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Abstract 

In this challenge, we are aiming to classify tens of thousands of malware files into 

families and using different machine learning models with some improvisation done in 

the modelling and training of data. The dataset used consisted of large proportions of 

.bytes and .asm files having around 11,000 malware_files for test set and training set. 

Strategically doing the exploratory analysis, which included evaluating the distribution, 

feature extraction, multivariate analysis and data splitting, we have tried to compare the 

models and optimize the best one using new techniques to enhance the efficiency of the 

task. The task was both separately and conjunctively performed over the byte and asm 

files and effective analysis was made. Some new insights like visualization and effective 

feature engineering are also mentioned and appreciated that would further refine the 

accuracy of the process. 

We have used a large dataset released by Microsoft in this work for both training 

and testing purposes. Training data0set has 10868 sample5malwares from 9 5different 

classes5of5malware. Classes of malware are:                                                

(a) Vundo (b) Lollipop, (c) Simda, (d) Ramnit,   (e) Kelihos_ver3,   (f) 

Obfuscator.ACY, (g) Kelihos_ver1,  (h) Tracur, (i) Gatak. 

The malware data0set is almost0half a tera-byte when it is un-compressed. The 

data-set consists of a8set of known8malware 1files 1representing a mixture 1of 

90different family. Each1 of the malware 1file has its own identifier0, 207character hash-

valued uniquely8identifying given file1, & class1 label1, that is integer represents the 1 



 

of the nine1 family8names to which1 the malwares might belonged to. For each of the 

given file, the raw-data contained the hexadecimal0representation of9the files binary (01) 

content5, with-out the header (to 1ensure 1sterility). The given data0set also includes 

a9metadata manifest, that is the log containing8various metadata information what is 

taken out from the binary (01), just like function_calls, strings1, etc. That was8generated 

using the0IDA disassembler0tool. 

The dataset is first loaded and then it is saved in memory for further 

transformations. 

For each of the7malware, we have 2 files - .asm0 file and .bytes0 file (and where 

given file binary content is represented in hexadecimal representation in raw data, but 

with out the P.E.0header).The size of .bytes files are 10,8683and 10,868 asm9files 

making a total of 21,736 files . 
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 Introduction: 
            Industry of Malwares has grown very quickly in the past few years8that, to evade 

traditional protection the syndicates invest heavily in technologies, forcing 1the anti5malware 

groups9/8communities to build more complex0softwares to identify and terminate these 

attacks. Identifying whether a given content of any specific file or 1software is a malware or 

not is the first and important step of saving a computer-system from a malware0attack.  

1.1 Background: 

The background to understand the need for M. L. methods in0malware detection. First 

malware types are described then it is followed by the standard0malware detection5methods. 

After that, the need for ML is discussed, based on the knowledge gained, along9with the 

relevant work0performed in this field. 

1.2 Malware types:- 

It is useful to classify malwares to have a good understanding of the0methods and logic 

behind7it. Depending on its purpose malwares can be divided into several classes. The 

classes are as mentioned in below: 

- 1Virus: -- 1This malware is a piece of code which modifies the attacked file in such8a way 

that when original file/application is executed it also-executed. Basically it insert  

itself in an application/file and execute when application runs.  

It is the simplest form of malware.                                      

           -Worm. This malware has a distinctive trait of self replication. Unlike Viruses it    

doesn’t require any end user to kick it off. It’s ability to spread without any end-user action  

makes it so devastating. 
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-Trojan. This malware class masquerade  itself as a legitimate program but they contain 

harmful instructions. Due to that, the general 1spreading-vectors that 1utilized in this0class 

called social1 engineering2. Trojans require execution by it’s end user.   

-Adware. This type of malware is generally used to display advertisements on6the computer. 

Generally this could be seen as a sub--class of spy ware. Very unlikely it will lead to 

dramatic0results. 

-Spyware: --. As it can be implied from its name itself, it is the type of malware which 

performs espionage1. Generally this type of malware are used to track search history and 

based on that send personalized advertisements, also selling data to the third parties. 

-Rootkit. This type of malware are used to enable the attacker to access the data with higher 

permission compared to what is allowed. For example, it can be used in giving administrative 

access to an unauthorized user.  Rootkits quite often are unnoticeable and always hide its 

existence on the system, thus it makes the detection0and removal of them extremely hard.                                                     

- Backdoor: --.This is the type of malware which provide an4additional undisclosed 

“entrance” to the computer for its attackers. 0Itself that is not harmful but it helps in 

providing broder surface to the attackers. So basically these are not used-independently, they 

are preceding7of some other type of malware attack.  

- Keylogge.: -- .This type of malware is used to track all of the keys that typed by any person, 

so,  store all private data, thta includes passwords1 & other sensitive information1. 

-Ransomware : -- . As it’s name indicates these types of malwares are aims1 to encrypt1 all 

user data on his computer and then it asked that perosn to transfer- huge money (Ransom) to 

find the unlock-password. Usually,1a machine get frozen infected by ransomware1as all files 

are encrypted and user can not open any file , and on attacker’s demands desktop0picture is 

used to provide required informations. 
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-Remote Administration-Tools (RAT): --. These types are used to do possible 

modification as if they were accessed0physically by allowing an attacker to8gain the access 

to the given system. For example Team-Viewer, but0 with malicious intentions. 

 

1.3 Detection methods:-- 

Every technique to detect the malware could be further expressed into 2 categories.  

Signature1 - based & behaviour - based method. This is very important to understand about  

the fundamental of these 2 malwares analysis1 approaches: i.e. static one and dynamic one0 

malware analysis1, before going into these methods. As it name implies, static-analysis is 

performed with-out execution of given file i.e. “statically”. On other hand, dynamic-analysis 

is performed on the executing file for an e. g.  in virtual-machines. 

Static-analysis1: would be seen as  predicting the behavioral properties of the file  by 

“reading the source code” of themalware. It can include various techniques: 

File Format Inspection: Useful information can be provided by file matadata. For example, 

much information can be provided by Windows PE (portable executable) on compiled time, 

imported1 & exported1 functions0etc. 

String-Extraction1: -- this refers to inferring information about the malware operation by 

examinations of given SW output (example -status or any error message). 

Fingerprinting1:  - this techniques includes the cryptographic1 based hash 3computation, & 

find the environmental3 artifacts0, like hard-coded user-name, file-name, or any registry 

strings. 

AV scanning3: -- if  it is a case that inspected-file is a quite known1-malware2, mostly it can 

be detected by all anti-virus scanners. Although this may seem irrelevants, that way was 

generally used by A.V. sandboxes or vendors to “confirm their results”. 
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Disassembly1: -- Disassembly1belongs to inferring the software logic and intentions by 

reversing comletely the given machine-code to ASM language & that is the very much 

common and useful method in static-analysis. 

Often,  “Static0 analysis”0 id done using certain tool  & beyond the very simple analysis, 

information 0n protection techniques used by malware can be provided by them. An ability to 

discover all feasible behavioural scenarios is of main importance in static analysis. 

Researching its code allowed all of researcher to find all possible methods of malware 

execution3 this is not only limited to this present situation. As the content of given file data 

could not -executed and it could not result0 in bad1 consequences for entire given system, 

these types of analysis are safer than the dynamic analysis, also Static analysis are much 

more time eating. Due to all the reasons in real--world dynamic environments it is generally 

not in use, such0 as anti2 virus3 systems, but it is often1 used for research 0purposes, for 

example in the zero day (0D) malware signature development procedure. 

Dynamic Analysis (DA). -  In contrast to the static analysis (SA), in D.A the behaviour- of 

the given file is measured while these are executing2 & the intentions and properties of the 

current file are inferred0 from extracted -information. Generally, that file was being run1 in 

this virtual2 environment2, for e.g.  in the sand-box1. In this type of analysis1, this was 

possible to figure out all the behavioural attributes, like , created mutexes, opened files, etc. 

Basically, it is quite fast  than that of  SA (static analysis). On the different side,  behavirial 

scenario relevant to the current system properties could be seen by SA (static analysis). For 

example, the result might vary from the malware1 running in the environment of  Windows 

8.19 than to given VM (virtual machine) on which Windows 7. is installed, 

Now, detection methods can be defined having the back-ground on 1malware analysis. The 

signature0based analysis which relies on predefined signatures is a static method. This can 

be file fingerprint, example SHA1 hashes or MD5,  file metadata,  static strings. This 

scenario0 of detection, in 1this case, will be as follows:- the file arrived in this system, is 
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statically analyzed1 by the antivirus SW and an alert will be triggered, stating1 that this file is 

1suspicious, if any of the signatures is matched. As in our case all the known samples of  

malware could  be detected on 3basis of  1hash values, very often this kind of analysis is 

enough. However, attackers are now developing malware in a1 way which could change1 its 

signature. This feature of malware is referred1 as polymorphism. Truly, using only signature1 

based detection1 techniques1, such malware could never be found. Moreover, until1 the1 

signatures1 are created, naval  malware types could not be detected using the same 

signatures. Therefore, alternate way of detection required for A.V. Vendors :– behaviour 

based also referred to as heuristics basedanalysis. Real behaviour of any malware could be 

found during their execution1 in the method, looking for0 the malicious signs of behaviour, 

modifying givne registry keys, host files:, establishing1 doubtful connections. By themselves, 

every one of the actions1 could not be a good symptom of malware1, but their 1combination 

could increase the level of suspiciousness1 of a given file.  

Any of the malware exceeding defined threshold level causes an alert. 

The accuracy of heuristics- based detection method are highly -depends on its 

implementation.1 Virtual environment is utilized by the best ones, for example. the sand-box 

to execute the file and monitored given behaviour. Since  before actual execution of the file, 

it is checked, it is much safer, Although this method is more time consuming0. Behaviour 

based detection method could not identify only the known “malware1 types” but also ‘zero1 

day 2attacks’1 and ‘polymorphic viruses’1. 2However, in 1practice, such analysis could not 

be considered effective1 against new or polymorphic malware, considering the fast spreading 

rate of these malwares. 
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1.4   Need for machine-learning1:-- 

We had noted before, 1malware 1detectors which are primarily based1 on 1signatures 

may perform properly on ancient-types malware that were already found by any of antivirus 

vendors. By the way, it could not discover polymorphic1 malware1, which has a great ability 

to vary its signatures1, and the noval-malware, for whom signatures1 has now not been 

1created yet1.  In fact, the correctness of heuristics1 based detectors1 is not always adequate 

for correct detection, resulting1 in lots of false +ve and false -ves.  There for need for the 

noval detection1 mechanism is dictated1 by the high8 spreading2 rate of polymorphic2 

1viruses. This problem can be solved by1 relying on the combination1 of heuristics based 

analysis and ML (1machine learning4) methods, that offers a good efficiency during the 

process of detection 

When ‘heuristics based approach’ is relied on, a certain threshold1 for malware triggers has 

to be there, the amount of heuristics needed for the software is defined and is called 

malicious1. For e. g. a set of suspicious1 features1, such as permission changed, connection 

established, registry key changed etc. could be defined. Any SW that has triggered1 at least 5 

features1 from the set could be called malicious3. It is not always correct, although that 

method gives us some level of effectiveness1 & that was not accurate1 as some of the  

features could have more “weight” than other features, for an e. g., a permission1 changed 

usually1 ends with high severe impacts to the system rather than registry1 key 1changed. 

Moreover, feature combinations sometimes ismore suspicious than features. These 

correlations could be taken into consideration and for more 1accurate detection, ML 

‘machine learning’ methods will be provided2. 

Objective 

• Whether a given file/software is malware or not is detected 
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• A file may be detected as malware then it is classified into nine different 

categories 

o Lollipop 

o Vundo 

o Ramnit 

o Kelihos_ver3 

o Simda 

o Gatak 

o Tracur 

o Kelihos_ver1 

o Obfuscator.ACY 

• Multiclass error are minimized 

• Multiclass probability estimates for each malware is calculated 

• Output is given by our model in few seconds or a minute 

1.1 Outcome Expected 

Input can be any file/software after converting it into .byte or .asm file. Project 

outcome is focused on finding the probability of that file belonging to given nine classes: 

 

• Simda 

• Ramnit 

• Gatak 

• Kelihos_ver3 

• Kelihos_ver1 
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• Vundo 

• Lollipop 

 

• Obfuscator.ACY 

• Tracur 
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Chapter Two: Review of Literature 
The notion of strategies of computing device studying for detecting malware is no 

longer new however it is no longer extensively implemented. Studies of special sorts had 

been carried out in this field, which focused to parent the accuracy of exclusive methods 

        DragosGavrilut,in- his paper ‘Malware- Detection Using Machine -Learning’ , which is 

aimed for creating a detection gadget based totally on quite a few modified perceptron 

algorithms-. For one of a kind algorithms, the accuracy of 169.90%- 196.18% used to 

be achieved. Algorithm that produced the best range of false-positives additionally resulted 

in exceptional accuracy: the most correct one resulted in forty eight false positives. 

Algorithm with balanced accuracy and the low false0 +ve charge have the accuracy1 of 

93.01%1. (“Gavrilut”-, et  al. 02009). 

The detection1 method is based on modified RF algorithm (Random- Forest 

algorithm) along with “Information Gain” for better feature representation1 are discussed in 

this paper - ‘Malware1 Detection Module- using Machine- Learning Algorithms- to assist in 

Centralized2 Security in Enterprise -Networks-’. This data set is consists of -portable 

executable- files, for which feature extraction is generally easier, this point should be noted. 

The  accuracy of 197% and 0.033 false positive rate is achieved as result (“Singhal and Raul” 

2015). 

Extraction methods proposed in “A Static1 Malware 1Detection 0System by using 

some Data1 Mining2 Methods” was based on DLLs, P.E. headers1, methods and API 

functions that are based on Naive1 Bayes algorithms, Support Vector Machines and J-48 

Decision Trees and. maximum overall accuracyof 399% with P.E. header1 feature1 type and 

hybrid P.E. header & API’s function feature type, 399.1% with API’s function1 feature0 type 

was achieved with the J48 algorithm (Baldangabo, Jambaljav and Horng 2013). 
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The API features had been used for function illustration in “Zero-day 0Malware 

Detection primarily 0based on 0Supervised Learning 0Algorithms of API name Signatures”. 

Support Vector Machines algorithm with normalized polykernelachieved the first-rate result. 

This executed the precision of 97.6%, alongside with a falsepositive price of 0.025. (Alazab, 

et al. 2011). 

 

       All research ended up with special outcomes can be seen1. No unified methodology used 

to be created but neither for detection nor characteristic illustration can be concluded. Each 

separate1 case accuracy relies upon on the specifics of malware households used and on 

the true implementation1. 
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Figure21= General0 workflow0 process0: 

Chapter Three: Technical Approach 
An in depth understanding can be achieved, by walking through= the general 1workflow 

of the ML “machine learning” process as given in Diagram 1. 

  

 

 

 

 

 

 

 

It is a 5 stage process as can be soon: 

1. Data intake:-- : First, we load the data-set from the fileand save it into a memory. 

2. Data transformation:-. Now, after this step1 the data of step 1 has been cleared, 

transformed1, and normalized1 to be suitable for the algorithm1. Converted data 

lies in the given range, and have the exactly same format1, etc. Feature1 

extraction and selection, that are discussed further, 1are performed at this stage. 

Moreover, the data could be separated in-to the sets called “training set” & 

“testing set”. “Training set data” are used1 to make the model0, which1 is later1 

evaluated1 using the testing set-. 

3. Normalization:- For e.g. of normalization1 could be divide an image- z, -where z 

is the number2 of –pixels- with- colour j, by- the -total number1 of count to 

“encode” the distribution1 and withdraw the dependency on the “Image size”. 

This translates1 in the given formula1 
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4. Standardization :- Sometimes, even when comparable objects are refferd, 

features can have different scales. For instance, housing prices example can be 

considered. In this case, feature1 “room size” is a integer, that is not more than 

five and feature “house size” is calculated in sq meters1. Although comparison 

can be done of both values and could be multiplied, added etc., the outcome 

would be1 unreasonable1 before1 normalization. The given scale value is mostly 

used: x'i2= (xi4−3µi) /σi, where -µi: and -σi: be the mean value & the std.: 

deviation2 of feature -xi over 9training -examples. 

5. Feature Extraction Mentioned above instances, attributes from the provided data 

should be extracted, so could be 1fed to the given formula. For instance, for case 

of housing -prices, multidimensional matrix could be used to represent that, in this 

each column can represent an 1attribute and rows tell us the numerical- values 

for: those attributes. Data asan RGB: value of each pixel can be represented in 

this case 

These attributes1 would be referred to the features-, and the matrixes are termed as 

feature- vector-. Feature extraction is the -process of extracting1 data from given set. A set of 

non-redundant and informative data could be obtained as a goal of feature extraction. To get 

knowledge, that features must represent- the relevant and important- information about given 

dataset is important because ac accurate prediction cannot be made without it. Non-obvious task 

of feature extraction requires a lot of research & testing . General methods apply here poorly as it 

is domain specific. 
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Non-redundancy is another urgent requirement for a decent1 feature set is. Algorithm can 

become biased because of features that are redundant that is features- that outlined9 the 

redundant -information1, as well as the same information: features, what are very closely inter-

related on each other1, hence, inaccurate result are provided 

Moreover, for the input8 data that is quite large to be enter into our algorithm0 (which 

means it have large amount of features), must be transformed1 to a shrink feature vector fifteen 

(vector-, having a fewer features number-). Feature selection is the method where the vector- 

dimensions0 are reduced. After this process, select the -features to outline the relevant1 

information- from the initia0 set are expected so -that instead of initial data it can be used 

without any loss of accuracy. 

• Featureextraction: 
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• Box plot of file size as feature. 
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                  Figure 2  

Extracting features from byte file: 

In Feature extraction section, we will store all the hexadecimal code in a text file after removing 

line number form byte file. 

After this we will keep track of count of hexadecimal code that is repeating in a particular file 

and store it in bag of words. This acts as feature of each file. After the feature extraction process 

is completed we will save it in a file named “result.csv”. 
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Part 1: 

 
Part 2:  
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Output of extracted features: 

The above code loads data from result.csv and prints it . 

In the second snippet we also add file size as one of the features of the file. 
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3.1 ModelTraining 

In this section we first split the data into two sets i.e. train and test dataset. Further we split train 

into two parts as actual train dataset and cross validation dataset. Cross validation dataset is used 

to tune the hyper parameters such as number of neighbours in KNN and depth of tree in random 

forest. 

Below code snippet split dataset into train and test dataset. 

Code: 

 
 

3.2 Supervised Learning 

A. Regression: From previous observations, it predicts the next value i.e. values from training 

dataset. Simply, we could say that -if the output1 is a number- or in continuous1 form, this can 

be called a “regression problem”. 

B. Classification7 On the basis of given set of label data1, where- each one of  label represents a 

class, which this sample- belongs0 to, we wanted to find out that class for the previously1 

unknown1 sample-. Given sets1 of possible outputs are finite in number1 and generally small. 

Usually, we could say that if given output is a 1 categorical / discrete variable, then1 we can term 

it as a “classification problem”. 

1. K-1nearest neighbours 
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K--1Nearest Neighbours’ (K--NN) is one of the most straightforward1, however, exact ML 

machine learning algorithm. K--NN is a not a parametric =algorithm, implying that it did not 

create any presumptions1 about- the information structure. Actually In these real senarioes 

problems-, provided data- hardly obeys the general1 theoretical0 assumptions, that made this non 

parametric0 algorithms to find suitable solution for these problems. We could represent K--NN 

model in simple way as in this case data-set, requires no learning mechanism and the entire 

training- set is stored1. K--NN would be used for both types of classification2 and regression2 

problems. Inside both of the problems,  prediction0 is based on the ‘K’ training2 instances that is  

close to the input0 instance7. In the K--NN problem of classification, the output was a class0, to 

what the input instance0 belonged, predicted0 by the majority vote of the ‘K’ -- closest 

neighbours1. In the problems of regression1, the output is the property value0, that is basically a 

mean value of the ‘K’ -- nearest neighbours3. E.g.  isshowed in Diagram 2. 

 

 

 

 

 

 

Figure - 3 

The value of ‘K has a important factor in accuracy0 of the algorithm7 for prediction. Moreever, 

selecting the ‘K’ value is a not a ‘trivial- task’. If data set has much noise then smaller values of 

k will give lower accuracy, since2 every instance2 of the training1 set now had a larger weight0 

during the decision1 process0. Large value of ‘K’ -- gives lower1 accuracy. In addition1 to this, 
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if the value is quite high1, the model could over fit, making the class 1boundaries1 less distinct1 

and results in lower1 accuracy.  

For classification1 problems with the even number of classes1, We have to choose an odd 

k-- to avoid the possibility1 of a tie. The major drawback0 of given  K--NN algorithm could be 

the poor performance3 on the unevenly1 distributed datasets0. Therefore, if one of the classes 

vastly1 dominates the other class then this is more likely to had large neighbors1 of that class3 

due4 to its large number, &, so, can make in-correct predictions2. 

2.RandomForest 

Among all algorithms of machine learning, this one is very much popular. The results are 

usually accurate with very less preparation of data and modeling. Random Forests are 1based on 

the decision trees. Random forest produce more accurate prediction results, because this 

algorithm is collections of another algorithm called decision trees. This is the reason it’s called 

“forest” – primarily it is a set of decision trees. Dividing dataset independently into subsets & 

growing several decision trees based on them, is the fundamental idea. At every node, 

some(n)variables from the feature set. This selection of variables is random. Now, on these 

selected variables, algorithm finds best split. In simplerterms, the algorithm can be described as 

follows: 

-On approximately two-third of the training data is (62.3%), algorithm builds multiple 

trees. Data selection is random in this process. 

 -From all predictor variables, multiple predictor variable selection is done 

randomly.After that, to split each node on these picked variables, best split is used. By default, 
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the number of the predictor variables1 selected, is the square root of the total number of all 

predictors for classification, and it is constant for all trees. 

 -Calculation of rate of misclassification is done by using remaining data. Calculation of 

the total error rate is done as the rate of overall out-of-bag error. 

-Classification result is given by each tree that is trained, giving its own 

“Vote”. Result is chosen by selecting the class which has received most “votes”. 

Just like decision trees, in Random Forest algorithm, irrelevant features won’t be 

accountable in any case, Random Forest removes feature selection need for it. Sometimes feature 

selection is needed in Random Forest algorithm, this is in case where dimensionality reduction is 

needed. Random Forest’s own cross-validation method is considered to be the out-of-bag error 

rate, which we mentioned earlier. Difficult cross-validation measures are removed due to this, 

which would have to be taken otherwise. Many advantages are inherited by Random forest, of 

the decision tree algorithms. Both problems:classification and regression, are applicable to them; 

they can be easily computed and fitted quickly. They also 1usually result in the 7better accuracy. 

One cannot interpret results very easily unlike decision tress. In decision trees, valuable 

information can be extracted of important variables and their affection in the result. This is not 

possible with random forests. Decision tress might also be descried as less stable than Random 

Forests – by modifying data a little bit, accuracy could be reduced due to change in decision 

trees. This will never occur in the 1random forest algorithms – it remains stable since it is the 

combination of many decision trees. 
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                                                   Figure 4 

3.XGBoost 

In recent times, this an algorithm which dominates applied ML machine learning and 

Kaggle 1competitions over others for tabular and structural data. XGBoostalgorithm is 

implementedby gradient boosted1 decision trees designed for speed and performance.In 

XGBoost we use extremely randomized decision-trees . All the trees have high bias and very low 

variance.This technique basically use Gradient 0Boosting. 1Gradient boosting3 is a technique 

of  ML ’machine learning’ for regression1 and classification2 problems5, that generates a 

prediction3 model1 in the 3form of4 an ensemble1 of dull prediction0 models5, 5typically in 
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decision0 trees9. It prepared this 3model in a “stage wise” fashion as other boosting1 methods2 

do, and it conclude them by allowing1 the arbitrary differentiable0 loss function optimization. 

Leo Breiman  had observed and thought ofgradient boosting, that boosting techniques 

could be considered as some optimization3 algorithms on some appropriate cost function1. 

Explicit4 regression “gradient boosting algorithm”1 was subsequently 1developed by Mr. 

Jerome0 H Friedman1 all together with the more 1general functional4 gradient- boosting0 

perspective2 of 4Llew2 Mason4, 11Peter Bartlett, 1Marcus Frean0 and Jonathan Baxter. From 

the later two papers were introduced0 in the view of “boosting algorithms” as an 

iterative5 functional4 gradient descent algorithms4. This is 1algorithms which optimized a cost4 

function6 over 6function -space by- iteratively- selecting a 0function (“weak hypothesis”) that 

would points to the –ve  “gradient direction”1. This ‘functional gradient’ view of5 boosting6 has 

given direction for the development1 of various ‘boosting algorithms’ in many areas of ML “ 

machine learning” and ‘statistics’ 1beyond the regression4 and classification7. 

Algorithm: 
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3.2.1 Model Testing 

In step 3 we trained/built a model, it will be tested now using ‘test’ set of data. New 

model will be built by the result produced from this, that might considers the predefined 

models4, i.e. “learn” from5 them8 

3.2.2 Cross-validation 

The major setback in the methods of evaluation of accuracy present in methods of 

machine learning is that on the new data, model performance cannot be predicted. Cross-

validation approach is used to overcome the drawback.Raw data set is split initially. Firstly 
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largest part of split set of data is trained on model and subsequently smaller sets are tested. Three 

separate classes are there present for cross-validation. 

Holdout8 method: – here, separate the data-set in 2 parts: a test set and atraining set. Fit 

the 4model using training set.Test this trained model using test set, model has not seen data in 

this set before. The errors resulting would be then used to find out the “mean absolute test error” 

, which is used for model5 evaluation6. Higher speed is plus point of this method. On the other4 

side, the 7evaluations results highly depend on how we select the test5 set because the variance5 

is 5usually high5. So one can observe significant difference in the evaluation results between 

different4 test sets4. 

The K1- fold method: could be viewed as the improvements over3 the hold1 out 

method2. Here1, given ‘K’-- subsets has been selected randomly, and single holdout1 method is 

repeated ‘K’- times3, where the each2 time3 one of3 the ‘K’- subset is 4used in the training3 

set4, and the (K - 1) subsets are used4 as the testing set3. Then average error has been 

calculated3 all over ‘K’- runs of the hold-out methods.5With the increase1 of ‘K’, the variance is 

also reduced4, ensuring1 that the 5accuracy would not changed with3 different1 data-sets. 

Running time and complexity are than the holdout method, which is a disadvantage of this 

method. 

 

 

 
Chapter Four: Experiment Data 
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4.1 Distribution of data over various class: 

 

 
   Figure 5 

Distribution of datapoints : 

1.Train Dataset: 

 
   Figure 6 
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1. Test Dataset: 

 
    Figure 7 

2. Cross Validation dataset: 
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Chapter Five: Multivariate Analysis 
Here we plot all the datapoints using TSNE by reducing the dimension of the datapoints 

from 260 to just 2. 

Code: 
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TSNE plots: 

 
    Figure 9 

 

Code: 
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TSNE plots: 

 
    Figure 10 
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Chapter Six: Result Analysis 

 

Plot showing distribution of data belonging to various class : 

 
 

Plot of training data: 

The plot below has been plotted using TSNE dimensenality reduction technique. TSNE 

maintains the neighbors when the dimension is drastically reduced to  2-D. 
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This plot has been plotted to see whether data points belonging to same category are 

clustered together or not . This helps us in understanding whether the data points can actually be 

classified or not. 

I the plot below we can see that class 3 , 2 and 8 are pretty seperate from other class 

while other class are mingled .   

   
Random Model: 

Code: 
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Confusion matrix: 

 
Precision matrix: 
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    Figure 12 

 

 

 

 

 

 

Recall matrix: 
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    Figure 13 

 

 

 

 

 

KNN Model: 

Code: 
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Cross Validation Error: 
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Confusion matrix: 
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Precision matrix: 

 
     Figure 15 

Using KNN and plotting precision matrix we can see that we have good score i.e. in most of the 

cells in diagonal element we have value greater than 0.85 or 85%. 

Precision matrix shows that of all the points predicted to belong to a particular class how many 

actually belongs to that class. 

 

Recall matrix: 
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    Figure 16 

Accuracy:  

1. Using KNN we got a logloss of 0.244. 

2. Using KNN of all the 2174 points in test dataset approximaely 5 points were misclassified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logistic Regression 

Code: 
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Confusion matrix: 

 
                                                Figure 17 
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Precision matrix: 

 
Figure 18 

Recall matrix: 

 
Figure 19 
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Random Forest Model: 

Code: 
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Cross Validation Plot: 

 

 
Confusion Matrix: 

 

 
Figure 20 

Precision matrix: 
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Figure  21 

Here we clearly see that the value we got in the diagonal cells is far better than KNN. 

The value in these diagonal cells has an average of 0.95 or 95%. 

Recall matrix: 

 
Figure 22 
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Accuracy:  

1. Using Random Forest we got an improved logloss of 0.08 which is far better than . 

2. Number of misclassified points out of 2174 has been lowered to just 2 compared                              

to 5 of KNN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XGBoost Model: 

Code: 
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XgBoost Classification with best hyper parameters using Random Search  
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Code: 

 
Output: 

 
 

 



 

61 

 

Best Values of Hyper parameters: 

 
Training a hyper-parameter tuned Xg-Boost regressor on our train data: 

Code: 

 
Storing the model : 
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Confusion Matrix: 

 
Figure 23 

Here the average value of the diagonal cells have improved to 0.97 or 97%. 

Accuracy: 

1. The logloss we achieved using XGBoost is 0.07 which is better than random forest. 

2. Number of misclassified points out of 2174 point is approximately 1. Thus we have  

been able to reduce the error further down. 

 

 

 

 

 

 

 

Test Result Analysis 
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Conclusion and Future Scope 
In this challenge, we have compared the different models used in machine learning and have 

chosen the best model through extensive cross validation and hyper-parameter tuning. This way 

we have achieved a good accuracy by modelling the data files. We observe that such efficiency 

of the task is best met by the using Xgboost algorithm for the provided data and using algorithms 

like random forest search for tuning purposes. Even this accuracy can further be improved by 

effectively calibrating the models built separately over byte and asm files as well as those trained 

after their conjunction.  

For future work, dataset will also be extended to include all classes of malware in the wild and 

visualization , better feature engineering and ensembling to enhance the log loss will be the 

research directions as well. 
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