

A DISSERTATION

ON

Malware Detection using Machine Learning

Submitted in partial fulfilment of the requirements
for the award of the degree of

MASTER OF TECHNOLOGY
In

SOFTWARE TECHNOLOGY

Submitted by
Vijay Kumar Gupta

University Roll No. 2K16/SWT/517

Under the Esteemed Guidance of
Dr. Kapil Sharma

(Professor - Department of Information Technology)

 2016-2019

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY,
DELHI– 110042, INDIA

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

DECLARATION

I hereby declare that the thesis entitled “Malware Detection using Machine

Learning” which is being submitted to the Delhi Technological University, in partial

fulfilment of the requirements for the award of degree of Master of Technology in

Software Technology is an authentic work carried out by me. The material contained in

this thesis has not been submitted to any university or institution for the award of any

degree.

DATE:

SIGNATURE:

Vijay Kumar Gupta
2K16/SWT/517

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

CERTIFICATE

This is to certify that thesis entitled “Malware Detection using Machine

Learning”, is a bonafide work done by Mr. Vijay Kumar Gupta (Roll No:

2K16/SWT/517) in partial fulfilment of the requirements for the award of Master of

Technology Degree in Software Technology at Delhi Technological University, Delhi,

is an authentic work carried out by him under my supervision and guidance. The content

embodied in this thesis has not been submitted by him earlier to any University or

Institution for the award of any Degree or Diploma to the best of my knowledge and

belief.

DATE:

SIGNATURE:

Dr.Kapil Sharma
Project Guide,

DEPARTMENT OF INFORMATION TECHNOLOGY.
DELHI TECHNOLOGICAL UNIVERSITY, DELHI 110042

Kapil
Pencil

ACKNOWLEDGEMENT

I am presenting my work on “Malware Detection using Machine Learning”

with lot of pleasure and satisfaction. I take this opportunity to express my deep sense of

gratitude and respect towards my guide Dr. Kapil Sharma. I am very much indebted to

her for her generosity, expertise and guidance I have received from his while working on

this project. Without her support and timely guidance the completion of the project would

have seemed a far –fetched dream. In this respect I find myself lucky to have my guide.

She have guided not only with the subject matter, but also taught the proper style and

techniques of documentation and presentation. Besides my guides, I would like to thank

entire teaching and non-teaching staff in the Department of Computer Science &

Engineering, DTU for all their help during my tenure at DTU. Kudos to all my friends at

DTU for thought provoking discussion and making stay very pleasant. I am also thankful

to the SAMSUNG who has provided me opportunity to enroll in the M.Tech Programme

and to gain knowledge through this programme. This curriculum provided me knowledge

and opportunity to grow in various domains of computer science.

Vijay Kumar Gupta

2K16/SWT/517

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

DECLARATION

I hereby declare that the thesis entitled “Malware Detection using Machine

Learning” which is being submitted to the Delhi Technological University, in partial

fulfilment of the requirements for the award of degree of Master of Technology in

Software Technology is an authentic work carried out by me. The material contained in

this thesis has not been submitted to any university or institution for the award of any

degree.

DATE:

SIGNATURE:

Vijay Kumar Gupta
2K16/SWT/517

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

CERTIFICATE

This is to certify that thesis entitled “Malware Detection using Machine

Learning”, is a bonafide work done by Mr. Vijay Kumar Gupta (Roll No:

2K16/SWT/517) in partial fulfilment of the requirements for the award of Master of

Technology Degree in Software Technology at Delhi Technological University, Delhi,

is an authentic work carried out by him under my supervision and guidance. The content

embodied in this thesis has not been submitted by him earlier to any University or

Institution for the award of any Degree or Diploma to the best of my knowledge and

belief.

DATE:

SIGNATURE:

Dr.Kapil Sharma
Project Guide,

DEPARTMENT OF INFORMATION TECHNOLOGY.
DELHI TECHNOLOGICAL UNIVERSITY, DELHI 110042

ACKNOWLEDGEMENT

I am presenting my work on “Malware Detection using Machine Learning”

with lot of pleasure and satisfaction. I take this opportunity to express my deep sense of

gratitude and respect towards my guide Dr. Kapil Sharma. I am very much indebted to

her for her generosity, expertise and guidance I have received from his while working on

this project. Without her support and timely guidance the completion of the project would

have seemed a far –fetched dream. In this respect I find myself lucky to have my guide.

She have guided not only with the subject matter, but also taught the proper style and

techniques of documentation and presentation. Besides my guides, I would like to thank

entire teaching and non-teaching staff in the Department of Computer Science &

Engineering, DTU for all their help during my tenure at DTU. Kudos to all my friends at

DTU for thought provoking discussion and making stay very pleasant. I am also thankful

to the SAMSUNG who has provided me opportunity to enroll in the M.Tech Programme

and to gain knowledge through this programme. This curriculum provided me knowledge

and opportunity to grow in various domains of computer science.

Vijay Kumar Gupta

2K16/SWT/517

Abstract

In this challenge, we are aiming to classify tens of thousands of malware files into

families and using different machine learning models with some improvisation done in

the modelling and training of data. The dataset used consisted of large proportions of

.bytes and .asm files having around 11,000 malware_files for test set and training set.

Strategically doing the exploratory analysis, which included evaluating the distribution,

feature extraction, multivariate analysis and data splitting, we have tried to compare the

models and optimize the best one using new techniques to enhance the efficiency of the

task. The task was both separately and conjunctively performed over the byte and asm

files and effective analysis was made. Some new insights like visualization and effective

feature engineering are also mentioned and appreciated that would further refine the

accuracy of the process.

We have used a large dataset released by Microsoft in this work for both training

and testing purposes. Training data0set has 10868 sample5malwares from 9 5different

classes5of5malware. Classes of malware are:

(a) Vundo (b) Lollipop, (c) Simda, (d) Ramnit, (e) Kelihos_ver3, (f)

Obfuscator.ACY, (g) Kelihos_ver1, (h) Tracur, (i) Gatak.

The malware data0set is almost0half a tera-byte when it is un-compressed. The

data-set consists of a8set of known8malware 1files 1representing a mixture 1of

90different family. Each1 of the malware 1file has its own identifier0, 207character hash-

valued uniquely8identifying given file1, & class1 label1, that is integer represents the 1

of the nine1 family8names to which1 the malwares might belonged to. For each of the

given file, the raw-data contained the hexadecimal0representation of9the files binary (01)

content5, with-out the header (to 1ensure 1sterility). The given data0set also includes

a9metadata manifest, that is the log containing8various metadata information what is

taken out from the binary (01), just like function_calls, strings1, etc. That was8generated

using the0IDA disassembler0tool.

The dataset is first loaded and then it is saved in memory for further

transformations.

For each of the7malware, we have 2 files - .asm0 file and .bytes0 file (and where

given file binary content is represented in hexadecimal representation in raw data, but

with out the P.E.0header).The size of .bytes files are 10,8683and 10,868 asm9files

making a total of 21,736 files .

11

INTRODUCTION: ..13

1.1 Background: ...13

1.2 Malware types:- ..13

1.3 Detection methods:-- ..15

1.4 Need for machine-learning1:-- ...18

1.1 Outcome Expected..19

CHAPTER TWO: REVIEW OF LITERATURE ..21

CHAPTER THREE: TECHNICAL APPROACH ...23

3.1 ModelTraining ..30

3.2 Supervised Learning ...30
3.2.1 Model Testing ...36
3.2.2 Cross-validation ..36

CHAPTER FOUR: EXPERIMENT DATA ..37

4.1 Distribution of data over various class: ..38

CHAPTER FIVE: MULTIVARIATE ANALYSIS ..40

CHAPTER SIX: RESULT ANALYSIS ...43

12

13

 Introduction:
 Industry of Malwares has grown very quickly in the past few years8that, to evade

traditional protection the syndicates invest heavily in technologies, forcing 1the anti5malware

groups9/8communities to build more complex0softwares to identify and terminate these

attacks. Identifying whether a given content of any specific file or 1software is a malware or

not is the first and important step of saving a computer-system from a malware0attack.

1.1 Background:

The background to understand the need for M. L. methods in0malware detection. First

malware types are described then it is followed by the standard0malware detection5methods.

After that, the need for ML is discussed, based on the knowledge gained, along9with the

relevant work0performed in this field.

1.2 Malware types:-

It is useful to classify malwares to have a good understanding of the0methods and logic

behind7it. Depending on its purpose malwares can be divided into several classes. The

classes are as mentioned in below:

- 1Virus: -- 1This malware is a piece of code which modifies the attacked file in such8a way

that when original file/application is executed it also-executed. Basically it insert

itself in an application/file and execute when application runs.

It is the simplest form of malware.

 -Worm. This malware has a distinctive trait of self replication. Unlike Viruses it

doesn’t require any end user to kick it off. It’s ability to spread without any end-user action

makes it so devastating.

14

-Trojan. This malware class masquerade itself as a legitimate program but they contain

harmful instructions. Due to that, the general 1spreading-vectors that 1utilized in this0class

called social1 engineering2. Trojans require execution by it’s end user.

-Adware. This type of malware is generally used to display advertisements on6the computer.

Generally this could be seen as a sub--class of spy ware. Very unlikely it will lead to

dramatic0results.

-Spyware: --. As it can be implied from its name itself, it is the type of malware which

performs espionage1. Generally this type of malware are used to track search history and

based on that send personalized advertisements, also selling data to the third parties.

-Rootkit. This type of malware are used to enable the attacker to access the data with higher

permission compared to what is allowed. For example, it can be used in giving administrative

access to an unauthorized user. Rootkits quite often are unnoticeable and always hide its

existence on the system, thus it makes the detection0and removal of them extremely hard.

- Backdoor: --.This is the type of malware which provide an4additional undisclosed

“entrance” to the computer for its attackers. 0Itself that is not harmful but it helps in

providing broder surface to the attackers. So basically these are not used-independently, they

are preceding7of some other type of malware attack.

- Keylogge.: -- .This type of malware is used to track all of the keys that typed by any person,

so, store all private data, thta includes passwords1 & other sensitive information1.

-Ransomware : -- . As it’s name indicates these types of malwares are aims1 to encrypt1 all

user data on his computer and then it asked that perosn to transfer- huge money (Ransom) to

find the unlock-password. Usually,1a machine get frozen infected by ransomware1as all files

are encrypted and user can not open any file , and on attacker’s demands desktop0picture is

used to provide required informations.

15

-Remote Administration-Tools (RAT): --. These types are used to do possible

modification as if they were accessed0physically by allowing an attacker to8gain the access

to the given system. For example Team-Viewer, but0 with malicious intentions.

1.3 Detection methods:--

Every technique to detect the malware could be further expressed into 2 categories.

Signature1 - based & behaviour - based method. This is very important to understand about

the fundamental of these 2 malwares analysis1 approaches: i.e. static one and dynamic one0

malware analysis1, before going into these methods. As it name implies, static-analysis is

performed with-out execution of given file i.e. “statically”. On other hand, dynamic-analysis

is performed on the executing file for an e. g. in virtual-machines.

Static-analysis1: would be seen as predicting the behavioral properties of the file by

“reading the source code” of themalware. It can include various techniques:

File Format Inspection: Useful information can be provided by file matadata. For example,

much information can be provided by Windows PE (portable executable) on compiled time,

imported1 & exported1 functions0etc.

String-Extraction1: -- this refers to inferring information about the malware operation by

examinations of given SW output (example -status or any error message).

Fingerprinting1: - this techniques includes the cryptographic1 based hash 3computation, &

find the environmental3 artifacts0, like hard-coded user-name, file-name, or any registry

strings.

AV scanning3: -- if it is a case that inspected-file is a quite known1-malware2, mostly it can

be detected by all anti-virus scanners. Although this may seem irrelevants, that way was

generally used by A.V. sandboxes or vendors to “confirm their results”.

16

Disassembly1: -- Disassembly1belongs to inferring the software logic and intentions by

reversing comletely the given machine-code to ASM language & that is the very much

common and useful method in static-analysis.

Often, “Static0 analysis”0 id done using certain tool & beyond the very simple analysis,

information 0n protection techniques used by malware can be provided by them. An ability to

discover all feasible behavioural scenarios is of main importance in static analysis.

Researching its code allowed all of researcher to find all possible methods of malware

execution3 this is not only limited to this present situation. As the content of given file data

could not -executed and it could not result0 in bad1 consequences for entire given system,

these types of analysis are safer than the dynamic analysis, also Static analysis are much

more time eating. Due to all the reasons in real--world dynamic environments it is generally

not in use, such0 as anti2 virus3 systems, but it is often1 used for research 0purposes, for

example in the zero day (0D) malware signature development procedure.

Dynamic Analysis (DA). - In contrast to the static analysis (SA), in D.A the behaviour- of

the given file is measured while these are executing2 & the intentions and properties of the

current file are inferred0 from extracted -information. Generally, that file was being run1 in

this virtual2 environment2, for e.g. in the sand-box1. In this type of analysis1, this was

possible to figure out all the behavioural attributes, like , created mutexes, opened files, etc.

Basically, it is quite fast than that of SA (static analysis). On the different side, behavirial

scenario relevant to the current system properties could be seen by SA (static analysis). For

example, the result might vary from the malware1 running in the environment of Windows

8.19 than to given VM (virtual machine) on which Windows 7. is installed,

Now, detection methods can be defined having the back-ground on 1malware analysis. The

signature0based analysis which relies on predefined signatures is a static method. This can

be file fingerprint, example SHA1 hashes or MD5, file metadata, static strings. This

scenario0 of detection, in 1this case, will be as follows:- the file arrived in this system, is

17

statically analyzed1 by the antivirus SW and an alert will be triggered, stating1 that this file is

1suspicious, if any of the signatures is matched. As in our case all the known samples of

malware could be detected on 3basis of 1hash values, very often this kind of analysis is

enough. However, attackers are now developing malware in a1 way which could change1 its

signature. This feature of malware is referred1 as polymorphism. Truly, using only signature1

based detection1 techniques1, such malware could never be found. Moreover, until1 the1

signatures1 are created, naval malware types could not be detected using the same

signatures. Therefore, alternate way of detection required for A.V. Vendors :– behaviour

based also referred to as heuristics basedanalysis. Real behaviour of any malware could be

found during their execution1 in the method, looking for0 the malicious signs of behaviour,

modifying givne registry keys, host files:, establishing1 doubtful connections. By themselves,

every one of the actions1 could not be a good symptom of malware1, but their 1combination

could increase the level of suspiciousness1 of a given file.

Any of the malware exceeding defined threshold level causes an alert.

The accuracy of heuristics- based detection method are highly -depends on its

implementation.1 Virtual environment is utilized by the best ones, for example. the sand-box

to execute the file and monitored given behaviour. Since before actual execution of the file,

it is checked, it is much safer, Although this method is more time consuming0. Behaviour

based detection method could not identify only the known “malware1 types” but also ‘zero1

day 2attacks’1 and ‘polymorphic viruses’1. 2However, in 1practice, such analysis could not

be considered effective1 against new or polymorphic malware, considering the fast spreading

rate of these malwares.

18

1.4 Need for machine-learning1:--

We had noted before, 1malware 1detectors which are primarily based1 on 1signatures

may perform properly on ancient-types malware that were already found by any of antivirus

vendors. By the way, it could not discover polymorphic1 malware1, which has a great ability

to vary its signatures1, and the noval-malware, for whom signatures1 has now not been

1created yet1. In fact, the correctness of heuristics1 based detectors1 is not always adequate

for correct detection, resulting1 in lots of false +ve and false -ves. There for need for the

noval detection1 mechanism is dictated1 by the high8 spreading2 rate of polymorphic2

1viruses. This problem can be solved by1 relying on the combination1 of heuristics based

analysis and ML (1machine learning4) methods, that offers a good efficiency during the

process of detection

When ‘heuristics based approach’ is relied on, a certain threshold1 for malware triggers has

to be there, the amount of heuristics needed for the software is defined and is called

malicious1. For e. g. a set of suspicious1 features1, such as permission changed, connection

established, registry key changed etc. could be defined. Any SW that has triggered1 at least 5

features1 from the set could be called malicious3. It is not always correct, although that

method gives us some level of effectiveness1 & that was not accurate1 as some of the

features could have more “weight” than other features, for an e. g., a permission1 changed

usually1 ends with high severe impacts to the system rather than registry1 key 1changed.

Moreover, feature combinations sometimes ismore suspicious than features. These

correlations could be taken into consideration and for more 1accurate detection, ML

‘machine learning’ methods will be provided2.

Objective

• Whether a given file/software is malware or not is detected

19

• A file may be detected as malware then it is classified into nine different

categories

o Lollipop

o Vundo

o Ramnit

o Kelihos_ver3

o Simda

o Gatak

o Tracur

o Kelihos_ver1

o Obfuscator.ACY

• Multiclass error are minimized

• Multiclass probability estimates for each malware is calculated

• Output is given by our model in few seconds or a minute

1.1 Outcome Expected

Input can be any file/software after converting it into .byte or .asm file. Project

outcome is focused on finding the probability of that file belonging to given nine classes:

• Simda

• Ramnit

• Gatak

• Kelihos_ver3

• Kelihos_ver1

20

• Vundo

• Lollipop

• Obfuscator.ACY

• Tracur

21

Chapter Two: Review of Literature
The notion of strategies of computing device studying for detecting malware is no

longer new however it is no longer extensively implemented. Studies of special sorts had

been carried out in this field, which focused to parent the accuracy of exclusive methods

 DragosGavrilut,in- his paper ‘Malware- Detection Using Machine -Learning’ , which is

aimed for creating a detection gadget based totally on quite a few modified perceptron

algorithms-. For one of a kind algorithms, the accuracy of 169.90%- 196.18% used to

be achieved. Algorithm that produced the best range of false-positives additionally resulted

in exceptional accuracy: the most correct one resulted in forty eight false positives.

Algorithm with balanced accuracy and the low false0 +ve charge have the accuracy1 of

93.01%1. (“Gavrilut”-, et al. 02009).

The detection1 method is based on modified RF algorithm (Random- Forest

algorithm) along with “Information Gain” for better feature representation1 are discussed in

this paper - ‘Malware1 Detection Module- using Machine- Learning Algorithms- to assist in

Centralized2 Security in Enterprise -Networks-’. This data set is consists of -portable

executable- files, for which feature extraction is generally easier, this point should be noted.

The accuracy of 197% and 0.033 false positive rate is achieved as result (“Singhal and Raul”

2015).

Extraction methods proposed in “A Static1 Malware 1Detection 0System by using

some Data1 Mining2 Methods” was based on DLLs, P.E. headers1, methods and API

functions that are based on Naive1 Bayes algorithms, Support Vector Machines and J-48

Decision Trees and. maximum overall accuracyof 399% with P.E. header1 feature1 type and

hybrid P.E. header & API’s function feature type, 399.1% with API’s function1 feature0 type

was achieved with the J48 algorithm (Baldangabo, Jambaljav and Horng 2013).

22

The API features had been used for function illustration in “Zero-day 0Malware

Detection primarily 0based on 0Supervised Learning 0Algorithms of API name Signatures”.

Support Vector Machines algorithm with normalized polykernelachieved the first-rate result.

This executed the precision of 97.6%, alongside with a falsepositive price of 0.025. (Alazab,

et al. 2011).

 All research ended up with special outcomes can be seen1. No unified methodology used

to be created but neither for detection nor characteristic illustration can be concluded. Each

separate1 case accuracy relies upon on the specifics of malware households used and on

the true implementation1.

23

Figure21= General0 workflow0 process0:

Chapter Three: Technical Approach
An in depth understanding can be achieved, by walking through= the general 1workflow

of the ML “machine learning” process as given in Diagram 1.

It is a 5 stage process as can be soon:

1. Data intake:-- : First, we load the data-set from the fileand save it into a memory.

2. Data transformation:-. Now, after this step1 the data of step 1 has been cleared,

transformed1, and normalized1 to be suitable for the algorithm1. Converted data

lies in the given range, and have the exactly same format1, etc. Feature1

extraction and selection, that are discussed further, 1are performed at this stage.

Moreover, the data could be separated in-to the sets called “training set” &

“testing set”. “Training set data” are used1 to make the model0, which1 is later1

evaluated1 using the testing set-.

3. Normalization:- For e.g. of normalization1 could be divide an image- z, -where z

is the number2 of –pixels- with- colour j, by- the -total number1 of count to

“encode” the distribution1 and withdraw the dependency on the “Image size”.

This translates1 in the given formula1

24

4. Standardization :- Sometimes, even when comparable objects are refferd,

features can have different scales. For instance, housing prices example can be

considered. In this case, feature1 “room size” is a integer, that is not more than

five and feature “house size” is calculated in sq meters1. Although comparison

can be done of both values and could be multiplied, added etc., the outcome

would be1 unreasonable1 before1 normalization. The given scale value is mostly

used: x'i2= (xi4−3µi) /σi, where -µi: and -σi: be the mean value & the std.:

deviation2 of feature -xi over 9training -examples.

5. Feature Extraction Mentioned above instances, attributes from the provided data

should be extracted, so could be 1fed to the given formula. For instance, for case

of housing -prices, multidimensional matrix could be used to represent that, in this

each column can represent an 1attribute and rows tell us the numerical- values

for: those attributes. Data asan RGB: value of each pixel can be represented in

this case

These attributes1 would be referred to the features-, and the matrixes are termed as

feature- vector-. Feature extraction is the -process of extracting1 data from given set. A set of

non-redundant and informative data could be obtained as a goal of feature extraction. To get

knowledge, that features must represent- the relevant and important- information about given

dataset is important because ac accurate prediction cannot be made without it. Non-obvious task

of feature extraction requires a lot of research & testing . General methods apply here poorly as it

is domain specific.

25

Non-redundancy is another urgent requirement for a decent1 feature set is. Algorithm can

become biased because of features that are redundant that is features- that outlined9 the

redundant -information1, as well as the same information: features, what are very closely inter-

related on each other1, hence, inaccurate result are provided

Moreover, for the input8 data that is quite large to be enter into our algorithm0 (which

means it have large amount of features), must be transformed1 to a shrink feature vector fifteen

(vector-, having a fewer features number-). Feature selection is the method where the vector-

dimensions0 are reduced. After this process, select the -features to outline the relevant1

information- from the initia0 set are expected so -that instead of initial data it can be used

without any loss of accuracy.

• Featureextraction:

26

• Box plot of file size as feature.

27

 Figure 2

Extracting features from byte file:

In Feature extraction section, we will store all the hexadecimal code in a text file after removing

line number form byte file.

After this we will keep track of count of hexadecimal code that is repeating in a particular file

and store it in bag of words. This acts as feature of each file. After the feature extraction process

is completed we will save it in a file named “result.csv”.

28

Part 1:

Part 2:

29

Output of extracted features:

The above code loads data from result.csv and prints it .

In the second snippet we also add file size as one of the features of the file.

30

3.1 ModelTraining

In this section we first split the data into two sets i.e. train and test dataset. Further we split train

into two parts as actual train dataset and cross validation dataset. Cross validation dataset is used

to tune the hyper parameters such as number of neighbours in KNN and depth of tree in random

forest.

Below code snippet split dataset into train and test dataset.

Code:

3.2 Supervised Learning

A. Regression: From previous observations, it predicts the next value i.e. values from training

dataset. Simply, we could say that -if the output1 is a number- or in continuous1 form, this can

be called a “regression problem”.

B. Classification7 On the basis of given set of label data1, where- each one of label represents a

class, which this sample- belongs0 to, we wanted to find out that class for the previously1

unknown1 sample-. Given sets1 of possible outputs are finite in number1 and generally small.

Usually, we could say that if given output is a 1 categorical / discrete variable, then1 we can term

it as a “classification problem”.

1. K-1nearest neighbours

31

K--1Nearest Neighbours’ (K--NN) is one of the most straightforward1, however, exact ML

machine learning algorithm. K--NN is a not a parametric =algorithm, implying that it did not

create any presumptions1 about- the information structure. Actually In these real senarioes

problems-, provided data- hardly obeys the general1 theoretical0 assumptions, that made this non

parametric0 algorithms to find suitable solution for these problems. We could represent K--NN

model in simple way as in this case data-set, requires no learning mechanism and the entire

training- set is stored1. K--NN would be used for both types of classification2 and regression2

problems. Inside both of the problems, prediction0 is based on the ‘K’ training2 instances that is

close to the input0 instance7. In the K--NN problem of classification, the output was a class0, to

what the input instance0 belonged, predicted0 by the majority vote of the ‘K’ -- closest

neighbours1. In the problems of regression1, the output is the property value0, that is basically a

mean value of the ‘K’ -- nearest neighbours3. E.g. isshowed in Diagram 2.

Figure - 3

The value of ‘K has a important factor in accuracy0 of the algorithm7 for prediction. Moreever,

selecting the ‘K’ value is a not a ‘trivial- task’. If data set has much noise then smaller values of

k will give lower accuracy, since2 every instance2 of the training1 set now had a larger weight0

during the decision1 process0. Large value of ‘K’ -- gives lower1 accuracy. In addition1 to this,

32

if the value is quite high1, the model could over fit, making the class 1boundaries1 less distinct1

and results in lower1 accuracy.

For classification1 problems with the even number of classes1, We have to choose an odd

k-- to avoid the possibility1 of a tie. The major drawback0 of given K--NN algorithm could be

the poor performance3 on the unevenly1 distributed datasets0. Therefore, if one of the classes

vastly1 dominates the other class then this is more likely to had large neighbors1 of that class3

due4 to its large number, &, so, can make in-correct predictions2.

2.RandomForest

Among all algorithms of machine learning, this one is very much popular. The results are

usually accurate with very less preparation of data and modeling. Random Forests are 1based on

the decision trees. Random forest produce more accurate prediction results, because this

algorithm is collections of another algorithm called decision trees. This is the reason it’s called

“forest” – primarily it is a set of decision trees. Dividing dataset independently into subsets &

growing several decision trees based on them, is the fundamental idea. At every node,

some(n)variables from the feature set. This selection of variables is random. Now, on these

selected variables, algorithm finds best split. In simplerterms, the algorithm can be described as

follows:

-On approximately two-third of the training data is (62.3%), algorithm builds multiple

trees. Data selection is random in this process.

 -From all predictor variables, multiple predictor variable selection is done

randomly.After that, to split each node on these picked variables, best split is used. By default,

33

the number of the predictor variables1 selected, is the square root of the total number of all

predictors for classification, and it is constant for all trees.

 -Calculation of rate of misclassification is done by using remaining data. Calculation of

the total error rate is done as the rate of overall out-of-bag error.

-Classification result is given by each tree that is trained, giving its own

“Vote”. Result is chosen by selecting the class which has received most “votes”.

Just like decision trees, in Random Forest algorithm, irrelevant features won’t be

accountable in any case, Random Forest removes feature selection need for it. Sometimes feature

selection is needed in Random Forest algorithm, this is in case where dimensionality reduction is

needed. Random Forest’s own cross-validation method is considered to be the out-of-bag error

rate, which we mentioned earlier. Difficult cross-validation measures are removed due to this,

which would have to be taken otherwise. Many advantages are inherited by Random forest, of

the decision tree algorithms. Both problems:classification and regression, are applicable to them;

they can be easily computed and fitted quickly. They also 1usually result in the 7better accuracy.

One cannot interpret results very easily unlike decision tress. In decision trees, valuable

information can be extracted of important variables and their affection in the result. This is not

possible with random forests. Decision tress might also be descried as less stable than Random

Forests – by modifying data a little bit, accuracy could be reduced due to change in decision

trees. This will never occur in the 1random forest algorithms – it remains stable since it is the

combination of many decision trees.

34

 Figure 4

3.XGBoost

In recent times, this an algorithm which dominates applied ML machine learning and

Kaggle 1competitions over others for tabular and structural data. XGBoostalgorithm is

implementedby gradient boosted1 decision trees designed for speed and performance.In

XGBoost we use extremely randomized decision-trees . All the trees have high bias and very low

variance.This technique basically use Gradient 0Boosting. 1Gradient boosting3 is a technique

of ML ’machine learning’ for regression1 and classification2 problems5, that generates a

prediction3 model1 in the 3form of4 an ensemble1 of dull prediction0 models5, 5typically in

35

decision0 trees9. It prepared this 3model in a “stage wise” fashion as other boosting1 methods2

do, and it conclude them by allowing1 the arbitrary differentiable0 loss function optimization.

Leo Breiman had observed and thought ofgradient boosting, that boosting techniques

could be considered as some optimization3 algorithms on some appropriate cost function1.

Explicit4 regression “gradient boosting algorithm”1 was subsequently 1developed by Mr.

Jerome0 H Friedman1 all together with the more 1general functional4 gradient- boosting0

perspective2 of 4Llew2 Mason4, 11Peter Bartlett, 1Marcus Frean0 and Jonathan Baxter. From

the later two papers were introduced0 in the view of “boosting algorithms” as an

iterative5 functional4 gradient descent algorithms4. This is 1algorithms which optimized a cost4

function6 over 6function -space by- iteratively- selecting a 0function (“weak hypothesis”) that

would points to the –ve “gradient direction”1. This ‘functional gradient’ view of5 boosting6 has

given direction for the development1 of various ‘boosting algorithms’ in many areas of ML “

machine learning” and ‘statistics’ 1beyond the regression4 and classification7.

Algorithm:

36

3.2.1 Model Testing

In step 3 we trained/built a model, it will be tested now using ‘test’ set of data. New

model will be built by the result produced from this, that might considers the predefined

models4, i.e. “learn” from5 them8

3.2.2 Cross-validation

The major setback in the methods of evaluation of accuracy present in methods of

machine learning is that on the new data, model performance cannot be predicted. Cross-

validation approach is used to overcome the drawback.Raw data set is split initially. Firstly

37

largest part of split set of data is trained on model and subsequently smaller sets are tested. Three

separate classes are there present for cross-validation.

Holdout8 method: – here, separate the data-set in 2 parts: a test set and atraining set. Fit

the 4model using training set.Test this trained model using test set, model has not seen data in

this set before. The errors resulting would be then used to find out the “mean absolute test error”

, which is used for model5 evaluation6. Higher speed is plus point of this method. On the other4

side, the 7evaluations results highly depend on how we select the test5 set because the variance5

is 5usually high5. So one can observe significant difference in the evaluation results between

different4 test sets4.

The K1- fold method: could be viewed as the improvements over3 the hold1 out

method2. Here1, given ‘K’-- subsets has been selected randomly, and single holdout1 method is

repeated ‘K’- times3, where the each2 time3 one of3 the ‘K’- subset is 4used in the training3

set4, and the (K - 1) subsets are used4 as the testing set3. Then average error has been

calculated3 all over ‘K’- runs of the hold-out methods.5With the increase1 of ‘K’, the variance is

also reduced4, ensuring1 that the 5accuracy would not changed with3 different1 data-sets.

Running time and complexity are than the holdout method, which is a disadvantage of this

method.

Chapter Four: Experiment Data

38

4.1 Distribution of data over various class:

 Figure 5

Distribution of datapoints :

1.Train Dataset:

 Figure 6

39

1. Test Dataset:

 Figure 7

2. Cross Validation dataset:

40

Chapter Five: Multivariate Analysis
Here we plot all the datapoints using TSNE by reducing the dimension of the datapoints

from 260 to just 2.

Code:

41

TSNE plots:

 Figure 9

Code:

42

TSNE plots:

 Figure 10

43

Chapter Six: Result Analysis

Plot showing distribution of data belonging to various class :

Plot of training data:

The plot below has been plotted using TSNE dimensenality reduction technique. TSNE

maintains the neighbors when the dimension is drastically reduced to 2-D.

44

This plot has been plotted to see whether data points belonging to same category are

clustered together or not . This helps us in understanding whether the data points can actually be

classified or not.

I the plot below we can see that class 3 , 2 and 8 are pretty seperate from other class

while other class are mingled .

Random Model:

Code:

45

Confusion matrix:

Precision matrix:

46

 Figure 12

Recall matrix:

47

 Figure 13

KNN Model:

Code:

48

Cross Validation Error:

49

Confusion matrix:

50

Precision matrix:

 Figure 15

Using KNN and plotting precision matrix we can see that we have good score i.e. in most of the

cells in diagonal element we have value greater than 0.85 or 85%.

Precision matrix shows that of all the points predicted to belong to a particular class how many

actually belongs to that class.

Recall matrix:

51

 Figure 16

Accuracy:

1. Using KNN we got a logloss of 0.244.

2. Using KNN of all the 2174 points in test dataset approximaely 5 points were misclassified.

Logistic Regression

Code:

52

53

Confusion matrix:

 Figure 17

54

Precision matrix:

Figure 18

Recall matrix:

Figure 19

55

Random Forest Model:

Code:

56

Cross Validation Plot:

Confusion Matrix:

Figure 20

Precision matrix:

57

Figure 21

Here we clearly see that the value we got in the diagonal cells is far better than KNN.

The value in these diagonal cells has an average of 0.95 or 95%.

Recall matrix:

Figure 22

58

Accuracy:

1. Using Random Forest we got an improved logloss of 0.08 which is far better than .

2. Number of misclassified points out of 2174 has been lowered to just 2 compared

to 5 of KNN.

XGBoost Model:

Code:

59

XgBoost Classification with best hyper parameters using Random Search

60

Code:

Output:

61

Best Values of Hyper parameters:

Training a hyper-parameter tuned Xg-Boost regressor on our train data:

Code:

Storing the model :

62

Confusion Matrix:

Figure 23

Here the average value of the diagonal cells have improved to 0.97 or 97%.

Accuracy:

1. The logloss we achieved using XGBoost is 0.07 which is better than random forest.

2. Number of misclassified points out of 2174 point is approximately 1. Thus we have

been able to reduce the error further down.

Test Result Analysis

63

64

Conclusion and Future Scope
In this challenge, we have compared the different models used in machine learning and have

chosen the best model through extensive cross validation and hyper-parameter tuning. This way

we have achieved a good accuracy by modelling the data files. We observe that such efficiency

of the task is best met by the using Xgboost algorithm for the provided data and using algorithms

like random forest search for tuning purposes. Even this accuracy can further be improved by

effectively calibrating the models built separately over byte and asm files as well as those trained

after their conjunction.

For future work, dataset will also be extended to include all classes of malware in the wild and

visualization , better feature engineering and ensembling to enhance the log loss will be the

research directions as well.

65

References

[1] I. Santos, Y. K. Penya, J. Devesa, and P. G. Garcia, "N-grams-based file signatures for
malware detection," pp. 317-320, 2009.

[2] T. H. C. W. P. D. a. P. L. K. Rieck, "Learning and classification of malware behavior," in
DIMVA ’08: Proceedings of the 5th international conference on Detection of Intrusions and
Malware, and Vulnerability Assessment., Berlin, Heidelberg: Springer-Verlag, 2008.

[3] E. Konstantinou, "Metamorphic virus: Analysis and detection," Technical Report RHUL-
MA-2008-2, Search Security Award M.Sc. thesis, p. 93 pages, 2008.

[4] P. K. C. a. R. Lippmann, "Machine learning for computer security," Journal of Machine
Learning Research, vol. 6, p. 2669–2672, 2006.

[5] J. Z. K. a. M. A. Maloof, "Learning to detect and classify malicious executables in the
wild," Journal of Machine Learning Research, vol. 7, no. special Issue on Machine
Learning in omputer Security, p. 2721–2744, December 2006.

[6] M. C. D. A. L. C. Dragos¸ Gavrilut¸, "Malware Detection Using Machine Learning," in
Proceedings of the International Multiconference on Computer Science and Information
Technology, 2009.

[7] N. R. Priyank Singhal, "Malware Detection Module using Machine Learning Algorithms to
Assist in Centralized Security in Enterprise Networks," International Journal of Network
Security & Its Applications (IJNSA),, vol. 4, no. 1, 2012.

[8] N. J.-J. H. Usukhbayar Baldangombo, "A STATIC MALWARE DETECTION SYSTEM
USING A STATIC MALWARE DETECTION SYSTEM USING," International Journal
of Artificial Intelligence & Applications (IJAIA), vol. 4, no. 4, July, 2013..

[9] S. V. P. W. A. Mamoun Alazab, "Zero-day Malware Detection based on Supervised
Learning Algorithms of API call Signatures," in Proceedings of the 9-th Australasian Data
Mining Conference (AusDM'11), Ballarat, Australia, 2011.

[10] T. L. D. A. a. S. S. I. Yanfang Ye, "A survey on malware detection using data mining

66

techniques," ACM Computing Surveys (CSUR), p. 41, 2017.

[11] J. X. P. C. a. S. M. A. H. Sung, "Static Analyzer of Vicious utables (SAVE).".

[12] S. J. Mihai Christodorescu, "Static Analysis of Executables to Detect Malicious Patterns," in
Proceedings of the 12th Conference on USENIX, USENIX Association, Berkeley,
CA,USA., 2003.

[13] S. M. Tabish, M. Z. Shafiq and M. Farooq, "Malware Detection Using Statistical Analysis
of Byte-level File Content," in In Proceedings of the ACM SIGKDD Workshop on
CyberSecurity and Intelligence Informatics(CSI-KDD'09), ACM, New York, NY, USA,
2009.

[14] I. Santos, F. Brezo, X. Ugarte-Pedrero and P. G. Bringas, "Opcode sequences as
representation of executables for data-mining-based unknown malware detection,"
Information Sciences 231, p. 64 – 82, 2013.

[15] B. Yadegari, B. Johannesmeyer, B. Whitely and S. Debray, "A Generic Approach to
Automatic Deobfuscation of Executable Code," IEEE Symposium on Security and Privacy,
p. 674–691, 2015.

[16] J. Drew, T. Moore and M. Hahsler, "Polymorphic malware detection using sequence
classification methods," In Security and Privacy Workshops(SPW), pp. 81-87, 2016.

[17] L. Nataraj, V. Yegneswaran, P. Porras and J. Zhang, "A comparative assessment of malware
classification using binary texture analysis and dynamic analysis," in Workshop on Artificial
Intelligence and Security (AISec), Oct 2011.

[18] L. Nataraj, S. Karthikeyan, G. Jacob and B. S. Manjunath, "Malware images Visualization
and automatic classification," in Proceedings of the 8th International Symposium on
Visualization for Cyber Security, VizSec ’11, New York, NY, USA, 2011.

[19] U. Bayer, P. M. Comparett, C. Hlauschek, C. Kruegel and E. Kirda, "Scalable, behavior-
based malware clustering".

[20] M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Jahanian and J. Nazario, "Automated
classification and analysis of internet malware," Lecture Notes in Computer Science, vol.
4637, p. 178–197, 2007.

	Introduction:
	1.1 Background:
	1.2 Malware types:-
	1.3 Detection methods:--
	1.4 Need for machine-learning1:--
	1.1 Outcome Expected

	Chapter Two: Review of Literature
	Chapter Three: Technical Approach
	3.1 ModelTraining
	3.2 Supervised Learning
	3.2.1 Model Testing
	3.2.2 Cross-validation

	Chapter Four: Experiment Data
	4.1 Distribution of data over various class:

	Chapter Five: Multivariate Analysis
	Chapter Six: Result Analysis

