance.

𝐿𝑐 = ‖𝐸(𝐼𝑜)𝑟41̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐹𝑐
𝑟41̅̅ ̅̅ ̅̅ ‖

2

+ ‖𝐸(𝐼𝑜)𝑟51̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐹𝑐
𝑟51̅̅ ̅̅ ̅̅ ‖

2

 (4.9)

Here, 𝐹𝑐
𝑟41̅̅ ̅̅ ̅̅ and 𝐹𝑐

𝑟51̅̅ ̅̅ ̅̅ are channel-wise-normalized mean, variance feature-map values of content-

image. 𝐸(𝐼𝑜)𝑟41̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝐸(𝐼𝑜)𝑟51̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are channel-wise-normalized mean, variance feature-map values of

output-image after passing through the encoder. The euclidean distance computed between these

gives the value of content-loss.

4.2.2 Style-Loss Function

Style-loss represents the lack of style characteristics and features during the formation of the

resulting output-image. It is defined as follows,

𝐿𝑠 = ∑‖𝜇(𝜑𝑖(𝐼𝑜)) − 𝜇(𝜑𝑖(𝐼𝑠))‖
2

+ ‖𝜎(𝜑𝑖(𝐼𝑜)) − 𝜎(𝜑𝑖(𝐼𝑠))‖
2

𝐿

𝑖=1

 (4.10)

Here, φ is the feature-map value of the layer of encoder denoted by i. The relu_1_1, relu_2_1,

relu_3_1, relu_4_1, and relu_5_1 layers are employed with similar weights. The gram-matrix loss

and the AdaIN style-loss are applied, in which AdaIN style loss is very satisfying. The SANET

model is trained by examining only the global-statistics of the style loss 𝐿𝑠.

24

4.2.3 Identity-Loss Function

The new identity-loss function is defined for considering both the global-statistics and the

semantically local-mapping between the content-features and the style characteristics.

𝐿𝑖𝑑 = 𝑤𝑖𝑑1(‖𝐼𝑐𝑐 − 𝐼𝑐‖2 + ‖𝐼𝑠𝑠 − 𝐼𝑠‖2) + 𝑤𝑖𝑑2 ∑ (
‖𝜑𝑖(𝐼𝑐𝑐) − 𝜑𝑖(𝐼𝑐)‖2

+‖𝜑𝑖(𝐼𝑠𝑠) − 𝜑𝑖(𝐼𝑠)‖2)𝐿
𝑖=1 (4.11)

The 𝐿𝑖𝑑 is identity-loss and 𝑤𝑖𝑑1, 𝑤𝑖𝑑2 are the weights assigned to identity-loss. This loss function

helps to preserve the structure of content-image while simultaneously maintains the style-patterns.

Fig.4.3: Calculation of Identity-Loss Function

4.2.4 Total-Loss Function

The total-loss function is a linear combination of content-loss, style-loss, and identity-loss

functions. An encoder, which is a previously trained VGG 19 network, is employed in calculating

the loss function during the training of SANET and decoder.

𝐿 = 𝑤𝑐𝐿𝑐 + 𝑤𝑠𝐿𝑠 + 𝐿𝑖𝑑 (4.12)

Here, 𝐿𝑐, 𝐿𝑠, and 𝐿𝑖𝑑 represent the content-loss, style-loss, and identity-loss functions,

respectively. 𝑤𝑐 and 𝑤𝑠 are the weights assigned to content-loss and style-loss respectively.

25

4.3 Implementation Details

Below in this section, the hardware requirements, software requirements and data set used in

training and testing of model is listed along with the description of detailed procedure of

implementation.

4.3.1 Hardware Requirements

The network of the SANET model is implemented with the following hardware requirements.

 A PC comprising Windows 10 operating system

 Intel core i5 eighth-generation quad-core CPU

 NVIDIA GeForce-GTX 1050 GPU

 A RAM of size 8 gigabytes

 It also demands an internet of extremely high-speed.

4.3.2 Software Requirements

The network of the SANET model is implemented with the following software requirements.

 We have used a jupyter-notebook under the Anaconda navigator. This IDE is the most

suitable for machine learning programming as it provides many features to control

codes that make it easy to write and debug. Finding the errors in code is very easy. It

also helps in minimizing code redundancy.

 PyTorch 0.4.1 is a free and open-source library for python programming that helps to

build projects in deep learning.

 CUDA 9.2 provides parallel programming for general computing using GPU. It

facilitates programmers to increase the speed of complex computations by improving

GPUs' power for the parallelization.

 Open CV 3.4.2 is a very optimized-library that focuses on real-life problem-solving. It

is a python machine learning library and used for image processing problems.

 Programming Language used is python. It is easy to use and understand. Due to an

extensive collection of inbuilt functions and a very easy coding environment, it has

become prevalent among developers.

26

4.3.3 Data Set Used

The network of the SANET model is implemented with the following Data Set requirements.

During the training of the model,

 For content-images VOC 2012 dataset is used, which is an extensive collection of

classified images and also used by many other tasks of computer vision. This dataset can

be found on pjreddie.com under the folder of projects which contain subfolder pascal-voc-

dataset-mirror. It has many sets of images, which is demonstrated in the Table 4.1 given

below.

 For the style-images WikiArt dataset is used, which is open source and can be found on

the github repository. It also has a huge amount of data, which is composed of a lot of

pictures with so many variations for the task of training and validation.

Table 4.1: VOC 2012 Data Set

 Train Val Train-Val Test

 image object image object image object image object

Airplane 327 432 343 433 670 865 - -

Bicycle 268 353 284 358 552 711 - -

Bird 395 560 370 559 765 1119 - -

Boat 260 426 248 424 508 850 - -

Bottle 365 629 341 630 706 1259 - -

Bus 213 292 208 301 421 593 - -

Car 590 1013 571 1004 1161 2017 - -

Cat 539 605 541 612 1080 1217 - -

Chair 566 1178 553 1176 1119 2354 - -

Cow 151 290 152 298 303 588 - -

Dining-table 269 304 269 305 538 609 - -

Dog 632 756 654 759 1286 1515 - -

Horse 237 350 245 360 482 710 - -

Motor-bike 265 357 261 356 526 713 - -

Person 1994 4194 2093 4372 4087 8566 - -

Potted-plant 269 484 258 489 527 973 - -

sheep 171 400 154 413 325 813 - -

Sofa 257 281 250 285 507 566 - -

Train 273 313 271 315 544 628 - -

TV monitor 290 392 285 392 575 784 - -

Total 5717 13609 5823 13841 11540 27450 - -

27

4.3.4 Description of Implementation

Below in this section, the description of implementation of network of SANET model, its training

and testing are explained.

 We have taken input as two preprocessed images and resized them to 512×512.

 During training, the size of each batch is six, and 180000 default iterations are applied.

 The initial values assigned to weights while computing the loss are as follows, 𝑤𝑐=1.0,

𝑤𝑠=4.0, 𝑤𝑖𝑑1=50, and 𝑤𝑖𝑑2=1.

 We have perceived that if the weight 𝑤𝑐 is increased in the absence of identity-loss

function, then spatial-distribution and structure of content-image can be protected but with

a lack of style-features. However, if the weights for identity-loss function are increased,

then it's possible to preserve the semantic-arrangement of content along with sustaining

the style-features.

 Consequently, we estimated the total loss by incorporating identity-loss along with content

and style losses.

 We applied Adam optimizer to minimize the value of loss function.

 The encoder uses a previously trained VGG nineteen network.

 Two SANET models are jointly trained and integrated by taking the VGG feature-maps

as inputs and encodes output feature-maps using distinct layers Relu_4_1 and Relu_5_1.

 Outputs of these SANETs are combined by using the symmetric decoder.

 After that, the trained network of SANET models is applied to the pictures taken by us in

our college campus to examine the execution time and quality of the obtained results.

4.3.5 Steps of Implementation

Below in this section, the steps of implementation of network of SANET model, its training and

testing are explained.

1. We are importing files, which will help to initialize values and unzip files of datasets.

from google.colab import files

 uploaded=files.upload()

 for fn in uploaded.keys():

 print('User uploaded file "{name}" with length {length} bytes'.format(
 name=fn, length=len(uploaded[fn])))

28

2. We are finding the standard mean, mean_variance_norm, and flatten mean standard

values by using inbuilt standard deviation functions such as mean.expand() and

std.expand(), etc. After that, we are finding the average value of a large set of numbers.

A small value is also added to the variance to avoid exceptions during the calculation.

Here we are using 3d feat for storing values inside array within channels and returning

the results stored in feat_mean, feat_std, normalized_feat, feat_flatten, mean & std.

3. In this, we are defining the weights of decoder by importing the torch as nn and

calculating relu() by converting it into 2d dimension followed by upsampling where

scale_factor is used 2 and mode as nearest.

import torch

 def calc_mean_std(feat, eps=1e-5):

 size = feat.size()

 assert (len(size) == 4)

 N, C = size[:2]

 feat_var = feat.view(N, C, -1).var(dim=2) + eps

 feat_std = feat_var.sqrt().view(N, C, 1, 1)

 feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)

 return feat_mean, feat_std

 def mean_variance_norm(feat):

 size = feat.size()

 mean, std = calc_mean_std(feat)

 normalized_feat = (feat - mean.expand(size)) / std.expand(size)

 return normalized_feat

 def _calc_feat_flatten_mean_std(feat):

 assert (feat.size()[0] == 3)

 assert (isinstance(feat, torch.FloatTensor))

 feat_flatten = feat.view(3, -1)

 mean = feat_flatten.mean(dim=-1, keepdim=True)

 std = feat_flatten.std(dim=-1, keepdim=True)

 return feat_flatten, mean, std

import torch.nn as nn

 decoder = nn.Sequential(

 nn.ReflectionPad2d((1, 1, 1, 1)),

 nn.Conv2d(512, 256, (3, 3)),

 nn.ReLU(),

 nn.Upsample(scale_factor=2, mode='nearest'),

 nn.ReflectionPad2d((1, 1, 1, 1)),

 nn.Conv2d(256, 256, (3, 3)),

 nn.ReLU()

29

4. In this section, vgg using three relu layer with each having two sub-layers are being

calculated to perform dimension based on reflection. Dimension values are default, and

max pool values with ceil_mode equal to true is used.

5. We are defining a class called Sanet, which has two methods first, one is used to

initialize the plane values based on image and passing arguments to the superclass to

satisfy the dependency. The second method forward is used to calculate the mean and

variance of content and style image based on a permutation of four side calculations,

and in last, all values are used in calculation to make the initial phase object structure.

vgg = nn.Sequential(

 nn.Conv2d(3, 3, (1, 1)),

 nn.ReflectionPad2d((1, 1, 1, 1)),

 nn.Conv2d(3, 64, (3, 3)),

 nn.ReLU(),

 nn.ReflectionPad2d((1, 1, 1, 1)),

 nn.Conv2d(64, 64, (3, 3)),

 nn.ReLU(),

 nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),

 nn.ReflectionPad2d((1, 1, 1, 1)),

 nn.Conv2d(64, 128, (3, 3)),

class Transform(nn.Module):

 def __init__(self, in_planes):

 super(Transform, self).__init__()

 self.sanet4_1 = SANet(in_planes = in_planes)

 self.sanet5_1 = SANet(in_planes = in_planes)

 self.upsample5_1 = nn.Upsample(scale_factor=2, mode='nearest')

 self.merge_conv_pad = nn.ReflectionPad2d((1, 1, 1, 1))

 self.merge_conv = nn.Conv2d(in_planes, in_planes, (3, 3))

 def forward(self, content4_1, style4_1, content5_1, style5_1):

 return self.merge_conv(self.merge_conv_pad

 (self.sanet4_1(content4_1, style4_1) +

 self.upsample5_1(self.sanet5_1(content5_1, style5_1))))

class Net(nn.Module):

 def __init__(self, encoder, decoder, start_iter):

 super(Net, self).__init__()

 enc_layers = list(encoder.children())

 self.enc_1 = nn.Sequential(*enc_layers[:4]) # input -> relu1_1

 self.enc_2 = nn.Sequential(*enc_layers[4:11]) # relu1_1 -> relu2_1

 self.enc_3 = nn.Sequential(*enc_layers[11:18]) # relu2_1 -> relu3_1

 self.enc_4 = nn.Sequential(*enc_layers[18:31]) # relu3_1 -> relu4_1

 self.enc_5 = nn.Sequential(*enc_layers[31:44]) # relu4_1 -> relu5_1

 self.transform = Transform(in_planes = 512)

30

6. The encoder uses a previously trained VGG nineteen network. Two SANET models are

jointly trained and integrated by taking the VGG feature-maps as inputs and encodes

output feature-maps using distinct layers Relu_4_1 and Relu_5_1. Outputs of these

SANETs are combined by using the symmetric decoder. After that, the trained network

of SANET models is applied to the pictures. We are passing four arguments in

initialization function, and upon that, we are performing the transformation of encoder

and decoder.

self.decoder = decoder

if(start_iter > 0):

self.transform.load_state_dict(torch.load('transformer_iter_' + str(start_iter)

+ '.pth'))

self.decoder.load_state_dict(torch.load('decoder_iter_' + str(start_iter) + '.pth'))

self.mse_loss = nn.MSELoss()

for name in ['enc_1', 'enc_2', 'enc_3', 'enc_4', 'enc_5']:

for param in getattr(self, name).parameters():

param.requires_grad = False

def encode_with_intermediate(self, input):

 results = [input]

 for i in range(5):

 func = getattr(self, 'enc_{:d}'.format(i + 1))

 results.append(func(results[-1]))

 return results[1:]

def calc_content_loss(self, input, target, norm = False):

 if(norm == False):

 return self.mse_loss(input, target)

 else:

 return self.mse_loss(mean_variance_norm(input),

 mean_variance_norm(target))

def calc_style_loss(self, input, target):

 input_mean, input_std = calc_mean_std(input)

 target_mean, target_std = calc_mean_std(target)

 return self.mse_loss(input_mean, target_mean) + \

 self.mse_loss(input_std, target_std)

31

7. In the process of generating output, we need to calculate content loss & style loss by

calling the mean_variance normalization method on input content-image and style-

image after applying loss functions. Content picture loss ensures the activation of higher

layers are same as the input picture in the output image. Style picture loss provides that

the output image should adopt the style image functionality adequately.

8. We have taken input as two preprocessed images and resized them to 512×512. During

training, the size of each batch is six, and 180000 default iterations are applied. The

initial values assigned to weights while computing the loss are as follows, 𝑤𝑐=1.0,

𝑤𝑠=4.0, 𝑤𝑖𝑑1=50, and 𝑤𝑖𝑑2=1. After defining all dimensions upon the content-image

and style-image to produce output-image, the parser method parameter is passed.

 class SANet(nn.Module):

 super(SANet, self).__init__()

 self.f = nn.Conv2d(in_planes, in_planes, (1, 1))

 self.g = nn.Conv2d(in_planes, in_planes, (1, 1))

 self.h = nn.Conv2d(in_planes, in_planes, (1, 1))

 self.sm = nn.Softmax(dim = -1)

 self.out_conv = nn.Conv2d(in_planes, in_planes, (1, 1))

 def forward(self, content, style):

 F = self.f(mean_variance_norm(content))

 G = self.g(mean_variance_norm(style))

 H = self.h(style)

 b, c, h, w = F.size()

 F = F.view(b, -1, w * h).permute(0, 2, 1)

 b, c, h, w = G.size()

 G = G.view(b, -1, w * h)

 S = torch.bmm(F, G)

 S = self.sm(S)

 b, c, h, w = H.size()

 H = H.view(b, -1, w * h)

 O = torch.bmm(H, S.permute(0, 2, 1))

 b, c, h, w = content.size()

 O = O.view(b, c, h, w)

 O = self.out_conv(O)

 O += content

 return O

parser.add_argument('--lr', type=float, default=1e-4)

parser.add_argument('--lr_decay', type=float, default=5e-5)

32

9. We estimated the total loss by incorporating identity-loss along with content and style

losses.

10. We need to import all required python libraries which need to test the model.

parser.add_argument('--max_iter', type=int, default=180000)

parser.add_argument('--batch_size', type=int, default=5)

parser.add_argument('--style_weight', type=float, default=4.0)

parser.add_argument('--content_weight', type=float, default=1.0)

parser.add_argument('--n_threads', type=int, default=50)

parser.add_argument('--save_model_interval', type=int, default=1000)

parser.add_argument('--start_iter', type=float, default=0)

args = parser.parse_args('')

if(args.start_iter > 0):

optimizer.load_state_dict(torch.load('optimizer_iter_' + str(args.start_iter) + '.pth'))

for i in tqdm(range(args.start_iter, args.max_iter)):

adjust_learning_rate(optimizer, iteration_count=i)

content_images = next(content_iter).to(device)

style_images = next(style_iter).to(device)

loss_c, loss_s, l_identity1, l_identity2 = network(content_images, style_images)

loss_c = args.content_weight * loss_c

loss_s = args.style_weight * loss_s

loss = loss_c + loss_s + l_identity1 * 50 + l_identity2 * 1

optimizer.zero_grad()

loss.backward()

optimizer.step()

import argparse

import os

import torch

import torch.nn as nn

from PIL import Image

from os.path import basename

from os.path import splitext

from torchvision import transforms

from torchvision.utils import save_image

33

11. We are calculating standard mean based on feat size, whereas the default dimension

size is two for the variance. By default, we also add a small value to eps to avoid errors

during the program's execution.

12. We are calculating variance normalization by using standard deviation of inbuilt

functions.

13. The transform class defines an initialization method for sanet4_1 and 5_1, whereas

dimensions are as scale_factor is 2, and mode is nearest, which provides module-based

output values.

def calc_mean_std(feat, eps=1e-5):

size = feat.size()

assert (len(size) == 4)

N, C = size[:2]

feat_var = feat.view(N, C, -1).var(dim=2) + eps

feat_std = feat_var.sqrt().view(N, C, 1, 1)

feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)

return feat_mean, feat_std

def mean_variance_norm(feat):

size = feat.size()

mean, std = calc_mean_std(feat)

normalized_feat = (feat - mean.expand(size)) / std.expand(size)

return normalized_feat

class Transform(nn.Module):

def __init__(self, in_planes):

super(Transform, self).__init__()

self.sanet4_1 = SANet(in_planes = in_planes)

self.sanet5_1 = SANet(in_planes = in_planes)

self.upsample5_1 = nn.Upsample(scale_factor=2, mode='nearest')

self.merge_conv_pad = nn.ReflectionPad2d((1, 1, 1, 1))

self.merge_conv = nn.Conv2d(in_planes, in_planes, (3, 3))

34

14. Content and style image for relu 4_1 and relu 5_1 is allocating arguments steps to

produce final output image dimensions.

15. This gives the final output image after passing through many iterations on content and

style image.

with torch.no_grad():

for x in range(args.steps):

print('iteration ' + str(x))

Content4_1 = enc_4(enc_3(enc_2(enc_1(content))))

Content5_1 = enc_5(Content4_1)

Style4_1 = enc_4(enc_3(enc_2(enc_1(style))))

Style5_1 = enc_5(Style4_1)

content = decoder(transform(Content4_1, Style4_1,

Content5_1, Style5_1))

content.clamp(0, 255)

content = content.cpu()

output_name = '{:s}/{:s}_stylized_{:s}{:s}'.format(

args.output, splitext(basename(args.content))[0],

splitext(basename(args.style))[0], args.save_ext)

save_image(content, output_name)

35

CHAPTER 5

RESULTS AND DISCUSSION

In this chapter, the run-time of some NST approaches on three distinct dimensional images are

analyzed and compared. At first, the experimental results of SANET model are demonstrated

clearly. After that we will compare the performance of SANET model with other ASPM

approaches described earlier.

5.1 Analysis of various approaches of NST

We have thoroughly examined the characteristics of various distinct procedures for neural style

fusion and transformation. The charts given below in Fig.5.1, Fig.5.2, and Fig.5.3 represent the

comparison of running time performance on input-images of three distinct dimensions.

Fig.5.1: Comparison of run-time of NST approaches on 256×256 dimensional images

We can see that the algorithm based on optimization of image proposed by Gatys et al. [1] takes

a considerable value of computation time when compared with offline methods based on

optimization of employed models [3] [4] [5]. However, the quality of generated results is better

36

when compared to others. For real-time applications of arbitrary style transformation, there is

a trade-off between the quality of results and the running time of existing algorithms. Therefore,

we need to maintain a balance between quality and speed.

Fig.5.2: Comparison of run-time of NST approaches on 512×512 dimensional images

Fig.5.3: Comparison of run-time of NST approaches on 1024×1024 dimensional images

37

5.2 Implementation Results

Fig.5.4: Experimental results 1 and 2 of style transformation using SANET model

38

Fig.5.5: Experimental results 3 and 4 of style transformation using SANET model

39

Fig.5.6: Experimental results 5 and 6 of style transformation using SANET model

40

5.3 Comparison of SANET with other ASPM approaches

For determining the quality of SANET network, we analysed its comparison with four types of

models for fusing and transforming arbitrary-styles. We observed that AdaIN [8] is the fastest

ASPM approach, but it renders a suboptimal result as it copies the channel wise mean-variance

value, and the trained decoder usually attach frequently seen similar patterns and style-textures to

all stylized outputs. Hence, its resulting output is less appealing and sometimes fails to retain the

distribution of colours.

Despite matching the second-order-statistics optimally in WCT [7], sometimes, it creates unseen

and collapsed-patterns. Avatar-Net [9] blends the images based on the semantic-arrangement of

content and employs multi scale stylization. Still, because of its dependence on the patch size, it

fails to realize the local and global style-patterns simultaneously. Seldom Avatar-Net and WCT

render the blurred hair-texture and distorted vision of content due to the collapsed brush strokes.

In contradiction, the network containing two integrated SANET models can generate various

exquisite styles efficiently.

Fig.5.7: Comparison of execution time of SANET with other ASPM models

The graph in Fig.5.7 displays a comparison of the running time of SANET with other existing

methods of arbitrary style transformation for images of 512×512 dimensions. SANET is much

faster than style-swap, Avatar-net, and WCT models but a bit slower in comparison to AdaIN.

41

However, the quality of the result surpasses AdaIN and others. Therefore, this method is both

effective and practically efficient.

5.4 Conclusion and Future Scope

This project presents an advance network containing a combination of two SANET Models for

style fusion and transformation. This network ensures the semantic-arrangement and spatial-

distribution of content-image while fusing with the characteristics of new arbitrary style-

patterns by computing a new identity-loss component. We compared the execution time of

different NST algorithms on input-images of distinct dimensions. We observed that online

neural models are slow but deliver better results in comparison to fast offline neural models. In

all existing approaches, there is a trade-off between the quality of results and the running time

of existing algorithms. Our results demonstrate that this model is much faster than other ASPM

models and produces results with better quality and flexibility, which makes it much effective

and practically efficient. We are planning to expand this model for the style transformation of

videos in the future.

42

CHAPTER 6

REFERENCES

[1] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convolutional neural

networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2414–2423, 2016.

[2] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” in ArXiv e-

prints, Aug. 2015.

[3] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for realtime style transfer and super-

resolution,” in European Conference on Computer Vision, pp. 694–711, 2016.

[4] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky, “Texture networks: Feed-forward

synthesis of textures and stylized images,” in International Conference on Machine Learning,

pp. 1349–1357, 2016.

[5] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Improved texture networks: Maximizing quality

and diversity in feed-forward stylization and texture synthesis,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 6924–6932, 2017.

[6] T. Q. Chen and M. Schmidt, “Fast patch-based style transfer of arbitrary style,” in Proceedings

of the NIPS Workshop on Constructive Machine Learning, 2016.

[7] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang, “Universal style transfer via feature

transforms,” in Advances in Neural Information Processing Systems, pp. 385–395, 2017.

[8] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive instance

normalization,” in Proceedings of the IEEE International Conference on Computer Vision,

pp. 1501–1510, 2017.

[9] L. Sheng, Z. Lin, J. Shao, and X. Wang. Avatar-Net: Multiscale zero-shot style transfer by

feature decoration. in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 8242–8250, 2018.

[10] J. E. Kyprianidis, J. Collomosse, T. Wang, and T. Isenberg, “State of the ‘art’: A taxonomy of

artistic stylization techniques for images and video,” IEEE transactions on visualization and

computer graphics, vol. 19, no. 5, pp. 866–885, 2013.

[11] A. Hertzmann, “Painterly rendering with curved brush strokes of multiple sizes,” in

Proceedings of the 25th annual conference on Computer graphics and interactive techniques.

ACM, pp. 453–460, 1998.

[12] B. Gooch, G. Coombe, and P. Shirley, “Artistic vision: painterly rendering using computer

vision techniques,” in Proceedings of the 2nd international symposium on Non-photorealistic

animation and rendering, ACM pp. 83–ff, 2002.

43

[13] Y.-Z. Song, P. L. Rosin, P. M. Hall, and J. Collomosse, “Arty shapes,” in Proceedings of the

Fourth Eurographics conference on Computational Aesthetics in Graphics, Visualization and

Imaging, Eurographics Association, pp. 65–72, 2008.

[14] H. Winnemoller, S. C. Olsen, and B. Gooch, “Real-time video abstraction,” in ACM

Transactions On Graphics (TOG), vol. 25, no. 3. ACM, pp. 1221–1226, 2006.

[15] M. Zhao and S.-C. Zhu, “Portrait painting using active templates,” in Proceedings of the ACM

SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering.

ACM, pp. 117–124, 2011.

[16] Y. Li, N. Wang, J. Liu, and X. Hou, “Demystifying neural style transfer,” in Proceedings of

the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pp.

2230–2236, 2017.

[17] S. Li, X. Xu, L. Nie, and T.-S. Chua, “Laplacian-steered neural style transfer,” in Proceedings

of the 2017 ACM on Multimedia Conference. ACM, pp. 1716–1724, 2017.

[18] C. Li and M. Wand, “Combining markov random fields and convolutional neural networks

for image synthesis,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2479–2486, 2016.

[19] C. Li and M. Wand, “Precomputed real-time texture synthesis with markovian generative

adversarial networks,” in European Conference on Computer Vision, pp. 702–716, 2016.

[20] V. Dumoulin, J. Shlens, and M. Kudlur, “A learned representation for artistic style,” in

International Conference on Learning Representations, 2017.

[21] D. Chen, L. Yuan, J. Liao, N. Yu, and G. Hua, “Stylebank: An explicit representation for

neural image style transfer,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 1897–1906, 2017.

[22] H. Zhang and K. Dana, “Multi-style generative network for real-time transfer,” arXiv preprint

arXiv:1703.06953, 2017.

[23] D. Y. Park and K. H. Lee., “Arbitrary style transfer with style-attentional networks,” arXiv

preprint arXiv:1812.02342, 2018.

[24] S. Ruder, “An overview of gradient descent optimization algorithms” arXiv preprint

arXiv:1609:04747, 2017.

[25] M. Ruder, A. Dosovitskiy, and T. Brox, “Artistic style transfer for videos,” in German

Conference on Pattern Recognition, pp. 26–36, 2016.

[26] D. Chen, J. Liao, L. Yuan, N. Yu, and G. Hua, “Coherent online video style transfer,” in

Proceedings of the IEEE International Conference on Computer Vision, pp. 1105–1114, 2017.

[27] A. J. Champandard, “Semantic style transfer and turning two-bit doodles into fine artworks,”

ArXiv e-prints, Mar. 2016.

44

[28] S. Azadi, M. Fisher, V. Kim, Z. Wang, E. Shechtman, and T. Darrell, “Multi-content gan for

few-shot font style transfer,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2018.

[29] P. Verma and J. O. Smith, “Neural style transfer for audio spectograms,” in Proceedings of

the NIPS Workshop on Machine Learning for Creativity and Design, 2017.

[30] Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, and J. Kautz, “A closed-form solution to photorealistic

image stylization,” in European Conference on Computer Vision, 2018.

[31] S. Jiang and Y. Fu, “Fashion style generator,” in Proceedings of the 26th International Joint

Conference on Artificial Intelligence. AAAI Press, pp. 3721–3727, 2017.

[32] Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, M. Song. "Neural Style Transfer: A Review", IEEE

Transactions on Visualization and Computer Graphics, 2019.

45

CHAPTER 7

PUBLICATION

[1] Pratibha Rathi, Pranav Adarsh, Dr. Manoj Kumar. "Deep Learning Approach for Arbitrary

Image Style Fusion and Transformation using SANET model", in Proceedings of the Fourth

International Conference on Trends in Electronics and Informatics (ICOEI), IEEE, 2020.

DVD Part Number: CFP20J32-DVD; ISBN: 978-1-7281-5517-3; Page No. 1036-1043.

978-1-7281-5518-0/20/$31.00 ©2020 IEEE

For real-time applications of arbitrary style transformation, there is a trade-off between the quality

of results and the running time of existing algorithms. Hence, it is required to maintain the

equilibrium of the quality of generated artwork with the speed of execution. It's complicated for

the present arbitrary style-transformation procedures to preserve the structure of content-image

while blending with the design and pattern of style-image. This project presents the

implementation of a network using SANET models for generating impressive artworks. It is

flexible in the fusion of new style characteristics while sustaining the semantic-structure of the

content-image. The identity-loss function helps to minimize the overall loss and conserves the

spatial-arrangement of content. The results demonstrate that this method is practically efficient,

and therefore it can be employed for real-time fusion and transformation using arbitrary styles.

