
YOLO v3-Tiny: An improved One Stage Model for

Detection and Recognition of Objects

 A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS

FOR THE AWARD OF THE DEGREE
OF

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

Submitted by:

Pranav Adarsh

(Roll No. 2K18/SWE/11)

Under the supervision of

Dr. Manoj Kumar
(Associate Professor)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)

 Bawana Road, Delhi – 110042

JULY, 2020

ii

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)

 Bawana Road, Delhi – 110042

CANDIDATE’S DECLARATION

I, Pranav Adarsh, Roll No. 2K18/SWE/11 student of M.Tech (Software Engineering), hereby

declare that the project Dissertation titled “YOLO v3-Tiny: An improved One Stage Model

for Detection and Recognition of Objects” which is submitted by me to the Department of

Computer Science and Engineering, Delhi Technological University, Delhi in partial

fulfillment of the requirement for the award of the degree of Master of Technology, is original

and not copied from any source without proper citation. This work has not previously formed

the basis for the award of any Degree, Diploma Associateship, Fellowship or other similar title

or recognition.

Place: Delhi Pranav Adarsh

Date: 26/06/2020 (2K18/SWE/11)

iii

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)

 Bawana Road, Delhi – 110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “YOLO v3-Tiny: An improved One Stage

Model for Detection and Recognition of Objects” which is submitted by Pranav Adarsh,

2K18/SWE/11 Department of Computer Science & Engineering, Delhi Technological

University, Delhi in partial fulfillment of the requirement for the award of the degree of Master

of Technology, is a record of the project work carried out by the students under my supervision.

To the best of my knowledge this work has not been submitted in part or full for any Degree

or Diploma to this University or elsewhere.

Place: Delhi Dr. Manoj Kumar

Date: 27/06/2020 SUPERVISOR

 (Associate Professor)

Department of Computer Science & Engineering

Delhi Technological University

iv

ACKNOWLEDGEMENT

The success of the Major II project requires help and contribution from numerous individuals

and the organization. Writing the report of this project work gives me an opportunity to express

my gratitude to everyone who has helped in shaping up the outcome of the project.

I express my heartfelt gratitude to my project guide Dr. Manoj Kumar for giving me an

opportunity to do my project work under his guidance. I am deeply indebted to him for the

support, advice and encouragement he provided without which the project could not have been

a success. His constant support and encouragement has made me realize that it is the process

of learning which weighs more than the end result.

I would like to express my gratitude to the university and staff for providing us with the library,

laboratories, infrastructure, testing facilities, right academic resources and environment which

allowed us to work without any obstructions.

I also reveal my thanks to all my classmates and friends for constant support. They helped me

throughout by giving new ideas, providing necessary information and pushing me forward to

complete the work. I would also like to express sincere gratitude to my parents for constantly

encouraging me during the completion of work.

Pranav Adarsh

Roll No – 2K18/SWE/11

M. Tech (Software Engineering)

Delhi Technological University

v

ABSTRACT

Object detection has seen many changes in algorithms to improve performance both on speed

and accuracy. By the continuous effort of so many researchers, deep learning algorithms are

growing rapidly with an improved object detection performance. Various popular applications

like pedestrian detection, medical imaging, robotics, self-driving cars, face detection, etc.

reduces the efforts of humans in many areas. Due to the vast field and various state-of-the-art

algorithms, it is a tedious task to cover all at once. This paper presents the fundamental

overview of object detection methods by including two classes of object detectors. In two stage

detector covered algorithms are RCNN, Fast RCNN, and Faster RCNN, whereas in one stage

detector YOLO v1, v2, v3, and SSD are covered. Two stage detectors focus more on accuracy,

whereas the primary concern of one stage detectors is speed. We will explain an improved

YOLO version called YOLO v3-Tiny, and then its comparison with previous methods for

detection and recognition of object is described graphically.

Keywords: Computer vision; YOLO v3; Faster RCNN; Deep learning; YOLO v3-Tiny; Object

detection; image processing; Convolutional Neural Networks.

vi

TABLE OF CONTENTS

a) Title Page ... i

b) Candidate’s Declaration… .. ii

c) Certificate… ... iii

d) Acknowledgement ... iv

e) Abstract… ... v

f) Table of Contents… .. vi-vii

g) List of Figures .. viii

h) List of Tables .. ix

i) List of Abbreviations and Nomenclature .. x

1. INTRODUCTION… ... 01-07

1.1 Overview .. 01

1.1.1 Classification of Objects ... 02

1.1.2 Localization of Objects ... 02

1.1.3 Object Detection ... 03

1.1.4 Two Stage Detectors ... 03

1.1.5 One Stage Detectors .. 04

1.2 Scope of the work .. 05

1.3 Problem Statement ... 06

1.4 Purpose of the project .. 07

1.5 Organization of the Dissertation .. 07

2. BACKGROUND ... 09-13

2.1 HOG ... 09

2.2 RCNN .. 10

2.3 FAST RCNN .. 11

2.4 FASTER RCNN... 12

2.5 Comparison of Two Stage Detectors ... 13

3. LITERATURE REVIEW .. 14-20

3.1 YOLO v1 ... 14

3.2 YOLO v2 ... 16

3.3 YOLO v3 ... 17

3.4 SSD ... 19

3.5 SSD vs. YOLO .. 19

vii

4. PROPOSED APPROACH ... 21-33

4.1 YOLO v3-Tiny ... 21

4.2 Architecture of YOLO v3-Tiny .. 22

4.3 Implementation Details .. 23

4.3.1 Hardware Requirements ... 23

4.3.2 Software Requirements ... 24

4.3.3 Data Set Used ... 24

4.3.4 Implementation method .. 25

4.3.5 Steps of Implementation ... 26

5. RESULTS AND DISCUSSION .. 34-41

5.1 Analysis of various Object Detectors .. 34

5.2 Demonstration of Results ... 36

5.3 Comparison of YOLO Algorithms .. 39

5.4 Conclusion and Future Scope .. 41

6. REFERENCES .. 42-44

7. PUBLICATION ... 45-45

viii

LIST OF FIGURES

Figure 1.1: The Increasing Number of publications in Object detection .. 06

Figure 2.1: Architecture of RCNN.. 10

Figure 2.2: Architecture of FAST RCNN ... 11

Figure 2.3: Architecture of FASTER RCNN .. 12

Figure 3.1: S×S grid representation of YOLO .. 15

Figure 3.2: Drawback of YOLO v1 .. 15

Figure 3.3: Architecture of YOLO v2... 16

Figure 3.4: Illustration depicting the definition of union and intersection 18

Figure 3.5: Architecture of SSD .. 19

Figure 4.1: Main process of YOLO v3-Tiny .. 21

Figure 4.2: Architecture of YOLO v3-Tiny .. 22

Figure 5.1: Speed vs. Accuracy for object detection methods .. 34

Figure 5.2: Accuracy comparison for different sizes of target objects ... 35

Figure 5.3: Experimental result-1 of YOLO v3 and YOLO v3-Tiny ... 36

Figure 5.4: Experimental result-2 of YOLO v3 and YOLO v3-Tiny ... 36

Figure 5.5: Experimental result-3 of YOLO v3 and YOLO v3-Tiny ... 37

Figure 5.6: Experimental result-4 of YOLO v3 and YOLO v3-Tiny ... 37

Figure 5.7: Experimental result-5 of YOLO v3 and YOLO v3-Tiny ... 38

Figure 5.8: Experimental result-6 of YOLO v3 and YOLO v3-Tiny ... 38

Figure 5.9: Accuracy comparison of YOLO algorithms ... 39

Figure 5.10: Accuracy and speed comparison of YOLO with faster RCNN 39

Figure 5.11: Speed Comparison of YOLO v3 vs. YOLO v3-Tiny ... 40

ix

LIST OF TABLES

Table 2.1: Comparison of two stage object detectors ... 13

Table 4.1: Performance comparison of YOLO with their Tiny versions 23

Table 4.2: Darknet-53 data set .. 24

x

List of Abbreviations and Nomenclature

1. CNN- Convolutional Neural Network

2. RCNN- Region based Convolutional Neural Network

3. FAST RCNN- Fast Region based Convolutional Neural Network

4. FASTER RCNN- Faster Region based Convolutional Neural Network

5. RPN- Region Proposal Networks

6. RRPN- Radar Region Proposal Networks

7. HOG- Histogram of Oriented Gradients

8. YOLO v1- You Only Look Once version one

9. YOLO v2- You Only Look Once version two

10. YOLO v3- You Only Look Once version three

11. SSD- Single Shot Detectors

12. GPU- Graphics Processing Unit

13. CPU- Central Processing Unit

14. RAM- Random Access Memory

15. IDE- Integrated Development Environment

1

CHAPTER 1

 INTRODUCTION

1.1 Overview

In the recent few years, diverse research work happened to develop a practical approach to

accelerate the development of deep learning methods. Numerous developments accomplished

excellent results and followed by continuous reformations in deep learning procedures. Object

localization is the identification of all the visuals in a photograph, incorporating the precise

location of those visuals. By using deep learning techniques [1] [2] for object identification and

localization, computer vision has reached a new zenith. Due to significant inconstancies in

viewpoints, postures, dimensions, and lighting positions, it is challenging to succeed in the

identification of objects perfectly. Accordingly, considerable concern has been given by

researchers to this area in the past few years.

There are two types of object detection algorithms. Object detection algorithms using region

proposal includes RCNN [3], Fast RCNN [4], and Faster RCNN [5], etc. These techniques

create region proposal networks (RPN) [6], and then the region proposals are divided into

categories afterward. On the other side, object detection algorithms using regression includes

SSD [7] and YOLO [8], etc. These methods also generate region proposal networks (RPN) but

divide these region proposals into categories at the moment of generation.

All of the procedures mentioned above have significant accomplishments in object localization

and recognition. YOLO consolidates labels in diverse datasets to form a tree-like arrangement,

but the merged labels are not reciprocally exclusive. YOLO9000 [9] enhances YOLO to

recognize targets above 9000 categories employing hierarchical arrangement. Whereas

YOLOv3 [10] uses multilabel classification, it replaces the approach of estimating the cost

function and further exhibits meaningful improvement in distinguishing small targets.

2

1.1.1 Classification of Objects

If we need to recognize the object in an image, then it is termed as Objects-classification. The

core principle of object classification is to categorize the objects into different categories and

to predict the class of object present inside the image. Let’s take an example; a picture has two

objects which are bicycle and bike. When we classify them, then it is called a single-label

classification. But if at once we need to classify between many objects like dogs, cats, bikes,

bicycles etc. then we use multi-label classifier for their categorization over different classes by

giving labels to them.

By looking at size, shape, structure and other similar properties of objects, class labels are

decided as x, y, z etc. where each character represents a different object class. Image size

matters a lot in classifying the objects as if image size is larger, then objects can easily be

recognized. But if the size is smaller, then it becomes difficult to identify them during

classification. Resolution of the image also has a vital role in determining the class of objects.

1.1.2 Localization of Objects

In any image to find the actual position of the objects by drawing a square box around them is

called Objects-Localization. For finding the location of the objects in a picture, we take four

dimensions. These dimensions are image_top_left_corner, image_top_right_corner, the height

of the object in the image and width of the object in the image. The main problem is to know

the size of the object because based on the size of the object, the size of the bounding box is

decided. Because the posture of any human is different, i.e., running, sitting, sleeping etc.

whereas the object is same so it should be appropriately localized. So the solution is to find the

aspect ratio of the objects within the image by decreasing the size of the image until the

minimum size of the object is not covered. Another problem is of object overlap when any two

or more targets get over one another then by using anchor box we try to find the actual location

of objects within the image.

3

1.1.3 Object Detection

It is a process of combining classification and localization to find location and class of objects.

These algorithms are used in many day to day activity to make human life comfortable.

Whether it is to differentiate between two objects or observe the objects in the video, all comes

under object detection. Firstly model is trained based on the different categories of objects, and

after that, it is being tested on real-time objects. There are many algorithms some are good in

accuracy whereas others are good in speed with each having their own advantages so to pick

any one of them depends upon the need of work. For getting an overall understanding of

algorithms, these are divided into two types of Detectors based on the number of stages in the

evaluation of results.

1.1.4 Two Stage Detectors

When accuracy is much needed than speed, then two stage detectors are very useful. They have

good localization and detection accuracy in comparison to one stage detectors. The first stage

of two stage detectors is using region-of-interest pooling layers which helps to identify the

regions and apply bounding boxes to those regions. i.e. Region-proposal-network is used in

Faster-RCNN. The second stage of two stage detectors is used to classify the objects which

were identified in the first stage.

Let’s take an input image which has four different objects then two stage detectors will work

through the following steps.

Step 1. Using any external algorithms location of the objects is to be identified by making the

bounding box around them.

Step 2. In the bounding box, it should be observed that all four dimensions fully cover the

object or it may be needed to apply aspect ratio to cover all dimensions.

Step 3. Object class is determined and based on which it is classified for detection and provide

accuracy.

4

Many algorithms come under two stage detectors, but the most famous is region based

detectors, and due to many advancements, it has improved a lot. It mainly follows the following

four procedures.

1). Categorize regions based on different categories.

2). Vector is used, which is of fixed length and performs based on categorized regions.

3). Linear SVM based on specific classification.

4). For detecting the location of the object, bounding box regressor is applied.

1.1.5 One Stage Detectors

In this type of detectors, there is no region proposal step, unlike two stage detectors. One stage

detectors are very fast in comparison to two stage detectors because they don’t use a sliding

window approach or region based approach. In a single pass, it predicts all objects classification

score and by dividing the image into small grids inserts bounding boxes into that. YOLO family

is the example of one stage detectors which divides the image into many regions before

processing by which network is capable of calculating the probability class score with

bounding-box dimensions of the object. Yolo-v2 uses four less anchors than Yolo-v3 anchors

whereas no anchor concept was there in Yolo-v1. YOLO versions have seen so many changes

in its design to improve the performance.

1). Normalization of batch improves the performance by two percent than its previous version.

2). Two times larger classifier improves the performance by four times than earlier.

3). Direct prediction of object location makes it faster and more efficient than two stage

detectors.

4). Anchor boxes make it easier to find two or more objects overlap in the image, but due to it,

a bit decrease in accuracy is faced.

If the image contains many small objects whose accuracy is not good, then one stage can

improve the accuracy by using different scale iteration in one network training. Let an image

with three object sizes a, b, c is calculated in the beginning with the initial size of the network.

5

Still, after a few iterations, it is observed that the network is not covering the entire object so

the network will reduce its initial size and will do the same until it is not covering all objects.

1.2 Scope of the work

Human eyes can easily differentiate between any two different objects. If many objects, some

with similarities and others with dissimilarities, are placed together, and we need to distinguish

between those objects, then it becomes a tedious task for us to do. We can say that if there are

so many objects, then the job of categorizing them in different categories and providing label

of that category is difficult. So, for that, the role of machine learning for object detection and

recognition makes this task easy for us. There are many significant applications based on Object

detection and identification, and a few of them are described as following.

 Face detection- When we purchase any latest mobile, it mostly comes with the feature

of a face security lock, and it is used by police to find criminals by matching crime

scene photos to the history of criminal records. It is helpful to catch intruders who want

to threaten the security of our personal information.

 Pedestrian detection- The self-driving car needs pedestrian detection to detect the safe

boundary and danger zones, but it faces many challenges in crowd zones.

 Text detection- Whenever we visit any new place, they have different languages and

understanding them without knowing that language is impossible or quite complicated.

Therefore, many apps are available to convert the text in other languages to the text in

our desired language.

Scientists have developed so many algorithms to improve accuracy and speed, but it was always

difficult for them to achieve both simultaneously. So by the time, they have changed a lot in

their algorithms to make them better than previous methods. But still, scientists are facing many

6

challenges. For example, to detect humans, we have to train the model as it should consider

different shapes, sizes, and colors of clothes and humans.

Fig.1.1: The Increasing Number of publications in Object detection

1.3 Problem Statement

There are many developments in machine learning tools that are used to develop and implement

projects. Similarly, much progress is there in the approach to optimize results in less time. For

example, after applying face detection on the crime scene, if our algorithm will take too much

time to catch criminal or too late alert cars about danger zone on the road, so it will lose its

usefulness.

In this project, we need to thoroughly examine the characteristics of three procedures for object

detection, which are faster RCNN, YOLO v3, and SSD. If the requirement is accuracy, then

faster RCNN is the best as it is much accurate compared to SSD and YOLO v3. If accuracy is

not the primary concern and we want super-fast speed, then YOLO v3 takes less time than SSD

and faster RCNN. But if at the same time, the requirement is of excellent accuracy and less

running time, then SSD is a more favorable recommendation, as its speed is better than faster

RCNN, and its accuracy is better compared to YOLO v3.

7

It can be observed that there is a possibility of further improvement in the YOLO model, as we

have tested the model for different dimensions. It has been noted that results are getting

changed and give different accuracy and execution time for different sizes of images or

different resolutions. It means that if we apply the trained model on a good resolution

photograph, then it will provide us the best result with much accuracy. We can improve the

model to produce better results in less time.

1.4 Purpose of the project

The purpose of given research project work is to study all the existing significant works that

have already been done in this field of object detection and recognition. We will analyze the

accuracy of results and running time of various object detection and identification approaches.

We will demonstrate this analysis graphically. We will examine the categorization of object

detectors based on their working and categorize them into two categories. We are implementing

YOLO v3 and YOLO v3-tiny to conclude the better and more favorable change in results. We

are training our model by changing the dimension of photos and observing the results of the

existing algorithms. Here, we are trying to improve exiting algorithm results to decrease the

trade-off between speed and accuracy of these methods. After that, we will analyze the

proposed YOLO v3-Tiny mechanism and compare its results and running time with other

previous approaches. The final intention of this project is to obtain much accuracy and better

speed of execution simultaneously.

1.5 Organization of Dissertation

The structure of the dissertation is as follows. In chapter 1, the scope and motive of this project

work are explained in detail. Below in chapter 2, we present background information of object

detectors. It elaborates the most representative and pioneering two-stage object detection

methods with their significant contributions in object detection. First, we examine their

8

methodologies and then explain their drawbacks. Chapter 3 describes the detailed literature

review that explains significant work done in this field of research. Section 3.1, 3.2, and 3.3

provide information about the different versions of the YOLO algorithm. Section 3.4 explains

the SSD method, and section 3.5 gives the difference between SSD and YOLO approaches.

Chapter 4 describes the proposed approach in which section 4.1 tells the methodology of the

YOLO v3-Tiny model, and section 4.2 shows the architecture of YOLO v3-Tiny. Section 4.3

describes the hardware requirements, software requirements, and data set used in the training

and testing of the model. In section 4.3.5, all the steps of implementation are specified. Then

in Chapter 5, the speed and accuracy of some object detectors are analyzed and compared for

different sizes of objects. At first, the experimental results of YOLO v3 and YOLO v3-Tiny

models are displayed clearly. After that, we will examine the performance of YOLO v3, and

YOLO v3-Tiny models with other detectors described earlier. Finally, section 5.4 gives the

conclusion and future scope. At last Chapter 6 contains references for resources used to gather

the information related to this project.

9

CHAPTER 2

BACKGROUND

In this section, we present background information. It elaborates the most representative and

pioneering two-stage object detection methods with their significant contributions in object

detection. First, we examine their methodologies and then explain their drawbacks.

2.1 HOG

HOG is a feature descriptor that is extensively applied in various domains to distinguish objects

by identifying their shapes and structures. Local object structure, pattern, aspect, and

representation can usually be characterized by the arrangement of gradients of local intensity

or the ways of edges. In the HOG [12] detection method, the first step is to break the source

image into blocks and then distribute each block in small regions. These regions are called

cells. Commonly, the blocks of image overlap each other, due to this corresponding cell may

be a part of many blocks. For each pixel inside the cell, it calculates the gradients vertically

and horizontally.

Drawbacks of HOG method-

Due to the emergence of deep learning and its significant applications, the reasonable opinion

was to displace classifiers deployed on HOG [12] methodology with a classifier based on

convolutional neural network [2] [13] because of its comparatively higher accuracy. But there

were some problems. The computation cost of convolutional neural networks was high, and

the speed is too slow. Therefore, it was challenging to run CNN based classifier on numerous

patches produced by the detection approach of sliding window. This difficulty was resolved by

RCNN [3]. It employs an algorithm based on object proposals termed selective search method

[14]. This approach decreases the number of bounding boxes to 2000 region proposals that

were supplied to the R-CNN classifier.

10

2.2 RCNN

Region based convolutional neural networks (RCNN) algorithm [3] uses a group of boxes for the

picture and then analyses in each box if either of the boxes holds a target. It employs the method

of selective search to pick those sections from the picture. In an object, the four regions are used.

These are varying scales, colors, textures, and enclosure.

Fig.2.1: Architecture of RCNN

Drawbacks of RCNN method-

Based on a selective search [14], 2,000 sections are excerpted per image. For every region or part

of the image, we have to select features using CNN. For this, if we have 'i' number of images, then

selected regions will become i×2,000. The whole method of target identification through RCNN

utilizes the following three models: Linear SVM classifier for the identification of objects, CNN

is employed for characteristic extraction, and a regression model is required to tighten the

bounding boxes. All these three processes combine to take a considerable amount of time. It

increases the running time of RCNN method. Therefore, RCNN needs almost 40 to 50 seconds to

predict the result for several new images.

11

2.3 FAST RCNN

In place of using three different models of RCNN, Fast RCNN [4] employs one model to

excerpt characteristics from the different regions. Then it distributes the regions into several

categories based on excerpted features, and the boundary boxes of recognized divisions return

together. Fast RCNN uses the method of spatial pyramid pooling [16] to calculate only one

CNN representation for the whole image. It passes one region for each picture to a particular

convolutional network model by replacing three distinct models for excerption of

characteristics, distributing into divisions, and producing bounding boxes.

Fig.2.2: Architecture of FAST RCNN

Drawbacks of FAST RCNN method-

FAST RCNN also employ a selective search method [14] to detect concerned regions. This

method is prolonged and demands a lot of time. Usually, for the detection of objects, this

complete procedure needs almost two seconds for each picture. Therefore its speed is quite

good in contrast to RCNN [15]. However, if we contemplate extensive real-life datasets, then

the execution of fast RCNN approach is still lacked in speed.

12

2.4 FASTER RCNN

Faster RCNN [5] is a transformed variant of fast RCNN. The significant difference between both

is that faster RCNN implements region proposal network (RPN) [6] [17], but fast RCNN utilizes

a selective search technique for producing concerned regions. In input, RPN accepts feature maps

of picture and produces a collection of object recommendations and an objectness score per

recommendation in output. Usually, this approach takes ten times less time in contrast to fast

RCNN approach because of RPN.

Fig.2.3: Architecture of FASTER RCNN

Drawbacks of faster RCNN method-

To excerpt all the targets in a given picture, this procedure needs multiple passes for that particular

picture. Different systems are working in a sequence therefore, the performance of the upcoming

operation is based on the performance of preceding operations. This approach uses region proposal

networks to localize and identify the objects in a picture. But RPNs do not contemplate the

complete picture because it uses only those portions of the picture, which have high probabilities

of the presence of targets.

13

2.5 Comparison of Two stage Detectors

The table 2.1 given below will explain the comparison of these two stage object detection

approaches based on their characteristics, computation time and drawbacks.

Table 2.1: Comparison of two stage object detectors

Type Characteristics Computation

time

Drawbacks

RCNN To generate regions, it uses

selective search. From each

picture, it extracts around 2000

regions.

Forty to Fifty

seconds

Time taken for

prediction is large

because several

regions pass through

CNN definitely, and it

employs three distinct

models for the

detection of targets.

Fast RCNN To excerpt the features, each

picture passes one time through

CNN. All distinct models

applied in RCNN are combined

collectively to form a single

model. It employs selective

search method on the feature

maps to produce result for

target recognition.

Two seconds The method used is

prolonged and time-

consuming Therefore,

computation time is

still high.

Faster RCNN The previous approach is

replaced with the region

proposal networks. Therefore,

this procedure works much

faster compared to previous

methods.

0.2 seconds Object region

proposal is time-

consuming. Different

types of systems are

operating in sequence.

Thus, the performance

of entire procedure is

based on the working

of the preceding

operations.

14

CHAPTER 3

LITERATURE REVIEW

Two stage detectors provide adequate accuracy, but the time taken for computation is high.

Therefore, to process in less time by managing sufficient accuracy, one stage detectors are

proposed. Some algorithms in one stage model are SSD and the variants of YOLO. By

improving the architecture of two stage models and introducing some changes such as

eliminating pipeline, one stage model has achieved excellent speed. But, it has not attained

sufficient accuracy at the same time. Hence, continuous changes are under process by

researchers.

3.1 YOLO v1

By using the approach of one stage detector YOLO, an input picture is distributed to a system

of S×S grids [8]. The detection of the object depends on every grid of the input image. Grid

cells are employed to predict targets inside boundary boxes. Five parameters are predicted for

every boundary box. These five elements are i, j, k, l, and c. In the input picture, the centre of

target inside the box is denoted by 'i' and 'j' coordinates. Here, 'k', 'l', and 'c' represent height,

width, and score for confidence respectively. 'c' is measured as the probability of containing

the target inside boundary box.

YOLO v1 uses the Darknet framework and ImageNet1000 dataset to train the model. It

distributes the given picture to a grid of S×S cells. For every cell in the network, it computes

confidence for 'n' bounding boxes. The predicted result is encoded into a tensor as S × S × (n

× 5+ p) [8]. Here, input image is divided into total S×S sub-images. In n×5, five represents the

detection of five attributes for each bounding box, which are height, weight, confidence score,

and centre coordinates(x, y) of detected objects. Here, 'p' represents the probability of class.

YOLO v1 also has many limitations. Therefore, the use of YOLO v1 is restricted to some

extent. Limitations of YOLO version1 are based on the closeness of the objects in the picture.

15

If the objects appear as a cluster, they could not find the small objects. If the dimensions of the

object are different from the image used in training data, then this architecture found difficulty

in the localization and detection of objects [15][18]. The primary concern is to locate objects

in a given picture due to the error of localization.

Fig.3.1: S×S grid representation of YOLO [8]

Fig.3.2: Drawback of YOLO v1 [8]

16

YOLO v1 fails sometimes, as in the above image it recognizes the man as an airplane, which

is a drawback of this method.

3.2 YOLO v2

Yolo v2 supersedes Yolo by offering a great balance between running time and accuracy. For

better accuracy, Yolo v2 introduces batch normalization, which helps to enhance 2 percent in

map by attaching it into each layer of convolution. High resolution classifier is used to operate

thoroughly by modifying its filters for giving a more extensive understanding of network time

to work excellently. When it comes to the prophecy of bounding boxes, then by eliminating

entirely connected layers to anchor boxes makes decrement of map value by 0.3, but recall

value is incremented by 7% [9]. Hence, it gives more potential to detect the day to day objects.

Fig.3.3: Architecture of YOLO v2

Fine grained features help to identify tiny objects by reshaping the layers employing a modified

approach called pass through. As we have achieved accuracy now, our goal is to maintain a

balance of running time with it. For this Yolo v2 uses darknet 19, although it could use google

net, but that reduces accuracy by 2%. For learning to locate targets from any visual, Yolo 9000

is employed across nine thousand categories with a 9418 node WordTree. It is certainly

progress for concluding the localization and distribution.

17

3.3 YOLO v3

Object detection is used in many fields of human life, for example, health and education, etc.

As all these fields are growing rapidly, so to match their requirements, one stage models also

need improvement. The next advanced variant of YOLO is version 3 that uses logistic

regression to compute the targetness score. It gives the score for all targets in each boundry

box. YOLO v3 can give the multilabel classification because it uses a logistic classifier for each

class in place of the softmax layer used in YOLO v2.

YOLO v3 uses darknet 53. It has fifty-three layers of convolution. These layers are more in-

depth compared to darknet 19 used in YOLO v2. Darknet-53 contains mainly 3x3 and 1x1

filters along with bypass links [8] [9] [10]. The formulas given below explain the

transformation of network output for obtaining bounding box predictions. Here, 𝑑𝑥 and 𝑑𝑦 are

center coordinates, 𝑑𝑤 is width and 𝑑ℎ is the height of predicted result. Top left coordinates of

the grid are 𝑚𝑥 and 𝑚𝑦. Network outputs are 𝑡𝑥, 𝑡𝑦, 𝑡𝑤 and 𝑡ℎ. Anchor dimensions for the box

are 𝑝ℎ and 𝑝𝑤.

𝑑𝑥 = 𝜎(𝑡𝑥) + 𝑚𝑥 (3.1)

𝑑𝑦 = 𝜎(𝑡𝑦) + 𝑚𝑦 (3.2)

𝑑𝑤 = 𝑝𝑤𝑒𝑡𝑤 (3.3)

𝑑ℎ = 𝑝ℎ𝑒𝑡ℎ (3.4)

By using threshold value, a filter is applied to remove the box having class score less than the

threshold value chosen. Because a score with less value represents that the box is insufficient

for identifying the classes. Even after filtering by using a threshold value for the class scores,

a lot of overlapping boxes still remain. When many boxes are overlapping with each other, then

select only one box out of those overlapping boxes and identify the object. So, the second filter

is used for choosing the desired boxes, which termed as nonmaximum suppression (NMS)[19].

It uses intersection over union (IOU) function.

𝐼𝑂𝑈 =
𝐵1∩𝐵2

𝐵1∪𝐵2
 (3.5)

18

Fig. 3.4: Illustration depicting the definition of union and intersection

Above-left corner (a1, b1) and below right corner (a2, b2) are used to determine a box. For

calculating the area of the rectangle, multiply its height (b2-b1) and its width (a2-a1). Then the

coordinates (ai1, bi1, ai2, bi2) for the intersection of 2 boxes are obtained. Here, ai1 and bi1

are the highest value of a1 and b1 coordinate-position of the two boxes. Similarly, ai2 and bi2

is the lowest value of the a2 and b2 coordinate-position of the 2 boxes.

𝑢𝑛𝑖𝑜𝑛(𝐴, 𝐵) = 𝐴 + 𝐵 − 𝑖𝑛𝑡𝑒𝑟(𝐴, 𝐵) (3.6)

𝑖𝑛𝑡𝑒𝑟_𝑎𝑟𝑒𝑎 = (𝑎𝑖2 − 𝑎𝑖1) × (𝑏𝑖2 − 𝑏𝑖1) (3.7)

𝑏𝑜𝑥1_𝑎𝑟𝑒𝑎 = (𝑏𝑜𝑥1[3] − 𝑏𝑜𝑥1[1]) × (𝑏𝑜𝑥1[2] − 𝑏𝑜𝑥1[0]) (3.8)

𝑏𝑜𝑥2_𝑎𝑟𝑒𝑎 = (𝑏𝑜𝑥2[3] − 𝑏𝑜𝑥2[1]) × (𝑏𝑜𝑥2[2] − 𝑏𝑜𝑥2[0]) (3.9)

𝑢𝑛𝑖𝑜𝑛_𝑎𝑟𝑒𝑎 = (𝑏𝑜𝑥1_𝑎𝑟𝑒𝑎 + 𝑏𝑜𝑥2_𝑎𝑟𝑒𝑎) − 𝑖𝑛𝑡𝑒𝑟_𝑎𝑟𝑒𝑎 (3.10)

𝐼𝑂𝑈 = 𝑖𝑛𝑡𝑒𝑟_𝑎𝑟𝑒𝑎/𝑢𝑛𝑖𝑜𝑛_𝑎𝑟𝑒𝑎 (3.11)

The advantage of YOLO v3 over YOLO v2 is that some changes are included in error function

and for objects of small to a considerable size detection occurs on three scales. The multiclass

problem turned in a multilabel problem, and the performance improved over small size objects.

19

3.4 SSD

SSD is a single shot detector [7] [20]. It manages an excellent balance of speed with the accuracy

of result. In this, we apply for single time a CNN based model to the input picture for computing

the feature map. It also employs anchor boxes similar to faster RCNN at various aspect ratios and

learns the offset instead of determining the box. The processing occurs on numerous layers of

CNN, where every layer functions on a varying range of scale and uses multiple feature maps.

Therefore, the detection of targets of several sizes is possible. Experimentally, SSD has much

better accuracy on different datasets even on inputs pictures of small size as compared to the other

single stage methods.

Fig.3.5: Architecture of SSD

3.5 SSD vs. YOLO

Unlike YOLO, SSD does not divide the image into grids of random size. For every location of the

feature map, it predicts the offset of predefined anchor boxes (default boxes). Relative to the

20

corresponding cell, each box has a fixed size, proportion, and position. In a convolutional manner,

all the anchor boxes cover the entire feature map. Anchors of SSD are slightly different from the

anchors of YOLO. Because YOLO makes all the predictions from a single grid, and the size of

anchors used by YOLO ranges from dimensions of one grid cell to the dimensions of the entire

picture.

The anchors of SSD specialize its detector for distinct feasible viewpoints and dimensional ratios

of its target shapes, but not enough on the size of targets. The calculation for the anchors of SSD

uses a simple formula, while the anchors of YOLO are calculated by applying k-means clustering

on the training data [21] [15]. SSD doesn't use confidence score, but YOLO calculates it to show

the faith in predicted results. A unique background class is employed by SSD for this work. A

low value of confidence score in YOLO is equivalent to the predicted output of background class

in SSD. Both indicate that for the detector, the possibility of getting a target is null [18].

21

CHAPTER 4

PROPOSED APPROACH

In this chapter, we will explain the proposed approach used in object detection and recognition

using YOLO v3-Tiny model. The hardware requirements, software requirements and data set

used in training and testing of model is listed along with the description of detailed procedure

of implementation.

4.1 YOLO v3-Tiny

YOLO v3, with the decreased depth of the convolutional layer, is another version called YOLO

v3-Tiny. It was proposed by Joseph Redmon [10]. Therefore, the running speed is significantly

increased (approximately 442% faster than the former variants of YOLO), but detection

accuracy is reduced. Darknet-53 architecture of YOLO v3 employs several 1x1 convolution

layers along with 3x3 convolution layers for extracting features.

Fig.4.1: Main process of YOLO v3-Tiny [11]

22

4.2 Architecture of YOLO v3-Tiny

YOLO v3-Tiny uses pooling layer and reduces the figure for convolution layer. It predicts a

three-dimensional tensor that contains objectness score, bounding box, and class predictions at

two different scales. It divides a picture into S×S grid cells. For final detections, we will ignore

the bounding boxes for which the objectness score is not best. For extracting features,

convolution layers and max-pooling layers are utilized in the feed forward arrangement of

YOLO v3-Tiny. Prediction of bounding boxes occurs at two different feature map scales, which

are 13×13, and 26×26 merged with an upsampled 13×13 feature map.

Fig.4.2: Architecture of YOLO v3-Tiny [11]

23

Table 4.1: Performance comparison of YOLO with their Tiny versions[25]

Detector Number of

n-layers

Floating point

operations

FPS map value Used set of

data

YOLO v1 26.00 Not-given 45.00 63.50 VOC-data

YOLO v1-Tiny 9.00 Not-given 155.00 52.80 VOC-data

YOLO v2 32.00 62.95 40.00 48.20 COCO-data

YOLO v2-Tiny 16.00 05.42 244.00 23.60 COCO-data

YOLO v3 106.00 140.70 20.00 57.80 COCO-data

YOLO v3-Tiny 24.00 05.57 220.00 33.20 COCO-data

In Table 4.1, we can see that on different datasets, the Tiny versions of YOLO have

a lower value for map as compared to their original versions.

4.3 Implementation Details

Below in this section, the hardware requirements, software requirements and data set used in

training and testing of model is listed along with the description of detailed procedure of

implementation.

4.3.1 Hardware Requirements

The YOLO v3 and YOLO v3-Tiny models are implemented with the following hardware

requirements.

 Operating system used is windows 10 because it is fast and very easy to use.

 To execute program instruction very fast we are using Intel core i5 eighth-generation

quad-core CPU.

 When CPU doesn’t meet the requirement then we are using NVIDIA Geforce GTX

1050 GPU which is approx. ten times faster than CPUs.

 To run smoothly Minimum 8 gigabytes Size of RAM is required.

 Some files needs to be downloaded online, extremely high-speed internet is

compulsory.

24

4.3.2 Software Requirements

The YOLO v3 and YOLO v3-Tiny models are implemented with the following software

requirements.

 Anaconda Jupyter notebook is a very simple and excellent IDE used to run python codes.

 Open CV python is used to solve computer vision problems with complex numerical

operations.

 TensorFlow 2.0 was developed by Google to provide numerical computing, and it creates

models by data flow graphs.

 Python imaging library is used for opening, saving, and modifying any image related files.

 Numpy is used to provide support to high-level mathematical functions. It also supports

to solve multidimensional arrays and matrices.

 We have used the latest python language version to run the code.

4.3.3 Data Set Used

The Darknet 53 convolution neural-network is employed as a previously trained network. It is

trained earlier on the Imagenet dataset for classification. As training a model from scratch is much

more complicated, so we employed transfer learning on our model using VOC 2012 dataset for

localization of objects. VOC dataset is very popular for object detection, but it needs good internet

speed and better disk performance.

Table 4.2: Darknet-53 data set

Model Train test MAP Flops FPS CFG WEIGHTS

SSD300 COCO

train_val

Test_dev 41.2 - 46 - link

SSD500 COCO

train_val

Test_dev 46.5 - 19 - link

Yolov2

608*608

COCO

train_val

Test_dev 48.1 62.94 bn 40 cfg weights

25

Tiny Yolo COCO

train_val

Test_dev 23.7 5.41bn 244 cfg weights

SSD321 COCO

train_val

Test_dev 45.4 - 16 - link

SSD513 COCO

train_val

Test_dev 50.4 - 8 - link

YOLOv3-

320

COCO

train_val

Test_dev 51.5 38.97 bn 45 cfg weights

YOLOv3-

416

COCO

train_val

Test_dev 55.3 65.86 bn 35 cfg weights

YOLOv3-

608

COCO

train_val

Test_dev 57.9 140.69 bn 20 cfg weights

YOLOv3-

tiny

COCO

train_val

Test_dev 33.1 5.56 bn 220 cfg weights

4.3.4 Implementation Method

Below in this section, the steps of implementation of YOLO v3 and YOLO v3-Tiny models are

explained.

 We have taken input as preprocessed image.

 The output is in the form of bounding boxes, accuracy score percentage, and class label.

 During the training of model, ninety percent of data is applied for training, and the rest ten

percent is used for the validation of our model.

 We trained our model for localizing twenty classes that include person, dog, and car, etc.

 During batch normalization, the size of each batch is sixteen and requires approximately

twenty iterations to get a valid result.

 The duration of the period needed for each iteration is around ten minutes.

 Then the trained models of YOLO v3 and YOLO v3-Tiny are applied to the pictures taken

by us in our college campus to examine the execution time and accuracy (map value) of

the result obtained.

 Speed is calculated in terms of frame per second, which is the number of images processed

by the model in each second.

 Mean average precision is computed to estimate accuracy. After each iteration, precision

and recall value is calculated, and a curve is plotted between them.

26

 The area under this curve is an average precision of that iteration.

 At last, we will find the mean value of all obtained average precisions to get map value.

 We have observed that YOLO v3-Tiny is faster compared to YOLO v3, and therefore, it

is more effective in real time target localization and identification of class. However, its

accuracy decreases a bit in comparison to YOLO v3.

4.3.5 Steps of Implementation

1. Padding helps to add extra pixel to the corner of actual photo because due to passing

through convolutional layers, we can lose pixels and for computational efficiency we need

to use stride which traversed row and column to cover all locations.

2. Performs a batch normalization to improve speed and performance of network training. It

also normalize the input layer by rescaling and recentering.

def Conv2D(inputs, filters, kernel_size, data_format, strides=1):

 if strides > 1:

 inputs = fixed_padding(inputs, kernel_size, data_format)

 return tf.layers.Conv2D(filters=filters,

 kernel_size=kernel_size, strides=strides,

 padding=('same' if strides == 1 else 'valid'),

 use_bias=False, data_format=data_format)(inputs)

def BatchNormalization(inputs, data_format):

 return tf.layers.BatchNormalization(axis=1

 if data_format == 'channels_first'

 else 3,momentum=_BATCH_NORM_DECAY,

 epsilon=_BATCH_NORM_EPSILON,

 scale=True)(inputs)

27

3. Performs a max pooling which helps to reduce the spatial size of initial box representation.

4. Activation function leakyRELU() is used to provide values to the functions which tends

to zero, it also helps to improve the dying relu problem by increasing the range from

infinity to negative infinity.

5. Upsamples to out_shape using nearest neighbor interpolation which use inputs as

new_height and new_width where ‘channels_first’ defined as default data_format.

def MaxPooling2D(inputs, pool_size, strides, data_format):

 return tf.layers.MaxPooling2D(pool_size, strides, padding='same',

 data_format=data_format)(inputs)

def LeakyReLU(inputs):

 return tf.nn.leaky_relu(inputs, alpha=_LEAKY_RELU)

def upsample(inputs, out_shape, data_format):

if data_format == 'channels_first':

inputs = tf.transpose(inputs, [0, 2, 3, 1])

new_height = out_shape[3]

new_width = out_shape[2]

else:

new_height = out_shape[2]

new_width = out_shape[1]

inputs = tf.image.resize_nearest_neighbor(inputs,

 (new_height, new_width))

if data_format == 'channels_first':

inputs = tf.transpose(inputs, [0, 3, 1, 2])

return inputs

28

6. Computes top left and bottom right points of the boxes by providing the dimension of box

and axis value as -1.

7. We are importing required YOLO v3 files to set input_size and anchors values. The

required layers and weight files are loaded into memory to perform the module operations.

8. Creates a residual block for Darknet to provide conversion and batchNormalization by

increasing filters size to some fixed values.

def build_boxes(inputs):

center_x, center_y, width, height, confidence, classes = tf.split(inputs,

[1, 1, 1, 1, 1, -1], axis=-1)

top_left_x = center_x - width / 2

top_left_y = center_y - height / 2

bottom_right_x = center_x + width / 2

bottom_right_y = center_y + height / 2

return tf.concat([top_left_x, top_left_y, bottom_right_x, bottom_right_y,

confidence, classes], axis=-1)

import tensorflow as tf

from core.layers import Conv2D, BatchNormalization, LeakyReLU,

yolo_layer, upsample, build_boxes, non_max_suppression

_INPUT_SIZE = [416, 416]

_MAX_OUTPUT_SIZE = 20

_ANCHORS = [(10, 13), (16, 30), (33, 23),

(30, 61), (62, 45), (59, 119),

(116, 90), (156, 198), (373, 326)

def darknet53_residual_block(inputs, filters, data_format, strides=1):

shortcut = inputs

inputs=Conv2D(inputs,filters=filters,kernel_size=1,strides=strides,

data_format=data_format)

inputs = BatchNormalization(inputs, data_format=data_format)

inputs = LeakyReLU(inputs)

filters *= 2

29

9. Creates Darknet53 model for YOLO v3 whereas for each range strides has default value

2 but filters are getting change by current value multiplied by 2.

10. Creates convolution operations layer used after Darknet53 model for YOLO v3.

inputs=Conv2D(inputs,filters=filters,kernel_size=3,strides=strides,

data_format=data_format)

inputs = BatchNormalization(inputs, data_format=data_format)

inputs = LeakyReLU(inputs)

inputs += shortcut

return inputs

def darknet53(inputs, data_format):

inputs = Conv2D(inputs, filters=32, kernel_size=3,

data_format=data_format)

inputs = BatchNormalization(inputs, data_format=data_format)

inputs = LeakyReLU(inputs)

inputs=Conv2D(inputs, filters=64, kernel_size=3, strides=2,

data_format=data_format)

inputs = BatchNormalization(inputs, data_format=data_format)

inputs = LeakyReLU(inputs)

inputs = darknet53_residual_block(inputs, filters=32,

data_format=data_format)

inputs=Conv2D(inputs,filters=128,kernel_size=3,strides=2,

data_format=data_format)

inputs = BatchNormalization(inputs, data_format=data_format)
inputs = LeakyReLU(inputs)

def feature_pyramid_network(inputs, filters, data_format):

inputs = Conv2D(inputs, filters=filters, kernel_size=1,

data_format=data_format)

inputs = Conv2D(inputs, filters=filters, kernel_size=1,

data_format=data_format)

inputs = LeakyReLU(inputs)

inputs=Conv2D(inputs, filters=(filters * 2), kernel_size=3,

data_format=data_format)

inputs = BatchNormalization(inputs, data_format=data_format)

inputs = LeakyReLU(inputs)

30

11. YOLO v3 Model with parameters as number of class labels, input size of the model,

maximum number of boxes to be selected for each class, Threshold for the IOU, Threshold

for the confidence score.

12. Creates Darknet model for YOLO v3-tiny v3 whereas for each range kernel_size has

default value 3 but filters are started by number and getting change by current value

multiplied by the same value.

class YOLOv3(object):

def __init__(self, n_classes, iou_threshold, confidence_threshold):

self.n_classes = n_classes

self.input_size = _INPUT_SIZE

self.max_output_size = _MAX_OUTPUT_SIZE

self.iou_threshold = iou_threshold

self.confidence_threshold = confidence_threshold

self.data_format='channels_first'if tf.test.is_built_with_cuda()

else'channels_last'

self.scope = 'yolov3'

def darknet(inputs, data_format):

filters = 16

for _ in range(4):

inputs = Conv2D(inputs, filters, kernel_size=3,

data_format=data_format)

inputs = BatchNormalization(inputs, data_format=data_format)

inputs = LeakyReLU(inputs)

inputs=MaxPooling2D(inputs,pool_size=[2,2], strides=[2, 2],

data_format=data_format)

filters *= 2

inputs = Conv2D(inputs, filters=256, kernel_size=3,

data_format=data_format)

inputs = BatchNormalization(inputs, data_format=data_format)

inputs = LeakyReLU(inputs)

route = inputs

inputs = MaxPooling2D(inputs, pool_size=[2, 2], strides=[2, 2],

data_format = data_format)

31

13. Creates convolution operations layer by taking inputs, data_format as parameter to

perform operation for BatchNormalization and LeakyReLU used after Darknet YOLO v3-

tiny.

14. YOLO v3-tiny Model with parameters as number of class labels, input size of the model,

maximum number of boxes to be selected for each class, Threshold for the IOU, Threshold

for the confidence score.

15. Loads kernel, gamma, beta, mean, variance for Batch Normalization by creating a

load_batch_norm method which takes five parameters by returning assign_ops and offset.

def feature_pyramid_network(inputs, data_format):

inputs = Conv2D(inputs, filters=256, kernel_size=1,

data_format=data_format)

inputs = BatchNormalization(inputs, data_format=data_format)

inputs = LeakyReLU(inputs)

route = inputs

inputs = Conv2D(inputs, filters=512, kernel_size=3,

data_format=data_format)

inputs = BatchNormalization(inputs, data_format=data_format)

inputs = LeakyReLU(inputs)

return inputs, route

class YOLOv3_tiny(object):

def __init__(self, n_classes, iou_threshold, confidence_threshold):

 self.n_classes = n_classes

 self.input_size = _INPUT_SIZE

 self.max_output_size = _MAX_OUTPUT_SIZE

 self.iou_threshold = iou_threshold

 self.confidence_threshold = confidence_threshold

 self.data_format='channels_first'if

 tf.test.is_built_with_cuda()

 else'channels_last'

 self.scope = 'yolov3_tiny'

32

16. In this phase at first, for range value 52 we are loading official pretrained YOLO v3

weights & weight for darknet part and in second iteration for each convolution layer with

batch normalization & Loading weights.

17. In this phase at first, for range value 52 we are loading official pretrained YOLO v3-tiny

weights & weight for darknet part and in second iteration for each convolution layer with

batch normalization & Loading weights. During batch normalization, the size of each

batch is sixteen and requires approximately twenty iterations to get a valid result. The

duration of the period needed for each iteration is around ten minutes.

def load_batch_norm(idx, variables, weights, assign_ops, offset):

kernel = variables[idx]

gamma, beta, mean, variance = variables[idx + 1:idx + 5]

batch_norm_vars = [beta, gamma, mean, variance]

for var in batch_norm_vars:

shape = var.shape.as_list()

num_params = np.prod(shape)

var_weights = weights[offset:offset + num_params].reshape(shape)

offset += num_params

assign_ops.append(tf.assign(var, var_weights))

shape = kernel.shape.as_list()

num_params = np.prod(shape)

var_weights=weights[offset:offset+num_params].reshape((shape[3],

shape[2], shape[0], shape[1]))

var_weights = np.transpose(var_weights, (2, 3, 1, 0))

offset += num_params

assign_ops.append(tf.assign(kernel, var_weights))

return assign_ops, offset

for i in range(52):

idx = 5 * i

assign_ops, offset = load_batch_norm(idx, variables, weights,

assign_ops, offset)

ranges = [range(0, 6), range(6, 13), range(13, 20)]

unnormalized = [6, 13, 20]

for j in range(3):

for i in ranges[j]:

idx = 52 * 5 + 5 * i + j * 2 assign_ops,
offset = load_batch_norm(idx, variables, weights, assign_ops, offset)

33

18. Parameter tiny is passed to main method which will further decide to call yolov3_tiny or

yolov3 method to perform operations by loading model variables, weight to train the

model. During the training of model, ninety percent of data is applied for training, and the

rest ten percent is used for the validation of our model. We trained our model for localizing

twenty classes that include person, dog, and car, etc.

for i in range(7):

idx = 5 * i

assign_ops, offset = load_batch_norm(idx, variables, weights,

assign_ops, offset)

ranges = [range(0, 2), range(2, 4)]

unnormalized = [2, 4]

for j in range(2):

for i in ranges[j]:

idx = 7 * 5 + 5 * i + j * 2 assign_ops,

offset = load_batch_norm(idx, variables, weights, assign_ops, offset)

bias = variables[7 * 5 + unnormalized[j] * 5 + j * 2 + 1]

shape = bias.shape.as_list()

num_params = np.prod(shape)

var_weights = weights[offset:offset + num_params].reshape(shape)

def main(tiny):

if tiny:

model = YOLOv3_tiny(n_classes=80, iou_threshold=0.5,

confidence_threshold=0.5)

else:

model = YOLOv3(n_classes=80, iou_threshold=0.5,

confidence_threshold=0.5)

inputs = tf.placeholder(tf.float32, [1, 416, 416, 3])

model(inputs)

model_vars = tf.global_variables(scope=model.scope)

if tiny:

assign_ops = load_weights_tiny(model_vars, './weights/yolov3-

tiny.weights')

else:

assign_ops = load_weights(model_vars, './weights/yolov3.weights')

34

CHAPTER 5

RESULTS AND DISCUSSION

In this chapter, the speed and accuracy of some object detectors is analyzed and compared for

different size of objects. At first, the experimental results of YOLO v3 and YOLO v3-Tiny

models are demonstrated clearly. After that we will compare the performance of YOLO v3 and

YOLO v3-Tiny modes with other detectors described earlier.

5.1 Analysis of various Object Detectors

It is tough to make a clear comparison between different object detection methods. So, we can't

give a straight decision on the best model. For many real-life applications, we make choices to

create an equilibrium of accuracy with speed. Therefore, we need to be aware of other

characteristics that have a significant impact on performance. For example, matching strategy

and IOU threshold, ratio of positive anchor and negative anchor, training dataset, utilization of

varying scale and cropped pictures for training, location loss function, pace of learning, and

learning rate decay etc.

Fig.5.1: Speed vs. Accuracy for object detection methods

35

We have thoroughly examined the characteristics of three procedures for object detection,

which are faster RCNN, YOLO v3, and SSD. If the requirement is accuracy (excellent quality

of correctness), then faster RCNN is the best as it is much accurate compared to SSD and

YOLO v3. But if accuracy is not the primary concern, we want super-fast speed, YOLO v3

takes less time compared to SSD and faster RCNN. But if at the same time requirement is of

excellent accuracy and less running time, then SSD is a more favorable recommendation, as its

speed is better than faster RCNN, and its accuracy is better compared to YOLO v3.

Fig.5.2: Accuracy comparison for different sizes of target objects

The chart given above in Fig.5.2 represents the faster RCNN, YOLO, and SSD performance

on targets of distinct sizes. In accuracy comparison for the big targets, SSD performs alike

faster RCNN. But as the object size decreases, the gap increases.

36

5.2 Demonstration of Results

Fig.5.3: Experimental result-1 of YOLO v3 and YOLO v3-Tiny

Fig.5.4: Experimental result-2 of YOLO v3 and YOLO v3-Tiny

37

Fig.5.5: Experimental result-3 of YOLO v3 and YOLO v3-Tiny

Fig.5.6: Experimental result-4 of YOLO v3 and YOLO v3-Tiny

38

Fig.5.7: Experimental result-5 of YOLO v3 and YOLO v3-Tiny

Fig.5.8: Experimental result-6 of YOLO v3 and YOLO v3-Tiny

39

5.3 Comparison of YOLO Algorithms

YOLO v3-Tiny is a lightweight variant of YOLO v3, which takes less running time and less

accuracy when examined with YOLO v3. In Fig.5.9, we compared the accuracy of different

versions of YOLO algorithms for given image pixels.

Fig.5.9: Accuracy comparison of YOLO algorithms

Fig.5.10: Accuracy and speed comparison of YOLO with faster RCNN

40

In Fig.5.10, the accuracy and speed performance of YOLO algorithms is compared with faster

RCNN [27]. As per the result, we can say that YOLO v3 takes less time compared to Faster R-

CNN, and YOLO v3-tiny is faster than YOLO v3.

Fig.5.11: Speed Comparison of YOLO v3 vs. YOLO v3-Tiny

The above graph in Fig.5.11 shows a comparison of the running time of YOLO v3 with YOLO

v3-Tiny for different dimensions of images. We have observed that YOLO v3-Tiny is faster

compared to YOLO v3, and therefore, it is more effective in real time target localization and

identification of class. However, its accuracy decreases a bit in comparison to YOLO v3.

41

5.4 Conclusion and Future Scope

To identify and localize objects, there exist many methods with a trade-off in speed performance

and accuracy of result. But yet we can't say any single algorithm is best over others. One can

always select the method that suits the requirement at best. In a short period, object detection

applications got much popularity and still a lot to cover in this area because of its vast scope of

research. This project presents the comparison of various algorithms to identify and localize

objects based on accuracy, time, and parameter values with varying sizes of the input image. We

have identified a new methodology of single stage model for improving speed without sacrificing

much accuracy. The comparison results show that YOLO v3-Tiny increases the speed of object

detection while ensures the accuracy of the result. We can also extend object localization and

recognition from static pictures to a video containing the dynamic sequence of images. We are

planning to increase the accuracy of the localization of small targets in the future.

42

CHAPTER 6

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E.Hinton, “ImageNet Classification with Deep Convolutional

Neural Networks,” NIPS, 2012, doi: 10.1201/9781420010749.

[2] R. L. Galvez, A. A. Bandala, E. P. Dadios, R. R. P. Vicerra, and J. M. Z. Maningo, “Object Detection

Using Convolutional Neural Networks,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON,

vol. 2018October, no. October, pp. 2023–2027, 2019, doi: 10.1109/TENCON.2018.8650517.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object

detection and semantic segmentation,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

pp. 580–587, 2014, doi: 10.1109/CVPR.2014.81.

[4] R. Girshick, “Fast R-CNN,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2015 International Conference

on Computer Vision, ICCV 2015, pp. 1440–1448, 2015, doi: 10.1109/ICCV.2015.169.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards RealTime Object Detection with

Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149,

2017, doi: 10.1109/TPAMI.2016.2577031.

[6] P. Dong and W. Wang, “Better region proposals for pedestrian detection with R-CNN,” 30th Anniv.

Vis. Commun. Image Process., pp. 3–6, 2016, doi: 10.1109/VCIP.2016.7805452.

[7] W. Liu, D. Anguelov, D. Erhan, and C. Szegedy, “SSD: Single Shot MultiBox Detector,” ECCV,

vol. 1, pp. 21–37, 2016, doi: 10.1007/9783-319-46448-0.

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real- time object

detection,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–

788, 2016, doi: 10.1109/CVPR.2016.91.

[9] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” 30th IEEE Conf. Comput. Vis.

Pattern Recognition, CVPR, vol. 2017-Janua, pp. 6517–6525, 2017, doi: 10.1109/CVPR.2017.690.

[10] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv Prepr., 2018.

[11] S. Ding, F. Long, H. Fan, L. Liu, and Y. Wang, “A novel YOLOv3-tiny network for unmanned

airship obstacle detection,” IEEE 8th Data Driven Control Learn. Syst. Conf. DDCLS, pp. 277–281,

2019, doi: 10.1109/DDCLS.2019.8908875.

[12] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” IEEE CVPR,

vol. 1, pp. 886–893, 2005, doi: 10.1109/CVPR.2005.177.

43

[13] C. Szegedy, W. Liu, Y. Jia, and P. Sermanet, “Going Deeper with Convolutions,” CVPR, 2015, doi:

10.1108/978-1-78973-723320191012.

[14] J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers, and A. W. M. Smeulders, “Selective search for

object recognition,” Int. J. Comput. Vis., vol. 104, no. 2, pp. 154–171, 2013, doi: 10.1007/s11263-

013-06205.

[15] Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, “Object Detection with Deep Learning: A Review,”

IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 11, pp. 3212–3232, 2019, doi:

10.1109/TNNLS.2018.2876865.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep Convolutional Networks for

Visual Recognition,” ECCV, pp. 346–361, 2014, doi: 10.1023/B:KICA.0000038074.96200.69.

[17] R. Nabati and H. Qi, “RRPN : RADAR REGION PROPOSAL NETWORK FOR OBJECT

DETECTION IN AUTONOMOUS VEHICLES,” IEEE Int. Conf. Image Process., pp. 3093–3097,

2019.

[18] L. Jiao et al., “A Survey of Deep Learning-Based Object Detection,” IEEE Access, vol. 7, pp.

128837–128868, 2019, doi: 10.1109/access.2019.2939201.

[19] D. Wang, C. Li, S. Wen, X. Chang, S. Nepal, and Y. Xiang, “Daedalus: Breaking Non-Maximum

Suppression in Object Detection via Adversarial Examples,” arXiv Prepr., 2019.

[20] C. Ning, H. Zhou, Y. Song, and J. Tang, “Inception Single Shot MultiBox Detector for object

detection,” IEEE Int. Conf. Multimed. Expo Work. ICMEW, no. July, pp. 549–554, 2017, doi:

10.1109/ICMEW.2017.8026312.

[21] Z. Chen, R. Khemmar, B. Decoux, A. Atahouet, and J. Y. Ertaud, “Real time object detection,

tracking, and distance and motion estimation based on deep learning: Application to smart mobility,”

8th Int. Conf. Emerg. Secur. Technol. EST, pp. 1–6, 2019, doi: 10.1109/EST.2019.8806222.

[22] D. Xiao, F. Shan, Z. Li, B. T. Le, X. Liu, and X. Li, “A Target Detection Model Based on Improved

Tiny-Yolov3 Under the Environment of Mining Truck,” IEEE Access, vol. 7, pp. 123757–123764,

2019, doi: 10.1109/access.2019.2928603.

[23] Q. C. Mao, H. M. Sun, Y. B. Liu, and R. S. Jia, “Mini-YOLOv3: RealTime Object Detector for

Embedded Applications,” IEEE Access, vol. 7, pp. 133529–133538, 2019, doi:

10.1109/ACCESS.2019.2941547.

[24] W. Fang, L. Wang, and P. Ren, “Tinier-YOLO: A Real-time Object Detection Method for

Constrained Environments,” IEEE Access, vol. 8, pp. 1935–1944, 2019,

doi10.1109/ACCESS.2019.2961959.

[25] R. Huang, J. Pedoeem, and C. Chen, “YOLO-LITE: A Real-Time Object Detection Algorithm

Optimized for Non-GPU Computers,” IEEE Int. Conf. Big Data, Big Data, pp. 2503–2510, 2019,

doi: 10.1109/BigData.2018.8621865.

[26] J. Huang et al., “Speed/accuracy trade-offs for modern convolutional object detectors,” 30th IEEE

44

Conf. Comput. Vis. Pattern Recognition, CVPR, vol. 2017-Janua, pp. 3296–3305, 2017, doi:

10.1109/CVPR.2017.351.

[27] B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni, “Car Detection using Unmanned

Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3,” 1st Int. Conf. Unmanned Veh.

Syst., pp. 1–6, 2019, doi: 10.1109/UVS.2019.8658300.

45

CHAPTER 7

PUBLICATION

[1] Pranav Adarsh, Pratibha Rathi, Dr. Manoj Kumar. "YOLO v3-Tiny: Object Detection and

Recognition using one stage improved model", in Proceedings of the 6th International Conference

on Advanced Computing and Communication Systems (ICACCS), IEEE, 2020.

Page No. 687-694.

978-1-7281-5197-7/20/$31.00 ©2020 IEEE

Object detection has seen many changes in algorithms to improve performance both on speed and

accuracy. By the continuous effort of so many researchers, deep learning algorithms are growing

rapidly with an improved object detection performance. Various popular applications like

pedestrian detection, medical imaging, robotics, self-driving cars, face detection, etc. reduces the

efforts of humans in many areas. Due to the vast field and various state-of-the-art algorithms, it is

a tedious task to cover all at once. This paper presents the fundamental overview of object

detection methods by including two classes of object detectors. In two stage detector covered

algorithms are RCNN, Fast RCNN, and Faster RCNN, whereas in one stage detector YOLO v1,

v2, v3, and SSD are covered. Two stage detectors focus more on accuracy, whereas the primary

concern of one stage detectors is speed. We will explain an improved YOLO version called YOLO

v3-Tiny, and then its comparison with previous methods for detection and recognition of object is

described graphically.

