THIRD SEMESTER

B.Tech. [EP]

SUPPLEMENTARY EXAMINATION February-2018

EP-203: MATHEMATICAL PHYSICS

Time: 3.00 Hours

Max. Marks: 50

(7)

Note: Answer any FIVE questions.
Assume suitable missing data, if any

- 1.[a] State and prove Stoke's theorem in vector analysis
 - [b] Find the work done by the force $\vec{f} = (2y+3)\hat{i} + xz\hat{j} + (yz-x)\hat{k}$, when it moves a particle from the point (0,0,0) to the point (2,1,1) along the curve $x = 2t^2$,

 $y = t \text{ and } z = t^3. \tag{3}$

- 2. Define piezoelectric effect and converse piezoelectric effect. Discuss the Application of tensor analysis to the piezoelectricity and converse piezoelectricity. (10)
- 3. [a] State and prove the Cauchy-Riemann equations for a function of a complex variable to be analytic. (6)
 - [b] Find the residues of $f(z) = \frac{ze^z}{(z-a)^3}$ at z=a. (4)
- 4. A thin rectangular plate whose surface is impervious to heat flow has arbitrary distribution of temperature f(x,y) at t=0. Its four edges x=0, x=a, y=0 and y=b are kept at zero temperature. Determine the subsequent temperature of the plate after time 't'. (10)
- 5. [a] Apply Runge-Kutta method to the equation y' = x + y, y(0) = 1 to determine x = 0.1 and 0.2 correct to four decimal places. (6)
 - [b] Calculate the approximate value of $\sin x$ for x = 0.54 using the following table:

x	0.5	0.7	0.9	1.1	1.3	1.5	(4)
sinx	0.47943	0.64422	0.78333	0.89121	0.96356	0.99749	

6. Answer any four of the following:

- $(4 \times 2.5 = 10)$
- [a] Define Kronecker delta and prove that (a) $\delta_k^j a^j = a^k$.
- [b] Find div \vec{f} , where $\vec{f} = grad(x^3 + y^3 + z^3 3xyz)$.
- [c] Define Pole and residue of pole
- [d] Prove that (i) $E^{-1} = 1 \nabla$ (ii) $(1 \Delta) (1 \nabla) = 1$
- [e] Separate Log (1+i) in to real and imaginary parts.