What are the constraints placed on the real and imaginary parts of β if the region of convergence (ROC) of the Laplace transform of x(t) which is X(s) is $Re\{s\} > -3$

Q.9 a) The system function of a causal LTI system is:

$$H(s) = \frac{s+1}{s^2 + 2s + 2}$$

Determine the response y(t) when the input $x(t) = e^{-|t|}$

b) Find the inverse Z-transform of X(z)

Find the inverse Z-transform of X(z)

$$X(z) = \frac{z^{-1}}{3-4z^{-1}+z^{-2}}; \text{ROC}; |z| > 1$$

Q.10 a) Consider an LTI system for which the input and output satisfy the [5] linear constant-coefficient difference equation:

$$y[n] - 0.5y[n-1] = x[n] + \frac{1}{3}x[n-1]$$

Determine the impulse response

b) A Differentiator is a continues time LTI system function $H_C(s) = s$

A discrete-time LTI system is constructed by replacing s in the above function by the following known bilinear transformation:

$$s = \frac{1 - z^{-1}}{1 + z^{-1}} * \frac{2}{T_s}$$

Find the frequency response of the discrete-time system and plot its magnitude and phase responses.

ALL THE BEST

Total No. of Pages:04

FIFTH SEMESTER

SUPPLIMENTRY EXAMINATION

Roll No.....

B.Tech.[EE]

(Feb-2019)

EE/EL-305 SIGNALS AND SYSTEMS

Time: 03 Hours

[5]

[5]

[5]

Max. Marks:50

Note: O.1 to O.6 are compulsory. Attempt any two questions from Q. Zito Q.10°, 1879 Assume anyidata if missing and clearly mention the assumption

Q.1 a) Let x(t) and y(t) be given as shown in Fig.1(a) below. Sketch the [2] following signals:

[2]

b) Consider a periodic signal x(t)

$$t) = \begin{cases} 1, & 0 \le t \le 1 \\ -2, & 1 < t < 2 \end{cases}$$

With period T=2. The derivative of this signal is related to the "impulse train" g(t).

$$g(t) = \sum_{k=-\infty}^{\infty} \delta(t - 2k)$$

With period T=2. It can be shown that

$$\frac{dx(t)}{dx} = Ag(t - t_1) + Bg(t - t_2)$$

Determine the values of A, B, t1, t2

			5 5 5 5 5						
	Q.2	a)	Sketch the following sign 1) x[n-2] + y[n+2] 2) x[3-n] y[n]	nals:		[2]			Determine which of these properties hold and which do not hold for each of the following continues/discrete time signals. Justify your answers.
			x[n] and y[n] are as follo	ows					a) $y(t)=x(t-4)+x(4-t)$
			x[$n] = \{3,2,1,0,1,2,3\}$					b) $y(t)=Odd\{x(t)\}$
			$y[n] = \{-$	-1, -1, -1, -1, 0, 1, 1, 1, 1}					c) $y[n]=x[n-2]-2x[-n-8]$
				r reference, at t=0{x[n]=y[n]=0}					d) y[n]=Even{x[n-1]} e) y(t)=x(sint)
ľ.		b)		h input x[n] and output y[n]. This system					
100				s interconnection of a system S ₁ followed	by		Q.6	a)	A single-phase full bridge ac to dc converter is used to feed a highly [2]
)			ationships are as follows:					inductive Load. Draw the equivalent circuit diagram of the given
	($y_1[n]=2x_1[n]+4x_1[n-1]$					scenario with SCR as your switch. Determine the Fourier series of
	9		Where $x_1[n]$, $x_2[n]$ denote	[n]=x ₂ [n-2] +0.5 x ₂ [n-3]					the supply current obtained. (Assuming the firing angle as zero
	-118			ut-output relationship for system S				ы	degrees and input voltage one cycle to be from 0 to 360 degrees)
	_			put relationship of system S change if the				U)	Consider a continues-time LTI system whose frequency response is [2]
	1			S ₂ are connected in series is reversed.	C				$H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt = \frac{\sin(4\omega)}{\omega}$
				2 ac commerced in series is reversed.					If the input to this system is a periodic signal x(t),
	Q.3	a)	Evaluate the continues-ti	ime convolution integral:		[3]			$x(t) = \begin{cases} 1, & 0 \le t < 4 \\ -1, & 4 \le t < 8 \end{cases}$
				$(1) - u(t-1) * e^{-t}u(t)$		1-1			With a print T=0. Determine the $4 \le t < 8$
								(۵	With period T=8, Determine the corresponding system output y(t) Determine DTFS coefficient of the signal x[n] and also plot the [1]
		b)	Determine and sketch the	e convolution of the following two signa	ls:	[3]		U)	magnitude and phase spectrum of DTFS coefficient.
			(1	$t+1, \ 0 \le t \le 1$					
			x(t) =	$t+1$, $0 \le t \le 1$ t+1, $t+1$, $t+1t+1$, $t+1$			•		$x[n] = \cos(\frac{\pi n}{3} + \emptyset)$
			(1	0, elsewhere					
			L(A) -	5(4 7) 25(4 4)			Q.7	a)	Find the impulse response of a system with the frequency response [5]
			n(t) =	$=\delta(t+2)+2\delta(t+1)$		77			$H(j\omega) = \frac{(\sin^2(3\omega))\cos\omega}{\omega^2}$
	0.4	2)	Consider the signal:			ra1			$H(j\omega) = \frac{1}{\omega^2}$
	4.9	aj	Consider the signal.	$x[n] = a^n u[n]$		[3]			_
			1) Sketch the signal g[1	b)	Find the Z-transform and ROC of the signal: [5]
			2) Use the result of pa	art (1) in conjuction with the properties	οf				$x[n] = 2\left(\frac{5}{6}\right)^n u(-n-1) + 3\left(\frac{1}{2}\right)^n u(n)$
			convolution in orde	r to determine a sequence h[n] such that	O1				$u(n) = 2 \left(\frac{1}{6}\right) u(-n-1) + 3 \left(\frac{1}{2}\right) u(n)$
			x[n] * h[n] =	$= 0.5^{n} \{ u[n+2] - u[n-2] \}$					
			., .,	(-[(Q.8 a	a) .	Determine the Nyquist rate of the following signals:
		b)	Evaluate the following di	screte-time convolution sum:		[3]			1) $x(t) = 1 + \cos(2000\pi t) + \sin(4000t)$
			y[n] = (u[n+10	[] - 2u[n] + u[n-4]) * u[n-2]	,				2) $x(t) = (\frac{\sin(4000\pi t)}{vt})^2$
	Q.5		A system may or may not	be:	1	[5]	t) (1) $x(t) = 1 + \cos(2000\pi t) + \sin(4000t)$ 2) $x(t) = (\frac{\sin(4000\pi t)}{\pi t})^2$ Consider the signal
			(1) Time Invariant						$x(t) = e^{-5t}u(t) + e^{-\beta t}u(t)$
			(2) Causal						
									(V)
									U
			1	* 1					