Total no. of pages ::
III SEMESTER

KOII NO		
EE/EL	Supplementary	Exam

(2x4=8)

Feb-2019			
EE/EL-207 Engineering Analysis and Design			
Time: 3 hours Max. Marks: 40			
Note: Answer any five questions. Assume suitable missing data, if any. Symbols used have their usual meanings			
Q1. Answer the following questions briefly a) Develop a MATLAB program to compute sum of series 1,3,5, upto 100 terms. Also compute the mean and the mean deviation in the code.			
b) Create a function to convert temperature in Kelvin to Fahrenheit. Call the function and get user input and print output also. (2x4=8)			
Q2. a) Use Euler method to solve y'= x+y, h=0.2, y(0)=0; compute y at x=0.8.			
b) Develop a program to compute impedance and power factor using user inputs such as frequency, resistance, inductance and capacitance value for a series RLC circuit. (2x4=8)			
Q3. a) Using RK4 technique. show the solution for the differential equation: dy/dx=(x+y)sin(xy), y(0)=5 after the first iteration, taking h=0.2			
b) Show how differential equations can be solved using RK2, RK4; clearly highlight the difference in their accuracy and mathematical complexity. (2x4=8)			
Q4. a) What is Trapezoidal rule. Use it to calculate integral of $f(x) = \sin(x)$ between the limits 0 and π taking 12 steps. Also compute the error between the estimated value and the actual value and interpret your results.			
b) Solve using Newton Raphson method to compute the root of the function $f(x)=e^{-x}$ - x given initial guess =0, $x_0=0$. (2x4=8)			
Q5. a) Solve the system of equations given below using a suitable method: $x_1^2 + x_1x_2 = 10$ and $x_2 + 3x_1x_2^2 = 57$ Assume initial guess is (1,2)			
b) Develop a Simulink model to represent the differential equation 79v"- 9v'+ 0.4v + 3.14=0. Assume v,v' are outputs to be observed, (2x4=8)			
Q6. a) Find transfer function for computing the voltage across a capacitor for a series RLC circuit, when the input is (i) constant voltage (ii) a sine wave.			
b) Discuss the analogy between mechanical and electrical systems giving suitable examples.			