
DE-NOISING OF SMS TEXT USING TERNARY TREE FOR

FAQ RETRIEVAL

A DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE & ENGINEERING

Submitted by:

VIPRA BHATT

2K18/CSE/20

Under the supervision of

Dr. Manoj Kumar

(Associate Professor)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

JUNE, 2020

i

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi - 110042

CANDIDATE’S DECLARATION

I, Vipra Bhatt, Roll No. 2K18/CSE/20 student of M. Tech (Computer Science and

Engineering), hereby declare that the project Dissertation titled “De-noising of

SMS Text using Ternary Tree for FAQ Retrieval” which is submitted by me to

the Department of Computer Science & Engineering, Delhi Technological

University, Delhi in partial fulfillment of the requirement for the award of the

degree of Master of Technology, is original and not copied from any source

without proper citation. This work has not previously formed the basis for the

award of and Degree, Diploma Associateship, Fellowship or other similar title or

recognition.

Place: Delhi Vipra Bhatt

Date: 2k18/CSE/20

ii

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi - 110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “De-noising of SMS Text

using Ternary Tree for FAQ Retrieval” which is submitted by Vipra Bhatt,

2K18/CSE/20 Department of Computer Science & Engineering, Delhi

Technological University, Delhi in partial fulfillment of the requirement for the

award of the degree of Master of Technology, is a record of the project work carried

out by the students under my supervision. To the best of my knowledge, this work

has not been submitted in part or full for any Degree or Diploma to this University

or elsewhere.

Place: Delhi Dr. Manoj Kumar

Date: Associate Professor

 Head (Computer Center)

 Department of CSE

iii

ACKNOWLEDGMENT

The success of this project requires the assistance and input of numerous people

and the organization. I am grateful to everyone who helped in shaping the result

of the project.

I express my sincere thanks to Dr. Manoj Kumar, my project guide, for providing

me with the opportunity to undertake this project under his guidance. His constant

support and encouragement have made me realize that it is the process of learning

which weighs more than the end result. I am highly indebted to the panel faculties

during all the progress evaluations for their guidance, constant supervision and for

motivating me to complete my work. They helped me throughout with new ideas,

provided information necessary and pushed me to complete the work.

I also thank all my fellow students and my family for their continued support.

VIPRA BHATT

2K18/CSE/20

iv

ABSTRACT

Everyone in today’s world uses mobile and technology and can get any

information sitting at home within no time. A lot of information is available over the

web, which is easily accessible to us. But the low-cost mobile devices don’t have

access to the internet. Every device ranging from inexpensive feature phone to the

smartphones have the facility of Short messaging Service (SMS). So, instead of using

the internet facility, most of the people prefer to use the facility of SMS to access the

information. Due to the limited number of characters in SMS, we need to remove a

few characters, and thus, these texts become noisy. There are many other intentional

and non-intentional errors that add noise to the SMS. Intentional errors include few

intentional dropping of characters, phonetic substitutions, abbreviations, etc, and

non-intentional errors include typing error and errors due to the small screen,

damaged display, multi-tap keyboard, QWERTY keyboard, etc. Efficient de-noising

of such texts is necessary to remove noise for the correct information gain. A model

is developed for de-noising the SMS text by calculating prefix, suffix, and similarity

score to find the best matching word corresponding to the noisy term. Prefix and

suffix scores are calculated using Ternary Tree, and the similarity score uses the

Longest Common Subsequence to get the correct English word for the noisy SMS

word. The overall score is calculated using the above three scores. The ternary tree

helps in reducing the memory space as compared to the previous models using trie

for de-noising the text. Few noisy words are generated to test the model, and the

results are compared with some previous models. The proposed novel method

outperforms all the previous approaches.

v

CONTENTS

Candidate’s Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Contents v

List of Figures viii

List of Tables ix

List of Abbreviations x

CHAPTER 1 INTRODUCTION 1

1.1 Natural language processing 1

1.2 Information Retrieval 1

1.3 SMS based FAQ retrieval 2

1.4 Types of SMS based FAQ retrieval 4

1.5 Types of noise in SMS 5

CHAPTER 2 PRIOR WORK 7

CHAPTER 3 TERMINOLOGIES USED 12

vi

3.1 Ternary Search Tree 13

3.2 Trie data structure 13

3.3 Longest common Subsequence 14

3.4 Edit distance 15

CHAPTER 4 PROPOSED WORK 16

4.1 Problem statement 16

4.2 Proposed solution 16

4.2.1 Prefix score 17

4.2.2 Suffix score 17

4.2.3 Similarity score 17

4.2.4 Overall score 18

4.3 Summary of proposed solution 19

4.4 Flow chart of proposed model 21

CHAPTER 5 WORKING AND ANALYSIS 23

5.1 Prefix ternary tree 23

5.2 Suffix ternary tree 24

5.3 Similarity score 25

5.4 Overall score 26

vii

5.5 Agarwal’s model and Kothari’s model 26

CHAPTER 6 EXPERIMENTS AND RESULTS 29

6.1 Parameters discussion 30

6.2 Ranked list retrieval 31

6.3 MRR and Accuracy 34

CHAPTER 7 CONCLUSION AND FUTURE SCOPE 35

REFERENCES 37

LIST OF PUBLICATIONS 39

viii

LIST OF FIGURES

1.1 The basic block of Information Retrieval System 2

1.2 Retrieval of FAQ based on monolingual 4

1.3 Retrieval of FAQ based on cross lingual 4

1.4 Retrieval of FAQ based on multilingual 4

3.1. Distribution of words starting from character “b” 12

4.1 Diagrammatic Representation of Overall Score 19

4.2 Calculation of Similarity Score 21

4.2 Working of the proposed model 22

5.1 Top 7 retrievals for prefix score using the proposed model 24

5.2 Top 7 retrievals for suffix score using the proposed model 25

5.3 Top 7 retrievals for similarity score using the proposed model 25

5.4 Final top 7 retrievals using the proposed model 26

5.5 Top 7 retrievals for prefix score using the Agarwal’s model 27

5.6 Top 7 retrievals for suffix score using the Agarwal’s model 27

5.7 Top 7 retrievals for similarity score using the Agarwal’s model 27

5.8 Final top 7 retrievals using Agarwal’s model 28

5.9 Final top 7 retrievals using Kothari’s model 28

6.1 Mean reciprocal rank and accuracy of different models 34

ix

LIST OF TABLES

1.1 SMS noise classification 6

3.1 Time Complexities of TST 13

3.2 Time Complexities of Trie 14

6.1 Parameter w1 study 30

6.2 Parameter w2 study 30

6.3 Parameter w3 study 30

6.4 Top seven words for noisy SMS word “thur” 31

6.5 Top seven words for noisy SMS word “hxgn” 31

6.6 Top seven words for noisy SMS word “rmv” 32

6.7 Top seven words for noisy SMS word “dfusion” 32

6.8 Top seven words for noisy SMS word “sychrst” 32

6.9 Top seven words for noisy SMS word “decem” 33

x

LIST OF ABBREVIATIONS

1. NLP: Natural Language Processing

2. IR: Information Retrieval

3. SMS: Short Messaging Services

4. FAQ: Frequently Asked Questions

5. Q-A: Question Answering

6. WED: Weighted Edit Distance

7. TST: Ternary Search Tree

8. LCS: Longest Common Subsequence

9. ED: Edit Distance

10. MRR: Mean Reciprocal Rank

1

CHAPTER 1

INTRODUCTION

1.1 NATURAL LANGUAGE PROCESSING

Humans can interact with each other with their natural language. They can speak,

transfer their ideas, and understand each other's opinions, but the machine cannot do so.

The machine systematically needs instructions to work. We need to make the computer

understand the natural language so that humans and machines can interact with each

other. Natural language processing helps in achieving such tasks.

 Natural Language Processing (NLP) is the branch of Computer Science or

Artificial Intelligence that makes humans and machines interact with each other. It

involves an interaction between natural language and machine language. It trains the

computer or device to interact with the human language such as speech or text. It makes

the machine read, understand, and generate meaning for human language. Natural

language processing involves speech recognition, understanding, and generation of

natural language.

1.2 INFORMATION RETRIEVAL

Information retrieval (IR) is the process of storing and accessing the information

from the database. The goal is to find the document from the database according to the

user's needs. The user asks the query; the most relevant answer is seen from the database

and is returned to the user. Today, with the advancement in technology and the easy

accessibility to the internet, we can quickly retrieve the information. Sometimes, the

retrieved information might not be according to the user's requirement. The aim is to get

2

the correct information as per the need. Relevant feedback is provided so that the user

can improve his/her query and get the best answer.

Figure 1.1. The basic block of Information Retrieval System

1.3 SMS BASED FAQ RETRIEVAL

With the increase in mobile technology, everyone is using mobile phones

nowadays. Mobile phones have become the most widely used device due to their low

cost, portability, and easy accessibility. A lot of information is available over the internet

and is freely available to us. But in our country, not every individual uses the internet

facility as most of the population doesn’t know how to use the smartphones, and they use

the lost cost feature phone. The facility of SMS is available on every mobile phone. So,

everyone can use SMS for accessing information from the frequently asked questions

(FAQs) in various fields like agriculture, health, travel, railway reservation, insurance,

banking, etc. Using SMS for information retrieval saves time and money. It prevents us

from the hassle of going to a particular place and also to avoid waiting in a queue. Some

businesses also provide the facility of queries in natural language.

Document

Index

The User

Retrieval System

Query

Operations
Indexer

Document

Database

3

But, the number of characters is limited in SMS, i.e., 160 per SMS, so there is a

need to shorten the word while writing the SMS query, which makes the SMS noisy.

Also, there are many other factors such as the small screen, damaged display, multi-tap

keyboard in low-cost mobile phones where the same key is pressed repeatedly to type a

character, QWERTY keyboard, which makes SMS query noisy. Such noisy texts are the

combination of unintentional errors and a few intentional dropping of characters, phonetic

substitutions, and abbreviations.

In SMS, we have to deal with many non-English words and ungrammatical

sentences. Noisy SMS refers to the words misspelled, characters removed, abbreviated,

transliterated, or truncated and are not present in the actual dictionary. Information access

via SMS is based on :

 Human Intervention:

In the human intervention based method, human experts are required to interpret

the SMS query the user has asked and return the answer to the user for the

question.

 Automatic information retrieval system:

An automatic system is developed where the system automatically removes the

noise from the SMS and get the correct answer from the FAQ database. FAQ

based retrieval system consists of the given set of questions and answers, and the

aim is to get the question that matches the most, i.e., the question with the highest

score and returns its corresponding answer.

4

1.4 TYPES OF SMS BASED FAQ RETRIEVAL

 SMS based FAQ retrieval is divided into three subtasks:

 Monolingual FAQ retrieval:

 In Monolingual subtask, SMS and the FAQ set are written in the one language,

say L1. In this, find the question that matches the most from the FAQ corpus of

the same language.

Figure 1.2. Retrieval of FAQ based on monolingual [14]

 Cross-lingual FAQ retrieval:

 In the cross-lingual subtask [15], the language of the FAQ database and SMS

queries are different. In this, find the most similar questions from FAQ corpus of

one language (L2) while the incoming query is written in another language (L1).

Figure 1.3. Retrieval of FAQ based on cross-lingual [14]

 Multilingual FAQ retrieval:

 In a multilingual subtask, the SMS queries are written in different languages and

are matched with the FAQ database from a different language. However, the

question and its corresponding answer to FAQ should be in the same language.

Figure 1.4. Retrieval of FAQ based on multilingual [14]

SMS Language

(L1)

FAQ Language

(L2)

SMS Language

(L)

FAQ Language

(L)

SMS Language

(L1/L2/L3)

FAQ Language

(L1/L2/L3)

5

1.5 TYPES OF NOISE IN SMS

 Different types of noise [1, 2] in SMS text includes:

 Deletion of Characters:

 Deletion of vowels and repeated characters to make the word shorter. Such as

“rmv” for “remove” or “schl” for “school”.

 Truncation:

 Truncation of words is done to reduce the number of characters in the word. Such

as “sat” for “saturday”, “prep” for “preparation” and “approx” for “approximate”.

 Abbreviations:

 The use of abbreviations is widespread amongst youngsters. Such as “IDK” for

“I Don’t Know”, “BTW” for “By The Way”, and “FYI” for “For Your

Information”.

 Phonetic substitution:

 Their shorter substitute replaces the same sounding words. For example, “r” for

“are” and “ur” for “your” or “you are”.

 Dialects and informal use:

 Multiple words are combined to a single word such as “gotta” for “have got to”

or “gimme” for “give me”.

 Deleting articles and pronouns:

 Deleting articles and pronouns from the sentences to reduce its length. Such as

“gng schl” for “I am going to school”.

Other types of noise include grammatical mistakes, spelling errors, mixing of

words of two languages such as the use of interjections (“ooch”, “ooh,” “huh”) and

emoticons (,), and many others are an example of noise in texts. The use of Hinglish

while speaking and writing documents is another type of noise. For example, “Hungry

6

Kya?” - the tagline of Domino’s pizza is the combination of an English and a Hindi word.

These words may look normal for humans to understand but are difficult for a computer

or an automated system to follow. So, there is a need to de-noise them efficiently. A single

English word “tomorrow” [13] can be represented in many versions - tomorro, tomoro,

tomorrrow, tmrrw and tomrw, 2morrow, 2mrow, 2morow, 2moro, 2morro, 2mrrw, 2mrw.

Various measures have been taken to remove noise for the SMS effectively for the correct

information access.

Table 1.1. SMS noise classification

SMS Noise
User Improvisation Deletion of words

Deletion of characters

Truncation

Repeated character removal

Abbreviations

Phonetic Substitution

Typographical
Errors

Input Device Multitap Keyboard

Qwerty keyboard

Touch Screen

Typing Errors

7

CHAPTER 2

PRIOR WORK

A significant amount of work [3-10] has been done in the field of de-noising SMS

queries. The text written in SMS language is generally misspelled, transliterated, have

grammatical mistakes, abbreviations, etc. Many models have been proposed to automate

the SMS based FAQ retrieval system. The proposed model mainly focuses on the

algorithm used in the paper by Agarwal et al. [3] to de-noise the SMS text and uses the

ternary tree to calculate matching prefix and suffix length. Noise is efficiently removed

from the SMS words by finding the top seven matching candidates for the noisy word.

The overall score to calculate the matching depends on matching prefix length and

matching suffix length and similarity score between the SMS words and the English

dictionary words. Based on the total score, a list of the top seven best matching candidates

are generated for each of the noisy tokens.

SMS based interface for FAQ retrieval

Kothari et al. [4] gave an FAQ based Q-A system for the SMS interface and were

the first to develop a system to handle this problem. They used the combinatorial search

approach and handled semantic variation along with the similarity using the synonym

dictionary. A search set comprises of the combination of all token variation in the

dictionary in the noisy queries. Semantic variation refers to the words that are lexically

different (different in words) but semantically similar (meaning is the same). They are

the synonyms of the given words. For example, words such as “quick”, “rapid”, “speedy”

are all semantic variations of “fast”. Other examples include “nation” for “country”,

“originated” for “started”.

They use two algorithms, namely, naïve and prune algorithms, to generate a list

of the candidate terms for the noisy tokens. Both the algorithm works the same but differ

8

in complexities. The proposed model involves the use of a dictionary, a list of SMS token

variants, and noise removal. No training data on SMS normalization is required for this

model. They formulated a dictionary from all the words appearing in the FAQ set and

then define similarity for all words of the SMS query to the dictionary terms. The

similarity is determined by the longest common subsequence ratio to the edit distance

between noisy SMS token (s) and the dictionary word (t) and is given as:

 𝛼(𝑡, 𝑠) = {
𝐿𝐶𝑆𝑅𝑎𝑡𝑖𝑜(𝑡,𝑠)

𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑀𝑆 (𝑡,𝑠)
 , 𝑖𝑓 𝑡[0] == 𝑠[0]

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.1)

 Where LCS ratio is the ratio of the length of LCS to the length of the dictionary

term and edit distance is the number of operations (substitutions, deletions, and insertions)

required to change one string to another. The word with the highest score is taken as the

best candidate for the noisy word using the similarity score.

Improving accuracy of SMS based FAQ retrieval system

 The paper given by D. Shaikh et al. [6] uses the same method in [7] to calculate

the similarity measure. They make the additional change in the scoring function from [7],

adding length score and proximity score along with the similarity score. The FAQ database

is generated by combining many datasets from different domains such as Health, Bank,

Agriculture, Railway reservation, Insurance, Tourism, etc. The SMS and FAQ are matched

based on the value of the three scores: the similarity score, the proximity score, and the

length score. They give their model for monolingual English and monolingual Hindi tasks

and achieved excellent results. The similarity measure remains the same as in [7]. Methods

of list creation and candidate set generation remain the same as in [7].

 They experimented in four ways (considering the similarity score in all of them):

1). The only Similarity score for matching.

2). Similarity and Proximity score are considered.

3). Similarity score and Length score are taken.

4). All three (similarity, length, and proximity) scores are taken. Best accuracy is

achieved while considering all three of them.

9

SMS based FAQ retrieval

The method used by Shivhre et al. [8] is for finding the ranked list of words in the

same as defined in [7]. They use the weight function to find the similarity between the

dictionary terms and the noisy SMS token. The weight function between the SMS token

and the dictionary term uses the LCS ratio between them, the similarity ratio, the inverse

document frequency of the word in the dictionary, and the Levenshtein distance between

the two. The similarity ratio is twice the number of common characters between SMS and

dictionary terms to the number of characters in both. These methods, combined, provide

the measure to find the weight for all dictionary terms for the noisy SMS token. Weight

of the dictionary term t w.r.t. SMS token s is given by:

 𝑊𝑒𝑖𝑔ℎ𝑡(𝑡, 𝑠) =
𝐿𝐶𝑆𝑅(𝑡,𝑠) ∗ 𝑆𝑀𝑅𝑎𝑡𝑖𝑜(𝑡,𝑠) ∗ 𝐼𝐷𝐹(𝑡)

𝐿𝑒𝑣𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡,𝑠)
 (2.2)

Weighted edit distance based FAQ retrieval using noisy queries

 S. Mhaisale et al. [9] use the weighted edit distance (WED) to find the similarity

between the SMS and the dictionary word instead of constant edit distance. Instead of

giving equal weights to insertion, deletion, and substitution as in constant edit distance,

they use normalization of the query, then the scoring model (corpus-based), to get the

relevant FAQ question list. Instead of giving equal importance to each of the string editing

operations (substitutions, deletions, and insertions), they provide relative importance to

them. The emphasis on each one of them is given in decreasing order as:

Substitutions >Insertions > Deletions

 Substitution of words such as “you” for SMS token “u,” “office” for “ofc,” etc. are

more common than the insertion of “are,” “am,” “is.” The use of words such as “huh”,

“ahem” is sporadic. So, the deletion of words is the least frequent operation to be

performed. Character insertion is more than character deletion. Also, consonant insertion

is less than vowel insertion as vowels are generally removed from SMS token. At the end,

the insertion of character is more frequent as truncation is done for the end of the word.

So, lower cost is assigned to more frequent edit operations. Better exactness is obtained in

10

this model than a model in [4]. The weighted edit distance between SMS token (s) and the

dictionary term (t) is given as:

 𝑊𝐸𝐷(𝑡, 𝑠) = 0.3 ∗ 𝑥1 + 0.5 ∗ 𝑥2 + 0.3 ∗ 𝑥3 + 0.5 ∗ 𝑥4 + 2.0 ∗ 𝑥5 (2.3)

Where x1, x2, x3, x4, x5 denotes the number of vowel insertions, consonant

insertions, insertions at the end of token, vowel substitutions, and deletions, respectively.

The similarity in their approach was based on inverse document frequency, LCS ratio,

and the weighted edit distance of the dictionary term t and noisy term s and it is given as:

 𝑆𝑖𝑚(𝑡, 𝑠) =
𝐼𝐷𝐹(𝑡) ∗ 𝐿𝐶𝑆𝑅𝑎𝑡𝑖𝑜(𝑡,𝑠)

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡,𝑠)
 (2.4)

Efficiently denoising SMS text for FAQ retrieval

In the approach [4], there is a need to look at the entire dictionary to get the list of

variants for SMS tokens. To improve the efficiency of the dictionary lookup, R. Batra et

al. [10] limit the search space, i.e., match only those words in the dictionary whose length

is higher than or is equal to the length of SMS token as a user don’t type extra characters

than the original word. Example, users don’t type “loooong” for “long”. But sometimes

users may commit typos and type additional characters unknowingly, so the relaxation of

2 is provided to the user, i.e., words are taken from the dictionary if it satisfies the

following condition:

 𝐿𝐶𝑆 (𝑠, 𝑡) ≥ 𝑙𝑒𝑛𝑔𝑡ℎ (𝑠) − 2 (2.5)

 This condition helps in reducing the computation time since there is no need to

check the entire document. If the LCS of the dictionary term and the SMS token is equal

to the length of the SMS word, then the similarity score is increased by one, i.e.,

if LCS (s, t) == length (s), then SM+= 1.

 Removing such words helps in improving the algorithm and helps to reduce the

calculation time. Still then, predicting the best matching word is challenging as there can

be many variants of the same term or token according to different users.

11

Construction of a Semi-Automated Model for FAQ Retrieval via Short Message

Service

Agarwal et al. [3] de-noises the SMS token by calculating a similarity measure

based on prefix matching, and suffix matching that was computed using prefix and suffix

tries respectively and using the similarity ratio. Prefix trie was made to store all the

dictionary words, and the noisy word is then searched in the trie to calculated matching

prefix length for all the dictionary terms. Similarly, suffix matching is done by reverse

storing the dictionary terms in the trie. Then the noisy token is reversed and is matched

with all the words in the trie. Suffix trie was not created directly because, in that case, the

searching will increase the complexity to a great extent. So, the words are stored by

reversing the keys to match the complexity with the prefix search. Then, use all the three

factors together and calculate an overall score to find the substitute for the noisy SMS

token. The overall score between dictionary term t and SMS token s is given as:

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝑐𝑜𝑟𝑒(𝑡) = 0.25 ∗ 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑐𝑜𝑟𝑒(𝑡, 𝑠) + 0.25 ∗ 𝑆𝑢𝑓𝑓𝑖𝑥𝑆𝑐𝑜𝑟𝑒(𝑡, 𝑠) +

 𝑆𝑖𝑚𝑆𝑐𝑜𝑟𝑒(𝑡, 𝑠) (2.6)

 Where prefix score is the length of matching prefix in the noisy term and the

dictionary term, suffix score is the length of matching suffix in the noisy token and the

dictionary term, and the similarity score is taken as the ratio of twice the LCS ratio to the

sum of the length of noisy token and the dictionary word.

12

CHAPTER 3

TERMINOLOGIES USED

The noisy SMS query hinders the automated FAQ retrieval system. So, there is a

need to efficiently de-noise the SMS text. De-noising of SMS text requires finding the

closeness of the SMS token with all the dictionary terms. In previous work, trie is used to

find the length of prefix and suffix matching and Longest Common Subsequence to find

a similarity score. In our dictionary, the distribution of words starting from “b” is shown

in the figure 3.1.

Figure 3.1. Distribution of words starting from character “b”

In the case of trie, for a node having first character ‘b’, the node will have 26

pointers to the nodes at the next level irrespective of the fact that 26 nodes are required

or not. As we can see from the figure 3.1, the letter “b” does not follow every 26

characters. The dictionary contains the words starting with “ba”, “be”, “bi”, and so on and

637

541

280

388
1

443

500

392
28

ba

be

bi

bl

bm

bo

br

bu

by

13

the count of words starting with “bb”, “bc”, and many others are 0. In that case, the node

for “b” in trie will point to 26 other nodes, and many unnecessary nodes are created. But

in a ternary tree, only the required nodes are constructed. The memory requirement

increases to a great extent in the trie. So, in such cases, the Ternary Tree is useful as the

memory requirement of the ternary tree is very low as compared to trie.

To reduce the memory space, the ternary search tree is used to calculate the length

of prefix and suffix matching. Then find the similarity of every noisy word with all the

dictionary words and compute their respective similarity score. Combining all the three

factors: prefix score, suffix score, and similarity score, we efficiently de-noises the SMS

token.

3.1 TERNARY SEARCH TREE

A ternary search tree (TST) is a type of trie data structure that uses three-pointers

instead of 26 (low memory space). Every node of the ternary tree has three-pointers (left,

middle and right) along with the EndOfword bit and the value field where the character

is stored. A node represents each character of a string. If the character is less than the

current node, then it goes to the node pointed by the left pointer. Similarly, if the character

is higher than the current node, it goes to the node indicated by the right pointer. And if

it is equal to the current node, it goes to the middle one. It is used for various applications

such as for storing string prefix, for autocomplete suggestions, etc.

The average time complexity for traversal, insertion, and deletion is O (log3 h),

where h is the height of the TST. Ternary tree combines the advantage of less space of

the binary tree and little character search time for the tries. Ternary tree search is faster

than hashing for the words not present in TST.

Table 3.1. Time Complexities of TST

 Average Worst

insert O (log3 h) O (h)

delete O (log3 h) O (h)

search O (log3 h) O (h)

14

3.2 TRIE DATA STRUCTURE

 Trie is a data structure used for information retrieval efficiently and stores keys.

Every node of trie consists of a maximum of 26 pointers and an EndOfWord field. The

insert, search, and delete operation take O (h) time where h is the height of the trie. The

length of the key determines the height of the trie. The space requirement in case of the

trie is more and is O (s*n*m) where s is the size of the alphabet, n is the length of the

key, and m is the number of keys stored in the trie.

 For every character in a key, a new node is created. If the new key is the prefix of

the existing one, mark the EndOfWord for the key's last node. Also, if the new key is the

addition of the older key, create nodes for the new characters and mark EndOfWord for

the last node. Searching in the trie is similar to the insertion. It is better than hashing and

binary search trees. It is used for prefix search, auto-complete feature, and to print words

in lexicographical order.

Table 3.2. Time Complexities of Trie

 Average Worst

insert O (h) O (h)

delete O (h) O (h)

search O (h) O (h)

3.3 LONGEST COMMON SUBSEQUENCE

Given two strings, it gives the largest subsequence common (LCS) to both strings,

i.e., the numbers of common characters. Let SMS token is s and dictionary term is t of

length i and j respectively, then their LCS is given by :

 𝐿𝐶𝑆 [𝑖][𝑗] = {

0 , 𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0

𝑎 + 1 , 𝑖𝑓 𝑠[𝑖 − 1] = 𝑡[𝑗 − 1]

max (𝑏, 𝑐) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.1)

Where 𝑎 = 𝐿𝐶𝑆 [𝑖 − 1][𝑗 − 1] (3.2)

15

 𝑏 = 𝐿𝐶𝑆 [𝑖 − 1][𝑗] (3.3)

 𝑐 = 𝐿𝐶𝑆 [𝑖][𝑗 − 1] (3.4)

The higher the value of the LCS, the higher is the matching of the SMS token and

the dictionary word.

3.4 EDIT DISTANCE

 To modify a string to another, various operations such as insertion, substitutions,

and deletions of characters is required, which is given by Edit Distance. Let s and t be the

SMS token and dictionary term of length i and j, respectively. Then Edit Distance is given

as:

 𝐸𝐷 [𝑖][𝑗] = {

 𝑖 , 𝑗 = 0
𝑗 , 𝑖 = 0

𝑡3 , 𝑠[𝑖 − 1] = 𝑡[𝑗 − 1]

min(𝑡1, 𝑡2, 𝑡3) + 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.5)

 Where 𝑡1 = 𝐸𝐷 [𝑖 − 1][𝑗] (3.6)

 𝑡2 = 𝐸𝐷 [𝑖][𝑗 − 1] (3.7)

 𝑡3 = 𝐸𝐷 [𝑖 − 1][𝑗 − 1] (3.8)

 The lower the edit distance, the lesser is the changes required to convert one word

to another. So, prefer words with less value of edit distance.

16

CHAPTER 4

PROPOSED WORK

4.1 PROBLEM STATEMENT

 People may type wrong words intentionally or unintentionally while texting,

which adds noise to the SMS text. Such noisy texts are the combination of non-intentional

errors and a few intentional dropping of characters or words, truncations, phonetic

substitutions, and abbreviations. Non-intentional errors include typing errors and errors

due to the small screen, damaged display, multi-tap keyboard, QWERTY keyboard, etc.

There is a need to find the correct word to substitute such words to develop an automated

FAQ retrieval. Therefore, a model is developed to efficiently de-noise the SMS texts

using Ternary Tree.

4.2 PROPOSED METHOD

To develop an automated FAQ retrieval model, there is a need to remove noise

from the SMS query. To get the correct word for the noisy SMS token, consider three

factors: prefix, suffix, and similarity score. Prefix and suffix matching are done using a

TST. We use a TST to store all the words of the English dictionary. Each node represents

a single character and points to three children- left, middle, and right. TST is used to

calculate the matching prefix length, which helps find the closeness of the noisy SMS

token with the dictionary terms. Similarly, to find the matching suffix length, store all the

words of the English dictionary in the reverse order in TST and similarly calculate the

closeness as the prefix. The limitation of this model is that it works well for the single

noisy token but fails to de-noise the two or more terms abbreviated together. For example,

abbreviations such as “BRB” for “Be Right back” are not de-noised by the proposed

model.

17

4.2.1 Prefix Score

Prefix ternary tree is created to store all the words of the dictionary. The noisy

SMS token is then matched with all the dictionary terms. For the terms having minimum

prefix matching of two (i.e., if two or more starting characters are matched) is stored in a

hash table with key as dictionary term and the value as the prefix length score. It takes

into account the noisy words that are truncated, i.e., the words whose trailing characters

are cut off. For example, “nov” for “november”. Here, the prefix score for the word

“november” is 3. These words are correct in the beginning, so finding the prefix score

helps us to get the right alternative for such noisy terms. For example, the prefix score of

disagree, dislike, dimension for disable is 4, 3, and 2, respectively.

4.2.2 Suffix Score

For suffix matching, we store all the dictionary terms in the reverse order and

reverse the noisy SMS token. Then this modified noisy word is matched with all the

words in the suffix ternary tree, and the words with matching suffix are stored in the hash

with key as dictionary term and value as the matching suffix length. The suffix ternary

tree is created in the reverse order of the prefix ternary tree to reduce the time complexity

as finding suffix length by directly creating a suffix tree (without reversing the dictionary

terms) would be very complicated and time-consuming. Minimum matching of length

one is considered in case of suffix matching.

4.2.3 Similarity Score

The third factor is the similarity score that takes into account the common

characters between the noisy term and the dictionary term. The noisy word is matched

with all the dictionary terms, and then the similarity score is calculated for all terms

present in the dictionary. The LCS concept is used to find the similarity score between

the noisy token and the dictionary term. The similarity of SMS word s and the dictionary

word t is given as:

 𝑆𝑖𝑚(𝑡, 𝑠) =
2∗ 𝐿𝐶𝑆 (𝑡,𝑠)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑡) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠)
 (4.1)

18

Further, if the first character of noisy token and dictionary term is matched, we

increase the similarity score by 0.1 times of Sim (t,s). Therefore, the similarity score is

given as:

 𝑆𝑖𝑚𝑆𝑐𝑜𝑟𝑒(𝑡, 𝑠) = {
 𝑆𝑖𝑚(𝑡, 𝑠), 𝑡[0]! = 𝑠[0]

 1.1 ∗ 𝑆𝑖𝑚(𝑡, 𝑠), , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.2)

4.2.4 Overall Score

Calculate the overall score for each word of the top seven terms in the prefix score

list, suffix score list, and similarity score list. Prefix score of 0 is given for the term not

present in the prefix-list but is present in the other two to calculate the overall score.

Similar to the suffix score and similarity score. To obtain the overall score for each word

of the dictionary corresponding to a noisy SMS word, combine the above three score

calculated as:

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝑐𝑜𝑟𝑒(𝑡) = 𝑤1 ∗ 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑐𝑜𝑟𝑒(𝑡, 𝑠) + 𝑤2 ∗ 𝑆𝑢𝑓𝑓𝑖𝑥𝑆𝑐𝑜𝑟𝑒(𝑡, 𝑠) + 𝑤3 ∗

 𝑆𝑖𝑚𝑆𝑐𝑜𝑟𝑒(𝑡, 𝑠) (4.3)

Where t is the dictionary term, s is the SMS token, and w1, w2, and w3 are the

constant weights assigned to prefix score, suffix score, and similarity score and are given

values of 0.25, 0.2, and 1, respectively. The values of these weights are assigned using

the experimental results that are discussed in the next section.

More weightage is given to the similarity score because the similarity score

considers the ratio, while the prefix and suffix score takes the number of characters

matched into consideration. We sort the entries by value (score) from the hash table for

the overall score and choose the top 7 results in the output list.

19

Figure 4.1. Diagrammatic Representation of Overall Score

4.3 SUMMARY OF PROPOSED ALGORITHM

Step 1. Create a list for the noisy terms and the dictionary terms.

Step 2. Create a prefix tree by inserting all dictionary terms in the ternary search tree.

Step 3. Create a suffix tree by inserting all dictionary terms in reverse order in the

ternary search tree.

Step 4. For each noisy token:

a. Calculate prefix score:

i. By finding the matching length of noisy token with dictionary term

having at least two prefix characters in common in prefix tree.

ii. Create a hash table to store these scores.

b. Take the top 7 retrievals sorted by the prefix score.

c. Calculate the suffix score:

Overall
Score

Prefix
Score

Similarity
Score

Suffix
Score

w3

w1

w2

20

i. By finding the matching length of noisy token with dictionary term

having at least two suffix characters in common in suffix tree.

ii. Create a hash table to store these scores.

d. Take the top 7 retrievals sorted by the suffix score.

e. Calculate Similarity score:

i. By finding LCS and length of dictionary term and SMS token

using (4.1).

ii. If the first character of the noisy term and dictionary term is the

same, update the score using (4.2).

f. Take the top 7 retrievals sorted by similarity score.

g. Calculate overall score:

i. For words retrieved by the above three methods, calculate the

overall score using (4.3).

Step 5. Return the top 7 retrievals as the best matching candidates for the noisy token.

21

4.5 FLOW CHART OF PROPOSED MODEL

 No

 Yes

 No

 Yes

Figure 4.2. Calculation of Similarity Score

Input English Dictionary (D)

having terms t1, t2, …, tn

Size(D)

== C

Calculate Sim (ti,s)

Input Noisy SMS word (s)

C = 0

ti[0] ==s[0]

SimScore (ti,s) =

1.1 * Sim (ti,s);

C = C+1

SimScore (ti,s) =

Sim (ti,s);

C = C+1

Start

Find top 7

retrievals

according to the

similarity score

A

22

Create prefix

 in prefix tree

 prefix score

seven results

Figure 4.3. Working of the proposed model

Create Suffix

Ternary Tree using

D

Create Prefix

Ternary Tree using

D

Search noisy word

(s) in tree

Calculate the

prefix score

Find the top 7

results according

to prefix score

Search noisy word

(s) in tree

Calculate the

suffix score

Find the top 7

results according

to suffix score

Calculate overall score

Return top 7 retrievals

as result

A
Input English Dictionary (D) having

terms t1, t2, …, tn

Input Noisy SMS word (s)

Start

End

23

CHAPTER 5

WORKING AND ANALYSIS

To develop an efficient system to de-noise the noisy SMS text, the ternary tree

is used. Calculating prefix score based on matching prefix length and suffix score based

on matching suffix length are the two main concepts used. Apart from these two, the

similarity score is taken into consideration to find the best match for the noisy token.

Prefix ternary tree and suffix ternary tree are created to calculate prefix and suffix scores.

5.1 PREFIX TERNARY TREE

 Taking all the words of the dictionary, a prefix ternary tree is created. Then, a

noisy SMS word is matched against each word in a tree, and the prefix score is calculated

for dictionary word having minimum two characters matching and are stored in a hash

as key-value pair where the key is dictionary term, and the value is the calculated prefix

score. The prefix scores sort the hash table, and the top seven outputs are taken to

calculate the overall score.

For example, if the list of dictionary term consists of words such as [“disappear”,

“dismiss”, “dislike”, “damage”, “dialect”] and the noisy token is “distance”, then the

calculated prefix scores are given as: { “disappear” : 3, “dismiss” : 3, “dislike” : 3,

“dialect” : 2}. The prefix “dis” in noisy token “distance” matches with the dictionary

term “disappear”. So, we get length of “dis”, i.e., 3 as the output. Similar is the reason

for output 3 for words like “dismiss” and “dislike”. For dictionary word “dialect”, the

prefix “di” matches with the noisy token “distance”. So gives output 2 for the same.

In the case of words like “decem” for “demember” which are truncated, the

words in the final top 7 retrievals are because of the prefix score. For such terms, the

24

prefix score is dominant. The prefix score output for “decem” noisy word is shown in

figure 5.1.

Figure 5.1. Top 7 retrievals for prefix score using the proposed model

5.2 SUFFIX TERNARY TREE

 To construct a suffix ternary tree, all the words of the dictionary are reversed and

inserted into the ternary tree. Then the noisy token is reversed and is then searched in

the suffix ternary tree to calculate the suffix score. The reversed noisy token is matched

against all words in the tree, which are the reversed dictionary words. The suffix score

is calculated and stored in the hash with the dictionary term as key and suffix score as

value. Creating a direct suffix tree will increase the complexity to a great extent. So,

create a suffix tree by reversing the dictionary term to match the complexity with the

prefix tree. Sort the hash by suffix value and take the top seven retrievals.

 If the list of dictionary term consists of words such as [“helper”, “butcher”,

“dancer”, “preacher”] and the noisy token is “teacher”, then the calculated suffix scores

are given as: {“preacher” : 6, “butcher” : 4, “helper” : 2, “dancer” : 2}. Suffix “eacher”

is common in both the noisy word “teacher” and the dictionary term “preacher”. So, the

word “preacher” is given suffix score 6. In the case of a noisy word like “dfusion”, suffix

score is dominant. So, giving weightage to suffix score helps in getting the correct word

“diffusion” as the output. The top 7 retrievals using the suffix score is shown in figure

5.2.

25

Figure 5.2. Top 7 retrievals for Suffix Score using the proposed model

5.3 SIMILARITY SCORE

The similarity score between the noisy token and the dictionary term is calculated

to find the similarity. It is calculated using the longest common subsequence, which is

based on the number of common characters between the two strings. A similarity score

is the ratio of twice the number of common characters between the two strings to the

sum of length of the two. The similarity score is calculated between the noisy word

“hxgn” and the dictionary terms. The score is calculated using (4.1) and (4.2), and the

results are sorted based on the values. The top seven retrievals are taken and shown in

figure 5.3.

Figure 5.3. Top 7 retrievals for similarity score using proposed model

26

5.4 OVERALL SCORE

 Until now, we have the top 7 retrievals for the prefix score, the suffix score, and

the similarity score. For each of the words in the three lists, calculate the overall score

using (4.3). Sorted the results by values and retrieved the top 7 outcomes. These seven

words are the best candidates for the noisy token. The overall score is calculated for each

of the words in prefix hash, suffix hash, and similarity table, and the top 7 results are

taken after sorting it by overall score. Figure 5.4 shows the top 7 retrievals for the noisy

word “thur” using Ternary Tree.

Figure 5.4. Final top 7 retrievals using the proposed model

5.5 AGARWAL’S MODEL AND KOTHARI’S MODEL

 Apart from implementing the ternary search tree, two other models [3, 4] are also

implemented to compare the result of the proposed model. Agarwal et al.’s model uses

the trie to calculate prefix and suffix scores. Kothari et al.’s model use only a similarity

calculation to de-noise the SMS token. The similarity score is calculated using (4.1). The

values sort these results, and the top seven results obtained after prefix score, suffix

score, similarity score, and overall score calculations are shown in figures 5.5-5.8.

27

Figure 5.5. Top 7 retrievals for Prefix Score using Agarwal’s model

Figure 5.6. Top 7 retrievals for Suffix Score using Agarwal’s model

Figure 5.7. Top 7 retrievals for Similarity Score using Agarwal’s model

28

Figure 5.8. Final top 7 retrievals using Agarwal’s model

Kothari et al. [4] in their model, calculated similarity score for each of the

dictionary term with respect to the noisy token. The similarity score is given by (2.1).

The similarity score is based on the longest common subsequence ratio and the edit

distance.

Figure 5.9. Top 7 retrievals using Kothari’s model

29

CHAPTER 6

EXPERIMENTS AND RESULTS

The ternary tree was the key to the proposed model. Matching prefix length,

matching suffix length were calculated using the ternary tree and the similarity score

using the dynamic algorithm like longest common subsequence. Prefix score, suffix

score, and the similarity score are the key factors to calculate the overall score to

efficiently de-noise the noisy SMS token.

The model is implemented in Python 3.7 using the Anaconda platform. To verify

the performance of the proposed model, it is tested on Mieliestronk's words list [11] as the

dictionary. Mieliestronk's words list comprised of 58000+ English words and tested

against 255 noisy words to test the performance of our system. These noisy words include

the words which are misspelled, truncated, and whose vowels and repeated characters are

dropped. The de-noising system is compared with Agarwal et al.’s [3] and Kothari’s [4]

method. To assess quantitatively, MRR (Mean Reciprocal Rank), and accuracy is

considered to compare the proposed model's output with the previous ones. Accuracy is

given by the number of correct output retrieved to the total number of output retrieved.

MRR [12] is another evaluation measure that is used to calculate the systematic of the

system by making possible response lists to the query in order of their probability of

correctness. It is used to get the best relevant document. The reciprocal rank is given by

1
𝑟𝑎𝑛𝑘⁄ , where the first relevant document is found. Mean reciprocal rank gives the

average of all the N-reciprocal ranks and is given by:

 𝑀𝑅𝑅 =
1

𝑁
 ∑

1

𝑟𝑎𝑛𝑘𝑖

𝑁
𝑖=1 (6.1)

30

 Rank = 1 is given when the correct word is found at the top of the list. Rank = 7

for the term at 7th position in the list. MRR is used because it is easy to compute and give

focus on the first relevant item of the list; thus, it helps in finding the best match.

6.1 PARAMETERS DISCUSSION

There are 3 main parameters in the novel method, i.e., weight for prefix score 𝑤1,

weight for suffix score 𝑤2, and weight for similarity score 𝑤3. To study these parameters,

different experiments were carried out, one parameter is made variable, and the other two

as fixed. The results of the tests are displayed in table 6.1-6.3.

Table 6.1. Parameter w1 study

Metric
𝒘𝟏, 𝒘𝟐= 0.2, 𝒘𝟑= 1.1

0.15 0.20 0.25 0.30 0.35

Accuracy 94.686 94.690 95.294 90.196 82.352

MRR 0.785 0.801 0.789 0.757 0.702

Table 6.2. Parameter w2 study

Metric
𝒘𝟏 = 𝟎. 𝟐𝟓, 𝒘𝟐, 𝒘𝟑= 1.1

0.15 0.20 0.25 0.30 0.35

Accuracy 94.509 95.294 92.549 91.372 84.705

MRR 0.788 0.789 0.750 0.759 0.681

Table 6.3. Parameter w3 study

Metric

𝒘𝟏 = 𝟎. 𝟐𝟓, 𝒘𝟐= 0.20, 𝒘𝟑

1.0

1.0 + 0.10

If 1st char matches

1.0+ 0.20

If 1st char matches

Accuracy 93.333 95.294 94.294

MRR 0.754 0.789 0.782

The model is run for different weightage for prefix, suffix, and similarity score

and found that the best results are obtained when weightage for prefix score w1 = 0.25,

suffix score w2 = 0.20, and a large value for similarity score w3 = 1.1.

31

6.2 RANKED LIST RETRIEVAL

The results of our model are compared with the previous model [3] that uses the

Trie data structure to calculate the prefix and suffix length and the model [4] that uses only

similarity scores to find the correct candidate for the noisy token. Agarwal et al.'s [3] model

uses the similarity score directly without considering whether the first character matches

or not. The papers [3, 4] are implemented, and their results are compared with our proposed

method. The same dataset is used to compare all the three approaches. The output of the

model [4], model [3], and our proposed model for a few noisy SMS tokens are shown in

table 6.4-6.9. These outputs are prioritized based on the top seven retrievals obtained from

the respective overall score of the three models.

Table 6.4. Top seven words for the noisy SMS word “thur”

SMS word: thur, Correct word: thursday

Kothari’s model [4] Agarwal’s Model [3] Our Proposed Model

'thor' 'arthur' 'thursday'

'thud' 'thursday' 'tahr'

'thug' 'thud' 'thor'

'thus' 'thug' 'thou'

'tour' 'thus' 'thud'

'tahr' 'thunder' 'thug'

'thou' 'thuds' 'thus'

Table 6.5. Top seven words for the noisy SMS word “hxgn”

SMS word: hxgn, Correct word: hexagon

Kothari’s Model [4] Agarwal’s Model [3] Our Proposed Model

'hag' 'sign' 'hexagon'

'hen' 'align' 'hexagons'

'hog' 'feign' 'hexagonal'

'hug' 'reign' 'hexane'

'hags' 'malign' 'hag'

'hewn' 'assign' 'hen'

'hex' 'ensign' 'hex'

32

Table 6.6. Top seven words for the noisy SMS word “rmv”

SMS word: rmv, Correct word: remove

Kothari’s model [4] Agarwal’s Model [3] Our Proposed Model

'rev' 'arm' 'ram'

'ram' 'ram' 'rem'

'rem' 'rem' 'remove'

'rim' 'remove' 'rev'

'rom' 'rev' 'rim'

'rum' 'rim' 'rom'

'arm' 'rom' 'rum'

Table 6.7. Top seven words for the noisy SMS word “dfusion”

SMS word: dfusion, Correct word: diffusion

Kothari’s Model [4] Agarwal’s Model [3] Our Proposed Model

'fusion' 'fusion' 'diffusion'

'fusions' 'diffusion' 'infusion'

'diffusion' 'infusion' 'profusion'

'delusion' 'effusion' 'transfusion'

'effusion' 'confusion' 'effusion'

'infusion' 'suffusion' 'suffusion'

'elusion' 'perfusion' 'confusion'

Table 6.8. Top seven words for the noisy SMS word “sychtrst”

SMS word: sychtrst, Correct word: psychiatrist

Kothari’s Model [4] Agarwal’s Model [3] Our Proposed Model

'schist' 'syndicalist' 'psychiatrist'

'scars' 'symbolist' 'schist'

'scots' 'sycophants' 'psychiatrists'

'sects' 'sycamores' 'sycophancy'

'shirt' 'sycophant' 'sycophant'

'short' 'thirst' 'sycamores'

'strut' 'psychiatrist' 'sycophants'

33

Table 6.9. Top seven words for the noisy SMS word “decem”

SMS word: decem, Correct word: december

Kothari’s Model [4] Agarwal’s Model [3] Our Proposed Model

'deem' 'december' 'december'

'dee' 'deem' 'deem'

'deems' 'deceit' 'deceived'

'deuce' 'decent' 'deceases'

'dace' 'decease' 'deceptions'

'deck' 'deceits' 'decelerate'

'deco' 'deceive' 'decentralised'

As we can see from the comparison table 6.4-6.9, the assumption of increasing

the similarity score by 0.1 times if the first character of noisy term and dictionary term

are the same, outperforms the Agarwal et al.’s results. In table 6.4, the first character ‘t’

in “thur” matches with “thursday” but not with “arther”, so, the weightage of “thursday”

is increased, and the proposed model gives it as the 1st retrieval. Similar to the word

“hexagon” in table 6.5. Similarly, the correct terms “remove” in table 6.6 and “diffusion”

in table 6.7 move one position up in our model due to increasing the similarity if 1st

character matches in noisy SMS token and the dictionary word.

In table 6.8, we can see the better result because of decreasing the weight of the

suffix score by 0.25 to 0.20. Prefix sore is also an essential factor. It works well for the

truncated words. This can be seen in table 6.9, as for ‘decem’ noisy term, prefix score is

the most dominant factor compared to other, and as in both Agarwal’s [3] method and

our method, prefix score is given similar weight, i.e., 0.25. Both ways give the same

position of ‘December’ word.

6.3 MRR AND ACCURACY

The MRR is introduced to check the effectiveness of the different models. A high

value of MRR represents that the correct word corresponding to the noisy word is at the

top level of the output list compare to the low MRR. High rank is given if the relevant

34

document is found the first time. Rank = 0, if relevant document is not found. MRR =

0.75 indicates that most of the results are obtained either at 1st or at 2nd position.

Figure 6.1. Mean Reciprocal Rank and Accuracy of different models

Figure 6.1 shows the different MRR values and accuracy of the three different

models. MRR and Accuracy vary with the change in the noisy data. Still, since all the

three models have experimented with the same dataset, we see that the model achieves

the highest value of MRR and Accuracy compared to others every time, which justifies

our proposed novel model's better performance.

0.474

0.722
0.789

0.709

0.87

0.952

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kothari's Model Agarwal's Model Our Model

MRR Accuracy

35

CHAPTER 7

CONCLUSION AND FUTURE SCOPE

Mobile phones are the most widely used device due to their low cost, portability,

and easy accessibility, and the SMS facility is available on every mobile device.

Therefore, FAQ retrieval based on SMS is the area that is very useful for people to save

their cost, time, and space. It prevents them from the hassle of going to a particular place

and also to avoid waiting in a queue. It can be useful for any type of information retrieval

for railway reservation, bills, railway inquiry, advertisement, banking, marketing,

healthcare, health reports, medicines prescription, and other kinds of information access.

Natural language processing, particularly text retrieval, is used to de-noise the words

written in SMS language, i.e., the words which are truncated, abbreviated, misspelled,

etc.

Developing such an automated system to de-noise an SMS text has always been

a difficult task. The proposed model tries to efficiently remove noise from the SMS token

and find the correct candidate for the noisy token from the right English words list. The

model achieves a good result with the accuracy of 95.294% and the MRR of 0.789, which

is far better than the previous models for de-noising of noisy SMS token. Different

weights for the parameters are measured and found the values that give the best result.

Results are compared with the previous approaches, and the proposed model outperforms

the previous models. The ternary tree is used for calculating matching prefix length and

matching suffix length as it takes less space to store the dictionary keys than the trie data

structure and takes less time to search than the hash. Also, giving more weightage to the

word having the first character was the right choice as it improves the result to a great

extent.

36

 As a part of future work, work can be done to further improve the Accuracy and

MRR of the system by finding the new methodology. Also, it can be extended further to

make the system work for the entire question using a different approach to get the best

MRR score possible. As still today, the part of the country is illiterate, so instead of SMS

text, the work can be done on spoken queries so that the illiterate person can get benefited

from the system. A single system can be made for all the Indian languages so that people

from all over the country can use the system.

37

REFERENCES

[1] P. Lalitha, “The impact of ‘sms’ language on standard english”, IOSR Journal Of

Humanities And Social Science, vol 1, 2013, pp. 50-51.

[2] L. V. Subramaniam, S. Roy, T. A. Faruquie, S. Negi, “A survey of types of text

noise and techniques to handle noisy text”, In Proceedings of AND, Barcelona,

Spain, 2009, pp. 115–122.

[3] A. Agarwal, B. Gupta, G. Bhatt, and A. Mittal, “Construction of a Semi-

Automated Model for FAQ Retrieval via Short Message Service”. Proc of the 7th

Forum for Information Retrieval Evaluation (FIRE2015) (2015), 35–38.

[4] G. Kothari, S. Negi, T. A. Faruquie, V. T. Chakaravarthy, and L. V.

Subramaniam, “Sms based interface for faq retrieval”, In the Joint Conference of

the 47th Annual Meeting of the ACL and the 4th International Joint Conference

on Natural Language Processing of the AFNLP: Volume 2-Volume 2, 2009, pp.

852-860.

[5] E. Sneiders, “Automated question answering using question templates that cover

the conceptual model of the database”, Natural Language Processing and

Information Systems, Springer Berlin Heidelberg, 2002, pp. 235-239.

[6] D. Shaikh, M. Jain, M. Rawat, R. R. Shah, and M. Kumar, “Improving accuracy

of sms based faq retrieval system”, In Multilingual Information Access in South

Asian Languages, Springer, 2013, pp. 142-156.

[7] D. Contractor, T. A. Faruquie, and L. V. Subramaniam, “Unsupervised cleansing

of noisy text”, In Proceedings of the 23rd International Conference on

Computational Linguistics: Posters, 2010, August, pp. 189-196.

[8] N. Shivhre, “Sms based faq retrieval”, In Multilingual Information Access in

South Asian Languages, Springer Berlin Heidelberg, 2013, pp. 131-141.

[9] S. Mhaisale, S. Patil, and K. Mahamuni, “Weighted edit distance based faq

retrieval using noisy queries”, Post-Proceedings of the 4th and 5th Workshops of

the Forum for Information Retrieval Evaluation (FIRE2012&2013) (2013), 8:1–

8:4.

38

[10] R. Batra, S. Sharma, A. Shrivastav, P. Goyal, “Efficiently de-noising sms text for

faq retrieval”, IEEE International Conference on Data Mining and Intelligent

Computing, Delhi, Sep. 2014.

[11] CornCorb. The Corncob list of more than 58000 English words. Available:

http://www.mieliestronk.com/wordlist.htm

[12] J. Waghmare, and M. A. Potey., “Survey of sms based faq retrieval systems”,

International Journal Of Engineering And Computer Science 4, 2 (2015), 10259–

10263.

[13] A. O. Adesina, K. K. Agbele, A. P. Abidoye, and H. O. Nyongesa, “Text

messaging and retrieval techniques for a mobile health information system”,

Journal of Information Science, vol. 40, no. 6, 2014, pp. 736–748.

[14] Forum for information retrieval evaluation (FIRE) 2013 shared task detailed

description: FAQ retrieval using noisy queries, http://www.isical.ac.in/fire/faq-

retrieval/2013/faq-retrieval.html (URL verified 19 Nov. 2013).

[15] http://www.cfilt.iitb.ac.in/resources/surveys/Swapnil-Cross lingual-Information-

Retrieval.pdf

http://www.isical.ac.in/fire/faq-retrieval/2013/faq-retrieval.html
http://www.isical.ac.in/fire/faq-retrieval/2013/faq-retrieval.html
http://www.cfilt.iitb.ac.in/resources/surveys/Swapnil-Cross-lingual-Information-Retrieval.pdf
http://www.cfilt.iitb.ac.in/resources/surveys/Swapnil-Cross-lingual-Information-Retrieval.pdf

39

LIST OF PUBLICATIONS

[1] Manoj Kumar, Vipra Bhatt, “Denoising SMS Text using Ternary Tree for FAQ

Retrieval”. Accepted at the International Journal of Advanced Science and

Technology (IJAST).

Indexed by Scopus, EBSCO, ProQuest, ULRICH, J-Gate, OAJI.

Paper Id: IJAST_06_2020_507

Abstract- With the increase in mobile technology, everyone is using mobile phones

for various purposes, from only making calls to using it for accessing the internet,

gaming, etc. Internet service is not available on every mobile phone, but the facility

of Short Messaging Services (SMS) is on every phone. So, many people choose

SMS for information retrieval. The SMS can be used to get a quick response in

various fields such as healthcare, railways, insurance, banking and travel. But the

SMS texts are made noisy by intentional and non-intentional errors, and there is a

need to find the correct word to substitute them. This paper proposed efficiently

denoising the SMS term by finding matching prefix and suffix length using a ternary

search tree and calculating similarity score between the noisy token and the correct

English words using Longest Common Subsequence (LCS). We see that the ternary

tree is space-efficient compared to the trie data structure used in the previous

approach to efficiently denoise the SMS token. It also helps in completing the task

in less time compared to using a hash table. We compute the overall score by

combining the prefix matching length, suffix matching length, and similarity score.

We experimented using some noisy SMS words generally used by the people and

compare our model with some previous models. Our model outperforms all of these

earlier approaches.

40

[2] Manoj Kumar, Vipra Bhatt, “A Review on Monolingual and Cross lingual FAQ

Retrieval System”. Accepted and presented at the 5th International Conference

on Communication and Electronics Systems (ICCES 2020).

Indexed by Scopus.

Paper Id: ICCES253

Abstract- With the growth of movable communication, cell phones have become

the most widely used device for communication. Even mobile users are increasing

at an amazing rate. Short messaging service is most convenient way to give access

to information to the community over the world. Different automated FAQ

retrieval systems are developed in which the SMS query is given by user and result

is retrieved from the database of FAQs. FAQ database consists of questions and

answers already designed by the experts. SMS query is matched from the set of

questions from the database, and the question with highest score is selected. This

paper reviews various approaches for FAQ retrieval based on SMS. Basically, we

provide a review on monolingual and cross lingual FAQ retrieval and performance

for various approaches are compared.

