Total No. of Pages:	Roll No
FIRST SEMESTER .	M.Tech.[MOCE]
SUPPLEMENTARY EXAMINATION	(FEB2019)
EC-501 ADVANCED COMMUNICATION SYSTEMS	
Time: 3:00 Hrs	Max. Marks: 100
Note: Attempt All Questions. Assume suitable missing data, if any.	
Q1. (a) Describe the Grahm Schmidt orthogonalization procedure and find out the [10] constellation diagram or signal space diagram for the following signals:	
	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(b) Define Autocorrelation function of a wide sense stationary (WSS) random [5] process and mention its properties?	
(c) Attempt any one of the following 1) Consider a sinusoidal signal with random $X(t) = A\cos(t)$	$(2\pi f_c t + \theta)$
 Where A and f_c are constants and θ is a random variable that is uniformly distributed over the interval [-π, π]. Find out mean and autocorrelation of this random process and comment whether it is a WSS process. 2) Define Ergodic processes and find out the expression for enseble mean of the output Y(t) of an LTI system h(t) with a stationary random process X(t) 	
Q2. (a) Define matched filter and find out the $h(t)$ of the matched filter for an input size $h(t)$	ignal s(t) of duration 0 to 1 secs.
(b) Define the following with suitable illustration 1). Scalar Quantization 2). Vector Quantization 2).	
(c) Attempt any one of the following	

Define Rate Distortion theorem.

1)

[5]