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ABSTRACT 
 

 

Fractional calculus, i.e. fractional order integration and differentiation, which 

is considered as the backbone of fractional order circuits, has numerous applications 

in science and engineering fields namely, bio-medical engineering, control system, 

analog signal processing/generation, fluid mechanics, etc. In this dissertation after 

briefly reviewing various methods employed in the realization of simulated fractional 

order capacitors novel circuits of operational transconductace amplifier-based inverse 

filters have been presented. As a second problem, the performance of an existing, 

VDTA-based biquad filter in fractional order domain has evaluated. The electronic 

tunability of the various parameters of the VDTA-based fractional order filters has also 

been examined. The workability of the inverse fractional order filter circuits along with 

fractional operator have been verified through Cadence virtuoso simulation tool using 

0.18um CMOS technology parameter and generalized universal fractional order filter 

configuration using PSPICE and MATLAB simulation. Also, stability of the fractional 

order filter designed have been discussed briefly. 
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INTRODUCTION 

1.1 Overview 

The present dissertation deals with the realization of fractional order 

inverse filters and filters. In comparison to classical integer order models, fractional 

calculus gives us a better instrument for memory depiction and hereditary properties 

of systems and processes. The modelling of properties of real materials for mechanical, 

electrical and electro-mechanical uses the benefits of fractional derivative. The 

application of fractional element can vary from determination of frictionless curve 

shape to study of electrical transmission lines (developed by Heaviside in 1892) [1]. 

Fractional order calculus finds application in various fields of science and 

engineering viz. modelling of speech signals [2], modelling of cardiac tissue electrode 

interface [3], propagation of sound waves in rigid porous materials [4] control of 

autonomous vehicles (Lateral and longitudinal) [5] fluid Mechanics [6] edge detection 

[7], also.  

Apart from the above application areas, fractional order immittance 

element, popularly known as a constant phase element (CPE), finds vast application in 

electrical and electronic engineering. During the last two decades, hundreds of 

research papers have appeared in open literature dealing with analog circuit 

implementation of fractional order circuit elements and signal processing circuits.  

Analog signal processing circuits like filters, inverse filters, multipliers and 

oscillators using fractional order elements have gained more importance as using a 

fractional order circuit element instead of conventional reactive elements gives more 

flexibility in tuning of various parameters of these circuits. Using fractional order 
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capacitor instead of integer order capacitors along with active building blocks gives us 

even more variations in terms of bandwidth, frequency, quality factors and gain of 

filters and inverse filters. 

1.2 Literature review on Fractional order Systems 

Over the last few years, research interest has increased in designing 

different fractional order circuits by using various approximation methods, although 

fractional calculus is three hundred years old [8]. In this thesis work, we have mainly 

focused on designing fractional operator (sα) using different approximation methods, 

thereby using it as an application for designing different circuits namely fractional 

order inverse filter and fractional order universal filter. There is vast scope for 

designing a fractional order circuits and the researchers have mainly focused on 

fractional order element designing. In our thesis work we have mainly focused on 

designing part as well as finding its applications in filter circuits.  

1.2.1 Fractional order immitance function or constant phase element (CPE) 

The CPE is the basic unit for designing the fractional order analog circuits. 

There are various approximation techniques for fractional order operator that are 

available in open literature. Some of these are: Valsa and Vlach Approximation [9], 

Oustaloup, Levron, Mathieu, and Nanot Recursive approximation [10], Continued 

Fraction Expansion (CFE) [11], El-Khazali reduced-order approximation [12], 

Carlson and Halijak approximation [13], Matsuda and Fujii approximation [14], 

Modified Oustaloup, Laveron, Mathieu and Nanot [15], Charef, Sun, Tsao, and Onaral 

approximation [16], Squared Magnitude Function [17-18].  

In most of these approximations, a Foster/Cauer like network is used to 

emulate the magnitude /constant phase behavior of the CPE in a specified frequency 

range. Higher the number of series/parallel branches, in RC network, the more accurate 

is the approximation. A physical CPE using electrochemical method has also been 

proposed in literature. [19]. The CPE is the basic unit for designing any fractional order 

analog circuits. 

1.2.2 Fractional order Filters 

Ever since the appearance of the general methods for realization of first and 

second order filters in fractional order form [20-21], fractional order filters using 
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various active building block like the operational amplifier [22], current feedback 

operational amplifier [23], current conveyors [24], operational trans-resistance 

amplifier [25] and various other types of amplifiers have been presented in the open 

literature. In most of these filter circuits, the CPE used has been realized using the 

approximation methods suggested in [9-18]. It has been shown that the characterizing 

parameters of these filters can be controlled by appropriately choosing the order, ‘α’ 

the fractional order elements.  

1.2.3 Fractional order Inverse filter 

Inverse filters are a kind of frequency selective circuit in which the 

frequency response is reciprocal of the frequency response of the corresponding 

normal filter. Thus, an inverse low pass filter has its zeros lying in the LHS of the s-

plane while its poles lie at infinity. Various fractional order inverse filter circuits have 

been reported in open literature using various active building blocks along with some 

passive components such as operational amplifier [26], current feedback operational 

amplifier (CFOA) [27], operational trans-resistance amplifier (OTRA) [28], current 

difference buffered amplifier (CDBA) [29], current conveyor second generation 

(CCII) [30], etc. 

1.2.4 Fractional order Universal filter 

Similarly, in open literature various fractional order universal filters have 

been reported using different active building blocks along with some passive 

components such as operational amplifier [31], Operational Transconductance 

Amplifier (OTA) [32], Balanced Output Transconductance Amplifier (BOTA) with 

ACA [33], voltage differencing transconductance amplifier (VDTA) [34], Current 

differencing Buffered Amplifier (CDBA) [35], etc. 

1.2.5 Fractional order Oscillator 

Several realizations of fractional order oscillators have also appeared in 

open literature in recent past [36-41]. It has been shown in these works that it is 

possible to initiate and maintain sustained oscillations at a given frequency in an 

autonomous circuit with more than one fractional order capacitors. The frequency of 

oscillation and the condition of oscillation can be controlled over a much wider range 

because of the extra degree of freedom provided by the order α the fractional order 

elements. 
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1.3 Objective 

On the basis of literature survey and the outlined scope in the previous sub-

section, the objectives are listed as below: 

i. Design of fractional order capacitors using different methods of realization. 

ii. Analysis and design of tunable fractional order analog inverse filter using 

OTAs. 

iii. Generalization of a current mode multiple input single output (MISO) type 

biquad filter, employing one voltage differencing transconductance 

amplifier (VDTA), into fractional order domain examine the electronic 

tunability of its various parameters.  

1.4 Thesis Organization 

This thesis work consists of five chapters the objective of which is shown 

below: 

i. Chapter 1 provides us with the general introduction of fractional order 

systems and a brief review of some of the research works carried out in this 

area. 

ii. Chapter 2 gives a detailed description about definitions and methods of 

designing fractional element used in engineering. Simulation results for the 

design of fractional order capacitor using the Valsa and Vlach method have 

also been included in this chapter.  

iii. In Chapter 3 fractional order inverse high pass, fractional order inverse low 

pass, fractional order inverse band pass, and fractional order inverse band 

reject filters are proposed using two operational transconductance 

amplifiers and fractional capacitors. Layout of all the circuits have also 

been included in this chapter. 

iv. Chapter 4 is concerned with the electronic tunability of a current mode 

multiple input single output (MISO) type filter employing one voltage 

differencing transconductance amplifier (VDTA) and two fractional order 

capacitors.  

v. Chapter 5 includes summary and scope for future work.  
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FRACTIONAL ORDER IMMITTANCE ELEMENT 

2.1 Introduction 

Fractional order immittance function, also popularly known as the constant 

phase element (CPE) is the most important constitutive element of any fractional order 

analog processing circuit. The driving point impedance of a CPE is expressed as Z(s) 

= Ks±α. The exponent ‘α’ may have a non-integer value. The introduction of the non-

integer power of the complex frequency variables brings the picture of concept of non-

integer differentiation and integration. In the following, we briefly present the 

fundamental definitions and concepts of fractional order calculus. 

2.2 Fractional Calculus [1] 

The concept of fractional calculus was first brought into light by Leibniz 

and L’Hospital in 1695. However, Riemann first coined the term fractional operator in 

1838. Having characteristics to fulfill the drawbacks of integer order, this system 

brings more possibilities into research area. Referring to Wallis’s infinite product for 

2 Leibnitz used the term 2

1

d  quoting that it might be possible that similar results 

could be used for it. In 1819, the French mathematician named S.F. Lacroix, mentioned 

the derivative of arbitrary order for the very first time. Less than two pages were 

devoted on this topic in his 700 page long text on differential and integral calculus. 

Beginning with 𝑦 = 𝑥𝑝, where p is a positive integer, he found the qth derivative to 

be: 

𝑑𝑞𝑦

𝑑𝑥𝑞
=

𝑝!

(𝑝 − 𝑞)!
𝑥𝑝−𝑞 (2.1) 
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By putting q equal to ½ and p by any positive real integer m, and using 

Legendre’s symbol  (generalized factorial symbol) Lacroix obtained the following 

formula: 

𝑑1/2𝑦

𝑑𝑥1/2
=

(𝑚 + 1 )

(𝑚 + 1/2)
𝑥𝑚−1/2 (2.2) 

Equation (2.2) gives the derivative of an arbitrary order ½ of the expression 

𝑥𝑚, where the gamma function  can be defined by equation (2.3) as: 

(z) = ∫ 𝑒−𝑢𝑢𝑧−1𝑑𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ ℝ 
∞

0

 (2.3) 

He also introduces the example for y=x and gave different examples for 

more understanding of readers. Different arbitrary order derivations were made by 

Fourier and Euler, but no examples or applications were given by them. 

Fractional calculation does not imply the calculus of fractions, nor the 

fraction of any calculus of variations. It is the theory of integrations and derivatives of 

any random order, which bring together and sum up documentation of integer order 

differentiation and integration.  

The beauty of this subject is that nature’s reality is better depicted by 

fractional derivatives and integrals. So the credit belongs to Niels Henrik Abel [2] for 

providing its application in Tautochrone problem, which attracted many researchers in 

this field among whom Liouville made the first big attempt in defining fractional 

derivative which is listed in section 2.3. 

In spite of the fact that, as far as 300 years old, this field was on the 

mathematicians intrigue, just the most recent couple of years this is showed up in a 

few applied fields of science, for example, control theory, dispersion theory, 

electromagnetic, biomedicine, and signal and processing of images [3-8]. 

2.3 Definitions 

The fractional derivatives can be defined by using two main approaches 

as described below: 

(i) Grunwald-Letnikov definitions: In the first approach limits of finite 

differences are considered as differentiation and integration. As defined in [9] this 

approach is followed by Grunwald-Letnikov definition depicted in equation (2.4). 
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𝑎𝐷𝑡
𝛼𝑓(𝑡) = lim

ℎ→0

1

ℎ𝛼
∑ (−1)𝑗 (

𝛼

𝑗
) 𝑓(𝑡 − 𝑗ℎ)

[(𝑡−𝑎)/ℎ]

𝑗=0

 (2.4) 

where 𝑤𝑗
𝛼 = (−1)𝑗 (

𝛼

𝑗
) are the binomial coefficients of (1 − 𝑧)𝛼. The values of α can 

be non-integer positive or negative depending upon the differentiation or integration. 

The subscripts to the left and right side of 𝐷 are the lower and upper limits of the 

integral. 

(ii) Riemann-Liouville: In the second approach, a convolution type representation 

of repeated integration is generalized. This approach is employed by Riemann- 

Liouville and Caputo definitions [9]. These are fundamentally related to fractional 

integration operator, making it more popular than other approaches. This approach is 

significant in handling with real-world problem, since it allows traditional initial and 

boundary conditions for the formulation of the problem. Resulting the following 

expression as given in equation (2.5) 

𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(n − 𝛼)
∫

𝑓(𝑛)(𝜏)

(𝑡 − 𝜏)𝛼+1−𝑛
𝑑𝜏

𝑡

𝛼

 (2.5) 

where 𝛼 ∈ (𝑛 − 1, 𝑛), and 𝛤(∙) is defined as the gamma function. 

Laplace transform is a significant tool to design and study the electronic 

circuits, it transforms circuit system from the time domain into the frequency domain. 

The analysis of circuits can be done algebraically with this transformation, minimizing 

the complexity of solving lengthy differential equations. Hence applying Laplace 

transform to (2.5) gives us equation (2.6) 

𝐿{𝐷𝑡
𝛼𝑓(𝑡)} = 𝑠𝛼𝐹(𝑠) − ∑ 𝑠𝛼−𝑘−1 𝑓(0)(𝑘)

𝑛−1

𝑘=0

 (2.6) 

where 𝑓(0) is the initial condition. 

𝑠𝛼 is known as the fractional Laplacian operator the most important 

mathematical tool is being applied to various applications in fractional domain. 

(iii) Caputo’s definition of Fractional Order differentiation: This comes under 

other approaches apart from first two as mentioned 

𝑜𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(1 − 𝛾)
∫

𝑓(𝑚+1)(𝜏)

(𝑡 − 𝜏)𝛾
𝑑𝜏

𝑡

0

 (2.7) 
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where 𝛼 = 𝑚 + 𝛾, m is an integer and 0 < 𝛾 ≤ 1.Also, its definition for fractional-

order integral is defined as [9]: 

𝑜𝐷𝑡
𝛾

𝑓(𝑡) =
1

𝛤(−𝛾)
∫

𝑓(𝜏)

(𝑡 − 𝜏)1+𝛾
𝑑𝜏, 𝛾 > 0

𝑡

0

 (2.8) 

2.4 Fractance Device 

A fractional order impedance function may be characterized in the 

frequency domain using the above mentioned definitions. 

𝑍(𝑠) = 𝑘𝑠𝛼 = (𝑘𝜔)𝛼𝑒𝑗
𝛼𝜋
2  (2.9) 

where 𝑘 is constant and 𝛼 is a fractional order. The analog behavior of the element can 

be clearly explained from equation (2.9). 

α =  {
−1 < 𝛼 < 0 , 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑒𝑠 𝑎𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑟𝑑𝑒𝑟 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟

0 < 𝛼 < 1, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑒𝑠 𝑎𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑟𝑑𝑒𝑟 𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟
 (2.10) 

For special cases of α: 

α = {

−1, 𝑖𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟
−2 , 𝑖𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝐹𝐷𝑁𝑅

1, 𝑖𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟
 (2.11) 

where FDNR stands for Frequency Dependent Negative Resistor. Figure 1.1 classifies 

these elements briefly. 

 
Figure 2.1 Classification of fractional-order element [10] 

However, for physical realization of fractional order systems the fractional 

order capacitors and inductors are not yet available commercially. Hence, until the 

device is available for use there are numerous techniques to simulate the behavior of 

these fractional order impedances. In the following we describe some of these 
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techniques which have been employed by different researchers in realization of the 

CPE used in various analog signal processing circuits. 

2.4.1 Methods of designing fractance element (𝒔𝜶)1 

I. Valsa and Vlach Approximation [11]: 

Valsa and Vlach have described the analysis of the fractal systems for 

creating the analog model for the Constant Phase element (CPE). Their paper provides 

the methodology to simulate the CPE behavior. The effect of component tolerances 

for resultant responses is also described well in the paper. The impedance of CPE is 

defined as: 

𝑍(𝑠) = 𝐷(𝑗𝜔)𝛼 = 𝐷𝑗𝛼𝜔𝛼 =  𝐷𝜔𝛼𝑒𝑗𝛼 = 𝐷𝜔𝛼(cos 𝜑 + sin 𝜑) (2.12) 

where 𝜑 = 𝛼
𝜋

2
 for φ in radians or 𝜑 = 90𝛼 for  𝜑 in degrees. The character of 

impedance 𝑍(𝑠) is decided by exponent α, as explained in previous section. This 

approximation is derived using basic network model of RC branches. The simulation 

results for this method will be shown in the later section. 

II. Continued Fraction Expansion (CFE) [12]: 

This approximation is based on the biquadratic second order transfer 

function of equal orders obtained by approximating 𝑠𝛼, which can be further used to 

increase the operating ranges by cascading with other biquadratic forms. 

III. Matsuda and Fujii Approximation [13]: 

This method was originally referred to as first form of Thiele’s continued 

fraction (T-CF1). However, Matsuda and Fujii used this method for the very first time 

and henceforth this method is now referred by their name. By approximating the 

original function into set of equally logarithmic spaced frequencies, 𝜔𝛼 can be written 

as: 

𝜔𝛼 = 𝑑0 +
𝜔 − 𝜔0

𝑑1 +
𝜔 − 𝜔1

𝑑2 +
…

… +
𝜔 − 𝜔𝑘

𝑑𝑘+1 + ⋯

 

(2.13) 

IV. Oustaloup, Levron, Mathieu, and Nanot approximation [14]: 

                                                 

 

 
1 In contrast to the prevalent practice of naming a method by the name of the first authors of the paper in which the method was 

introduced, we have consciously put the name of all the authors of the paper in the name of the method. 
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This approximation is obtained via fractional operator 𝑠𝛼 as shown in the 

following equation 

𝑠𝛼 = 𝐶 ∏
1 + 𝑠/𝜔𝑘

′

1 + 𝑠/𝜔𝑘
 (2.14) 

where C is parameter for adjusting. 

V. Carlson and Halijak Approximation [15]: 

 This approximation deals with the well-known third order newton process 

for approximating (1 𝑠⁄ )1 𝑛⁄  or 𝑠1 𝑛⁄ . Considering a system whose transfer function 

T(s) is given by: 

𝑇(𝑠) =
1 + 𝑀𝐵

1 + 𝐴2𝐵
∗ 𝐴 (2.15) 

For simulating 1/√𝑠, consider 𝑀(𝑠) = 1 𝑠⁄  𝑎𝑛𝑑 𝐵(𝑠) = 𝐵0 𝑠⁄  and by considering 

large feedback gain, the new transfer function can be re-written as : 

𝑇(𝑠)′ = lim
𝐵0→∞

𝑇(𝑠) = 1 𝐴𝑠⁄  (2.16) 

Now to obtain transfer function 1 √𝑠⁄ , simply substitute 𝐴 = 1 √𝑠⁄  in the above 

equation and apply Taylor’s expansion formula to approximate it. Similarly, we can 

approximate √𝑠 also. 

2.5 Simulation Results 

In this dissertation, we have performed the approximation of fractional 

capacitors for different value of α and different frequency ranges using mainly 

following two methods 

i. Valsa and Vlach method 

ii. Oustaloup, Laveron, Mathieu and Nanot method 

In the following we present the details of the first method with the help of an example 

and PSPICE simulations. For simulating the characteristics of ideal CPE, the resulting 

electrical scheme model is shown in Fig 2.2. 



15 

 

 
Figure 2.2 Resulting scheme of Constant Phase Element 

For designing a constant phase element (CPE) in the frequency range and ripple 

factor as given below: 

fmin (minimum frequency) = 1mHz, fmax (maximum frequency) = 1MHz and ∆𝝋 

(ripple factor in degree) =±1°, following steps need to follow: 

Step 1:  We calculate the value of 

𝑎𝑏 =
0.24

1 + ∆𝜑
 (2.17) 

and from the product of ab we can find out individual values of a and b using 

formula 𝑎𝑏 = 10𝛼 log(𝑎𝑏). For different value of α, different value of a and b are 

obtained. From the 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 we calculate 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 using the formulae: 

𝜔𝑚𝑖𝑛 = 2 ∗ 𝜋 ∗ 𝑓𝑚𝑖𝑛 𝑎𝑛𝑑 𝜔𝑚𝑎𝑥 = 2 ∗ 𝜋 ∗ 𝑓𝑚𝑎𝑥 (2.18) 

Step 2: We can find the value of time constant: 

 = 1/𝜔𝑚𝑖𝑛 (2.19) 

and by assuming the value of first capacitor 𝐶1 to determine the value of 𝑅1 from the 

relation: 

𝑅1 = 𝜏/𝐶1 (2.20) 

Step 3: We find the number of branches (m) from equation: 

 𝜔𝑚𝑎𝑥 =
𝜔𝑚𝑖𝑛

𝑎𝑏𝑚
 (2.21) 

𝑤ℎ𝑒𝑟𝑒 𝑚 = (𝑙𝑜𝑔10
𝜔𝑚𝑎𝑥

𝜔𝑚𝑖𝑛
) /(𝑙𝑜𝑔10 (𝑎𝑏)), giving m as number of branches which can 

be further used for finding out the values of capacitors 𝐶𝑝, 𝐶𝑘 and resistors 𝑅𝑝, 𝑅𝑘 of 

the branches: 

𝑅𝑘 =  𝑅1𝑎𝑘−1, 𝑘 = 1,2, … 𝑚 𝑎𝑛𝑑 𝑅𝑝 =  𝑅1

1 − 𝑎

𝑎
 (2.22) 

𝐶𝑘 =  𝐶1𝑏𝑘−1, 𝑘 = 1,2, … 𝑚 𝑎𝑛𝑑 𝐶𝑝 =  𝐶1

𝑏𝑚

1 − 𝑏
 (2.23) 
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Step 4: The input impedance for the selected value of 𝑅1 𝑎𝑛𝑑 𝐶1can be calculated from 

the equation: 

𝑌(𝑗𝜔𝑎𝑣) =
1

𝑅𝑝
+ 𝑗𝜔𝑎𝑣𝐶𝑝 + ∑

𝑗𝜔𝑎𝑣𝐶𝑘

1 + 𝑗𝜔𝑎𝑣𝑅𝑘𝐶𝑘

𝑚

𝑘−1

 (2.24) 

For finding the average frequency we use formulae: 

𝜔𝑎𝑣 = 𝑧𝑘√𝑎 =
1

𝑅1𝐶1(𝑎𝑏)𝑘−1 √𝑎 (2.25) 

𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝑖𝑛𝑡(𝑚/2). 

Step 5: The slope of modulus (D) is proportional to α, and can be calculated as: 

𝐷 = 𝑍𝑎𝑣𝜔𝑎𝑣
−𝛼 (2.26) 

𝑤ℎ𝑒𝑟𝑒 𝑍𝑎𝑣 =
1

|𝑌(𝑗𝜔𝑎𝑣)|
. 

We have computed the values of the resistances and capacitances for different values 

α using MATLAB. These values are tabulated below in Table-2.1-Table 2.6. 

Table 2.1 Value of resistance and capacitance for α= 0.25 

𝑅1 = 4740.2 𝐾Ω 𝐶1 = 0.03359 𝜇𝐹 

𝑅2 = 2789.9 𝐾Ω 𝐶2 = 6.849 𝜇𝐹 

𝑅3 = 1642.1 𝐾Ω 𝐶3 = 1.396 𝜇𝐹 

𝑅4 = 966.46 𝐾Ω 𝐶4 = 0.2847 𝜇𝐹 

𝑅5 = 568.83 𝐾Ω 𝐶5 = 0.0581 𝜇𝐹 

𝑅6 = 334.79 𝐾Ω 𝐶6 = 0.0118 𝜇𝐹 

𝑅7 = 197.05 𝐾Ω 𝐶7 = 2.4130 𝑛𝐹 

𝑅8 = 115.98 𝐾Ω 𝐶8 = 0.49198 𝑛𝐹 

𝑅9 = 68.259 𝐾Ω 𝐶9 = 100.31 𝑝𝐹 

𝑅10 = 40.175 𝐾Ω 𝐶10 = 20.451 𝑝𝐹 

𝑅𝑃 = 3.316 𝑀Ω 𝐶𝑃 = 5.2375 𝑝𝐹 

 

Table 2.2 Value of resistance and capacitance for α= 0.35 

𝑅1 = 12.138 𝑀Ω 𝐶1 = 13.118 𝜇𝐹 

𝑅2 = 5.7793 𝑀Ω 𝐶2 = 3.3063 𝜇𝐹 

𝑅3 = 2.7516 𝑀Ω 𝐶3 = 0.833 𝜇𝐹 
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𝑅4 = 1.3101 𝑀Ω 𝐶4 = 0.210𝜇𝐹 

𝑅5 = 623.76 𝐾Ω 𝐶5 = 0.0529𝜇𝐹 

𝑅6 = 296.98 𝐾Ω 𝐶6 = 13.342 𝜇𝐹 

𝑅7 = 141.40 𝐾Ω 𝐶7 = 3.363 𝑛𝐹 

𝑅8 = 67.322 𝐾Ω 𝐶8 = 847.52 𝑝𝐹 

𝑅9 = 32.053 𝐾Ω 𝐶9 = 213.61 𝑝𝐹 

𝑅10 = 15.261 𝐾Ω 𝐶10 = 53.838 𝑝𝐹 

𝑅𝑃 = 13.356 𝑀Ω 𝐶𝑃 = 18.142 𝑝𝐹 

 

Table 2.3 Value of resistance and capacitance for α= 0.5 

𝑅1 = 57.71 𝑀Ω 𝐶1 =  2.759 𝜇𝐹 

𝑅2 = 19.99 𝑀Ω 𝐶2 = 0.956 𝜇𝐹 

𝑅3 = 6.93 𝑀Ω 𝐶3 =  0.331 𝜇𝐹 

𝑅4 = 2.39 𝑀Ω 𝐶4 = 0.115 𝜇𝐹 

𝑅5 = 831.08 𝐾Ω 𝐶5 = 39.73 𝑛𝐹 

𝑅6 = 287.89 𝐾Ω 𝐶6 = 13.763 𝑛𝐹 

𝑅7 = 99.73 𝐾Ω 𝐶7 = 4.768 𝑛𝐹 

𝑅8 = 34.55 𝐾Ω 𝐶8 = 1.652 𝑛𝐹 

𝑅9 = 11.968 𝐾Ω 𝐶9 = 0.572 𝑛𝐹 

𝑅10 = 4.1457 𝐾Ω 𝐶10 = 0.198 𝑛𝐹 

𝑅𝑃 = 108.89 𝑀Ω 𝐶𝑃 = 0.105 𝑛𝐹 

 

Table 2.4 Value of resistance and capacitance for α= 0.6 

𝑅1 = 175.34 𝑀Ω 𝐶1 =  0.908 𝜇𝐹 

𝑅2 = 49.134 𝑀Ω 𝐶2 = 0.389 𝜇𝐹 

𝑅3 = 13.769 𝑀Ω 𝐶3 =  0.167 𝜇𝐹 

𝑅4 = 3.858 𝑀Ω 𝐶4 = 71.316 𝑛𝐹 

𝑅5 = 1.081 𝑀Ω 𝐶5 = 30.539 𝑛𝐹 

𝑅6 = 302.98 𝐾Ω 𝐶6 = 13.078 𝑛𝐹 

𝑅7 = 84.903 𝐾Ω 𝐶7 = 5.600 𝑛𝐹 

𝑅8 = 23.792 𝐾Ω 𝐶8 = 2.398 𝑛𝐹 
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𝑅9 = 6.667 𝐾Ω 𝐶9 = 1.027 𝑛𝐹 

𝑅10 = 1.868 𝐾Ω 𝐶10 = 0.4398 𝑛𝐹 

𝑅𝑃 = 450 𝑀Ω 𝐶𝑃 = 0.329 𝜇𝐹 

 

Table 2.5 Value of resistance and capacitance for α= 0.8 

𝑅1 = 2.075 𝐺Ω 𝐶1 =  76.74 𝑛𝐹 

𝑅2 = 380.50 𝑀Ω 𝐶2 = 50.21 𝑛𝐹 

𝑅3 = 69.775 𝑀Ω 𝐶3 =  32.86 𝑛𝐹 

𝑅4 = 12.795 𝑀Ω 𝐶4 = 21.51 𝑛𝐹 

𝑅5 = 2.346 𝑀Ω 𝐶5 = 15.073 𝑛𝐹 

𝑅6 = 430.26 𝐾Ω 𝐶6 = 9.209 𝑛𝐹 

𝑅7 = 78.90 𝐾Ω 𝐶7 = 6.026 𝑛𝐹 

𝑅8 = 14.47 𝐾Ω 𝐶8 = 3.943 𝑛𝐹 

𝑅9 = 2.65 𝐾Ω 𝐶9 = 2.580 𝑛𝐹 

𝑅10 = 486.54 Ω 𝐶10 = 1.688 𝑛𝐹 

𝑅𝑃 = 9.2403 𝐺Ω 𝐶𝑃 = 3.198 𝑛𝐹 

 

Table 2.6 Value of resistance and capacitance for α= 0.9 

𝑅1 = 9.997 𝐺Ω 𝐶1 =  15.92 𝑛𝐹 

𝑅2 = 1.483 𝐺Ω 𝐶2 = 12.884 𝑛𝐹 

𝑅3 = 220.0 𝑀Ω 𝐶3 = 10.423 𝑛𝐹 

𝑅4 = 32.635 𝑀Ω 𝐶4 = 8.431 𝑛𝐹 

𝑅5 = 4.841 𝑀Ω 𝐶5 = 6.820 𝑛𝐹 

𝑅6 = 718.14 𝐾Ω 𝐶6 = 5.517 𝑛𝐹 

𝑅7 = 106.53 𝐾Ω 𝐶7 = 4.463 𝑛𝐹 

𝑅8 = 15.803 𝐾Ω 𝐶8 = 3.610 𝑛𝐹 

𝑅9 = 2.344 𝐾Ω 𝐶9 = 2.920 𝑛𝐹 

𝑅10 = 347.75 Ω 𝐶10 = 2.363 𝑛𝐹 

𝑅𝑃 = 57.398 𝐺Ω 𝐶𝑃 = 10 𝑛𝐹 

The phase response of the fractional order capacitor for different values of α have been 

obtained in PSPICE and are given below in Fig. 2.3. 
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Figure 2.3 Phase response of fractional order element 

2.6 Application 

The workability of the fractional order capacitor realized using the Valsa 

and Vlach method have been verified by realizing a low pass filters using fractional 

order capacitors realized by the RC network of order 10. The values of RC components 

used for approximating fractional capacitor have been given in the previous section. 

The lowpass filter of order α with R=1kΩ and C=0.382uf/(rad/sec)(1-α) is shown below 

in Fig. 2.4. Likewise for fractional order, we can say we are designing α order circuit 

as shown below. 

 
 

Figure 2.4 Fractional order low pass filter 

Equation 2.27 describes the characteristics of above system: 
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=

1

1 + 𝑠𝛼𝐶𝑅
 (2.27) 

We have implemented the above α order circuit for different values of α in our PSpice 

for which the frequency responses are obtained as shown below: 
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Figure 2.5 Fractional order low pass filter frequency response 

Cut-off frequencies for various values of α is given in Table 2.1 by determining their 

frequencies at -3dB gain 

Table 2.7 Cut-off frequencies with respect to different values of α 

α 
Cut-off frequency 

(Hz) 

0.25 28.480 M 

0.35 7.4989 M 

0.5 547.818 K 

0.6 108.166 K 

0.8 16.876 K 

0.9 9.0063 K 

2.7 Conclusion 

This chapter illustrates a relatively simple and acceptably faithful network 

model of the CPE, built from passive resistors and capacitors. In comparison to other 

presented models in research domain, its design does not need complicated 

optimization steps. Different values of gain can be obtained within specific frequency 

range.  
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FRACTIONAL ORDER ANALOG INVERSE FILTER 

USING OTAs2
 

3.1 Introduction 

In the previous chapter, we have very briefly summarized the fundamental 

definitions of fractional order derivatives and integrals. Various approximation 

methods used for simulating the behaviour of a constant phase element were also 

presented. A network model of the CPE using the Valsa and Vlach method was also 

developed. In the present chapter we present fractional order inverse filter circuits 

realizing fractional order, inverse high pass, inverse bandpass and inverse band reject 

responses. 

An analog inverse filter provides frequency selective characteristics which 

are inverse of the conventional analog filter. Inverse filters remove the consequences 

of distortion in the signal while processing it through system. Analog inverse filters 

have potential usages in communication systems, control systems, instrumentation and 

measurement systems. Over the years, many inverse filter circuits realized with 

different active elements have been proposed in open literature [1]-[20]. Among these 

reported inverse filter configurations, only few utilise FCs [1], [7], [8]. In [1], two 

fractional order inverse filter circuits employing operational amplifier were proposed, 

in which one of the circuits used one operational amplifier and five admittances whereas 

the other circuit employed one operational amplifier and seven admittances to realize 

different fractional order inverse filter responses, namely, fractional order inverse high 

pass response, fractional order inverse band pass response, and fractional order inverse 

                                                 

 

 
2 The content and results of the following paper has been reported in this chapter: J. Srivastava, R. Bhagat, and P. Kumar, 

“Analog Inverse Filters using OTAs,” In 2020 6th International Conference on Control, Automation and Robotics (ICCAR), 

2020, pp. 638-643. https://doi.org/10.1109/ICCAR49639.2020.9108048  Indexing: SCOPUS and EI Compendex. 
 

https://doi.org/10.1109/ICCAR49639.2020.9108100
https://doi.org/10.1109/ICCAR49639.2020.9108100
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low pass response. In [7], three fractional order inverse filters, namely, fractional order 

inverse low pass filter, fractional order inverse high pass filter, and fractional order 

inverse band pass filter employing two current feedback operational amplifiers 

(CFOAs) were presented. The fractional order inverse low pass filter circuit used four 

resistors and two FCs, fractional order inverse high pass filter circuit used two resistors, 

four FCs and fractional order inverse band pass filter circuit utilized three resistors and 

three FCs. Two operational trans resistance amplifiers (OTRAs) and eight admittances 

based fractional order inverse filter was reported in [8]. The circuits presented therein 

can provide fractional order inverse low pass filter response, fractional order inverse 

high pass filter response, fractional order inverse band pass filter response and 

fractional order inverse notch filter response. From the above literature survey, it may 

be noted that there are very few inverse filter configurations reported in the open 

literature which use FCs. Also, the reported circuits generally use a very large number 

of passive elements and do not have any provision for control of different parameters 

of the realized circuits.  

 In this chapter three new tunable voltage-mode analog inverse filter circuits 

using operational transconductance amplifiers (OTAs) and fractional capacitors (FCs) 

are presented. The proposed structures realize fractional order inverse high pass filter 

response, fractional order inverse band pass filter response and fractional order inverse 

band elimination filter response employing three single output OTAs and two FCs only. 

The maximum/minimum frequency (ωm) and bandwidth of the presented fractional 

order inverse band pass filter and fractional order inverse band elimination filter can be 

tuned orthogonally by changing the transconductance of different OTAs. The high 

frequency gain of fractional order inverse high pass filter can be changed independently 

while its cut-off frequency (ωh) and pole quality factor (Q) can be changed orthogonally. 

The performance of all the presented circuits has been evaluated using Cadence 

Virtuoso simulation tools with 0.18µm technology parameters. 

3.2 Proposed Fractional Order Voltage-Mode Inverse Filter 

Configurations 

All the proposed fractional order inverse filter circuits employ three OTAs 

and two FCs. An OTA represented symbolically in Fig. 3.1, and equation (3.1) 
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characterizes the terminal relationship between its input differential voltage and output 

current: 

 
Figure 3.1 Symbolic representation of OTA 

 

)(   VVgI mout  (3.1) 

The fractional order capacitor on the other hand is characterized by the 

following driving point impedance : 


Cs

1
= Z(s)  (3.2) 

The Fig. 3.2-3.4 depict the different fractional order inverse filter circuits proposed in 

this chapter. 

 
Figure 3.2 Fractional order inverse high pass filter 

 

 
Figure 3.3 Fractional order inverse band pass filter 
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Figure 3.4 Fractional inverse band elimination filter 

Analysing the circuits shown above using terminal characteristics of the 

OTAs and the fractional order capacitors given in equations (3.1)-(3.2) the transfer 

functions (3.3)-(3.8) for the various fractional order inverse filter circuits are obtained 

as: 

3.2.1 Fractional order inverse high pass filter: 

0
2

00
2

0

)(

)(

cs

bsas

sV

sV

IN


 
  (3.3) 

where 230 / Cga  , 21320 / CCggb  and 120 / ggc  . 

3.2.2 Fractional order inverse band pass filter: 
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  (3.4) 

where 21321 / Cggga  , 21321 / CCggb   and 21321 / Cgggc  . 

3.2.3 Fractional order inverse band elimination filter: 
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 (3.5) 

where 112 /Cga  , 21322 / CCggb   and 21322 / CCggc  . 

The cut off frequency (ωh) and maximum/minimum frequency (ωm) of 

fractional order inverse high pass filter, fractional order inverse band pass filter and 

fractional order inverse band elimination filter, correspond to these frequencies for their 

normal filter counterparts and may be found by solving the following non-linear 

equations [24]: 
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The theoretical value of maximum/minimum frequency of band pass and band 

elimination filter can be calculated from  1
1)(bm  and  1

2 )(bm  respectively. 

Table 3.1 shows the values of the ωm/h, H and Q for 𝛼 =  1. From Table 

3.1, it may be observed that H for fractional order inverse high pass filter can be varied 

by changing the value of 𝑔1 while its ωh and Q can be tuned orthogonally. On the other 

hand ωm and BW of fractional order inverse band pass filter and fractional order inverse 

band elimination filter can be tuned orthogonally. 

Table 3.1 Cut off Frequency, Gain and Pole Quality Factor for α=1 

 H Frequency BW Q 

Inverse high 

pass filter  12

23

CC

gg
h   - 

 

Inverse band 

pass filter 
1 

12

23

CC

gg
m   

21

23

Cg

gg
 

 

Inverse band 

elimination 

filter 

1 
12

23

CC

gg
m   

  

3.3 Simulation Results 

The performance of the proposed circuits has been validated through 

Analog Design Environment (ADE) tool of Cadence Virtuoso with 0.18µm CMOS 

technology parameters. The CMOS OTA [23] used in this chapter is shown in Fig. 3.5 

and aspect ratio used are taken from [25]. Four types of aspect ratios are used in this 

combination. The DC power supply of ±0.9V were used in the simulations. 

1
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Figure 3.5 CMOS implementation of OTA 

We have used two identical valued fractional order capacitors of 0.382 µF 

(rad/sec)(1-α) designed using Valsa and Vlach method [24]. Different values of α (0.7, 

0.8, 0.9 and 1) have been used in simulations. The fractional order inverse filters were 

designed for a ωh/ωm of 113 Hz (𝛼 = 1). The value of α was changed from 0.7 to 1.0 

in step of 0.1. The frequency response of fractional order inverse high pass filter, 

fractional order inverse band pass filter and fractional order inverse band elimination 

filter have been displayed in Fig. 3.6(a)-(c) respectively. 

 

(a) 
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(b) 

 
Figure 3.6 Frequency responses of (a) fractional order inverse high pass filter, (b) fractional 

order inverse band pass filter and (c) fractional order inverse band elimination filter. 
 

 
Figure 3.7 Tunability of gain for fractional order inverse high pass filter 

In Fig. 3.7, the electronic tunability of gain for fractional order inverse high 

pass filter has been shown by varying transconductance g1 for 715.549µS, 516.164µS, 
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275.038µS and 152.162µS. The Q of the fractional order inverse band pass filter and 

inverse band elimination filter have been varied for constant frequency 130 Hz by 

varying transconductance g1 (715.549µS, 516.164µS, 275.038µS and 152.162µS) and 

their respective results have been illustrated in Fig. 3.8 and Fig. 3.9. 

 
Figure 3.8 Tunability of Q for fractional order inverse band pass filter 

 

 
Figure 3.9 Tunability of Q for fractional order inverse band elimination filter 

Table 3.2 gives the values of the ωh, ωm of the presented fractional order 

inverse filters measured through simulations and calculated theoretically for different 

values of α. 
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Table 3.2 Cut-off Frequencies (in Hz) of Filters for Different α 

 

3.4 Conclusion 

Three new VM analog inverse filter configurations employing three OTAs 

and two fractional capacitors have been presented. The proposed circuits are capable of 

providing fractional order inverse high pass response, fractional order inverse band pass 

response and fractional order inverse band elimination response. The presented 

fractional order inverse band pass filter and fractional order inverse band elimination 

filter circuits have orthogonal tunability of ωm and bandwidth. The gain of the fractional 

order inverse high pass filter can be tuned independently while its ωh and Q can be 

changed orthogonally. Simulation results have confirmed the working of these 

fractional order inverse filter circuits. 

  

α 1 0.9 0.8 0.7 

Inverse high pass 

(Simulated) 
131.8 204.2 676 3715 

Inverse high pass 

(Theoretical) 
113.05 217.293 709.056 3349.88 

Inverse band pass 

(Simulated) 
112.2 234.4 660.7 1738 

Inverse band pass 

(Theoretical) 
113.05 234.479 583.63 1885.08 

Inverse band elimination 

(Simulated) 
114 239.9 631 1820 

Inverse band elimination 

(Theoretical) 
113.05 234.479 583.63 1885.08 
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VDTA BASED FRACTIONAL ORDER UNIVERSAL 

FILTER3 

4.1 Introduction 

In the previous chapter we presented circuit configurations realizing inverse 

high pass filter, inverse bandpass filter and inverse band reject filter in fractional order 

domain. In the present chapter, we have generalized a VDTA based integer order filter 

in the non-integer (fractional order) domain and examined the electronic tunability of 

various parameters of the filter. 

Analog signal processing applications frequently employ active filters as 

important basic building blocks. Ever since the introduction of the VDTA [1], it has 

been extensively utilized for realization of filter circuits and sinusoidal oscillators [2–

5]. In like manner, use of fractional order circuits are gaining more attention, in research 

areas of biomedical, control systems, and instrumentation, as it explains dynamics of 

natural system more closely. Analog filter, designed using fractional order elements, 

gives a better control over attenuation gradient in the pass/stop band. Several fractional 

order filter circuits utilizing different active building blocks (ABBs) [4-15] have been 

presented recently. Many of these circuits have generalized an existing integer order 

filter circuit into fractional order domain. A careful perusal of the existing literature on 

fractional order filters reveals that very few circuits of fractional order filters utilizing 

VDTAs have been presented [4-5]. 

This chapter is concerned with the electronic tunability of a current mode 

multiple input single output (MISO) type biquad filter employing one voltage 

                                                 

 

 
3 The content and results of the following paper has been reported in this chapter: J. Srivastava, “VDTA based fractional order 

universal filter,” In 2020 International Conference for Innovation in Technology (INOCON), 2020. (Accepted) Indexing: 
SCOPUS and EI Compendex. 
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differencing transconductance amplifier (VDTA) and two fractional order capacitors. 

The tunability of all the filters, namely, fractional high pass filter (FHPF), fractional 

low pass filter (FLPF), fractional band pass filter (FBPF), fractional band reject filter 

(FBRF), and fractional all pass filter (FAPF) with respect to 𝛼 and 𝐼𝑏𝑖𝑎𝑠 is shown. The 

workability of the modified filter is verified using PSPICE simulations. 

Here, we have generalized the modified single VDTA based three input and 

a single output current-mode electronically tuneable universal biquadratic filter [2] in 

fractional order domain and examined the electronic tunability of the various 

parameters of the filter. The pole frequency (𝜔0) of the modified circuit can be 

electronically tuned by using two parameters 𝛼 and 𝐼𝑏𝑖𝑎𝑠 independently. Also, the 

stability of the presented circuit has been analysed. 

4.2 Circuit Description 

4.2.1 Designing Fractional-order Capacitor using Oustaloup, Laveron, 

Mathieu and Nanot Approximation [16] 

This approximation method mainly focuses on characteristics and synthesis 

of frequency band complex non-integer differentiator. Using this method, the 

fractional operator sα can be synthesis in the frequency band of interest [ωmin, ωmax] 

The approximated fractional operator sα can be written as: 




 




Nk

k

k

k

s

s

Cs
1

'

1

1




 (4.1) 

4.2.2 Steps for determining the fractional capacitor using Oustaloup, Laveron, 

Mathieu and Nanot Approximation 

1) Starting with given values of α (between 0 to 1), 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 (desired minimum 

and maximum frequency) and N (no. of order). 

2) Unity gain frequency (ωu) can be obtained as: 

maxmin  u  (4.2) 

3) Gain adjustment parameter ‘C’ can be calculated as: 
















min

uC  (4.3) 

4) By calculating all the parameters listed above, sα can be approximated as: 



37 

 




 




Nk

k

k

k

s

s

Cs
1

'

1

1



  (4.4) 

where 

   Nk

k

2/12

min

max
min

'


















 and 

   Nk

k

2/12

min

max
min


















  

5) By taking the partial fraction of the equation (4.4) it can be generalized as: 
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and thereby applying network synthesis to convert it into foster I circuit as shown in 

fig 1. 

 
Figure 4.1 Foster I canonical RC structure 

By considering 𝑓𝑚𝑖𝑛=0.1Hz, 𝑓𝑚𝑎𝑥= 100 MHz and N=8, the phase response 

of the resultant structure shown above is plotted in fig 4.2 for different values of α 

ranging between 0 to 1. 

 
Figure 4.2 Phase response for different α 
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4.2.3 The Voltage Differencing Transconductance Amplifier (VDTA) 

The VDTA is an adaptable ABB as shown in Fig. 4.1. 

 
Figure 4.3 VDTA structure 

Essentially, the VDTA device comprises of an input voltage subtractor 

where input voltage difference (𝑣𝑝– 𝑣𝑛) is transferred through the z-terminal in form 

of current (𝑖𝑧) by the first transconductance gain (𝑔𝑚1), and a dual output 

transconductance amplifier that are responsible for converting the voltage at z-terminal 

to the currents at x-terminals by transconductance gain (𝑔𝑚2). Also, zc terminal, gives 

the copy of current 𝑖𝑧 as 𝑖𝑧𝑐. Evaluating the fundamental operation of an ideal VDTA, 

the following matrix depicts its terminal relationship: 
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where 𝑔𝑚1 and 𝑔𝑚2 are the electronically controllable transconductances gain of the 

VDTA using OTAs. Its relation with external bias current (𝐼𝑏𝑖𝑎𝑠) is given in equation 

(4.2). 

T

bias
m

V

I
g

2
  (4.7) 

Since the VDTA is yet not available, there are several possibilities of its 

implementation, implementing it through ICs is commercially more feasible. In this 

chapter VDTA is implemented using three OTA ICs LM13700 at two 

transconductance gain stages and six input output terminals as shown in Fig 4.2. 
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Figure 4.4 VDTA using LM13700 IC 

4.3 The Fractional order VDTA Filter 

The generalized fractional order universal filter circuit with multiple input, 

single output, comprising of single VDTA and two FCs is shown in Fig 4.3. The use of 

FCs [16-17] provides the flexibility of tuning through two parameters namely, 

transconductance gain (𝑔𝑚) and α making it easier to be tuned and controlled. 

 
Figure 4.5 The modified fractional order current mode filter 

Equations (4.3) and (4.4) give the output function of the above circuit. 
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Conditions for realization of FLPF, FHPF, FBPF, FBSF, and FAPF are shown in Table 

4.1. 
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Table 4.1 Condition for Universal filter responses 

Filters Cases 

FLP 0, 213  IIII in  

FHP 21321 , mmin ggIIII 
 

FBP 0, 312  IIII in  

FBR 21321 ,0, mmin ggIIII 
 

FAP 21321 ,0,2/ mmin ggIIII 
 

For any fractional order filter with transfer function T(s), the following 

important parameters should be determined [11]: 𝜔𝑚 (maxima or minima frequency), 

𝜔ℎ (pole cutoff frequency/half power frequency), and 𝜔𝑟𝑝 (right phase frequency). 

The bandwidth of any filter can also be calculated using 𝜔ℎ. 
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B. FHPF 
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C. FBPF 
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D. FBSF 
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By putting the value of 𝛼 = 1, all the important frequency parameters for 

different filters namely, FLPF, FHPF, FBPF, and FBRF are shown in Table II. For the 

values of 𝛼 other than 1, these important parameters of different filter can be obtained 

using equation (4.5)-(4.17). 
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Table 4.2 Filter parameters when α=1 

Types of 

filters m  h  rp  

FLPF  1ka  
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4.4 Stability Analysis 

For any fractional order system, the stability can be obtained by mapping s-

plane into W-planes [18]. The stability graph shown in fig 4.5-4.9 is plotted using 

matlab command forlocus by keeping the coefficients of characteristics equation (4.4) 

positive where value of α lies between 0 and 1. Table 4.3 shows the different cases of 

stability for fractional order and accordingly its pole quality factor Q  and pole 

frequency 0 . Also, while observing the graph carefully we can conclude that the 

number of poles in the stability plot will be equal to highest power of s multiple by 10. 

 
Figure 4.6 W-plane (Region of stability) 
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Figure 4.7 Stability plot of FLPF C=0.382µF and α=0.9 

 
Figure 4.8 Stability plot of FHPF C=0.382µF and α=0.9 

 
Figure 4.9 Stability plot of FBPF C=0.382µF and α=0.9 
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Figure 4.10 Stability plot of FBSF C=0.382µF and α=0.9 

 
Figure 4.11 Stability plot of FAPF C=0.382µF and α=0.9 

 

Table 4.3 Different cases of stability, roots, o and Q 

Cases Relations Condition for stability and roots 0 , Q  

1 ba 4  

2 , 

    jeg
abaa

r 2,1

2

2,1
2

4



  

 /1

2,12,10 g , 

  /cos2

1
Q  

2 ba 4  




2
 , 

22
cos 1 

 






 
 

ab

a
, 

jeabr 2,1  

  


/1

0 ab , 

  /cos2

1
Q  

 

4.5 Simulation Results 

The workability of the FO filters has been verified through PSPICE 

simulation using the macro model of OTA IC LM 13700. 
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4.5.1 Tunability with α: 

It can be achieved by replacing each ordinary capacitors with equal valued 

FCs (𝐶1 = 𝐶2 = 0.382 µ𝐹/(𝑟𝑎𝑑/𝑠𝑒𝑐)(1−𝛼)) designed using Oustaloup, Laveron, 

Mathieu and Nanot method [16] for α=0.6, α=0.7, α=0.8, α=0.9 in the frequency range 

of 0.1 Hz to 100 MHz. All the filters designed in this section have values 𝐼𝑏𝑖𝑎𝑠1 =

𝐼𝑏𝑖𝑎𝑠2 = 0.1079𝑚𝐴 (𝑅𝑏𝑖𝑎𝑠=265 KΩ). 

The different frequency parameters for filters for α=0.6 to α=1.0 have been 

listed in Table 4.4-4.5 and their simulation results are shown in Fig (4.10) - (4.14). The 

simulation values and theoretical values differ in a very small range of error (less than 

5%). 

 
Figure 4.12 Tunability of FLP with respect to α 

 
Figure 4.13 Tunability of FHP with respect to α 
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Figure 4.14 Tunability of FBP with respect to α 

 

Figure 4.15 Tunability of FBS with respect to α 

 

Figure 4.16 Tunability of FAP with respect to α 
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4.5.2 Tunability with Ibias 

Tunability with 𝐼𝑏𝑖𝑎𝑠 is obtained by varying the external bias current of 

OTAs, here by keeping the value of 𝐼𝑏𝑖𝑎𝑠1and 𝐼𝑏𝑖𝑎𝑠2 same for all the conditions 𝐼𝑏𝑖𝑎𝑠1 =

𝐼𝑏𝑖𝑎𝑠2 = 0.1079 𝑚𝐴, 0.40857 𝑚𝐴, 1.1 𝑚𝐴, 𝑎𝑛𝑑1.9 𝑚𝐴 with the values of the bias 

resistors 𝑅𝑏𝑖𝑎𝑠 as 265 KΩ, 70 KΩ, 25 KΩ and 15 KΩ respectively. All the important 

frequency parameters for filters have been listed in Table 4.6-4.7 and their simulation 

results is shown in Fig 4.15-4.19. Again, the error between theoretical and simulated 

values are very less and acceptable (less than 5%). 

 
Figure 4.17 Tunability of FLP with respect to Ibias 

 
Figure 4.18 Tunability of FHP with respect to Ibias 
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Figure 4.19 Tunability of FBP with respect to Ibias 

 
Figure 4.20 Tunability of FBS with respect to Ibias 

 
Figure 4.21 Tunability of FAP with respect to Ibias 
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Table 4.4 Cut-off frequencies (fh) (in khz) of fractional filters for different α 

α 1 0.9 0.8 0.7 0.6 

FLPF 

(Simulated) 
1.11 6.1054 6.3855 19.020 104.557 

FLPF 

(Theoretical) 
1.0999 2.426 6.110 19.405 94.190 

FHPF 

(Simulated) 
0.89 4.4173 9.0124 67.9611 824.383 

FHPF 

(Theoretical) 
0.88 2.0835 9.018 61.271 758.168 

 

Table 4.5 Max/min frequencies (fm) (in khz) of fractional filters for different α  

α 1 0.9 0.8 0.7 0.6 

FBPF 

(Simulated) 
0.871 5.2481 8.1283 30.903 223.872 

FBPF 

(Theoretical) 
0.865 2.426 7.423 34.482 267.230 

FBRF 

(Simulated) 
0.871 5.1286 7.9433 33.113 234.423 

FBRF 

(Theoretical) 
0.865 2.426 7.423 34.482 267.230 

 

Table 4.6 Cut-off frequencies (fh) (in khz) of fractional filters for different Ibias 

 265 k 70 k 25 k 15 k 

FLPF 

(Simulated) 
1.1103 4.1389 11.103 17.826 

FLPF 

(Theoretical) 
1.0996 4.1639 11.659 19.431 

FHPF 

(Simulated) 
0.6898 2.58767 7.001 11.262 

FHPF 

(Theoretical) 
0.6796 2.57315 7.2059 12.0009 

 

Table 4.7 Max/min frequencies (fm) (in khz) of fractional filters for different Ibias  

 265 k 70 k 25 k 15 k 

FBPF 

(Simulated) 
0.871 3.2359 8.9125 14.453 

FBPF 

(Theoretical) 
0.864 3.2735 9.1659 15.276 

FBRF 

(Simulated) 
0.871 3.2359 8.9125 14.453 

FBRF 

(Theoretical) 
0.864 3.2735 9.1659 15.276 
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Table 4.8 Slope of attenuation in passband/stopband (dB/decade) 

 1 0.9 0.8 0.7 0.6 

FLPF -40.01 -37.624 -31.47 -27.187 -23.778 

FHPF 40.436 36.833 30.20 26.156 23.267 

4.6 Conclusion 

This chapter has presented a tunaeable configuration of VDTA based 

fractional order universal filter. Tuneability of the filter parameters with respect to 

value of 𝛼 and 𝑔𝑚 has been exhibited. Without changing the circuit configuration, 

using only one VDTA and two fractional capacitors, the circuit presented in this 

chapter can realize all the five standard biquadratic fractional filter functions. The 

condition for the stability of all the modified filters have also been presented.which 

gives us the absolute idea of the location of poles. 
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SUMMARY AND FUTURE SCOPE 

To have a better understanding of natural phenomena happening around, 

study of fractional calculus plays an important role. As it adds an extra degree of 

freedom in terms of ‘α’, where m<α<m+; m=±1, ±2,..so on, it gives us more variations 

as compared to integer ones. In this work, step by step procedures are discussed about 

the methods to approximate of fractional operator sα, followed by a fractional order 

inverse filter and universal fractional order filter using different ABB. 

5.1 Summary 

In chapter-1, we have discussed about the fractional calculus, its origin, 

history and most importantly its need to tackle the practical application problems. 

Along with that, how is it useful in present scenario and its application in electrical 

and electronics engineering have also been discussed briefly. A little discussion on 

comparison between fractional and integer one is also mentioned. 

In chapter-2, different definitions related to fractional calculus that are 

available in open literature is discussed along with fractance device. A list of 

approximation methods to approximate fractance element is also mentioned and finally 

detailed discussion along with simulation results on Valsa and Vlach approximation is 

also carried out. 

In chapter-3, a novel analog inverse fractional order filter structure using 

operational transconductance amplifier and fractional order capacitor is discussed in 

detail. Here, the fractional order capacitor is designed using Valsa and Vlach 

approximation. 

In chapter-4, a generalized current mode universal biquad fractional order 

filter using VDTA is discussed in detail along with its stability. Here the fractional 
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order capacitor is designed using Oustaloup, Laveron, Mathieu and Nanot 

approximation. 

5.2 Future Scope 

There is a vast scope of expansion in terms of fractional calculus and 

works that have carried out using fractional element. Some of these are: 

I. In our work, we only talked about fractional order capacitor and its various 

approximation methods but there is a scope for designing and simulating 

fractional order inductor. 

II. The approximation methods used in our work can be improved further with 

simple steps and more appropriate operating frequency. 

III. Fabrication of fractional order capacitor or fractional order inductor is also an 

area where researchers need to work. 

  



55 

 

PUBLICATION 

PAPERS IN INTERNATIONAL CONFERENCES 

 

[1] J. Srivastava, R. Bhagat, and P. Kumar, “Analog Inverse Filters Using OTAs,” In 

2020 6th International Conference on Control, Automation and Robotics (ICCAR), 

2020, pp. 627-631. (SCOPUS) 

https://doi.org/10.1109/ICCAR49639.2020.9108100 

[2] J. Srivastava, “VDTA based fractional order universal filter,” In 2020 

International Conference for Innovation in Technology (INOCON), 2020. 

(Accepted) (SCOPUS) 

  



56 

 

APPENDICES 

APPENDIX 1 

 

PSPICE model files used for LM13700 (OTA) 

C1  6  4  4.8P 

C2  3  6  4.8P 

C3  5  6  6.26P 

D1  2  4  DX 

D2  2  3  DX 

D3  11 21 DX 

D4  21 22 DX 

D5  1  26 DX 

D6  26 27 DX 

D7  5  29 DX 

D8  28 5  DX 

D10 31 25 DX 

D11 28 25 DX 

F1  4  3  POLY(1)   V6 1E-10 5.129E-2 -1.189E4 1.123E9  

F2  11 5  V2        1.022 

F3  25 6  V3        1.0 

F4  5  6  V1        1.022 

F5  5  0  POLY(2)   V3 V7 0 0 0 0 1 

G1  0  33 5         0 .55E-3 

I1  11 6  300U 

Q1  24 32 31        QX1 

Q2  23 3  31        QX2 

Q3  11 7  30        QZ 

Q4  11 30 8         QY 

V1  22 24 0V 

V2  22 23 0V 

V3  27 6  0V 

V4  11 29 1.4 

V5  28 6  1.2 

V6  4  32 0V 

V7  33 0  0V 

.MODEL QX1 NPN (IS=5E-16     BF=200 NE=1.15 ISE=.63E-16 IKF=1E-2) 

.MODEL QX2 NPN (IS=5.125E-16 BF=200 NE=1.15 ISE=.63E-16 IKF=1E-2) 

.MODEL QY  NPN (IS=6E-15     BF=50) 

.MODEL QZ  NPN (IS=5E-16     BF=266)   

.MODEL DX  D   (IS=5E-16) 

.ENDS 
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APPENDIX 2 

 

Dimensions of CMOS Transistors used in Fig 3.5: 

Table 1 Aspect ratio for OTA 

MOS Transistors Aspect ratio W/L  

M1-M2 3.6/.36 

M3-M4 1.44/.36 

M5 1.44/.36 

M6-M7 2.88/.36 

M8 1.44/.36 

M9 2.88/.36 

 

 


