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ABSTRACT 
 

 
Object detection has seen many changes in algorithms to improve performance both on speed 

and accuracy. By the continuous effort of so many researchers, deep learning algorithms are 

growing rapidly with an improved object detection performance. Various popular applications 

like pedestrian detection, medical imaging, robotics, self-driving cars, face detection, etc. 

reduces the efforts of humans in many areas. Due to the vast field and various state-of-the-art 

algorithms, it is a tedious task to cover all at once. This paper presents the fundamental 

overview of object detection methods by including two classes of object detectors. In two stage 

detector covered algorithms are RCNN, Fast RCNN, and Faster RCNN, whereas in one stage 

detector YOLO v1, v2, v3, and SSD are covered. Two stage detectors focus more on accuracy, 

whereas the primary concern of one stage detectors is speed. We will explain an improved 

YOLO version called YOLO v3-Tiny, and then its comparison with previous methods for 

detection and recognition of object is described graphically. 

 

Keywords: Computer vision; YOLO v3; Faster RCNN; Deep learning; YOLO v3-Tiny; Object 

detection; image processing; Convolutional Neural Networks.
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CHAPTER 1 

    INTRODUCTION 

 

1.1 Overview 

 

In the recent few years, diverse research work happened to develop a practical approach to 

accelerate the development of deep learning methods. Numerous developments accomplished 

excellent results and followed by continuous reformations in deep learning procedures. Object 

localization is the identification of all the visuals in a photograph, incorporating the precise 

location of those visuals. By using deep learning techniques [1] [2] for object identification and 

localization, computer vision has reached a new zenith. Due to significant inconstancies in 

viewpoints, postures, dimensions, and lighting positions, it is challenging to succeed in the 

identification of objects perfectly. Accordingly, considerable concern has been given by 

researchers to this area in the past few years.  

 

There are two types of object detection algorithms. Object detection algorithms using region 

proposal includes RCNN [3], Fast RCNN [4], and Faster RCNN [5], etc. These techniques 

create region proposal networks (RPN) [6], and then the region proposals are divided into 

categories afterward. On the other side, object detection algorithms using regression includes 

SSD [7] and YOLO [8], etc. These methods also generate region proposal networks (RPN) but 

divide these region proposals into categories at the moment of generation.  

 

All of the procedures mentioned above have significant accomplishments in object localization 

and recognition. YOLO consolidates labels in diverse datasets to form a tree-like arrangement, 

but the merged labels are not reciprocally exclusive. YOLO9000 [9] enhances YOLO to 

recognize targets above 9000 categories employing hierarchical arrangement. Whereas 

YOLOv3 [10] uses multilabel classification, it replaces the approach of estimating the cost 

function and further exhibits meaningful improvement in distinguishing small targets. 
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1.1.1 Classification of Objects 

 

If we need to recognize the object in an image, then it is termed as Objects-classification. The 

core principle of object classification is to categorize the objects into different categories and 

to predict the class of object present inside the image. Let’s take an example; a picture has two 

objects which are bicycle and bike. When we classify them, then it is called a single-label 

classification. But if at once we need to classify between many objects like dogs, cats, bikes, 

bicycles etc. then we use multi-label classifier for their categorization over different classes by 

giving labels to them. 

 

By looking at size, shape, structure and other similar properties of objects, class labels are 

decided as x, y, z etc. where each character represents a different object class. Image size 

matters a lot in classifying the objects as if image size is larger, then objects can easily be 

recognized. But if the size is smaller, then it becomes difficult to identify them during 

classification. Resolution of the image also has a vital role in determining the class of objects. 

 

 

1.1.2 Localization of Objects 

 

In any image to find the actual position of the objects by drawing a square box around them is 

called Objects-Localization. For finding the location of the objects in a picture, we take four 

dimensions. These dimensions are image_top_left_corner, image_top_right_corner, the height 

of the object in the image and width of the object in the image. The main problem is to know 

the size of the object because based on the size of the object, the size of the bounding box is 

decided. Because the posture of any human is different, i.e., running, sitting, sleeping etc. 

whereas the object is same so it should be appropriately localized. So the solution is to find the 

aspect ratio of the objects within the image by decreasing the size of the image until the 

minimum size of the object is not covered.  Another problem is of object overlap when any two 

or more targets get over one another then by using anchor box we try to find the actual location 

of objects within the image. 
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1.1.3 Object Detection 

 

It is a process of combining classification and localization to find location and class of objects. 

These algorithms are used in many day to day activity to make human life comfortable. 

Whether it is to differentiate between two objects or observe the objects in the video, all comes 

under object detection. Firstly model is trained based on the different categories of objects, and 

after that, it is being tested on real-time objects. There are many algorithms some are good in 

accuracy whereas others are good in speed with each having their own advantages so to pick 

any one of them depends upon the need of work. For getting an overall understanding of 

algorithms, these are divided into two types of Detectors based on the number of stages in the 

evaluation of results.  

 

 

1.1.4 Two Stage Detectors 

 

When accuracy is much needed than speed, then two stage detectors are very useful. They have 

good localization and detection accuracy in comparison to one stage detectors. The first stage 

of two stage detectors is using region-of-interest pooling layers which helps to identify the 

regions and apply bounding boxes to those regions. i.e. Region-proposal-network is used in 

Faster-RCNN. The second stage of two stage detectors is used to classify the objects which 

were identified in the first stage. 

Let’s take an input image which has four different objects then two stage detectors will work 

through the following steps. 

Step 1. Using any external algorithms location of the objects is to be identified by making the 

bounding box around them. 

Step 2. In the bounding box, it should be observed that all four dimensions fully cover the 

object or it may be needed to apply aspect ratio to cover all dimensions. 

Step 3. Object class is determined and based on which it is classified for detection and provide 

accuracy. 
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Many algorithms come under two stage detectors, but the most famous is region based 

detectors, and due to many advancements, it has improved a lot. It mainly follows the following 

four procedures.  

1). Categorize regions based on different categories. 

2). Vector is used, which is of fixed length and performs based on categorized regions. 

3). Linear SVM based on specific classification. 

4). For detecting the location of the object, bounding box regressor is applied.  

 

 

1.1.5 One Stage Detectors 

 

In this type of detectors, there is no region proposal step, unlike two stage detectors. One stage 

detectors are very fast in comparison to two stage detectors because they don’t use a sliding 

window approach or region based approach. In a single pass, it predicts all objects classification 

score and by dividing the image into small grids inserts bounding boxes into that. YOLO family 

is the example of one stage detectors which divides the image into many regions before 

processing by which network is capable of calculating the probability class score with 

bounding-box dimensions of the object. Yolo-v2 uses four less anchors than Yolo-v3 anchors 

whereas no anchor concept was there in Yolo-v1. YOLO versions have seen so many changes 

in its design to improve the performance. 

1). Normalization of batch improves the performance by two percent than its previous version. 

2). Two times larger classifier improves the performance by four times than earlier. 

3). Direct prediction of object location makes it faster and more efficient than two stage 

detectors. 

4). Anchor boxes make it easier to find two or more objects overlap in the image, but due to it, 

a bit decrease in accuracy is faced. 

If the image contains many small objects whose accuracy is not good, then one stage can 

improve the accuracy by using different scale iteration in one network training. Let an image 

with three object sizes a, b, c is calculated in the beginning with the initial size of the network. 
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Still, after a few iterations, it is observed that the network is not covering the entire object so 

the network will reduce its initial size and will do the same until it is not covering all objects.  

 

1.2 Scope of the work 

 

Human eyes can easily differentiate between any two different objects. If many objects, some 

with similarities and others with dissimilarities, are placed together, and we need to distinguish 

between those objects, then it becomes a tedious task for us to do. We can say that if there are 

so many objects, then the job of categorizing them in different categories and providing label 

of that category is difficult. So, for that, the role of machine learning for object detection and 

recognition makes this task easy for us. There are many significant applications based on Object 

detection and identification, and a few of them are described as following.  

 

 Face detection- When we purchase any latest mobile, it mostly comes with the feature 

of a face security lock, and it is used by police to find criminals by matching crime 

scene photos to the history of criminal records. It is helpful to catch intruders who want 

to threaten the security of our personal information. 

 

 Pedestrian detection- The self-driving car needs pedestrian detection to detect the safe 

boundary and danger zones, but it faces many challenges in crowd zones. 

 

 

 Text detection- Whenever we visit any new place, they have different languages and 

understanding them without knowing that language is impossible or quite complicated. 

Therefore, many apps are available to convert the text in other languages to the text in 

our desired language. 

 

Scientists have developed so many algorithms to improve accuracy and speed, but it was always 

difficult for them to achieve both simultaneously. So by the time, they have changed a lot in 

their algorithms to make them better than previous methods. But still, scientists are facing many 
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challenges. For example, to detect humans, we have to train the model as it should consider 

different shapes, sizes, and colors of clothes and humans.  

   
 

Fig.1.1: The Increasing Number of publications in Object detection 
 

 

 

 

 

1.3 Problem Statement 

 

There are many developments in machine learning tools that are used to develop and implement 

projects. Similarly, much progress is there in the approach to optimize results in less time. For 

example, after applying face detection on the crime scene, if our algorithm will take too much 

time to catch criminal or too late alert cars about danger zone on the road, so it will lose its 

usefulness.  

 

In this project, we need to thoroughly examine the characteristics of three procedures for object 

detection, which are faster RCNN, YOLO v3, and SSD. If the requirement is accuracy, then 

faster RCNN is the best as it is much accurate compared to SSD and YOLO v3. If accuracy is 

not the primary concern and we want super-fast speed, then YOLO v3 takes less time than SSD 

and faster RCNN. But if at the same time, the requirement is of excellent accuracy and less 

running time, then SSD is a more favorable recommendation, as its speed is better than faster 

RCNN, and its accuracy is better compared to YOLO v3.  
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It can be observed that there is a possibility of further improvement in the YOLO model, as we 

have tested the model for different dimensions. It has been noted that results are getting 

changed and give different accuracy and execution time for different sizes of images or 

different resolutions. It means that if we apply the trained model on a good resolution 

photograph, then it will provide us the best result with much accuracy. We can improve the 

model to produce better results in less time.       

 

 

 

1.4 Purpose of the project 

 

The purpose of given research project work is to study all the existing significant works that 

have already been done in this field of object detection and recognition. We will analyze the 

accuracy of results and running time of various object detection and identification approaches. 

We will demonstrate this analysis graphically. We will examine the categorization of object 

detectors based on their working and categorize them into two categories. We are implementing 

YOLO v3 and YOLO v3-tiny to conclude the better and more favorable change in results. We 

are training our model by changing the dimension of photos and observing the results of the 

existing algorithms. Here, we are trying to improve exiting algorithm results to decrease the 

trade-off between speed and accuracy of these methods. After that, we will analyze the 

proposed YOLO v3-Tiny mechanism and compare its results and running time with other 

previous approaches. The final intention of this project is to obtain much accuracy and better 

speed of execution simultaneously. 

 

 

1.5 Organization of Dissertation 

 

The structure of the dissertation is as follows. In chapter 1, the scope and motive of this project 

work are explained in detail. Below in chapter 2, we present background information of object 

detectors. It elaborates the most representative and pioneering two-stage object detection 

methods with their significant contributions in object detection. First, we examine their 
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methodologies and then explain their drawbacks. Chapter 3 describes the detailed literature 

review that explains significant work done in this field of research. Section 3.1, 3.2, and 3.3 

provide information about the different versions of the YOLO algorithm. Section 3.4 explains 

the SSD method, and section 3.5 gives the difference between SSD and YOLO approaches. 

Chapter 4 describes the proposed approach in which section 4.1 tells the methodology of the 

YOLO v3-Tiny model, and section 4.2 shows the architecture of YOLO v3-Tiny. Section 4.3 

describes the hardware requirements, software requirements, and data set used in the training 

and testing of the model. In section 4.3.5, all the steps of implementation are specified. Then 

in Chapter 5, the speed and accuracy of some object detectors are analyzed and compared for 

different sizes of objects. At first, the experimental results of YOLO v3 and YOLO v3-Tiny 

models are displayed clearly. After that, we will examine the performance of YOLO v3, and 

YOLO v3-Tiny models with other detectors described earlier. Finally, section 5.4 gives the 

conclusion and future scope. At last Chapter 6 contains references for resources used to gather 

the information related to this project. 
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CHAPTER 2 

BACKGROUND 

 

In this section, we present background information. It elaborates the most representative and 

pioneering two-stage object detection methods with their significant contributions in object 

detection. First, we examine their methodologies and then explain their drawbacks. 

 

2.1 HOG 

 

HOG is a feature descriptor that is extensively applied in various domains to distinguish objects 

by identifying their shapes and structures. Local object structure, pattern, aspect, and 

representation can usually be characterized by the arrangement of gradients of local intensity 

or the ways of edges. In the HOG [12] detection method, the first step is to break the source 

image into blocks and then distribute each block in small regions. These regions are called 

cells. Commonly, the blocks of image overlap each other, due to this corresponding cell may 

be a part of many blocks. For each pixel inside the cell, it calculates the gradients vertically 

and horizontally. 

 

Drawbacks of HOG method-  

 

Due to the emergence of deep learning and its significant applications, the reasonable opinion 

was to displace classifiers deployed on HOG [12] methodology with a classifier based on 

convolutional neural network [2] [13] because of its comparatively higher accuracy. But there 

were some problems. The computation cost of convolutional neural networks was high, and 

the speed is too slow. Therefore, it was challenging to run CNN based classifier on numerous 

patches produced by the detection approach of sliding window. This difficulty was resolved by 

RCNN [3]. It employs an algorithm based on object proposals termed selective search method 

[14]. This approach decreases the number of bounding boxes to 2000 region proposals that 

were supplied to the R-CNN classifier. 
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2.2 RCNN 

 

Region based convolutional neural networks (RCNN) algorithm [3] uses a group of boxes for the 

picture and then analyses in each box if either of the boxes holds a target. It employs the method 

of selective search to pick those sections from the picture. In an object, the four regions are used. 

These are varying scales, colors, textures, and enclosure.   

 

 

        

 

Fig.2.1: Architecture of RCNN 

 

 

Drawbacks of RCNN method-  

 

Based on a selective search [14], 2,000 sections are excerpted per image. For every region or part 

of the image, we have to select features using CNN. For this, if we have 'i' number of images, then 

selected regions will become i×2,000. The whole method of target identification through RCNN 

utilizes the following three models: Linear SVM classifier for the identification of objects, CNN 

is employed for characteristic extraction, and a regression model is required to tighten the 

bounding boxes. All these three processes combine to take a considerable amount of time. It 

increases the running time of RCNN method. Therefore, RCNN needs almost 40 to 50 seconds to 

predict the result for several new images. 
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2.3 FAST RCNN 

 

 
In place of using three different models of RCNN, Fast RCNN [4] employs one model to 

excerpt characteristics from the different regions. Then it distributes the regions into several 

categories based on excerpted features, and the boundary boxes of recognized divisions return 

together. Fast RCNN uses the method of spatial pyramid pooling [16] to calculate only one 

CNN representation for the whole image. It passes one region for each picture to a particular 

convolutional network model by replacing three distinct models for excerption of 

characteristics, distributing into divisions, and producing bounding boxes. 

 

 

       

 

Fig.2.2: Architecture of FAST RCNN 

 

 

Drawbacks of FAST RCNN method-  

 

FAST RCNN also employ a selective search method [14] to detect concerned regions. This 

method is prolonged and demands a lot of time. Usually, for the detection of objects, this 

complete procedure needs almost two seconds for each picture. Therefore its speed is quite 

good in contrast to RCNN [15]. However, if we contemplate extensive real-life datasets, then 

the execution of fast RCNN approach is still lacked in speed. 

 



12 

 

2.4 FASTER RCNN 

 

 
Faster RCNN [5] is a transformed variant of fast RCNN. The significant difference between both 

is that faster RCNN implements region proposal network (RPN) [6] [17], but fast RCNN utilizes 

a selective search technique for producing concerned regions. In input, RPN accepts feature maps 

of picture and produces a collection of object recommendations and an objectness score per 

recommendation in output. Usually, this approach takes ten times less time in contrast to fast 

RCNN approach because of RPN.  

 

 

         

 

Fig.2.3: Architecture of FASTER RCNN 

 

 

Drawbacks of faster RCNN method-  

 

To excerpt all the targets in a given picture, this procedure needs multiple passes for that particular 

picture. Different systems are working in a sequence therefore, the performance of the upcoming 

operation is based on the performance of preceding operations. This approach uses region proposal 

networks to localize and identify the objects in a picture. But RPNs do not contemplate the 

complete picture because it uses only those portions of the picture, which have high probabilities 

of the presence of targets. 
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2.5 Comparison of Two stage Detectors 
 

The table 2.1 given below will explain the comparison of these two stage object detection 

approaches based on their characteristics, computation time and drawbacks. 

 

Table 2.1: Comparison of two stage object detectors 

         

Type Characteristics Computation 

time 

Drawbacks 

RCNN To generate regions, it uses 

selective search. From each 

picture, it extracts around 2000 

regions. 

Forty to Fifty 

seconds 

Time taken for 

prediction is large 

because several 

regions pass through 

CNN definitely, and it 

employs three distinct 

models for the 

detection of targets. 

Fast RCNN To excerpt the features, each 

picture passes one time through 

CNN. All distinct models 

applied in RCNN are combined 

collectively to form a single 

model. It employs selective 

search method on the feature 

maps to produce result for 

target recognition. 

Two seconds The method used is 

prolonged and time-

consuming Therefore, 

computation time is 

still high. 

Faster RCNN The previous approach is 

replaced with the region 

proposal networks. Therefore, 

this procedure works much 

faster compared to previous 

methods. 

0.2 seconds Object region 

proposal is time-

consuming. Different 

types of systems are 

operating in sequence. 

Thus, the performance 

of entire procedure is 

based on the working 

of the preceding 

operations. 
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CHAPTER 3 

LITERATURE REVIEW 

 

Two stage detectors provide adequate accuracy, but the time taken for computation is high. 

Therefore, to process in less time by managing sufficient accuracy, one stage detectors are 

proposed. Some algorithms in one stage model are SSD and the variants of YOLO. By 

improving the architecture of two stage models and introducing some changes such as 

eliminating pipeline, one stage model has achieved excellent speed. But, it has not attained 

sufficient accuracy at the same time. Hence, continuous changes are under process by 

researchers. 

 

 

3.1 YOLO v1 

 
 

By using the approach of one stage detector YOLO, an input picture is distributed to a system 

of S×S grids [8]. The detection of the object depends on every grid of the input image. Grid 

cells are employed to predict targets inside boundary boxes. Five parameters are predicted for 

every boundary box. These five elements are i, j, k, l, and c. In the input picture, the centre of 

target inside the box is denoted by 'i' and 'j' coordinates. Here, 'k', 'l', and 'c' represent height, 

width, and score for confidence respectively. 'c' is measured as the probability of containing 

the target inside boundary box.   

 

YOLO v1 uses the Darknet framework and ImageNet1000 dataset to train the model. It 

distributes the given picture to a grid of S×S cells. For every cell in the network, it computes 

confidence for 'n' bounding boxes. The predicted result is encoded into a tensor as S × S × (n 

× 5+ p) [8]. Here, input image is divided into total S×S sub-images. In n×5, five represents the 

detection of five attributes for each bounding box, which are height, weight, confidence score, 

and centre coordinates(x, y) of detected objects. Here, 'p' represents the probability of class. 

YOLO v1 also has many limitations. Therefore, the use of YOLO v1 is restricted to some 

extent. Limitations of YOLO version1 are based on the closeness of the objects in the picture. 
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If the objects appear as a cluster, they could not find the small objects. If the dimensions of the 

object are different from the image used in training data, then this architecture found difficulty 

in the localization and detection of objects [15][18]. The primary concern is to locate objects 

in a given picture due to the error of localization. 

 

             

Fig.3.1: S×S grid representation of YOLO [8] 

 

 

Fig.3.2: Drawback of YOLO v1 [8] 
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YOLO v1 fails sometimes, as in the above image it recognizes the man as an airplane, which 

is a drawback of this method. 

 

3.2 YOLO v2 

 

Yolo v2 supersedes Yolo by offering a great balance between running time and accuracy. For 

better accuracy, Yolo v2 introduces batch normalization, which helps to enhance 2 percent in 

map by attaching it into each layer of convolution. High resolution classifier is used to operate 

thoroughly by modifying its filters for giving a more extensive understanding of network time 

to work excellently. When it comes to the prophecy of bounding boxes, then by eliminating 

entirely connected layers to anchor boxes makes decrement of map value by 0.3, but recall 

value is incremented by 7% [9]. Hence, it gives more potential to detect the day to day objects.  

 

 

        

 

 

Fig.3.3: Architecture of YOLO v2 

 

Fine grained features help to identify tiny objects by reshaping the layers employing a modified 

approach called pass through. As we have achieved accuracy now, our goal is to maintain a 

balance of running time with it. For this Yolo v2 uses darknet 19, although it could use google 

net, but that reduces accuracy by 2%. For learning to locate targets from any visual, Yolo 9000 

is employed across nine thousand categories with a 9418 node WordTree. It is certainly 

progress for concluding the localization and distribution. 
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3.3 YOLO v3 

 

Object detection is used in many fields of human life, for example, health and education, etc. 

As all these fields are growing rapidly, so to match their requirements, one stage models also 

need improvement. The next advanced variant of YOLO is version 3 that uses logistic 

regression to compute the targetness score. It gives the score for all targets in each boundry 

box. YOLO v3 can give the multilabel classification because it uses a logistic classifier for each 

class in place of the softmax layer used in YOLO v2.  

 

YOLO v3 uses darknet 53. It has fifty-three layers of convolution. These layers are more in-

depth compared to darknet 19 used in YOLO v2. Darknet-53 contains mainly 3x3 and 1x1 

filters along with bypass links [8] [9] [10]. The formulas given below explain the 

transformation of network output for obtaining bounding box predictions. Here, 𝑑𝑥 and 𝑑𝑦 are 

center coordinates, 𝑑𝑤 is width and 𝑑ℎ is the height of predicted result. Top left coordinates of 

the grid are 𝑚𝑥 and 𝑚𝑦. Network outputs are 𝑡𝑥, 𝑡𝑦, 𝑡𝑤 and 𝑡ℎ. Anchor dimensions for the box 

are 𝑝ℎ and  𝑝𝑤.  

 

 

𝑑𝑥 = 𝜎(𝑡𝑥) + 𝑚𝑥                                                     (3.1) 

𝑑𝑦 = 𝜎(𝑡𝑦) + 𝑚𝑦                                                     (3.2)  

𝑑𝑤 = 𝑝𝑤𝑒𝑡𝑤                                                           (3.3) 

𝑑ℎ = 𝑝ℎ𝑒𝑡ℎ                                                             (3.4) 

 

By using threshold value, a filter is applied to remove the box having class score less than the 

threshold value chosen. Because a score with less value represents that the box is insufficient 

for identifying the classes. Even after filtering by using a threshold value for the class scores, 

a lot of overlapping boxes still remain. When many boxes are overlapping with each other, then 

select only one box out of those overlapping boxes and identify the object. So, the second filter 

is used for choosing the desired boxes, which termed as nonmaximum suppression (NMS)[19]. 

It uses intersection over union (IOU) function. 

 

𝐼𝑂𝑈 =
𝐵1∩𝐵2

𝐵1∪𝐵2
                                                            (3.5) 
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Fig. 3.4: Illustration depicting the definition of union and intersection 

 

 

Above-left corner (a1, b1) and below right corner (a2, b2) are used to determine a box. For 

calculating the area of the rectangle, multiply its height (b2-b1) and its width (a2-a1). Then the 

coordinates (ai1, bi1, ai2, bi2) for the intersection of 2 boxes are obtained. Here, ai1 and bi1 

are the highest value of a1 and b1 coordinate-position of the two boxes. Similarly, ai2 and bi2 

is the lowest value of the a2 and b2 coordinate-position of the 2 boxes.  

 

 

 

𝑢𝑛𝑖𝑜𝑛(𝐴, 𝐵) = 𝐴 + 𝐵 − 𝑖𝑛𝑡𝑒𝑟(𝐴, 𝐵)                                                                (3.6) 

𝑖𝑛𝑡𝑒𝑟_𝑎𝑟𝑒𝑎 = (𝑎𝑖2 − 𝑎𝑖1) × (𝑏𝑖2 − 𝑏𝑖1)                                                        (3.7) 

𝑏𝑜𝑥1_𝑎𝑟𝑒𝑎 = (𝑏𝑜𝑥1[3] − 𝑏𝑜𝑥1[1]) × (𝑏𝑜𝑥1[2] − 𝑏𝑜𝑥1[0])                        (3.8) 

𝑏𝑜𝑥2_𝑎𝑟𝑒𝑎 = (𝑏𝑜𝑥2[3] − 𝑏𝑜𝑥2[1]) × (𝑏𝑜𝑥2[2] − 𝑏𝑜𝑥2[0])                        (3.9) 

𝑢𝑛𝑖𝑜𝑛_𝑎𝑟𝑒𝑎 = (𝑏𝑜𝑥1_𝑎𝑟𝑒𝑎 + 𝑏𝑜𝑥2_𝑎𝑟𝑒𝑎) − 𝑖𝑛𝑡𝑒𝑟_𝑎𝑟𝑒𝑎                           (3.10) 

𝐼𝑂𝑈 = 𝑖𝑛𝑡𝑒𝑟_𝑎𝑟𝑒𝑎/𝑢𝑛𝑖𝑜𝑛_𝑎𝑟𝑒𝑎                                                                    (3.11) 

 

 

The advantage of YOLO v3 over YOLO v2 is that some changes are included in error function 

and for objects of small to a considerable size detection occurs on three scales. The multiclass 

problem turned in a multilabel problem, and the performance improved over small size objects. 
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3.4 SSD 

 
SSD is a single shot detector [7] [20]. It manages an excellent balance of speed with the accuracy 

of result. In this, we apply for single time a CNN based model to the input picture for computing 

the feature map. It also employs anchor boxes similar to faster RCNN at various aspect ratios and 

learns the offset instead of determining the box. The processing occurs on numerous layers of 

CNN, where every layer functions on a varying range of scale and uses multiple feature maps. 

Therefore, the detection of targets of several sizes is possible. Experimentally, SSD has much 

better accuracy on different datasets even on inputs pictures of small size as compared to the other 

single stage methods. 

 

 

         

 

Fig.3.5: Architecture of SSD 

 

 

 

3.5 SSD vs. YOLO 

 
 

Unlike YOLO, SSD does not divide the image into grids of random size. For every location of the 

feature map, it predicts the offset of predefined anchor boxes (default boxes). Relative to the 
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corresponding cell, each box has a fixed size, proportion, and position. In a convolutional manner, 

all the anchor boxes cover the entire feature map. Anchors of SSD are slightly different from the 

anchors of YOLO. Because YOLO makes all the predictions from a single grid, and the size of 

anchors used by YOLO ranges from dimensions of one grid cell to the dimensions of the entire 

picture.  

 

The anchors of SSD specialize its detector for distinct feasible viewpoints and dimensional ratios 

of its target shapes, but not enough on the size of targets. The calculation for the anchors of SSD 

uses a simple formula, while the anchors of YOLO are calculated by applying k-means clustering 

on the training data [21] [15]. SSD doesn't use confidence score, but YOLO calculates it to show 

the faith in predicted results. A unique background class is employed by SSD for this work.  A 

low value of confidence score in YOLO is equivalent to the predicted output of background class 

in SSD. Both indicate that for the detector, the possibility of getting a target is null [18]. 
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CHAPTER 4 

PROPOSED APPROACH 

 

In this chapter, we will explain the proposed approach used in object detection and recognition 

using YOLO v3-Tiny model. The hardware requirements, software requirements and data set 

used in training and testing of model is listed along with the description of detailed procedure 

of implementation. 

 

4.1 YOLO v3-Tiny 

 

YOLO v3, with the decreased depth of the convolutional layer, is another version called YOLO 

v3-Tiny. It was proposed by Joseph Redmon [10]. Therefore, the running speed is significantly 

increased (approximately 442% faster than the former variants of YOLO), but detection 

accuracy is reduced. Darknet-53 architecture of YOLO v3 employs several 1x1 convolution 

layers along with 3x3 convolution layers for extracting features. 

 

               

Fig.4.1: Main process of YOLO v3-Tiny [11] 



22 

 

4.2 Architecture of YOLO v3-Tiny 

 

YOLO v3-Tiny uses pooling layer and reduces the figure for convolution layer. It predicts a 

three-dimensional tensor that contains objectness score, bounding box, and class predictions at 

two different scales. It divides a picture into S×S grid cells. For final detections, we will ignore 

the bounding boxes for which the objectness score is not best. For extracting features, 

convolution layers and max-pooling layers are utilized in the feed forward arrangement of 

YOLO v3-Tiny. Prediction of bounding boxes occurs at two different feature map scales, which 

are 13×13, and 26×26 merged with an upsampled 13×13 feature map. 

 

         

Fig.4.2: Architecture of YOLO v3-Tiny [11] 
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Table 4.1: Performance comparison of YOLO with their Tiny versions[25] 

 

Detector  Number of 

n-layers 

Floating point 

operations 

FPS map value Used set of 

data 

YOLO v1 26.00 Not-given 45.00 63.50 VOC-data 

YOLO v1-Tiny 9.00 Not-given 155.00 52.80 VOC-data 

YOLO v2 32.00 62.95 40.00 48.20 COCO-data 

YOLO v2-Tiny 16.00 05.42 244.00 23.60 COCO-data 

YOLO v3 106.00 140.70 20.00 57.80 COCO-data 

YOLO v3-Tiny 24.00 05.57 220.00 33.20 COCO-data 

 

In Table 4.1, we can see that on different datasets, the Tiny versions of YOLO have 

a lower value for map as compared to their original versions. 

 

 

4.3 Implementation Details 

 

Below in this section, the hardware requirements, software requirements and data set used in 

training and testing of model is listed along with the description of detailed procedure of 

implementation. 

 

4.3.1 Hardware Requirements 

 
The YOLO v3 and YOLO v3-Tiny models are implemented with the following hardware 

requirements.  

 Operating system used is windows 10 because it is fast and very easy to use. 

 To execute program instruction very fast we are using Intel core i5 eighth-generation 

quad-core CPU. 

 When CPU doesn’t meet the requirement then we are using NVIDIA Geforce GTX 

1050 GPU which is approx. ten times faster than CPUs. 

  To run smoothly Minimum 8 gigabytes Size of RAM is required. 

  Some files needs to be downloaded online, extremely high-speed internet is 

compulsory. 
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4.3.2 Software Requirements 

 
The YOLO v3 and YOLO v3-Tiny models are implemented with the following software 

requirements.  

 Anaconda Jupyter notebook is a very simple and excellent IDE used to run python codes. 

 Open CV python is used to solve computer vision problems with complex numerical 

operations. 

 TensorFlow 2.0 was developed by Google to provide numerical computing, and it creates 

models by data flow graphs.  

 Python imaging library is used for opening, saving, and modifying any image related files. 

 Numpy is used to provide support to high-level mathematical functions. It also supports 

to solve multidimensional arrays and matrices. 

 We have used the latest python language version to run the code. 

 

4.3.3 Data Set Used 
 

The Darknet 53 convolution neural-network is employed as a previously trained network. It is 

trained earlier on the Imagenet dataset for classification. As training a model from scratch is much 

more complicated, so we employed transfer learning on our model using VOC 2012 dataset for 

localization of objects. VOC dataset is very popular for object detection, but it needs good internet 

speed and better disk performance. 

 
          

Table 4.2: Darknet-53 data set 

 

Model Train test MAP Flops FPS CFG WEIGHTS 

SSD300 COCO 

train_val 

Test_dev 41.2 - 46 - link 

SSD500 COCO 

train_val 

Test_dev 46.5 - 19 - link 

Yolov2 

608*608 

COCO 

train_val 

Test_dev 48.1 62.94 bn 40 cfg weights 
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Tiny Yolo COCO 

train_val 

Test_dev 23.7 5.41bn 244 cfg weights 

SSD321 COCO 

train_val 

Test_dev 45.4 - 16 - link 

SSD513 COCO 

train_val 

Test_dev 50.4 - 8 - link 

YOLOv3-

320 

COCO 

train_val 

Test_dev 51.5 38.97 bn 45 cfg weights 

YOLOv3-

416 

COCO 

train_val 

Test_dev 55.3 65.86 bn 35 cfg weights 

YOLOv3-

608 

COCO 

train_val 

Test_dev 57.9 140.69 bn 20 cfg weights 

YOLOv3-

tiny 

COCO 

train_val 

Test_dev 33.1 5.56 bn 220 cfg weights 

 

 

4.3.4 Implementation Method 

 
Below in this section, the steps of implementation of YOLO v3 and YOLO v3-Tiny models are 

explained.  

 We have taken input as preprocessed image.  

 The output is in the form of bounding boxes, accuracy score percentage, and class label.  

 During the training of model, ninety percent of data is applied for training, and the rest ten 

percent is used for the validation of our model.  

 We trained our model for localizing twenty classes that include person, dog, and car, etc.  

 During batch normalization, the size of each batch is sixteen and requires approximately 

twenty iterations to get a valid result.  

 The duration of the period needed for each iteration is around ten minutes.  

 Then the trained models of YOLO v3 and YOLO v3-Tiny are applied to the pictures taken 

by us in our college campus to examine the execution time and accuracy (map value) of 

the result obtained.  

 Speed is calculated in terms of frame per second, which is the number of images processed 

by the model in each second.  

 Mean average precision is computed to estimate accuracy. After each iteration, precision 

and recall value is calculated, and a curve is plotted between them.  
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 The area under this curve is an average precision of that iteration.  

 At last, we will find the mean value of all obtained average precisions to get map value.  

 We have observed that YOLO v3-Tiny is faster compared to YOLO v3, and therefore, it 

is more effective in real time target localization and identification of class. However, its 

accuracy decreases a bit in comparison to YOLO v3.   

 

 

4.3.5 Steps of Implementation 

 
1. Padding helps to add extra pixel to the corner of actual photo because due to passing 

through convolutional layers, we can lose pixels and for computational efficiency we need 

to use stride which traversed row and column to cover all locations.  

 

 

 

 

 

 

 

 

 

 

2. Performs a batch normalization to improve speed and performance of network training. It 

also normalize the input layer by rescaling and recentering. 

 

 

 

 

 

 

 

                      

 

 

 

def Conv2D(inputs, filters, kernel_size, data_format, strides=1): 

                           if strides > 1: 

                           inputs = fixed_padding(inputs, kernel_size, data_format) 

                           return tf.layers.Conv2D(filters=filters, 

                           kernel_size=kernel_size, strides=strides, 

                           padding=('same' if strides == 1 else 'valid'), 

                           use_bias=False, data_format=data_format)(inputs)       

 

def BatchNormalization(inputs, data_format): 

     return tf.layers.BatchNormalization(axis=1  

                if data_format == 'channels_first' 

                else 3,momentum=_BATCH_NORM_DECAY, 

                epsilon=_BATCH_NORM_EPSILON,                       

                scale=True)(inputs)  
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3. Performs a max pooling which helps to reduce the spatial size of initial box representation. 

 

 

 

 

 

 

 

4. Activation function leakyRELU() is used to provide values to the functions which tends 

to zero, it also helps to improve the dying relu problem by increasing the range from 

infinity to negative infinity. 

 

 

 

 

 

 

5. Upsamples to out_shape using nearest neighbor interpolation which use inputs as 

new_height and new_width where ‘channels_first’ defined as default data_format. 

 

 

 

 

 

 

 

 

 

def MaxPooling2D(inputs, pool_size, strides, data_format): 

       return tf.layers.MaxPooling2D(pool_size, strides, padding='same',              

                  data_format=data_format)(inputs) 
 

 

 

def LeakyReLU(inputs): 

      return tf.nn.leaky_relu(inputs, alpha=_LEAKY_RELU) 
 

 

def upsample(inputs, out_shape, data_format): 

if data_format == 'channels_first': 

inputs = tf.transpose(inputs, [0, 2, 3, 1]) 

new_height = out_shape[3] 

new_width = out_shape[2] 

else: 

new_height = out_shape[2] 

new_width = out_shape[1] 

inputs = tf.image.resize_nearest_neighbor(inputs,  

              (new_height, new_width)) 

if data_format == 'channels_first': 

inputs = tf.transpose(inputs, [0, 3, 1, 2]) 

return inputs 
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6. Computes top left and bottom right points of the boxes by providing the dimension of box 

and axis value as -1. 

 

 

 

 

 

 

 

 

   

           

7. We are importing required YOLO v3 files to set input_size and anchors values. The 

required layers and weight files are loaded into memory to perform the module operations. 

 

 

 

 

 

 

 

 

 

8. Creates a residual block for Darknet to provide conversion and batchNormalization by 

increasing filters size to some fixed values. 

 

 

 

 

 

 

 

 

def build_boxes(inputs): 

center_x, center_y, width, height, confidence, classes = tf.split(inputs,  

[1, 1, 1, 1, 1, -1], axis=-1) 

top_left_x = center_x - width / 2 

top_left_y = center_y - height / 2 

bottom_right_x = center_x + width / 2 

bottom_right_y = center_y + height / 2 

return tf.concat([top_left_x, top_left_y, bottom_right_x, bottom_right_y, 

confidence, classes], axis=-1) 
 

 

import tensorflow as tf 

from core.layers import Conv2D, BatchNormalization, LeakyReLU, 

yolo_layer, upsample, build_boxes, non_max_suppression 

_INPUT_SIZE = [416, 416] 

_MAX_OUTPUT_SIZE = 20 

_ANCHORS = [(10, 13), (16, 30), (33, 23), 

(30, 61), (62, 45), (59, 119), 

(116, 90), (156, 198), (373, 326) 
 

 

def darknet53_residual_block(inputs, filters, data_format, strides=1): 

shortcut = inputs 

inputs=Conv2D(inputs,filters=filters,kernel_size=1,strides=strides, 

data_format=data_format) 

inputs = BatchNormalization(inputs, data_format=data_format) 

inputs = LeakyReLU(inputs) 

filters *= 2 
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9. Creates Darknet53 model for YOLO v3 whereas for each range strides has default value 

2 but filters are getting change by current value multiplied by 2.   

 

 

 

 

 

 

 

 

 

 

         

 

 

 

10. Creates convolution operations layer used after Darknet53 model for YOLO v3. 

 

 

 

 

 

 

 

 

 

 

inputs=Conv2D(inputs,filters=filters,kernel_size=3,strides=strides, 

data_format=data_format) 

inputs = BatchNormalization(inputs, data_format=data_format) 

inputs = LeakyReLU(inputs) 

inputs += shortcut 

return inputs 
 

 

def darknet53(inputs, data_format): 

inputs = Conv2D(inputs, filters=32, kernel_size=3,  

data_format=data_format) 

inputs = BatchNormalization(inputs, data_format=data_format) 

inputs = LeakyReLU(inputs) 

inputs=Conv2D(inputs, filters=64, kernel_size=3, strides=2,  

data_format=data_format) 

inputs = BatchNormalization(inputs, data_format=data_format) 

inputs = LeakyReLU(inputs) 

inputs = darknet53_residual_block(inputs, filters=32,  

data_format=data_format)               

inputs=Conv2D(inputs,filters=128,kernel_size=3,strides=2, 

data_format=data_format) 

inputs = BatchNormalization(inputs, data_format=data_format) 
inputs = LeakyReLU(inputs)                

 

def feature_pyramid_network(inputs, filters, data_format): 

inputs = Conv2D(inputs, filters=filters, kernel_size=1,  

data_format=data_format) 

inputs = Conv2D(inputs, filters=filters, kernel_size=1,  

data_format=data_format) 

inputs = LeakyReLU(inputs) 

inputs=Conv2D(inputs, filters=(filters * 2), kernel_size=3,  

data_format=data_format) 

inputs = BatchNormalization(inputs, data_format=data_format) 

inputs = LeakyReLU(inputs) 
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11. YOLO v3 Model with parameters as number of class labels, input size of the model, 

maximum number of boxes to be selected for each class, Threshold for the IOU, Threshold 

for the confidence score. 

 

 

 

 

 

 

 

 

 

 

 

12. Creates Darknet model for YOLO v3-tiny v3 whereas for each range kernel_size has 

default value 3 but filters are started by number and getting change by current value 

multiplied by the same value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

class YOLOv3(object): 

def __init__(self, n_classes, iou_threshold, confidence_threshold): 

self.n_classes = n_classes 

self.input_size = _INPUT_SIZE 

self.max_output_size = _MAX_OUTPUT_SIZE 

self.iou_threshold = iou_threshold 

self.confidence_threshold = confidence_threshold 

self.data_format='channels_first'if tf.test.is_built_with_cuda()  

else'channels_last' 

self.scope = 'yolov3'  
 

 

def darknet(inputs, data_format): 

filters = 16 

for _ in range(4): 

inputs = Conv2D(inputs, filters, kernel_size=3,  

data_format=data_format) 

inputs = BatchNormalization(inputs, data_format=data_format) 

inputs = LeakyReLU(inputs) 

inputs=MaxPooling2D(inputs,pool_size=[2,2], strides=[2, 2],  

data_format=data_format) 

filters *= 2 

inputs = Conv2D(inputs, filters=256, kernel_size=3,  

data_format=data_format) 

inputs = BatchNormalization(inputs, data_format=data_format) 

inputs = LeakyReLU(inputs) 

route = inputs 

inputs = MaxPooling2D(inputs, pool_size=[2, 2], strides=[2, 2], 

data_format = data_format)       
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13. Creates convolution operations layer by taking inputs, data_format as parameter to 

perform operation for BatchNormalization and LeakyReLU used after Darknet YOLO v3-

tiny. 

 

 

 

 

 

 

 

 

 

 

 

               

14. YOLO v3-tiny Model with parameters as number of class labels, input size of the model, 

maximum number of boxes to be selected for each class, Threshold for the IOU, Threshold 

for the confidence score. 

 

 

 

 

 

 

 

 

 

 

                  

 

15. Loads kernel, gamma, beta, mean, variance for Batch Normalization by creating a 

load_batch_norm method which takes five parameters by returning assign_ops and offset. 

 

 

 

def feature_pyramid_network(inputs, data_format): 

inputs = Conv2D(inputs, filters=256, kernel_size=1,  

data_format=data_format) 

inputs = BatchNormalization(inputs, data_format=data_format) 

inputs = LeakyReLU(inputs) 

route = inputs 

inputs = Conv2D(inputs, filters=512, kernel_size=3,  

data_format=data_format) 

inputs = BatchNormalization(inputs, data_format=data_format) 

inputs = LeakyReLU(inputs) 

return inputs, route 
 

 

class YOLOv3_tiny(object): 

def __init__(self, n_classes, iou_threshold, confidence_threshold): 

                   self.n_classes = n_classes 

                   self.input_size = _INPUT_SIZE 

                   self.max_output_size = _MAX_OUTPUT_SIZE 

                   self.iou_threshold = iou_threshold 

                   self.confidence_threshold = confidence_threshold 

                   self.data_format='channels_first'if   

                   tf.test.is_built_with_cuda()  

                   else'channels_last'  

                   self.scope = 'yolov3_tiny' 
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16. In this phase at first, for range value 52 we are loading official pretrained YOLO v3 

weights & weight for darknet part and in second iteration for each convolution layer with 

batch normalization & Loading weights. 

 

 

 

 

 

 

 

 

 

 

               

17. In this phase at first, for range value 52 we are loading official pretrained YOLO v3-tiny 

weights & weight for darknet part and in second iteration for each convolution layer with 

batch normalization & Loading weights. During batch normalization, the size of each 

batch is sixteen and requires approximately twenty iterations to get a valid result. The 

duration of the period needed for each iteration is around ten minutes. 

 

def load_batch_norm(idx, variables, weights, assign_ops, offset): 

kernel = variables[idx] 

gamma, beta, mean, variance = variables[idx + 1:idx + 5] 

batch_norm_vars = [beta, gamma, mean, variance] 

for var in batch_norm_vars: 

shape = var.shape.as_list() 

num_params = np.prod(shape) 

var_weights = weights[offset:offset + num_params].reshape(shape) 

offset += num_params 

assign_ops.append(tf.assign(var, var_weights)) 

shape = kernel.shape.as_list() 

num_params = np.prod(shape) 

var_weights=weights[offset:offset+num_params].reshape((shape[3], 

shape[2], shape[0], shape[1])) 

var_weights = np.transpose(var_weights, (2, 3, 1, 0)) 

offset += num_params 

assign_ops.append(tf.assign(kernel, var_weights)) 

return assign_ops, offset 

 
 

 

for i in range(52): 

idx = 5 * i 

assign_ops, offset = load_batch_norm(idx, variables, weights,  

assign_ops, offset) 

ranges = [range(0, 6), range(6, 13), range(13, 20)] 

unnormalized = [6, 13, 20] 

for j in range(3): 

for i in ranges[j]: 

idx = 52 * 5 + 5 * i + j * 2 assign_ops,  
offset = load_batch_norm(idx, variables, weights, assign_ops, offset) 
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18. Parameter tiny is passed to main method which will further decide to call yolov3_tiny or 

yolov3 method to perform operations by loading model variables, weight to train the 

model. During the training of model, ninety percent of data is applied for training, and the 

rest ten percent is used for the validation of our model. We trained our model for localizing 

twenty classes that include person, dog, and car, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

                      

 

 

for i in range(7): 

idx = 5 * i 

assign_ops, offset = load_batch_norm(idx, variables, weights,  

assign_ops, offset) 

ranges = [range(0, 2), range(2, 4)] 

unnormalized = [2, 4] 

for j in range(2): 

for i in ranges[j]: 

idx = 7 * 5 + 5 * i + j * 2 assign_ops,  

offset = load_batch_norm(idx, variables, weights, assign_ops, offset) 

bias = variables[7 * 5 + unnormalized[j] * 5 + j * 2 + 1] 

shape = bias.shape.as_list() 

num_params = np.prod(shape) 

var_weights = weights[offset:offset + num_params].reshape(shape) 
 

 

def main(tiny): 

if tiny: 

model = YOLOv3_tiny(n_classes=80, iou_threshold=0.5,  

confidence_threshold=0.5) 

else: 

model = YOLOv3(n_classes=80, iou_threshold=0.5,  

confidence_threshold=0.5) 

inputs = tf.placeholder(tf.float32, [1, 416, 416, 3]) 

model(inputs) 

model_vars = tf.global_variables(scope=model.scope) 

if tiny: 

assign_ops = load_weights_tiny(model_vars, './weights/yolov3- 

tiny.weights') 

else: 

assign_ops = load_weights(model_vars, './weights/yolov3.weights')      
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

In this chapter, the speed and accuracy of some object detectors is analyzed and compared for 

different size of objects. At first, the experimental results of YOLO v3 and YOLO v3-Tiny 

models are demonstrated clearly. After that we will compare the performance of YOLO v3 and 

YOLO v3-Tiny modes with other detectors described earlier.  

 

5.1 Analysis of various Object Detectors 

 
It is tough to make a clear comparison between different object detection methods. So, we can't 

give a straight decision on the best model. For many real-life applications, we make choices to 

create an equilibrium of accuracy with speed. Therefore, we need to be aware of other 

characteristics that have a significant impact on performance. For example, matching strategy 

and IOU threshold, ratio of positive anchor and negative anchor, training dataset, utilization of 

varying scale and cropped pictures for training, location loss function, pace of learning, and 

learning rate decay etc. 

 

 

          

 

Fig.5.1: Speed vs. Accuracy for object detection methods 
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We have thoroughly examined the characteristics of three procedures for object detection, 

which are faster RCNN, YOLO v3, and SSD. If the requirement is accuracy (excellent quality 

of correctness), then faster RCNN is the best as it is much accurate compared to SSD and 

YOLO v3. But if accuracy is not the primary concern, we want super-fast speed, YOLO v3 

takes less time compared to SSD and faster RCNN. But if at the same time requirement is of 

excellent accuracy and less running time, then SSD is a more favorable recommendation, as its 

speed is better than faster RCNN, and its accuracy is better compared to YOLO v3.   

 

 

     

 

Fig.5.2: Accuracy comparison for different sizes of target objects 

 

 

The chart given above in Fig.5.2 represents the faster RCNN, YOLO, and SSD performance 

on targets of distinct sizes. In accuracy comparison for the big targets, SSD performs alike 

faster RCNN. But as the object size decreases, the gap increases. 
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5.2 Demonstration of Results 

 

  

 
Fig.5.3: Experimental result-1 of YOLO v3 and YOLO v3-Tiny 

 

 

 

  

 
Fig.5.4: Experimental result-2 of YOLO v3 and YOLO v3-Tiny 
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Fig.5.5: Experimental result-3 of YOLO v3 and YOLO v3-Tiny 

 

 

 

  

 
Fig.5.6: Experimental result-4 of YOLO v3 and YOLO v3-Tiny 
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Fig.5.7: Experimental result-5 of YOLO v3 and YOLO v3-Tiny 

 

 

 

  
          

Fig.5.8: Experimental result-6 of YOLO v3 and YOLO v3-Tiny 
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5.3 Comparison of YOLO Algorithms 

 
YOLO v3-Tiny is a lightweight variant of YOLO v3, which takes less running time and less 

accuracy when examined with YOLO v3. In Fig.5.9, we compared the accuracy of different 

versions of YOLO algorithms for given image pixels. 

 

                 

Fig.5.9: Accuracy comparison of YOLO algorithms 

 

                  

Fig.5.10: Accuracy and speed comparison of YOLO with faster RCNN 
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In Fig.5.10, the accuracy and speed performance of YOLO algorithms is compared with faster 

RCNN [27]. As per the result, we can say that YOLO v3 takes less time compared to Faster R-

CNN, and YOLO v3-tiny is faster than YOLO v3.  

 

 

 

         

 

Fig.5.11: Speed Comparison of YOLO v3 vs. YOLO v3-Tiny 

 

 

 

The above graph in Fig.5.11 shows a comparison of the running time of YOLO v3 with YOLO 

v3-Tiny for different dimensions of images. We have observed that YOLO v3-Tiny is faster 

compared to YOLO v3, and therefore, it is more effective in real time target localization and 

identification of class. However, its accuracy decreases a bit in comparison to YOLO v3.   
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5.4 Conclusion and Future Scope 

 
To identify and localize objects, there exist many methods with a trade-off in speed performance 

and accuracy of result. But yet we can't say any single algorithm is best over others. One can 

always select the method that suits the requirement at best.  In a short period, object detection 

applications got much popularity and still a lot to cover in this area because of its vast scope of 

research. This project presents the comparison of various algorithms to identify and localize 

objects based on accuracy, time, and parameter values with varying sizes of the input image. We 

have identified a new methodology of single stage model for improving speed without sacrificing 

much accuracy. The comparison results show that YOLO v3-Tiny increases the speed of object 

detection while ensures the accuracy of the result. We can also extend object localization and 

recognition from static pictures to a video containing the dynamic sequence of images. We are 

planning to increase the accuracy of the localization of small targets in the future. 
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Object detection has seen many changes in algorithms to improve performance both on speed and 

accuracy. By the continuous effort of so many researchers, deep learning algorithms are growing 

rapidly with an improved object detection performance. Various popular applications like 

pedestrian detection, medical imaging, robotics, self-driving cars, face detection, etc. reduces the 

efforts of humans in many areas. Due to the vast field and various state-of-the-art algorithms, it is 

a tedious task to cover all at once. This paper presents the fundamental overview of object 

detection methods by including two classes of object detectors. In two stage detector covered 

algorithms are RCNN, Fast RCNN, and Faster RCNN, whereas in one stage detector YOLO v1, 

v2, v3, and SSD are covered. Two stage detectors focus more on accuracy, whereas the primary 

concern of one stage detectors is speed. We will explain an improved YOLO version called YOLO 

v3-Tiny, and then its comparison with previous methods for detection and recognition of object is 

described graphically. 

 

 


