Total No. of Pages:02

Roll No.....

III SEMESTER

B.Toch. EVE

SUPPLEMENTARY EXAMINATION

FEB-2019

CCE-201 Mechanics of Solid

Time: 3:00 Hours

Max. Marks: 40

Note: Answer any 5 question

Assume suitable missing data, if any.

Q.1 a. Deduce a relation between Young's modulus and Rigidity modulus.b. What are the assumptions made during the derivation of equations

related to theory of pure bending? (2x4)

- Q. 2 6m long beam simply supported its ends is subjected to UDL of 30 kN/m over 2 meters length from LHS support. Draw the SF and BM diagrams.
- Q.3 A material is subjected to horizontal tensile stress of 90N/mm² and vertical tensile stress of 120 N/mm², together with shear stress of 75 N/mm² determine
 - (a) the principal stresses
 - (b) maximum shear stress
 - (c) the shear stress which, acting along would produce maximum principal stress. (8)
- Q.4 A uniform T-section beam is 100mm wide and 150mm deep with a flange thickness of 25mm and web thickness of 12mm. if limiting bending stress for material are 80N/mm2 and 160N/mm2 in compression and tension respectively, find maximum intensity of udl that beam can carry over a simply supported beam. (8)
- Q.5 A beam of square section is used as beam with one diagonal horizontal the is subjected to shear force, at a section. Find the maximum shear in the cross section of the beam and draw shear stress distribution for the section.

Q.6 A hollow shaft having an inside diameter 60% of its outer diameter is to replace a solid shaft transmitting in the same power at same speed. Calculate percentage saving of material, if material is also the same.
(8)

END