Total No. of Pages 1	Roll No	
FIFTH SEMESTER	B.Tech. (Engineering Physics)	
SUPPLEMENTARY EXAMINATION	FEBRUARY 2019	
EP 303(New Scheme) : ELECTROMAGNETIC	THEORY, ANTENNA &	
PROPAGATION		
Time : 3.00 Hrs	Max. Marks: 40	
Note: Attempt any five Questions		
Assume suitable missing data, if any		
1.(a) Explain with schematic diagram	(4)	
(i) Reflection Coefficient (ii) Transmission Co		
(b) What are the applications of Smith Chart?. Exp	plain (i) Single stub matching (ii)	
double stub matching.	(4)	
2.(a) Using Maxwell's equations derive the electric	and magnetic wave equations,	
$\nabla^2 \vec{E} = \gamma^2 \vec{E}$ and $\nabla^2 \vec{H} = \gamma^2 \vec{H}$, where $\gamma = \sqrt{j \omega \mu}$	$\overline{(\sigma + j\omega\varepsilon)} = \alpha + j\beta$ is the intrinsic	
propagation constant of a medium.	(4)	
(b) What do you understand by the terms- cutoff v	vavelength, dominant mode, guide	
wavelength, phase velocity, group velocity and	d wave impedance for rectangular	
waveguides.	(4)	
3.(a) Write the Maxwell's equations in differential a	and integral form. Also give their	
physical significance.	(4)	
(b) Differentiate between waveguides and two wir	e transmission lines with example.	
	(4)	
4.(a) What is an antenna arrays? Show that the norm	nalized array factor is a function of	
the geometry of the array and the excitation pha	ase. (4)	
(b) What do you mean by (i) Radiation resistance	(ii) Directivity (iii) Effective Area	
(iv) Half-Power Beam Width of an antenna.	. (4)	
5.(a) What do you mean by (i)ground waves, (ii) sp	pace waves, and (iii) sky waves (4)	
(b) Discuss briefly the propagation of electromag	gnetic waves in ionosphere. Show	
that ionosphere behave as a medium of refra	active index	
$(-181 \dot{N})^{1/2}$		
$n = \left(1 - \frac{81N}{f^2}\right)^{1/2}.$	(4)	
6.(a)An air-filled rectangular waveguide of inside	dimensions 6x4 cm operates in the	
dominant TE ₁₀ mode.	(4)	
(i) Find the cutoff frequency (ii) Determine the	phase velocity of the wave in the	
guide at a frequency of 4GHz (iii) Determine the	he guide wavelength at the same	
frequency.		
(b) Show that the the ratio of the cross-section of	a circular waveguide to that of a	
rectangular one A _c /A _r =2.17 if each is to have	the same cutoff wavelength for its	
dominant mode.	(4)	