Roll No.

FIFTH SEMESTER

B.Toch. (ECE)

SUPPLEMENTARY EXAMINATION

(FEB.-2019)

EC-303 LINEAR INTEGRATED CIRCUITS

Time: 3 Hours

Max. Marks: 40

Note: Answer *Any five* questions

All questions carry equal marks

Assume suitable missing data, if any,

Q1. (a) Determine $\frac{V_0(s)}{V_{in}(s)}$ for the circuit show in Fig.1.

- (b) Derign a 2^{nd} order band pass filter using OTA and hence find its cut-off frequency.
- Q2. (a) Design an monostable multivibrator using OP-AMP to generate a pulse of pulsewidth 1ms. Use a capacitor of 100pF. Explain the circuit with waveforms.
 - (b) Explain with a circuit diagram, how IC 555 timer can be used as Voltage Controlled Oscillator (VCO). Also determine the frequency of oscillations.
- Q3. (a) Describe with neat circuit diagram how analog multiplier can be used for:
 - (i) Amplitude modulation and demodulation
 - (ii) Measurement of phase angle.
 - (b) Design and discuss a precision full wave rectifier using OP-AMP.
- Q4. (a) Describe and discuss the three modes of operation of an IC PLL.

P.T.O

- (b) Draw a neat circuit diagram of a four quadrant Gilbert multiplier cell and determine the conditions for which the cell can be used for analog signal processing.
- Q5. (a) Assuming, $A_{v1}(s) = A_{v2}(s) \cong \frac{\omega_t}{s}$; $\omega_t = A_0 \omega_p$, determine the output voltage of a passive compensated inverting amplifier using OP-AMP.
 - (b) (i) For the circuit shown in Fig.2, assume all the transistors to be identical with finite current gain β . Find the I_{01} and I_{02} in terms of I_{ref} .
 - (ii) What is the actual value of the current I_{01} and I_{02} if $I_{ref}=0.7mA$ and B=30.

- Q6: (a) Design a simulated inductor of 10 mH using General Impedance Converter
 - (b) For the emitter- coupled differential amplifier as shown in Fig.3, draw its small signal equivalent and hence determine:

- (i) Common mode voltage gain (A_{cm}) , differential mode voltage gain (A_{dm}) and (ii) Common mode rejection ratio (CMRR).