SUPPLEMENTARY EXAMINATION

Feb-2019

EP-305 Atomic and Molecular Physics

Time: 3 Hours

Max. Marks: 50

Note:

Answer ALL questions.

Assume suitable missing data, if any.

Part A (Atomic Physics)

Q1. (a) Prove that the number of degenerate eigenfunctions for an oneelectron atom corresponding to a particular eigenvalue is n². Show that the total number of electrons in a shell is 2n², where n is the principal quantum number of the shell. (5)

(b) Write the values of quantum numbers l, s and j corresponding to each of the following one-electron terms. Is $^2D_{1/2}$ a possible term?

$${}^{2}S_{1/2}, {}^{2}P_{1/2}, {}^{2}P_{3/2}, {}^{2}D_{3/2}, {}^{2}D_{5/2}$$
 (5)

- Q2. (a) What were the challenges of Bohr-Sommerfeld theory?

 Enumerate the possible values of j and m_j for states in which l=2 and s=1/2.

 (5)
 - (b) Distinguish between L-S and j-j couplings schemes in the case of two-valence electron systems. The quantum numbers of two electrons in a two valence electron atom are:

$$n_1 = 2$$
, $l_1 = 1$, $s_1 = \frac{1}{2}$ and $n_2 = 3$, $l_2 = 0$, $s_2 = \frac{1}{2}$

Assuming L-S coupling, find possible values of L and hence of J.

Assuming j-j coupling, find possible values of J.

(5)

- Q3. Write short notes on any TWO from the following: (2½×2=5)
 - (a) Space quantisation
 - (b) Larmor precession
 - (c) Parity of eigen functions

Part B (Molecular Physics)

Q1. Answer any Three of the following

 $(5 \times 3 = 15 \text{ marks})$

- (a) Distinguish between symmetric top (prolate and oblate), spherical top and asymmetric top molecules. To which symmetric top, the benzene (C₆H₆) molecule belong?
- (b) State the Franck-Condon principle. How does it help in understanding the intensity distribution in the vibrational structure of the electronic transition of a diatomic molecule?
- (c) The O-H-radical has a moment of inertia of 1.48×10⁴⁰ gm.cm². Calculate its internuclear distance. Also calculate for j=5, its angular momentum and angular velocity. Determine the energy absorbed in the J=6 →J=3 transition in cm⁻¹ and erg/molecule. (Given h=6.62×10⁻² erg-sec.).
- (d) Discuss Anharmonic oscillator and calculated the transition frequency of fundamental absorption, first and second overtones.

Q2. Describe any Two of the following

 $(5 \times 2 = 10 \text{ marks})$

- (d) Luminescence and types of luminescence
- (e) Kasha's rule, quantum yield and lifetime
- (f) Predissocaiation and Dissociation
- (g) Spectrophotometer

2