
A 

Dissertation 

On 
 

 

Fractal Image Compression 
 
 

 

Submitted in Partial fulfillment of the requirements  

for the award of the degree of 

MASTER OF ENGINEERING 

in 

(Computer Technology & Application) 
 

 

Submitted By: 

TARIQUE ANWAR 

College Roll No: 14/CTA/08 

University Roll No. 8412 
 

 

Under the Guidance of: 

Mr. Vinod Kumar 

Dept. of Computer Engineering 

Delhi College of Engineering, Delhi 
 

 

                                   
DEPARTMENT OF COMPUTER ENGINEERING 

DELHI COLLEGE OF ENGINEERING 

DELHI UNIVERSITY 
2010 



 
 
 
 
 

 

CERTIFICATE 
 

 
DELHI COLLEGE OF ENGINEERING 

                                                                                   DELHI UNIVERSITY 

                                                                                     2009-2010 
 

 
 
 
 
 
 

This  is  to  certify  that  the  work  contained  in  this  dissertation  entitled  “  Fractal 

Image Compression” , submitted  by Tarique Anwar,  University Roll  No-8412 in  the  

requirement  for  the partial  fulfillment  for  the  major  project  in  Master  of  

Engineering  in  Computer Technology & Application, Delhi College of Engineering 

is an account of his work carried out under my guidance and supervision in the 

academic year 2009-2010. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mr.Vinod Kumar 
Assistant Professor  

Dept. Of Computer Engineering 

Delhi College of Engineering, Delhi 
 
 
 
 

 
 

 
 
 
 



ACKNOWLEDGEMENT 
 

 
 
 
 
 

It is a great pleasure to have the opportunity to extend my heartiest felt gratitude to 

everybody who helped me throughout the course of this project. 
 
 

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my 

learned  supervisor  Mr. Vinod Kumar  for  his  invaluable  guidance,  encouragement 

and  patient  reviews.  With  his  continuous  inspiration  only,  it  becomes  possible  to 

complete this dissertation. 
 
 
 
 

I  would  also  like  to  take  this  opportunity  to  present  my  sincere  regards  to  all  the 

faculty members of the Department for their support and encouragement. 
 
 

I am grateful to my parents for their moral support all the time, they have been always 

around  to  cheer  me  up,  in  the  odd  times  of  this  work.  I  am  also  thankful  to  my 

classmates for their unconditional support and motivation during this work. Last but 

not the least, special thanks to the people who are active in the field of Fractal Image 

Compression. 
 

 
 
 
 
 
 
 
 

TARIQUE ANWAR 

Master in Engineering 

(Computer Technology & Application) 

College Roll No. 14/CTA/08 

University Roll No. 8412 
Department of Computer Engineering 

Delhi College of Engineering, Bawana 

Road, Delhi-110042 



ABSTRACT 
 
In context of medical imaging or satellite images, the change in conditions is to be 

observed at different times. There is a fact that the images captured of the same scene or 

the same object at different times may not have the same orientation. For the sake of 

automating the observation of the progress or the change in the condition of the object, 

there needs to be a technique to align the input image to the reference image. The 

technique used for the above process is known as image registration. The work under this 

project is divided in two phases. The first phase is about the image registration of the 

medical images. It is implemented using MATLAB. Second phase of the project deals 

with the compression of the images. The method of image compression chosen is Fractal 

image compression. Since the data in medical images are very crucial, It is not 

appreciable to loose data in compression-decompression process. As in fractal image 

compression, the decoding process involves the iteration on the image. If we increase the 

number of iterations, more accurate picture we can get back. The above mentioned fact is 

the reason to choose fractal image compression for the purpose of image compression. 

We realize the importance of compression methods in our daily life when we store files in 

a limited storage space or when we have to send a file on a slower network. In this thesis, 

the methods of compression of images is dealt with. Again, there are different approaches 

for image compression among which jpeg is a well known one. We judge  the ability of a 

compression method by the compression ratio it provides. It is noted that for the images 

having fractal properties in terms of self similarity or the images having similar regions, 

the image compression method known as Fractal Image Compression can give better 

compression ratio.  

The fractal image compression algorithms have a common approach which involves the 

partitioning of the image into smaller non overlapping square subsections range blocks of  

 



predefined size. Then, a search codebook (domain pool ) is created from the image taking 

all the square blocks (domain blocks)  of size double of the range blocks and ultimately 

for each each range block, the most appropriate domain block is selected from the domain 

pool. It is noted that that what transformations are required to be performed on the range 

block to match with the domain block.  
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1.1 Overview 

A fractal is "a rough or fragmented geometric shape that can be split into parts, each of 

which is (at least approximately) a reduced-size copy of the whole, a property called 

self-similarity. The term fractal was coined by Benoit Mandelbrot in 1975 and was 

derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal 

is based on an equation that undergoes iteration, a form of feedback based on recursion.  

A fractal often has the following features:  

 It has a fine structure at arbitrarily small scales. 

 It is too irregular to be easily described in traditional Euclidean geometric 

language. 

 It is self-similar (at least approximately or stochastically). 

 It has a Hausdorff dimension which is greater than its topological dimension  

 It has a simple and recursive definition. 

Because they appear similar at all levels of magnification, fractals are often considered 

to be infinitely complex (in informal terms). Natural objects that are approximated by 

fractals to a degree include clouds, mountain ranges, lightning bolts, coastlines, snow 

flakes, various vegetables (cauliflower and broccoli), and animal coloration patterns. 

However, not all self-similar objects are fractals—for example, the real line (a straight 

Euclidean line) is formally self-similar but fails to have other fractal characteristics; for 

instance, it is regular enough to be described in Euclidean terms. 

 

 

http://en.wikipedia.org/wiki/Self-similarity
http://en.wikipedia.org/wiki/Equation
http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Feedback
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Euclidean_geometry
http://en.wikipedia.org/wiki/Self-similarity
http://en.wikipedia.org/wiki/Stochastic
http://en.wikipedia.org/wiki/Hausdorff_dimension
http://en.wikipedia.org/wiki/Lebesgue_covering_dimension
http://en.wikipedia.org/wiki/Recursive_definition
http://en.wikipedia.org/wiki/Real_line
http://en.wikipedia.org/wiki/Line_%28geometry%29
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1.2     History 

The mathematics behind fractals began to take shape in the 17th century when 

mathematician and philosopher Gottfried Leibniz considered recursive self-similarity. 

Waclaw Sierpinski constructed his triangle in 1915 and, one year later, his carpet. 

Originally these geometric fractals were described as curves rather than the 2D shapes 

that they are known as in their modern constructions. The idea of self-similar curves was 

taken further by Paul Pierre Levy, who, in his 1938 paper Plane or Space Curves and 

Surfaces Consisting of Parts Similar to the Whole described a new fractal curve, the 

Levy C curve. Georg Cantor also gave examples of subsets of the real line with unusual 

properties—these Cantor sets are also now recognized as fractals. 

Iterated functions in the complex plane were investigated in the late 19th and early 20th 

centuries by Henri Poincaré, Felix Klein, Pierre Fatou and Gaston Julia. Without the aid 

of modern computer graphics, however, they lacked the means to visualize the beauty of 

many of the objects that they had discovered. 

In the 1960s, Benoît Mandelbrot started investigating self-similarity in papers such as 

How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension, 

which built on earlier work by Lewis Fry Richardson. Finally, in 1975 Mandelbrot 

coined the word "fractal" to denote an object whose Hausdorff–Besicovitch dimension is 

greater than its topological dimension. He illustrated this mathematical definition with 

striking computer-constructed visualizations. These images captured the popular 

imagination; many of them were based on recursion, leading to the popular meaning of 

the term "fractal". 
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1.3    Examples 

A class of examples is given by the Cantor sets, Sierpinski triangle and carpet, Menger 

sponge, dragon curve, space-filling curve, and Koch curve. Additional examples of 

fractals include the Lyapunov fractal and the limit sets of Kleinian groups. Fractals can 

be deterministic (all the above) or stochastic (that is, non-deterministic).  

1.4    In nature 

Approximate fractals are easily found in nature. These objects display self-similar 

structure over an extended, but finite, scale range. Examples include clouds, snow 

flakes, crystals, mountain ranges, lightning, river networks, cauliflower or broccoli, and 

systems of blood vessels and pulmonary vessels. Coastlines may be loosely considered 

fractal in nature. 

Trees and ferns are fractal in nature and can be modeled on a computer by using a 

recursive algorithm. This recursive nature is obvious in these examples—a branch from 

a tree or a frond from a fern is a miniature replica of the whole: not identical, but similar 

in nature. The connection between fractals and leaves are currently being used to 

determine how much carbon is contained in trees. 

1.5    In creative works 

Fractal patterns have been found in the paintings of American artist Jackson Pollock. 

While Pollock's paintings appear to be composed of chaotic dripping and splattering, 

computer analysis has found fractal patterns in his work. 

Decalcomania, a technique used by artists such as Max Ernst, can produce fractal-like 

patterns. It involves pressing paint between two surfaces and pulling them apart. 

Fractals are also prevalent in African art and architecture. Circular houses appear in 

circles of circles, rectangular houses in rectangles of rectangles, and so on. Such scaling 

patterns can also be found in African textiles, sculpture, and even cornrow hairstyles.  

In a 1996 interview David Foster Wallace admitted that the structure of his novel 

Infinite Jest was inspired by fractals, specifically the Sierpinski triangle.  

http://en.wikipedia.org/wiki/Sierpinski_triangle
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The song "Hilarious Movie of the 90's" from Pause (album) by the artist Four Tet 

employs the use of fractals. 
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2.1 An Introduction 

How   does   image   compression   work?   It   is   applied   to   obtain   an   image 

representation while reducing the  amount of memory  needed as much as possible to 

encode the image.  Image  compression is possible because images,  in  general,  are  highly  

non-random,  which  means  that  there  is repetitive information. Image data, like other 

meaningful data, are usually structured, and this structure means that the data over different  

parts of an image  are interrelated. For example, consider an image in matrix format, if we 

take an arbitrary pixel, its gray-level or color will likely be of similar value to that of the 

neighboring pixels, since they are more likely than not to  belong to the same object. If the  

gray levels or  colors are not similar, some more complex relationship may apply: for 

instance, the pixel might be on the boundary of two objects, or it may be part of a texture 

pattern. In any case, there are usually some redundant or less informative data because of 

the image’s structure. So image compression is basically a way to capture the image 

structure and generalize this image structure in coherent and usable form.  Compression 

methods try to eliminate repetitiveness, thus producing a more compact code that 

preserves the essential and accurate information contained in the original image. Because 

images require large amounts of data, storing and transmitting this data places a significant 

load on the computer systems and data transmission facilities used. Compression of data 

reduces the cost of image storage by increasing the effectiveness of storage resources and 

increases the  effective  speed  of  transmission  without  broad  banding.   
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2.2     General Concepts 

Image compression maps an original image raster into a bit stream suitable for 

communication over or storage in a digital medium so that the number of bits required to 

represent the  coded image is smaller than that required for the original  image. Ideally 

people would like the coded image to require as few bits as possible so as to minimize the 

storage  space or  communication time. They may also require in some applications that the 

original image be perfectly recoverable from the coded form. If the original image is an 

analog picture, it is improbable that the digitized information will be exactly the same  as the  

analog original, no matter how many bits are used. However, digital to analog exists with 

great accuracy and therefore it is possible to convert analog to digital, but the instances of 

perfect conversion are not common. But people may face a series of issues.  For example, the 

efficiency of compression algorithms, including data compressing  rate,  the  resulting  

distortion,  and  its  implementation  complexity,  is  a particularly important considerations in 

hardware implementation and applications. 

The basic  goal of image compression is the conversion of  an original sampled 

continuous or high bit-rate image into a compressed image with a binary coding having a 

specific  amount of bits per pixel (bpp) so that the decompressed image has the best possible 

fidelity. The image decompression, or restoration, is the inverse procedure of compression: 

the compressed images are converted back to the original one, or the best approximation of 

the original images. 
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Before using a particular compression technique, it is important to know which 

category the image compression technique belongs to. There are two broad categories of image 

compression techniques. The first category consists of methods, which completely preserve  the  

original  data.  When  the  compressed  image  is  converted  back  into  its uncompressed 

form, it is identical with the original image. This kind of technique is called “lossless” 

compression. For this kind of compression to be effective, there must be some redundancy in 

the original data.  The second category of  compression technique consists  of  methods  that  

only  approximate  the  original  data.  This  category  of compression is called  “lossy”  

compression.  In  general, the less accuracy needed of the resulting image, the greater the 

compression rate. 

Given these two categories of techniques, it is obviously important to know, for any  

given application, how much degradation in image quality can be  tolerated.  It is possible to 

apply objective measures of quality. For example, the original image can be compared with 

the result of compression followed by decompression. The differences can be expressed as a 

kind of signal to noise ratio, which can be used as a performance measure of the compression 

technique. 
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2.3      Image  Compression  Methods 

 

 

The basic idea of image compression is to remove redundancy from the image. 
 

 

This is usually done through mapping the image to a set of coefficients. The resulting set 
 

 

is then quantized to a number of possible values that are encoded by an appropriate 
 

 

coding method. 

Differential pulse code modulation  (DPCM)  is  a  predictive  coding  scheme.  The  

basic  DPCM system consists of two main components: the predictor and the quantizer. The 

predictor uses the correlation between pixels to derive an estimate g*(i, j) for a given pixel 

value g(i, j) in terms of its neighboring pixels. The predicted value is removed from the 

actual value  at  the  transmitter.  The  quantizer  discretizes  inputs  at  a  specified  interval,  the 

prediction residual h (i, j) = g (i, j) - g*(i, j) to one of a finite number of values. The value is 

encoded and transmitted to the receiver. After decoding the transmitted codes, the receiver 

reconstructs the pixel value by adding the predicted value to the quantized prediction 

error. Therefore, the success of a DPCM compression scheme depends on effective 

prediction of the current pixel value and efficient quantization of the prediction residual. In 

the algorithm, the image is divided into non-overlapping 8x8 neighborhoods starting from the 

upper  left corner of the image. Each neighborhood is composed of 4 levels. The upper left 

corner pixel is a level 1 pixel, which is used to predict values of the remaining pixels through 

either linear or bilinear interpolation. The advantage of this method is “time-saving”, but the 

disadvantage is that it is not stable. If the adjacent pixels have similar digital numbers, the result 

is good; if the values of pixels are much different, the result is not good. 



76 

 

 

 

                                                              9 

The other type of image compression method is based on the discrete cosine 

transform (DCT). The JPEG algorithm proposed by the Joint Photographic  Experts  Group  

(JPEG)  contains  four  modes  of  operations:  sequential encoding; progressive encoding; 

lossless encoding; and hierarchical encoding, where the sequential and progressive encoding 

methods  are based on the DCT while the lossless mode is based on  a predictive method. 

The hierarchical mode encodes the image at multiple spatial resolutions using either the 

DCT-based compression or the lossless mode. The encoding methods of JPEG contain three 

sequential steps: forward discrete cosine transform (FDCT), quantization, and Huffman 

coding.  The processing scheme is applied to a stream of 8 by 8 pixel blocks with 8 bits per 

pixel. Decompression is  achieved  by  following  the  processing  steps  in  the  opposite  

direction:  Huffman decoding,   dequantization,   and   inverse   discrete   cosine   transform   

(IDCT).   The disadvantages of these methods include: decompression of large digital 

images is time- consuming; also some geometric degradation effect may occur with higher 

compression rates. Figure 2.1 shows the JPEG compression scheme. 
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Figure 2.1 Baseline JPEG Compression Scheme (Source: Lammi and Sarjakoski 1996) 
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 “Fractal” is a new geometry proposed by French Mathematician Mandelbrot in the middle of 

the 1970s, which is really a revolution in topological space theory and provides the  possibility  

of  describing  and  simulating  objects  and  phenomena  precisely  in  the natural world by using 

a series of new concepts and mathematical models. 

Geometry is a  branch of mathematics that deals  with the shape of objects. But 

people often describe geometry as uninteresting or monotonous. One of the reasons is that 

the traditional or classical geometries based on the Euclidean system cannot accurately 

describe natural objects, such  as clouds, mountains, coastlines, etc., because “clouds  are  not  

a  sphere,  mountains  are  not  cones  and  coastlines  are  not  circles” (Mandelbrot, 1983). 

The common feature of the shapes of most objects in the natural world is that they  are 

neither regular, nor smooth.  All the traditional  geometries deal with regular and smooth 

geometrical shapes. In fact, the classical geometries, which are thought as “strict and  

accurate”, are just inaccurate descriptions of the objects in the natural world; for  example, 

the surface of the  earth is always treated as an absolutely smooth spherical surface, or, 

ellipsoid in an “ideal situation”.  The value of Euclidean Geometry is dependent  upon its 

use. In many instances it describes reality with  great clarity.  However, along with the 

progress of both science and technology, and mankind’s knowledge  about the world, people 

have found that Euclidean Geometry is not always useful.  A  geometry that accurately 

reflected niche realities was necessary.   Therefore, when Fractal Geometry was introduced, it 

drew many scientists’ attention. This geometry found real world applications as soon as it 
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appeared. 
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3.1     Development of the Theory 

During a period of history, some people thought that a curve should be smooth along  

its  entire  path,  or,  at  least  smooth  in  recognized  “segments”,  i.e.  with  few exceptions, 

every point  has its tangent. Later, Italian Mathematician Peano offered a curve 

which can fill an entire square but is undifferentiable everywhere. Subsequently, people found 

there are many such  curves, now known as  “Peano Curve” (Figure 3 .1). As it is shown, in 

classical geometry, a point’s dimension is zero; a line’s dimension is one; while a plane’s 

dimension is two, and a solid object’s dimension is three, suggesting length, width, and height  

are  three  linearly  independent  directions.  All  dimensions  in  conventional geometry are 

integers. In other words, in classical geometry, all curves have a topological dimension DT=1. 

Obviously the topological dimension DT cannot reflect the features of fractal curves. So in 

fractal geometry, a new concept: fractal dimension, denoted as D, is used as the parameter to 

describe the feature of the curves: 

D = log N / log (1/r)                                                                           

 Where  D  is  the  fractal  dimension;  N  is  the  number  of  segments  with  same  length 

composing the curve and 1/r is the ratio of the distance between the two ends of the curve 

 
and the length of the segment. The D of fractal curves is greater than 1, smaller than or 

 

 

equal to 2 (Figure 3.2). This is the feature of fractal curves, which is different from the 
 

 

general curves. Also, based on the same principle, there are fractal surfaces with 2 < D 
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≤ 3 and fractal solid objects with 3 < D ≤ 4. So it can be shown that a fractal dimension is a 

measurement of the complexity of curves or surfaces: the more complex the curves or the 

surfaces, the greater the dimension of objects based on its feature. 

                                                        

Central to the concept of fractals is the notion of self-similarity. Self-similarity 

means that for any curve or surface a portion of the curve or surface can be considered as a 

reduced image of the whole. In other words, the curves or surfaces are self similar to the 

object and makes up copies of itself in a reduced scale . In the natural world, however, strict 

self-similarity seldom occurs. Therefore, the concept of statistical self-similarity is often 

applied. 

 

 

3.2     Development in Applications 

Since fractal theory was introduced, it has been applied to many fields of study, 

ranging from physics to music. In  computer  graphics,  fractal  theory  is  applied  in  many  

areas;  generating complex curves or surfaces or simulating objects in the natural world is an 

illustration. In recent years, people find that not only is it useful in describing geometrical 

shapes, but also in describing many natural phenomena: “Fractal Everywhere” (Barnsley 

1988). The applications of the fractal are briefly described below. 
 

 

As mentioned above, the fractal’s importance originates because of its accurate 

 

description of certain realities, including the measures of some geographical phenomena, such 

as the length of  a coastline. In 1967 Mandelbrot proposed the new concept used to capture 

and analyze the new information that traditional science could not provide. He asked, “How 

long is the British coastline?” and advanced the way to measure it by using the fractal 

concept. After the new  geometry  appeared, it has been attracting more and more attention 

by scientists. In other areas, other scientists made effort to use fractal in computer  graphics. 
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Batty (1985) showed a number of examples of simulated landscape, mountainscape and other 

graphics generated by using the property of “self-similarity” of fractals and pointed out the 

potential of development of applying fractal in this area.                                                                   

 

 
 

 
 
 

                                              Figure 3.1 Peano Curve 
                                         (Source: Mandelbrot 1983) 
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                                                Figure 3.2 Fractal Dimensions 

                                                  (Source: Mandelbrot 1983) 
                                                                                           15 
3.3     Considerations 

Fractal, the new science and technique, has been developed greatly since it was first 

advanced.  But it is still new and also immature in both theoretical and practical areas. So 

it can be expected that more development would be obtained in the future. 
 

 

 Image encoding and compressing is a very significant branch of image processing. 

The research is to organize the images and make them more compact by using the 

characteristics of images as information source and information carrier in order to 

extract useful information and store the images effectively, and  when needed, 

restore them without losing useful information. So far there have been encoding and 

compressing methods available, such as raster encoding, run-length encoding etc. But, 

the problem is that the methods are based on the format of the image, rather than the 

individual features of the images, so it is difficult to reflect the characteristics of the 

image accurately.  This may interfere with the extraction of useful information and the 

effect of encoding and compressing. The other problem is that the compression rates of 

current methods for compressing are usually low.  Generally speaking, the best result 

is to reduce the image size to 25 percent of the original image size. So in most cases, 
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it may not solve the existing problem of storage. 
 

 

As mentioned above, the fractal has received  enormous development since it 
 

 

arose in the 1970s. Then again, the fractal has only about twenty years of history.  It is a 
 

 

developing theory  and technique; in other words, it needs to be developed in both 
 

 

theory and application. 

 

 

                                                        16 

It seems that Mandelbrot himself was involved  in a paradox: he was trying to make 

a new model to replace the old one but what he advanced still deals with some other ideal 

situation which rarely, or even does not exist in the real world — pure fractal and absolute 

self-similarity. This may be the limitation, which is from the mathematician’s points of 

view: to seek something perfect, ideal, and strict to meet the requirement of mathematics. But 

the real world is not exactly as the mathematicians imagine, it is chaotic rather than ordered. 

Mandelbrot made some modifications to fit his theory into the physical world. Undoubtedly 

the rise of fractal geometry is a breaking point in this scientific period, but it is not perfect.  

Issues demand attention and techniques that more clearly define niche reality in terms of 

fidelity and utility need to be developed. At this point, the cooperation between 

mathematicians and scientists in practical areas is urgently needed. The former can provide 

the latter with new theories or new developments in existing theories. The latter can provide 

the  former with experimental  data and the demands of practical use. With  cooperation,  more  

development  of  both  fractal  theory  and  application  can  be expected. Using the concepts of 
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fractals in the practical application of image compression is a needed area of research.  
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Image compression is a very significant  and  necessary  branch  of  image  processing.  

The  subsequent  goal  of  image compression  is  to  organize  the  images  so  they   are  

more  compact  by  using  the characteristics  of  images  as  an  information  source  and  an  

information  carrier. By organizing the images as effectively and compactly as achievable, 

useful information can be accurately extracted and the images stored effectively.   When 

needed, these images can without difficulty be restored and they will remain accurate and will 

not lose functional or constructive information. 

To this point, there have been some less effective encoding and compressing methods 

available. But, the former methods generate in their own fashion a difficulty that interferes with 

efficiency of use and storage.  The associated difficulty arising from dated  methods  of  

compression  and  analysis  is  that  the  compression  rates  of  existing methods for 

compressing images are usually lower than tolerable.  

 
 
4.1     Attractor and Self-similarity 

Fractals  have  provided  a  different  description  of  objects,  which  is  completely 

different from traditional concepts. Fractal theory concentrates on the “self-similarity” of 

objects, so it can theoretically be used to describe the inside features of different images 

rather than something on the surface. Therefore the route of compression by means of the 

fractal is different from traditional compression methods. An intuitive example would be a 

photocopying machine (Fisher 1992). Imagine a copying machine that reduces the image to be 

copied by one half and reproduces it three times on the copy tray (Figure 4.1). When we feed 

the output of this machine back as input, we will find that all the copies seem to be 

converging to the same final image after several iterations of this process on several input 

images (Figure 4.2).This final image is called  the  attractor for this copying machine. 

Because the copying machine reduces the input image, any initial image will be reduced to a 

point as we repeatedly run the machine.  
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Thus no matter what initial image is placed on the copying machine, it will not affect 

the final attractor. In fact, only the position and the orientation of the copies determine what 

the final image will look like. 

From the copies, it can be seen that each copy is formed of three reduced copies of 

itself. A common feature of these reduced copies and all attractors formed this way is that in 

the position of each of the images of the original square there is a transformed copy of 

 

the whole image. So each image is formed from transformed (and reduced copies) of itself 

 

 and hence it has the same detail at every scale. This is “self-similarity”, the unique and  

 

 important feature of fractal. 
 

 

 
 
 
 
 

                                          Figure 4.1 Copy Machine 

(Fisher 1992) 
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Figure 4.2 Different Initial Images with Similar Final Images 

(Fisher 1992) 
 
4.2     Contractive Transformations 

Since the way the input image is transformed determines the final result of running the  

copy  machine  in  a  feedback  loop,  the  transformation  will  be  described.  Different 

transformations   will   lead   to   different   attractors   (final   images),   provided   that   the 

transformations must be contractive, that is, given a transformation W, any two points P1, P2, 

in the input image must be closer in the copy. In other words, the distance between the two 

points: 
d(W(P1), W(P2)) < s d(P1, P2)                                                             (4-1) 

 
for s < 1.  
                                                                                    
In the case of a plane, if the points have coordinates P1 = (x1, y1) and P2 = (x2, y2), then 
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――――――――――――― 

d(P1, P2) = √ (x2 – x1)
2 + (y2 – y1)

2                                                 (4-2) 

                                                   

This  condition  is  natural  and  obvious,  because  if  the  transformation  is  not 

contractive, points in the copy will be spread out.  It follows that the final image will be of 

infinite size. Except for this condition, the transformations can have any form. In practice, the 

transformation can  be  affine, which will be sufficient to  yield an interesting set of 

attractors.Contractive transformations have the pleasing property such that when  they  are 

repeatedly  applied, they converge to  a point. This point remains fixed when  further 

iterations are applied. 

 
4.3      Iterated Function Systems (IFS) 

An iterated   function   system   (IFS)   consists   of   a   collection   of contractive 

transformations {wi: R2   R2   i = 1, 2, …, n} which map the plane R2  into itself. This 

collection of transformations defines a map: 
 
 

   n 

W(·) =   U  wi(·)                                                                                         (4-3) 
    i=1 

 

where W(·) denotes the map, which consists of a set of transformations wi(·); (·) is a group of 

points in the plane R2. The map W is not applied to the plane, but as an alternative, it is 

applied to sets, collections of points in  the plane. The special copy machine mentioned 

above, which is running in a feedback loop, is a good metaphor for IFS: Given an input set S, 

we can compute wi(S) for each i (corresponding to making a reduced copy of the input image  

S),  and  take  the  union  of  these  sets  (corresponding  to  assembling  the  reduced copies). 

Then W is a map on the space of subsets of the plane, in other words, a map on the space of 
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images, not on the whole plane R2 (Fisher 1992). 
 

 

 
                                                      
 

  
 
 
If a contractive map W on a space of image exists, then there is a special image, called 

 

 

the attractor, denoted as xw, with the properties: 
 

1.   If the copy machine is applied to the attractor, the output is equal to the input. The 

image is fixed, and the attractor xw is called the fixed point of W. Then we have: 
 

W(xw) = xw =  w1(xw) U w2(xw) U … U wn(xw)                                           (4-4) 
 

2.   Given an input image S0, we can run the copy machine once to get S1= W(S0); twice to 

get S2 = W(S1) = W(W(S0)) ≡ Wo2, and so on. The superscript “o” indicates that we 

are using iterations, not exponents; for that reason, Wo2 is the output of the 
 

 

second iteration. The attractor, which is the result of running the copy machine in a 
 

 

feedback loop, is the limit set 
 

xw ≡ S∞ =   lim Won (S0)                                                                   (4-5) 
n→∞ 

 

which is not dependent on the choice of S0. 

3. xw is unique. If we find any set S and an image transformation (map) W satisfying W(S) 

= S, then S is the attractor of W; that is, S = xw. It means that only one set will satisfy 

the fixed-point equation in 1 above. 
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4.4      Partitioned Iteration Function System 

Theoretically, each image has a unique fixed point. But in practice, it is impossible to 

find a unique fixed point for a whole image. Thus, the image should be partitioned as 

different parts, and the fixed points for the corresponding parts should be obtained through 

different transformations (or maps). The above IFS will be different from different parts of the 

image, and therefore it is called a partitioned iteration function system (PIFS). The copy 

machine metaphor  can be extended to describe the process.  Besides the  copy machine’s 

features described above, which include: 
 

 

 The number of copies of the original pasted together to form the output; 
 

 

 A setting of position and scaling, stretching, skewing, and rotation factors for each 
copy. 

 
The extended one has more: 

  contrast and brightness adjustment for each copy; 
 

 

  mask that selects, for each copy, a part of the original to be copied. 

The new features are applied to allow  the transformation of gray-scale images.  In 

particular, the final listed feature allows partitions of an image into pieces which are each 

transformed separately. 

What happens when we copy an original image using this machine? A portion of the 

original, which is denoted as Di, is copied to a part of the produced copy, denoted as Ri. The 

Di and Ri are called Domains and Ranges respectively. The transformation between Di and  Ri 

is denoted as  Wi. As before, the  copy machine  runs in a feedback loop: its own output is 

fed back as its new input repeatedly. The extended copy machine can be called a partitioned 

copy machine.  The mathematical analogue of a partitioned copy machine is a partitioned 
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iterated function system.  

                                           

Using affine transformation on the gray scale images, the gray level adds another 

dimension, so the transformation wi will take the format like : 
 

|x |  | ai    bi   0  | |  x | | ei  | 

wi | y|  =       | ci    di   0  |    |  y |  +     | fi  |   (4-6) 

| z |  | 0     0   si   |  | z  | | oi  | 
 

where wi is the transformation; x and y are the coordinate of a point in the image; ai, bi, ci, 

di, ei, and fi are the coefficients of the transformation, si controls the contrast and oi controls the 

brightness of the transformation.  

4.5      General Procedure 

The image compression procedure is in fact an image  encoding process while the 

reconstructing  or  restoring  procedure  corresponds  to  image  decoding.  Let (M, d) denote 

a metric space of digital images, where d is the distance measure (which is invariant to 

translation and rotation) in the given space.  Let  U be an original image  that  we  want  to  

encode  or  compress.  We  need  to  find  a  contractive  image transformation  T, defined 

from the space (M,  d) to itself, for which  U is an approximate fixed point. So, there exists a 

number s < 1 such that for any u, v belonging to (M, d), we have 

  d(T(u),T(v))   sd(u,v)                  (4-7) 
 

and 
 

    d(U, T(U))  0                  (4-8) 

    The  scalar  s  is  called  the  contractivity  of  the  transformation  T.  So if a suitable T is 

chosen, it can be expected that the original image will be reconstructed as close 

approximation through a series of T transformations from  an initial image, which  could be 

much simpler than the original image itself.  In other words, after a series of  T 



94 

 

transformations, the initial image will converge to the original one. 

                                                                       

  Reconstruction can be accomplished by partitioning the original image  in a suitable 

manner that will  obtain the suitable transformation T to meet the  requirement  of  

compression  rate  and  computational  issues.  So  the  task  of compressing an image 

includes three important parts: 
 

 

1)   Partition the image and find transformations for each partitioned part; 
 

 

2)   Encoding (compressing) the image; and 
 

 

             3)   Decoding (decompressing) the image. 

4.6     Quadtree Method 

 

Under quadtree method, the partitioning of image is discussed followed by the encoding and 

decoding algorithms. 
 
 
4.6.1 Quadtree Partition 

 

 

Quadtree is an image structure, which appeared at the end of the 1970s, and was 

developed and applied in the 1980s and the 1990s.  In the first case, Klinger and Dyer 

(1976) advanced the concept of evenly decomposing in order to build a representation 

of complex image data designed for computer searching, and defined the corresponding 

method of decomposition. The basic idea is to decompose images by region, rather than by 

rows or columns, with the intention that the structural information of images can be better 

reflected. One of the advantages of decomposing the image is: if an image is too big to be 

loaded into the available computer memory , this loaded image can be divided into  sub-



95 

 

images to process without breaking the structural information of the image. 

                                                      

       If  we  decompose  an  image  into  quadrants  continuously,  the  result  will  be  a quadtree. 

To get a quadtree of an image, the procedure of evenly decomposing the image is: Suppose we 

have a 2n x 2n binary image in which points with value “1” represent the “feature” points as 

black ones and points with value “0” represent background points as white ones. First, the 

whole image is served as the root node.  If the node does not consist of all “1” value or all 

“0” value points, it is called a gray node and needs further decomposition. As the first step, 

divide the whole image into four 2n-1 x 2n-1 sub-images, then decide if further decomposition is 

needed. The sub-images are not only son nodes of the whole image but also the root nodes of 

its own. If one node consists of all “1” value points or all “0” value points, then stop 

decomposing the node; if the node has both “1” value points and “0” value points, then 

decompose it again until all sub-images consist of points with the same values. (Figure 4.3). 

         In the very  beginning, the quadtree took the  format of the  chain-structure  and 

hierarchical style. Each  node has six fields in which only one is with the value of the node 

and the other five are all chain fields pointing to the father node and the four son nodes of 

the current node. Also, since there are a lot of gray nodes as intermediate nodes in a 

quadtree, only ¾ nodes in total are black or white. In fact, only those points are meaningful,   

more   specifically,   only   black nodes   are   requisite   for   processing. Obviously, this kind of 

hierarchical quadtree occupies huge amounts of storage. Albeit, the structure is clear and 

simple: one fourth of the storage space is used to accumulate the intermediate nodes; and in 

each node, there are five out of six fields being used to store the pointers, and only one field 

to store the value of the node. The redundancy is very large; subsequently,  the efficiency is 



96 

 

very low. At this stage, the quadtree could not be put into practice mainly because of these 

disadvantages.                                           

Gargantini  (1982)  advanced  a  new  structure  of  quadtrees,  called  the  linear 

quadtree (Figure 4.4). The differences of Gargantini’s linear quadtree and the previous 

quadtrees are: 
 

 

1)   It only stores black nodes; 
 

 

2)   It codes each node; 
 

 

3)   The codes of nodes imply the path from root to nodes; and 
 

 

4)   Each region on an image can be represented as an ordered series of nodes. 
 

 

The main advantages of linear quadtrees include: 
 

 

1)   The storage and processing time depend only on the amount of black nodes; 
 

 

2)   They remove the chain structure and a large amount of redundancy. 
 
 

Based on Gargantini’s work, Lauzon et al. (1985) introduced one coding method for 

linear quadtrees, called “Two Dimensional Run-Encoding”, simply “2DRE”. It takes advantage 

of the  “Morton series” so that the codes of the quadtree structures become more compact.     

At this stage, the quadtree structure became practical, applicable, and operational. Then 

the quadtree structure began to be used in  image processing and image encoding areas.   

Based on the basic concepts and theoretical foundation that were discussed above, the 

process of image compression starts with image partitioning. As the first step, the image is 

partitioned by  some collection of ranges  Ri. Then for  each  Ri, a domain  Di, which has a 

low rms error, is found from some collection of image pieces. The ways of partitioning the 

image into domains and ranges are both quadtree method. The sets Ri and Di, determine si  and 
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oi as well as ai, bi, ci, di, ei, and fi . Then a transformation W = Uwi, which encodes the original 

image, is obtained. 

                                                     

A quadtree partition is a representation of an image as a binary space partitioning tree 

in which each node, corresponding to a square portion of the image, contains four sub-nodes, 

corresponding to the four quadrants of the square. The root of the tree is the initial image 

(Figure 4.5). 

First, the image is divided into domains with different sizes using the quadtree 

method and the domain pool is built, including sizes and positions of the domains. At that time, 

ranges are selected. Based on the minimum tree depth, various initial numbers of the  

quadtree  partitions  are  prepared.  The  squares  at  the  nodes  are  compared  with 

domains in the domain pool (or domain library) D, which are twice the range size. The pixels 

in the domain are averaged in groups of four so that the domain is reduced to the size of the 

range, and the affine transformation of the pixel values is found that minimizes the rms 

difference between the transformed domain pixel values and the range pixel values. All the 

potential domains are compared with a range. If the resulting optimal rms value is above a pre-

selected threshold and if the depth of the quadtree is less than a pre- selected maximum depth, 

then the range square is subdivided into four quadrants, and the process is repeated. If the rms 

value is below the threshold, the optimal domain and the affine transformation on the pixel 

values are stored. Thus one map  wi is found. The collection of all such maps W = Uwi 

constitutes the encoding. 
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                                                                      (a) 
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                                                                               (b) 

Figure 4.3 A Black-White Image and Its Quadtree  
                        a.   The Image 

b.   The Quadtree 
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                                             Figure 4.4 Coding of a Linear Quadtree 
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Figure 4.5 Quadtree Partition 

                                                          (Fisher, Y., et al, 1992) 
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4.6.2 Encoding (Compressing) Algorithm 

The basis for the encoding procedure is like this: an image is partitioned into parts that 

can be approximated by other parts after some scaling operations (Figure 4.6). The result of 

the procedure is a set of transformations, which, when iterated from  any initial image, 

possess a fixed point approximating the original image.  In the  restored image, fractal 

characteristics can be seen: ‘zooming’ into the restored image, finer and finer details will 

appear. Accordingly, self-similarity (a part of the image can be approximated by other part of 

the same image), and recursive subdivision, which are the important characteristics of fractals, 

are put into use in the encoding procedure. This is why the procedure is named fractal. 
 

 

The steps of the encoding (compressing) procedure are as follows: 
 

 

1)   Determine the parameters for compressing: 

i) Image name, image size, minimum partition exponent, maximum partition 

exponent (both of which determine the size of domains and ranges), tolerance for 

fidelity, e.g. xxx.img, 256x256, 4 (corresponding to 16x16 blocks), 6 
 

 

(corresponding to 4x4 blocks), 0 (corresponding to tolerance as zero). 
 

 

2)   Read the image to be compressed. 
 

 

3)  Process domains 
 
a. Scale the image by calculating the average values of  each four-pixel 
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group, then save the calculated values into an array domain 
 

 

b.   Divide the image  (in ‘domain’) into overlapping domains  (16x16 or 
 

 

8x8) 
 

 

c. Divide each domain block into 4 quadrants and calculate the variance 
 

 

of each quadrant. 
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d.   Classify the domains into 24 classes (Figure 4 .7) according to the order 

of the variances of the quadrants of the domain blocks. Record the  

position,  the  size  and  the  class  of  the  domain  blocks  in  the 

corresponding class chain. 

e. After processing the 16x16 domains, the procedure is repeated until you 

reach the smallest domains (4 x 4) as specified by the maximum partition 

exponent. 
 

 

4) Record the parameters into the output file including image size, maximum partition, 
 

 

minimum partition exponents, and maximum and minimum values of the image. 
 

 

5)   Process ranges 

a. Partition  the  original  image  into  ranges  according  to  the quadtree 

method. If the minimum partition is not reached: go ahead to continue  the  

partition  until  the  minimum  partition  is  reached  (e.g. 16x16 range). 
 

 

b.   Classify the range according to the same rule as did for domains, i.e. 
 

 

24 classes based on the order of the variances of the quadrants of the 
 

 

block. 
 
 

c. Search the domain class chains to find the domain which matches the 
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current range best by calculating the error  between the domain and range. 

Record the position and the  rotating factor of the domain with the smallest 

error. 
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d. Check a) if the smallest error is less or equal to the tolerance and 

 

 

     b) if the maximum partition is reached. 
 

 

i.   If both are ‘Yes’, go to (5); 
 

 

ii.   If a) is ‘Yes’ and b) is ‘No’, go to (5); 
 

 

 iii.   If a) is ‘No’ and b) is ‘Yes’, go to (5); 
 

 

iv.   If both are ‘No’, put a bit ‘1’ as a flag into the output file, then 
 

 

v. Divide the  current range into 4 sub-ranges according to the 
 

 

quadtree method, then go to (2). 
 

 

e. Write  A,  B,  the  rotating  factor,  the  position  of  the  domain  with 
 

 

smallest error, into the output compressed file. 
 

 

6)   Calculate the compression rate: the number of bytes of the original image divided by 

the number of bytes in the output compressed file. The  

parameters for the encoding algorithm include: 

o The rms tolerance threshold ec 

o The maximum depth of the quadtree partition;  

o The minimum depth of the quadtree partition;  

o The type of domain pool 

o The maximum allowable scaling factor smax 

o The number of classes compared with a range. 

o The maximum and minimum values of the image 
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An encoding of an image consists of the following data: 
 

 

o The final quadtree partition of the image 
 

o The scaling and offset values si and oi for each range 
o For each range, a domain that is mapped to it 

 

o The symmetry operation (orientation) used to map the domain pixels onto 
 

the range pixels. 

 Figures 4 .8 and 4 .9 show an example of the  partition and transformation. 

35 

4.6.3 Decoding (Decompressing) Algorithm 

     Decoding  an  image  consists  of  iterating  W  from any initial image. The quadtree 

partition is used to determine all the ranges in the image. For each range Ri, the domain Di, 

which maps to it is shrunk by two in each dimension by averaging non-overlapping groups of 

2 x 2 pixels. The shrunken domain pixel values are then multiplied by si, added to oi, and 

placed in the location in the range determined by the orientation information. This  constitutes  

a  decoding  iteration.  The  step  is  iterated  until  the  fixed  point  is approximated, that is, 

until further iteration does not change the image or until the change is below some small 

threshold value. 
 

 

The steps of the decoding (decompressing or restoring) procedure are as follows: 
 

 

1)   Determine the parameters of the restoring procedure: 
 

a)   Hypothetical image (the “initial image”) name, 
 

 

b)   Compressed file name and 
 

 

c)    Number of iteration. 
 

 

2)   Read the input file (the compressed file). 
 

 

3)   Read  the  hypothetical  image  into  an  array  ‘image’,  which  will  be  used  as  the 
 

 

domains. The hypothetical image can have any values (e.g. all 0’s, or all  1’s, etc.). 
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4)   Get the parameters of the compressed image from the input file: 
 

 

a)   Image size, 
 

 

b)  Maximum partition, 
 

 

c)   Minimum partition exponents, and 
 

 

d)   Maximum and minimum values of the original image. 
 

 

5)   Prepare a blank image ‘image1’ for the restored image. 
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6)   Read the transformations from the input file: 

 

 

a)  Set ‘level’=0. 
 

b)   Checking level is less/more than minimum partition. 
 

 

i) If ‘Yes’, divide the blank image block into 4 sub-blocks, with level +1,  put 
 

sub-blocks into a queue, then go to (3); 
 

 

ii)  If  ‘No’, i.e. level is equal to minimum partition, go to (4). 
 

 

c)   Check the queue. If it is not empty: 
 

i) Obtain the first one and remove it from the queue, 
 

ii)  Then go to (2); if it is empty, go to (7). 
 

d)   Checking if ‘level’ is less than maximum partition and  the flag bit ‘1’ in the input 
file. 

 

 

i) If both are ‘Yes’, divide the current block into 4 sub-blocks 
 

 

ii)  With level +1, put them into the queue, then go to (3); 

iii) If a) or b) or both are ‘No’, i.e. either the maximum partition is iv)  

Reached or good transformation is encountered, then go to (4).  

v)   Get the transformation parameters from the input file: A, B,    

       rotating factor  and position of the domain, then put them      

      and the corresponding positions of the restored image into a   
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      transformation chain. 

vi)  Go to (3). 
 

vii) Finish the procedure starting from step 6). 
 

7) Do the transformations: 
 

a)   Set a counter=0; 
 

 

b)   check if counter is greater than the predetermined iteration number. 
 

 

If ‘Yes’, go to (8); 
 

 

If ‘No’, go to (3). 
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c)   Check the transformation chain. If it is 

empty, counter+1, then go  

      to b); if it is not empty, go to d). 

d)   Get the parameters in the transformation chain, calculating  the pixel values for the 

restored image by scaling the hypothetical  image and using Y=AX+B, if 

necessary, rotating it (A, B and rotating factor are all in the transformation chain, 
 

Y represents the restored value, and X the ‘initial value’ in hypothetical image), 
 

 

then put the pixel values into ‘image1’. 
 

 

e)   Go to c). 
 

 

f) Copy ‘image1’ to ‘image’. The later will be the ‘hypothetical image’ or the 
 

 

domain of the next iteration. 
 

 

g)   Counter+1, then go to (2). 
 

 

h)   Finish the iteration. 
 

 

8)  Post-process  the  restored  image  by  using  maximum  and  minimum  values  of  the 
 

 

original image. 
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9) Write ‘image’ into output file. 
 

 

Figure 4.10 is the initial image of which all pixels are ‘white’, i.e. gray level is 255; 

4.11 and 4 .12 show the result of decompressing procedure at the first and the tenth 

iteration respectively. It can be seen that after ten iterations, the restored image became very 

similar to the original one. 
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                                Figure 4.6 Partition with Self-Similarity(Source: Saupe et al 1994) 
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Figure 4.7 Twenty Four Classes 

(0, 1, 2, and 3 represent the ordered values of variances of the quadrants. There 
are twenty four situations for the whole combination) 
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                                         Figure 4.8 Image of San Francisco 

 

 

                       
 

Figure 4.9 Domains, Ranges, and Transformation for the image in Fig.4.8 

(R1 through R4: first four ranges in the image; D1 through D4: domains corresponding to 
            R1 through R4; T1 through T4: transformations between Di and Ri, i=1,2,3,4) 
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                                      Figure 4.10 Initial image (all pixels’ DN is 255) 

 

 

                                   
 



111 

 

                                       Figure 4.11 First Iteration of Decompression 
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                                    Figure 4.12 Tenth Iteration of Decompression 
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4.7    New Algorithm 

 
This method reduces the encoding time of fractal image compression by performing less 

searches by excluding many of domain blocks from the domain pool. The idea is based on 

the observation that many domains are never used in a typical fractal encoding, and only a 

fraction of this large domain pool is actually used in the fractal coding. T here is a very 

large set of domain blocks in the d o m a i n  pool with high entropy, which are not used. 

Thus, it is possible to reduce the search time by discarding a large fraction of high entropy 

blocks, which affect only a few ranges.   For these ranges a sub-optimal domains with 

smaller entropy may be found. In this way, the domain pool is constructed from blocks with 

the lowest entropy instead of all domains. The algorithm for encoding is as below: 

     Step 1: Initialization (domain pool construction) 

 

                     Choose parameter E  ; 

Divide the input image into N domains, D j 

For (j =1; j ≤ N; j ++)   { 

Ent =entropy ( D j  ); 

If (Ent ≤ E  ) 
Push D j  onto domain pool stack  } 

       Step 2: Choose a tolerance levels C  ; 
 
Step 3: Search for best matches between range and         
                  domain blocks 

                      For ( i =1 ; i ≤  num_range ; i ++ )  { 

                        min_error = C  ; 

                       For ( j =1 ; j ≤  num_domain; j ++ )   { 

                          Compute s, o; 

                        If (0≤ s<1.0) 

                         If ( E( Ri  , D j  ) < min_error) { 

                               min_error = E( Ri  , D j  ); 
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                                        best_domain[i] =j ; } 

                         } 
                                                                       43 

If  (min_error = =  C  ) 

 

                             Set R i   uncovered and partition it into 4 smaller blocks 

 

                             Else 

 
                                  Save_coefficients(best_domain, s, o); 
 

                               } 

 

 

 

At the end of step 1 the domain pool has num_domain domain according to E  value. 
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5.1    INTRODUCTION 

Image registration is the process of overlaying one or more image to a reference image of the same scene 

taken at different time, from different view point and/or different sensor. Difference between images is 

introduced due to different imaging condition such that yields highest similarity between the input and the 

reference images. Image registration geometrically aligns two images the reference image and input 

image. Image registration is a crucial step in all image analysis tasks in which the final information is 

gained from the combination of various data sources like in image fusion, change detection, and 

multichannel image restoration. Typically, registration is required in remote sensing(multispectral 

classification, environmental monitoring, change detection, image mosaicing, weather forecasting, 

creating super-resolution images, integrating  information into geographic information systems (GIS)), in 

medicine(combining computer tomography (CT) and NMR data to obtain more complete information 

about the patient, monitoring tumor growth, treatment verification, comparison of the patient’s data 

with anatomical atlases),in cartography (map updating), and in computer vision (target 

localization, automatic quality control), to name a few. 

In general, its applications can be divided into four main groups according to the manner of the image 

acquisition: 

Different viewpoints (multiview analysis):-Images of the same scene are acquired from different 

viewpoints. The aim is to gain larger a 2D view or a 3D representation of the scanned scene. Examples of 

applications: Remote sensing mosaicing of images of the surveyed area. Computer vision—shape 

recovery (shape from stereo). 

Different times (multitemporal analysis):- Images of the same scene are acquired at different times, 

often on regular basis, and possibly under different conditions. The aim is to find and evaluate changes in 

the scene which appeared between the consecutive image acquisitions. Examples of applications: Remote 

sensing—monitoring of global land usage, landscape planning. Computer vision—automatic change, 

detection for security monitoring, motion tracking. Medical imaging—monitoring of the healing therapy, 

monitoring of the tumor evolution. 

Different sensors (multimodal analysis):-Images of the same scene are acquired by different sensors. 

The aim is to integrate the information obtained from different source streams to gain more complex and 
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detailed scene representation. Examples of applications: Remote sensing—fusion of information from 

sensors with different characteristics like panchromatic images, offering better spatial resolution, 

color/multispectral images with better spectral resolution, or radar images independent of cloud cover and                                                                                                          

solar illumination. Medical imaging—combination of sensors recording the anatomical body structure 

like magnetic resonance image (MRI), ultrasound or CT with sensors monitoring functional and 

metabolic body activities like positron emission tomography (PET), single photon emission computed 

tomography (SPECT) or magnetic resonance spectroscopy (MRS). Results can be applied, for instance, in 

radiotherapy and nuclear medicine. 

Scene to model registration:- Images of a scene and a model of the scene are registered. The model can 

be a computer representation of the scene, for instance maps or digital elevation models (DEM) in GIS, 

another scene with similar content (another patient), ‘average’ specimen, etc. The aim is to localize the 

acquired image in the scene/model and/or to compare them. 

Examples of applications: Remote sensing—registration of aerial or satellite data into maps or other GIS 

layers. 

Computer vision—target template matching with real-time images, automatic quality inspection. Medical 

imaging—Comparison of the patient’s image with digital anatomical atlases, specimen classification. 

5.2 Image Registration process 

The registration process  involves finding a single transformation imposed on the input image by 

which it can align with the reference image. It  can be viewed as different combination of choice 

for the following four component. 

(1) Feature space 

(2) Search space 

(3) Similarity measure 

(4) Search strategy  

The Feature space extracts the information in the images that will be used for matching. The 

Search space is the class of transformation that is capable of aligning the images. The 

Similarity measure gives an indication of the similarity between two compared image regions. 

The Search strategy decide how to choose the next transformation from the search  space, to 

be tested in the search to spatial transformation. 
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Registration process mainly consists in determining the unknown transformation parameters required to 

map the input image to the reference image in order to compare and analyze both in a common reference 

frame. The task of determining the best spatial transformation for the registration of images can be 

characterized by four major components (Brown, 1992): 

1. Feature space 

2. Search space 

3. Similarity measure 

4. Search strategy 

 

5.3   Feature Space:- 

The feature space represents the information in the images that will be used for matching. This may be the 

image itself (i.e. pixels values), but we can also use distinctive objects (closed boundary regions, edges, 

contours, line intersections, corners, etc.) manually or automatically detected. These features can be 

represented by their point representatives (centers of gravity, line endings, distinctive points), which are 

called control points (CPs) in the literature. Images are usually preprocessed in an attempt to extract 

intrinsic structures and reduce the effects of sensor noise. 

First, we have to decide what kind of features is appropriate for the given task. The features should be 

distinctive objects, which are frequently spread over the images and which are easily detectable. Usually, 

the physical interpretability of the features is demanded. The detected feature sets in the reference and 

sensed images must have enough common elements, even in situations when the images do not cover 

exactly the same scene or when there are object occlusions or other unexpected changes. The detection 

methods should have good localization accuracy and should not be sensitive to the assumed image 

degradation. In an ideal case, the algorithm should be able to detect the same features in all projections of 

the scene regardless of the particular image deformation. 
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The number of common elements of the detected sets of features should be sufficiently high, regardless of 

the change of image geometry, radiometric conditions, presence of additive noise, and of changes in the 

scanned scene. The ‘remarkableness’ of the features is implied by their definition.  

According to the feature space employed, we can identify three classes of registration algorithms pixel-

based, and feature-based, transform-based,. 

 

Pixel-based registration:- 

Pixel-based algorithms work directly with the (totality of) pixel values of the images being registered. 

Preprocessing is often used to suppress the adverse effects of noise and differences in acquisition or to 

increase or uniformize pixel resolution. The main advantage of this approach is a more global vision of 

the algorithm, which increases its robustness. 

Feature-based registration:- 

Feature-based algorithms work on a set of characteristic features extracted from the images. The 

dimensionality of the features is usually drastically smaller than the dimensionality of the original image 

data. The extraction process is highly non-linear, mostly using thresholding. 

Landmark-based methods use a relatively small and sparse set of landmarks; these are important points 

which can be (manually or automatically) identified in both images. Extrinsic markers refer to specifically 

designed artificial features attached to the object (or subject, in medical imaging) before acquisition to 

serve as landmarks. Unfortunately, extrinsic markers are difficult to deploy. In medical imaging they are 

not patient-friendly either. If extrinsic markers are not available, we have to content ourselves with 

features intrinsic to the images. In that case, however, the automatic landmark identification suffers from 

lack of robustness. The manual landmark identification is often tedious, time-consuming, imprecise, and 

unreproducible. If the images cannot be characterized using points, it might be more appropriate to use 

curves such as edges or volume boundaries. 

Transform-based registration:- 

Transform-based algorithms exploit properties of the Fourier, wavelet, Hadamard, and other transforms, 

making use of the fact that certain deformations manifest themselves more clearly in the transform 

domain. These methods are used mainly in connection with linear deformation fields. Nevertheless, there 
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are examples of methods that estimate locally linear optical flow using Gabor filters and B-spline 

wavelets. Typical characteristics of the transforms employed are linearity and independence on the actual 

image contents. 

 

 

 

5.4 Search Space:- 

The search space is made of all possible transformations. The considered sensor model determines the 

characteristics of the search space (i.e. which transformations to consider and in which range). If no a 

priori information is available, the model should be flexible and general enough to handle all possible 

degradations which might appear. 

The input image is transformed by means of the mapping functions. Image values in non-integer 

coordinates are computed by the appropriate interpolation technique. 

Some popular transformations are as follows:- 

Transformation of the Cartesian coordinate system:- 

It consists of  rotation,  translation and scaling only 

u= s x cos(θ) −s y sin(θ) + tx                                                     

v= s x sin(θ) +s y cos(θ) + ty 

s is the scaling, θ is the rotational, and (tx, ty) are the translational differences between the 

images. This model is often called ‘shape-preserving mapping’ because it preserves angles and 

curvatures and is unambiguously determined by two CPs. This transformation is useful when 

registering images as rigid bodies. 

Affine transformation:- 

Slightly more general but still linear model is an affine transform 

u = a0 + a1x + a2 y 

 v = b0 + b1x + b2 y 
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  This can map a parallelogram onto a square. This model is defined by three non-collinear CPs, preserves 

straight lines and straight line parallelism. It can be used for multiview registration assuming the distance 

of the camera to the scene is large in comparison to the size of the scanned area, the camera is perfect (a 

pin-hole camera), the scene is flat, and the present geometric distortion has no local factors. 

 

 

 

Projective Transformation:- 

If the condition on the distance of the camera from the scene is not satisfied the perspective projection 

model 

              u = (a0 + a1x + a2 y)/(dx+ey+1) 

v = (b0 + b1x + b2 y)/(dx+ey+1) 

should be used. This model exactly describes a deformation of a flat scene photographed by a pin-hole 

camera the optical axis of which is not perpendicular to the scene. It can map a general quadrangle onto a 

square while preserving straight lines and is determined by four independent CPs. 

5.5   Similarity Measure:- 

 The similarity measure function, or cost function, gives an indication of the similarity between two 

compared image regions. The function may either be based on direct pixel intensity comparisons, or on 

other geometrical features within the regions. Here we focus some of the direct intensity comparisons 

based similarity measures 

Sum of Squared Differences 

A simple similarity measure is the sum of the differences between compared pixel intensities within the 

area, squared. In case of color photographs we may look at each color channel separately and take the 

average. Equation 2.4 defines the function, known as SSD (Sum of Squared Differences) mathematically. 
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Where Ii denotes the intensity value at image i, and h, k defines the offset point in the input image for 

which the similarity measure should be calculated. The main weakness of this measure is that intensity 

shifts between the images may cause large differences even at the most optimal matching position, 

potentially leading to inaccurate results and misalignment. 

 

 

Sum of Absolute Differences:- 

 Method of minimizing intensity difference called as sum of absolute difference(SAD),which exhibit 

minimum in the case of minimum in the case of perfect matching 

      

 Where Ir(i)  is the intensity value at position i of the reference image R and Is(i)  is the intensity value at 

position i of the input image S and T geometrical transformation. 

SAD is suitable for monomodal image registration only when image difference among the data are 

sufficiently small. In spite of high computational efficiency, these cost function can lead to monomodal 

data registration when intensity is significantly changed. 

Normalized cross correlation:- 

Classical area-based methods like cross-correlation (CC) exploit for matching directly image intensities, 

without any structural analysis. Consequently, they are sensitive to the intensity changes, introduced for 

instance by noise, varying illumination, and/or by using different sensor types. The normalized cross- 

correlation can be written as  
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Where Rij is the intensity of the reference image pixel and R is the mean intensity Iij is the intensity of the 

input image and I is the mean intensity. 

This measure of similarity is computed for window pairs from the input and reference images and its 

maximum is searched. The window pairs for which the maximum is achieved are set as the corresponding 

ones .If the sub pixel accuracy of the registration is demanded, the interpolation of the CC measure values 

needs to be used. Although the CC based registration can exactly align mutually translated images only, it 

can also be successfully applied when slight rotation and scaling are present. 

Two main drawbacks of the correlation-like method is the flatness of the similarity measure maxima (due 

to the self-similarity of the images) and high computational complexity. Despite of these limitations, the 

correlation like registration methods are still often in use, due to its easy hardware implementation, which 

makes it useful for real-time applications. 

Variance 

Another similarity measure is to look at the standard deviation of the intensity differences of the 

compared region. This approach is less susceptible to failure due to intensity shifts than squared 

differences, since the intensity difference should be of approximately the same amount for each compared 

pixel, resulting in small variance and standard deviation. Equation gives a variance based similarity 

measure at offset (h, k). 

                 

                                              EV (h, k) =  

Where Idiff  is the set of intensity differences within the compared region. 

It may also be possible to improve results by utilizing spatially varying weights or biases to compensate 

for mean intensity variations between the images. 

Mutual Information Method 
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Mutual information similarity measured is based on information theory. Mutual information compares the 

statistical dependence between two images. The similarity measure works from the pixel values and 

makes few assumptions about the surface properties of the objects or the imaging process. As a result, 

mutual information is robust with respect to changes in lighting and even imaging modality.  

To introduce and explain the mutual information, we start at the basics with the definition of entropy and 

its interpretation. We then turn to mutual information, its multiple forms of definition and its properties. 

 

 

5.6  Entropy 

The desire for a measure of information (commonly termed entropy) of a message stems from 

communication theory. This field concerns the broadcast of a message from a sender to a receiver. The 

first attempts to arrive at an information measure of a message focused on telegraph and radio 

communication, sending Morse code or words. However, picture transmission (television) was already 

considered in the important paper by Hartley In 1928, he defined a measure of information of a message 

that forms the basis of many present-day measures. He considered a message a string of symbols, with s 

different possibilities for each symbol. If the message consists n of symbols, there are sn different 

messages possible (assuming there are no syntactic rules). He sought to define an information measure 

that increases with message length. The measure complies sn but the amount of information would 

increase exponentially with the length of the message and that is not realistic. Hartley wanted a measure 

H that increases linearly with n, i.e. H=K n., where K is a constant depending on the number of symbols s 

. He further assumed that, given messages of length n1and n2 from s1 and s2 numbers of symbols, 

respectively, if s1n1=s2n2, i.e., the number of possible messages is equal, then the amount of information 

per message is also equal. These two restrictions led him to define the following measure of information 

 

                        H= n log s= log sn                                                                                            (1) 

Hartley’s information measure depends on the number of possible outcomes: the larger the number of 

possible messages, the larger the amount of information you get from a certain message. If there is only a 

single message possible, you gain no information (log 1=0) from it, because you already knew you would 
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receive that message. In this respect, the measure can also be viewed as a measure of uncertainty. When 

there are more different messages you could possibly receive, you are more uncertain which one you will 

actually receive. And, again, if there is only one, there is no uncertainty. 

A drawback of Hartley’s measure is that A drawback of Hartley’s measure is that it assumes all 

symbols(and, hence, all messages of a given length) are equally likely to occur. Clearly, this will often not 

be the case. In the previous paragraph, for example, the letter “e” has occurred 229 times and the letter 

“q” only twice. Shannon introduced an adapted measure in 1948 , which weights the information per 

outcome by the probability of that outcome occurring. Given events  e1…..,en occurring with probabilities 

p1…….. , pm the Shannon entropy is defined as 

 

=                                                    (2) 

If we apply to Shannon’s entropy the assumption that all outcomes are equally likely to occur, we get 

= =                                                    (3) 

which is exactly Hartley’s entropy. 

 

Although the second definition of the Shannon entropy in (2) is more commonly used, the first one more 

clearly explains the meaning. The term signifies that the amount of information gained from an event with 

probability is inversely related to the probability that the event takes place. The more rare an event, the 

more meaning is assigned to occurrence of the event. The information per event is weighted by the 

probability of occurrence. The resulting entropy term is the average amount of information to be gained 

from a certain set of events. 

In line with Hartley’s entropy, we can also view Shannon’s entropy as a measure of uncertainty. The 

difference is that Shannon’s measure depends not only on the number of possible messages, but also on 

the chances of each of the messages occurring. When all messages are equally likely to occur, the entropy 

is maximal, because you are completely uncertain which message you will receive. When one of the 

messages has a much higher chance of being sent than the other messages, the uncertainty decreases. You 

expect to receive that one message and in most cases you will be right. The amount of information for the 

individual messages that have a small chance of occurring is high, but, on average, the information 



125 

 

(entropy/uncertainty) is lower. As a hypothetical example, let us assume a 1-yr old child uses the words 

“mummy,” “daddy,” “cat,” and “uh-oh.” If the child uses all words almost as frequently, with a slight 

preference for “mummy,” the respective percentages of times the words are used could be 0.35, 0.2, 0.2, 

and 0.25. The entropy of the child’s language is then  -.35 log .35-.2 log .2-.2 log .2- .25log .25=1.96. 

Sometime later, the vocabulary may have expanded and changed to (“mummy” 0.05), (“daddy” 0.05), 

(“cat” 0.02), (“train” 0.02), (“car” 0.02), (“cookie” 0.02), (“telly” 0.02), and (“no” 0.8). Now one word is 

dominant and the entropy of the language has dropped to 1.25. There is less uncertainty about which word 

the child will utter. Whatever you ask, the answer is almost certainly “no.” 

The Shannon entropy can also be computed for an image, in which case we do not focus on the 

probabilities of letters or words occurring, but on the distribution of the gray values of the image. A 

probability distribution of gray values can be estimated by counting the number of times each gray value 

occurs in the image and dividing those numbers by the total number of occurrences. An image consisting 

of almost a single intensity will have a low entropy value; it contains very little information. A high 

entropy value will be yielded by an image with more or less equal quantities of many different intensities, 

which is an image containing a lot of information. 

In this manner, the Shannon entropy is also a measure of dispersion of a probability distribution. A 

distribution with a single sharp peak corresponds to a low entropy value, whereas a dispersed distribution 

yields a high entropy value. Summarizing, entropy has three interpretations: the amount of information an 

event (message, gray value of a point) gives when it takes place, the uncertainty about the outcome of an 

event and the dispersion of the probabilities with which the events take place. 

 

Mutual information 

The research that eventually led to the introduction of mutual information as a registration measure dates 

back to the early 1990s. Woods et al. first introduced a registration measure for multimodality images 

based on the assumption that regions of similar tissue (and, hence, similar gray values) in one image 

would correspond to regions in the other image that also consist of similar gray values (though probably 

different values to those of the first image). Ideally, the ratio of the gray values for all corresponding 

points in a certain region in either image varies little. Consequently, the average variance of this ratio for 

all regions is minimized to achieve registration. 
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(a)     (b)     (c) 

Fig 5.1. Example of a feature space for (a) a CT image and (b) an MR image. (c) Along the axes of the feature 

space, the gray values of the two images are plotted: from left to right for CT and from top to bottom for MR. The 

feature space is constructed by counting the number of times a combination of gray values occurs. For each pair of 

corresponding points (x; y), with x a point in the CT image and y a point in the MR image, the entry (I (x); I (y)) in 

the feature space on the right is increased. A distinguishable cluster in the feature space is the stretched vertical 

cluster, which is the rather homogeneous area of brain in the CT image corresponding to a range of gray values for 

the MR image. 

 

Hill et al proposed an adaption of Woods’ measure. They constructed a feature space, which is a two-

dimensional (2-D) plot showing the combinations of gray values in each of the two images for all 

corresponding points. Fig. 5.1 shows an example of such a feature space for a magnetic resonance (MR) 

and a computed tomography (CT) image. The difference with Woods’ method is that instead of defining 

regions of similar tissue in the images, regions are defined in the feature space. These regions are based 

on the clustering one finds in the feature space for registered images. 

The feature space (or joint histogram) changes as the alignment of the images changes. When the images 

are correctly registered, corresponding anatomical structures overlap and the joint histogram will show 

certain clusters for the gray values of those structures. . As the images become misaligned, structures will 

also start overlapping structures that are not their anatomical counterparts in the other image. 

Consequently, the intensity of the clusters for corresponding anatomical structures will decrease and new 

combinations of gray values emerge such as skull and brain or skin and background. This will manifest 

itself in the joint histogram by a dispersion of the clustering. Fig. 5.2contains several histograms of an 
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MR image with itself for different rotations of one image with respect to the other. Clearly, the histogram 

shows increasing dispersion as the misregistration increases. 

 

(a)          (b)    (c)            (d) 

Fig. 5. 2 Joint gray value histograms of an MR image with itself. (a) Histogram shows the situation when the images 

are registered. Because the images are identical, all gray value correspondences lie on the diagonal. (b), (c), and (d) 

show the resulting histograms when one MR image is rotated with respect to the other by angles of 2_, 5_, and 10_, 

respectively. The corresponding joint entropy values are (a) 3.82; (b) 6.79; (c) 6.98; and (d) 7.15.. 

 

Using this characteristic of the joint histogram of two images, measures of dispersion emerged, to use for 

image registration. Hill et al. proposed the third-order moment of the joint histogram, which measures the 

skewness of a distribution. Both Collignon et al and Studholme et al suggested to use entropy as a 

measure of registration. As we have explained earlier, entropy measures the dispersion of a probability 

distribution. It is low when a distribution has a few sharply defined, dominant peaks and it is maximal 

when all outcomes have an equal chance of occurring. A joint histogram of two images can be used to 

estimate a joint probability distribution of their gray values by dividing each entry in the histogram by the 

total number of entries. The Shannon entropy for a joint distribution is defined as 

                                     

                                         

 By finding the transformation that minimizes their joint entropy, images should be registered. 

Once entropy, a measure from information theory, had been introduced for the registration of 

multimodality medical images, another such measure quickly appeared: mutual information. It was 

pioneered both by Collignon et al. and by Viola and Wells]. Applied to rigid registration of multimodality 

images, mutual information showed great promise and within a few years it became the most investigated 

measure for medical image registration. 
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Definition:- 

Two discrete random  variables  A and B  with marginal probability distributions  pA(a) and  pB(b) and 

joint probability distribution pAB(a,b)  are statistically independent if  pAB(a,b)  =pA(a).  pB(b), while they 

are maximally dependent if they are related by a one-to-one mapping T: pA(a)= pB(T(a))= pAB(a,T(a)) . 

The mutual information I(A,B)of  A and  B measures the degree of dependence of and as the distance 

between the joint distribution pAB(a,b)   and the distribution associated to the case of complete 

independence pA(a).  pB(b),, by means of the Kullback-Leibler measure  i.e., 

 

                                                 (4) 

Mutual information is related to the information theoretic notion of entropy by the following equations      

                                         I (A, B) = H (A) + H (B) – H (A,B)                                            (5)                 

                                                     = H (A) – H (A/B)                                                          (6) 

                                                    = H (B) – H (B/A)                                                           (7)   

with H(A) and H(B)  being the entropy of A and B respectively, H(A,B) their joint entropy, and H(A/B) 

and H(B/A)  the conditional entropy of A given B and of B  given A , respectively. H(A) , H(A/B) and 

H(A,B)  are defined as 

 

                                                                                      (8) 

                                                                  (9)           

                                                                  (10) 

 

with  p A/B=b (a) the conditional probability of A given B=b. The entropy H(A)is known to be a measure of 

the amount of uncertainty about the random variable A, while H(A,B) is the amount of uncertainty left in 

A when knowing B. Hence, from (6), I(A, B) is the reduction in the uncertainty of the random variable A 
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by the knowledge of another random variable B , or, equivalently, the amount of information that B 

contains about A . If A and B are independent, 

 pAB (a,b)= pA (a). pB (b) and , I(A,B)= 0 while if A and B  are one-to-one related, I(A,B)=H(A)= H(B). It 

can be shown] that mutual information I(A,B) is nonnegative ( I(A,B)>0) for any two random variables A 

and B. 

Properties Of Mutual information:- 

   Independence: I(A,B) =0  pAB (a,b)= pA (a). pB (b)  

   Symmetry : I (A,B)= I(B,A) 

   Self information: I(A,A)=H(A) 

   Lower bound: I (A,B)≥0 

   Upper bound: I(A,B)≤ min(H(A),H(B)) 

              ≤ (H (A) +H (B))/2 

              ≤ max (H (A), H (B)) 

              ≤ H (A,B) 

              ≤ (H (A) +H (B)) 

       Data processing: I (A, B) ≥I (A, T (B)) 

 

5.7 Search Strategy 

The search strategy governs how the search space is explored, and has a great impact on the efficiency of 

the image registration process. Here we review a few common strategies, leaving the genetic algorithm 

and Hill climbing algorithm to a more thorough account in the next chapter. 

Exhaustive Search 

A simple exhaustive search (or full search) where all states of the search space are computed, is 

guaranteed to find the optimal alignment. However, keeping in mind that similarity measure computation 
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usually has complexity on the order of the number of pixels in the compared areas, this is a rather 

computationally intensive and time consuming strategy, which quickly becomes infeasible to apply on 

everything but very limited search sets and spaces. 

Step Search 

A faster alternative to the exhaustive search is the step search strategy. Various brands of this strategy 

exist, the basis however being a method that iteratively converges towards the optimal alignment with 

logarithmic order complexity. In each iteration, a center point is defined, and four points are selected at an 

equal step distance from this point towards north, south, west and east. Similarity measures are calculated 

for the four points and the center point, and the best point forms the center point of the next iteration that 

starts with half the previous step distance. 

This quickly converges towards a minimum point. Unfortunately, the method is susceptible to trap itself 

around a local optimum and miss the global one, resulting in misalignment. Chen suggests that the 

method is used to make fast estimations of the optimal position. 

Gradient Descent 

Another approach is to perform gradient descent on an appropriate similarity measure function. Gradient 

descent works by calculating the gradient at the current point, and iteratively moves in the negative 

gradient direction (in case minimization of the similarity measure is our objective). Obviously, the 

method requires a differentiable and rather smooth objective function surface. 

A parameter called the learning rate affects how great the leap in the negative gradient direction should 

be. The initial learning rate must be suited to fit the objective function. A high learning rate makes faster 

convergence possible, but introduces the risk of ”shooting over the target” by causing moves that passes 

over the minima valley and worsens the similarity measure. Because of this, the learning rate is usually 

decreased when a step in the negative gradient direction does not result in a better similarity measure. 

Adaptive approaches do this, and also make a small increase on the learning rate if a step results in a 

better similarity measure. Gradient descent requires an initial starting point on the function, which is 

usually randomly selected. 

Multi-resolution Search 

In multi-resolution (or subpixel) image registration, the search space is reduced by searching at different 

resolutions in an hierarchical manner. The search is made on a set of down sampled versions of the 
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original images, and matches are iterat- ively refined at higher resolutions. The concept of image 

wavelet2 decomposition has successfully been put to use in multi-resolution registration. A wavelet-based 

technique called the iterative refinement algorithm (IRA) combined with a genetic algorithm-based search 

strategy have proven to give accurate and fast results. 

 

5.8   Search Space 

When solving an image registration problem, we look for a particular solution that will be better than all 

or almost all other feasible solutions. Depending on the number of parameters n that constitute a solution, 

an n-dimensional search space consisting of the set of all possible solutions is created. If we mark each 

point in the search space with the corresponding cost for that solution, we get a landscape-like 

hypersurface. Our aim with the search is to find the lowest valley in this landscape. This is often a rather 

time consuming process, since the hypersurface rarely behaves in a smooth and predictable way. 
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IMPLEMENTATION 
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6.1      Code 
 

genim.m 
 

clear all; 

close all; 

tic 

xdis=[1 20]; 

ydis=[1 10]; 

rot=[-20 0]; 

%scale=[.50 .65]; 

n=10; 

numit=30; 

nummut =1; 

f=@image_fit; 

x=xdis(2)-xdis(1); 

y=ydis(2)-ydis(1); 

t=rot(2)-rot(1); 

%s=scale(2)-scale(1); 
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%x=1:3:60; 

%y=1:3:60; 

%t=-60:3:0; 

%s=.4:.01:.6; 

ipopx= rand(1,n)*x+xdis(1); 

ipopy= rand(1,n)*y+ydis(1); 

ipopt= rand(1,n)*t+rot(1); 

%ipops= rand(1,n)*s+scale(1); 

%ipopx= x; 

%ipopy= y; 

%ipopt= t; 

%ipops= s; 

for it=1:numit 

  for i=1:n   

    fpop(i)=-feval(f,ipopx(i),ipopy(i),ipopt(i)); 

  end 

  

    

    maxf(it) = max(fpop); 

    meanf(it) = mean(fpop); 

    % subtract lowest fitness in order to normalize 

    m=min(fpop); 

    fpop=fpop-m; 

    cpop(1) = fpop(1); 

    for i=2:n, cpop(i) = cpop(i-1) + fpop(i); end     

     

    % SELECTION 

    total_fitness = cpop(n); 

    % use roulette selection (-> need pos. fitness!) 

    for i=1:n 

        p=rand*total_fitness; 

        % now find first index  

        j=find(cpop-p>0); 

        if isempty(j) 

            j=n; 

        else 

            j=j(1); 

        end 

        parentx(i)=ipopx(j); 

        parenty(i)=ipopy(j); 

        parentt(i)=ipopt(j); 

       %parents(i)=ipops(j); 

    end 

  % 

 % pop, fpop, parent,pause 

     

    % REPRODUCTION 

    % parents 2i-1 and 2i make two new children 2i-1 and 2i 

     

    % crossover 

    % use arithmetic crossover 

    for i=1:2:n 

        r=rand; 

        ipopx(i)   =     r*parentx(i) + (1-r)*parentx(i+1); 

        ipopx(i+1) = (1-r)*parentx(i) +     r*parentx(i+1); 
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        ipopy(i)   =     r*parenty(i) + (1-r)*parenty(i+1); 

        ipopy(i+1) = (1-r)*parenty(i) +     r*parenty(i+1); 

         

        ipopt(i)   =     r*parentt(i) + (1-r)*parentt(i+1); 

        ipopt(i+1) = (1-r)*parentt(i) +     r*parentt(i+1); 

         

        %ipops(i)   =     r*parents(i) + (1-r)*parents(i+1); 

        %ipops(i+1) = (1-r)*parents(i) +     r*parents(i+1); 

    end 

     

    % mutation 

    % use uniform mutation 

    for i=1:nummut 

        z=rand; 

        %ipopx(ceil(z*n)) = x(1) + z*(x(n)-x(1)); 

        %ipopy(ceil(z*n)) = y(1) + z*(y(n)-y(1)); 

        %ipopt(ceil(z*n)) = t(1) + z*(t(n)-t(1)); 

        %ipops(ceil(z*n)) = s(1) + z*(s(n)-s(1)); 

        ipopx(ceil(z*n)) = xdis(1) + z*x; 

        ipopy(ceil(z*n)) = ydis(1) + z*y; 

        ipopt(ceil(z*n)) = rot(1) + z*t; 

    end 

end  

ipopx,ipopy,ipopt 

for i=1:n, fpop(i) =-feval(f, ipopx(i),ipopy(i),ipopt(i)); end 

fpop 

ffinal=max(fpop); 

j=find(fpop==ffinal); 

       if isempty(j) 

            j=n; 

        else 

            j=j(1); 

        end 

%f,j 

xfinal=ipopx(j); 

yfinal=ipopy(j); 

tfinal=ipopt(j); 

%sfinal=ipops(j); 

xfinal,yfinal,tfinal,ffinal 

 

%load image 

IM1=imread('image.jpg'); 

IM2=imread('imager.jpg'); 

IM1=double(IM1); 

IM2=double(IM2); 

IM3=double(IM2); 

%figure(2); 

%imshow(IM2); 

%z1=imabsdiff(IM1,IM2); 

%x=[52.0707;44.7016;-13.5511;.5240] 

%sfinal=2; 

%IM2=imresize(IM2, sfinal(1), 'bilinear'); 

J=imrotate(double(IM2),tfinal(1),'bilinear'); %rotated cropped IMAGE2 
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[n1 n2]=size(IM1); 

[n3 n4]=size(J); 

   if xfinal>n3-n1 

        xfinal=n3-n1-1; 

        %IM1(1:n1, 1:n2)=255; 

    end 

     

    if yfinal>n4-n2 

       yfinal=n4-n2-1; 

        %IM1(1:n1, 1:n2)=255; 

    end 

     

    if xfinal<0 

        xfinal=0; 

        %IM1(1:n1, 1:n2)=255; 

    end 

     

    if yfinal<0 

        yfinal=0; 

        %IM1(1:n1, 1:n2)=255; 

    end 

     

position1=1:n1; 

position2=1:n2; 

xx=round(position1+xfinal); 

yy=round(position2+yfinal); 

 

IM2=round(J(xx, yy)); 

%IM2=imresize(IM2,.5, 'bilinear'); 

[n11 n22]=size(IM2); 

n11, n22 

%z2=imabsdiff(IM1,IM2); 

c3=imsubtract(IM2,IM1); 

%c2 

err=abs(sum(sum(c3))/(n11*n22)) 

%c2=corr2(IM1,IM2) 

subplot(1,3,1), imshow(IM1, [ ]), title('Image 1') 

subplot(1,3,2), imshow(IM3, [ ]), title('Image 2') 

subplot(1,3,3), imshow(IM2, [ ]), title('Registered Image 2') 

toc 

image_fit.m 

 
function f=image_fit1n(x,y,t) 

 

%load image 

IM1=imread('imager.jpg'); 

IM2=imread('image.jpg'); 

IM1=double(IM1); 

IM2=double(IM2); 

% s=2; 

%IM2=imresize(IM2, s, 'bilinear'); 

J=imrotate(double(IM2), t,'bilinear'); %rotated cropped IMAGE2 

J=abs(J)*255/max(max(J)); 

 

[n1 n2]=size(IM1); 
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[n3 n4]=size(J); 

%n1, n2,n3,n4 

 

if ((n3<n1)&(n44<n2)) 

    x=1:n3; 

    y=1:n4; 

    IM1=IM1(x,y); 

end 

if ((n3<n1)&(n4>=n2)) 

    x=1:n3; 

    y=1:n2; 

    IM1=IM1(x,y); 

end 

if ((n3>=n1)&(n4<n2)) 

    x=1:n1; 

    y=1:n4; 

    IM1=IM1(x,y); 

end 

%if n1>n3-x/2 

    %f=1000; 

    %message=strvcat('The scaling factor is too small.', 'Press Ctrl+C to 

stop.',... 

        %'Increase x0(4) and restart.'); 

    %disp('Press Ctrl+C to stop.') 

    %Errordlg(message) 

    %pause; 

%else 

[n1 n2]=size(IM1); 

[n3 n4]=size(J); 

    if x>n3-n1 

        x=n3-n1-1; 

        IM1(1:n1, 1:n2)=255; 

    end 

     

    if y>n4-n2 

       y=n4-n2-1; 

        IM1(1:n1, 1:n2)=255; 

    end 

     

    if x<0 

        x=0; 

        IM1(1:n1, 1:n2)=255; 

    end 

     

    if y<0 

        y=0; 

        IM1(1:n1, 1:n2)=255; 

    end 

   if ((x<=n3-n1)&(y<=n4-n2)) 

    xt=1:n1; 

    yt=1:n2; 

     

    xx=round(xt+x); 

    yy=round(yt+y); 
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    IM2=round(J(xx, yy)); % selecting part of IMAGE2 matching the size of 

IMAHE1 

   end 

   if ((x<=n3-n1)&(y>n4-n2)) 

    xt=1:n1; 

    yt=1:n2; 

     

    xx=round(xt+x); 

    yy=round(yt); 

     

    IM2=round(J(xx, yy)); % selecting part of IMAGE2 matching the size of 

IMAHE1 

   end 

   if ((x>n3-n1)&(y<=n4-n2)) 

    xt=1:n1; 

    yt=1:n2; 

     

    xx=round(xt); 

    yy=round(yt+y); 

     

     

    IM2=round(J(xx, yy)); % selecting part of IMAGE2 matching the size of 

IMAHE1 

   end 

   if ((x>n3-n1)&(y>n4-n2)) 

    xt=1:n1; 

    yt=1:n2; 

     

    xx=round(xt); 

    yy=round(yt); 

     

     

    IM2=round(J(xx, yy)); % selecting part of IMAGE2 matching the size of 

IMAHE1 

   end 

    

    rows=size(IM1,1); 

    cols=size(IM2,2); 

    N=256; 

     

    h=zeros(N,N); 

     

    for ii=1:rows;    %  col  

        for jj=1:cols;   %   rows 

            h(IM1(ii,jj)+1,IM2(ii,jj)+1)= h(IM1(ii,jj)+1,IM2(ii,jj)+1)+1; 

        end 

    end 

     

    [r,c] = size(h); 

    b= h./(r*c); % normalized joint histogram 

    y_marg=sum(b); %sum of the rows of normalized joint histogram 

    x_marg=sum(b');%sum of columns of normalized joint histogran 

     

    Hy=0; 

    for i=1:c;    %  col 
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        if( y_marg(i)==0 ) 

            %do nothing 

        else 

            Hy = Hy + -(y_marg(i)*(log2(y_marg(i)))); %marginal entropy for 

image 1 

        end 

    end 

     

    Hx=0; 

    for i=1:r;    %rows 

        if( x_marg(i)==0 ) 

            %do nothing 

        else 

            Hx = Hx + -(x_marg(i)*(log2(x_marg(i)))); %marginal entropy for 

image 2 

        end    

    end 

    h_xy = -sum(sum(b.*(log2(b+(b==0))))); % joint entropy 

     

    f=-(Hx+Hy-h_xy);% Mutual information 

    %x 

end 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2    Output 

     

  

6.2.1  Refrence Image 
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6.2.2  Input Image 
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7.  Conclusion and Future Work 
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Using MATLAB in the windows XP SP2 environment with 512 MB of RAM, the image 

registration program is executed and gives the registered image. The image is then to be applied 

for the fractal image compression. For the fractal image compression, all the techniques used for, 

the common problem is to anyhow reduce the searching time, which in this algorithm is done by 

reducing the size of the domain pool. The search time referred is the time taken to search the best 

domain block for each of the corresponding range block. So, for the sake of future work, the 

compression method can be made faster by reducing the domain pool using some different 

technique. 
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