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ABSTRACT 

Climate change has necessitated the development of “green” alternatives to replace existing 

materials. This focus has resulted in the push towards fabricating natural fiber reinforced 

polymer composites. This research work looks at rice husk ash and groundnut shell ash 

reinforced epoxy composites as well as the polymer Delrin which are promising alternatives to 

metal composites for a wide variety of applications. Wear test on the epoxy composites was 

done using ball on flat tribometer under room temperature. A 6mm steel ball was used as a 

counter body and 4 different epoxy composite samples of 3cmx3cm were used as the flat. The 

4 samples were: neat epoxy, epoxy reinforced with rice husk ash, epoxy which was reinforced 

using ash of groundnut shell and epoxy reinforced with both ash of rice husk as well as ash  of 

groundnut shell. Upon carrying out the wear test it was found that neat epoxy composite had 

the maximum wear rate of 163 mm3/Nm, whereas epoxy composite reinforced with both rice 

husk ash and groundnut shell ash was the most resistant to wear. Apart from wear test, the 

surface roughness of all the nine composite samples was measured and optimization through 

the implementation of genetic algorithm (GA) was done. It was found that a minimum  surface 

roughness of 1.503μm can be obtained for an epoxy-hardener ratio of 2.99:1 and without the 

addition of any reinforcements. This optimization was achieved within 102 generations. Apart 

from GA, response surface methodology (RSM) and Taguchi design of experiments was 

carried out as well to optimize and the results obtained closely agreed with those obtained  

from GA. RSM gave an optimized surface roughness value of 1.39μm and the main effects  

plot showed that the best combination of input factor was a 3:1 ratio of epoxy to hardener with 

0% reinforcement. Analysis of Variance (ANOVA) showed epoxy to hardener ratio as the 

most significant factor contributing 36.35% of the total effect. Similar to the epoxy  

composites,  optimization  of  response  variables  through  GA,  RSM  and  Taguchi  design of 

experiments was carried out for Delrin as well and the results compared. GA gave an 

optimized value of 0.351μm surface roughness and 1788.91mm3/min material removal rate 

within 139 generations for a speed of 150rpm, feed of 0.6mm/rev and 1.49mm depth of cut.  

On the other hand, RSM gave an optimized value of 0.736μm surface roughness and 

2436mm3/min material removal rate for a speed of 192.42rpm, 0.458 mm/rev feed and 1.5mm 

depth of cut and Taguchi gave the best combination of input values as 150rpm speed, 0.6 

mm/rev feed and 1.5mm depth of cut. These values closely agreed with that of GA. ANOVA 

showed depth of cut was the most significant factor contributing 57.72% of the total effect. 

Keywords: Natural Fiber, Composite , Genetic Algorithm, Response Surface Methodology, 

Taguchi, Analysis of Variance 
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CHAPTER 1 

INTRODUCTION 

This paper focuses on natural fiber reinforced composites. Using natural fibers as 

reinforcements is beneficial to the environment and therefore a lot of emerging research deals 

with using natural fibers as reinforcements in composites. 

1.1 Natural Fibers 

They led to a switch in focus from merely fabrication of composites to fabrication of 

composites which were reinforced with natural fibers. Use of these fibers as reinforcement 

material serves a dual purpose: (a) It helps us recycle waste material like jute straw, bamboo 

stalk, rice husk, groundnut shell etc.[1] which would otherwise have been disposed off. (b) 

Natural fiber is biodegradable and eliminates the use of energy intensive synthetic fibers, thus, 

it is more eco-friendly [2]. In addition to being more environmentally friendly, natural fibers 

possess the added advantage of being easily available, non-toxic, having higher specific 

strength, light weight, low cost and more resistant to abrasion.[3-10]. 

For all their advantages, natural fibers aren’t a miracle cure and have limitation of their 

own. Their hydrophilic nature leads to them absorbing great quantities of moisture [11] which 

results in bonding between matrix and reinforcement which is weak at the interface [12]. This 

greatly affects the composite attributes [13-14]. Though chemically treating natural fibers with 

5-6% NaOH improves interfacial bonding, it also increases the surface roughness of the

component[15].

1.1.1 Rice Husk Ash (RHA) 

One of the natural reinforcements utilized for this research is Rice Husk Ash (RHA). One 

reason it has been selected is because this crop is grown in huge numbers throughout the 

planet, with the husk of the rice accounting for about 130 million tons of agricultural waste 

produced globally every year [16-17]. Moreover, rice husk (the waste product obtained upon 

burning rice paddy) has no commercial use, therefore, in many developing countries it is 

simply burnt away leading to pollution [18]. This fact led to research focusing on the 

utilization of rice husk to prevent waste. Over the last few decades some headway has been 

made regarding the use of RHA in light weight construction material [19-20]. There is an 

economic incentive to extract silica from rice husk as silica is about 80-90% by weight of the 

rice husk [21]. This is good news,  especially  for  rice  producing  nations  like  India, 
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Vietnam,  Thailand,  etc.  There are several advantages of extracting silica from rice husk. 

Silica can be treated to form SiO2 which has several applications in industry [22-29]. Kapur et 

al [30] performed pin-on-disk abrasive wear test on neat PVC sample and RHA reinforced 

composites. They found that rice husk composites displayed lower wear or damage. A BOD 

machine was used to perform abrasive wear tests on RH reinforced composites in wet and dry 

conditions between loads of 0.98-9.8N and velocities of upto 1 m/s . Research has shown that 

both friction as well as rate of wear, are higher when subjected to wet conditions due to the 

formation of a hydrophilic silica-rich layer in dry conditions which mitigated the effects 

regarding friction between conjoined surfaces [31]. 

1.1.2 Groundnut Shell Ash (GSA) 

The other reinforcement utilized for this research paper is groundnut shell ash. China and India 

are the two biggest producers of groundnut in the world. India alone produces around 7.5 

million tons of groundnut [32]. Thus, disposal of groundnut is of grave concern. Using 

groundnut as reinforcement in composites helps in eliminating waste. Groundnut ash powder 

of size upto 1 micro-metre was utilized for reinforcing composites like polypropylene [33]. It 

was found that there was a considerable increase in mechanical attributes like impact, flexural 

and tensile strength, along with modulus of composites. A positive correlation was found 

between the increase in these properties and the reinforcement percentage and powder size and 

an inverse relation with the strain generated in the composite. Usman et al. compared 

polyethylene composites reinforced with alkaline treated groundnut shell powder and non- 

alkaline treated groundnut shell powder. It was observed that alkaline-treated groundnut 

powder reinforced composites showed a higher increase in mechanical attributes alongside 

biodegradability and lower rate when it comes to absorption of water [34]. Groundnut shell 

was determined to have moisture content in the range of 1.92-4.96% [35]. Brian George et al. 

characterized groundnut shell reinforcement fibers and found the fiber to have a length of 

about 38mm with a diameter of about 0.25mm [36]. 

1.1.3 Chemical composition 

Fibers obtained from natural sources are mainly composed of hemicellulose, cellulose( main 

component of the fiber) and lignin ( binds the fiber together). Table 1.1 shows the chemical 

makeup of groundnut shell as well as rice husk. 
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Table 1.1: Chemical Composition of groundnut shell and rice husk. 

Cellulose (wt%) Hemicellulose 
(wt%) Lignin (wt%) References 

Rice Husk 31.3 24.3 14.3 [37] 

Shell of 
Groundnut 

35.7 18.7 30.2 [38] 

For obtaining best properties from the materials, we make use of composites as they have been 

in existence since time immemorial. Early humans used bricks made out of mud coupled with 

easily available substances like straw [39]. These were a rudimentary form of composites. 

Composites are basically a mixture of multiple entities, with the final concoction possessing 

properties of its constituent elements. This allows composites to have the “best of both 

worlds”. One component is known as the matrix, while the other is the reinforcement. The 

reinforcement is responsible for bearing the load the composite is subjected to [40-41]. 

Initially, metal composites were overwhelming used, however, the discovery of polymers has 

revolutionized the world of composites with the introduction of synthetically reinforced 

composites which possessed much of the properties of metal composites while being cheaper 

alternatives [42-44]. Polymer materials can be of 2 types, thermosetting and thermoplastic. 

One thermoplastic polymer which has shown a lot of promise is Delrin. Delrin is a 

thermoplastic polymer trademarked by DuPont and commonly known as polyoxymethylene 

(POM). It is produced by the polymerization of formaldehyde and has gained widespread 

recognition all over the world for reliability of performance in thousands of engineering 

components. After its introduction in 1960, it has been used in various fields of automotive, 

appliance, construction, hardware, and electronics industries consumer goods. Delrin® is the 

DuPont registered trademark for its brand of acetal resin also commonly referred to as 

polyoxymethylene (POM). Glass fiber reinforced plastic was found to have maximum impact 

strength in wet layup process[45]. They thus proved to be effective replacements, especially  

for non-high load bearing applications. This advantage of the polymer composite has led to a 

proliferation in its use in a myriad industries ranging from automotive and aerospace to 

biomedical. However, there is a growing need to shift to more “green” or eco-friendly 

production of composites [46]. 

According to a report released by UN Intergovernmental Panel on Climate Change (IPCC) 

humanity has a limited time period of 12 years to keep the average temperature rise below 2 

degrees celcius [47](the threshold beyond which we’ll lose ice cover in the Artic during 

summers leading to widespread catastrophe). Currently there are some difficulties associated 
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with shifting to more “green” alternatives, since many of the composite have crude oil as their 

raw material. Oil extraction and transport leads to severe environmental problems in the form 

of oil spills, which in turn lead to destruction of the flora and fauna of that region in addition to 

displacing the inhabitants of those lands [48]. Furthermore, producing polymers and synthetic 

reinforcements from crude oil is an extremely energy intensive process. Thus a lot of fossil 

fuels are currently burned to fabricate the polymers and fibers currently employed in industry 

[49-50]. 

Lathe machine is the most utilized machine in manufacturing used to fabricate 

cylindrical components. They cut work pieces while they are rotated. A variation on the 

conventional lathe machine, known as the CNC lathe is capable of producing precision cuts 

and increase productivity. They are mostly intended to manufacture components which would 

be infeasible to make conventionally. 

CNC lathes and CNC milling machines can be programmed via G-code and M-code. 

CNC’s are extremely versatile allowing you to produce a myriad of products and materials. 

This varies with size, flexibility and power of the machine. CNC machines have been known 

to cut wood, plastics, metals and composites and offer benefits like greater flexibility and 

productivity, as well as improved reliability, quality, and scrap rate. A whole host of different 

industries like aerospace, electronics, automotive sectors, firearm manufacturing, etc. make 

use of them, especially where quality of surface is paramount. Good surface properties result 

in increased fatigue strength and creep life, as well as resistance to corrosion. In addition to 

this, SR affects, numerous functional qualities of components, for example wear, heat 

transmission, facility of holding lubricant, coating as well as fatigue resistance. It is also 

instrumental with regards to controlling and assessing the surface quality of a product. 

One of the most widely utilized models for figuring out the SR is where surface roughness  

(Ra) is determined using feed rate (f) as well as nose radius (r) via the relation f2/32r. From the

previous equation it can be observed that factors which influence SR the most are f and r [51- 

52]. Decrease of SR quality is directly proportional to decreasing product value. In field of 

production, particularly in engineering, the surface finish quality can be a significant 

importance that can affects the working of a component, and possibly its cost, especially in 

critical situations like engineering components subjected to fatigue loads, et cetera. 



SR is one of the greatest vital constraints in the field of machining and manufacturing. 

And thus cutting parameters selection is so important in any machining process. 

Manufacturing industries focus a lot of their resources on their product quality. They aim to 

manufacture components of exceptional quality within a specified length of time in a cost 

effective manner. Surface finish obtained, is an extremely critical performance parameter that 

has to be constrained within the margin of error for the process under consideration. Due to 

its importance, investigation of SR with a view to better understand and control it has been a 

growing. It has been observed that there are several parameters which can be easily controlled 

like feed, speed, depth of cut etc., while factors such as tool wear, machine vibration, material 

defects etc. display a lot more variability and are not easy to control. Usually we try to obtain 

surface roughness below the threshold for our application by controlling the values of input 

parameters. SR is also responsible for numerous functional characteristics of components, for 

example contact which generates friction on the surface, wear, reflection, transmission of 

heat, ability to hold and dispense a lubricant, coating or opposing fatigue. As a result, the 

preferred value of the finish to be obtained on the surface is clearly stated beforehand and the 

factors selected in such a manner as to obtain the requisite value. Novel research in the area 

of monitoring of tool condition shows people are aiming to acquire a robust as well as an 

exact model that is capable of finding a relationship between cutting parameters as well as SR 

of the machined products. 

1.2 Types of Roughness 

Roughness generated on the machined surface is classified as comprising of 2 autonomous 

effects: Ideal and Natural roughness. 

1.2.1 Ideal Roughness 

Ideally roughness found to be dependent on only feed and geometry. Under such a condition 

the finest finish that is possible for a specified shape of tool and feed is obtained. This is 

possible when limitations like built-up-edge (BUE), chatter as well as inaccurate movements 

of the tool are rendered moot. In order to determine greatest unevenness height for a tool 

which is sharp and sans nose radius, we use the equation given below: 

R max = f / (cot φ + cot β) 

The SR value given by: 

Ra = Rmax / 4 
5
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Figure 1.1 Surface profile 

Here ‘f’ refers to feed, Ф refers to the major cutting angle and β is the minor cutting angle. 

1.2.2 Natural Roughness 

Built-up edge has a significant contribution in the creation of natural surface roughness. Thus, 

greater the built up edge, greater the roughness on the surface. Factors which reduce friction 

at chip-tool interface and eradicate built-up edge tend to generate superior surface finish. 

Profile of tool can be varied to achieve a better finish [53]. 

1.3 Taguchi Method 

Taguchi’s parametric design is a robust design which was used as an easy and organized 

qualitative alternative at a relatively low cost[54-55]. Taguchi method as used in the area of 

QC involves every step in the product life cycle. Albeit, the most crucial criteria for attaining 

high quality at low cost is dependent on DOE which determines the result when cutting 

variables such as speed, feed, and DOC are varied, with the objective of obtaining a value of 

SR which is suitable for mild steel for a given application, while the mild steel job had been 

machined with a carbide tool [56]. Taguchi method can evaluate signal-to-noise ratio in 3 

different ways: 

(a) Smaller-the-Better: n = -10 Log10 (avg. sum of squares of experimental results).

The user selects this option when SN ratio evaluated for properties which are typically

undesirable and whose ideal value is zero, for example " defects " etc.

(b) Larger-the-Better:  n = -10 Log10 (avg. sum of squares of the reciprocal of the results)

(c) Nominal-the-Better: n = 10 Log10 (square of mean/ variance).

Used when property selected is the most wanted, that is, highest possible value

is preferred.
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1.3.1 System Design 
Here the engineering know-how of an engineer is used for generating a prototype, which 

includes both the product as well as the process design. When it comes to the product design 

stage, materials, parts, uncertain product variable values, etc., can be chosen. On the other 

hand the process design stage consists of evaluation of sequences used in processing, 

choosing of equipment for production, provisional values of process variables, etc. due to the 

fact that system design is an initial functional design, which oft deviates from optimal values 

of quality and cost. System design, is extremely creative and innovative. 

1.3.2 Parameter Design 
Parameter design enhances results of refining features as well as helps in identifying 

parameter values. Moreover, ideal values of the process variable attained from the parameter 

design do not change with change in environmental factors. As a result, this design is 

significant in accomplishing great quality without any cost increase. Therefore, more 

experiments need to be carried out by increasing values of the process variables and we 

achieve this using orthogonal arrays, in order to examine the whole design using limited 

amount of experiments. A loss function expresses discrepancy between experimental and 

desired value. Taguchi utilizes a loss function for computing performance characteristic. It is 

then altered to signal-to-noise (S/N) ratio; typically 3 characteristics exist in S/N ratio, 

namely, nominal- the-better, higher-the-better, and lower-the-better [57]. 

1.3.3 Tolerance Design 
By understanding the consequence the myriad variables on performance, tolerance design can 

be utilized for focusing resources in reducing as well as regulating deviation in the critical 

dimensions. 

1.4 Design of Experiments (DOE) 

It is a technique for modeling as well as analyzing the influence of process parameters over an 

output [58]. DOE is the most widespread technique for product or process developments. It 

aims to predict a multi-parameter process in just a few trials via statistics. 
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1.5 Full Factorial Design 

In this the experimental data comprises of all possible combinations depending on the input 

factors. Such a DOE allows us to determine the significance of every factor on output, and 

effects of connections among factors and response variable. If the design consists of k factors 

with 2 levels each; 2k runs are observed. Steps of Taguchi method are as follows [59-60]:

(a) Figuring out the main function, side effects and identifying the failure mode.

(b) Figuring out noise factor along with quality traits and testing conditions.

(c) Figuring out function which needs to be optimized.

(d) Determining the factor which is governing along with its levels.

(e) Choosing OA and matrix.

(f) Carrying out the matrix experiment.

(g) Analyzing and forecasting based on data obtained to optimize performance.

(h) Verification results of the experiment and making plans for the future.

1.6 ANOVA 
Due to the vast quantity of variables monitoring the end result, some kind of 

generalization is required which is achieved using mathematical models. Since these models are 

our best approximation based on our understanding of the given phenomena, they mostly 

comprise of just the most influential parameters. One of the major and widely used statistical 

tools is analysis of variance or ANOVA. It helps user by determining the relative contribution 

towards the final outcome. 

ANOVA gives us the percentage that an input parameter influences the response 

variable/s and thus is a useful tool to interpret experimental data. Ratio of variances 

determines implication of the experiment statistically. This ratio has proven to be independent 

of modifications to the experimental dataset in addition to being independent of constant bias 

as well as scaling errors. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Tribology: Wear and Coefficient of friction (COF) 

Despite the best efforts of maintenance engineers, there are bound to be economic losses  

[61], increasing time consumption in operation [62] and inefficiency in operation [63] due to 

wear and tear experienced by mating systems during the life cycle of the components leading 

to eventual failure [64]. Thus, there is a need to develop novel material systems to increase 

durability and efficiency of the tribo-system. Over the past few decades, many researchers 

introduced polymer composites as a solution to this problem [65-66]. Recently, the U.N. 

World Commission on Environment and Development has issued a call to action to minimize 

and replace the synthetic reinforcements in polymer composites with natural fibers [67]. This 

is part of its push towards “green tribology” which involves conservation of energy as well as 

promotion of eco-friendly alternatives to current materials. This increased focus on natural 

fiber reinforcement for tribo-composite applications has led to the current century being 

dubbed the “cellulosic century” [68]. Many components like bearings, break shoes, shafts 

etc. undergo failure due to friction and wear experienced during operation and thus need to be 

assessed for tribological behavior [69]. Before a material is allowed to be used in practice it 

is subjected to friction and wear tests to gauge its performance [70-71]. Wear is of various 

types. Abrasive wear occurs due to sliding action between mating surfaces under pressure 

[72] while fatigue wear happens gradually at the end of a particular number of cycles. The

load subjected onto the component with each cycle leads to surface and sub-surface cracks

along with the generation of debris. Type of wear generated is highly correlated with the type

of matrix used.

The equations governing the tribological properties are given below [73-74]. These
properties are primarily a measure of friction coefficient (COF) as well as specific wear rate.

For specific wear rate: k = ∆m/ρLFn or k = 2a∆h/nIAω2
 

For friction coefficient:  μ = F/R

k = specific rate of wear (m3/J), ∆m = loss in mass (g), L = travel length (m), Fn = normal

load (N), a = area of contact (m2), I = moment of inertia (kgm2), ω = angular speed (rad/s),

∆h = reduction in thickness (m)

A study conducted on polyamide and polyphenylene based composites at a 15N load along

with a 1000 r/min speed showed that increase in load is directly proportional to both wear
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rate as well as friction coefficient but an inversely proportional relationship exists between 

speed and friction coefficient and a direct relationship exists between speed and wear rate 

[75]. Addition of carbon nanotubes as reinforcement in polymer composite led to a 

deterioration in tribological properties of the component [76]. Carbonization temperature was 

found to significantly affect both wear and friction. A study which investigated this 

phenomena, found that for rice husk ash based composites, a carbonization temperature of 

950 degrees celsius was optimum for decreasing the composite wear rate [77]. Imrek et al. 

discovered pressure was directly proportional to wear uptil a maxima of 5 MPa, after which 

the wear rate decreased as a result of transfer film formation at the interface [78]. 

A lot of research has looked at result of DOC, feed, and nose radius, speed etc. on SR, which 

greatly influences wear of a material. A few of these papers have been briefly explained 

below. 

Ranganath M.S. et al. [79], examines effect of variables upon turning on SR of Aluminium 

6061. Input factors were speed, feed and DOC. DOE was carried out for figuring out 

influence of input factors on SR. ANOVA and F-test showed the most influential variable is 

feed, with DOC and speed following it. Optimal values for various input variables are shown 

to be 2100 rpm, 0.1 mm/rev and 0.2mm. This combination gives the least surface roughness. 

Regression is used for determining surface roughness which makes fairly accurate predictions 

within a margin of error. 

Ilhan Asilturk et al. [80] optimizes turning parameters in order to achieve the least SR. L9 

orthogonal array (OA) has been utilized to run trials of CNC turning. Job was a AISI 4140 

(51 HRC) and cutting tools were carbide coated. Every experiment was done thrice in order 

to get accurate readings. ANOVA was used in examining effects of input parameters on 

response variable, i.e. SR. Feed rate proved to have the greatest influence on Ra and Rz. 

Optimal values of cutting variables, corresponding to least SR in turning were 120 m/min for 

speed, 0.18 mm/rev feed and 0.4 mm DOC. 

Davim.J et al. [81] did their research on SR predictive models through ANN for figuring out 

the influence of cutting variables on 9SMnPb28k(DIN). Artificial neural network (ANN) 

technique used in determining SR parameters (Ra and Rt) consists of feed, speed and DOC as 

inputs.  L27  orthogonal  array  formed  the  basis  of  the  experiments  with  each       factors 
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possessing 3 levels. ANN helps examine interaction between cutting parameters and response 

variables thorough 3D surface plots. The analysis found that speed and feed are majorly 

responsible in minimizing surface roughness, while DOC does not have as much influence 

over the response variable as the other 2 parameters. When DOC is low, SR is extremely 

sensitive to cutting speed; and an inverse relationship exists between them. However, this 

decrease in SR keeps on reducing, more the DOC is increased. Research has shown that SR 

variation is negligible with change in DOC at higher values of cutting speed. Surface 

roughness has proven to directly proportional to feed rate. 

I.A. Choudhury et al. [82] developed models for predicting SR during turning of EN 24T

steel (290 BHN) via RSM. Primary cutting variables like speed, DOC, feed have been

examined using a factorial design and uncoated carbide inserts without any cutting fluid.

Speed in the region of 36-117 m min-1 and 28-150 m min-1 has been depicted. Moreover, it

has been found that RSM along with factorial DOE is better in comparison to conventional 

one- variable-at-a-time methods used to investigate influence of input parameters on output 

variables like SR and life of tool. This technique offers the benefit of decreasing number of 

experiments, making the entire experimentation process economically feasible. Feed is 

shown to possess a more significant influence in contrast to cutting speed and DOC. 

W.H. Yang et al. [83] uses Taguchi technique, for determining best combination of values of 

cutting variables in turning. An OA, and ANOVA were utilized for determining S45C steel 

bars characteristics by utilizing cutting tools made of WC. Confirmation experiments were 

carried out to cross-check these values. Tool life and SR were found to improve by about 

250%. 

M. Nalbant et al. [84] tried to find optimum values of input variables in turning process

involving AISI 1030 steel bars with tools coated using TiN. 3 input variables were used:

insert radius, feed rate, as well as DOC. Insert radius and feed determined as the most

influential variables influencing surface roughness. It was found that by using higher insert

radius (1.2 mm), lower feed (0.15 mm/rev) as well as lower DOC (0.5 mm) a much superior

SR was obtained. Change in SR between initial and optimal cutting values is around 335%.
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2.2 Linear Regression 

An equation gives the linear relationship between independent and dependent variables [85]. 

Most widely used regression technique due to its simplistic nature where the dataset changes 

linearly and therefore is easier to fit compared to other non-linear datasets[86-87]. For n 

points present in a dataset, linear regression models assumes a linear correlation between x 

and y. There will be some error/noise in each model which gets included as depicted below: 

yi= β01+ β1x1+….. βnxn + εi = xTβ + εi  where i=1,…n 

2.3 KNN Regression 

It is among the simplest algorithmic techniques in machine learning. The average of K 

nearest values is considered to be the value of interest or the desired value. KNN regression 

technique is a non- parametric type of regression analysis [88]. 

2.4 Support Vector Regression (SVR) 

SVRs are a type of supervised learning model that give continuous output for a given input. 

They come under the category of support vector machine (SVM) or support vector network 

[89]. The objective of SVR regression is to determine a function that maximizes deviations 

for all the data points[90]. Values should be less than the threshold of ε to be neglected, 

otherwise they are considered to be unacceptable [91]. Linear support vector regression has a 

geni eral equation: 

y= Σi=1(ai - a )<xi,x> + b 

2.5 Bayesian Ridge Regression 

Bayesian regression prevents overfitting by making use of a regularization parameter. 

Bayesian ridge regression estimates β using L2-constrained least squares [92]. Scaling is hard 

due to the sheer number of samples present, but the weights are shifted toward zeros, which 

results in stability. The implementation studied is taken from [93] and better regularization 

parameters values determined from the ones mentioned in [94]. 
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2.6 Decision Tree Regression 

It involves dividing dataset into smaller subsets represented by leaf nodes [95]. Node 

corresponding to best predictor is referred to as the root node. 

2.7 Gradient Boosting Regression 

It is an ensemble ML model. The various ML models are generalized by allowing optimizing 

on an appropriate cost function [96]. Gradient Boosting model helps in optimizing loss 

functions.  Function to be minimized is: 

L(y, F(x)): F= argminEx,y[L(y, F(x))]. 

2.8 Neural Networks (NN) 

Simulate the neuronal architecture of the brain. Consist of a minimum of 3 layers which are 

referred to as the input, output and hidden layer. Weights are assigned to the coneeections 

which can take positive, negative or zero value [97]. More the quantity of iterations, better 

the NN learns. Once it has figured out the relationship, it can generalize unseen data and 

predict outputs for new input data. 

2.9 Genetic Algorithm (GA) 

GA is an optimization method where an initial population is randomly generated and the 

fittest entities from that population are chosen to pass on their “genes” to the next generation. 

This step is known as selection. By mating the selected entities new “Offspring” can be 

generated. GA algorithm goes through a number of iterations till the offspring produced are 

not much different from the parents. This point is known as convergence [98-100]. 

The objective of this thesis is to: 

1. Use regression techniques to predict the value of response variables in machining of

Delrin.

2. Optimize the response variables for Delrin using GA, RSM and Taguchi DOE and

compare the results.

3. Find the statistically most significant input factor in machining of Delrin using analysis of

variance (ANOVA).
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4. Fabricate RHA and GSA reinforced epoxy composites.

5. Use regression techniques to predict the value of response variables for epoxy composite

samples.

6. Optimize the response variable for epoxy composites using GA, RSM and Taguchi DOE

and compare the results.

7. Find the statistically most significant input factor for the epoxy composites using analysis

of variance (ANOVA).

8. Determine the wear rate of composites fabricated.
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CHAPTER 3 

EXPERIMENT SET UP 

3.1 Device for determining Surface Roughness 

Figure 3.1 shows Surtronic 3+, which is used for determination of surface texture. A 

microprocessor is used for evaluating all the parameters and other functions and these 

values are shown on an LCD display as shown in figure 3.2. 

Figure 3.1 Surtronic 3+ surface roughness measuring instrument 

The device also utilizes a drive motor to move stylus along the surface for measuring 

surface roughness as shown in figure 3.3. Once the measurement is complete, the stylus 

returns to the original position. Selection of cut-off (Lc) length used in figuring out the value 

of length moved by the stylus. 
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Figure 3.2 Display Transverse Unit (Referred from Instrument Manual) 

Figure 3.3 Mounting Bracket (Referred from Instrument Manual) 
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3.1.1 Pick-up 

Pick-up forms a variable reluctance style transducer. Figure 3.4 shows the pick-up as it 

traverses the surface, stylus moves in relation to the skid and these movements change into a 

corresponding electrical signal. This enables the pick-up to move along the surface without 

being influenced by roughness, and gives a reference for displaying general profile of the 

surface. 

Figure 3.4 Pick-up (Referred from Instrument Manual) 

3.2 Measurement of Surface Roughness 

SR of the jobs is measured using various measurement strategies which are classified as: 

• Direct measuring techniques

• Methods based on comparison

• Non-contact techniques

3.2.1 Direct Measuring Techniques 

A stylus is utilized to assess the finish obtained on the surface by moving it over the surface 

whose SR is to be determined. The movement of the probe perpendicular to the desired 

surface is considered. The profile obtained is subsequently utilized for determining roughness 

parameters as shown in figure 3.5. The parameter Ra is used here. 

Figure 3.5 Measurement of SR by Stylus [101-102] 

http://www.mfg.mtu.edu/cyberman/quality/metrology/surface.html#para21%23para21
http://www.mfg.mtu.edu/cyberman/quality/metrology/surface.html#para22%23para22
http://www.mfg.mtu.edu/cyberman/quality/metrology/surface.html#para23%23para23
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3.2.2 Methods based on Comparison 

These methods use components fabricated via the same process using the same materials as 

well as machining variables as the comparison surface. This method used when SR Ra>1.6 

micrometers. 

3.2.3 Non-Contact Techniques 

A luminescent rough surface is achieved via a monochromatic plane wave which is normal to 

the surface. A sensor is placed at the len’s focus and uses a camera for pattern recording. 

Using this, SR value can be calculated. 

3.3 Experimental Procedure 

3.3.1 CNC Turning of Delrin 

In our paper accepted in the Scopus indexed LNME and presented at the ICAPIE 2019 

conference we took 3 different cutting parameters, namely feed (mm/rev), depth of cut (mm) as 

well as speed (RPM), vary and the corresponding MRR (mm3/min) and surface roughness 

(micrometres) are represented by a Taguchi L27 orthogonal array. The train_test_split function 

of sklearn splits the dataset further into two categories: training and testing. Testing data is 

represents one-third of the entire dataset, with the rest being training data. 

A homopolymer Delrin rod of diameter 34 mm was selected and CNC Turning 

operation was performed on it as shown in figure 3.6. Before performing final CNC Turning 

operation, a roughing operation was performed on it. At the end the turning operation the 

diameter was reduced from 34mm to 33mm. In the CNC turning operation  three different 

depth of cuts were provided: 0.5mm, 1.0mm and 1.5mm. The entire rod was broken into three 

pieces of equal length and all the operations for a particular depth of cut were performed on 

each rod in succession. Various regression techniques were then applied on the dataset and the 

mean square error was calculated to determine the accuracy of the ML regression models. The 

scikit learn library of python was used for implementing the various regression techniques. In 

addition to regression techniques, a neural network has also been implemented to predict the 

MRR and surface roughness using the keras library. Matplotlib library has been utilized to plot 

the experimental MRR and SR values along with the predicted MRR and SR values. 

MATLAB optimization toolbox is used to implement multi objective genetic algorithm to find 

the optimized values of the input variables. 
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Figure 3.6 Turning operation performed on Delrin rod with different input values 

CNC Turning experimental data obtained was arranged in a L27 orthogonal array as depicted 

in Table 3.1: 

Table 3.1 L27 ORTHOGONAL ARRAY 

Exp 
No. 

Control 
Factors 

Speed 
(s) Feed (f) 

Depth 
of Cut 

(d) 

Surface 
Roughness 

(Ra) 
MRR 

A B C (rpm) (mm/rev) (mm) (μm) (mm3/min) 

1 1 1 1 150 0.2 0.5 1.04 1083.77 

2 1 1 2 150 0.2 1.0 2.44 1784.15 

3 1 1 3 150 0.2 1.5 0.56 1120.99 

4 1 2 1 150 0.4 0.5 0.90 1665.85 

5 1 2 2 150 0.4 1.0 1.42 1568.58 

6 1 2 3 150 0.4 1.5 0.96 1898.23 

7 1 3 1 150 0.6 0.5 0.86 1702.32 

8 1 3 2 150 0.6 1.0 1.14 2505.56 

9 1 3 3 150 0.6 1.5 1.16 1933.68 

10 2 1 1 250 0.2 0.5 2.62 2140.88 

11 2 1 2 250 0.2 1.0 5.38 2216.46 

12 2 1 3 250 0.2 1.5 0.52 2538.14 

13 2 2 1 250 0.4 0.5 2.32 1811.81 

14 2 2 2 250 0.4 1.0 3.58 2469.70 

15 2 2 3 250 0.4 1.5 0.64 2040.10 

16 2 3 1 250 0.6 0.5 1.92 1410.84 
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17 2 3 2 250 0.6 1.0 3.44 1532.72 

18 2 3 3 250 0.6 1.5 0.94 1579.62 

19 3 1 1 300 0.2 0.5 2.04 1047.48 

20 3 1 2 300 0.2 1.0 4.80 960.00 

21 3 1 3 300 0.2 1.5 1.00 1085.79 

22 3 2 1 300 0.4 0.5 2.24 251.998 

23 3 2 2 300 0.4 1.0 3.84 461.219 

24 3 2 3 300 0.4 1.5 0.80 980.251 

25 3 3 1 300 0.6 0.5 2.70 143.928 

26 3 3 2 300 0.6 1.0 3.76 0.0035 

27 3 3 3 300 0.6 1.5 0.74 0.1408 

3.3.2 Epoxy 

Matrix for our paper is epoxy resin as shown in figure 3.7. Epoxy resin has myriad advantages 

like excellent dimensional and thermal stability as well as low moisture absorption. It also 

displays good mechanical properties because of its low shrinkage structures [103]. 

Figure 3.7 (From Left to Right) Resins and Hardeners of ratios 2:1, 5:3, and 3:1. 

This paper looks at the tribological properties of rice husk ash and groundnut shell ash 

reinforced epoxy composites. Investigation into polymer composites which have been improved 

through various additives, is the need of the hour. This paper aims to compare the tribological 
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characterictics of epoxy composite reinforced with both RHA and GSA with epoxy composites 

reinforced with either RHA or GSA. 

 
3.3.3 Preparation of RHA and GSA powder 

Rice husk and groundnut shell were taken separately and burned and the ash obtained was put 

inside a ball mill where it was ground for a few hours at an rpm of 600rpm. After milling the 

powder was successively passed through a series of sieves. The maximum powder was 

collected at sieve with ASTM no. 200 in both cases. Figure 3.8 shows RHA before processing 

and after processing to be used as the reinforcement. Figure 3.9 shows GSA before processing 

and after processing to be used as the reinforcement. 
 

Figure 3.8 (a) Rice husk before burning and ball milling (b) Rice husk ash (RHA) used to 
make reinforcement for the composite. 

 

Figure 3.9 (a) Groundnut Shell before ball milling (b) Groundnut Shell Ash (GSA) used as 
reinforcement in epoxy composite 
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3.3.4 Preparation of composite 

Epoxy and hardener were mixed in a 2:1 ratio. In addition to that GSA and RHA powders were 

added in the required amount after weighing in a digital weight balance. The mixture was then 

stirred for about 3 minutes and left for 24 hours. Nine different composites were prepared with 

different combinations of epoxy to hardener ratios and weight percentages of the reinforcements 

RHA and GSA as depicted in figure 3.10. 
 
 

Figure 3.10 (a) L1 composite sample (b) L2 composite sample (c) L3 composite sample (d) L4 
composite sample (e) L5 composite sample (f) L6 composite sample (g) L7 composite sample 

(h) L8 composite sample (i) L9 composite sample. 
 
 

By varying the epoxy to hardener ratio, and weight percentage of RHA and GSA powder, 9 
different composite samples are prepared according to the L9 Taguchi array as shown by Table 
3.2 and their surface roughness is measured: 
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Table 3.2 L9 Array according to Design Of Experiments 
 

S.NO. 

 

EPOXY:HARDENER 

 
WT.% OF 

RHA 

 
WT.% OF 

GSA 

SURFACE 
ROUGHNESS 

(μm) 

1 5:3 0 0 1.97 

2 5:3 4 4 2.27 

3 5:3 8 8 2.96 

4 2:1 0 4 1.87 

5 2:1 4 8 2.14 

6 2:1 8 0 2.02 

7 3:1 0 8 1.94 

8 3:1 4 0 1.66 

9 3:1 8 4 2.17 
 

While Table 3.2 shows the epoxy to hardener ratio and weight percentage of the reinforcement, 
Table 3.3 gives the composition of each of the 9 composites fabricated. 

Table 3.3 Composition of the composites fabricated 

S.NO. EPOXY (gm) HARDENER(gm) RHA added (gm) GSA added (gm) 

L1 5 3 0 0 

L2 11.5 6.9 0.8 0.8 

L3 10.5 6.3 1.6 1.6 

L4 6.4 3.2 0 0.4 

L5 5.86 2.93 0.4 0.8 

L6 6.12 3.06 0.8 0 

L7 6.9 2.3 0 0.8 

L8 7.2 2.4 0.4 0 

L9 6.6 2.2 0.8 0.4 
 

3.3.5 Wear Test 

Ball-on-flat reciprocating tribometer was used to perform the test. Composites were cut in a 

3cm x 3cm dimension. The counterbody was a 6mm steel ball [104]. A load of 9N was applied 

at frequency of 6 Hz as well as stroke of 1mm [105]. The experiments were done in room 
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temperature. The four composites upon which the wear test was done are depicted in figure 

3.11. 

 
Figure 3.11 (a) Sample L1 without reinforcement, (b) Sample L3 with both RHA and GSA as 

reinforcements, (c) Sample L4 with GSA as reinforcement, (d) Sample L6 with RHA as 
reinforcement 

 
 

Figure 3.12 Ball on Flat Reciprocating Tribometer (Top View) 
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Figure 3.13 Ball on Flat Reciprocating Tribometer (Front View) 

 
 

Figure 3.14 Steel Ball counter bodies 
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Figure 3.15 Software Display screen from where Ball-on-Flat Tribometer is controlled 

 
 

Figure 3.12 and figure 3.13 give the top view and front view of the ball on flat tribometer 

respectively. Figure 3.14 shows the steel balls which were used to form the counter-body and 

perform the wear on epoxy composite samples. Figure 3.15 is the screenshot of the software 

used to analyze the wear on the composite samples. It shows all the conditions at which the 

wear test was performed like frequency, stroke, temperature. 
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CHAPTER 4 
 

RESULTS AND ANALYSIS 

 

4.1 Prediction of response variable for Delrin 
 

It was found that the least mean square error while predicting both MRR as well as SR was 

obtained by NN. The mean square error obtained, for each regression technique is 

represented in table 4.1 given below. As can be seen from the table, neural net gives the 

best overall results, as it has an extremely small MSE. 

 
Table 4.1 Mean square error obtained for response variable using various regression 

techniques 
 MEAN SQUARE 

ERROR 

Linear Regression 0.46 

Support Vector 
Regression 2.15 

KNN regression 0.275 

Bayesian Ridge 1.981 

Decision Tree regression 0.647 

Gradient Boosting 
regression 0.86 

Neural networks 0.108 

 

The above results can be confirmed by visualizing the values obtained using regression 

techniques with the true values of both MRR and SR on two different graphs (The graph for 

neural network has not been included as the values for NN have been reshaped and will have 

to be represented by another scale than shown below) given by figure 4.1 and figure 4.2. 
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Figure 4.1 Obtained and true values of surface roughness 

 
 

Figure 4.2 Obtained and true values of material removal rate 
 

Out of the three regressions, viz, linear, SVR and Bayesian Ridge regression, linear 
regression has the least error for both MRR and SR. For linear regression the equation found 
is : 

 
y =[ [ 0.0092381  -1.31666667 -1.15333333]  [  -6.41442733 - 886.39633333 -65.8162 ]]* 

x + [1.4800000000000002 3380.573266666667]. 
 

4.2 Optimization of response variables for Delrin using GA 
 
The equation obtained on application of linear regression was taken and Genetic Algorithm 

(GA) was applied to it for optimizing the input variables. In order to implement GA, the 

Optimization Toolbox in MATLAB was used. In this experiment, the MATLAB genetic 

algorithm was selected in the optimization toolbox. The following parameters are used during 

the optimization: An initial Population of 50 with feasible population as the function, and 

tournament type with a crossover of 0.8. We also selected a single point crossover and 

Mutation which is Adaptive Feasible. 
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As can be seen from figure 4.3 and figure 4.5, the multi-objective GA iterates for obtaining 

the best solution and finds it on the 139th generation. The graph in figure 4.4 plots Objective 

2 on the y-axis against Objective 1 on the x-axis giving the Pareto front. These graphs help us 

determine the optimized solutions. Table 4.2 shows the optimized values of response 

variables obtained for optimized values of input variables. 
 
 

Figure 4.3 Average distance 
 
 

Figure 4.4 Pareto front graph 
 
 

Figure 4.5 Average Pareto Spread 
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Table 4.2 Response variables optimized using Genetic Algorithm 
Response 

Variables 

No of 

generations 

Optimal 

Response 

variable value 

Optimal 

Speed value 

(rpm) 

Optimal 

feed value 

(mm/rev) 

Optimal 

Depth of 

Cut value 

(mm) 

SR 139 0.351 

micrometers 

150 0.60 1.49 

MRR 139 1788.91mm3/min 150 0.60 1.49 

 
 
These days one area where polymers are replacing metal based composites is sporting 

equipment. Both thermoplastic and thermosetting polymers are being investigated for that 

purpose. In this thesis we have found the response variables like surface roughness and for  

the thermoplastic polymer Delrin and optimized these parameters for a given set of inputs. 

We have also fabricated natural fiber reinforced epoxy composites and optimized the same 

response variables as in the previous case and then compared the two results. 

 
 
 
4.3 Optimization of response variables for Delrin using RSM 

 
Apart from utilizing genetic algorithm to optimize the response variables, we used the 

Response Surface Methodology (RSM) method with a view to confirm the results obtained  

by genetic algorithm. Figure 4.6 gives us the optimized results for the response variables 

using RSM. According to RSM the optimized value of SR is 0.736 micrometers and 

optimized value of MRR is 2436 mm3/min. These optimized values of response variables 

were obtained at input values of 192.424 rpm of speed, 0.458 mm/rev of feed and 1.5 mm of 

depth of cut. These results closely agree with the results obtained using genetic algorithm. 
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Figure 4.6 Optimized results for response variables using RSM 

 
 

4.4 ANOVA of factors in CNC turning of Delrin rod 

Taguchi method is used to figure out the best values of the input factors for the least value of 

the surface roughness. ANOVA helps us determine the percentage contribution  of  each 

factor. For surface roughness the response table for means has been given by table 4.3. The 

response table helps us select the best value of each input factor. For surface roughness the 

input factors have been selected using smaller-the-better criterion. Figure 4.7 gives the main 

effects plot for means for the output variable surface roughness. 

 
Table 4.3 Response Table for Means 

Level Speed Feed DOC 
1 1.1644 2.2667 1.8489 
2 2.3733 1.8556 3.3111 
3 2.4356 1.8511 0.8133 

Delta 1.2711 0.4156 2.4978 
Rank 2 3 1 
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Figure 4.7 Main effects plot for means for surface roughness 
 
 
Similar to the response table for means is the response table for signal-to-noise ratio. It is 

given by table 4.4. Figure 4.8 give the graph for the main effects plot for SN Ratio for the 

output variable surface roughness. 

 
Table 4.4 Response Table for Signal to Noise Ratios (Smaller is better) 

Level Speed Feed DOC 
1 -0.6606 -4.4635 -4.5869 
2 -5.2969 -3.6712 -9.4635 
3 -6.0096 -3.8325 2.0832 

Delta 5.3490 0.7923 11.5467 
Rank 2 3 1 

3.5 
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Figure 4.8 Main effects plot for SN Ratio for surface roughness 
 
Main effects plot of means as well as S/N Ratio are depicted using figure 4.7 as well as figure 

4.8 respectively. These graphs show that the optimized result is A1B3C3, that is, for a speed 

of 150 rpm, feed of 0.6 mm/rev and depth of cut of 1.5 mm the least surface roughness is 

obtained. These values closely agree with those obtained from other optimization techniques. 

 
Table 4.5 Analysis of Variance for SR 

Source DF Adj SS Adj MS F P Percentage 
Contribution 

Speed 2 9.243 4.6215 8.81 0.002 18.82 
Feed 2 1.025 0.5126 0.98 0.394 2.087 
DOC 2 28.348 14.1740 27.01 0.000 57.72 
Total  49.111     

 
 

Table 4.5 displays the ANOVA for the surface roughness response variable of Delrin rod. 

The analysis of variance gives the sum of squares (SS), degrees of freedom (DF), F-values 

(F-VAL.), mean square (MS) in addition to probability value (PVAL.) as well as 

percentage influence exerted by each factor. Since the significance level or p-value of 2 

input parameters is less than 0.05, those factors are significant. However, for feed the p- 

value is more than 0.05 and thus it is statistically insignificant. Depth of cut has proven to 

be the most significant factor accounting for 57.72% of the effect on the surface roughness 
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in the machining operation. 

4.5 Prediction of response variable of epoxy composite samples 
 
 

Various regression techniques have been used to determine or predict the response variable 

values (in this case surface roughness). Table 4.6 gives the mean square error obtained for 

each regression technique while predicting surface roughness for given inputs. 

 
Table 4.6 Mean square error obtained for response variable using various regression 

techniques 
 MEAN SQUARE 

ERROR 

Linear Regression 0.049 

Support Vector 
Regression 0.062 

KNN regression 0.064 

Bayesian Ridge 0.098 

Decision Tree regression 0.089 

Gradient Boosting 
regression 0.172 

 
 

The above results can be confirmed by visualizing the values obtained using regression 

techniques with the true values of SR as shown by the figure 4.9. 
 
 

Figure 4.9 Graphical comparison between true values and predicted values of surface 
roughness for various regression techniques 
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4.6 Optimization of response variable of epoxy composite using GA 
 
 
Linear regression has the least mean square error, that is, it most closely agrees with the 

graph and is the line of best fit. Our next step is to implement Genetic Algorithm (GA). For 

that we will need the function equation. Since linear regression shows the least mean square 

error, it’s equation is chosen. The equation describing the curve of linear regression is: 

 
y = [-0.30191146  7.19537106  3.77478414] * x + 2.40508229446753 

 
 
Genetic Algorithm is implemented using the Optimization Toolbox in Matlab. Before 

carrying out the optimization we need to select the initial population. In our implementation, 

the initial population has been selected as 50 which is the default value. Out of this initial 

population, the ones selected “to be passed on” are chosen via a ‘tournament type’ selection 

criteria. Moreover, the mutation type chosen is ‘Adaptive Feasible’. 
 
 

Figure 4.10 Average Pareto Spread 
 
 

Figure 4.11 Average Distance between individuals 
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Figures 4.10 and 4.11 give the average Pareto spread and average distance between 

individuals and show that optimization took just a 102 generations to achieve which is quite 

fast.  Table 4.7 gives the optimized value of the response variable using genetic algorithm. 

 
Table 4.7 Response variables optimized using Genetic Algorithm 

Response 

Variable 

No of 

generations 

Optimal 

Response 

variable 

value 

Optimal 

Epoxy:Hardener 

ratio 

Optimal 

Wt% of 

RHA 

Optimal 

Wt% of 

GSA 

SR 102 1.503 

micrometers 

2.99:1 0 0 

 
 

4.7 Optimization of response variable of epoxy composite using RSM 

Apart from utilizing genetic algorithm to optimize the response variables, we used the 

Response Surface Methodology (RSM) method with a view to confirm the results obtained  

by genetic algorithm. Figure 4.12 gives us the optimized results for the response variables 

using RSM. According to RSM the optimized value of SR is 1.3903 micrometers. These 

optimized values of response variables were obtained at input values of 2.4761:1 epoxy: 

hardener ratio, 1.9 weight percentage of RHA and 0 weight percentage of GSA. These results 

closely agree with the results obtained using genetic algorithm. 
 
 

Figure 4.12 Optimized results for response variables using RSM 
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4.8 ANOVA of factors in epoxy composite samples 
 
 
Taguchi method is used to figure out the best values of the input factors for the least value of 

the surface roughness. ANOVA helps us determine the percentage contribution  of  each 

factor. For surface roughness the response table for means has been given by table 4.8. The 

response table helps us select the best value of each input factor. For surface roughness the 

input factors have been selected using smaller-the-better criterion. Figure 4.13 gives the main 

effects plot for means for the output variable surface roughness. 

 
Table 4.8 Response Table for Means 

Level Epoxy:Hardener Wt% of 
RHA 

Wt% of 
GSA 

1 2.4 1.927 1.883 
2 2.01 2.023 2.103 
3 1.923 2.383 2.347 

Delta 0.477 0.457 0.463 
Rank 1 3 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13 Main effects plot for Means 
 
Similar to the response table for means is the response table for signal-to-noise ratio. It is 

given by table 4.9. Figure 4.14 give the graph for the main effects plot for SN Ratio for the 

output variable surface roughness. 
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Table 4.9 Response Table for Signal to Noise Ratios (Smaller is better) 

Level Epoxy:Hardener Wt% of 
RHA 

Wt% of 
GSA 

1 -7.479 -5.694 -5.466 
2 -6.051 -6.044 -6.429 
3 -5.629 -7.421 -7.263 

Delta 1.849 1.727 1.797 
Rank 1 3 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.14 Main effects plot for S/N Ratio 
 

Main effects plot of means as well as S/N Ratio are depicted using figure 4.13 as well as 

figure 4.14 respectively. These graphs show that the optimized result is A3B1C1, that is, for 

an epoxy: hardener ratio of 3 and without the addition of any reinforcements the least surface 

roughness is obtained. This result closely agrees with that obtained using GA. 

 
Table 4.10 Analysis of Variance for SR 

Source DF Seq SS Adj SS Adj MS F P Percentage 
Contribution 

Epoxy:Hardener 2 5.6369 5.63686 2.81843 363.14 0.003 36.35464231 
Wt% of RHA 2 4.9997 4.99966 2.49983 322.09 0.003 32.24531125 
Wt% of GSA 2 4.8532 4.85316 2.42658 312.66 0.003 31.30046694 

Residual Error 2 0.0155 0.01552 0.00776    
Total 8 15.5052      
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Table 4.10 displays the ANOVA for the surface roughness response variable. The analysis 

of variance gives the sum of squares (SS), degrees of freedom (DF), F-values (F-VAL.), 

mean square (MS) in addition to probability value (PVAL.) as well as percentage influence 

exerted by each factor. Since the significance level or p-value of all 3 input parameters is 

less than 0.05, all 3 input variables are statistically significant. 

 
 

4.9 Abrasive Wear analysis of epoxy composite samples 
 
 
To determine the specific wear rate, we will first have to calculate the volume loss. The 

volume loss is found by dividing weight loss with density of composite. Weight loss is 

observed from the digital weight balance by weighing the sample before and after the wear 

test has been performed on it. Once the volume loss is found we then find the specific wear 

rate with the formula: 

Ws = V/(L x D) 
 
 
Here Ws is used to show specific rate of wear with units of mm3/Nm, V is the loss in 

volume in mm3, L stands for load applied on the sample which is equal to 9N and D is the 
stroke length  in mm and its value is 1mm. Table 4.11 gives the dimensions of the samples 

upon which wear analysis was done in addition to the wear rate and the volume loss. 
 
 

Table 4.11   Abrasive Wear rate of samples 

S.No. Sample No. Area (cm2) Height (cm) Volume loss 
(mm3) 

Wear rate 
(mm3/Nm) 

1 L1 9 0.8 1.467 163 

2 L3 9 0.7 0.586 65.11 

3 L4 9 0.5 1.060 117.77 

4 L6 9 0.5 0.785 87.22 
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4.9.1 Ball-on-Flat Tribometer Wear test for sample L1 
 
 
 
 

Figure 4.15 Coefficient of Friction vs Time graph of sample L1 
 
 
 

From Figure 4.15 it can be observed that the coefficient of friction (COF) increases in 

direct proportion to time up to a peak limit and then it saturates. 

 
The average value of COF is determined to be 0.71. 
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Figure 4.16 Frictional Force vs Time graph of sample L1 

 
 
 
As we can see from figure 4.16, the value of frictional force rises with time and then reaches a 

plateau. 

 
The Frictional Force average value was observed to be about 6.43 N. 
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Figure 4.17 Temperature vs Time graph of Sample L1 

 
 
From figure 4.17, it is observed that temperature measurements indicate a temperature of 16.86 

degree Celsius at the start of wear test. 

 
The average temperature reading registered for the duration of the test is about 19.32 degrees 

Celsius. 
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4.9.2 Ball-on-Flat Tribometer Wear test for sample L3 
 
 
 

Figure 4.18 Coefficient of Friction vs Time graph of sample L3 
 
 
 
As can be seen from Figure 4.18 the coefficient of friction (COF) increases in direct proportion 

to time up to a peak limit and then it saturates. 

 
The average value of COF is determined to be 0.23. 
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Figure 4.19 Frictional Force vs Time graph of sample L3 
 
 
 
As we can see from figure 4.19, the value of frictional force rises with time and then reaches a 

plateau. 

 
The Frictional Force average value is observed to be about 2.07 N. 
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Figure 4.20 Temperature vs Time graph of Sample L3 

 
 
 
 

From figure 4.20, it is observed that temperature measurements indicate a temperature of 18.005 

degrees Celsius at the start of wear test. 

 
The average temperature reading registered for the duration of the test is about 19.32 degrees 

Celsius. 
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4.9.3 Ball-on-Flat Tribometer Wear test for sample L4 
 
 

Figure 4.21 Coefficient of Friction vs Time graph of sample L4 
 
 
 
 
From Figure 4.21 it was observed that the coefficient of friction (COF) increases in direct 

proportion to time up to a peak limit and then it saturates. 

 
The average value of COF is determined to be 0.37. 
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. 

Figure 4.22 Frictional Force vs Time graph of sample L4 
 
 
 
 
 
 

As we can see from figure 4.22, the value of frictional force rises with time and then reaches a 

plateau. 

 
The Frictional Force average value  was observed to be about 3.37 N. 
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Figure 4.23 Temperature vs Time graph of Sample L4 
 
 

From figure 4.23, it is observed that temperature measurements indicate a temperature of 20.548 

degree Celsius at the start of wear test. 

 
The average temperature reading registered for the duration of the test is about 22.21 degrees 

Celsius. 
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4.9.4 Graph obtained after wear test of sample L6 
 
 
 
 

Figure 4.24 Coefficient of Friction vs Time graph of sample L6 
 
 
 

From Figure 4.24 it was observed that the coefficient of friction (COF) increases in direct 

proportion to time upto  a peak limit and then it saturates. 

 
The average value of COF is determined to be 0.51. 
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Figure 4.25 Frictional Force vs Time graph of sample L6 
 
 
 
 
 
 
As we can see from the figure 4.25, the value of frictional force rises with time and then reaches 

a plateau. 

 
The Frictional Force average value  was observed to be about 4.57 N. 
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Figure 4.26 Temperature vs Time graph of Sample L6 
 
 
 
From figure 4.26, it is observed that temperature measurements indicate a temperature of 19.625 

degrees Celsius at the start of wear test. 

 
The average temperature reading registered for the duration of the test is about 21.63 degrees 

Celsius. 
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4.9.5 Coefficient Of Friction For All 4 Composite Samples 
 
 

Figure 4.27 COF vs Time graph comparison for all 4 composite samples 
 
 

Figure 4.27 compares the coefficient of friction of all 4 composite samples upon which wear test 

has been performed. 

 
It has been found that L1 has the highest average value of coefficient of friction of 0.71. This is 

no doubt due to the fact that sample L1 has 0% reinforcement. Thus, sample L1 has the highest 

wear rate. 
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4.9.6 Frictional Force For All 4 Composite Samples 
 
 

Figure 4.28 FF vs Time graph comparison for all 4 composite samples 
 
Figure 4.28 compares the frictional force generated on all 4 composite samples upon which 

wear test has been performed. 

 
It has been found that sample L1 generates the highest frictional force. Sample L1 has 0% 

reinforcement and therefore does not get the added benefit of load bearing compared to samples 

with some reinforcement. 
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CHAPTER 5 
 

 

CONCLUSIONS 

This thesis has fabricated Groundnut Shell Ash (GSA) and Rice Husk Ash (RHA) reinforced 

epoxy composites as well as optimized the surface roughness of the samples obtained. In 

addition to that, we have also optimized the response parameters of Delrin rod using genetic 

algorithm. This thesis helps come to the conclusions stated below: 

 
• Out of all the regression techniques, neural networks give the least mean square error 

of 0.108 while predicting the response variable values for Delrin rod. 

• Genetic algorithm (GA) was implemented to find optimum cutting parameters for 
Delrin rod and the values of the input variables were found to be 150 rpm speed, 
0.6mm/rev feed and 1.49mm depth of cut. At this combination optimized value of SR 

is 0.351micrometre and MRR is 1788.91mm3/min. 

• GA gave an optimized result in 139 generations which is quite fast. 

• Response surface methodology (RSM) was also used to optimize the response  
variable values and the value of SR thus obtained was 0.736 micrometers while it was 

2436 mm3/min for MRR. These optimized values of response variables were obtained 
at input values of 192.424 rpm of speed, 0.458 mm/rev of feed and 1.5 mm of depth  
of cut. These results closely agree with the results obtained using genetic algorithm. 

• From the main effects plot we found that the optimized result is A1B3C3, that is, for a 

speed of 150 rpm, feed of 0.6 mm/rev and depth of cut of 1.5 mm the least surface 

roughness is obtained. These values closely agree with those obtained from other 

optimization techniques. 

• ANOVA helps us determine the percentage contribution of each input factor and it 

was found that depth of cut is the most significant factor with a total contribution of 

57.72%. 

• The P-value of feed was found to be greater than 0.05 and thus it was found to be 
statistically insignificant. 

• Natural fibers like GSA and RHA were used to reinforce Epoxy resin matrix 
successfully. 

• Linear regression was found to have the least mean square error of 0.049 among all 

the regression techniques. Thus the curve obtained by linear regression is the line of 

best fit. 
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• The optimized result for minimizing the surface roughness was found by the 

implementation of the Genetic Algorithm (GA). For an epoxy to hardener mixture   of 

2.99 and without adding any reinforcement, a minimum surface roughness of 1.503μm 

was determined. 

• The Genetic Algorithm optimization gave an optimized result in a 102 generations 

which is quite fast. 

• Response surface methodology (RSM) was also used to optimize the response  

variable values and the value of SR thus obtained was 1.3903 micrometers. These 

optimized values of response variables were obtained at input values of 2.4761:1 

epoxy: hardener ratio, 1.9 weight percentage of RHA and 0 weight percentage of 

GSA. These results closely agree with the results obtained using genetic algorithm. 

• From the main effects plot it was found that the optimized result is A3B1C1, i.e., for 

an epoxy:hardener ratio of 3 and 0% addition of reinforcements, the minimum surface 

roughness is obtained. These values closely agree with those obtained from other 

optimization techniques. 

• From the Analysis of variance it was found that all three input variables were 

statistically significant and that epoxy:hardener ratio was the most significant variable 

accounting for 36.35% of the total effect. 

• Ball-on-flat tribometer was used to carry out wear analysis on the epoxy composite 
samples and it was found that the highest wear was found to be by sample L1, that is, 

the neat epoxy composite. It showed the highest volume loss of 1.467 mm3 and a 

maximum wear rate of 163 mm3/Nm. Thus, reinforcements made the composite more 
wear resistant. 
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5.1 Future Scope 
 
This thesis looked at the optimization of surface roughness of natural fiber reinforced 

thermosetting composite and thermoplastic in addition to the wear analysis of the 

thermosetting composite fabricated. In future, thermoplastic matrixes can be reinforced with 

natural fibers using a twin screw extruder. Thermoplastic composites can replace metal 

composites and/or thermosetting composites in many applications. Currently a lot of research 

is going on in that area. 

 
Once fabricated, mechanical, electrical, thermal as well as wear resistance attributes of 

thermoplastic composites reinforced with natural fibers can be compared with thermosetting 

composites reinforced with natural fibers as well as natural fiber reinforced metal matrix 

composites. This will help us replace the composites used currently with the best alternative 

in  terms  of  properties  desired  as  well  as  cost  involved  in  component      manufacturing. 
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Appendix 

#For Surface Roughness 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

#from sklearn import preprocessing 

X=[[1.67, 0, 0],[1.67, 0.04, 0.04],[1.67, 0.08, 0.08],[2, 0, 0.04],[2, 0.04, 0.08],[2, 0.08, 

0],[3, 0, 0.08],[3, 0.04, 0],[3, 0.08, 0.04]] 

y=[1.97,2.27,2.96,1.87,2.14,2.02,1.94,1.66,2.17] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) 

""" 

ytr_scaled = abs(preprocessing.scale(y_train)) 

yte_scaled = abs(preprocessing.scale(y_test)) 

y_scaled = abs(preprocessing.scale(y)) 

print(abs(y_scaled)) 

""" 

#Linear Regression 

from sklearn import linear_model 

clf=linear_model.LinearRegression() 

 

clf.fit(X_train, y_train) 

pred12=clf.predict(X_test) 

print(abs(pred12)) 

print('Accuracy is: {}'.format(mean_squared_error(y_test,pred12))) 
 
 
print("Function for Linear Regression") 

m = clf.coef_ 

b = clf.intercept_ 

print(' y = {0} * x + {1}'.format(m, b)) 



68  

 
 
 

#KNN regression 

from sklearn.neighbors import KNeighborsRegressor 

neigh = KNeighborsRegressor(n_neighbors=2) 

 
 
 

#for SR 

neigh.fit(X_train, y_train) 

pred22=neigh.predict(X_test) 

print(abs(pred22)) 

print('Accuracy is: {}'.format(mean_squared_error(y_test,pred22))) 
 
 
#SVR 

from sklearn.svm import SVR 

regressor=SVR(kernel='linear') 

 

#for SR 

regressor.fit(X_train, y_train) 

pred32=regressor.predict(X_test) 

print(abs(pred32)) 

print('Accuracy is: {}'.format(mean_squared_error(y_test,pred32))) 
 
 
print("Function for SVR") 

m = regressor.coef_ 

b = regressor.intercept_ 

print(' y = {0} * x + {1}'.format(m, b)) 
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#Bayesian Ridge 

model=linear_model.BayesianRidge() 

 

#for SR 

model.fit(X_train, y_train) 

pred42=model.predict(X_test) 

print(abs(pred42)) 

print('Accuracy is: {}'.format(mean_squared_error(y_test,pred42))) 
 
 
print("Function for Bayesian Ridge") 

m = model.coef_ 

b = model.intercept_ 

print(' y = {0} * x + {1}'.format(m, b)) 
 
 
#Decision Tree Regression 

from sklearn import tree 

dtr = tree.DecisionTreeRegressor() 
 
 

#for SR 

dtr.fit(X_train, y_train) 

pred52=dtr.predict(X_test) 

print(abs(pred52)) 

print('Accuracy is: {}'.format(mean_squared_error(y_test,pred52))) 
 
 
#GradientBoostingRegressor 

from sklearn.ensemble import GradientBoostingRegressor 

gbr =GradientBoostingRegressor() 
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#for SR 

gbr.fit(X_train, y_train) 

pred62=gbr.predict(X_test) 

print(abs(pred62)) 

print('Accuracy is: {}'.format(mean_squared_error(y_test,pred62))) 

#SR_true vs SR_pred 

xdp=[1,2,3] 

import matplotlib.pyplot as plt 

plt.plot(xdp,y_test,'rs') 

plt.plot(xdp,pred12,'b--',label='linear regression') 

plt.plot(xdp,pred22,'g--',label='KNN') 

plt.plot(xdp,pred32,'c--',label='SVR') 

plt.plot(xdp,pred42,'m--',label='Bayesian Ridge') 

plt.plot(xdp,pred52,'y--',label='Decision Tree') 

plt.plot(xdp,pred62,'k--',label='Gradient Boosting Regression') 

#plt.plot(xdp,pred72,'r--',label='Neural Network') 

plt.title('Regression for SR_true vs SR_pred') 

plt.xlabel('No. of datapoints') 

plt.ylabel('SR') 

plt.legend(loc='upper right',bbox_to_anchor=(1.6,1)) 

plt.show() 
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Table:  Wear analysis data for sample L1 
 

TIME COF FF TEMP LOAD 
0.151 -0.001 -0.012 16.863 9 

59.991 0.146 1.31 17.631 9 
120.051 0.158 1.423 17.75 9 
180.028 0.176 1.582 18.061 9 

240.1 0.196 1.765 18.595 9 
300.033 0.221 1.99 18.681 9 
360.027 0.248 2.233 18.579 9 
420.064 0.288 2.594 18.811 9 
480.005 0.356 3.2 18.671 9 
540.104 0.488 4.391 19.131 9 

600.01 0.593 5.335 19.317 9 
660.054 0.679 6.112 18.734 9 
720.035 0.703 6.325 18.83 9 

780.07 0.738 6.639 19.313 9 
840.094 0.75 6.749 19.181 9 
900.029 0.763 6.87 19.747 9 
960.091 0.781 7.031 19.28 9 

1020.026 0.797 7.172 19.559 9 
1080.075 0.804 7.233 19.425 9 
1140.029 0.818 7.362 19.443 9 
1200.049 0.825 7.423 19.5 9 
1260.016 0.807 7.259 19.863 9 
1320.136 0.827 7.44 19.535 9 
1380.012 0.875 7.874 19.523 9 

1440.05 0.881 7.929 19.434 9 
1500.144 0.899 8.091 19.606 9 
1560.003 0.916 8.242 19.059 9 
1620.034 0.92 8.277 19.572 9 
1680.088 0.927 8.347 19.706 9 
1740.085 0.939 8.45 20.04 9 
1800.053 0.937 8.435 19.624 9 
1860.013 0.943 8.491 19.686 9 
1920.002 0.943 8.491 20.124 9 
1980.004 0.94 8.461 19.882 9 
2040.062 0.949 8.538 19.611 9 

2100.07 0.951 8.563 20.309 9 
2160.077 0.953 8.58 19.972 9 
2220.011 0.96 8.639 19.868 9 
2280.026 0.964 8.68 19.718 9 
2340.021 0.961 8.645 19.967 9 
2399.926 0.953 8.58 19.99 9 
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Table:  Wear analysis data for sample L3 
 

TIME COF FF TEMP LOAD 
0.149 0.002 0.016 18.005 9 
60.13 0.189 1.705 18.629 9 

120.013 0.201 1.807 18.992 9 
180.128 0.208 1.876 19.304 9 
240.091 0.213 1.918 19.664 9 
300.116 0.215 1.938 19.782 9 
360.083 0.216 1.947 20.058 9 
420.025 0.22 1.976 20.157 9 
480.054 0.221 1.987 20.278 9 
540.068 0.222 2 20.372 9 
600.009 0.223 2.006 20.541 9 
660.114 0.224 2.013 20.499 9 

720.12 0.224 2.02 20.565 9 
780.019 0.225 2.028 20.655 9 
840.043 0.226 2.033 20.535 9 
900.057 0.228 2.052 20.844 9 
960.007 0.229 2.065 20.844 9 

1020.105 0.23 2.074 20.864 9 
1080.001 0.231 2.081 20.9 9 
1140.022 0.233 2.097 20.95 9 
1200.069 0.234 2.109 20.919 9 
1260.074 0.235 2.119 21.088 9 

1320.04 0.236 2.128 20.926 9 
1380.07 0.239 2.154 21.056 9 

1440.105 0.239 2.155 21.178 9 
1500.035 0.24 2.164 21.043 9 
1560.062 0.24 2.164 21.122 9 

1620 0.242 2.175 21.074 9 
1680.033 0.24 2.16 21.076 9 
1740.014 0.242 2.18 21.142 9 
1800.054 0.243 2.183 21.167 9 
1860.099 0.243 2.186 21.18 9 
1920.129 0.245 2.202 21.075 9 
1980.068 0.245 2.208 21.368 9 
2040.043 0.247 2.226 21.241 9 
2100.008 0.247 2.227 21.169 9 
2160.083 0.248 2.234 21.358 9 
2220.074 0.249 2.243 21.049 9 
2280.066 0.251 2.258 21.21 9 
2340.086 0.251 2.261 21.345 9 
2399.967 0.252 2.264 21.2 9 
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Table:  Wear analysis data for sample L4 
 

TIME COF FF TEMP LOAD 
0.149 -0.011 -0.101 20.548 9 

60.061 0.308 2.774 20.389 9 
120.056 0.312 2.807 21.178 9 
180.113 0.319 2.869 20.854 9 
240.051 0.324 2.916 21.465 9 
300.005 0.33 2.97 21.667 9 
360.081 0.331 2.982 20.997 9 
420.064 0.341 3.067 21.844 9 
480.035 0.344 3.097 21.783 9 
540.018 0.35 3.151 22.531 9 
600.062 0.353 3.175 21.487 9 
660.072 0.358 3.221 21.891 9 
720.066 0.36 3.242 21.991 9 
780.139 0.364 3.272 21.993 9 
840.013 0.369 3.318 21.941 9 
900.087 0.367 3.301 22.356 9 
960.034 0.374 3.369 22.514 9 

1020.029 0.376 3.383 22.591 9 
1080.079 0.379 3.411 22.488 9 
1140.074 0.381 3.433 21.534 9 
1200.039 0.381 3.433 22.482 9 
1260.136 0.383 3.447 22.217 9 
1320.013 0.381 3.426 22.225 9 
1380.004 0.382 3.434 22.741 9 

1440.07 0.391 3.519 22.756 9 
1500.013 0.392 3.53 22.256 9 
1560.077 0.392 3.532 22.232 9 

1620.01 0.397 3.576 22.444 9 
1680.009 0.402 3.62 22.972 9 
1740.008 0.402 3.621 22.455 9 
1800.094 0.404 3.636 22.538 9 
1860.074 0.402 3.618 22.841 9 

1920.05 0.404 3.639 22.656 9 
1980.013 0.406 3.658 22.297 9 

2040.04 0.41 3.693 22.531 9 
2100.03 0.407 3.662 22.535 9 

2160.225 0.41 3.694 23.011 9 
2220.001 0.411 3.697 22.844 9 
2280.009 0.412 3.712 22.633 9 
2340.045 0.415 3.734 23.116 9 
2399.938 0.415 3.738 22.541 9 
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Table:  Wear analysis data for sample L6 
 

TIME COF FF TEMP LOAD 
0.198 -0.009 -0.082 19.625 9 

60.057 0.327 2.945 19.332 9 
120.046 0.37 3.329 20.262 9 
180.083 0.391 3.519 20.314 9 

240.1 0.406 3.651 20.272 9 
300.056 0.425 3.821 20.93 9 
360.097 0.435 3.918 21.015 9 
420.047 0.445 4.002 21.329 9 
480.149 0.451 4.063 20.974 9 

540.04 0.462 4.157 21.388 9 
600.026 0.475 4.278 21.512 9 
660.021 0.482 4.341 21.132 9 
720.067 0.489 4.397 21.608 9 
780.011 0.494 4.446 21.116 9 
840.012 0.487 4.381 21.622 9 
900.087 0.493 4.436 21.743 9 
960.131 0.514 4.626 21.608 9 

1020.026 0.505 4.542 21.873 9 
1080.073 0.502 4.515 22.2 9 
1140.073 0.525 4.725 21.961 9 
1200.066 0.534 4.804 21.841 9 
1260.069 0.528 4.754 21.813 9 
1320.026 0.537 4.833 22.043 9 
1380.075 0.541 4.87 21.941 9 
1440.122 0.551 4.959 21.98 9 
1500.079 0.552 4.966 21.84 9 
1560.043 0.555 4.998 21.97 9 

1620.07 0.556 5.004 22.116 9 
1680.108 0.556 5.006 21.944 9 
1740.007 0.542 4.878 21.951 9 
1800.052 0.55 4.95 22.682 9 
1860.013 0.555 4.992 22.082 9 
1920.074 0.573 5.158 21.996 9 
1980.024 0.577 5.194 22.281 9 

2040.06 0.583 5.251 22.607 9 
2100.104 0.578 5.203 21.661 9 

2160.06 0.579 5.208 22.274 9 
2220.026 0.562 5.058 22.151 9 

2280.03 0.58 5.22 22.366 9 
2340.008 0.588 5.291 22.85 9 

2399.87 0.588 5.293 23.119 9 
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