Total No. of Pages 2

THIRD FOURTH SEMESTER - THE

is br^{-2} , being positive constant.

Roll No.

B.Tech. (EP)

SUPPLEMENTARY EXAMINATION

(February-2019)

EP- 205 Classical & Quantum Mechanics

Time: 3:00 Hours Max. Marks: 50

Note: Answer *any FIVE* questions. All questions carry equal Marks. Assume suitable missing data, if any.

- Q1(a) State and Prove the law of conservation of angular momentum

 for a system of interacting particles using Lagrangian method. Explain the
 concept of cyclic coordinates?

 (5)
 - (b) Set up the Lagrange's equation of a particle moving on the surface of earth using spherical polar coordinates. (5)
- Q2(a) Derive the equation of orbit of a particle moving under the influence of a central force consistent with the inverse square law and discuss briefly the special cases depending upon the Energy and hence of eccentricity. (5)
 - (b) The Force on a particle of mass m and charge e, moving with a velocity v in an Electric field E and magnetic field B is given by
 F = e (E + v X B)

Obtain the Hamiltonian and Hamilton's equations for charged particle.

Q3(a) Discuss the stability condition for the central force field if the form of potential V(r) is ar^{n-1} , a being a constant and centrifugal energy is V_c(r)

(5)

P.T.0

(b) The wave function of a particle of mass m moving in a potential	
$V(x)$ is, $\varphi(x,t) = A \exp\left[-ikt - \frac{kmx^2}{\hbar}\right]$, where A and k are constants.	
Find the explicit form of the potential $V(x)$.	(5)
Q4(a) Explain the concept of probability amplitude and probability	
density. Show that the wave equation $\psi_{(x,t)} = A\cos(kx - \omega t)$ do	esnot satisfy
time dependent Schrodinger equation for free particle.	(5)
(b) Determine the transmission coefficient for a particle of energy	y E< V ₀ for
a rectangular barrier given by	
V = 0 for x<-a and x>a	
= V ₀ for -a <x<a, application="" briefly="" explain="" its="" td="" the<="" to=""><td>e observed</td></x<a,>	e observed
phenomenon of alpha decay.	(5)
Q5(a) Using the time independent perturbation theory, calculate the first	
order energy shift in the ground state by a perturbing potential Hamiltonian of a linear harmonic oscillator (V = 1/2kx²). (b) Write connection formulae for penetration through a barrier. Apply to obtain the quantization condition for a bound state.	(5)
Hamiltonian of a linear harmonic oscillator ($V = 1/2kx^2$). (b) Write connection formulae for penetration through a barrier. Apply	(5) y the method- (5)
Hamiltonian of a linear harmonic oscillator (V = 1/2kx²). (b) Write connection formulae for penetration through a barrier. Apply to obtain the quantization condition for a bound state. Q6(a) Develop the stationary perturbation theory for a non-degenerate case up to the second order.	(5) y the method- (5) (5)
Hamiltonian of a linear harmonic oscillator (V = 1/2kx²). (b) Write connection formulae for penetration through a barrier. Apply to obtain the quantization condition for a bound state. Q6(a) Develop the stationary perturbation theory for a non-degenerate	(5) y the method- (5) (5)
Hamiltonian of a linear harmonic oscillator (V = 1/2kx²). (b) Write connection formulae for penetration through a barrier. Apply to obtain the quantization condition for a bound state. Q6(a) Develop the stationary perturbation theory for a non-degenerate case up to the second order.	(5) y the method- (5) (5)