Total No. of Pages: 2	
SEVENTH SEMESTE	R

Roll No		•	•	•				
B.TECH (ECE)								

END-SEMESTER EXAMINATION (SUPPLEMENTARY) FEBRUARY-2019

EC-409 Computer Vision

Time: 3:00 Hours

+-

Max. Marks: 50

Note:	*Q1 is compulsory. **Answer any 08 questions out of remaining 10 questions i.e. Q2 to Q11.	
	***Assume suitable missing data, if any.	

1. Answer all the following Compulsory questions:

[a] Explain the projection matrix.	[3]
[b] Define the epipole, epipolar plane and epipoloar line.	[3]
[c] Explain the camera matrices.	[2]
[d] Determine the skew-symmetric matrix from any two 3x1 vectors.	[2]

2. The first and second cameras are specified by camera projection matrices, P and P'. The ray formed by two points, x (scene co-ordinate) and X (image co-ordinate) corresponding to first camera, Px = X is projected onto second image plane at second camera centre, P'C' and epipole, P'C, forming the epipolar line, l' = FX, by joining these two points, where F is a Fundamental matrix. Considering the above, derive the expression of F.

[5]

3. Perform the histogram equalization for the following distribution of gray levels in the image:

Gray levels	10	1	2	3 .	4	5	6	7
No of pixels	790	1023	850	656	329	245	122	81

- 4. Explain the Harris corner detector and derive the conditions for which edges and corners are located in the image. [5]
- 5. Scale Invariant Feature Transform (SIFT) is an algorithm used to detect and describe the local features in the images. Explain the main stages of computation of local features.
- 6. Explain the optical-flow detection method for the solution of over-determined system of equations of local image flow vectors.

 [5]
- 7. An equation of the line in 3D space is given by $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n} = \lambda$. Project this 3D line into two image planes whose centers of projections are situated at (0,0,0) and (x_d,y_d,z_d) .

 Let the focal lengths of both the cameras are ' f_1 ' and ' f_2 '. Obtain the equations of lines L_1 and L_2 in both the image planes.
- 8. Consider the problem of image blurring in camera caused by the accelerated motion along x and y direction. The image in camera is at rest at t = 0 and undergoes the accelerated motion, $x_0(t) = \frac{at}{T}$ and $y_0(t) = \frac{bt}{T}$ along x- and y-direction for a time T where α and b are constants.

Consider the exposure time of camera as T. Find out the blurring function. Shutter opening and closing time of camera are negligible. [5]

9. Explain the operation of particle filter relating the prediction and measurements of states.

- 10. Explain the wavelet series expansions along with the determination of scaling and detail coefficients. [5]
- 11. Find the equivalent filter, H(u,v) that implements the spatial operation performed by the Laplacian mask in the frequency domain. [5]

----END-----