Total No. of Pages: 2

5th SEMESTER

SUPPLEMENTARY EXAMINATION

Roll No.....

B. Tech.

(FEBRUARY-2019)

MC 315: Modern Algebra

Time: 3:00 Hours

Max. Marks: 50

Note: All questions are compulsory. Attempt **any two parts** from each question. Assume suitable missing data, if any.

- Q1.a) Define Quaternion group and show that it is a non-abelian group of order 8.
 - b) Prove that the set of all n nth roots of unity forms a cyclic group w.r.t. multiplication.
 - c) Find all the left cosets of $\langle H, + \rangle$ in $\langle G, + \rangle$, where $G = \mathbb{Z}$ and $H = \{5x : x \in \mathbb{Z}\}$
- Q2.a) If G is a group and H is a subgroup of index 2 in G, prove that H is normal subgroup of G.
 - b) If G is a cyclic group and N is a normal subgroup of G, then show that G/N is cyclic. Also show by an example that the converse need not be true.
 - c) State and prove Fundamental Theorem of group homomorphism.
- Q3.a) Show that the set of Gaussian integers Z[i] is a commutative ring with unity.
 - b) Show by an example that union of two subrings of ring may not be a subring.
 - c) If F is a field of characteristic p (p-is a prime), then show that $(a+b)^p = a^p + b^p \ \forall \ a,b \in F$

- Q4.a) Let $f: R \to R'$ be a homomorphism and A be an ideal of R. Show that f(A) is an ideal of f(R).
 - b) Find all maximal ideals of Z_{12} , the ring of integers modulo 12.
 - c) Show that every field F is a Euclidean domain.
- Q5.a) Prove that a finite integral domain is a field.
 - b) In a PID, prove that any two greatest common divisors of *a* and *b* are associates.
 - c) Prove that $Z\left[\sqrt{-3}\right]$ is not a U.F.D.

END -