No. of pages:2

Roll No .:

Supplementary Examination III Semester, February 2019 Discrete Mathematics (MC-201) (NEW SCHEME)

Max Marks: 50

Time: 3.00 Hours

Note:

- Attempt all Questions and do any two parts out of the three in each Question.
- All Questions carry equal marks.
- Assume suitable missing data if any.
- Q 1. (a) Let A_1, A_2, \dots, A_n be any n sets. Show by mathematical induction that

$$\overline{\left(\bigcup_{i=1}^{n} A_i\right)} = \bigcap_{i=1}^{n} \overline{A_i}$$

- (b) Write short note on
 - i. Bipartite Graph
 - ii. Euler Graph
- (c) i. Give a direct proof of "If 'm' and 'n' are odd integers, then mn is an odd integer".
 - ii. Prove or disprove that the union of two subgroups of a group G is a subgroup if and only if one is contained in the other.
- Q 2. (a) Rewrite the following argument using quantifiers. Prove the validity also:
 - i. If a number is odd then its square is odd. K is a particular number that is odd. Therefore K^2 is odd.
 - All healthy people eat an apple a day. You do not eat apple a day. You are not a healthy person.
 - (b) Show that (by using rule of Inference) the hypothesis "If you send me e-mail message, then I will finish writing the program," "If you do not send me an e-mail message, then I will go to sleep early," and "If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion. "If I do not finish writing the program then I will wake up feeling refreshed".
 - (c) State and prove the Lagrange's theorem. Also discuss the theorem with a suitable example.
- Q 3. (a) For any Lattice L, prove the following:

$$(a \wedge b) \vee (b \wedge c) \vee (c \wedge a) \leq (a \vee b) \wedge (b \vee c) \wedge (c \vee a)$$

- (b) If in a group G, $x^5 = e$, $xyx^{-1} = y^2$ for $x, y \in G$ then show that O(y) = 31.
- (c) If R is an equivalence relation on a set X and |X|=|R| . What must the relation look like? Explain.
- Q 4. (a) Let n be a positive integer, and p^2/n ; p is a prime number, then D_n where $D_n = \{x : x | n \forall x \in N\}$ will not be a boolean algebra.
 - (b) Let

$$p(x,y,z) = (x \wedge y) \vee (x \vee (x \vee (y' \wedge z)))$$

be a Boolean polynomial. Obtain the truth table for the Boolean function $f: B_3 \to B$ as determined by this Boolean polynomial.

- (c) i. Prove that intersection of two sublattices is a sublattice. What is about union of two sublattices?
 - ii. Let $X=\{a,b,c\}$. Define $f:X\to X$ such that $f=\{(a,b),(b,a),(c,c)\}$. Determine (i) f^{-1} (ii) f^2 (iii) f^3 (iv) f^4
- Q 5. (a) $D_n = \{x: x | n \ \forall \ x \in N\}$ Consider $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$.
 - i. Find all the lower bounds of 10 and 15.
 - ii. Determine GLB of 10 and 15.
 - iii. Find all the upper bounds of 10 and 15.
 - iv. Determine LUB of 10 and 15.
 - v. Find greatest element of D_{30} .
 - vi. Find least element of D_{30} .
 - (b) Prove that "An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices".
 - (c) Solve the recurrence relation

$$a_n = 5a_{n-1} - 6a_{n-2} + 7^n$$