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ABSTRACT 
 

 
For real-time applications of arbitrary style transformation, there is a trade-off between the 

quality of results and the running time of existing algorithms. Hence, it is required to maintain 

the equilibrium of the quality of generated artwork with the speed of execution. It's complicated 

for the present arbitrary style-transformation procedures to preserve the structure of content-

image while blending with the design and pattern of style-image. This project presents the 

implementation of a network using SANET models for generating impressive artworks. It is 

flexible in the fusion of new style characteristics while sustaining the semantic-structure of the 

content-image. The identity-loss function helps to minimize the overall loss and conserves the 

spatial-arrangement of content. The results demonstrate that this method is practically 

efficient, and therefore it can be employed for real-time fusion and transformation using 

arbitrary styles. 

 

Keywords: image processing; deep learning; neural style transfer; computer vision; 

arbitrary image stylization; SANET; ASPM; convolutional neural networks.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

 

The art of clicking photos involves the realization of the proper background, decent lighting, 

and editing to make them beautiful. Adequate editing for photographs can add life to our still 

postures or actions and deliver us a creative artwork to relive and cherish those moments. 

Nowadays, this art has been spread to all of the people with the smartphone revolution. 

Wherever we go, we can see people holding their phones and clicking random photographs to 

gather their memories. For improving the quality of those pictures, many picture editing tools 

are available. The editing of ordinary photographs can make them look extraordinary. The 

editing of the photographs can make our memories even more memorable. Most people edit 

their photos before posting them on social networking sites to look more attractive and vibrant. 

 

Picture editing is also helpful for real-estate services firms, for increasing the generous 

attractiveness of properties by improving and intensifying images displayed on their websites. 

It will help in attracting numerous clients and also help in selling that property quicker. Photo 

editing can make any occasion look much lively and pleasant. We can also convert our old 

black and white photographs into colorful pictures by applying unlimited effects to simple ones. 

A newly developed mobile application called Prisma is an industrial application that applies 

the NST algorithms to edit photographs. This application has achieved great success and 

popularity around the world due to the much better quality of stylization. Few similar 

applications provide similar services like Ostagram is paid but offers faster stylization speed. 

With these automated applications, people can build their artwork and paintings to share with 

others on twitter, instagram, and facebook, which is a new method of social communication. 

These methods are much favorable for artists and widely used by them to impose their art works 

on digital photographs. 
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1.2 Scope of Project 

 

In the recent few years, various research works contributed to improve and accelerate the 

development of deep learning methods for continuous reformations of style transformation 

procedures. Arbitrary style transformation is the process of fusing new artistic styles with the 

content of the given image to create impressive artworks. NST was first introduced and 

explained by Leon A. gatys in 2015. On the basis of this idea presented by Gatys, many NST 

applications like deepdream, prisma, and ostagram, etc. have been released to generate amazing 

artworks.  

 

The method proposed by Gatys [1] [2] follows an iterative procedure for the optimization of 

the generated image, which makes it computationally expensive and slow. However, the quality 

of the generated output is quite impressive. After that, numerous models have been proposed 

based on the optimization of the employed model. Johnson et al. [3] and Ulyanov et al. [4] [5] 

proposed fast offline approaches for generating output in a single feed-forward-pass, but their 

model is limited in the number of styles, and the quality of the result is also reduced.  

 

For fusing arbitrary styles using a single model, some ASPM approaches have been introduced. 

The style-swap model [6] was stated that employs the patch match procedure to substitute the 

features of content by the nearest match of characteristics of the style. Li et al. [7] specified 

multilevel stylization by recursively employing whitening-colour-transformation to enhance 

the quality of output and to protect the content-structure. AdaIN [8] model changes the mean-

variance of the content-image to match with style-image for transforming features. Avatar-net 

[9] model contains a style-decoder model based on patch-match and an hourglass network for 

adapting styles on multiscale. To solve the trade-off between content and style losses, this 

project presents a new loss function identity-loss and implementation of a network consist of 

an integration of two SANET models for preserving both content-structures and style-

characteristics.  
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1.3 Problem Statement 

 

There is a trade-off between the quality of resulting output and the execution time of existing 

algorithms for real-time applications of arbitrary style transformation. After thoroughly 

examining the properties of various procedures for neural-style fusion and transformation, we 

can see that the online method algorithm based on optimization of image proposed by Gatys et 

al. takes a significant amount of time to calculate results compared with offline methods that 

apply the procedure of optimization of employed models. However, the quality of results 

generated by online methods is better in comparison to the quality of output produced by offline 

methods.  Therefore, it is required to create a network capable of producing resulting artworks 

for any arbitrary image while maintaining a balance between the quality of output-images and 

speed of execution of the model. 

 

 

1.4 Objective of work 

 

The given research project work is presented with the following given objectives. 

 To study all the existing significant works that have already been done in this field of 

style fusion and transformation, before and after the emergence of deep learning. 

 Analysis of the quality of results and execution time of various NST approaches and to 

demonstrate the analysis graphically. 

 To examine the categorization of NST algorithms based on their working. 

 To implement a new model consisting of style-attentional networks for generating 

artwork using arbitrary style-images while sustaining both style-features as well as the 

spatial distribution of content-image. 

 To introduce a new loss function named identity-loss function that helps to minimize 

the overall loss and conserves the spatial-arrangement of content. 

 To analyze the proposed mechanism and compare its output and execution time with 

other ASPM approaches. 

 The ultimate goal of arbitrary style-transformation is to simultaneously achieve and 

preserve generalization, quality, and efficiency. 
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1.5 Organization of Dissertation 

 

The arrangement of the dissertation is as follows. In chapter 1, the need and importance of this 

project work are explained in detail. Below in chapter 2, background information of style 

transformation methods is given, which covers the explanation of some IBAR methods along 

with their drawbacks. In chapter 3, a detailed literature review has been done explaining all the 

major work that has already been done in this field of work. Section 3.1 and 3.2 provide 

information about the existing neural methods of style transformation and their categorization 

into online and offline divisions. Section 3.3 illustrates the analysis of optimization approaches, 

and section 3.4 gives expansion areas of NST by providing some detailed information about 

them. Chapter 4 describes the proposed method in which section 4.1 explains the architecture 

of the SANET model, and section 4.2 shows the calculation of loss-functions. Section 4.3 

illustrates the hardware requirements, software requirements, and data set used in training, and 

the model's testing is listed along with the description of the detailed implementation procedure. 

In section 4.3.5, all the steps of implementation are described. Then in Chapter 5, in-depth 

analysis and review of the implemented method have been done. In section 5.1, the analysis of 

the execution time of various NST approaches is displayed with the help of graph plots. Section 

5.2 demonstrates the implementation results, and section 5.3 describes the comparison of 

implemented SANET network with other existing ASPM models. Finally, section 5.4 

summarizes the conclusion. Then Chapter 6 contains the references to all the resources that 

have been used to gather the information to work on this project. 
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CHAPTER 2 

BACKGROUND 

 

In this chapter, we will explain the background information of the approaches used in style 

transformation before the evolution of deep learning. The techniques in the taxonomy of image 

based artistic rendering (IBAR) were employed for the stylization of two-dimensional images. 

First, we describe the procedure of some IBAR [10] methods and then review their drawbacks. 

 

 

 

Fig.2.1: Categorization of IBAR techniques 

 

 

2.1 Stroke-based rendering 

 
It is the process of integrating portraits, paintings, and artworks by providing the strokes or 

marks on a digital canvas using brushes, lines, and tiles [11]. For converting a photograph into 

a particular style, virtually some brush strokes are superimposed at some positions on a digital 

canvas. It can create conventional arts based on the brush, for instance, an oil painting. This 
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procedure generally starts from a source picture by sequentially adding strokes to modify that 

picture and ultimately composing a nonphotorealistic image that looks like the original 

photograph carrying an exquisite style. The limitation of SBR methods is that all SBR 

approaches are intended to create a single distinct style and therefore is not proficient for 

composing arbitrary styles. It illustrates the nonflexibility of this approach. 

 

 

2.2 Region-based techniques 

 
RBT is used to accommodate the effects on the basis of the content in regions. Previous RBT 

algorithms [12] deteriorate the shape of structures in managing the arrangement of strokes. The 

latter method introduces an IBAR procedure [13] based on regions to alter the semantic geometry 

of photographs for generating creative effects. This algorithm replaces parts of the picture by many 

canonical patterns for constructing uncomplicated shape rendering results. In this approach, a 

source image and target photograph is distributed into many areas using the method based on 

graphs. The semantic conformity is estimated between them on the basis of colours, patterns, and 

texture.  Ultimately, the colours and textures are transferred for each area by employing a patch 

match method. Drawbacks of RBT methods is similar to SBR, all RBT approaches are intended 

to create a single distinct style and therefore is not proficient for composing arbitrary styles. It 

represents the nonflexibility of this approach. 

 

 

2.3 Image-processing and filtering 

 
Usually, the IPF approach for rendering is simple to implement and effective in application. IPF 

techniques [14] are applicable to real time rendering and accommodate multicore CPU and GPU. 

Bilateral and gaussian filters are employed to compose the effects of cartoons. Kuwahara filter is 

an exciting range of filters for preserving edges. It works relatively well on pictures of high 

contrast. These filters eliminate features in sharp regions and preserve shape outlines in areas of 

low contrast. Some other filters are morphological, diffusion, and shock filter. Gradient domain 

techniques are also utilized in which the result is interpreted by creating a gradient field. The 

drawback of IPF is that style variety, and diversity is inadequate. 
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2.4 Example based techniques 

 

EBR [15] understands the mapping within the prototype pairs containing the source photograph 

and the corresponding styled artwork. The learned mapping is employed to style arbitrary pictures. 

EBR can work in two categories by performing texture transformation and colour transformation. 

The proposed framework named image analogy is a supervised method containing two stages, 

namely the design stage and application stage. In the design stage, it intends to study the analogous 

mapping between the pairs of source pictures and target outputs. The data used for training in 

image-analogy contains combinations of input-pictures along with the corresponding stylized 

output-pictures. In the application phase, learned mapping is applied to new target photographs to 

produce relevant analogous results. The main drawback of this method is the unavailability of 

training data. This method fails to capture the structure of images accurately and uses only low 

level features of the picture. 
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CHAPTER 3 

LITERATURE REVIEW 

 

Neural Style-Transfer is a machine learning technique that takes two images in input, one of 

which is content-input image and another one is called style-input image, for example, the 

artwork in a famous painting and blend them in order to transform the input images into an 

output image that looks like the picture called content-image but it will be painted in a similar 

fashion to the picture called style-image. Neural style transfer uses deep learning and its 

convolution neural networks to perform this amazing task. It is much propitious for artists and 

widely used by them to impose their art work on digital photographs.  

 

 

 

Fig.3.1: Categorization of NST techniques 

 

It was first introduced and explained by Leon A. Gatys in 2015. After the Gayts, several 

endeavours are in progress related to the style transfer and its algorithms to perform training 
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and learning faster as much as possible and to extend the procedure of style transfer techniques 

from static images to videos, audios, and other mediums. Neural methods of style transfer are 

broadly divided into two categories. One of which is the online method and the other one is the 

offline method. 

 

 

3.1 Online neural methods 

 

One of the famous applications in the field of style transfer is Deep-dream, which is based on 

online approach of NST. The online method focuses on the optimization of the generated output 

image but not on the improvement of the applied model. This approach employed several 

iterations for enhancing the quality of the output image. Due to the multiple iterations, this 

procedure is much time consuming and computationally expansive. Therefore it is also known 

as the slow neural method for style transformation. The process is to extract the content 

information and style representation from input images and then apply this extracted 

information to the CNN model for recombining both components to generate the artistic output. 

Gradient descent algorithm is used for the optimization of the result by minimizing the value 

of loss function. These online methods differ in the approach of applying the content and style 

representation to the CNN model so categorized into two classes. 

 

 

3.1.1 Parametric online neural methods 

 

These methods employed spatial representation summary and statistics to generate artworks. 

Gatys et al. [1] [2] in 2015 proposed an algorithm that applies deep CNN model VGG 19 for 

extracting structure, shape, and texture, etc. related information of content and style features 

from preprocessed input pictures. This information is spatially modelled in different layers of 

VGG 19 and used for the reconstruction of target artwork. VGG nineteen network is composed 

of sixteen layers of convolution and five layers for pooling, where higher layers are handled to 

represent the content characteristics. Style-image input is passed through the VGG network, 

and the gram matrix is employed to store style characteristics.  

 

The overall loss is a linear combination of both content and style losses balanced by parameters 

calculated through the one thousand iterations of gradient descent. Content loss is computed in 
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terms of mean squared difference. The α and β hyper parameters provide the appropriate 

weights to both components of loss for balancing the equation of total loss function.  

 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝛽𝐿𝑠𝑡𝑦𝑙𝑒                                                  (3.1) 

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝐶, 𝐺, 𝐿) = 0.5 ∑ (𝑎[𝐿](𝐶)𝑖𝑗 − 𝑎[𝐿](𝐺)𝑖𝑗)
2

𝑖𝑗                              (3.2) 

𝐿𝐺𝑀(𝑆, 𝐺, 𝑙) =
1

4𝑁𝑙
2𝑀𝑙

2 ∑ (𝐺𝑀[𝑙](𝑆)𝑖𝑗 − 𝐺𝑀[𝑙](𝐺)𝑖𝑗)
2

𝑖𝑗                          (3.3) 

𝐿𝑠𝑡𝑦𝑙𝑒(𝑆, 𝐺) = ∑ 𝑤𝑙
𝐿
𝑙=0 × 𝐿𝐺𝑀(𝑆, 𝐺, 𝑙)                                          (3.4) 

 

 

Here S, C, G, and GM are used to represent style-image, content-image, output generated-

image, and gram-matrix, respectively.  Activation of layer L is used for the calculation of 

content-loss. 𝑁𝑙 is the number of channels in the feature map, and 𝑀𝑙 is the product of the 

height and width of the feature map. After that demystifying approach [16] of NST was 

introduced that employs a different method for the statistical representation of style features. 

In this procedure, the gram matrix was replaced by MMD. It states that the minimization of 

maximum-mean-dispersion is comparable to the matching of gram-matrices. Several different 

methods for the representation of style were used, which include gaussian, linear, polynomial 

and batch-normalization, etc.  

 

In 2017, Lapstyle NST was presented [17], which added a laplacian-loss function to calculate 

the overall loss. This laplacian-loss preserves the low-level fine details of the content 

characteristics and is aimed to reduce the distortion of edges, shapes, structure, contour, and 

colours of original input when converted to artistic output. 

 

 

3.1.2 Non parametric online neural methods 

 

In 2016, Li and wand [18] proposed a method of style transformation that employed a 

combination of markov-random-field models and deep CNN for synthesizing two dimensional 

artworks. This approach works well with both photo-realistic and non-photo-realistic 

transformation of style. For minimizing loss, it uses limited memory BFGS algorithm. This 

algorithm matches style on the level of neural-patches. Hence, it is suitable for preserving fine 
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details of the structure. They formed a new function for calculating the style-loss and content-

loss by calculating euclidean distance between patches using the energy function of MRF-

neural-patch-matching given in (3.5). 

 

𝐸𝑠(𝜑(𝑥), 𝜑(𝑥𝑠)) = ∑ ‖𝜓𝑖(𝜑(𝑥)) − 𝜓𝑁𝑁(𝑖)(𝜑(𝑥𝑠))‖
2𝑚

𝑖=1                       (3.5) 

 

The characteristic of this algorithm is that it produces considerably well resulting artwork for 

photo-realistic styles, especially if the shape, structure, and panorama of both content-image 

and style-image are alike. Though, it usually doesn't work well if there is a great difference in 

view and arrangement of structures of content-image and style-image because the patches in 

both pictures could not be paired accurately. 

 

 

3.2 Offline neural methods 

 

Earlier explained online method uses the iterative approach of gradient descent for improving 

the quality of generated output. Therefore it consumes a large amount of computation time 

when image size is considerably large. To overcome this limitation of speed, offline neural 

methods were introduced. This approach is much speedy compared to the previous procedure 

because it generates the output artwork in a single feed-forward-pass by optimizing the adopted 

model. As it mainly focuses on the optimization of the applied model, hence it is also known 

as the model-optimization-based offline method of NST.  This offline approach is further 

divided into three categories based on the number of styles generated by the model in its output 

artwork. 

 

 

3.2.1 Offline neural model generating single style-PSPM 

 

For adopting an individual style, this approach optimizes the employed model. Johnson et al. [3] 

proposed a parametric method of training a feed-forward-network for the task of style 

transformation. This method replaces the perpixel losses by perceptual losses computed using high 

level features of images. The system contains two components of the network, which are image-

style transformation network and loss-network. Image-style transformation network is a deep 

residual CNN that can convert input images to an artistic output by understanding the mapping. It 
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is trained using stochastic-gradient-descent for minimizing the weighted combination of loss-

functions, which is computed by employing loss-network. Perceptual losses measure the 

similarities and dissimilarities of images more precisely compared to perpixel losses.  

 

Another similar approach proposed by Ulyanov et al. [4] uses multi-scale architectures that can 

be trained faster and result in a smaller loss in content and texture characteristics and better visual 

quality while working with comparatively few parameters. These are very lightweight models that 

are capable of generating artworks comparable to the quality of output produced by Gatys et al., 

and their speed is almost 100 times faster. However, these are also limited in considering the small 

details and depth information. After that, a new advance concept was introduced, which is known 

as instance-normalization [5]. It means normalization is applied to each single image in place of 

the batch of images. It converges faster, learns quickly, and significantly improves the visual 

quality of generated stylized artwork. This model can be trained rapidly, reduces the overall loss, 

and enhances the diversity of network output.  

 

The non-parametric approach of single-style per model offline neural methods uses MGAN [19]. 

It is a markovian model applied to generative adversarial networks for learning the mapping 

between different representations of the same content-image. MGAN utilized the imagenet dataset 

for adversarial-training. It successfully preserved the coherent texture of compact content-images, 

and the speed of synthesis is remarkably fast. MGAN network consists of two subnetworks, 

namely discriminator and generator, for improving the model in iterations. This method lacks in 

transferring non-texture style, such as facial-features of two different face-pictures. Facial-features 

cannot be interpreted as texture because these require the understanding of expression, poses, and 

gender, etc. semantic characteristics. 

 

 

3.2.2 Offline neural model generating multiple styles-MSPM 

 
Above mentioned PSPM procedures can generate artistic output hundred times speedier than 

previous offline neural methods based on image-optimization. But it needs to train several network 

models individually to generate output for every distinct style-image. It exhibits inflexibility and 

excessive time consumption in training for each style. For reducing the irrelevant time 

consumption during the separate training of various models in PSPM, a new approach was 

introduced for consolidating multiple-styles into a single model, which is known as MSPM.  
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In 2017, Dumoulin et al. [20] proposed that it is possible to model different styles at the same time 

by using the same parameters in the convolutional network. For incorporating different styles, 

shifting and scaling of parameters is required in the layers of instance normalization, which is 

called conditional-instance-normalization. CIN is an alteration of style-transformation networks 

that is uncomplicated, scalable, flexible, and efficient for incorporating diversity in output artwork. 

By consolidating affine parameters of different styles, it can be applied to incorporate multiple-

styles in one output artwork. 

 

 

𝐶𝐼𝑁(𝐹(𝐼𝑐), 𝑠) = 𝛾𝑠 (
𝐹(𝐼𝑐) − 𝜇(𝐹(𝐼𝑐))

𝜎(𝐹(𝐼𝑐))
) + 𝛽𝑠                                   (3.6) 

 

 

Here, β and γ are the parameters of CIN. After this style-bank method [21] was introduced, that is 

an aggregate of various convolution filter-banks. One style is expressed by every filter-bank 

explicitly in that combination. For converting a picture to a specific style, the corresponding filter-

bank is turned over the intermediate feature-embedding generated by a single auto encoder.  While 

keeping a fix auto encoder, it is possible to carry out incremental-learning for appending a new 

style by training a new filter-bank.  

 

This style-bank fusion approach works in two ways, linear and region-based. In linear fusion, the 

style-bank layer is fed with a linear combination of multiple styles. While in region-based fusion, 

content-image is disintegrated into some disjoint regions using automatic k-means clustering, and 

then combined style transformation can be conducted using more than one style simultaneously. 

But the size of the model expands as the number of styles learned by it increases, that is a 

drawback.  

 

To eliminate this limitation, Zhang and Dana [22] explored the capabilities of a single CNN model 

VGG 16 for consolidating both content and style in one network. The Multiple-style-generative 

network was introduced, which can control the size of brush strokes in real time transfer of style. 

In MSG-Net, the comatch layer was used to represent styles in two dimensional ways. For the 

comatch layer, it is possible to differentiate and train end to end, but tough to conserve the fine 

details of structures. 
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3.2.3 Offline neural model generating arbitrary styles-ASPM 

 
The third type of offline neural method is ASPM that intends to build one model for all styles. 

It states that a single model can be trained to transfer any arbitrary style. ASPM is also divided 

into two types. Parametric-ASPM employed spatial representation summary and statistics to 

generate artworks while nonparametric-ASPM applies MRF for texture-modelling. 

 

3.2.3.1 Style-Swap 

 
Chen and Schmidt [6] proposed the first algorithm for nonparametric-ASPM in which they 

introduced the concept of style-swap for training an inverse network to generate the stylized 

output for any arbitrary style. 

 

 

 

Fig.3.2: Representation of style-swap for training inverse network 

 

 

At first, a set of patches having sufficient overlap for both content and style activations are 

extracted for computing in a previously trained VGG network. Each content patch is matched 

with style patches to find the closest and similar match for swapping. Then content activation 

is reconstructed by averaging areas of overlapping. This approach of one-model-for-any-style 

is more flexible than the previous methods but generates less appealing results in which the 

content is preserved thoroughly, whereas the style is not reflected adequately. 
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3.2.3.2 Adaptive-Instance Normalization (AdaIN) 

 

In parametric-ASPM, Huang and Belongie [8] modified conditional-instance-normalization 

(CIN) to adaptive-instance-normalization (AdaIN) instead of training a network for parameter 

prediction. The above mentioned style swap method takes a considerable amount of time and 

occupies much memory, but AdaIN is a simplistic approach with the low cost of computation. 

Here, 𝐼𝑐, 𝐼𝑠, and 𝐼𝑔represents content-image, style-image and generated output-image respectively. 

 

𝐴𝑑𝑎𝐼𝑁(𝐹(𝐼𝑐), 𝐹(𝐼𝑠) = 𝜎(𝐹(𝐼𝑠)) (
𝐹(𝐼𝑐) − 𝜇(𝐹(𝐼𝑠))

𝜎(𝐹(𝐼𝑐))
) + 𝜇(𝐹(𝐼𝑠))              (3.7) 

𝐼𝑔 = 𝐷𝑒𝑐 (𝐴𝑑𝑎𝐼𝑁(𝐹(𝐼𝑐), 𝐹(𝐼𝑠)))                                         (3.8) 

 

 

                

 

Fig.3.3: Architecture of AdaIN method of parametric-ASPM 

 

For the given input pictures, AdaIN modifies the mean value and variance value of both content-

image and style-image for matching. AdaIN layer efficiently transfers the feature-characteristic 

statistics for performing style transformation. After that, a decoder is used for inverting the output 

of AdaIN layer, and the VGG encoder is utilized for measuring loss. It is a good parametric-ASPM 

approach for performing stylization in real time, but it is insufficient in the generalization of new 

styles. Therefore, it is challenging to synthesize intricate style patterns consist of fine details and 

complex structures. 
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3.2.3.3 Whitening-Coloring-Transformation (WCT) 

 

Li et al. [7] changed the AdaIN-layer of the above described model by a combination of the 

whitening-colour-transformation network. The objective is to protect the arrangement and 

composition of content. Whitening-transformation receives content-activations from the 

encoder and then produces a filtered representation of content-image. 

 

After that, colouring-transformation is applied for consolidating the style-patterns into the 

filtered content design, and the decoder provides stylized output artwork. This method is good 

in generalizing distinct styles as learning is not required of every style, but not useful in 

delivering sharp-features and small strokes-details. 

 

 

 

 

Fig.3.4: Architecture of WCT model 

 

 

 

3.2.3.4 Avatar-net 

 
It blends the images based on the semantic-arrangement of content and employs multi scale 

stylization in a single feed forward pass [9]. It is better than WCT that requires several recursive 

feed forward passes. Avatar-net uses a style-decorator and an hourglass-network. Patch based 

style decorator module is used to decorate the content features with style patterns while 

retaining the semantic properties of content. The hourglass network is employed for multi scale 

adaptation of style. But its output depends on the patch size, and therefore usually, it is unable 

to express the local and global styles simultaneously. 
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3.3 Comparison of Optimization Algorithms 

 
Optimization algorithms are applied to optimize the output of NST by minimizing the value of 

loss-function. They work during training and learning of the model to update the weights and 

finding the relevant values for parameters to get an optimal solution. In Table 3.1, we have 

discussed some popular optimization methods with their merits and drawbacks. 

 

Table 3.1: Analysis and Comparison of Optimization Algorithms 

 

Type Description Merits Drawbacks 

 
Gradient Descent-

optimizer 

It is a traditional 

algorithm for the 

optimization of neural 

network models. It 

updates weights and 

tunes the parameters of 

the model iteratively to 

minimize the value of 

loss function. 

Updates weights 

in neural 

network models 

iteratively. 

It is very slow and 

takes ample 

computation time for 

huge datasets. It is 

difficult to regulate 

the learning rate as 

the algorithm 

sometimes stuck in 

local minima. 

AdaGrad-optimizer It applies a separate 

learning-rate for each 

parameter. It modifies 

the learning rate of the 

parameter at each step 

on the basis of the 

computation of the 

previous gradients of 

that parameter. 

Very helpful for 

handling 

scattered data 

and we don't 

need to set the 

learning rate 

manually. 

Its main limitation is 

the decrease and 

decay in its learning 

rate value. 

AdaDelta-optimizer It is an improvement of 

AdaGrad-optimizer. It 

entirely replaces the 

learning-rate parameter 

by the exponential 

moving-average of 

squared-deltas. 

No need of the 

learning-rate 

parameter. 

There is a necessity 

of two-state 

variables for saving 

the second-moments 

of gradients and the 

variation in 

parameters. 

Adam-optimizer It is an adaptive-method 

for defining separate 

learning-rates for every 

parameter using 

momentum and 

therefore termed as 

adaptive-moment-

estimation. 

 

It separately 

defines the 

learning-rate for 

every parameter. 

 

Its gives better result 

in the starting of 

training, but 

performance 

diminishes as the 

time increases. 

Therefore, for some 

tasks, it does not 

converge to an 

optimum value. 
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L-BFGS-optimizer It is a limited-memory-

BFGS algorithm in the 

family of QUASI-

Newton-methods 

because it takes a small 

amount of memory. 

It uses a line-search 

approach, which makes 

it much steady in 

training and more 

accessible to examine 

for convergence. 

It is the most 

efficient, speedy, 

and popular 

approach of 

optimization 

compared to 

previous 

methods. 

 

It does not scale well 

while updating and 

calculating 

gradients. Hence, 

there is a necessity 

of mini-batch-

training that needs to 

estimate gradients on 

small subsets of 

data. 

 

 

3.4 Expansion of Neural Style Transformation 

 
Neural style transfer has an influence ahead art and entertainment. In medicine, the pattern-

matching technique helps in the diagnostic domain and in the design of unique molecules and 

proteins. NST techniques are already becoming popular in entertainment and social 

communication. Some websites allow users to create their artwork using different photographs. 

There is a rising concern in style tools that enhance the field of digital art. However, the real 

strength of this procedure goes ahead of image creation. Similarly, video, audio/music style 

transformation has also made some progress. 

 

 

 

Fig.3.5: Expansion of NST in various applications 
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3.4.1 Video-Style Transfer 

 
Several approaches of NST are expanded to style transformation of audio, video, and characters, 

etc. For altering the style of videos, the requirement is to achieve a smooth variation among 

contiguous frames of video. A method [25] based on iterative optimization of images uses 

temporal-consistency loss obtained by calculating optical-flow. It produces stylized videos by 

excluding temporal-artifacts but requires significant time for computing results. Another approach 

[26] was suggested that applies a flow-subnetwork to compose feature-flow and to consolidate the 

knowledge of optical-flow. This model is based on a network that contains a previously trained 

combination of encoder and decoder. 

 

 

3.4.2 Audio-Style Transfer 

 
Another expansion is to generate distinct sound effects by allotting the desired style from the 

target-audios [29]. It is called the style transformation of audio. It uses two approaches based on 

iterative optimization of audio and optimization of the employed model. One approach iteratively 

optimizes a noise signal applying back propagation. Another method develops efficiency by 

transforming audio in a feed-forward manner and can provide the output in real time. 

 

 

3.4.3 Photorealistic-Style Transfer 

 
Photorealistic transformation [30] refers to the transfer of style of arrangements of colors. Its 

primary intent is to conserve the fundamental structure of the content-image by utilizing a two 

stage optimization method, namely stylization and smoothing. Hence, for decreasing the 

deformation of content-image, it employs photorealism-regularization. 

 

 

3.4.4 Character-Style Transfer 

 
Style transformation is also operated on characters [28] for producing unique fonts and unusual 

text-effects. By collectively training the conditional-generative model and an ornamentation-

network model, the style transformation of characters can be accomplished.  

 



20  

3.4.5 Semantic-Style Transfer 

 
The semantic transformation [27] of style is an expansion of NST, which is applied to a pair of 

input images holding analogous content. The method is to obtain a semantic correlation between 

content-image and style-image. Hence, the style of every region of style-image is applied to the 

corresponding semantically analogous part of the content-image. 

 

 

3.4.6 Fashion-Style Transfer 

 
Another expansion of NST approaches is in the field of fashion [31] to create clothes containing 

the desired styles of fashion. In the synthesized output, the applied GAN-model should protect the 

basic design of cloth while blending with the given target style. 
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CHAPTER 4 

PROPOSED APPROACH 

 

As there exist a trade-off between the quality of results and the running time of existing 

algorithms. Hence, we need to maintain a balance between quality and speed. Therefore, in this 

chapter, we will explain the proposed approach used in arbitrary image style transformation 

using SANET models. The hardware requirements, software requirements and data set used in 

training and testing of model is listed along with the description of detailed procedure of 

implementation. 

 

4.1 Style-Attentional Network Model (SANET) 

 
It stands for the style-attentional network that can blend style-patterns in the content-image 

efficiently and flexibly. It uses a kernel that can learn similarities rather than fixed kernel. This 

neural-network model modifies the self-attention mechanism to understand the mapping 

between content and style features.  

         

       

 

Fig.4.1: Network Architecture of SANET model 

 

For synthesizing artworks, this model takes two images in input, which are content-image 𝐼𝑐 

and style-image 𝐼𝑠. By applying the encoder module, which is a previously trained VGG 

nineteen network, both the input-images are encoded into an intermediate representation. After 
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encoding both input-images, we apply both the obtained feature-maps 𝐹𝑐 and 𝐹𝑠, to two distinct 

style attentional networks to produce the combined feature-map 𝐹𝑐𝑠. 

 

𝐹𝑐 = 𝐸(𝐼𝑐)                                                                                (4.1)                                                                      

𝐹𝑠 = 𝐸(𝐼𝑠)                                                                                 (4.2) 

𝐹𝑐𝑠
𝑟41 = 𝑆𝐴𝑁𝐸𝑇𝑟41(𝐹𝑐, 𝐹𝑠)                                                           (4.3)  

𝐹𝑐𝑠
𝑟51 = 𝑆𝐴𝑁𝐸𝑇𝑟51(𝐹𝑐, 𝐹𝑠)                                                           (4.4) 

𝐹𝑐𝑠𝑐
𝑟41 = 𝐹𝑐 + 𝑊𝑐𝑠𝐹𝑐𝑠

𝑟41                                                                   (4.5) 

𝐹𝑐𝑠𝑐
𝑟51 = 𝐹𝑐

′ + 𝑊𝑐𝑠
′ 𝐹𝑐𝑠

𝑟51                                                                   (4.6) 

𝐹𝑐𝑠𝑐 = 𝑐𝑜𝑛𝑣3×3(𝐹𝑐𝑠𝑐
𝑟41 + 𝑢𝑝𝑠𝑎𝑚𝑙𝑒(𝐹𝑐𝑠𝑐

𝑟51))                             (4.7) 

𝐼𝑜 = 𝐷(𝐹𝑐𝑠𝑐)                                                                               (4.8) 

 

 

Here 𝐹𝑐𝑠𝑐
𝑟41 and 𝐹𝑐𝑠𝑐

𝑟51 are the synthesized feature-map values generated by applying 1x1 conv-

net to the output feature-maps of SANETs. 𝐹𝑐𝑠𝑐 is the integrated output feature-map achieved 

by applying 3x3 conv-net to the resulting feature-maps obtained by relu_4_1 SANET and 

upsampled relu_5_1 SANET. The combined output of these SANETs is concatenated by 

passing through a symmetric-decoder, which produces the final output-image 𝐼𝑜.  

 

 

 

Fig.4.2: Internal Architecture of SANET model 
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4.2 Calculation of Loss Functions 

 
This method is both effective and practically efficient. It flexibly performs style transformation 

using the loss function that unites traditional style-reconstruction-losses and the newly 

introduced identity-loss. 

 

 

4.2.1 Content-Loss Function 

 
Content-loss represents the decline of spatial-structure and arrangement of content during the 

formation of resulting output-image. It is calculated in terms of euclidean distance.  

 

𝐿𝑐 = ‖𝐸(𝐼𝑜)𝑟41̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐹𝑐
𝑟41̅̅ ̅̅ ̅̅ ‖

2

+ ‖𝐸(𝐼𝑜)𝑟51̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐹𝑐
𝑟51̅̅ ̅̅ ̅̅ ‖

2

                            (4.9) 

 

Here, 𝐹𝑐
𝑟41̅̅ ̅̅ ̅̅  and 𝐹𝑐

𝑟51̅̅ ̅̅ ̅̅  are channel-wise-normalized mean, variance feature-map values of content-

image. 𝐸(𝐼𝑜)𝑟41̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝐸(𝐼𝑜)𝑟51̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are channel-wise-normalized mean, variance feature-map values of 

output-image after passing through the encoder. The euclidean distance computed between these 

gives the value of content-loss. 

 

 

4.2.2 Style-Loss Function 

 
Style-loss represents the lack of style characteristics and features during the formation of the 

resulting output-image. It is defined as follows,  

 

𝐿𝑠 = ∑‖𝜇(𝜑𝑖(𝐼𝑜)) − 𝜇(𝜑𝑖(𝐼𝑠))‖
2

+ ‖𝜎(𝜑𝑖(𝐼𝑜)) − 𝜎(𝜑𝑖(𝐼𝑠))‖
2

𝐿

𝑖=1

               (4.10) 

 

Here, φ is the feature-map value of the layer of encoder denoted by i. The relu_1_1, relu_2_1, 

relu_3_1, relu_4_1, and relu_5_1 layers are employed with similar weights. The gram-matrix loss 

and the AdaIN style-loss are applied, in which AdaIN style loss is very satisfying. The SANET 

model is trained by examining only the global-statistics of the style loss 𝐿𝑠. 
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4.2.3 Identity-Loss Function 

 
The new identity-loss function is defined for considering both the global-statistics and the 

semantically local-mapping between the content-features and the style characteristics.  

 

𝐿𝑖𝑑 = 𝑤𝑖𝑑1(‖𝐼𝑐𝑐 − 𝐼𝑐‖2 + ‖𝐼𝑠𝑠 − 𝐼𝑠‖2) + 𝑤𝑖𝑑2 ∑ (
‖𝜑𝑖(𝐼𝑐𝑐) − 𝜑𝑖(𝐼𝑐)‖2

+‖𝜑𝑖(𝐼𝑠𝑠) − 𝜑𝑖(𝐼𝑠)‖2)𝐿
𝑖=1        (4.11) 

 

The 𝐿𝑖𝑑 is identity-loss and 𝑤𝑖𝑑1, 𝑤𝑖𝑑2 are the weights assigned to identity-loss. This loss function 

helps to preserve the structure of content-image while simultaneously maintains the style-patterns. 

 

 

 

Fig.4.3: Calculation of Identity-Loss Function 

 

4.2.4 Total-Loss Function 

 
The total-loss function is a linear combination of content-loss, style-loss, and identity-loss 

functions. An encoder, which is a previously trained VGG 19 network, is employed in calculating 

the loss function during the training of SANET and decoder. 

 

𝐿 = 𝑤𝑐𝐿𝑐 + 𝑤𝑠𝐿𝑠 + 𝐿𝑖𝑑                                                     (4.12) 

 

Here, 𝐿𝑐, 𝐿𝑠, and 𝐿𝑖𝑑 represent the content-loss, style-loss, and identity-loss functions, 

respectively. 𝑤𝑐 and 𝑤𝑠 are the weights assigned to content-loss and style-loss respectively. 
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4.3 Implementation Details 

 

Below in this section, the hardware requirements, software requirements and data set used in 

training and testing of model is listed along with the description of detailed procedure of 

implementation. 

 

4.3.1 Hardware Requirements 

 
The network of the SANET model is implemented with the following hardware requirements.  

 A PC comprising Windows 10 operating system 

 Intel core i5 eighth-generation quad-core CPU 

 NVIDIA GeForce-GTX 1050 GPU 

 A RAM of size 8 gigabytes  

 It also demands an internet of extremely high-speed.  

 

4.3.2 Software Requirements 

 
The network of the SANET model is implemented with the following software requirements.  

 We have used a jupyter-notebook under the Anaconda navigator. This IDE is the most 

suitable for machine learning programming as it provides many features to control 

codes that make it easy to write and debug. Finding the errors in code is very easy. It 

also helps in minimizing code redundancy. 

 PyTorch 0.4.1 is a free and open-source library for python programming that helps to 

build projects in deep learning. 

 CUDA 9.2 provides parallel programming for general computing using GPU. It 

facilitates programmers to increase the speed of complex computations by improving 

GPUs' power for the parallelization. 

 Open CV 3.4.2 is a very optimized-library that focuses on real-life problem-solving. It 

is a python machine learning library and used for image processing problems. 

 Programming Language used is python. It is easy to use and understand. Due to an 

extensive collection of inbuilt functions and a very easy coding environment, it has 

become prevalent among developers. 
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4.3.3 Data Set Used 

 
The network of the SANET model is implemented with the following Data Set requirements. 

During the training of the model, 

 For content-images VOC 2012 dataset is used, which is an extensive collection of 

classified images and also used by many other tasks of computer vision. This dataset can 

be found on pjreddie.com under the folder of projects which contain subfolder pascal-voc-

dataset-mirror. It has many sets of images, which is demonstrated in the Table 4.1 given 

below.  

 For the style-images WikiArt dataset is used, which is open source and can be found on 

the github repository. It also has a huge amount of data, which is composed of a lot of 

pictures with so many variations for the task of training and validation. 

 

 

Table 4.1: VOC 2012 Data Set 

 

 Train Val Train-Val Test 

 image object image object image object image object 

Airplane 327 432 343 433 670 865 - - 

Bicycle 268 353 284 358 552 711 - - 

Bird 395 560 370 559 765 1119 - - 

Boat 260 426 248 424 508 850 - - 

Bottle 365 629 341 630 706 1259 - - 

Bus 213 292 208 301 421 593 - - 

Car 590 1013 571 1004 1161 2017 - - 

Cat 539 605 541 612 1080 1217 - - 

Chair 566 1178 553 1176 1119 2354 - - 

Cow 151 290 152 298 303 588 - - 

Dining-table 269 304 269 305 538 609 - - 

Dog 632 756 654 759 1286 1515 - - 

Horse 237 350 245 360 482 710 - - 

Motor-bike 265 357 261 356 526 713 - - 

Person 1994 4194 2093 4372 4087 8566 - - 

Potted-plant 269 484 258 489 527 973 - - 

sheep 171 400 154 413 325 813 - - 

Sofa 257 281 250 285 507 566 - - 

Train 273 313 271 315 544 628 - - 

TV monitor 290 392 285 392 575 784 - - 

Total 5717 13609 5823 13841 11540 27450 - - 
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4.3.4 Description of Implementation 

 
Below in this section, the description of implementation of network of SANET model, its training 

and testing are explained.  

 We have taken input as two preprocessed images and resized them to 512×512.  

 During training, the size of each batch is six, and 180000 default iterations are applied.  

 The initial values assigned to weights while computing the loss are as follows, 𝑤𝑐=1.0, 

𝑤𝑠=4.0, 𝑤𝑖𝑑1=50, and 𝑤𝑖𝑑2=1.  

 We have perceived that if the weight 𝑤𝑐 is increased in the absence of identity-loss 

function, then spatial-distribution and structure of content-image can be protected but with 

a lack of style-features. However, if the weights for identity-loss function are increased, 

then it's possible to preserve the semantic-arrangement of content along with sustaining 

the style-features.  

 Consequently, we estimated the total loss by incorporating identity-loss along with content 

and style losses.  

 We applied Adam optimizer to minimize the value of loss function.  

 The encoder uses a previously trained VGG nineteen network.  

 Two SANET models are jointly trained and integrated by taking the VGG feature-maps 

as inputs and encodes output feature-maps using distinct layers Relu_4_1 and Relu_5_1.  

 Outputs of these SANETs are combined by using the symmetric decoder.  

 After that, the trained network of SANET models is applied to the pictures taken by us in 

our college campus to examine the execution time and quality of the obtained results. 

 

4.3.5 Steps of Implementation 
 

Below in this section, the steps of implementation of network of SANET model, its training and 

testing are explained.  

 

1. We are importing files, which will help to initialize values and unzip files of datasets.  

from google.colab import files 

                    uploaded=files.upload() 

                    for fn in uploaded.keys(): 

                    print('User uploaded file "{name}" with length {length} bytes'.format( 
                      name=fn, length=len(uploaded[fn]))) 
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2. We are finding the standard mean, mean_variance_norm, and flatten mean standard 

values by using inbuilt standard deviation functions such as mean.expand() and 

std.expand(), etc. After that, we are finding the average value of a large set of numbers. 

A small value is also added to the variance to avoid exceptions during the calculation. 

Here we are using 3d feat for storing values inside array within channels and returning 

the results stored in feat_mean, feat_std, normalized_feat, feat_flatten, mean & std. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         
 

3. In this, we are defining the weights of decoder by importing the torch as nn and 

calculating relu() by converting it into 2d dimension followed by upsampling where 

scale_factor is used 2 and mode as nearest. 

 

 

 

 

 

 

 

import torch 

                    def calc_mean_std(feat, eps=1e-5): 

                    size = feat.size() 

                    assert (len(size) == 4) 

                    N, C = size[:2] 

                    feat_var = feat.view(N, C, -1).var(dim=2) + eps 

                    feat_std = feat_var.sqrt().view(N, C, 1, 1) 

                    feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1) 

                    return feat_mean, feat_std 

 

                    def mean_variance_norm(feat): 

                    size = feat.size() 

                    mean, std = calc_mean_std(feat) 

                    normalized_feat = (feat - mean.expand(size)) / std.expand(size) 

                    return normalized_feat 

 

                    def _calc_feat_flatten_mean_std(feat): 

                    assert (feat.size()[0] == 3) 

                    assert (isinstance(feat, torch.FloatTensor)) 

                    feat_flatten = feat.view(3, -1) 

                    mean = feat_flatten.mean(dim=-1, keepdim=True) 

                    std = feat_flatten.std(dim=-1, keepdim=True) 

                    return feat_flatten, mean, std 

import torch.nn as nn 

                    decoder = nn.Sequential( 

                    nn.ReflectionPad2d((1, 1, 1, 1)), 

                    nn.Conv2d(512, 256, (3, 3)), 

                    nn.ReLU(), 

                    nn.Upsample(scale_factor=2, mode='nearest'), 

                    nn.ReflectionPad2d((1, 1, 1, 1)), 

                    nn.Conv2d(256, 256, (3, 3)), 

                    nn.ReLU() 
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4. In this section, vgg using three relu layer with each having two sub-layers are being 

calculated to perform dimension based on reflection. Dimension values are default, and 

max pool values with ceil_mode equal to true is used. 

 

5. We are defining a class called Sanet, which has two methods first, one is used to 

initialize the plane values based on image and passing arguments to the superclass to 

satisfy the dependency. The second method forward is used to calculate the mean and 

variance of content and style image based on a permutation of four side calculations, 

and in last, all values are used in calculation to make the initial phase object structure. 

vgg = nn.Sequential( 

                    nn.Conv2d(3, 3, (1, 1)), 

                    nn.ReflectionPad2d((1, 1, 1, 1)), 

                    nn.Conv2d(3, 64, (3, 3)), 

                    nn.ReLU(),   

                    nn.ReflectionPad2d((1, 1, 1, 1)), 

                    nn.Conv2d(64, 64, (3, 3)), 

                    nn.ReLU(),   

                    nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True), 

                    nn.ReflectionPad2d((1, 1, 1, 1)), 

                    nn.Conv2d(64, 128, (3, 3)), 
 

class Transform(nn.Module): 

                    def __init__(self, in_planes): 

                         super(Transform, self).__init__() 

                         self.sanet4_1 = SANet(in_planes = in_planes) 

                         self.sanet5_1 = SANet(in_planes = in_planes) 

                         self.upsample5_1 = nn.Upsample(scale_factor=2, mode='nearest') 

                         self.merge_conv_pad = nn.ReflectionPad2d((1, 1, 1, 1)) 

                         self.merge_conv = nn.Conv2d(in_planes, in_planes, (3, 3)) 

                         def forward(self, content4_1, style4_1, content5_1, style5_1): 

                         return self.merge_conv(self.merge_conv_pad 

                                   (self.sanet4_1(content4_1, style4_1) + 

                         self.upsample5_1(self.sanet5_1(content5_1, style5_1)))) 

class Net(nn.Module): 

                        def __init__(self, encoder, decoder, start_iter): 

                        super(Net, self).__init__() 

                        enc_layers = list(encoder.children()) 

                        self.enc_1 = nn.Sequential(*enc_layers[:4])  # input -> relu1_1 

                        self.enc_2 = nn.Sequential(*enc_layers[4:11])  # relu1_1 -> relu2_1 

                        self.enc_3 = nn.Sequential(*enc_layers[11:18])  # relu2_1 -> relu3_1 

                        self.enc_4 = nn.Sequential(*enc_layers[18:31])  # relu3_1 -> relu4_1 

                        self.enc_5 = nn.Sequential(*enc_layers[31:44])  # relu4_1 -> relu5_1 

                        self.transform = Transform(in_planes = 512) 
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6. The encoder uses a previously trained VGG nineteen network. Two SANET models are 

jointly trained and integrated by taking the VGG feature-maps as inputs and encodes 

output feature-maps using distinct layers Relu_4_1 and Relu_5_1. Outputs of these 

SANETs are combined by using the symmetric decoder. After that, the trained network 

of SANET models is applied to the pictures. We are passing four arguments in 

initialization function, and upon that, we are performing the transformation of encoder 

and decoder. 

 

 

 

self.decoder = decoder 

if(start_iter > 0): 

self.transform.load_state_dict(torch.load('transformer_iter_' + str(start_iter)  

+ '.pth')) 

self.decoder.load_state_dict(torch.load('decoder_iter_' + str(start_iter) + '.pth')) 

self.mse_loss = nn.MSELoss() 

for name in ['enc_1', 'enc_2', 'enc_3', 'enc_4', 'enc_5']: 

for param in getattr(self, name).parameters(): 

param.requires_grad = False 
 

 

def encode_with_intermediate(self, input): 

              results = [input] 

              for i in range(5): 

                  func = getattr(self, 'enc_{:d}'.format(i + 1)) 

                  results.append(func(results[-1])) 

              return results[1:] 

                       

def calc_content_loss(self, input, target, norm = False): 

              if(norm == False): 

                return self.mse_loss(input, target) 

              else: 

                return self.mse_loss(mean_variance_norm(input),  

                                 mean_variance_norm(target)) 

 

def calc_style_loss(self, input, target): 

              input_mean, input_std = calc_mean_std(input) 

              target_mean, target_std = calc_mean_std(target) 

              return self.mse_loss(input_mean, target_mean) + \ 

                  self.mse_loss(input_std, target_std) 
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7. In the process of generating output, we need to calculate content loss & style loss by 

calling the mean_variance normalization method on input content-image and style-

image after applying loss functions. Content picture loss ensures the activation of higher 

layers are same as the input picture in the output image. Style picture loss provides that 

the output image should adopt the style image functionality adequately. 

 

 

8. We have taken input as two preprocessed images and resized them to 512×512. During 

training, the size of each batch is six, and 180000 default iterations are applied. The 

initial values assigned to weights while computing the loss are as follows, 𝑤𝑐=1.0, 

𝑤𝑠=4.0, 𝑤𝑖𝑑1=50, and 𝑤𝑖𝑑2=1. After defining all dimensions upon the content-image 

and style-image to produce output-image, the parser method parameter is passed. 

   class SANet(nn.Module): 

       super(SANet, self).__init__() 

       self.f = nn.Conv2d(in_planes, in_planes, (1, 1)) 

       self.g = nn.Conv2d(in_planes, in_planes, (1, 1)) 

       self.h = nn.Conv2d(in_planes, in_planes, (1, 1)) 

       self.sm = nn.Softmax(dim = -1) 

       self.out_conv = nn.Conv2d(in_planes, in_planes, (1, 1)) 

         

       def forward(self, content, style): 

       F = self.f(mean_variance_norm(content)) 

       G = self.g(mean_variance_norm(style)) 

       H = self.h(style) 

       b, c, h, w = F.size() 

       F = F.view(b, -1, w * h).permute(0, 2, 1) 

       b, c, h, w = G.size() 

       G = G.view(b, -1, w * h) 

       S = torch.bmm(F, G) 

       S = self.sm(S) 

       b, c, h, w = H.size() 

       H = H.view(b, -1, w * h) 

       O = torch.bmm(H, S.permute(0, 2, 1)) 

       b, c, h, w = content.size() 

       O = O.view(b, c, h, w) 

       O = self.out_conv(O) 

       O += content 

       return O 
 

parser.add_argument('--lr', type=float, default=1e-4) 

parser.add_argument('--lr_decay', type=float, default=5e-5) 
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9. We estimated the total loss by incorporating identity-loss along with content and style 

losses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

10. We need to import all required python libraries which need to test the model. 

 

 

 

 

 

 

 

 

 

 

parser.add_argument('--max_iter', type=int, default=180000) 

parser.add_argument('--batch_size', type=int, default=5) 

parser.add_argument('--style_weight', type=float, default=4.0) 

parser.add_argument('--content_weight', type=float, default=1.0) 

parser.add_argument('--n_threads', type=int, default=50) 

parser.add_argument('--save_model_interval', type=int, default=1000) 

parser.add_argument('--start_iter', type=float, default=0) 

args = parser.parse_args('') 
 

 

if(args.start_iter > 0): 

optimizer.load_state_dict(torch.load('optimizer_iter_' + str(args.start_iter) + '.pth')) 

 

for i in tqdm(range(args.start_iter, args.max_iter)): 

adjust_learning_rate(optimizer, iteration_count=i) 

content_images = next(content_iter).to(device) 

style_images = next(style_iter).to(device) 

loss_c, loss_s, l_identity1, l_identity2 = network(content_images, style_images) 

loss_c = args.content_weight * loss_c 

loss_s = args.style_weight * loss_s 

loss = loss_c + loss_s + l_identity1 * 50 + l_identity2 * 1 

 

optimizer.zero_grad() 

loss.backward() 

optimizer.step() 
 

 

import argparse 

import os 

import torch 

import torch.nn as nn 

from PIL import Image 

from os.path import basename 

from os.path import splitext 

from torchvision import transforms 

from torchvision.utils import save_image 
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11. We are calculating standard mean based on feat size, whereas the default dimension 

size is two for the variance. By default, we also add a small value to eps to avoid errors 

during the program's execution. 

 

 

 

 

 

 

 

 

 

12. We are calculating variance normalization by using standard deviation of inbuilt 

functions. 

 

 

 

 

 

 

 

13. The transform class defines an initialization method for sanet4_1 and 5_1, whereas 

dimensions are as scale_factor is 2, and mode is nearest, which provides module-based 

output values. 

 

 

def calc_mean_std(feat, eps=1e-5): 

size = feat.size() 

assert (len(size) == 4) 

N, C = size[:2] 

feat_var = feat.view(N, C, -1).var(dim=2) + eps 

feat_std = feat_var.sqrt().view(N, C, 1, 1) 

feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1) 

return feat_mean, feat_std 
 

 

def mean_variance_norm(feat): 

size = feat.size() 

mean, std = calc_mean_std(feat) 

normalized_feat = (feat - mean.expand(size)) / std.expand(size) 

return normalized_feat 
 

 

class Transform(nn.Module): 

def __init__(self, in_planes): 

super(Transform, self).__init__() 

self.sanet4_1 = SANet(in_planes = in_planes) 

self.sanet5_1 = SANet(in_planes = in_planes) 

self.upsample5_1 = nn.Upsample(scale_factor=2, mode='nearest') 

self.merge_conv_pad = nn.ReflectionPad2d((1, 1, 1, 1)) 

self.merge_conv = nn.Conv2d(in_planes, in_planes, (3, 3)) 
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14. Content and style image for relu 4_1 and relu 5_1 is allocating arguments steps to 

produce final output image dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

15. This gives the final output image after passing through many iterations on content and 

style image. 

 

 

 

 

 

 

             

 

with torch.no_grad(): 

for x in range(args.steps): 

print('iteration ' + str(x)) 

Content4_1 = enc_4(enc_3(enc_2(enc_1(content)))) 

Content5_1 = enc_5(Content4_1) 

Style4_1 = enc_4(enc_3(enc_2(enc_1(style)))) 

Style5_1 = enc_5(Style4_1) 

content = decoder(transform(Content4_1, Style4_1,  

Content5_1, Style5_1)) 

content.clamp(0, 255) 

content = content.cpu() 
 

 

output_name = '{:s}/{:s}_stylized_{:s}{:s}'.format( 

args.output, splitext(basename(args.content))[0], 

splitext(basename(args.style))[0], args.save_ext) 

save_image(content, output_name) 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

In this chapter, the run-time of some NST approaches on three distinct dimensional images are 

analyzed and compared. At first, the experimental results of SANET model are demonstrated 

clearly. After that we will compare the performance of SANET model with other ASPM 

approaches described earlier. 

 

5.1 Analysis of various approaches of NST 

 
We have thoroughly examined the characteristics of various distinct procedures for neural style 

fusion and transformation. The charts given below in Fig.5.1, Fig.5.2, and Fig.5.3 represent the 

comparison of running time performance on input-images of three distinct dimensions.  

 

 

 

Fig.5.1: Comparison of run-time of NST approaches on 256×256 dimensional images 

 

 

We can see that the algorithm based on optimization of image proposed by Gatys et al. [1] takes 

a considerable value of computation time when compared with offline methods based on 

optimization of employed models [3] [4] [5]. However, the quality of generated results is better 
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when compared to others. For real-time applications of arbitrary style transformation, there is 

a trade-off between the quality of results and the running time of existing algorithms. Therefore, 

we need to maintain a balance between quality and speed. 

 

 

     

 

Fig.5.2: Comparison of run-time of NST approaches on 512×512 dimensional images 

 

 

      

 

Fig.5.3: Comparison of run-time of NST approaches on 1024×1024 dimensional images 

 

 



37  

5.2 Implementation Results 

 

           

           

           

Fig.5.4: Experimental results 1 and 2 of style transformation using SANET model 
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Fig.5.5: Experimental results 3 and 4 of style transformation using SANET model 
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Fig.5.6: Experimental results 5 and 6 of style transformation using SANET model 
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5.3 Comparison of SANET with other ASPM approaches 

 
For determining the quality of SANET network, we analysed its comparison with four types of 

models for fusing and transforming arbitrary-styles. We observed that AdaIN [8] is the fastest 

ASPM approach, but it renders a suboptimal result as it copies the channel wise mean-variance 

value, and the trained decoder usually attach frequently seen similar patterns and style-textures to 

all stylized outputs. Hence, its resulting output is less appealing and sometimes fails to retain the 

distribution of colours.  

 

Despite matching the second-order-statistics optimally in WCT [7], sometimes, it creates unseen 

and collapsed-patterns. Avatar-Net [9] blends the images based on the semantic-arrangement of 

content and employs multi scale stylization. Still, because of its dependence on the patch size, it 

fails to realize the local and global style-patterns simultaneously. Seldom Avatar-Net and WCT 

render the blurred hair-texture and distorted vision of content due to the collapsed brush strokes. 

In contradiction, the network containing two integrated SANET models can generate various 

exquisite styles efficiently.  

 

 

 

 

Fig.5.7: Comparison of execution time of SANET with other ASPM models 

 

The graph in Fig.5.7 displays a comparison of the running time of SANET with other existing 

methods of arbitrary style transformation for images of 512×512 dimensions. SANET is much 

faster than style-swap, Avatar-net, and WCT models but a bit slower in comparison to AdaIN. 
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However, the quality of the result surpasses AdaIN and others. Therefore, this method is both 

effective and practically efficient. 

 

5.4 Conclusion and Future Scope 

 
This project presents an advance network containing a combination of two SANET Models for 

style fusion and transformation. This network ensures the semantic-arrangement and spatial-

distribution of content-image while fusing with the characteristics of new arbitrary style-

patterns by computing a new identity-loss component. We compared the execution time of 

different NST algorithms on input-images of distinct dimensions. We observed that online 

neural models are slow but deliver better results in comparison to fast offline neural models. In 

all existing approaches, there is a trade-off between the quality of results and the running time 

of existing algorithms. Our results demonstrate that this model is much faster than other ASPM 

models and produces results with better quality and flexibility, which makes it much effective 

and practically efficient. We are planning to expand this model for the style transformation of 

videos in the future. 
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For real-time applications of arbitrary style transformation, there is a trade-off between the quality 

of results and the running time of existing algorithms. Hence, it is required to maintain the 

equilibrium of the quality of generated artwork with the speed of execution. It's complicated for 

the present arbitrary style-transformation procedures to preserve the structure of content-image 

while blending with the design and pattern of style-image. This project presents the 

implementation of a network using SANET models for generating impressive artworks. It is 

flexible in the fusion of new style characteristics while sustaining the semantic-structure of the 

content-image. The identity-loss function helps to minimize the overall loss and conserves the 

spatial-arrangement of content. The results demonstrate that this method is practically efficient, 

and therefore it can be employed for real-time fusion and transformation using arbitrary styles. 

 

 

 


