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ABSTRACT 
 

 

Fractional order circuits incorporating fractional calculus concept have various 

applications in many fields namely, bio-medical engineering, control system, analog 

signal processing/generation, etc. In the present dissertation, along with a brief review 

of different methods of approximations used for the fractional order differentiator and 

integrator operator, fractional order analog universal filter circuits using operational 

transconductance amplifier and LT 1228 ICs have been presented. The workability of 

all the fractional order filter circuits along with fractional operator have been verified 

through PSPICE simulation and MATLAB simulation. Also, stability of all the 

designed fractional order filters have been discussed briefly. 
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INTRODUCTION 

1.1 Introduction to fractional calculus 

Fractional calculus is defined as a branch of mathematical analysis that 

deals with several different possibilities of real number power and complex number 

power and developing a calculus that generalizes the classical one. Likewise classical 

calculus, fractional calculus is also divided into two categories namely, fractional 

integrals and fractional derivatives which are the generalized version of classical 

integral and classical derivative. 

Authors related to this topic usually cite this date as a birth date of fractional 

calculus as in a letter dated 16 September 1695, L'Hopital wrote to Leibniz asking for 

a notation he had used in his publications for the linear function yD
dx

yd n

n

u

  for the 

nth-derivative. L'Hopital questioned, what the result would be if n = ½, thereby 

Leibniz's responses: “An apparent paradox, from which one-day useful consequences 

will be drawn”. This marks the born of fractional calculus [1]. 

It is almost three centuries old as classical calculus and since its adds 

another dimension to understand or describes the nature in a better way, it finds 

numerous application in science and engineering community, for example, electric 

transmission lines, ultrasonic wave propagation in human cancellous bone, speech 

signals modeling, cardiac tissue electrode interface modeling, sound waves 

propagation in rigid porous materials, lateral and longitudinal control of autonomous 

vehicles, application in the theory of viscoelasticity, application in fluid mechanics, 

etc. 
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Figure 1.1 Interpolation of number line to fractional calculus 

1.2 Literature Survey 

Though fractional calculus is almost three centuries old [2], it has become 

more popular among researchers in the last few years. There is a vast scope for 

designing a fractional-order circuit and the researchers have mainly focused on 

designing fractional order element i.e. fractional-order inductor or fractional-order 

capacitor and fractional order filters using different active building blocks (ABB). 

1.2.1 Fractional order Element (FoE) 

In the open literature, various rational approximations are used for 

determining the fractional-order element. Some of these approximations are: 

Continued Fraction Expansion (CFE) [3], Carlson and Halijak approximation [4-5], 

Matsuda and Fujii approximation [6], Oustaloup, Levron, Mathieu, and Nanot , 

recursive approximation [7], Valsa and Vlach approximation [8], Charef, Sun, Tsao, 

and Onaral approximation [9], Modified Oustaloup [10] and El-Khazali reduced-order 

approximation [11]. It is found in the literature that fractional-order capacitor designed 

using CFE has a very small frequency range as compared to Valsa and Vlach 

approximation and Oustaloup, Levron, Mathieu, and Nanot recursive approximation 

approximation. 

1.2.2 Fractional order Filters (FoF) 

In the open literature, variety of fractional order analog filters are 

introduced using various active building blocks along with some passive components 

such as operational amplifier [12-13], current conveyors [14], current feedback 

amplifiers [15], voltage differencing transconductance amplifier (VDTA) [16], 
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Operational Transconductance Amplifier (OTA) [17], Multi-Output 

Transconductance Amplifier (MOTA) with Adjustable Current Amplifier (ACA) [18], 

Balanced Output Transconductance Amplifier (BOTA) with ACA [19], Universal 

Voltage Conveyor (UVC) [20]. 

1.3 Thesis outline 

1.3.1 Chapter 1 

This chapter is further divided into three parts, where the first part briefly 

describes the history, evolution, and further improvements in fractional calculus along 

with its application in various fields. The second part mainly focuses on open literature 

surveys related to fractional-order elements, list of various approximation methods, 

their advantages and disadvantages and fractional order filters, different methods, and 

techniques for designing fractional-order filters using different active building blocks 

and trying to minimize the use of passive components. The third part briefly describes 

the organization of the thesis. 

1.3.2 Chapter 2 

This chapter is further divided into seven parts. The first and second part 

give us a brief introduction to the fractional operator and the list of definitions given 

by various researchers in this domain. In the third part, various methods for finding 

s  approximation have been discussed in the brief and finally, one of the methods for 

finding 
s approximation viz. continued fraction expansion (CFE) has been discussed 

in detail along with its simulation results and comparison of two different methods that 

come under CFE approximation in the remaining parts. 

1.3.3 Chapter 3 

This chapter is further divided into 4 parts. The first part gives us an 

introduction to fractional order filter circuits using an operational transconductance 

amplifier (OTA) and many other active elements. The second part provides us a 

detailed description of various active and passive components used while designing 

the proposed universal Biquad voltage mode (VM) fractional order filter using OTAs. 

The third and fourth parts talk about the stability and simulation results of various 

filters namely fractional-order low pass filter (FLPF), fractional-order high pass filter 
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(FHPF), fractional-order bandpass filter (FBPF), fractional-order band-reject filter 

(FBRF) and fractional order all-pass filter (FAPF). 

1.3.4 Chapter 4 

 This chapter is again divided into 4 parts. The first part gives us an 

introduction to filtering circuits using commercially available IC LT1228 and many 

other active elements. The second part provides us a detailed description of various 

active and passive components used while generalizing the modified biquad voltage 

mode (VM) fractional order filter using LT1228 IC. The third and fourth part talks 

about the stability and simulation results along with tunability of various filters 

namely, fractional-order low pass filter (FLPF), fractional-order high pass filter 

(FHPF), fractional-order bandpass (FBPF) filter, and fractional order band-reject filter 

(FBRF) 

1.3.5 Chapter 5 

This chapter summarizes the work presented in this thesis and also 

discusses the future work.  
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DESIGN AND SIMULATION OF FRACTIONAL ORDER 

INDUCTOR AND CAPACITOR 

2.1 Introduction to Fractional Operator: 

The term fractional operator was firstly coined by Riemann in 1838. For an 

integer order system, its Laplacian operator is represented by sn, where n is an integer 

number while for a fractional-order system, its Laplacian operator is represented by sα 

where m<α<m+1; m=0,±1,±2. Although approximation of fractional order Laplacian 

operator can be done by various methods, it has a great significance in determining 

fractional-order Inductor and Capacitor. Accuracy of these approximations is 

measured by the flatness of phase response i.e. less ripple factor. 

2.2 Definition of Fractional Calculus: 

2.2.1 The Riemann-Liouville definition [1] for fractional-order integral can be 

written as: 

𝑎𝐷𝑡
−𝛼𝑓(𝑡) =

1

𝛤(𝛼)
∫(𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏

𝑡

𝛼

 (2.1) 

where 0<α<1, and a is the initial value. Putting a=0 in the above equation, the 

simplified integral becomes 𝐷𝑡
−𝛼𝑓(𝑡), and for fractional-order derivative, it can be 

written as: 

𝑑𝛼

𝑑𝑡𝛼
𝑣(𝑡) ≜ 𝐷𝛼𝑣(𝑡) =

1

𝛤(1 − 𝛼)

𝑑

𝑑𝑡
∫(𝑡 − 𝜏)−𝛼𝑣(𝜏)𝑑𝜏

𝑡

0

 (2.2) 

2.2.2 The Grünwald-Letnikov definition [1] uses a single equation for fractional 

order differentiation and integral: 

𝑎𝐷𝑡
𝛼𝑓(𝑡) = lim

ℎ→0

1

ℎ𝛼
∑ (−1)𝑗 (

𝛼

𝑗
) 𝑓(𝑡 − 𝑗ℎ)

[(𝑡−𝑎)/ℎ]

𝑗=0

 (2.3) 
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where (
𝛼

𝑗
) are the binomial coefficients. Depending upon using the above equation as 

differentiation or integration, the values of α is decided whether non-integer positive 

or negative. 

2.2.3 The Cauchy integral formula [1] for fractional-order is given as: 

𝐷𝛼𝑓(𝑡) =
𝛤(𝛼 + 1)

𝑗2𝜋
∮

𝑓(𝜏)

(𝜏 − 𝑡)𝛼+1
𝑑𝜏 (2.4) 

where the closed path encircles the poles of the function 𝑓(𝑡). 

2.2.4 The Caputo definition [1] for fractional-order differentiation is: 

𝑜𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(1 − 𝛼)
∫

𝑓(𝑚+1)(𝜏)

(𝑡 − 𝜏)𝛼
𝑑𝜏

𝑡

0

 (2.5) 

where α=m+𝛾, m is an integer and 0<𝛾≤1. Also, its definition for fractional-order 

integral is: 

𝑜𝐷𝑡
−𝛾

𝑓(𝑡) =
1

𝛤(𝛾)
∫

𝑓(𝜏)

(𝑡 − 𝜏)1−𝛾
𝑑𝜏, 𝛾 > 0

𝑡

0

 (2.6) 

2.3 Various methods for finding the approximation to sα: 

2.3.1 Continued Fraction Expansion (CFE) [2]:  

This fractional-order approximation is based on approximating a biquadratic second-

order transfer function. This biquadratic form which is used to approximate sα yields 

2nd order transfer function of equal orders, which can be further cascaded with other 

biquadratic forms to increase the operating ranges. 

2.3.2 Valsa and Vlach Approximation [3]:  

In this approximation, we simply derive the mathematical or network model called the 

constant phase element (CPE). An ideal constant phase element is defined as an 

element whose impedance or admittance phase response is constant over a range of 

frequency. Its impedance can be written as: 

𝑍(𝑠) = 𝛹𝑠𝛼 = 𝛹(𝑗𝜔)𝛼 = 𝛹𝜔𝛼 (𝑐𝑜𝑠 (
𝛼𝜋

2
) + 𝑗𝑠𝑖𝑛 (

𝛼𝜋

2
)) (2.7) 

2.3.3  Oustaloup, Levron, Mathieu, and Nanot approximation [4]:  

This method approximates fractional-order Laplacian operator sα in the form: 
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𝑠𝛼 = 𝐶 ∏
1 + 𝑠 𝜔𝑘

′⁄

1 + 𝑠 𝜔𝑘⁄

𝑘=𝑁

𝑘=1

 (2.8) 

where N is the order up to which RC network has to be formed, C is the gain adjustment 

parameter, 𝜔𝑘
′  and 𝜔𝑘 are frequency terms related to minimum and maximum 

frequency [4]. One of the biggest constraint using this approximation is the effective 

range over which the phase response remains constant i.e [10𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥 10⁄ ], though 

its maximum and minimum operating frequency is [𝜔𝑚𝑎𝑥, 𝜔𝑚𝑖𝑛] respectively 

2.3.4 Matsuda and Fujii Approximation [5]:  

This method was originally referred to as the first form of Thiele’s continued fraction 

(T-CF1). Since this method was firstly used by Matsuda in his work, thereafter it is 

known by his name. By approximating the original function into a set of equally 

logarithmic spaced frequencies 𝝎𝜶 can be written as: 

𝜔𝛼 = 𝑑0 +
𝜔 − 𝜔0

𝑑1 +
𝜔 − 𝜔1

𝑑2 +
…

… +
𝜔 − 𝜔𝑘

𝑑𝑘+1 + ⋯

 

(2.9) 

where 𝑑0, 𝑑1, 𝑑2 … … . 𝑑𝑘+1are the notation whose values can be obtained from [6]. 

2.3.5 Carlson and Halijak Approximation [7]: 

 Carlson and Halijak make use of well-known third-order Newton process for 

approximating (𝟏 𝒔⁄ )𝟏 𝒏⁄  or 𝒔𝟏 𝒏⁄ . Considering transfer function T(s) of a system as: 

𝑇(𝑠) =
1 + 𝑀𝐵

1 + 𝐴2𝐵
∗ 𝐴 (2.10) 

For simulating 1/√𝑠, consider 𝑀(𝑠) = 1 𝑠⁄  𝑎𝑛𝑑 𝐵(𝑠) = 𝐵0 𝑠⁄  and if feedback gain is 

taken very large, the transfer function becomes: 

𝑇(𝑠)′ = lim
𝐵0→∞

𝑇(𝑠) = 1 𝐴𝑠⁄  (2.11) 

Now to have a transfer function of 1 √𝑠⁄ , put 𝐴 = 1 √𝑠⁄  in the above equation and by 

applying Taylor’s expansion formula we can easily approximate it. Similarly, we can 

approximate √𝑠 also by following the above steps.
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2.4 Continued Fraction Expansion (CFE): 

In our work FoI and FoC have been designed using Continued Fraction 

Expansion Approximation. In this approximation, two different methods were 

proposed: 

2.4.1 Equal Ripple approximation method: 

Firstly, this method was presented in [8] and latterly modified in [9] by adding a tuning 

parameter ‘β’ to minimize the error ripple around the normal operating region. In this 

method, sα can be approximated for the realization of FoI as: 

𝑠𝛼 ≈
𝑎0𝑠2 + 𝑎1𝑠 + 𝑎2

𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0
≡

𝑎0𝑁(𝑠)

𝑎2𝐷(𝑠)
≡ 𝐻𝑑(𝑠) (2.12) 

where  

𝑎0 = (𝛼2 + 3𝛼 + 2), 𝑎2 = (𝛼2 − 3𝛼 + 2), 𝑎1 = {𝛽(1 − 𝛼2) + 6} (2.13) 

are the real constants and for the realization of FoC, the above approximation can be 

written as 𝐻𝑖(𝑠) ≡
𝑎2𝐷(𝑠)

𝑎0𝑁(𝑠)
=

1

𝐻𝑑(𝑠)
 . Since 0 < α < 1 as already defined, then 𝑎0 > 𝑎2 >

0 and for obtaining stable approximation 𝛽 > 6 (𝛼2 − 1)⁄ . 

2.4.2 Exact phase approximation method: 

In this method, the second-order approximation given by equation (2.12) is improved, 

thereby giving zero phase error of 𝑯𝒅(𝒔). It is improved by changing the substitution 

of 𝒂𝟎, 𝒂𝟏 𝒂𝒏𝒅 𝒂𝟐 i.e. 

𝑎1 = (𝑎2 − 𝑎0) (tan
(2+𝛼)𝜋

4
), 𝑎0 = 𝛽1 + 𝛽2𝛼𝑣 + (𝛽1 + 𝛽2)𝛼, 

 𝑎0 = 𝛽1 + 𝛽2𝛼𝑣 − (𝛽1 + 𝛽2)𝛼 
(2.14) 

i.e. adding some more tuning parameters 𝛽1, 𝛽2 𝑎𝑛𝑑 𝑣 as compared to the previous 

method. 

However, to increase the bandwidth of both the approximation methods 

namely equal ripple and exact phase response, cascading is the only technique we can 

apply i.e. cascading two or more transfer functions normalized at 𝜔 = 1𝑟𝑎𝑑/𝑠, 𝜔 =

100𝑟𝑎𝑑/𝑠, 𝜔 = 10000𝑟𝑎𝑑/𝑠 and so on i.e.:
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𝐻𝑑2(𝑠) = 𝐻𝑑1(𝑠)𝐻𝑑100(𝑠 100⁄ )

= (
𝑎0𝑠2 + 𝑎1𝑠 + 𝑎2

𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0
) (

𝑎0(𝑠 100⁄ )2 + 𝑎1(𝑠 100⁄ ) + 𝑎2

𝑎2(𝑠 100⁄ )2 + 𝑎1(𝑠 100⁄ ) + 𝑎0
) 

𝑜𝑟 𝐻𝑑3(𝑠) = (
𝑎0𝑠2 + 𝑎1𝑠 + 𝑎2

𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0
) (

𝑎0(𝑠 100⁄ )2 + 𝑎1(𝑠 100⁄ ) + 𝑎2

𝑎2(𝑠 100⁄ )2 + 𝑎1(𝑠 100⁄ ) + 𝑎0
) 

(
𝑎0(𝑠 10000⁄ )2 + 𝑎1(𝑠 10000⁄ ) + 𝑎2

𝑎2(𝑠 10000⁄ )2 + 𝑎1(𝑠 10000⁄ ) + 𝑎0
) 

(2.15) 

2.5 Steps for the realization of FoI 

(i) The current-voltage relationship for fractional-order inductor in Laplace domain 

can be represented as: 

𝑍(𝑠) = 𝐿𝑠𝛼 ≈ 𝐿
𝑎0𝑠2 + 𝑎1𝑠 + 𝑎2

𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0
 (from equation (2.12)) 

(ii) The above equation can be re-written in terms of poles and zeros as: 

𝐿
𝑎0𝑠2 + 𝑎1𝑠 + 𝑎2

𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0
= 𝐿

𝑎0(𝑠 + 𝑧1)(𝑠 + 𝑧2)

𝑎2(𝑠 + 𝑝1)(𝑠 + 𝑝2)
= 𝐿

𝑎0𝑁(𝑠)

𝑎2𝐷(𝑠)
 (2.16) 

where 𝑎0, 𝑎1 𝑎𝑛𝑑 𝑎2 have different values according to the methods chosen i.e. either 

exact phase method or equal ripple method. The substitution of these parameters which 

depends upon ‘α’ has been given in equation (2.14) for the exact phase method and 

equation (2.13) for equal ripple method.  

(iii) By doing the partial fraction of equation (2.16), we get: 

𝑍𝐿(𝑠)

𝑠
= 𝐿 (

𝑎0

𝑎2
)

(𝑠 + 𝑧1)(𝑠 + 𝑧2)

𝑠(𝑠 + 𝑝1)(𝑠 + 𝑝2)
= 𝐿 (

𝑎0

𝑎2
) {

𝑘0

𝑠
+

𝑘1

(𝑠 + 𝑝1)
+

𝑘2

(𝑠 + 𝑝2)
} 

where 𝑘𝑜 =
𝑧1𝑧2

𝑝1𝑝2
, 𝑘1 =

(𝑧1−𝑝1)(𝑧2−𝑝1)

−𝑝1(𝑝2−𝑝1)
 𝑎𝑛𝑑 𝑘2 =

(𝑧1−𝑝2)(𝑧2−𝑝2)

−𝑝2(𝑝1−𝑝2)
 

(2.17) 

(iv)  Finally, 𝑧𝐿(𝑠) can be written in terms of the resistor (R) and the inductor (L) 

i.e.: 

𝑧𝐿(𝑠) =  𝐿 (
𝑎0

𝑎2
) {𝑘0 +

𝑠𝑘1

(𝑠 + 𝑝1)
+

𝑠𝑘2

(𝑠 + 𝑝2)
} (2.18) 
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Figure 2.1 Single-stage realization of FoI 

Considering β=3.8382 for equal ripple method and β1= 0.5 and β2= 1.5 for exact 

phase method, phase responses for single stage and double stage FoI are shown for 

different values of α. 

 
Figure 2.2 FoI first stage using equal ripple for different α 

 
Figure 2.3 FoI first stage using the exact phase for different α 
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Figure 2.4 FoI second stage using the exact phase for different α 

2.6 Steps for the realization of FoC  

(i) The current-voltage relationship for the fractional-order capacitor in Laplace 

domain can be represented as: 

𝑍𝑐(𝑠) =
1

𝑠𝛼𝑐
≈

𝑎2(𝑠 + 𝑝1)(𝑠 + 𝑝2)

𝐶𝑎0(𝑠 + 𝑧1)(𝑠 + 𝑧2)
=

𝑎2𝐷(𝑠)

𝐶𝑎0𝑁(𝑠)
 (2.19) 

(ii) By doing the partial fraction of equation (7), we get 

𝑍𝑐(𝑠) =
𝑎2

𝐶𝑎0
{1 +

𝜆1

(𝑠 + 𝑧1)
+

𝜆2

(𝑠 + 𝑧2)
} (2.20) 

where 𝜆1 =
(𝑝1−𝑧1)(𝑝2−𝑧1)

(𝑧2−𝑝1)
, 𝜆2 =

(𝑝1−𝑧2)(𝑝2−𝑧2)

(𝑧1−𝑝2)
 i.e. 𝑍𝑐(𝑠) can be re-written in terms of 

the resistor (R) and capacitor (C). 

 

Figure 2.5 Single-stage realization of FoC 

Considering β=3.8382 for equal ripple method and β1= 0.5 and β2= 1.5 for exact 

phase method, phase responses for single stage and double stage FoC are shown for 

different values of α. 
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Figure 2.6 FoC first stage using equal ripple for different α 

 
Figure 2.7 FoC first stage using the exact phase for different α 

 
Figure 2.8 FoC second stage using the exact phase for different α 
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2.7 Comparison between the two methods namely, exact phase and 

equal ripple method: 

On comparing the phase responses of FoI and FoC for two different methods 

for α=0.1, α=0.5 and α=0.9, we conclude that the ripples are less in exact phase as 

compared to equal ripple because of more tuning factors i.e. β1 and β2 in exact phase 

method. 

 
Figure 2.9 Comparing of FoI first stage for α=0.1 

 
Figure 2.10 Comparing of FoI first stage for α=0.5 
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Figure 2.11 Comparing of FoI first stage for α=0.9 

 
Figure 2.12 Comparing of FoC first stage for α=0.1 

 
Figure 2.13 Comparing of FoC first stage for α=0.5 
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Figure 2.14 Comparing of FoC first stage for α=0.9 

2.8 Conclusion 

While realizing FoI or FoC using both the method, the major disadvantage 

or limitation, is their frequency range i.e. both methods obtains FoI and FoC at very 

less frequency which is quite not acceptable for practical purposes. Also, frequency 

response using an equal ripple method for the second stage realization of FoI or FoC 

is not possible and needs some more manipulation to obtain the correct graph.   
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FRACTIONAL ORDER CAPACITOR BASED FILTER 

USING THREE OTAS1 

3.1 Introduction 

Ever since the generalization of the classical first-order and second-order 

filters came into fractional-order domain [1]-[2], a multitude of fractional order filters 

with different properties have appeared in the open literature. In a fractional order 

filter, the designers have more precise control over the pass-band/ stop-band 

characteristics because of the additional degree of freedom provided by the fractional-

order parameter ‘α’. These filters have been realized using different types of active 

elements like operational amplifiers [3]-[4], current conveyors [5], current feedback 

amplifiers [6], operational transconductance amplifiers [7]-[19] and variety of other 

active elements. As the fractional-order capacitors of arbitrary values and order are not 

available commercially, in most of the works presented on fractional-order filters, the 

fractional-order capacitor(s) have been simulated by semi-infinite RC networks in 

which the values of the RC components have been computed using some 

approximations [20]-[21]. Of the various active elements used for the realization of 

fractional order filters, operational trans-conductance amplifiers (OTAs) are more 

versatile as the gain of this amplifier can be controlled externally by controlling its 

bias current. This feature is very useful in tuning the various parameters of the realized 

filters. A detailed review of the various fractional-order filters realized with OTAs [7]-

[19] has revealed the following: 

                                                 

 

 
1 The content and results of the following paper has been reported in this chapter: G. Singh, Garima, and P. Kumar, “Fractional 

Order Capacitors Based Filters Using Three OTAs,” In 2020 6th International Conference on Control, Automation and Robotics 
(ICCAR), 2020, pp. 638-643. https://doi.org/10.1109/ICCAR49639.2020.9108100 Indexing: SCOPUS and EI Compendex 

 

https://doi.org/10.1109/ICCAR49639.2020.9108100
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(i) Single-input-single-output (SISO) type of fractional order filters utilizing six to 

eleven number of OTAs has been presented in [7]-[13]. 

(ii) Single-input-multiple-output (SIMO) type of fractional order filters have been 

realized in [14]-[15]. 

(iii) Multi-input-single-output (MISO) type of fractional order filter has been realized 

in [14]. This structure utilizes 5 OTAs and two fractional-order capacitors while 

realizing different types of filters. 

(iv) OTAs along with some other additional active elements [16]-[19] have been used 

to realize fractional-order filters with different properties. 

From the above discussion, it emerges that very little work has been done 

on the realization of multi-input-single-output type of fractional order filters using 

OTAs. These types of filter structures are very useful as different filter outputs may be 

obtained without changing the nature of the elements in different branches. Therefore, 

the main aim of this chapter is to present a new multi-input-single-output type 

fractional order filter utilizing only three single-output OTAs and two fractional-order 

capacitors. 

3.2 Circuit Description 

3.2.1 Designing Fractional-order Capacitor using Valsa and Vlach Method 

[21] 

This method introduces the concept of constant phase element (CPE) which 

is defined as an element whose impedance or admittance phase response is constant 

over a range of frequency. Its impedance can be written as:  

𝑍(𝑠) = 𝛹𝑠𝛼 = 𝛹(𝑗𝜔)𝛼 = 𝛹𝜔𝛼 (𝑐𝑜𝑠 (
𝛼𝜋

2
) + 𝑗𝑠𝑖𝑛 (

𝛼𝜋

2
)) (3.1) 

This method presents a fractance capacitor CPE model that can be constructed using 

resistors and capacitors and its phase varies from -90 to 0 degree. 

3.2.2 Steps for determining the fractance capacitor CPE model: 

1) Starting with given values of α (between 0 to 1), ∆𝜑 (ripple factor in 

degrees), 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥. 

2) Calculate the values of R1 or C1 by using the equation: 

𝑅1𝐶1 =
1

𝜔𝑚𝑖𝑛
 (3.2) 



21 

 

3) Find the product of the constant term ‘ab’ using: 

𝑎𝑏 =
0.24

1 + ∆𝜑
 (3.3) 

4) Values of parameters a and b individually can be found using: 

∅𝑎𝑣 = 90𝛼 = 90
log 𝑎

log 𝑎𝑏
 (3.4) 

5) Determine the necessary number of sections (m) using: 

𝑚 = 1 −
log (

𝜔𝑚𝑎𝑥

𝜔𝑚𝑖𝑛
)

log(𝑎𝑏)
 (3.5) 

6) Finally, the branch elements can be calculated using: 

𝑅𝑘 = 𝑅1𝑎𝑘−1 𝑤ℎ𝑒𝑟𝑒 𝑘 = ±1, ±2, … 𝑚  

𝐶𝑘 = 𝐶1𝑏𝑘−1  𝑤ℎ𝑒𝑟𝑒 𝑘 = ±1, ±2, … 𝑚 
(3.6) 

7) Correction elements (RP and CP ) can be calculated as: 

𝑅𝑝 = 𝑅1

1 − 𝑎

𝑎
 

𝐶𝑝 = 𝐶1

𝑏𝑚

1 − 𝑏
 

(3.7) 

8) Average frequency (𝜔𝑎𝑣) can be obtained using: 

𝜔𝑎𝑣 =
1

𝑅1𝐶1(𝑎𝑏)𝑘−1 √𝑎  𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝑖𝑛𝑡(𝑚/2) (3.8) 

9) Input admittance of the required structure as shown in fig. 1 can be obtained using: 

𝑌(𝑗𝜔𝑎𝑣) =
1

𝑅𝑝
+ 𝑗𝜔𝑎𝑣𝐶𝑝 + ∑

𝑗𝜔𝑎𝑣𝐶𝑘

1 + 𝑗𝜔𝑎𝑣𝑅𝑘𝐶𝑘

𝑚

𝑘−1

 (3.9) 

10)  Finally, the slope of modulus D can be calculated as: 

𝐷 = 𝑍𝑎𝑣𝜔𝑎𝑣
−𝛼 𝑤ℎ𝑒𝑟𝑒 𝑍𝑎𝑣 =

1

|𝑌(𝑗𝜔𝑎𝑣)|
 (3.10) 

Finally, the resulting Foster-II canonical RC structure as proposed in [21] is shown in 

fig 3.1. 
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Figure 3.1 Foster II canonical RC structure 

By considering 𝑓𝑚𝑖𝑛=1mHz, 𝑓𝑚𝑎𝑥= 1MHz and m=5, the phase response of 

the resultant structure shown above is plotted in fig 3.2 for different values of α ranging 

between 0 to 1.  

 

Figure 3.2 Phase response for different α 

3.2.3 Operational Transconductance Amplifier (OTA) 

The operational transconductance amplifier is a differential voltage-

controlled current source (DVCCS). Ideally in OTAs, the output current is a function 

of differential input voltage and is expressed as: 

𝐼0 = 𝑔𝑚(𝑉2 − 𝑉1) (3.11) 

where I0 is the output current, gm is the transconductance gain, V1 and V2 are inverting 

and non-inverting terminal voltages. 

The trans-conductance of this source can be controlled by an external bias 

current )( biasI  as given by the equation below: 



23 

 

𝑔𝑚 =
𝐼𝑏𝑖𝑎𝑠

2𝑉𝑇
 (3.12) 

where VT is the thermal equivalent voltage. 

The symbolic representation of OTA along with its ideal small-signal model is 

shown in fig. 3.3 and fig. 3.4. 

 
Figure 3.3 OTA representation 

 
Figure 3.4 Small signal equivalent model of ideal OTA 

3.3 Proposed Universal Biquad Fractional order Filter 

Configuration 

The proposed universal biquad filter configuration is shown in fig. 3.5. It 

belongs to the class of multi-input single-output (MISO) type of filter structures where, 

by appropriately choosing different inputs, various types of filter responses can be 

obtained. We have used two identical fractional-order capacitors  C  whose driving 

point impedance is given by Cs/1 .  
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Figure 3.5 Proposed filter configuration 

A routine analysis of the circuit given above results in the following output 

function: 

 
     

311221
2

331222121
2

0

)()()(

mmm

mmm

gggCsCCs

sVggsVgCssVCCs
sV










 (3.13) 

where 21, mm gg  and 3mg  are the trans-conductance’s of the different OTAs. For any 

fractional-order filters with a transfer function T(s), the following important parameters 

should be determined [2]: 

a) :m  defined as the frequency at which the magnitude response either has 

maxima or minima and can be evaluated by solving the equation i.e., 

  0/)( 
 m

djTd


 . 

b) :h  defined as the frequency at which the power drops to half the pass-band 

power, known as half-power frequency (also known as cutoff frequency) and can be 

evaluated by solving the equation i.e.,      .2/1 passbandh jTjT   The bandwidth 

of any filter can also be calculated using this half-power frequency. 
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3.3.1 Fractional Order Low-Pass Filter (FLPF) 

If we select 3VVin   and 021 VV , the general transfer function given in 

equation (3.13) represents a fractional-order low-pass filter (FLPF) transfer function 

described as: 

311221

2

310

)(

)(

mmm

mm

in gggCsCCs

gg

sV

sV




  (3.14) 

Using the definition of cutoff frequency given above, the value of cutoff 

frequency for FLPF for any order ‘α’ can be obtained from equation (3.15): 

  0
2

cos2cos21(
2

cos2 2234 
















 kYkYkYY





 (3.15) 

where 
a

Y h


 , 

a

b
k  , 

1

1

c

g
a m  and 

2

3

c

g
b m  

3.3.2 Fractional order High-Pass Filter (FHPF) 

By selecting 1VVin   and 032 VV , the general transfer function 

represented by equation (3.13) can be converted into a fractional-order high-pass filter 

(FHPF) transfer function described as: 

311221

2

21

2

0

)(

)(

mmmin gggCsCCs

CCs

sV

sV








 (3.16) 

The value of cutoff frequency for FHPF for any order ‘α’ can be obtained from equation 

(3.17): 

 
1

abhFHPFhFLPFmFHPFmFLPF   (3.17) 

3.3.3 Fractional order Band-Pass Filter (FBPF) 

If we select 2VVin  and 031 VV then the general transfer function given 

in equation (3.13) gives the fractional-order band-pass filter (FBPF) transfer function 

described as: 
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sV
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






 (3.18) 

The value of maximum frequency for FBPF with order ‘α’ can be obtained 

from equation (3.19): 

  
















 kXXkX

2
cos22 

 (3.19) 
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where 
a

X m


  

The value of half-power frequency for FBPF for any order α can be obtained 

from equation (3.20): 
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 (3.20) 

3.3.4 Fractional order Band-Reject Filter (FBRF) 

When 31 VVVin  and 02 V , the general transfer function given in 

equation (3.13) represents a fractional-order band-reject filter (FBRF) transfer function 

described as: 
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 (3.21) 

The value of minimum frequency for FBRF for any order α can be obtained 

from equation (3.22): 
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The value of half-power frequency for FBRF for any order α can be obtained 

from equation (3.23): 
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3.3.5 Fractional order All-Pass Filter (FAPF) 

If we select 321 VVVVin  , the general transfer function given in 

equation (3.13) represents a fractional-order all-pass filter (FAPF) transfer function 

described as: 
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 (3.24) 

The important frequency parameters of different fractional-order filters, namely, 

maximum or minimum frequency  m and half-power frequency  h  for the special 
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case when α = 1 have been shown in Table 3.1. For non-integer values of α, their values 

may be computed by solving the system of non-linear equations given in equation 

(3.15)-(3.23) for different filters by approximately mapping the values of gm1, gm2 and 

gm3 into ‘a’, ‘b’ and k as defined therein. 

Table 3.1 Parameters when α =1 

Types of 
filters m  h 

FLPF -- 


































2

1

2

148 2 kk
ka  

FHPF -- 



































2

1

2

148 2 kk
ka

ab
 

FBPF ka  
















2

1

2

14k
a  

FBRF ka  
















2

1

2

14k
a  

3.4 Stability Analysis 

A detailed analysis of stability for the fractional-order system has been 

presented in [22]. For a fractional-order system, the stability graph is plotted in W-

plane as shown in Fig. 3. In our work, the stability depends on the coefficients of 
is  

( 10  ) as given in equation (3.25). By considering the coefficients of equation 

(3.25) positive, different cases for stability are shown in Table 3.2 and have been 

adopted from [2]. It may be also noted from Table 3.2, that fractional-order filters are 

stable if 
2


   where 10  . The stability plot of FLPF, FHPF, FBPF and FBRF 

is shown in Fig. 3.7 – 3.10 for α = 0.7 respectively, using MATLAB command 

forlocus. 

311221

2)( mmm gggCsCCssD  
 (3.25) 
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Figure 3.6 W-plane 

 

Table 3.2 Relations, stability conditions, roots, pole frequency 0  and pole quality factor Q  

for different cases 

Cases Relations Condition for stability and roots 0 , Q  
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Figure 3.7 Stability plot of FLPF C=0.382µF and α=0.7 

 
Figure 3.8 Stability plot of FHPF C=0.382µF and α=0.7 

 
Figure 3.9 Stability plot of FBPF C=0.382µF and α=0.7 
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Figure 3.10 Stability plot of FBRF C=0.382µF and α=0.7 

3.5 Simulation Results 

We have verified the workability of the proposed fractional-order filters 

through PSPICE simulation using the macro model of OTA IC LM 13700. Equal valued 

fractional-order capacitors ( 1C = 2C =0.382uF/(rad/sec)(1-α)) are used in PSPICE 

simulations. These fractional-order capacitors for different values of α (0.7, 0.8. 0.9) 

were designed using Valsa and Vlach approximation method [21] of order 6, resulting 

in Foster type network shown in Fig. 3.11. 

 
Figure 3.11 Fractional-order Capacitor 

All the filters presented in this chapter were designed with values of 

321 mmm ggg  =5.48mA/V and Rbias =100kΩ. 

The different frequency parameters for all the filters for different values of 

α = 0.7 to α = 1 have been listed in Table no. 3.3 and 3.4. From these tables, it may be 

noted that the error between the theoretical values and the values obtained from PSPICE 

simulations is very small in case of all the filters (3.9%). 
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Figure 3.12 Magnitude response of FLPF for different α 

 
Figure 3.13 Magnitude response of FHPF for different α 

 
Figure 3.14 Magnitude response of FBPF for different α 
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Figure 3.15 Magnitude response of FBRF for different α 

 
Figure 3.16 Phase response of FAPF for different α 

 

Table 3.3 Cutoff Frequency  
h  (in krad/s) 

α FLPF FHPF 

 
PSPICE 

 h  
Theoretical 

 h  
PSPICE 

 h  
Theoretical 

 h  

0.7 486.63 487.81 1480.14 1500.46 

0.8 129.67 130.13 202.35 202.87 

0.9 46.12 46.87 38.63 38.33 

1.0 14.9 14.34 14.1 14.34 
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Table 3.4 Maximum/Minimum Frequency  
m  (in krad/s) 

α FBPF FBRF 

 
PSPICE 

 m  
Theoretical 

 m  
PSPICE 

 m  
Theoretical 

 m  

0.7 864.71 866.81 864.56 866.81 

0.8 154.87 156.12 156.37 156.12 

0.9 41.43 42.87 42.43 42.87 

1.0 14.07 14.34 14.17 14.34 

 

3.6 Conclusion 

In this chapter, two equal valued fractional-order capacitors based filter 

using OTAs with electronic tunability of important frequency parameters have been 

presented and validated using PSPICE simulation results. When fractional order filter 

circuits gain momentum, more broad and difficult situations can be taken up by 

choosing different capacitors of different orders. Besides that, the advantages are: 

1) Considering the available filter design, they impose the constraint on filter 

responses which can be easily removed in fractional order filters. 

2) Stability range and other important designing parameters are the functions of 

α, which provides an extra degree of freedom to us.  
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UNIVERSAL BIQUAD FRACTIONAL ORDER FILTER 

USING SINGLE LT1228 IC2 

4.1 Introduction 

In integer order analog filters available in open literature [1-3], the transition 

from pass band to stop band depends on integer multiples of a fixed slope (±20n 

decibels/decade). This usually results in the order of a filter being more than the 

minimum required to realize a given attenuation characteristics. In fractional order 

filters on the other hand, an attenuation of 20(n+α) where α varies from 0 to 1, provides 

more precise control over transition from pass band to stop band because of additional 

degree of freedom ‘α’ provided by the fractional order ‘α’ in the filter transfer function. 

With the availability of some fractional order immittances (both fractional order 

capacitors and fractional order inductors) as experimental prototypes, the possibility of 

these fractional order immittances becoming available as standard passive elements is 

ever increasing. As a result, research work on fractional order analog circuits and other 

related topics [4-17] has accelerated during the last decades.  

Fractional order filters have been realized using different active elements 

like operational amplifier [4-9], current conveyors [10], current feedback followers 

[11], operational transconductance amplifiers [12] and various other active elements. 

Since the fractional order capacitor of any non-integer order is not available 

commercially [13-14], most of the paper presented on fractional order circuits use 

fractional order capacitor, designed using some integer order approximation of the term 

sα resulting in a Foster like RC network approximating the fractional order capacitor. 

                                                 

 

 
2 The content and results of the following paper has been reported in this chapter: G. Singh and Garima, “Universal Biquad 

Fractional order Filter Using Single LT1228 IC,” In 2020 International Conference for Innovation in Technology (INOCON), 
2020. (Accepted) Indexing: SCOPUS and EI Compendex 
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Out of the various filters realized with different active elements, filters realized with 

commercially available IC LT1228 are more versatile as they can be easily 

implemented using current feedback amplifier (CFA) and operational transconductance 

amplifier (OTA). A detailed review of filters realized using LT1228 IC [15-17] reveals 

the following:  

(i) Single input multiple output (SIMO) type second order filter utilizing two LT1228 

IC and two OTAs have been presented [15]. 

(ii) Single input single output (SISO) type first order all pass filter utilizing single 

LT1228 IC structure [16]. 

(iii) Multi input single output (MISO) type universal second order filter using single 

LT1228 IC structure [17] 

From the above discussion, it thus emerges that, very little work has been 

done on realization of voltage mode (VM) multi input single output (MISO) fractional 

order filter using single LT1228 IC. These MISO type of structures, are very useful to 

get different responses without disturbing the structure. In this chapter, thus, we have, 

generalized the design of an existing MISO type VM biquad filter [1] realized with 

LT1228 IC by replacing the integer order capacitors with fractional order capacitors 

and examined the tunability of the different parameters of the realized filters with the 

fractional order parameter ‘α’ and the bias current Ibias. Also, the stability of the realized 

filters has been studied in detail. 

4.2 Circuit Description 

4.2.1 Designing Fractional-order Capacitor using Oustaloup, Levron, 

Mathieu, and Nanot Approximation [13] 

This approximation method mainly focuses on characteristics and synthesis 

of frequency band complex non-integer differentiator. Using this method, the 

fractional operator sα can be synthesis in the frequency band of interest [ωmin, ωmax]. 

The approximated fractional operator sα can be written as: 




 




Nk

k

k

k

s

s

Cs
1

'

1

1




 (4.1) 
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4.2.2 Steps for determining the fractional capacitor using Oustaloup, Levron, 

Mathieu, and Nanot Approximation 

1) Starting with given values of α (between 0 to 1), 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 (desired minimum 

and maximum frequency) and N (no. of order). 

2) Unity gain frequency (ωu) can be obtained as: 

maxmin  u  (4.2) 

3) Gain adjustment parameter ‘C’ can be calculated as: 
















min

uC  (4.3) 

4) By calculating all the parameters listed above, sα can be approximated as: 
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where 
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5) By taking the partial fraction of the equation (4.4) it can be generalized as: 
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and thereby applying network synthesis to convert it into foster I circuit as shown in 

fig 1. 

 
Figure 4.1 Foster I canonical RC structure 

By considering 𝑓𝑚𝑖𝑛=0.1Hz, 𝑓𝑚𝑎𝑥= 100 MHz and N=8, the phase response 

of the resultant structure shown above is plotted in fig 4.2 for different values of α 

ranging between 0 to 1. 
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Figure 4.2 Phase response for different α 

4.2.3 LT1228 IC 

The LT1228 IC schematic symbol along with its equivalent circuit is shown in fig. 

4.3. 

 
(a) 

 
(b) 

Figure 4.3 a) Schematic symbol b) Equivalent circuit of LT1228 IC 

Ideally, its characteristics equation can be described as (1): 
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where  VVVV wx ,,,  and zV are the output and input port voltages, xZVV IIII ,,,   and wI

are the output and input port currents, mg  is the transconductance gain whose relation 

with biasI  is given in equation (4.7) and TR  is the transresistance gain which is ideally 

very high. Also, impedances at terminals  VV ,  and Z are high while impedances at 

terminals X  and W are low. 

LT1228 is a commercially available IC manufactured by Linear 

Technology Inc. [18]. It is a combination of CFA and OTA which has an external bias 

current to control its gain externally (as given in equation (4.7)) which is further used 

for tuning the filter responses. 

biasm Ig 10  (4.7) 

where biasI  is the external bias current. 

4.3 Modified Universal Biquad Fractional order Filter 

Configuration 

The modified filter circuit, obtained by replacing the integer order 

capacitors of the filter circuit presented in [1] with fractional order capacitor (Cα) whose 

driving point impedance is given by 1/Csα, is shown in fig. 4.4. Like the integer order 

filter circuit presented in [1], which belongs to the class of multi input single output 

(MISO) type of configuration, the proposed circuit also belongs to the MISO class, 

wherein by selecting appropriate input signal, various filter responses along with 

electronic tunability can be obtained. 
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Figure 4.4 Modified filter circuit 

Analyzing the fractional filter circuit as shown above the following output 

function is obtained: 
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where    RCCgCgssD mm 211

2 //)(    (4.9) 

For any fractional order filter, with transfer function T(s), the various 

important parameters need to be determined [4]. 

4.3.1 Fractional Low Pass Filter 

By selecting 3inin VV   and 021  inin VV  we get the required FLPF 

transfer function: 
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The DC gain of FLPF is 1 while the high frequency gain is 0. Its cutoff 

frequency, maximum frequency and right phase frequency for any order alpha can be 

obtained by equations (4.11), (4.12) and (4.13). 
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4.3.2 Fractional High Pass Filter 

If we select 1inin VV   and 032  inin VV  we get the required FHPF transfer 

function: 
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Similarly, the DC gain of FHPF is 0 while the high frequency gain is 1. The 

important frequency parameters for any order alpha can be calculated using relation 

(4.15): 
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4.3.3 Fractional Band Pass filter 

By selecting 2inin VV   and 031  inin VV  we get the required FBPF transfer 

function: 
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Both high frequency gain and DC gain is 0. For any order alpha, its 3dB 

frequency, maximum frequency and right phase frequency parameters can be 

calculated using equation (4.17), (4.18) and (4.19). 
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4.3.4 Fractional Band Reject Filter 

If we select 31 ininin VVV   and 02 inV  we get the required FBRF transfer 

function: 



44 

 

)(

)/(

)(

)( 21

2

0

sD

RCCgs

sV

sV m

in






 (4.20) 

Both DC gain and high frequency gain is 1. For any order alpha, its 

minimum frequency and 3dB frequency parameters can be determined using equation 

(4.21) and (4.22). 
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By putting alpha=1, all the important frequency parameter for different 

filters namely FLPF, FHPF, FBPF and FBRF have been given in table 1. For values 

of alpha other than 1, these important parameters of different filter can be obtained 

using equation (4.10)-(4.22). 

Table 4.1 Parameters when α = 1 
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4.4 Stability Analysis 

Fractional order system stability has been studied in detail [19] and its 

stability graph is plotted in W-plane as shown in fig. 4.5. For any fractional order 

system, stability depends on the coeffficients of equation (4.9). 

 
Figure 4.5 W-plane 

In this chapter, considering all the coefficients of equation positive, two 

different cases arises that are given in table II and has been adopted from [4]. Stability 

graph of different filters namely FLPF, FHPF, FBPF, and FBRF are shown in fig 4-7 

respectively. 

Table 4.2 Pole frequency ( 0 ) and pole quality factor ( Q ) for different cases 
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Figure 4.6 Stability plot of FLPF C=0.382µF and α=0.9 

 
Figure 4.7 Stability plot of FHPF C=0.382µF and α=0.9 

 
Figure 4.8 Stability plot of FBPF C=0.382µF and α=0.9 
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Figure 4.9 Stability plot of FBRF C=0.382µF and α=0.9 

4.5 Simulation Results 

The workability of the modified circuit have been validated through 

PSPICE simulation using the macro model of IC LT1228. The DC power supply 

voltage is taken as ± 12v and value of passive component R1=1kΩ. The simulation 

results obtained matches with theoretical analysis and it is further divided into two 

categories: 

4.5.1 Tunability with α: 

It can be achieved by replacing each ordinary capacitors with fractional 

order capacitors (C1=C2=0.382uF/(rad/sec)(1-α)) designed using Oustaloup, Levron, 

Mathieu, and Nanot method for α=0.6, α=0.7, α=0.8, α=0.9 of order 8 resulting in 

foster type network as shown in fig 4.1. 

All the filters designed in this section have values Ibias=0.226mA 

(Rbias=100kΩ) as shown in figure 4.10-4.13. The different frequency parameters for 

filters namely FLPF, FHPF, FBPF and FBRF for α=0.6 to α=1.0 have been listed in 

Table III. The difference between simulation values and theoretical values is very 

small and the error is as minimum as 4.4%. 
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Figure 4.10 Magnitude response of FLPF for different α 

 
Figure 4.11 Magnitude response of FHPF for different α 

 
Figure 4.12 Magnitude response of FBPF for different α 
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Figure 4.3 Magnitude response of FBRF for different α 

 

Table 4.3 Cutoff Frequency (fh) of FLPF and FHPF for different α 

 Cutoff Frequency (fh) (in kHz) 

α FLPF FHPF 

 PSPICE Theoretical PSPICE Theoretical 

0.6 28.857 30.244 841.954 807 

0.7 7.285 7.01 70.58 68.030 

0.8 2.380 2.45 9.635 10.124 

0.9 1.15 1.108 2.13 2.23 

1.0 0.585 0.587 0.659 0.668 
 

Table 4.4 Maximum/Minimum frequency (fh) of FBPF and FBRF for different α 

 Maximum/Minimum Frequency (fm) (in kHz) 

α FBPF FBRF 

 PSPICE Theoretical PSPICE Theoretical 

0.6 154.882 156.3 154.882 156.3 

0.7 20.73 21.77 20.82 21.77 

0.8 5.219 5.01 5.248 5.01 

0.9 1.54 1.572 1.55 1.572 

1.0 616.6 0.626 0.616 0.626 

4.5.2 Tunability with Ibias 

It can be achieved by changing the values of mg  and R by the same factor 

so that the ratio  Rgm /  remains constant which implies its cutoff frequency  0  will 

remain same but quality factor  Q  changes while using standard capacitor as given in 
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equation (4.23)-(4.24). All the filters designed in this section have values 

Ibias1=0.02825mA, Ibias2=0.0565mA, Ibias3=0.113mA, Ibias4=0.226mA and 

Ibias5=0.452mA respectively as shown in figure 13-16. 

RCC

g m

21

0   (4.23) 

RgC

C
Q

m2

1  (4.24) 

 

 
Figure 4.14 Magnitude response of FLPF for different Ibias 

 
Figure 4.15 Magnitude response of FHPF for different Ibias 
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Figure 4.16 Magnitude response of FBPF for different Ibias 

 
Figure 4.17 Magnitude response of FBRF for different Ibias 

4.6 Conclusion 

In our chapter, the main focus is to develop different techniques for 

electronic tuning of different types of filter. The first method suggests us how to tune 

with different values of alpha and second method suggests us how to tune with different 

values of Ibias. Some of the constraints or motivation for future work are: 

1) When fractional order system gains momentum, two different valued fractional 

order capacitors can be used in order to obtain more precisely tuning of parameters. 

2) While tuning with different values of Ibias, the quality factor is inversely 

proportional to product of mg  and R and cutoff frequency is directly proportional to 

 Rgm /  ratio for standard capacitor. 



52 

 

REFERENCES 

[1] S. Klungtong, D. Thanapatay, and W. Jaikla, “Three-input single-output voltage-

mode multifunction filter with electronic controllability based on single 

commercially available IC,” Active and Passive Electronic Components, 2017. 

[2] C. M. Chang, B. M. Al-Hashimi, and J. N. Ross, “Unified active filter biquad 

structures,” IEE Proceedings Circuits, Devices and Systems, 151, no. 4, 2004, pp. 

273-277. 

[3] S. A. Mahmoud, M. A. Hashiesh, and A. M. Soliman, “Low-voltage digitally 

controlled fully differential current conveyor,” IEEE Transactions on Circuits and 

Systems I, Regular Papers, 52, no. 10, pp. 2055-2064, 2005. 

[4] A. G. Radwan, A. S. Elwakil, and A. M. Soliman. “On the generalization of 

second-order filters to the fractional-order domain.” Journal of Circuits, Systems, 

and Computers, 18, no. 02, pp. 361-386, 2009. 

[5] A. S. Ali, A. G. Radwan, and A. M. Soliman, “Fractional order Butterworth filter: 

active and passive realizations,” IEEE journal on emerging and selected topics in 

circuits and systems, 3, no. 3, pp. 346-354, 2013. 

[6] A. G. Radwan, A. S. Elwakil, and A. M. Soliman, “Fractional-order sinusoidal 

oscillators: design procedure and practical examples,” IEEE Transactions on 

Circuits and Systems I: Regular Papers, 55, no. 7, pp. 2051-2063, 2008. 

[7] L. A. Said, A. G. Radwan, A. H. Madian, and A. M. Soliman, “Fractional order 

oscillator design based on two-port network,” Circuits, Systems, and Signal 

Processing, 35, no. 9, pp. 3086-3112, 2016. 

[8] A. Soltan, A. G. Radwan, and A. M. Soliman, “Fractional order Sallen–Key and 

KHN filters: stability and poles allocation,” Circuits, Systems, and Signal 

Processing, 34, no. 5, pp. 1461-1480, 2015. 

[9] T. J. Freeborn, B. Maundy, and A. Elwakil. “Fractional-step Tow-Thomas biquad 

filters,” Nonlinear Theory and Its Applications, IEICE, 3, no. 3, pp. 357-374, 

2012. 

[10] J. Koton, J. Jerabek, N. Herencsar, and D. Kubanek, “Current conveyors in 

current-mode circuits approximating fractional-order low-pass filter,” In 2017 

European Conference on Circuit Theory and Design (ECCTD), 2017, pp. 1-4. 

[11] L. Langhammer, R. Sotner, J. Dvorak, J. Jerabek, and J. Polak. “Fully-differential 

tunable fractional-order filter with current followers and current amplifiers,” In 



53 

 

2017 27th International Conference Radioelektronika 

(RADIOELEKTRONIKA), 2017, pp. 1-6. 

[12] J. Srivastava, R. Bhagat, and P. Kumar. “Analog Inverse Filters Using OTAs,” In 

2020 6th International Conference on Control, Automation and Robotics 

(ICCAR), 2020, pp. 627-631. 

[13] A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, “Frequency-band complex 

noninteger differentiator: characterization and synthesis,” IEEE Transactions on 

Circuits and Systems I: Fundamental Theory and Applications, 47, no. 1, pp. 25-

39, 2000. 

[14] J. Valsa, and J. Vlach “RC models of a constant phase element,” International 

Journal of Circuit Theory and Applications, 41, no. 1, pp. 59-67, 2013. 

[15] M. Olšák, and D. Biolek, “Controlled filters with LT1228 OTA amplifiers,” 

In Proceedings of 23rd the International Conference Telecommunications and 

Signal Processing (TSP), 2000, pp. 191-194. 

[16] A. Chaichana, S. Siripongdee, and W. Jaikla, “Electronically Adjustable Voltage-

mode First-order Allpass Filter Using Single Commercially Available IC,” In IOP 

Conference Series: Materials Science and Engineering, 559, no. 1, 2019. 

[17] S. Siripongdee, and W. Jaikla, “Universal filter using single commercially 

available IC: LT1228,” In MATEC Web of Conferences, 95, 2017. 

[18] http://www.linear.com/product/LT1228. 

[19] A. G. Radwan, A. M. Soliman, A. S. Elwakil, and A. Sedeek, “On the stability of 

linear systems with fractional-order elements,” Chaos, Solitons & Fractals, 40, 

no. 5, pp. 2317-2328, 2009. 

  

http://www.linear.com/product/LT1228


54 

 

  

 

 

SUMMARY AND FUTURE SCOPE 

5.1 Summary 

In chapter-1, there is a brief discussion on fractional calculus regarding its 

origin, history and application in various engineering and medical fields. 

In chapter-2, introduction to fractional operator followed by various 

fractional calculus definition along with list of various approximation methods. have 

been discussed in brief. Finally, a detailed explanation with its simulation results of 

continued fraction expansion (CFE) method is carried out along with its advantages 

and disadvantages also. 

In chapter-3, a novel universal biquad fractional order filter circuit using 

three OTAs and two grounded fractional order capacitors along with its stability and 

simulation results have been discussed. Here, the fractional order capacitor is designed 

using Valsa and Vlach approximation method. 

In chapter-4, a generalized universal biquad fractional order filter circuit 

using single LT1228 IC and two fractional order capacitors along with its stability and 

simulation results have been discussed. Here, the fractional order capacitor is designed 

using Oustaloup, Levron, Mathieu, and Nanot approximation method. 

5.2 Future Scope 

There are several possibilities to extent the work presented in this 

dissertation in different directions. Some of these are: 

 

I. The techniques that are used in this dissertation namely Valsa and Vlach, and 

Oustaloup, Levron, Mathieu, and Nanot for approximation of FoC. The work 

presented in this dissertation may be extended to carry out a relative 

comparison of performance of the circuits in which the FoCs used are realized 



55 

 

with other methods suggested in the literature, to determine the best 

approximation for a particular filter. 

II. The filters presented in the circuits may also be realized using a rational 

approximation of the operator 𝑠𝛼 with integer order approximations suggested 

in literature and realizing the approximated rational transfer function of the 

filters using any active device. 
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APPENDICES 

APPENDIX 1 

 

PSPICE model files used for LM13700 (OTA) 

C1  6  4  4.8P 

C2  3  6  4.8P 

C3  5  6  6.26P 

D1  2  4  DX 

D2  2  3  DX 

D3  11 21 DX 

D4  21 22 DX 

D5  1  26 DX 

D6  26 27 DX 

D7  5  29 DX 

D8  28 5  DX 

D10 31 25 DX 

D11 28 25 DX 

F1  4  3  POLY(1)   V6 1E-10 5.129E-2 -1.189E4 1.123E9  

F2  11 5  V2        1.022 

F3  25 6  V3        1.0 

F4  5  6  V1        1.022 

F5  5  0  POLY(2)   V3 V7 0 0 0 0 1 

G1  0  33 5         0 .55E-3 

I1  11 6  300U 

Q1  24 32 31        QX1 

Q2  23 3  31        QX2 

Q3  11 7  30        QZ 

Q4  11 30 8         QY 

V1  22 24 0V 

V2  22 23 0V 

V3  27 6  0V 

V4  11 29 1.4 

V5  28 6  1.2 

V6  4  32 0V 

V7  33 0  0V 

.MODEL QX1 NPN (IS=5E-16     BF=200 NE=1.15 ISE=.63E-16 IKF=1E-2) 

.MODEL QX2 NPN (IS=5.125E-16 BF=200 NE=1.15 ISE=.63E-16 IKF=1E-2) 

.MODEL QY  NPN (IS=6E-15     BF=50) 

.MODEL QZ  NPN (IS=5E-16     BF=266)   

.MODEL DX  D   (IS=5E-16) 

.ENDS 
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PSPICE model files used for LT1228 using OTA and CFA 

* THE OTA 

Q11 5 5 21 QN 10 

Q12 21 21 22 QN 10 

VC 22 4 DC 0 

F1 26 4 VC 0.375 

F2 27 4 VC 0.25 

F3 28 4 VC 0.375 

F4 7 23 VC 1.6 

F5 7 24 VC 1.6 

VB 7 25 DC 1.4 

CE1 23 7 11PF 

CE2 24 7 11PF 

RE13 23 32 120 

RE14 24 33 120 

Q13 29 25 32 QPI 

Q14 1 25 33 QPI 

Q15 23 3 28 QNI 9 

Q16 23 3 27 QNI 

Q17 23 3 26 QNI 

Q18 24 2 26 QNI 9 

Q19 24 2 27 QNI 

Q20 24 2 28 QNI 

VM 29 4 DC 1.4 

FM 1 4 VM 1 

DM 29 1 DC 

C1 1 7 5PF 

* 

* THE CFA 

Q2A 4 1 10 QP 0.5 

Q3A 11 10 200 QN 

Q4A 11 11 7 QP 

Q5A 9 11 7 QP 

Q6A 12 11 7 QP 

Q7A 4 9 12 QP 

Q8A 7 12 13 QN 10 

RSCA 13 6 10 

IBA 7 10 DC 300U 

* 

Q2B 7 1 110 QN 0.5 

Q3B 111 110 200 QP 

Q4B 111 111 4 QN 

* 

Q5B 9 111 4 QN 

Q6B 112 111 4 QN 

Q7B 7 9 112 QN 

Q8B 4 112 113 QP 10 

RSCB 6 113  10 
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IBB 110 4 DC 300U 

* 

RC 8 200 20 

R9 9 0 201600 

D1 9 6 DC 

D2 6 9 DC 

* 

.MODEL DC D 

.MODEL QNI NPN 

.MODEL QN NPN (IS=168E-18 BF=150 ISC=40E-18 NC=1 RB=250 RE=8 

RC=100 

+CJE=0.37P VJE=0.65 MJE=0.33 FC=0.7 CJC=0.8P VJC=0.62 MJC=0.44 

+TF=300P 

.MODEL QPI PNP 

.MODEL QP PNP (IS=230E-18 BF=150 ISC=113E-18 NC=1 RB=250 RE=8 

RC=100 

+CJE=0.34P VJE=0.75 MJE=0.40 FC=0.7 CJC=0.8P VJC=0.5 MJC=0.36 

+TF=300P 

* 

.ENDS LT1228 

 


