
 I

CERTIFICATE

This is to certify that this report entitled,” “TEMPREATURE

SENSING BY USING GSM MODULE WITH THE HELP OF

FPGA”, submitted by, Pallavi Verma Roll No-12239 in the partial

fulfilment of the requirement for the award of the degree of Master of

Engineering in Control and Instrumentation ,Electrical Engineering

Department and this dissertation is a bonafide record of project work

carried out by her under my guidance and supervision. Her work is found

to be excellent and her discipline impeccable during the course of the

project.

I wish her success in all her endeavours.

Date: (Dr. Parmod Kumar)

 Professor & Head

 Deptt. Of Electrical Engg

Delhi College of Engineering

Delhi -1100042

 II

ACKNOWLEDGEMENT

Any accomplishment requires the efforts of many people and this work is no

exception. I appreciate the contribution and support, which various individuals have

provided for the successful completion of this dissertation. It may not be possible to

mention all by name but the following were singled out for their exceptional help.

I would, first of all, like to thank Dr. Parmod Kumar, Professor & Head, Department

of Electrical Engineering, DCE, who provided me an opportunity to work under his

guidance. His scholastic guidance and sagacious suggestions helped me to complete

the project in this advanced field. I express my deepest sense of gratitude for his

valuable support in this regard.

I am also indebted to all my Teachers and Professors whose technical support was

always there, whenever it was required.

I also want to say thanks to Mr. Karan Singh, Laboratory Assistant, and Department

of Electrical Engineering.

I want to say thanks to my friends B.Lavanya, Abhishek Pathak, Hemant Yadav,

Nishant Gautam, Vaibhav Gupta, Parul Singh, Sonal Bramh, Gunjan Thakur,

Brijendar Sanger, Ajayendra Singh, and Gurjinder Singh, for their support in all

my endeavours.

There are times in a project when the clock beats our time and we run out of energy,

wishing to finish it once and forever. My family made me endure such times with

their unconditional support, love and unfailing humour.

Date: (Pallavi Verma)

 III

ABSTRACT

FPGAs (Filed programmable Gate Array) have become a competitive

alternative for high performance DSP applications, previously dominated

by general purpose DSP and ASIC (Application Specific Integrated

Circuit) devices. In this design based on using FPGA for the hardware

implementation of the controller circuit and GSM (Global System for

Mobile) for remote monitoring. The controller circuit has been described

using VHDL (VHSIC Hardware Description Language). The design has

been simulated using ModelSim from Model Technology and

implemented using Xilinx ISE software tools. FPGA Spartan2 starter kit

from Digilent has been used for the hardware implementation of the

controller circuit. The system offers low cost and user friendly way of

24hours real-time remote monitoring for temperature using SMS (Short

Messaging Service) messages.

 IV

LIST OF FIGURES

Sr. No Figure Page No

1 ICs Classification 1

2 PLA Architecture 4

3 PAL Architecture 5

4 CPLD Architecture 6

5 Basic Architecture of FPGA 8

6 CPLD vs. FPGA 10

7 FPGA Internal architecture 18

8 Xilinx XC4000 Configurable Logic

Block (CLB)

21

9 Types Of Interconnects 25

10 Application Circuit of LM35 28

11 (a) Basic Centigrade Temperature

Sensor

29

11(b) Full Range Centigrade Temperature

Sensor

29

12 Pin Layout of RS232 33

13 Project Navigator 36

14 HDL Design Flow 38

15 VLSI Design Flow 40

16 FPGA Kit 42

17 Pin configuration of LM35 45

18 Pin diagram of ADC 0808X 46

19 Pin Diagram of RS232 47

20 Logic Diagram of RS232 47

21 Full system View 49

 V

LIST OF TABLES

Sr. No Table Page No

1 AT Command Set

Overview

31

2 Status (AT) 31

CONTENTS

Page No.

LIST OF FIGURES iv

LIST OF TABLES v

CHAPTER 1: INTRODUCTION

1.1 Introduction 1

1.2 The Evolution of Programmable 1

1.3 Introduction to FPGA 6

 1.3.1 Advantages of FPGA 8

1.4 Choosing Between FPGA and CPLD 10

1.5 Introduction to GSM 11

1.6 Dissection of Dissertation 12

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction 13

2.2 GSM A brief history 13

 2.2.1 Subscriber Identity Module (SIM) 14

2.3 FPGA: A brief history 14

 2.3.1 Modern Development 16

CHAPTER 3: FIELD PROGRMMABLE GATE ARRAY

3.1 Introduction 17

3.2 FPGA Architecture 18

3.3 Application of FPGAs 19

3.3.1 Prototyping 19

 3.3.2 Reconfigurable Computing 19

3.4 Device 20

 3.4.1 Xilinx SRAM- Based FPGAs 20

 3.4.2 Spartan-3 FPGAs 22

 1

 3.4.2.1 Configuration 23

 3.4.2.2 Configurable Logic Block 24

 3.4.2.3 Interconnect 24

 3.4.2.4 Powering Spartan-3 FPGAs 26

 3.4.3 I/O Element 26

 3.4.4 Clock & Global Lines 26

CHAPTER 4: SOFTWARE

4.1 Introduction 35

4.2 Xilinx ISE 6 Software 35

 4.2.1 Overview of ISE 35

4.3 HDL Design Flow 38

 4.3.1 VHDL 38

CHAPTER 5: Hardware Description

5.1 Introduction 41

5.2 Key Components and feature of Xilinx 41

5.3 Salient Features 43

 5.3.1 Connecters 43

 5.3.2 Switches 44

 5.3.3 LCD Display 44

 5.3.4 Jumpers 44

 5.3.5 RS-232 Connector 44

5.4 Temperature sensor unit 45

5.5. Analog to Digital Converter 46

 5.5.1 Pin diagram 46

 5.5.2 Features 47

 5.5.3 Application 47

 2

5.6 MAX232 47

 5.6.1 Pin Diagram 48

 5.6.2 Logic Diagram 48

5.7 FPGA BASED TEMPERATURE SENSING SYSTEM 48

Conclusion and Scope for Further Work 50

Appendix: Source Code 51-67

References

 3

 1

CHAPTER 1

INTRODUCTION

1.1 Introduction
 This chapter includes the evolution of programmable devices, classifications of

ICs. Features of ASICs, CPLDs, PALs, PLAs and types of PLDs. And introduction

of FPGA advantages of FPGA and introduction of GSM.and why we are using FPGA.

and Dissection of Dissertation

1.2 The Evolution of Programmable Devices
 Programmable devices have gone through a long evolution to reach the

complexity that they have today. An electronic system designer has several options

for implementing digital logic. These options include Integrated Circuits (ICs), which

can be broadly classified in the following categories:

• Standard logic ICs

• Application Specific ICs

• Programmable Logic Devices

Figure1. ICs Classification

 2

1.2.2 Application Specific Integrated Circuits (ASICs)

ASICs are the integrated circuits that are customized or tailored to a particular system

or application rather than using standard ICs alone. These ASICs are specially

designed to perform a function that cannot be done using standard components

(Standard ICs). Microelectronic system design then can be done by implementing

some functions using standard ICs and the remaining logic functions using one or

more custom ICs..

Examples of ASICs include a chip for a toy bear that talks, a chip for a satellite, a chip

designed to handle the interface between memory and a microprocessor for a

workstation CPU and a chip containing microprocessor as a cell together with other

logic.

ASICs are used in system design to improve the performance of a circuit, to reduce

the volume, weight and power requirements so that it increases the reliability of a

system by integrating a large number of functions on a single chip. ASICs are

classified into two types: Full Custom ASICs and Semi Custom ASICs. A full custom

IC includes possibly all logic cells that are customized and all mask layers that are

customized. A microprocessor is an example of a full custom IC. For semi custom

ASICs all of the logic cells are pre designed and some (possibly all) of the mask

layers are customized. Using pre-designed cells from a cell library makes design

much easier..FPGAs are usually slower than their application-specific integrated

circuit (ASIC) counterparts, cannot handle as complex a design, and draw more power

(for any given semiconductor process).

1.2.3 Programmable Logic Devices (PLDs)

A PLD can be defined as: A PLD is an IC chip that includes arrays of logic elements

and allows a user to specify the connections among many of these elements. A PLD is

a general-purpose device for implementing logic circuits. It contains a collection of

logic gates (elements) and customizable pathways

Programmable Logic Devices (PLDs) consist of an array of identical function cells.

The cell array usually contains an AND-OR network and often includes a flip-flop.

 3

Some PLDs can perform only combinational logic functions; others can perform

combinational and sequential functions.

In Programmable Logic Devices (PLDs), logic function is programmed by the user

and in some cases, can be reprogrammed many times. Such a device includes array of

logic elements on a chip and allows the user to specify or program many internal

connections between the components on the chip. The logic elements could be various

gates, inverters, buffers, flip-flops. A system configuration can be created on the chip

simply by programming the chip or telling the chip where the interconnections are to

be made.Other similar devices include PAL, GAL and PLA.

1.2.3.1) Types of PLDs

Programmable logic devices are divided into three broad categories.

1.2.3.1.1) Simple Programmable Logic Devices (SPLDs)

These are the least complex form of PLDs. An SPLD can replace several fixed

function SSI or MSI devices and their interconnections. A few categories of SPLD are

listed below:

• PAL (Programmable Array Logic)

• GAL (Generic Array Logic)

• PLA (Programmable Logic Array)

• PROM (Programmable Read only Memory)

 Programmable Logic Arrays (PLAs)

 Programmable Logic Arrays (PLAs) were a solution to the speed and input

limitations of PROMs. PLAs consist of a large number of inputs connected to an

AND plane, where different combinations of signals can be logically AND together

according to how the part is programmed. The outputs of the AND plane go into an

OR plane, where the terms are OR together in different combinations and finally

outputs are produced. At the inputs and outputs there are typically inverters so that

logical NOTs can be obtained. These devices can implement a large number of

 4

combinatorial functions, though not all possible combinations like a PROM can.

However, they generally have many more inputs and are much faster.

Figure 2- PLAs Architecture

Programmable Array Logic (PALs)

The Programmable Array Logic (PAL) is a variation of the PLA. Like the PLA, it has

a wide, programmable AND plane for ANDing inputs together. However, the OR

plane is fixed, limiting the number of terms that can be ORed together. Other basic

logic devices, such as multiplexers, exclusive ORs, and latches are added to the inputs

and outputs. Most importantly, clocked elements, typically flip-flops, are included.

These devices are now able to implement a large number of logic functions including

clocked sequential logic need for state machines. This was an important development

that allowed PALs to replace much of the standard logic in many designs. PALs are

also extremely fast.

 5

 Figure 3-. PAL Architecture

1.2.4 Complex Programmable Logic Devices (CPLDs).

Complex Programmable Logic Devices (CPLDs) are exactly what they claim to be.

Essentially they are designed to appear just like a large number of PALs in a single

chip, connected to each other through a crosspoint switch they use the same

development tools and programmers, and are based on the same technologies, but

they can handle much more complex logic and more of it. Most complex

programmable logic devices contain macro cells with a sum-of-product combinatorial

logic function and an optional flip-flop CPLDs is available with different amounts of

memory and different types of memory support. Typically, memory is expressed in

bits or megabits. Memory support includes read-only memory (ROM), random access

memory (RAM), and dual-port RAM. It also includes content addressable memory

(CAM) as well as first-in, first-out (FIFO) memory and last-in, last-out (LIFO)

memory. These have a much higher capacity than SPLDs, permitting more complex logic

circuits to be programmed into them. A typical CPLD is equivalent of from 2 to 64

SPLDs. CPLDs generally come in 44-pin to160-pin packages depending on the

complexity. CPLDs offer logic up to about 10,000 gates. CPLDs offer very predictable

timing characteristics and are therefore ideal for critical control applications. CPLDs also

require extremely low amounts of power and are very inexpensive, making them ideal for

 6

cost-sensitive, battery-operated, portable applications such as mobile phones and digital

handheld assistants.

Figure 4- CPLD Architecture

1.3 Introduction to Field Programmable Gate Array

 Field-Programmable Gate Arrays (FPGAs) are a revolutionary new type of

user-programmable integrated circuits that provide fast, inexpensive access to

customized VLSI. FPGAs are one of today’s most important digital logic

implementation options. An FPGA is a general purpose, multilevel, programmable

logic device that is customized in the package by the end users. An FPGA consists of

an array of programmable logic blocks and a programmable routing network. The

programmable interconnect between blocks allows users to implement multi level

logic, removing many of the size limitations of the PLD derived two level logic

structure. This extensible architecture can currently support thousands of logic gates

at system speed in the tens of megahertz.

The size, structure, number of logic blocks and connectivity of the interconnect vary

considerably among the architectures. This difference in architectures is driven by

different programming technologies and different target applications of the parts. An

FPGA consists of an array of logic cells that can be interconnected via programmable

 7

routing switches, where the routing structures are sufficiently general to allow the

configuration of multiple levels of the FPGA’s logic cells. FPGAs represent a

combination of the features of Mask Programmable Gate Arrays (MPGAs) and

Programmable Logic Devices (PLDs). From MPGAs, FPGAs have adopted a two-

dimensional array of logic cells, and from PLDs the user-programmability. The work

reported in this thesis is focused on FPGA based system design for temperature

sensing by using GSM modem.

Following their introduction in 1985, by the Xilinx Company, FPGAs have evolved

considerably as various new devices have been developed. FPGAs have quickly

gained widespread use, which can be attributed to the reduced manufacturing time and

relatively low costs of these large-capacity users- programmable devices. As an

implementation medium for customized VLSI circuits, FPGAs offer following unique

advantages over the alternative technologies (MPGAs, standard cells, and full custom

design):

(1) FPGAs provide a reduction in the cost of manufacturing a customized VLSI

circuit from tens of thousands of dollars to about one hundred dollars.

(2) FPGAs reduce the manufacturing time from months to minutes.

These advantages, which are attributable to the user-programmability of FPGAs,

provide a faster time-to-market and less pressure on designers, because multiple

design iterations can be done quickly and inexpensively. However, user-

programmability also has drawbacks: the logic density and speed performance of

FPGAs is considerably lower than those of the alternatives. While developments over

the last few years have shown significant improvements in FPGAs, much research is

still needed before the best FPGA designs are discovered.

 8

 Figure 5-. Basic Architecture of FPGA

1.2.1 Advantages of FPGAs

1) Low Tooling Costs

 There is no custom tooling required for an FPGA, so there are no associated tooling

costs, making FPGA cost effective for most logic designs.

2) Rapid Turnaround

 An FPGA can be programmed in a few minutes. On an FPGA, a modification to

correct a design flaw or to address a late specification change can be made quickly and

cheaply. Faster design turnaround leads to faster product development and shorter time to

market for new FPGA products.

 9

3) Low Risks

 The benefits of low initial Non Recurring Engineering (NRE) charges and rapid

turnarounds mean that design iteration due to an error incurs neither a large expense nor a

long delay. Low cost encourages early system integration and prototyping. The low cost

of error encourages more aggressive logic design, which may yield better performance

and more cost effective designs.

4) Effective Design Verification

 Instead of simulating large amounts of time, FPGA user may choose to use in

circuit verification. Designers can implement the design and can use any functioning part

as a prototype. The prototype operates at full speed and with excellent timing accuracy. A

prototype can be inserted into the system to verify functionality of the system as a whole,

eliminating a class of system errors early.

5) Low Testing Cost

 All ICs must be tested to verify proper manufacturing and packaging. The test

program for FPGAs is the same for all design and test the FPGA for all users of the part.

Because there is only one test program, it is reasonable to invest a considerable amount of

effort in it and it can be continually improved over the lifetime of the FPGA. The

resulting test program achieves excellent test coverage leading to high quality ICs. The

manufacturer’s test program verifies that every FPGA will be functional for all possible

designs that may be implemented on it. FPGA users are not required to write design

specific test for their designs. Therefore, designers need not built the testability into the

design eliminating “design for testability” and the design effort and overhead associated

with it.

6) Life Cycle Advantages

 The cost effectiveness of FPGAs in low volume and the flexibility provided by field

programmability provide advantages over all phases of product lifetime. When

introducing a product, an FPGA user may order a few parts at a time while testing the

design for functionality and the product for market viability. During production, the

 10

FPGA user can accommodate rapid changes in sales easily because long lead times are

not required. An FPGA user can make enhancements by shipping an upgraded design on

the same FPGA device. This upgrade requires no inventory changes, no new hardware

and does not interrupt production.

 1.4 Choosing Between CPLDs and FPGAs

Choosing between a CPLD and an FPGA will depend on the characteristics and

requirements of the project. A summary of the characteristics of each is

Figure 6- CPLDs vs. FPGAs

Complex programmable logic devices (CPLDs) are integrated circuits (ICs) or chips

that application designers configure to implement digital hardware such as mobile

phones. CPLDs can handle significantly larger designs than simple programmable

logic devices (SPLDs), but provide less logic than field programmable gate arrays

(FPGAs) Complex programmable logic devices also vary in terms of logic gates and

shift registers. For this reason, CPLDs with a large number of logic gates may be used

in place of FPGAs. Another CPLD specification denotes the number of product terms

that a macrocell can manage. Product terms are the product of digital signals that

perform a specific logic function.

 11

1.5 Introduction to GSM (GLOBAL SYSTEM OF MOBILE)

The first GSM network was launched in 1991 by Radiolinja in Finland .GSM is

Global System for Mobile Communication .It is the technology of voice and data

transmission with the help of authenticated SIM card .This is widely used on end user

side in telecommunication networks. Probably the most useful thing to know about

the Global System for Mobile communications (GSM) is that it is an international

standard. Instead of using analog service, The GSM net used by cell phones provides

a low cost, long range, wireless communication channel for applications that need

connectivity rather than high data rates. Machinery such as industrial refrigerators and

freezers, HVAC, vending machines, vehicle service etc. could benefit from being

connected to a GSM system. GSM was developed as a digital system using TDMA

technology. Using TDMA, a narrow band that is 30 kHz wide and 6.7 milliseconds

long is split time-wise into three time slots. Narrow band means channels in the

traditional sense. Each conversation gets the radio for one-third of the time. This is

possible because voice data that has been converted to digital information is

compressed so that it takes significantly less transmission space. The modulation used

in GSM is Gaussian minimum shift keying (GMSK), a kind of continuous-phase

frequency shift keying. In GMSK, the signal to be modulated onto the carrier is first

smoothed with a Gaussian low-pass filter prior to being fed to a frequency modulator,

which greatly reduces the interference to neighbouring channels (adjacent channel

interference). GSM is a cellular network, which means that mobile phones connect to

it by searching for cells in the immediate vicinity. GSM networks operate in four

different frequency ranges.

 12

1.6 Dissection of Dissertation

Chapter 2

 Presents the literature review. It explains the developments and advancements in

GSM systems in chronological order. Then it describes how FPGAs emerged and

became the greatest logic implementation device.

Chapter 3

Considers the FPGA in detail. Essential characteristics, applications of FPGAs are

explained. Device FPGA, GSM, LM35, ADC, MAX232, used in this project is

explained. Salient features, architecture, functionality, input-output capabilities,

operating conditions, power consumption and pin configuration have been considered.

Detailed functional description of Logic Array Block, Embedded Array Block, Logic

Element, I/O Element is presented.

Chapter 4

Deals with Steps to use software for implementing any digital logic are defined.

Salient features, design process and need of VHDL are explained.

Chapter 5

Deals with the Hardware description for FPGA based Temperature sensing system,

UVLSI user kit, ADC.Max232 and temperature sensing unit.

Conclusion Scope for Future Work

Appendix: VHDL source code to implement the FPGA based temperature sensing

using GSM. Some Data sheets.

References

 13

CHAPTER 2

Literature Review

2.1 Introduction

 This chapter includes theory and detailed information about Global System of Mobile

(GSM), and SIM. And frequency ranges of GSM and brief history of FPGA and

Modern developments.

2.2 Global System of Mobile. (GSM)

The first GSM network was launched in 1991 by Radiolinja in Finland. GSM is

Global System for Mobile Communication .It is the technology of voice and data

transmission with the help of authenticated SIM card .This is widely used on end user

side in telecommunication networks .The Uplink Frequency of the GSM system is

890MHz – 915 MHz (25 MHz).The Downlink Frequency of the system is 935MHz –

960 MHz (25 MHz). Frequency difference between Uplink-Downlink Frequency is 45

MHZ. .Probably the most useful thing to know about the Global System for Mobile

communications (GSM) is that it is an international standard. Instead of using analog

service, GSM was developed as a digital system using TDMA technology. Using

TDMA, a narrow band that is 30 kHz wide and 6.7 milliseconds long is split time-

wise into three time slots. Narrow band means channels in the traditional sense. Each

conversation gets the radio for one-third of the time. This is possible because voice

data that has been converted to digital information is compressed so that it takes

significantly less transmission space. Therefore, TDMA has three times the capacity

of an analog system using the same number of channels. The transmission power in

the handset is limited to a maximum of 2 watts in GSM850/900 and 1 watt in

GSM1800/1900. The modulation used in GSM is Gaussian minimum shift keying

(GMSK), a kind of continuous-phase frequency shift keying. In GMSK, the signal to

be modulated onto the carrier is first smoothed with a Gaussian low-pass filter prior to

being fed to a frequency modulator, which greatly reduces the interference to

neighbouring channels (adjacent channel interference).

 14

2.2.1 SUBSCRIBER IDENTITY MODULE (SIM):

One of the key features of GSM is the Subscriber Identity Module (SIM),

commonly known as a SIM card.

 The SIM is a detachable smart card containing the user's subscription

information and phonebook. This allows the user to retain his or her

information after switching handsets.

 The user can also change operators while retaining the handset simply by

changing the SIM. Some operators will block this by allowing the phone to

use

Only a single SIM, or only a SIM issued by them; this practice is known as SIM

locking, and is illegal in some countries

GSM is a cellular network, which means that mobile phones connect to it by

searching for cells in the immediate vicinity. GSM networks operate in four different

frequency ranges. Most GSM networks operate in the 900 MHz or 1800 MHz bands.

Time division multiplexing is used to allow eight full-rate or sixteen half-rate speech

channels per radio frequency channel. There are eight radio timeslots (giving eight

burst periods) grouped into what is called a TDMA frame. Half rate channels use

alternate frames in the same timeslot.

2.3 FPGA: A brief history

As IC fabrication and design techniques improved over the years, the semiconductor

memory became smaller and cheaper, leading to the demise of core storage. Without

this development, it would be difficult to produce the highly capable personal

computers and workstations that are now available.

Before the semiconductor memory was made large enough to replace the main

memory of the computer, it became obvious that the small IC memory would be

useful in circuit applications. Several companies implemented small memories such as

64 bit devices that were targeted for use in digital circuits rather than in computer

memories. One of the first such devices was the read only memory (ROM). Small IC

read write memories, called semiconductor RAMs also appeared at the same time. As

 15

the price dropped and the size increased, semiconductor memories began replacing

core memories. In the late 1970s, the semiconductor memory was used almost

exclusively in the personal computer. By the early 1980s, even large mainframe

computers were produced with exclusively semiconductor main memories. It became

obvious in the late 1970s that the ROMs were also useful in logic function realization.

As small ROMs were used for this purpose, the combinational PLA and PAL chips

were developed to reduce the number of devices needed on a chip.

The historical roots of FPGAs are in complex programmable logic devices (CPLDs)

of the early to mid 1980s. A Xilinx co-founder invented the field programmable gate

array in 1984. In 1985, Xilinx Company introduced the first FPGA. After this many

companies like Actel, Altera launched their FPGAs in the market CPLDs and FPGAs

include a relatively large number of programmable logic elements. CPLD logic gate

densities range from the equivalent of several thousand to tens of thousands of logic

gates, while FPGAs typically range from tens of thousands to several million. The

primary differences between CPLDs and FPGAs are architectural. A CPLD has a

somewhat restrictive structure consisting of one or more programmable sum-of-

products logic arrays feeding a relatively small number of clocked registers. The

result of this is less flexibility, with the advantage of more predictable timing delays

and a higher logic-to-interconnect ratio. The FPGA architectures, on the other hand,

are dominated by interconnect. This makes them far more flexible (in terms of the

range of designs that are practical for implementation within them) but also far more

complex to design for. Another notable difference between CPLDs and FPGAs is the

presence in most FPGAs of higher-level embedded functions (such as adders and

multipliers) and embedded memories. Some FPGAs have the capability of partial re-

configuration that lets one portion of the device be re-programmed while other

portions continue running. The high performance FPGAs, made with the more

advanced standard cell technology are now beginning to take market share from fixed

logic devices.

 16

2.3.1 Modern developments

A recent trend has been to take the coarse-grained architectural approach a step

further by combining the logic blocks and interconnects of traditional FPGAs with

embedded microprocessors and related peripherals to form a complete "system on a

programmable chip". Examples of such hybrid technologies can be found in the

Xilinx Virtex-II PRO and Virtex-4 devices, which include one or more PowerPC

processors embedded within the FPGA's logic fabric. The Atmel FPSLIC is another

such device, which uses an AVR processor in combination with Atmel's

programmable logic architecture. An alternate approach to using hard-macro

processors is to make use of "soft" processor cores that are implemented within the

FPGA logic. Many modern FPGAs have the ability to be reprogrammed at "run time,"

and this is leading to the idea of reconfigurable computing or reconfigurable systems

— CPUs that reconfigure themselves to suit the task at hand. It does not however

support dynamic reconfiguration at runtime, but instead adapts itself to a specific

program.

 17

CHAPTER 3

 Field Programmable Gate Array (FPGA)

3.1 Introduction

Field Programmable Gate Array provides the next step in the Programmable Logic

Devices hierarchy. Field Programmable Gate Arrays are called this because rather

than having a structure similar to a PAL or other programmable device, they are

structured very much like a gate array ASIC. This makes FPGAs very nice for use in

prototyping ASICs, or in places where and ASIC will eventually be used. An FPGA is

similar to a CPLD but has more logic blocks and other components. Other

components include PLL,memory blocks, pre-defined hardware multipliers,

DACs/ADCs, processors and more.High density of gates and logic elements. The

exact type, size and the number of programmable basic logic cells vary tremendously.

We can download FPGAs as many time as we want - no limit - with different

functionalities every time if we want. If we make a mistake in your design, just fix our

"logic function", re-compile and re-download it. No PCB, solder or component to

change. The designs can run much faster than if you were to design a board with

discrete components, since everything runs within the FPGA, on its silicon die.

Essential characteristics of FPGAs:

1. Programmable I/O cells surround the core.

2. The core is a regular array of programmable basic logic cells that can implement

combinational as well as sequential logic.

3. Besides logic, the other key feature that characterizes an FPGA is its

interconnecting structure.

 4. FPGAs loose their functionality when the power goes away (like RAM in a

computer that looses its content). We have to re-download them when power

goes back up to restore the functionality.

 18

3.2 FPGA Architectures

 Figure 7- FPGA Architecture

In general terms they are all a variation of that shown in Figure 6. The architecture

consists of configurable logic blocks, configurable I/O blocks, and programmable

interconnect. Also, there will be clock circuitry for driving the clock signals to each

logic block, and additional logic resources such as ALUs, memory, and decoders may

be available. The two basic types of programmable elements for an FPGA are Static

RAM and anti-fuses.

3.2.1. Configurable I/O Blocks

A Configurable I/O Block, shown in Figure 10, is used to bring signals onto the chip

and send them back off again. It consists of an input buffer and an output buffer with

three state and open collector output controls. Typically there are pull up resistors on

the outputs and sometimes pull down resistors The polarity of the output can usually

be programmed for active high or active low output and often the slew rate of the

output can be programmed for fast or slow rise and fall times. In addition, there is

 19

often a flip-flop on outputs so that clocked signals can be output directly to the pins

without encountering significant delay. It is done for inputs so that there is not much

delay on a signal before reaching a flip-flop which would increase the device hold

time requirement.

3.3 Applications of FPGAs

FPGAs have gained rapid acceptance and growth over the past decade because they

can be applied to a very wide range of applications. A list of typical applications

includes: random logic, integrating multiple SPLDs, device controllers,

communication encoding and filtering, small to medium sized systems with SRAM

blocks, and many more. Another promising area for FPGA application, which is only

beginning to be developed, is the usage of FPGAs as custom computing machines.

This involves using the programmable parts to “execute” software, rather than

compiling the software for execution on a regular CPU.

3.3.1) Prototyping

Prototyping of designs later to be implemented in gate arrays, and also emulation of

entire large hardware systems. The former of these applications might be possible

using only a single large FPGA (which corresponds to a small Gate Array in terms of

capacity), and the latter would entail many FPGAs connected by some sort of

interconnect; for emulation of hardware, Quick Turn [Wolff90] (and others) has

developed products that comprise many FPGAs and the necessary software to

partition and map circuits. Or a large device may be included to allow prototyping of

a system-on-a-chip design that will eventually find its way into an ASIC.

3.3.2) Reconfigurable Computing

As mentioned earlier, an SRAM-based programmable device can have its internal

design altered on-the-fly. This practice is known as reconfigurable computing. The

decades-long delay had mostly to do with a lack of acceptable reconfigurable

hardware. On-the-fly reprogrammable logic chips have only recently reached gate

densities making them suitable for anything more than academic research. But the

 20

future of reconfigurable computing is bright and it is already finding a niche in high-

end communications, military.

3.4 Devices

There are two basic categories of FPGAs on the market today: 1. SRAM-based

FPGAs and 2.antifuse-based FPGAs. In the first category, Xilinx and Altera are the

leading manufacturers in terms of number of users, with the major competitor being

AT&T. For antifuse-based products, Actel, Quick logic and Cypress, and Xilinx offer

competing products.

3.4.1 Xilinx SRAM-based FPGAs

The basic structure of Xilinx FPGAs is array-based, meaning that each chip

comprises a two dimensional array of logic blocks that can be interconnected via

horizontal and vertical routing channels. An illustration of this type of architecture

was shown in Figure 2. Xilinx introduced the first FPGA family, called the XC2000

series, in about 1985 and now offers three more generations: XC3000, XC4000, and

XC5000. Although the XC3000 devices are still widely used, we will focus on the

more recent and more popular XC4000 family. We note that XC5000 is similar to

XC4000, but has been engineered to offer similar features at a more attractive price,

with some penalty in speed. We should also note that Xilinx has recently introduced

an FPGA family based on anti-fuses, called the XC8100. The XC8100 has many

interesting features, but since it is not yet in widespread use, we will not discuss it

here. The Xilinx 4000 family devices range in capacity from about 2000 to more than

15,000 equivalent gates. The XC4000 features a logic block (called a Configurable

Logic Block (CLB) by Xilinx) that is based on look-up tables (LUTs). A LUT is a

small one bit wide memory array, where the address lines for the memory are inputs

of the logic block and the one bit output from the memory is the LUT output. A LUT

with K inputs would then correspond to a 2K x 1 bit memory, and can

realize any logic function of its K inputs by programming the logic function’s truth

table directly into the memory. The XC4000 CLB contains three separate LUTs, in

the configuration shown in Figure 18. There are two 4-input LUTS that are fed by

CLB inputs, and the third LUT can be used in combination with the other two. This

arrangement allows the CLB to implement a wide range of logic functions of up to

 21

nine inputs, two separate functions of four inputs or other possibilities. Each CLB also

contains two flip-flops.

 Figure 8 - Xilinx XC4000 Configurable Logic Block (CLB)

Toward the goal of providing high density devices that support the integration of

entire systems, the XC4000 chips have “system oriented” features. For instance, each

CLB contains circuitry that allows it to efficiently perform arithmetic (i.e., a circuit

that can implement a fast carry operation for adder-like circuits) and also the LUTs in

a CLB can be configured as read/write RAM cells. A new version of this family, the

4000E, has the additional feature that the RAM can be configured as a dual port RAM

with a single write and two read ports. In the 4000E, RAM blocks can be synchronous

RAM. Also, each XC4000 chip includes very wide AND-planes around the periphery

of the logic block array to facilitate implementing circuit blocks such as wide

decoders. Besides logic, the other key feature that characterizes an FPGA is it’s

interconnecting structure. The XC4000 interconnect is arranged in horizontal and

vertical channels. Each channel contains some number of short wire segments that

 22

span a single CLB (the number of segments in each channel depends on the specific

part number), longer segments that span two CLBs and very long segments that span

the entire length or width of the chip. Programmable switches are available to connect

the inputs and outputs of the CLBs to the wire segments, or to connect one wire

segment to another. A small section of a routing channel representative of an XC4000

device appears in Figure 8. The figure shows only the wire segments in a horizontal

channel, and does not show the vertical routing channels, the CLB inputs and outputs,

or the routing switches. An important point worth noting about the Xilinx interconnect

is that signals must pass through switches to reach one CLB from another, and the

total number of switches traversed depends on the particular set of wire segments used.

Thus, speed-performance of an implemented circuit depends in part on how the wire

segments are allocated to individual signals by CAD tools.

3.4.2 Spartan-3 FPGA

The Spartan-3 family of Field-Programmable Gate Arrays is specifically designed to

meet the needs of high volume, cost-sensitive consumer electronic applications. The

eight-member family offers densities ranging from 50,000 to five million system gates,

The Spartan-3 family builds on the success of the earlier Spartan-IIE family by

increasing the amount of logic resources, the capacity of internal RAM, the total

number of I/Os, and the overall level of performance as well as by improving clock

management functions. Numerous enhancements derive from the Virtex®-II platform

technology. These Spartan-3 FPGA enhancements, combined with advanced process

technology, deliver more functionality and bandwidth per dollar than was previously

possible, setting new standards in the programmable logic industry. Because of their

exceptionally low cost, Spartan-3 FPGAs are ideally suited to a wide range of

consumer electronics applications; including broadband access, home networking,

display/projection and digital television equipment. The Spartan-3 family is a superior

alternative to mask programmed ASICs. FPGAs avoid the high initial cost, the

lengthy development cycles, and the inherent inflexibility of conventional ASICs.

Features

Low-cost, high-performance logic solution for high-volume, consumer-oriented

applications

 23

 Densities up to 74,880 logic cells.

 Select IO interface signalling.

 Up to 633 I/O pins.

 622 Mb/s data transfer rate per I/O.

 18 single-ended signal standards.

 8 differential I/O standards including LVDS, RSDS.

 Termination by Digitally Controlled Impedance.

 Signal swing ranging from 1.14V to 3.465V.

 Double Data Rate (DDR) support.

 DDR, DDR2 SDRAM support up to 333 Mbps.

 Logic resources

 Abundant logic cells with shift register capability.

 Wide, fast multiplexers.

 Fast look-ahead carry logic.

 Dedicated 18 x 18 multipliers.

 JTAG logic compatible with IEEE 1149.1/1532.

 Select RAM hierarchical memory.

 Up to 1,872 Kbits of total block RAM.

 Up to 520 Kbits of total distributed RAM.

 Digital Clock Manager (up to four DCMs)

 Clock skew elimination.

 Frequency synthesis.

 High resolution phase shifting

 Eight global clock lines and abundant routing

3.4.2.1 Configuration

Spartan-3 FPGAs are programmed by loading configuration data into robust,

reprogrammable, static CMOS configuration latches (CCLs) that collectively control

 24

all functional elements and routing resources. Before powering on the FPGA,

configuration data is stored externally in a PROM or some other non-volatile medium

either on or off the board. After applying power, the configuration data is written to

the FPGA using any of five different modes: Master Parallel, Slave Parallel, Master

Serial, Slave Serial, and Boundary Scan (JTAG). The Master and Slave Parallel

modes use an 8-bit wide Select MAP port the recommended memory for storing the

configuration data is the low-cost Xilinx Platform Flash PROM family, which

includes the XCF00S PROMs for serial configuration and the higher density XCF00P

PROMs for parallel or serial configuration.

3.4.2.2 Configurable Logic Blocks (CLBs)

A Virtex-5 FPGA CLB resource is made up of two slices. Each slice is equivalent and

contains:

• Four function generators

• Four storage elements

• Arithmetic logic gates

• Large multiplexers

• Fast carry look-ahead chain

The function generators are configurable as 6-input LUTs or dual-output 5-input

LUTs. SLICEMs in some CLBs can be configured to operate as 32-bit shift registers

(or 16-bit x 2 shift registers) or as 64-bit distributed RAM. In addition, the four

storage elements can be configured as either edge-triggered D-type flip-flops or level

sensitive latches. Each CLB has internal fast interconnect and connects to a switch

matrix to access general routing resources.

3.4.2.3 Interconnect

Interconnect (or routing) passes signals among the various functional elements of

Spartan-3 devices. There are four kinds of interconnect: Long lines, Hex lines, Double

lines, and Direct lines. Long lines connect to one out of every six CLBs (see Figure

9a). Because of their low capacitance, these lines are well-suited for carrying high-

frequency signals with minimal loading effects (e.g. skew). If all eight Global Clock

Inputs are already committed and there remain additional clock signals to be assigned,

Long lines serve as a good alternative. Hex lines connect one out of every three CLBs

 25

(see Figure 9b). These lines fall between Long lines and Dou Double lines in terms of

capability: Hex lines approach the high-frequency characteristics of Long lines at the

same time, offering greater connectivity. Double lines connect to every other CLB

(see Figure 9c). Compared to the types of lines already discussed, Double lines

provide a higher degree of flexibility when making connections. Direct lines afford

any CLB direct access to neighbouring CLBs (see Figure 9d). These lines are most

often used to conduct a signal from a "source" CLB to a Double, Hex, or Long line

and then from the longer interconnect back to a Direct line accessing a "destination"

CLB.

Figure 9- Types of Interconnect

 26

3.4.2.4 Powering Spartan-3 FPGAs

3.4.2.4.1 Voltage Regulators

Various power supply manufacturers offer complete power solutions for Xilinx

FPGAs, including some with integrated multi-rail regulators specifically designed for

Spartan-3 FPGAs.

3.4.2.4.2 Power-On Behaviour

Spartan-3 FPGAs have a built-in Power-On Reset (POR) circuit that monitors the

three power rails required to successfully configure the FPGA. At power-up, the POR

circuit holds the FPGA in a reset state until the VCCINT, VCCAUX, and VCCO

Bank 4 supplies reach their respective input threshold levels. After all three supplies

reach their respective threshold, the POR reset is released and the FPGA begins its

configuration process. Because the three supply inputs must be valid to release the

POR reset and can be supplied in any order, there are no specific voltages sequencing

requirements. However, applying the FPGA’s VCCAUX supply before the VCCINT

supply uses the least ICCINT current. Once all three supplies are valid, the minimum

current required to power-on the FPGA is equal to the worst-case quiescent current.

Spartan- 3 FPGAs do not require Power-On Surge (POS) current to successfully

configure.

3.4.3. I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used either as an

input register for external data that requires a fast set-up time or as an output register

for data that requires fast clock-to-output performance. For bi-directional registered

I/O implementation, the output register should be in the IOE and the data input and

output enable registers should be LE registers, placed adjacent to the bidirectional pin.

The peripheral control bus uses high-speed drivers to minimize signal skew across

devices and provides up to 12 peripheral control signals.

 27

3.4.4 Clocks and Global lines

An FPGA design is usually "synchronous". Simply put, that means that the design is

clock based - each clock (rising edge) allows the D-flipflops to take a new state. In a

synchronous design, a single clock may drive a lot of flipflops simultaneously. That

can cause timing and electrical problems inside the FPGA. To get that working

properly, FPGA manufacturers provide special internal wires called "global routing"

or "global lines". They allow distributing the clock signal all over the FPGA with a

low skew (i.e. the clock signal appears almost simultaneously to all the flipflops).

When you feed a clock signal to your FPGA, you shouldn't use any FPGA pin, but use

a "dedicated input pin". Usually, only such input pins have the ability to drive a global

line. Check the FPGA datasheet to find which pins are the "dedicated inputs". FPGA

software are aware of these dedicated inputs, and will automatically assign clocks to

them if given the choice.

3.4.4.1 Clock domains

An FPGA can use multiple clocks (using multiple global lines and dedicated input

pins). Each clock forms a "clock domain" inside the FPGA.

3.5 Precision Centigrade Temperature Sensors LM35

 The LM35 series are precision integrated-circuit temperature sensors, whose

output voltage is linearly proportional to the Celsius (Centigrade) temperature. The

LM35 thus has an advantage over linear temperature sensors calibrated in ° Kelvin, as

the user is not required to subtract a large constant voltage from its output to obtain

convenient Centigrade scaling. The LM35 does not require any external calibration or

trimming to provide typical accuracies. The LM35's low output impedance, linear

output, and precise inherent calibration make interfacing to readout or control

circuitry especially easy. It can be used with single power supplies, or with plus and

minus supplies. As it draws only 60 mA from its supply, it has very low self-heating,

less than 0.1°C in still air. The LM35 is rated to operate over a -55° to +150°C

temperature range, while the LM35C is rated for a -40° to +110°C range (-10°Cwith

improved accuracy). The LM35 series is available packaged in hermetic TO-46

transistor packages, while the LM35C, LM35CA, and LM35D are also available in

 28

the plastic TO-92 transistor package. The LM35D is also available in an 8-lead

surface mount small outline package and a plastic TO-220 package.

3.5.1 OPERATING PRINCIPLE:

LM35 is a temperature sensor. The pinout is shown in the schematic fig 10. It has a

wide temperature range from -40ºC to +110ºC. It gives an output of 10mV per degree

centigrade. The hardware for this is fairly simple. A supply of +5V to VCC & a ground

signal is to be given and its output in mV is recorded at pin no.2. As the temperature

of surroundings rises, the voltage at pin no.2 of LM35 increases by 10mV for every

degree rise of temperature which can be detected by an 8-bit ADC. The ADC can be

calibrated to the voltage and the temperature can be displayed on the LCD in degree

centigrade. This is fairly simple as voltage varies in direct proportion with

temperature.

GND

VOUT+5V

U2

LM35D/TO

1

23

G
N

D VOUT+VS

Figure 10-. APPLICATION CIRCUIT of LM35

Features

 Calibrated directly in ° Celsius (Centigrade).

 Linear + 10.0 mV/°C scale factor.

 0.5°C accuracy guaranteeable (at +25°C).

 Rated for full −55° to +150°C range.

 Suitable for remote applications.

 Low cost due to wafer-level trimming.

 Operates from 4 to 30 volts.

 29

 Less than 60 μA current drain.

 Low self-heating, 0.08°C in still air.

 Nonlinearity only ±1⁄4°C typical.

 Low impedance output, 0.1 W for 1 mA load.

3.5.2 Typical Application

FIGURE 11(a). Basic Centigrade Temperature Sensor

(+2°C to +150°C)

FIGURE 11(b). Full-Range Centigrade Temperature Sensor

3.6. Global System of Mobile (GSM)

The GSM net used by cell phones provides a low cost, long range, wireless

communication channel for applications that need connectivity rather than high data

rates. Machinery such as industrial refrigerators and freezers, HVAC, vending

machines, vehicle service etc. could benefit from being connected to a GSM system.

 30

The customer will benefit from a reliable and well-serviced vehicle at a minimum cost.

The garage on the other hand can provide excellent customer support, vehicle

statistics, efficient work scheduling, and minimum stocks. This application note

describes how to use an AVR to control a GSM modem in a cellular phone. The

interface between modem and host is a textual protocol called Hayes AT-Commands.

These commands enable phone setup, dialing, text messaging etc. This particular

application connects an AVR Butterfly and Siemens® M65 cellular phone using a

RS232 based data cable. Most cellular phones could be used, except Nokia® phones

using F or M-bus.

3.6.1. Theory of Operation

The protocol used by GSM modems for setup and control is based on the Hayes AT-

Command set. The GSM modem specific commands are adapted to the services

offered by a GSM modem such as: text messaging, calling a given Phone number,

deleting memory locations etc. Since the main objective for this application note is to

show how to send and receive text messages, only a subset of the AT-Command set

needs to be implemented. The European Telecommunication Standard Institute (ETSI)

GSM 07.05 defines the AT-Command interface for GSM compatible modems. From

this document some selected commands are chosen, and presented briefly in this

section. This command subset will enable the modem to send and receive SMS

messages.

 31

3.6.1.1 AT-Command Set

The commands can be tried out by connecting a GSM modem to one of the PC’s

COM ports. Type in the test-command, adding CR + LF (Carriage return + Line feed

= \r\n) before executing.

 Table 3-1. AT-Command set overview

3.6.1.2 Status (AT)

The “AT” command is a status request used for testing if a compatible modem is connected
and that the serial interface is working properly.

 Table 3-2. AT command and possible responses

3.6.2 Error Code

Many of the commands in the implemented subset can terminate with an error

message related to the modem or network. These could be errors such as:

 32

• Memory failure.

• Invalid recipient number.

• Network timeout.

• SIM busy or wrong.

• Operation not allowed.

• No network service.

These error messages can be useful, and could be implemented as a part of the

application. It is possible to extend the handling of the error codes, but this is beyond

the scope of this application note. We will just catch the ERROR message, and repeat

the command.

3.7 MAX-232

MAX-232 converts from RS-232 voltage levels to TTL voltage levels and vice versa.

One advantage of MAX-232 chip is that it uses +5V power source ,which is the same

as the source voltage for the 8051.that is we can power both 8051 and MAX-232 with

single +5V power supply, with no need for the dual poor supplies.

 The MAX-232 has two sets of line drivers for transferring and receiving

data .The line drivers used for TxD are called T1 and T2.while line drivers for RxD

are called R1and R2 out of which only one is used at time . In MAX-232 the T1 line

driver has a designation of T1in and T1out on pin no 11&14 respectively. The T1 in

pin is TTL side and is connected to TxD of the FPGAs while T1out is connected to

RxD pin of RS-232 DB connector. The R1 line driver has a designation of R1in

&R1out on pin no 13&12 respectively. The R1in pin is the RS-232 side that is

connected to the TxD.

 33

Figure 12-Pin layout of RS-232.

3.7.1 The RS-232 standard includes details of:

 The protocol to be used for data transmission

 The voltages to be used on signal lines.

 The connector to be used to link equipment together.

The overall standard comprehensive and widely used at data transfer rates of up to

around 115 or330 Kbits per second. Data transfer can be over distances of 15 meters

or more.

 34

3.7.2 Basic RS-232 Protocol:

 Rs-232 is a character-oriented protocol. That is it is intended to be used to send

single 8-bit blocks of data. To transmit a byte of data over an RS-232 link, we

generally encode the information as follows:-

We send a “start“ bit.

We send the data.

We send a “stop” bit.

3.7.3 Asynchronous data transmission and baud rates

 RS-232 uses an asynchronous protocol; both ends of the comm. link have an

internal clock, running at the same rate. The data (in the case of RS-232, the start bit)

is then used to synchronize the clocks, if necessary to ensure successful data transfer.

RS-232 generally operates at one of a range of baud rates.

Typically these are 75, 110, 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800,

33600, 56000, 115000, and 330,000 baud.

9600 baud is a very safe choice as it is very widely supported.

3.7.4 RS-232 Voltage levels:

The threshold levels used by the receiver are +3V and -3V and lines are inverted

The maximum voltage allowed is +/-15 volt.

Note that that these voltages cannot be obtained directly from the naked

microcontroller port pins some form of interface hardware is required.

for e.g. The Maxim MAX-232 and MAX-233 are popular and widely-used line

driver chips.

Theory

 35

CHAPTER 4

SOFTWARE

4.1 Introduction

This chapter is intended to become familiar with the VHDL for specifying

programmable logic design. For serious work, use of EDA Tools like Altera, Xilinx is

essential because PLDs contain many thousands of programmable fuses. The process

of producing fuse maps is therefore highly impossible to manage by hand. The

purpose of EDA tool is to interpret the logic design and convert it into a format which

may be loaded in the PLD directly, called In-System-Programming (ISP), or indirectly

via a separate device programmer.

4.2 Xilinx ISE 6 Software

The Xilinx ISE (Integrated Software Environment) 6 design software provides a

complete, multi platform design environment that easily adapts to our specific design

needs. ISE Provides an overview of the Xilinx Integrated Software Environment

(ISE), including design flow information, Explains how to create, define, and compile

your FPGA or CPLD design using the suite of ISE tools available from the Project

Navigator and also Describes what’s new in the software release and how to migrate

past projects to the current software. Explains how to use HDLs to design FPGAs

with emphasis on synthesis and simulation. This software includes solutions for all

phases of FPGA and CPLD design.

4.2.1 Overview of ISE

ISE controls all aspects of the design flow. Through the Project Navigator interface,

we can access all of the design entry and design implementation tools. We can also

access the files and documents associated with our project.

 36

Project Navigator Interface

The Project Navigator Interface is divided into four main subwindows, as seen in

Figure 13. On the top left is the Sources window which hierarchically displays the

elements included in the project. Beneath the Sources window is the Processes

window, which displays available processes for the currently selected source. The

third window at the bottom of the Project Navigator is the Transcript window which

displays status messages, errors, and warnings and also contains interactive tabs for

Tcl scripting and the Find in Files function. The fourth window to the right is a multi-

document interface (MDI) window referred to as the Workspace. It enables you to

view html reports, ASCII text files, schematics, and simulation waveforms. Each

window may be resized, undocked from Project Navigator or moved to a new location

within the main Project Navigator window.

 Figure 13: Project Navigator

 37

Processes Window

This window contains one default tab called the Processes tab. The Processes tab is

context sensitive and it changes based upon the source type selected in the Sources tab

and the Top-Level Source in your project. From the Processes tab, you can run the

functions necessary to define, run and view your design. The Processes tab provides

access to the following functions:

• Add an Existing Source

• Create New Source

• View Design Summary

• Design Utilities

Provides access to symbol generation, instantiation templates, viewing command line

history, and simulation library compilation.

• User Constraints

Provides access to editing location and timing constraints.

• Synthesis

Provides access to Check Syntax, Synthesis, View RTL or Technology Schematic,

and synthesis reports. Available processes vary depending on the synthesis tools you

use.

• Implement Design

Provides access to implementation tools, design flow reports, and point tools.

• Generate Programming File

Provides access to configuration tools and bitstream generation. The Processes tab

incorporates automake technology. This enables the user to select any process in the

flow and the software automatically runs the processes necessary to get to the desired

step. For example, when you run the Implement Design process, Project Navigator

also runs the Synthesis process because implementation is dependent on up-to date

synthesis results.

 38

4.3 HDL Design Flow

The design is composed of HDL elements and two cores Required Software. To

perform this, We must have the following software and software components installed:

 Xilinx Series ISE 9.1i

 Spartan-3A libraries and device files

Figure 14- HDL Design Flow

4.3.1. VHDL (VERY HIGH DEFINITION LANGUAGE)

 VHDL is an acronym for VHSIC (Very high speed integrated circuit) hardware

description language. The language supports flexible design methodologies: top-down,

bottom-up or mix. VHDL is a hardware description language that can be used to

model a digital system. The language is case insensitive & also in free format. The

requirement for the language was first generated in 1981 under the VHSIC program.

Version 7.2 of VHDL was developed and released to the public in 1985. VHDL is an

 39

acronym for VHSIC (Very high speed integrated circuit) hardware description

language. The VHDL language can be regarded as an integrated amalgam of the

following languages:

 Sequential language

 Concurrent language

 Net-list language

 Timing specifications

 Waveform generation language

The language supports flexible design methodologies: top-down, bottom-up or mix.

VHDL is a hardware description language that can be used to model a digital system.

The language is case insensitive & also in free format. The language supports three

basic different description styles: Structural, Dataflow, and Behavioural. The digital

system can also be described hierarchically. Timing can also be explicitly modelled in

the same description. The VHDL language can be regarded as an integrated

amalgamation of the many languages.

VHDL = Sequential language + Concurrent language + Net list language + Timing

specifications + Waveform generation language

Therefore, the language has constructs that enable us to express the concurrent or

sequential behaviour of a digital system with or without timing. The language not

only defines the syntax but also defines very clear simulation semantics for each

language construct. Therefore, models written in this language can be verified using a

VHDL simulator.

 40

Figure15- VLSI Design Flow

 41

CHAPTER 5

HARDWARE

5.1 Introduction

The Xilinx Spartan-3 FPGA Starter Kit provides a low-cost, easy-to-use development

and evaluation platform for Spartan-3 FPGA designs. This Universal PLD kit is an

ideal trainer to implement and test the designs. This kit makes it possible to execute and

verify basic digital experiments using VHDL and Verilog, the standard Hardware

Description Languages. VHDL code can be written and the results can be verified on this

kit using FPGA or CPLD. We can verify various experiments involving combinational

and sequential logic using this kit. It is assembled ready for various interfaces that include

ADC/DAC, display, keyboard, serial communication, VGA, PS2 etc

5.2 Key Components and Features of Xilinx

In Figure The Spartan-3 Starter Kit board, includes the following components and

features:

 200,000-gate Xilinx Spartan-3 XC3S200 FPGA in a 256-ball thin Ball Grid

Array package (XC3S200FT256)

 4,320 logic cell equivalents

 Twelve 18K-bit block RAMs (216K bits)

 Twelve 18x18 hardware multipliers

 Four Digital Clock Managers (DCMs)

 Up to 173 user-defined I/O signals

 2Mbit Xilinx XCF02S Platform Flash, in-system programmable configuration

 PROM

 1Mbit non-volatile data or application code storage available after FPGA

configuration

 Jumper options allow FPGA application to read PROM data or FPGA

configuration from other source

 42

 9-pin RS-232 Serial Port

 RS-232 transceiver/level translator

 Uses straight-through serial cable to connect to computer or workstation serial

 port

 Second RS-232 transmit and receive channel available on board test points.

Figure16- FPGA Kit

 43

5.3 Salient Features of Universal Board

The printed circuit board assembled in the enclosure Universal Board contains all the

devices available for interfacing, assembled with the supporting hardware and the

connectors for interfacing to the PLD board.

5.3.1) Connectors

(1) Input Port (P14)

This is 10-pin FRC header with 8 I/O lines and Vcc [+5V] , GND . This port can be

configured as input or as output port.

(2) Output Port (P15)

This is 10-pin FRC header with 8 I/O lines and Vcc [+5V] , GND . This port is a

dedicated output port with buffers (74LS245).

(3) Output Port2 (P16)

This is 10-pin FRC header with 8 I/O lines and Vcc [+5V] , GND . This port is a

dedicated output port with buffers (74LS245).

(4) I/O Port1 (P17)

This is 50 pin headers with 48 I/O lines and Vcc [+5V].This port can be configured as

input or output.

(6) PS2 Port (P13)

This is used to interface a PS2 standard keyboard or a mouse.

(7) Serial Port (P4)

This is a RS-232 standard serial communication port.

(8) Programming Cable (P3)

This is D type 25-pin male, used to configure the PLDs and to program the

configuration devices.

(9) VGA Port (P2)

This is used to interface VGA standard graphics devices.

 44

(10) SPROM Programmer Connectors

Xilinx SPROM: Connect P9 and P10 through a 10-pin FRC cable when

programming the Xilinx Configuration devices.

Altera SPROM: Connect P11 and P12 through a 10-pin FRC cable when

programming the Altera Configuration devices.

5.3.2) Switches

(1) Altera Mode Select: This switch is used when configuring the Altera FPGAs,

through the configuration Device.

(2) Xilinx Mode Select: This switch is used to select the mode when configuring the

Xilinx FPGAs.

5.3.3) LCD Display

UVLSI 201 supports on board 16X1 characters LCD display. Data has to be sent

nibble by nibble from the PLD to the LCD module on its MS byte. .

5.3.4) Jumpers

Clock Select: This can be used to select different on board clock frequencies 4MHz,

16MHz, 25MHz.

5.3.5) On Board Programmer

UVLSI 201 features Onboard Programmer to program the Altera (EPC2) and Xilinx

(XC18V01) Configuration devices.

5.3.6) RS-232 Connector

RS-232 interface standard is provided for implementing serial communication to and

from computer. DB9 connector is used for connection of RS-232 interface.

 45

5.4 Temperature Sensor Unit

 GENERAL DESCRIPTION

The TMP35, TMP36, and TMP37 are low voltage, precision, centigrade temperature

sensors. They provide a voltage output that is linearly proportional to the Celsius

(centigrade) tempera-ture. The TMP35/TMP36/TMP37 do not require any external

calibration to provide typical accuracies of ±1°C at +25°C and ±2°C over the −40°C

to +125°C temperature range.

 The low output impedance of the TMP35/TMP36/TMP37 and its linear output

and precise calibration simplify interfacing to temperature control circuitry and A/D

converters. All three devices are intended for single-supply operation from 2.7 V to

5.5 V maximum. The supply current runs well below 50 μA, providing very low self-

heating—less than 0.1°C in still air. In addition, a shutdown function is provided to

cut the supply current to less than 0.5 μA.

Figure 17- pin configuration

Why Use LM35s to Measure Temperature?

 We can measure temperature more accurately than a using a thermistor.

 The sensor circuitry is sealed and not subject to oxidation, etc.

 The LM35 generates a higher output voltage than thermocouples and may

not require that the output voltage be amplified.

 46

5.5 Analog to Digital Converter (ADC)

 Analog–to-digital converters are among the most widely used devices for data

acquisition. Digital computers use binary (discrete) values, but in the physical world

everything is analog (continuous). Temperature, pressure (wind or liquid), humidity,

and velocity are a few examples of physical quantities that we deal with every day. A

physical quantity is converted to electrical (voltage, current) signals using a device

called a transducer. Transducers are also referred to as sensors. Sensors for

temperature, velocity, pressure, light, and many other natural quantities produce an

output that is voltage (or current).

 Therefore, we need an analog-to-digital converter to translate the analog

signals to digital numbers so that the FPGAs can read and process them. An ADC has

n-bit resolution where n can be 8, 10, 12, 16or even 24 bits. The higher-resolution

ADC provides a smaller step size, where step size is the smallest change that can be

discerned by an ADC. The ADC converts the analog signal into digital data to be read

by the fpga.. In this Vref (+) and Vref (-) set the reference voltage. We choose Vref (-)

=gnd and Vref (+) =5V, the step size is 5V/256 =19.53 mV

5.5.1 Pin Diagram

 Figure 18: Pin Diagram for ADC0804

 47

5.5.2 FEATURES

 Compatible with most microprocessors

 Differential inputs

 3-State outputs

 Logic levels TTL and MOS compatible

 Can be used with internal or external clock

 Analog input range 0 V to VCC

 Single 5 V supply

 Guaranteed specification with 1 MHz clock

5.5.3 Applications

 Transducer-to-microprocessor interface

 Digital thermometer

 Digitally-controlled thermostat

 Microprocessor-based monitoring and control systems

5.6 MAX 232

The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to

supply TIA/EIA-232-F voltage levels from a single 5-V supply. Each receiver

converts TIA/EIA-232-F inputs to 5-V TTL/CMOS levels. These receivers have a

typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept 30-V inputs.

Each driver converts TTL/CMOS input levels into TIA/EIA-232-F levels. The driver,

receiver, and voltage-generator functions.

 48

5.6.1 Pin Diagram

figure 19- Pin diagram of MAX232.

5.6.2 Logic diagram (positive logic)

Figure 20- Logic diagram

5.7 FPGA based Temperature Sensing System

The system mainly consists of two units: the system board and the control centre. The

control centre in turn consist of two units, The PC and Mobile phone connected

together through the serial communication port RS232.the system board consist of

three units; the controller unit which has been implemented in Spartan FPGA, the

sensor circuit, and the GSM MODEM, the controller connected connected to the

GSM Modem through the serial communication port is located in the remote land,

where temperature are measured. The main function of system board is continuously

measure the temperature and compares the measured values with the threshold level,

 49

and sends message through GSM network to the control centre in of high temperature,.

The main subunit of the system board is the controller that has been designed using

VHDL and using Xilinx Spartan 3 FPGA.

Figure 21 -System View

 50

Conclusion and Scope for Further Work

Conclusion

In the project FPGA is used because of its reprogrammability and flexibility as

compared to ASICs. When compared with processors, FPGA are much faster and low

power consuming devices and ASICs are faster than processors but they are Very

expensive. Also Long production cycles and Upgradeability are major problems with

ASICs. So, FPGA offers a better solution to above constraints.

In this project, an FPGA hardware design implementation of remote sensing system

for temperature control using GSM has been introduced. FPGAs can be

reprogrammed any no. of times with different logic functionalities. A change in

design requires only modification of “logic Function”, recompilation and

redownloading.

The system is designed using VHDL in a high level design method. Components of

the design have been simulated and implemented using Xilinx tools. Because FPGAs

are Digital Input, Digital Output devices, hence temperature sensing unit is connected

with FPGA using ADC, because parameters of temperature sensing unit are Analog in

nature, like temperature, humidity etc. For real time monitoring, GSM is used and it is

connected with FPGAs using RS-232 connector.

Scope for Further Work

In this project, an FPGA hardware design implementation of remote sensing system

for temperature control using GSM has been introduced. And we can connect many

type of sensors to sense many physical parameters with this like humidity, level,

pressure and many more. FPGAs are good for multiplexing, demultiplexing, decoding

and for all logical functions. And second is to use GPRS (General Packet Radio

Service) for remote monitoring instead of GSM.

.

 51

Appendix: Source Code

CODE-1 LED glow

--

-- Company:

-- Engineer:

--

-- Create Date: 16:04:39 08/07/2008

-- Design Name:

-- Module Name: led - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity led is

 Port (x : in STD_LOGIC_vector(6 downto 0);

 y : out STD_LOGIC_vector (6 downto 0));

end led;

architecture Behavioral of led is

signal clk :STD_LOGIC:='0';

begin

process (clk)

 52

variable c:integer:=0;

begin

if (clk='1' and clk' event) then

c:=c + 1;

if (c=0)then y<="1111110";end if ;

if(c=1)then y<="0110000";end if ;

if (c=2)then y<="1101101";end if ;

if (c=3)then y<="1111001";end if ;

if (c=4)then y<="0110011";end if ;

if (c=5)then y<="1011011";end if ;

if (c=6)then y<="1011111";end if ;

if (c=7)then y<="1110000";end if ;

if (c=8)then y<="1111111";end if ;

if (c=9)then y<="1111011";

end if;

end if;

end process ;

end Behavioral;

 53

CODE-2 Interfacing program for ADC (analog to digital converter)

with FPGA

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity adc is

 port(clk:in std_logic;

 rd,wr:out std_logic;

 intr:in std_logic);

end adc;

architecture Behavioral of adc is

--signal di:integer range 1 to 4;

begin

process (clk)

variable di: integer range 1 to 4;

begin

 if (clk'event and clk='1') then

 --prog for ADC Control

case di is

 when 1=>

 if intr='1' then

 wr<='0';

 end if;

 di:=di+1;

 when 2 =>

 --if intr='0' then

 if intr='1' then

 wr<='1';

 rd<='0';

 54

 di:=1;

 end if;

 --end if;

 di:=di+1;

 when 3 =>

 if intr='0' then

 rd<='1';

 end if;

 di:=di+1;

 when 4 =>

 rd<='0';

 wr<='0';

 di:=1;

 end case;

 end if;

 end process;

 end Behavioral;

 55

Code 3.. ADC Message command to GSM

-- Company:

-- Engineer:

--

-- Create Date: 17:42:57 06/17/2009

-- Design Name:

-- Module Name: adcmessa - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity adcmessa is

Port (clk : in STD_LOGIC;

 y : out STD_LOGIC;

 s : in STD_LOGIC;

 rd,wr:out std_logic;

 intr:in std_logic;

 z:in std_logic_vector(7 downto 0));

 end adcmessa;

architecture Behavioral of adcmessa is

signal clock:std_logic:='0';

signal clk1:std_logic:='0';

signal t:integer range 0 to 40000 :=0;

 56

signal k: integer range 0 to 79000:=0;

constant a: std_logic_vector(9 downto 0):="1000000000";

constant a1: std_logic_vector(19 downto 10):="1011000010";--a

constant a2: std_logic_vector(29 downto 20):="1011101000";--t

constant a3:std_logic_vector(39 downto 30):="1000011010";---enter d

constant a4:std_logic_vector(13010 downto 13001):="1011000010";--a

constant a5:std_logic_vector(13020 downto 13011):="1011101000";--t

constant a7:std_logic_vector(13030 downto 13021):="1001010110";--+

constant a8:std_logic_vector(13040 downto 13031):="1011000110";--c

constant a9:std_logic_vector(13050 downto 13041):="1011011010";--m

constant a10:std_logic_vector(13060 downto 13051):="1011001110";--g

constant a11:std_logic_vector(13070 downto 13061):="1011001100";--f

constant a12:std_logic_vector(13080 downto 13071):="1001111010";--=

constant a13:std_logic_vector(13090 downto 13081):="1001100010";--1

constant a14:std_logic_vector(13100 downto 13091):="1000011010";---enterd

constant a15:std_logic_vector(26071 downto 26062):="1011000010";--a

constant a16:std_logic_vector(26081 downto 26072):="1011101000";--t

constant a17:std_logic_vector(26091 downto 26082):="1001010110";--+

constant a18:std_logic_vector(26101 downto 26092):="1011000110";--c

constant a19:std_logic_vector(26111 downto 26102):="1011011010";--m

constant a20:std_logic_vector(26121 downto 26112):="1011001110";--g

constant a21:std_logic_vector(26131 downto 26122):="1011100110";--s

constant a22:std_logic_vector(26141 downto 26132):="1001111010";--=

constant a23:std_logic_vector(26151 downto 26142):="1001000100";--"

constant a24:std_logic_vector(26161 downto 26152):="1001110010";--9

constant a25:std_logic_vector(26171 downto 26162):="1001110000";--8

constant a26:std_logic_vector(26181 downto 26172):="1001100010";--1

constant a27:std_logic_vector(26191 downto 26182):="1001101010";--5

constant a28:std_logic_vector(26201 downto 26192):="1001110010";--9

constant a29:std_logic_vector(26211 downto 26202):="1001100100";--2

constant a30:std_logic_vector(26221 downto 26212):="1001101010";--5

constant a31:std_logic_vector(26231 downto 26222):="1001100010";--1

constant a32:std_logic_vector(26241 downto 26232):="1001101010";--5

 57

constant a33:std_logic_vector(26251 downto 26242):="1001110010";--9

constant a34:std_logic_vector(26261 downto 26252):="1001000100";--"

constant a35:std_logic_vector(26271 downto 26262):="1000011010";--enterd

constant a36:std_logic_vector(39242 downto 39233):="1011010000";--h

constant a37:std_logic_vector(39252 downto 39243):="1011001010";--e

constant a38:std_logic_vector(39262 downto 39253):="1011011000";--l

constant a39:std_logic_vector(39272 downto 39263):="1011011000";--l

constant a40:std_logic_vector(39282 downto 39273):="1011011110";--od

constant a41:std_logic_vector(39292 downto 39283):="1000110100";--ctrl z

begin

process(clk,s)

variable c:integer range 0 to 8000000:=0;

--variable d:integer range 0 to 8000000:=0;

begin

if s='1' then

if clk'event and clk= '1' then

c:= c+1;

--d:=d+1;

if c=416 and k<78584 then

clock<= not clock;

k<=k+1;

c:=0;

elsif k=78584 then

clock<='Z';

end if;

end if;

--if d=4 then

--clk1<=not clk1;

--d:=0;

--end if;

 58

elsif s='0' then

k<=0;

end if;

end process;

process(clk,s)

variable di:integer range 1 to 4;

begin

if s='1' then

if clk'event and clk='1' then

case di is

when 1=>

 if intr='1' then

 wr<='0';

end if;

 di:=di+1;

 when 2 =>

 --if intr='0' then

if intr='1' then

 wr<='1';

 rd<='0';

 di:=1;

 end if;

 --end if;

 di:=di+1;

when 3 =>

 if intr='0' then

 rd<='1';

 end if;

 di:=di+1;

when 4 =>

 rd<='0';

 wr<='0';

 di:=1;

 end case;

 end if;

elsif s='0' then

null;

end if;

end process;

 59

process(clock,z)

begin

--if s='1' then

if z>="00000001" then

if clock'event and clock='1' then

t<=t+1;

if (t<=9) then

y<=a(t);

elsif(t>=10 and t<=19) then

y<=a1(t);

elsif(t>=20 and t<=29)then

y<=a2(t);

elsif(t>=30 and t<=39)then

y<=a3(t);

elsif(t>=40 and t<=13000)then

null;

elsif(t>=13001 and t<=13010) then

y<=a4(t);

elsif(t>=13011 and t<=13020) then

y<=a5(t);

elsif(t>=13021 and t<=13030) then

y<=a7(t);

elsif(t>=13031 and t<=13040) then

y<=a8(t);

elsif(t>=13041 and t<=13050) then

y<=a9(t);

elsif(t>=13051 and t<=13060) then

y<=a10(t);

elsif(t>=13061 and t<=13070) then

y<=a11(t);

elsif(t>=13071 and t<=13080) then

y<=a12(t);

elsif(t>=13081 and t<=13090) then

y<=a13(t);

elsif(t>=13091 and t<=13100) then

y<=a14(t);

elsif(t>=13101 and t<=26061) then

null;

 60

elsif(t>=26062 and t<=26071) then

y<=a15(t);

elsif(t>=26072 and t<=26081) then

y<=a16(t);

elsif(t>=26082 and t<=26091) then

y<=a17(t);

elsif(t>=26092 and t<=26101) then

y<=a18(t);

elsif(t>=26102 and t<=26111) then

y<=a19(t);

elsif(t>=26112 and t<=26121) then

y<=a20(t);

elsif(t>=26122 and t<=26131) then

y<=a21(t);

elsif(t>=26132 and t<=26141) then

y<=a22(t);

elsif(t>=26142 and t<=26151) then

y<=a23(t);

elsif(t>=26152 and t<=26161) then

y<=a24(t);

elsif(t>=26162 and t<=26171) then

y<=a25(t);

elsif(t>=26172 and t<=26181) then

y<=a26(t);

elsif(t>=26182 and t<=26191) then

y<=a27(t);

elsif(t>=26192 and t<=26201) then

y<=a28(t);

elsif(t>=26202 and t<=26211) then

y<=a29(t);

elsif(t>=26212 and t<=26221) then

y<=a30(t);

elsif(t>=26222 and t<=26231) then

y<=a31(t);

 61

elsif(t>=26232 and t<=26241) then

y<=a32(t);

elsif(t>=26242 and t<=26251) then

y<=a33(t);

elsif(t>=26252 and t<=26261) then

y<=a34(t);

elsif(t>=26262 and t<=26271) then

y<=a35(t);

elsif(t>=26272 and t<=39232) then--

null;

elsif(t>=39233 and t<=39242) then

y<=a36(t);

elsif(t>=39243 and t<=39252) then

y<=a37(t);

elsif(t>=39253 and t<=39262) then

y<=a38(t);

elsif(t>=39263 and t<=39272) then

y<=a39(t);

elsif(t>=39273 and t<=39282) then

y<=a40(t);

elsif(t>=39283 and t<=39292) then

y<=a41(t);

end if;

end if;

else null;

end if;

--end if;

end process;

end Behavioral;

 62

CODE-4 GSM code

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity at is

 port(clk:in std_logic;

 d :in std_logic;

 tx:out std_logic;

 rx:in std_logic;

 d1: out std_logic_vector(15 downto 0));

end at;

architecture Behavioral of at is

signal a: std_logic_vector(19 downto 0);

signal b: std_logic_vector(19 downto 0):="10100111101010010110";

signal t:integer:=0;

signal x:integer:=0;

signal clock: std_logic:='0';

constant a0: std_logic_vector (9 downto 0) :="1000000000"; --00--null

constant a1: std_logic vector (19 downto 10) :="1011000010"; --61--for=a

constant a2: std_logic_vector (29 downto 20) :="1011101000"; --74--for=t

constant a3: std_logic_vector (39 downto 30) :="1000011010"; --5c--for=slash 0d

constant a4: std_logic_vector (49 downto 40) :="1000010100"; --6e--for=n 0a

begin

 process (clk)

 variable i:integer:=0;

begin

 if (clk='1' and clk'event) then

 if i=2 then

 clock<= not clock;

 63

 i:=0;

 else

 i:=i+1;

 end if;

 end if;

 end process;

--

process(clock)

begin

if clock='1' and clock'event then

if(d='1')then

--t<=t+1;

if(t<=9) then

t<=t+1;

tx<=a0(t);

 elsif(t>=10 and t<=19)then

t<=t+1;

tx<=a1(t);

 elsif(t>=20 and t<=29)then

 t<=t+1;

tx<=a2(t);

 elsif(t>=30 and t<=39)then

t<=t+1;

tx<=a3(t);

 elsif(t>=40 and t<=49)then

t<=t+1;

tx<=a4(t);

 elsif(t=50)then

if rx='0' then

t<=t+1;

 else

t<=50;

 end if;

 elsif(t=51)then

t<=t+1;

 64

d1(0)<=rx;

 elsif(t=52)then

t<=t+1;

d1(1)<=rx;

 elsif(t=53)then

t<=t+1;

d1(2)<=rx;

 elsif(t=54)then

t<=t+1;

d1(3)<=rx;

 elsif(t=55)then

t<=t+1;

d1(4)<=rx;

 elsif(t=56)then

t<=t+1;

d1(5)<=rx;

 elsif(t=57)then

t<=t+1;

d1(6)<=rx;

 elsif(t=58)then

t<=t+1;

d1(7)<=rx;

 elsif(t=59)then

if rx='1' then

t<=t+1;

 --d1(9)<=rx;

 else

t<=50;

 end if;

 elsif(t=60)then

if rx='0' then

t<=t+1;

 else

t<=60;

 65

end if;

 elsif(t=61)then

t<=t+1;

d1(8)<=rx;

 elsif(t=62)then

t<=t+1;

d1(9)<=rx;

 elsif(t=63)then

t<=t+1;

d1(10)<=rx;

 elsif(t=64)then

t<=t+1;

d1(11)<=rx;

 elsif(t=65)then

t<=t+1;

d1(12)<=rx;

 elsif(t=66)then

t<=t+1;

d1(13)<=rx;

 elsif(t=67)then

t<=t+1;

d1(14)<=rx;

 elsif(t=68)then

t<=t+1;

d1(15)<=rx;

 elsif(t=69)then

if rx='1' then

t<=t+1;

 --d1(10)<=rx;

 else

t<=60;

 end if;

 end if;

 end if;

--tx<=a4(t);

 --end if;

--

--case x is

--

 --when 1=>

--if (rx='0') then

--a(0)<=rx;

--x<=x+1;

--end if;

 66

--

 --when 2=>

--a(1)<=rx;

--x<=x+1;

--

 --when 3=>

--a(2)<=rx;

--x<=x+1;

--

 --when 4=>

--a(3)<=rx;

--x<=x+1;

--

 --when 5=>

--a(4)<=rx;

--x<=x+1;

--

 --when 6=>

--a(5)<=rx;

--x<=x+1;

--

 --when 7=>

--a(6)<=rx;

--x<=x+1;

--

 --when 8=>

--a(7)<=rx;

--x<=x+1;

--

 --when 9=>

--a(8)<=rx;

--x<=x+1;

--

 --when 10=>

--if(rx='1')then

--a(9)<=rx;

--x<=x+1;

--end if;

--

 --when 11=>

--if(rx='0')then

--a(10)<=rx;

--x<=x+1;

--end if;

--

 --when 12=>

--a(11)<=rx;

--x<=x+1;

--

 67

 --when 13=>

--a(12)<=rx;

--x<=x+1;

--

 --when 14=>

--a(13)<=rx;

--x<=x+1;

--

 --when 15=>

--a(14)<=rx;

--x<=x+1;

--

 --when 16=>

--a(15)<=rx;

--x<=x+1;

--

 --when 17=>

--a(16)<=rx;

--x<=x+1;

--

 --when 18=>

--a(17)<=rx;

--x<=x+1;

--

 --when 19=>

--a(18)<=rx;

--x<=x+1;

--

 --when others=>

--

--if(rx='1') then

--a(19)<=rx;

----x<=x+1;

 --end if;

--

--

--if(a=b)then

--d1(15 downto 8)<=a(18 downto 11);

--d1(7 downto 0)<=a(9 downto 2);

 --end if;

 --end case;

 --end if;

end if;

 end process;

 end Behavioral;

 68

References

Literature

 • Books

 S. Kilts, Advanced FPGA Design: Architecture, Implementation, and

 Optimization, John Wiley & Sons, 2007.

 U. Meyer-Bäse, Digital Signal Processing with Field Programmable Gate Arrays

 2nd ed., Springer, 2004.

 W. Wolf, FPGA-Based System Design, Prentice Hall, 2004.

 P.J. Ashenden, The Designer’s Guide to VHDL, 2nd ed., Morgan

 Kaufmann, 2002.

 Circuit Design With VHDL by Pedroni.

 Perry, D., “VHDL”, McGraw Hill Publications, 1991.

 Wakerly F. John, “Digital Design, Principles and Practices”, PHI Publications, 3
rd

Ed., 2003.

 Sebastian Smith J. Michael, “Application Specific Integrated Circuits”, Pearson

Education Pte. Ltd., 9
th

Ed., 2004.

• Papers

 K. Bondalapati, V.K. Prasanna, Reconfigurable Computing Systems, Proceedings

of the IEEE, vol. 90, no. 7, Jul. 2002, pp. 1201–1217.

 D. Bouldin, Enhancing Electronic Systems with Reconfigurable Hardware, IEEE

Circuits and Devices Magazine, vol. 22, no. 3, May–Jun. 2006, pp. 32–36.

 N. Chakravarthy and X. Jizhong, FPGA-based Control System for Miniature

Robots, IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2006, pp. 3399-

3404

 Kuon, J. Rose, Measuring the Gap Between FPGAs and ASICs, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

26, no. 2, Feb. 2007, pp.203–215.

 T.J. Todman et al., Reconfigurable Computing: Architectures and Design

Methods, IEE Proceedings: Computers and Digital Techniques, vol. 152, no. 2,

Mar. 2005, pp. 193–207.

 69

 El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat and A. Mohsen, "An

Architecture for Electrically Configurable Gate Arrays," Proc. 1988 Custom

Integrated Circuits Conference, May 1988, pp. 15.4.1 - 15.4.4.

 http://en.wikipedia.org/wiki.

 Xilinx, www.xilinx.com

 Altera, www.altera.com

 National semiconductor,LM35 precision centigrade temperature sensor. On

www.national.com. Nov 2000.

 The Programmable Gate Array Data Book, Xilinx Co., 1989.

 www.beyondlogic.org/serial/serial1.htm

 www.celoxica.com/techlib/files/CEL-W0307171HR6-FPGA

 www.eedesign.com

 www.eg3.com/fpga

 www.xilinx.com/company/about/programmable.html

http://www.altera.com/

