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Abstract

Polylactide (PLA), the biodegradable synthetic aliphatic polyester, has been studied extensively for a number of appli-
cations. With potential applications PLA represents its prospective utility in a number of growing technologies such as
orthopedics, drug delivery, sutures, and scaffolds, and have further enhanced the interest of researchers in this novel area.
Renewable resource generated monomers possess better mechanical properties and easy processability by conventional
methods like thermoforming, injection, and blow molding with non-toxic degradation products, which have made it supe-
rior than the other conventional thermoplastics. In order to meet the different performance requirements, PLA can be syn-
thesised by various methods using different catalysts. In this review a collection of more than 100 catalysts for the synthesis
of PLA are mentioned, apart from this, efforts have been made to present an updated review on the various aspects of
polylactide.
� 2007 Elsevier Ltd. All rights reserved.
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Table 1
Current producers of PLA

Company name Location

Apack AG Germany
BASF Aktiengesellschaft Germany
Bio Invigor Taiwan
Birmingham Polymers USA, AL
Boeringer Ingelheim Germany
Dow Cargill USA, NB
Hycail B.V. Netherlands
Mitsui Chemicals Japan
Phusis France
Polysciences Inc. USA
Purac Biochem Netherlands
Shimadzu Corporation Japan
1. Introduction

Biodegradable polymers have increasing interest
over the past two decades in the fundamental
research as well as in the chemical industry. Biode-
gradable in this connection means hydrolysable at
temperatures up to 50 �C (e.g. in composting) over
a period of several months to one year. Non-toxic
degradation products are, of course, another impor-
tant prerequirements for any potential application.
The polyester and copolyesters of several a-, b-
and x-hydroxy acids have been used widely during
the past 20 years. Many aliphatic polyesters possess
these desirable properties, and among the numerous
polyesters studies so far, polylactide (PLA) has pro-
ven to be the most attractive and useful class of bio-
degradable polyesters. This prominent role has
several reasons. Lactic acid is easily obtained by a
biotechnological process (usually based on the
strain of a lactobacillus) from inexpensive raw mate-
rials [1]. PLA is a high strength and high modulus
thermoplastic, which can be easily processed by
conventional processing techniques used for ther-
moplastics like injection moulding, blow moulding,
thermoforming and extrusion. For large-scale pro-
duction, the polymer must possess adequate thermal
stability to prevent degradation and maintain
molecular weight and properties. Its degradation is
dependent on time, temperature, low-molecular-
weight impurities, and catalyst concentration [2].

A large number of investigations have been car-
ried out on PLA and its copolymers in biomedical
applications for resorbable medical implants [3–6]
in the shape of rod, plate, screw, fibre, sheet, rod,
sponge, beads for bone and tissue engineering,
microsphere for drug delivery system [7], films or
foils for wound treatment and for applications in
agriculture like mulch films, slow release of pesti-
cides and fertilisers. When PLA is used for orthopae-
dic and oral surgeries as fixation of augmentation
devices, PLA of high molecular weight is needed to
produce devices of high mechanical strength. On
the contrary, such high molecular weights are not
necessary, when it is used as a carrier for drug deliv-
ery systems. In such pharmaceuticals applications,
lactide copolymers of low molecular weights are gen-
erally preferred than high molecular weight, since
shorter degradation time results in better release
property. PLA degrades by simple hydrolysis of
the ester bond and it does not require the presence
of enzymes to catalyze hydrolysis. The degradation
products of PLA are non-toxic to the living organ-
isms [8], since lactic acid itself occurs in the metabo-
lism. The major producers of PLA in the world are
listed in Table 1.
2. Synthesis

2.1. Raw material

The monomer, i.e. lactic acid, can be synthesised
by biological and chemical methods. However, bio-
logical method is generally preferred. It is based on
the fermentation of starch and other polysaccha-
rides, which are easily available from corn, sugar
beet, sugar cane, potatoes, and other biomasses.
The majority of the world’s commercially produced
lactic acid is by the bacterial fermentation. During
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the fermentation process, the conditions like pH,
temperature, atmosphere and in some cases the agi-
tation are monitored closely to get the maximum
yield with the purity of material.

2.2. Structure and property

Lactic acid (2-hydroxy propanoic acid) is the
simplest hydroxy acid with an asymmetric carbon
atom and exists in two optically active configura-
tions. Both D- and L-enantiomers are produced in
bacterial systems, thus lactic acid can be obtained
by fermentation, selecting suitable microorganism,
e.g. homo-lactic organisms such as various opti-
mised or modified strains of Lactobacilli are used
to produce stereoregular L-lactic acid. However, lac-
tic acid obtained by the chemical process is a race-
mic mixture of D- and L-isomers (see Fig. 1).

However, the nomenclature of PLA prepared by
different routes is full of contradictions in the litera-
ture, but generally polymers derived from lactic acid
by polycondensation are generally referred to as
poly(lactic acid) and the ones prepared from lactide
by ring opening polymerisation as polylactide. Both
types are generally referred to as PLA.
CH3
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H

OH

H
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OH

CH3

OH

L - Lactic acid                   D - Lactic acid

Fig. 1. Different isomeric forms of lactic acid.

Fig. 2. Various routes of
2.3. Methods of synthesis

The polymerisation of PLA requires the mono-
mer of high purity, since the impurities interferes
with the course of reaction and reduces the quality
of polymer. Functionalities like hydroxyl and car-
boxylic, water, etc. can be considered as impurities
[9]. Hydroxyl impurities effect through the reactions
of initiator formation, chain transfer, and transest-
erfication resulting in an increase in the rate of poly-
merisation and lowering of molecular weight along
with the broadening molecular weight distribution
of the final polymer. Whereas, the carboxylic impu-
rities affect through a deactivation reaction by mak-
ing complex with the catalyst and reduce the rate of
polymerisation. However, it does not show any con-
siderable effect on the molecular weight of the final
polymer. Generally, there are four methods used for
the synthesis of PLA (see Fig. 2).
2.3.1. Direct polycondensation polymerisation

Lactic acid is polymerised in the presence of a
catalyst at reduced pressure. The polymer obtained
has a low molecular weight, because it is hard to
remove water completely from the highly viscous
reaction mixture; therefore a polymer of a molecu-
lar weight of a few ten thousands is obtained. The
polymer of low molecular weight is the main disad-
vantage of direct polycondensation polymerisation
and it restricts its use. Moreover, the streoregularity
cannot be controlled during the course of polymer-
isation. The polymer thus possesses inferior
mechanical properties. So, this method is employed
only if the polymer of low molecular weight is
synthesis of PLA.
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required. However, a polymer of high molecular
weight can be obtained by the use of chain coupling
agents. The coupling agent joins the polymer chain
of low molecular weight to the chain of high molec-
ular weight. Since, the self-condensation of lactic
acid results in a low-molecular-weight polymer with
an equimolar concentration of hydroxyl and car-
boxyl end-groups. Chain-coupling agents preferen-
tially react with either the hydroxyl or carboxyl
end groups of the polymer. With the use of a bi/
multi-functional co-monomer, PLA can be modified
to all hydroxyl of carboxyl end group. Hydroxyl ter-
minated PLA can be synthesised by the polymerisa-
tion of lactic acid in the presence of a small amount
of bi/multi-functional hydroxyl compounds such as
2-butene 1,4-diol, glycerol, or 1,4-butanediol, which
leads to a preferential hydroxyl end-groups. This
same concept can be used to synthesise carboxyl ter-
minated PLA by using bi/multifunctional carbox-
ylic acids such as maleic, succinic, adipic, or
itaconic acid, leading to all carboxyl-end functional
polymer [10–12]. PLA can also be post-reacted with
acid anhydrides such as maleic or succinic acids to
convert the hydroxyl group to a carboxylic end-
group [12]. The reaction of bi/multi-functional
PLA with a suitable coupling agent like di/polyacids
or isocynates to form copolyester or poly(lactic
acid-co-urethane), respectively, results in an
increase in the length of the polymer chain.

2.3.1.1. Azeotropic condensation polymerisation. High
molecular weight PLA can also be synthesised azeo-
tropically. In this approach, the problem of the
removal of water is overcome by manipulating the
equilibrium between a monomer and a polymer in
an organic solvent and thus lactic acid is polycon-
densed directly into a polymer of a high molar mass.
Ajioka et al. [13–15] synthesised PLA of high molec-
ular weight by a one-step azeotropic condensation
polymerisation of lactic acid by using an appropri-
ate azeotropic solvent. It is a solution polymerisa-
tion technique, using a high activity catalyst and a
low boiling organic solvent. Water as a by-product
is removed azeotropically, whereas solvent is dried
and recycled back in the reaction. This polymerisa-
tion technique allows a reaction temperature to be
chosen below the melting point of polymer, and
thus efficiently prevents depolymerisation and rac-
emisation during polymerisation. It has been
reported that a highly pure PLA with a molecular
weight of upto 300,000 can be produced by this
method [13]. Other research groups have also syn-
thesised PLA by Direct dehydration polycondensa-
tion [16–19].

2.3.1.2. Solid state polymerisation (SSP). This pro-
cess involves heating a semi-crystalline, solid pre-
polymer (of relatively low molecular weight) in
powder, pellet, chip or fibre form up to a tempera-
ture below the melting temperature with the simul-
taneous removal of by-products from the surface
of the material either (by volatilising) under reduced
pressure or with a carrier, for example, blowing
inert gas [20]. Inert gas in SSP serves to remove
the condensate from the reaction and inhibits poly-
mer oxidation. This reaction essentially takes place
in the amorphous region of the polymer, where all
the reactive end groups reside. Therefore, the solid
state polymerisation reaction has to be performed
at a temperature above the glass transition temper-
ature (to allow mobility of the end groups to react)
and below the melting temperature [21]. Since the
solid state reaction actually starts at much lower
temperatures, compared to molten or solution state,
the reaction temperature can range from sufficiently
below the melting temperature to just 5–15 �C
below Tm [22]. But the temperature of SSP for
monomers must be high enough to facilitate chain
growth but not so high that it leads to partial melt-
ing with simultaneous sticking, cyclisation or other
side reactions However, the time needed to reach a
particular molecular weight is generally much
longer than that in melt or solution, yet very high
molecular weights can be achieved. In ordinary melt
polycondensation of lactic acid, high temperature
and high vacuum induce not only dehydration,
but also favours back biting (inter and intramolecu-
lar transesterification) reactions, resulting in the
decomposition of low molecular polymer into lac-
tide and prevent the growing chain of PLA (see
Fig. 3).

The advantages of SSP include low operating
temperatures, which control over the side reactions
as well as thermal, hydrolytic, oxidative degrada-
tions along with reduced discoloration and degrada-
tion of the product. SSP polymers often have
improved properties, because monomer cyclisation
and other side reactions are limited. There is practi-
cally no environmental pollution, because no sol-
vent is required.

2.3.2. Ring opening polymerisation (ROP)

It was first demonstrated by Carothers in 1932
[23]. But the polymer of high molecular weight
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was not obtained until improved polymerisation
technique was developed. The polymer prepared
by ROP is the most commonly studied one due to
the possibility of accurate control of chemistry
and thus varying the properties of the resulting
polymers in a more controlled manner, which
broadens the application fields (see Fig. 4).

This method is usually employed for the synthe-
sis of the polymer of high molecular weight with a
high degree of stereo-regulation. By this method,
polylactide is made by the polymerisation of their
respective cyclic dimmers, i.e. lactide. Lactide is pre-
pared from thermal cracking of low molecular
weight PLA oligomer at high temperature and low
pressure in the presence of catalyst. Lactide (3,6
dimethyl 1,4-dioxane 2,5-dione) is a six member cyc-
lic dimmer. Since lactic acid is found in two streo-
isomeric forms therefore lactide is formed in three
streoisomeric forms viz. DD-, LL- and DL-lactides
(Fig. 5). The crude lactide contains impurities like
water, lactic acid and oligomers. These impurities
OH
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can interfere with the polymerisation reaction lead-
ing to the formation of polymer of low molecular
weight with a higher degree of racemisation. Thus,
the crystalline lactide is highly purified before the
polymerisation. The ring-opening polymerisations
of lactides may be classified by their four different
reaction mechanisms and initiator types: anionic
polymerisations, cationic polymerisations, coordi-
nation–insertion mechanisms. The first three are
most prevalent and will be discussed here.

2.3.2.1. Anionic polymerisations. The anionic ring
opening polymerisation is initiated when the nucle-
ophilic anion of the initiator attacks the carbonyl
group of the lactide, resulting in the cleavage of
the carbonyl carbon and the endocyclic oxygen
bond. This oxygen becomes a new anion, which
continues to propagate [24,25], but highly nucleo-
philic initiators are so basic that they deprotonate
the monomer and this leads to the racemisation.
The highly active catalysts at high temperature
CH3
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H CH3
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Fig. 6. Back biting reaction.
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result in racemisation, back biting reaction (see
Fig. 6) and other side reactions, which hinder the
chain propagation. Therefore, it is very difficult to
obtain the polymer of high molecular weight from
this method. Example of anionic ring opening poly-
merisation initiators is alkali metal alkoxides (see
Fig. 7).

2.3.2.2. Cationic polymerisations. Catalyst for the
cationic ring opening polymerisation can be carbe-
nium ion donors and a few strong acids such as tri-
ethyloxonium tetrafluoroborate, borontrifluoride,
and trifluoroacetic acid [26]. The initiation step of
cationic polymerisation occurs when the exocyclic
oxygen of one of the lactide carbonyls is either
Fig. 7. Anionic ring open

Fig. 8. Cationic ring open
alkylated or protonated by the initiator, causing
the resulting O–CH bond to become positively
charged. Nucleophilic attack by a second monomer
breaks this bond to create another electrophilic car-
benium ion. The propagation step of this polymeri-
sation repeats as nucleophilic attack by additional
monomers continues until the polymerisation is ter-
minated by a monofunctional nucleophile like
water. In cationic polymerisation high temperature
caused racemisation, since the second monomer
attack at chiral centre propagating chain. However,
the racemisation can be minimised at temperature
>50 �C but at this temperature the rate of reaction
is very slow [27] and does not yield high molecular
weight polymer (see Fig. 8).
ing polymerisation.

ing polymerisation.



Fig. 10. Tin octoate.

Fig. 9. Coordination insertion ring opening polymerisation.
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2.3.2.3. Coordination–insertion mechanisms. It is the
most widely studied method for the synthesis of
high molecular weight PLA. In this method, cata-
lysts like metal alkoxide are used. These metal cata-
lysts contain free p or d orbitals of a favourable
energy (Mg, Sn, Ti, Zr, Zn alkoxides), which possess
a covalent bond between metal atom and oxygen
atom and behave like weak Lewis acids [28]. The
first step of the coordination–insertion mechanisms
occurs when one of the exocyclic oxygens of the lac-
tide become temporarily coordinated with the metal
atom of the initiator. This coordination increases
the nucleophilicity of the alkoxide part of the initia-
tor as well as the electrophilicity of the lactide car-
bonyl group. In the second step, the acyl–oxygen
bond (between the carbonyl group and the endocy-
clic oxygen) of the lactide is broken and the lactide
chain produced is inserted into the metal–oxygen
bond of the initiator [25] [28]. The polymerisation
continues as additional lactide molecules are opened
and inserted into the bond between the metal atom
and its adjacent oxygen atom, while the other end,
i.e. the alkoxide end of the initiator, becomes a dead
chain end. By varying, the polymerisation variables
allow for the control of molecular weights over a
broad range. A high molecular weight is obtained
by this method (see Fig. 9).

A large number of catalysts have been studied for
the ring opening polymerisation of lactide. The
effects on the properties like molecular weight,
molecular weight distribution and racemisation of
the PLA obtained have been mainly studied. The
different catalyst studied for the synthesis of PLA
consists of different metals and their salts.
2.4. Catalysts for the polymerisation of lactide

The catalysts used mainly consist of metal pow-
ders, lewis acids, lewis bases, organometallic com-
pounds and different salts of metals. However,
organometallic compounds are very effective in the
synthesis of high molecular weight PLA particularly
alkylmetals and metal halides, oxides, carboxylates
and alkoxides. Metal halides, oxides and carboxy-
lates would act as lewis acid catalysts in ROP and
are actually initiated with a hydroxyl containing
compound such as water or x-hydroxy acid. A large
number of catalysts have been studied for the poly-
merisation of lactide for various applications,
including biomedical applications, such as iron
[29], Sn(Oct)2 [30] SnCl4, Sn(C6H6)4, Zinc lactate
[(n-C4H9O2)AlO]2Zn [31–33]. Organic compounds
like crown ethers are found very effective to the syn-
thesis of PLA with high optical purity and molecu-
lar weight, and the effect of crown ether was studied
on the synthesis of PLA using dibutylmagnesium or



Table 2
Catalysts used for the synthesis of PLA

S. no. Catalyst Authors Reference

1 Cationic (N-heterocyclic carbene)silver Samantaray et al. [53]
2 Aluminium triflate Kunioka et al. [54]
3 Lithium alkoxide Kricheldorf et al. [55]
4 Aluminium triflate Kunioka et al. [56]
5 Alkoxide cationic polymerisation Kricheldorf et al. [57]
6 Cationic (N-heterocyclic carbene)silver Samantaray et al. [58]
7 Tetrakis Sn(IV) alkoxides Kalmi et al. [59]
8 Zinc aryloxides Huang et al. [60]
9 Calcium methoxide Zhong et al. [61]

10 Potassium t-butoxide and its 18-Crown Sipos et al. [62]
11 Titanium alkoxide Kim et al. [63,64]
12 Lanthanide alkoxide Spassky et al. [65]
13 Tributyl tin methoxide (Bu3SnOMe) Kricheldorf et al. [63]
14 Dibutyltin dimethoxide (Bu2Sn(OME)2)) Kricheldorf et al. [66]
15 Oxyethyl methacrylate aluminium trialkoxides Eguiburu et al. [35]
16 Aluminium isopropoxide Philippe et al. [67]

Dubois et al. [68]
Philippe et al. [69]

17 Magnesium and zinc alkoxides Wu et al. [70]
18 Dibutyltin dimethoxide Stassin et al. [71]
19 Aluminium alkoxide Tina et al. [72]
20 Anionic iron(II) alkoxides McGuinness et al. [73]
21 Ferric alkoxide Wang et al. [74]
22 Tin(II) butoxide Kowalski et al. [75]
23 (2-Methacryloxy) ethyloxy-aluminum trialkoxides Eguiburu et al. [76]
24 Cyclic tin alkoxide Stridsberg et al. [36]
25 Titanium biphenoxy-alkoxide Umare et al. [77]
26 Yttrium tris-(isopropoxyethoxide) Simic et al. [43]
27 Bis(trimethyl triazacyclohexane) peraseodymium triflate Kohn et al. [40]
28 Complexes of Cu, Zn, Co and Ni Shiff base Sun et al. [39]
29 Lithium diisopropylamide (LDA) Luximon et al. [38]
30 Butyl lithium and butylmagnesium Kasperczyk et al. [37]
31 Lithium chloride Xie et al. [34]

Xie et al. [34]
32 Dibutylmagnesium and butylmagnesium chloride Kricheldorf et al. [33]
33 Tin octoate (tin 2-ethylhexanoate) Zhang et al. [9]

Krichelforf et al. [78]
Umare et al. [79]
Leenslag et al. [29]
Leenslag et al. [80]
Vasanthakumeri et al. [47]
Nijenkuis et al. [48]
Kricheldorf et al. [49]

34 Stannous(II) trifluoromethane sulfonate Moller et al. [81]
35 Triphenylphosphine and 2-ethylhexanoic acid Degee et al. [82]

Tin(II) salt
36 Stannous octoate and zinc-initiated Schwach et al. [83]

Polymerisation
37 Soluble tin(II) macroinitiator adducts Storey et al. [84]

Metals

38 Zinc-bis(2,2-dimethyl-3,5-heptanedionato-O,O0) Nijenhuis et al. [85]
39 Zirconium(IV) acetylacetonate Dobrzynski et al. [86]
40 Iron Stolt et al. [28]
41 Zn, Pb, Sb, Bi, salts Krichelforf et al. [87]
42 Phosphines (nucleophilic organic catalysts) Myers et al. [88]
43 Organoyttrium complexes Yi Yang et al. [89]
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Table 2 (continued)

S. no. Catalyst Authors Reference

44 Zn salts and Zn(II) L-lactate Krichelforf et al. [32]
45 Aluminum/Schiff base Tang et al. [90]
46 [5-Cl-Salen]Alome Cameron et al. [91]
47 Influence of various metal salt (Plzm or not) Krichelforf et al. [92]
48 Aluminium Schoff’s base complexes Jhurry et al. [93]
49 Yttrium(III) arylamidinates Aubrecht et al. [94]
50 Zirconium and hafnium aryloxide Hsieh et al. [95]
51 Gold(I) Ray et al. [96]
52 Yttrium(III) Chamberlian et al. [97]

Drysdale et al. [41]
McLain et al. [42]

53 Zn lactate Schwach et al. [98]
54 Yttrocene complexes Beckerle et al. [99]
55 Zinc amino acid salts Kricheldorf et al. [100]
56 Guanidinium Li et al. [101]
57 Zinc(II), complexes Dumitrescu et al. [102]
58 Samarium(III) complexes Dumitrescu et al. [102]
59 Tin(II) complexes Dumitrescu et al. [102]
60 Ferrous acetate Stolt et al. [103]
61 Strontium-based initiator Tang et al. [104]
62 Germanium Finne et al. [105]
63 Tetraphenyltin Kohn et al. [106]
64 Fe(II) lactate and Fe(II) salts Kricheldorf et al. [107]
65 Zinc metal and zinc lactate Schwach et al. [108]
66 Organomagnesium complexes Chivers et al. [109]
67 Bimetallic zinc Bukhaltsev et al. [110]
68 Yttrium(III) complexes Chamberlain et al. [111]
69 Aluminum isopropoxide trimer or tetramer Kowalski et al. [112]
70 Zn and Al Bero et al. [113]
71 Yttrium tris(acetylacetonate) Ford et al. [125]
72 Yttrium tris (2,2,6,6-tetramethylheptane dionate) Ford et al. [125]
73 Scandium tris (2,2,6,6-tetramethylheptane dionate) Ford et al. [125]
74 Yttrium octoate Ford et al. [125]
75 Scandium tris(hexafluoroacac) Ford et al. [125]
76 Yttrium bis(2,2,6,6-tetramethylheptane dionato)dimethylaminoethoxide Drysdale et al. [126]
77 Yttrium bis(2,2,6,6-tetramethylheptane dionato)isopropoxide Drysdale et al. [126]
78 Tetra(phenylethynyl)tin Lahcini et al. [114]
79 Sodium bis(2-methoxyethoxy)aluminum hydride (Red-Al) Li et al. [115]
80 Dimeric aluminum chloride complexes Doherty et al. [116]

Rare earths

81 Rare earth 2,6-dimethylaryloxide Zhang et al. [117]
82 Lanthanum isopropoxide Save et al. [118]

Lanthanum Isopropoxide [119]
83 Rare earth coordination catalyst for polymerisation Zhang et al. [120]
84 Rare earth tris(4-tert-butylphenolate)s Yu et al. [121]
85 Rare-earth tris(4-tert-butylphenolate) Yu et al. [122]
86 Chiral Schiff’s base/aluminium Spassky et al. [123]
87 Organoacid rare earth compounds Deng et al. [124]
88 Lanthanum tris(acetylacetonate) Ford et al. [125]
89 Lanthanum bis(2,2,6,6-tetramethylheptane dionate) (2-ethylhexanoate) Ford et al. [125]
90 Lanthanum tris(2,2,6-trimethyloctan-3,5-dionate) Ford et al. [125]
91 Lanthanum tris(t-butyl-acetoacetate) Ford et al. [125]
92 La[MeC(O)CHC(O)Me]2(2-ethylbutyrate) Ford et al. [125]
93 La[Me3CC(O)CHC(O)CMe3](2-ethylhexanoate)2 Ford et al. [125]
94 La[Me3CC(O)CHC(O)CMe3]2(2-ethylhexanoate) Ford et al. [125]
95 Anhydrous lanthanum tris(acac) Ford et al. [125]
96 Lanthanum tris(acac) Æ 3H2O Ford et al. [125]

(continued on next page)
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Table 2 (continued)

S. no. Catalyst Authors Reference

97 [Lanthanum bis(2,2,6,6-tetramethylheptane dionato) isopropoxide Drysdale et al. [126]
98 Tris(d,d-dicampholylmethanato) europium Ford et al. [125]
99 Cyclopentadienyl rare-earth complex Tao et al. [127]

Miscellaneous

100 Lipase-catalyzed Matsumura et al. [128]
Dong et al. [129]

101 Bismuth tris(2,2,6,6-tetramethylheptane dionate) Ford et al. [125]
102 Cerium tris(trifluoroacetyl acetonate) Ford et al. [125]
103 Praseodymium tris(hexafluoroacac) Ford et al. [125]
104 Di-iodo-samarium-1-benzyl-n-octyloxide Drysdale et al. [126]
105 Microwaves Zhang et al. [130]
106 Magnesium aryloxides Shueh et al. [131]
107 Phosphorous compound Yasuhiro et al. [132]
108 Titanatranes Youngjo Kim et al. [133]
109 Tetracoordinated aluminum complexes Emig et al. [134]
110 Creatinine Wang et al. [135]
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butylmagnesium chloride [34]. It was found that
PLA of molecular weight in the order of 3 · 105

with almost complete optical purity was obtained.
When lithium chloride [35] was used with ethylene
glycol (EG) and a-D-glucopyranoside (MGlc) as ini-
tiator, the polymer of higher molecular weight was
obtained. Different research groups have worked
on a number of catalysts such as oxyethyl methacry-
late aluminium trialkoxides [36], cyclic tin alkoxide
[37], butyl lithium and butylmagnesium [38], lithium
diisopropylamide (LDA) [39], complexes of Cu, Zn,
Co and Ni shiff base [40], bis(trimethyl triazacyclo-
hexane) peraseodymium triflate [41], yttrium
[42,43], and yttrium tris-(isopropoxyethoxide) has
been found to be very reactive initiators for the
polymerisation of (D,L)-lactide in dichloromethane
solution [44]. Aluminium alkoxides proceed through
the coordination/insertion mechanism, and are
reported to give controllable molecular weights with
narrow distributions and minimum racemisation
[45,46]. It was found that there was no transesterifi-
cation at temperatures less than 150 �C, which
yields polymers with narrow molecular weight dis-
tribution [28]. The standard catalyst for the synthe-
sis of high molecular weight polylactides is Sn(II) (2-
ethyl-hexanoate) [47–49]. This catalyst has several
advantages over the others, such as solubility in
organic solvents and molten lactide, stability on
storage, and free polymerisation upto 180 �C.
Moreover, it has been approved by FDA (Food
and Drug Administration) and therefore it is getting
attention for the synthesis of polymer for food
packaging and biomedical applications (see Fig. 10).
Several rare earth compounds have also been
studied for the ring opening polymerisation of lac-
tide like rare earth phenyl compounds such as tri-
phenyl yttrium, triphenyl neodymium and
triphenyl samarium [50]. It was observed that when
triphenyl yttrium was used as catalyst, a higher
molecular weight polymer was obtained at lower
monomer/initiator ratio. A co-ordination–deproto-
nation–insertion mechanism was suggested when
2-methyl phenyl samarium [51] was used as a cata-
lyst and acyl–oxygen cleavage mechanism was sug-
gested in the case of lanthanide tris (2,4,6-
trimethylphenolate)s [52] as a catalyst (see Table 2).

3. Properties of PLA

Polylactide is well known for its good process-
ability, biocompatibility; biodegradability (mainly
by simple hydrolysis). PLA can be quite different
in chemical and physical properties because of the
presence of a pendent methyl group on the alpha
carbon atom. This structure causes chirality at a
carbon of lactic acid and thus L, D and DL isomers
are possible. Poly(L-lactic acid), poly(D-lactic acid)
and poly(DL-lactic acid) are synthesised from L(�),
D(+) and DL-lactic acid monomers, respectively. A
wide range of degradation rates, physical and
mechanical properties, can be achieved varying its
molecular weights and composition in its
copolymers.

PLLA has a melting point of 170–183 �C and a
glass-transition temperature of 55–65 �C [132–138]
while PDLLA has (Tg) 59 �C [139]. Density of



Table 3
Mechanical properties of PLA (NatureworkTM Cargill Dow)

2002D 2100D PLA resin

Specific gravity 1.24 D792 1.30 D792 1.24 D792
Melt index, g/10 min (190�C/2.16 K) 4–8 D1238 5–15 D1238 10–30 D1238
Clarity Transparent Opaque –
Tensile strength at break psi (MPa) 7700 (53) D882 8100(56) D638 7000 (48) D638
Tensile yield strength, psi (MPa) 8700 (60) D882 9000 (62) D638 –
Tensile modulus, kpsi (GPa) 500 (3.5) D882 500(3.5) D638 –
Tensile elongation, % 6.0 D882 3.0 D638 2.5 D638
Notched izod impact, ft-lb/in (J/m) 0.24 (12.81) D256 0.37 (19.8) D638 0.3 (0.16) D256
Shrinkage Silimar to PET – –
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PLLA is 1.25–1.29 g/cc and for PDLLA is 1.27 g/cc
[140]. The solubility of lactic acid based polymer is
highly dependent on the molar mass, degree of
crystallinity and other co-monomers present in the
polymer. Good solvents for enatiomerically pure
poly(L-lactide) are chlorinated or fluorinated organic
solvents, dioxane, dioxolane, furan and for poly(DL-
lactide), in addition to the previously mentioned
ones are many other organic solvents like acetone,
pyridine, ethyl lactate, tetrahydrofuran, xylene, ethyl
acetate, dimethylsulfoxide, N,N-dimethylformamide
and methyl ethyl ketone. Typical non-solvent for
lactic acid based polymers is water, alcohols like
methanol, ethanol, propylene glycol and unsubsti-
tuted hydrocarbons like hexane, heptane, etc.

PLLA is crystalline whereas PDLLA is com-
pletely amorphous biodegradable polymer. Because
of the crystallinity, poly(L-lactide) of same molecu-
lar weight has better mechanical properties than
poly(DL-lactide). PLLA has more ordered and com-
pact structure and hence it has better mechanical
properties and longer service time. However, the
annealed PLLA has better mechanical properties
than un-annealed PLLA [141], because of higher
degree of crystallinity resulted by annealing.
Whereas degree of crystallinity depends on many
Table 4
Mechanical properties of PLA (LACEA Mitsui Chemicals)

PLA

Standard

Tensile strength [MPa] 68
Elongation at break [%] 4
Flexural strength [MPa] 98
Flexural modulus [MPa] 3700
Izod impact [J m�1] 29
Vicat softening point [�C] 58
Density [kg m�3] 1.26

a Impact resistant grads.
factors, such as molecular weight, thermal and
processing history, and the temperature and time
of annealing treatments. The calculated values for
the heat of fusion of 100% crystalline PLLA have
been reported 135–203 j/g [142,143] in different
literature.

The mechanical properties of PLA can be varied
to a large extent ranging from soft, elastic plastic to
stiff and high strength plastic. With the increase of
molecular weight the mechanical properties also
increase. With the increase of molecular weight of
PLLA from 23k to 67k, flexural strength increased
from 64 to 106 MPa but the tensile strength remains
the same at 59 MPa [141]. In the case of poly(DL-lac-
tide) when molecular weight is increased from 47.5k
to 114k [141] tensile and flexural strength increased
49–53 MPa and 84–88 MPa, respectively. The vari-
ous properties of PLA are listed in Tables 3 and 4
[144].

Since the mechanical properties of PLA are
mainly dependent on its molecular weight, there
are several methods to determine its molecular
weight like GPC, light scattering, osmometery,
etc., but the simplest one is the viscosity measure-
ment. The viscosity molecular weight of PLA is
found by using Mark-Hauwink equation
Commodity plastics

IRGa GPPS PET PBT [145]

44 45 57 56
3 3 300 –

76 76 88 –
4700 3000 2700 2340

43 21 59 53
114 98 79 170

1.48 1.05 1.4 –



Fig. 11. Life cycle of PLA.
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½g� ¼ K �Ma
w

where ‘M 0
w is the molecular weight of the polymer,

‘K’ and ‘a’ are constants for a particular polymer/
solvent/temperature system. Mark-Hauwink equa-
tion for the different conditions are given as follows:

When chloroform was used as a solvent at 25 �C
[146]

½g� ¼ 5:45� 10�4M0:73
w polyðl-lactideÞ

½g� ¼ 2:21� 10�4M0:77
w polyðdl-lactideÞ

When chloroform was used as a solvent at 20 �C
[147]

½g� ¼ 7:4� 10�5M0:87
w polyðl-lactideÞ

½g� ¼ 1:32� 10�3M0:58
w polyðdl-lactideÞ

When THF was used as a solvent at 37 �C [51].

½g� ¼ 1:04� 10�4M0:75
w polyðdl-lactideÞ

When ethyl acetate was used as a solvent at 25 �C
[148]

½g� ¼ 1:63� 10�4M0:73
w polyðdl-lactideÞ

½g� ¼ 1:58� 10�4M0:78
w polyðdl-lactideÞ
3.1. Degradation

PLA is water insoluble when its molecular weight
is sufficiently high. But when PLA is subjected to
degradation, water penetrates the bulk of the poly-
mer matrix and hydrolysis on the ester group takes
place preferentially by attacking at the chemical
bonds in the amorphous phase, converting long
polymer chains into shorter one, ultimately to low
molecular weight water soluble oligomers and
monomers [138]. Water soluble oligomers thus
formed escape from the matrix into the surrounding
aqueous medium. Degradation causes an increase in
the number of carboxylic chain ends, which are
known to autocatalyse the ester hydrolysis. As the
aging time increases, soluble oligomers which are
close to the surface can leach out before total degra-
dation, whereas those which are located well inside
the matrix remain entrapped and contribute totally
to the autocatalytic effect. The hydrolysis mecha-
nisms and behaviours of PLA are affected by
numerous factors, including the materials and the
hydrolysis media. In polylactides the diffusion coef-
ficients of the soluble oligomers depend primarily on
factors like molar mass, degree of swelling of the
matrix, macromolecular conformation, rigidity,
chemical structure, molecular weight, molecular
weight distribution impurity/monomer residue, ste-
reochemistry, chain mobility and crystallinity
[149]. The crystalline domain is more resistant than
amorphous, to biodegradation. The hydrophobic
and hydrophilic characters of the polymeric chain
noticeably affect the biodegradation process. The
release of the soluble carboxyl-terminated oligomers
depends on their solubility in the surrounding aque-
ous medium and thus factors like pH, ionic
strength, temperature and buffering capacity
become important (see Fig. 11).

A number of properties of polymer deteriorate
during degradation, e.g. molecular weight, molecu-
lar weight distribution, surface morphology,
mechanical properties crystallinity, etc.
3.1.1. In vitro studies

Different research groups have studied the degra-
dation of PLA under various environments like in
controlled environment in soil and in microbial cul-
ture of Fusarium moniliforme and Pseudomanas put-

ida [150] in alkaline medium [151] in sea water [152],
compost microorganisms [153], hydrolytic degrada-
tion [154–159] in buffer at pH 6.5 [160] with lauric
acid [161], electron beam [162] enzymatic degrada-
tion [163]. However, the most commonly used
method, for studying the biodegradation for medi-
cal application, is the degradation in phosphate buf-
fer saline solution at 37 �C. In this method, the
samples of equal size and weight are placed in a deg-
radation medium (i.e. pH 7.4 phosphate buffer)



Table 5
Degradation of PLA

Degradation type Authors Reference

Soil, microbial culture of Fusarium

moniliforme and Pseudomanas

putida

Torres et al. [196]

Alkaline medium Cam et al. [197]
Compost microorganisms Hakkarainen [198]
Sea water Tsuji et al. [199]
Hydrolytic degradation Grizzi et al. [200]

Tsuji et al. [201,202]
Li et al. [203]
Duek et al. [204]
Wiggins
et al.

[205]

Buffer at pH 6.5 Laitinen
et al.

[206]

Lauric acid Annette
et al.

[207]

Electron beam Loo et al. [208]
Enzymatic degradation Kurokawa

et al.
[209]

A.P. Gupta, V. Kumar / European Polymer Journal 43 (2007) 4053–4074 4065
equal to 100 times the sample weight, and all the
flasks are allowed to swing at same temperature at
37 �C. After predetermined degradation period,
samples are taken out, washed many times with dis-
tilled water, and vacuum-dried for 1–2 weeks at
room temperature until a constant weight is
obtained (see Table 5).

Weight loss and water absorption of samples are
evaluated by the percentage of weight loss (WL%)
and water absorbed (WA%) is deduced from the
equation

W L% ¼ ðW 0 � W rÞ
W 0

� 100

where W0, and Wr are the initial weight and the
residual weight of the same carefully dried, partially
degraded specimen, respectively. The amounts of
absorbed water are deduced from the equation

W A% ¼ ðW s � W rÞ
W r

� 100

where Ws is the weight of the swollen specimen after
wiping the surface with paper.

3.2. Blends

PLA possesses excellent mechanical properties
and can be slowly broken down into non-toxic
metabolites by bio-organisms. The desired proper-
ties to be a biodegradable polymer include the deg-
radation kinetics, initial mechanical properties, and
a balanced course of time between the degradation
and its strength change, which are dependant on
the application part of the biodegradable polymer
and the environment to which it was exposed during
or after their practical use. However, the ranges of
its application are somewhat limited because of
the difficulty in controlling the hydrolysis rate, poor
hydrophilicity as well as the high rigidity and crys-
tallinity. To overcome these problems; various
blends of PLA with other biodegradable polymers
have been studied, e.g. starch, chitosan, polyethyl-
ene glycol (PEG), poly(e-caorolactone) (PCL), etc.
Blending of starch, which is an abundant and cheap
biopolymer with PLA, can reduce the cost for the
resulting blend, but the mechanical properties of
the blend decrease significantly with increasing
starch content and the moisture. PLA is a brittle
material with low possible elongation, and the addi-
tion of starch into such an already brittle material
results in even more brittle material. Also, the blend
of plasticised PLA with thermoplastic starch shows
a small degree of compatibility with the decrease in
mechanical properties drastically [164]. The blend
shows the similar behaviour with hydrophobised
starch [165]. Poly(vinyl alcohol) (PVOH) [166] has
been used to enhance compatibility and improve
the mechanical properties of PLA-starch blend; at
a concentration above 30 wt% it forms a continuous
phase with simultaneous increase in the tensile and
impact strengths. Other compatibilising agents like
methylenediphenyl diisocyanate (MDI) have also
been used to improve the compatibilisation of
PLA/starch blends. Addition of 0.5% of MDI
improves the interfacial adhesion of the blend with
higher tensile and greater elongation. At 45 wt%
of starch, the blends showed smooth structure and
highest tensile strength and percentage elongation
[167]. However, the moisture in starch reduces the
compatibilisation of the blend [168]. Compatible
blends of PLA starch upto 50% can also be obtained
by reactive blending; using 1% reactive agent results
in blend with 1000–1400 N/cm2 of tensile strength
and about 40–80% elongation [169].

Chitosan is considered to be one of the most
promising biopolymer used in tissue engineering,
wound healing, drug delivery agents, blood anti-
coagulants, scaffolds, burn treatment. A biopolymer
should have properties like biodegradability, bio-
compatibility, antibacterial property, and it should
neither cause inflammation to human tissue nor
induce antibody from the immune system [170].
Because of these properties, it has been used with
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PLA. PLA and its copolymers have high initial
strengths, while the natural products like chitin
and its derivatives like chitosan possess low
mechanical strength but exhibit excellent cell adhe-
sion [171]. However, PLA was readily resorbed by
living tissues, yet high crystallinity and low hydro-
philicity of PLA reduce its degradation rate, which
results in poorer soft tissue compatibility. The melt
blending of PLA and chitosan results in reduction in
tensile strength and elongation, whereas there is an
increase in the modulus, without showing any
appreciable miscibility [172]. Similar results were
obtained when PLA and chitosan were solution
blended using chloroform and acetic acid as solvent
[173]. However, the miscibility and intermolecular
hydrogen bonding [174] were shown when PLA
and chitosan were blended by solution–precipitation
method.

The degradation kinetics and brittleness of PLA
can be improved using the biodegradable polymers
having a lower glass transition temperature like poly
(e-caprolactone) [PCL] or polyethylene glycol
(PEG). But PLLA with a higher molecular weight
is usually immiscible with PCL, the resulting mor-
phology of PLLA/PCL blends becomes coarse and
adhesion strength becomes poor, thus desirable
mechanical properties are not anticipated
[175,176]. However, the compatibility of the blend
is observed by reactive compatibilisation [177].
When low molecular weight PCL-b-PEG copolymer
is used as compatibiliser, improvement in the
mechanical properties of the PLA/PCL blend is
observed, however, the thermal properties show
that PEG phase of the block copolymer is miscible
with PLA but the PCL phase is still immiscible with
PLA [178]. The addition of bisphenol-A enhances
the miscibility of the immiscible PCL/PLLA binary
blend and at higher concentration it forms miscible
blends at room temperature [179]. Blends of PLA/
PHB by melt show miscibility in lower molecular
weight region but in higher molecular weight region
it shows phase separation [180]. However, at moder-
ate molecular weight PLA/PCL blends were immis-
cible when made by solution blending and miscible
when melt blended [181].

With an increase in the PEG component in the
PLA/PEG blend, a depression in the melting point
is observed. The compositions of PLA and PEG
give rise to different miscibility and crystallisation
behaviours of the blend. PLA/PEG blends are mis-
cible in the amorphous phase due to the difference in
crystallisation temperature of PLA and PEG. The
desired mechanical properties are achieved in
quenched PLA/PEG blends at upto 30 wt% PEG.
However, these blends are not stable at ambient
temperature and the attractive mechanical proper-
ties are lost over time. The ageing results crystallisa-
tion and phase separation [182]. However, above
50% PEG an increase in modulus, because of
increased crystallinity of PEG is observed [183]. In
the PLA/PEG blend, PEG with a methyl end group
exhibits greater interaction with PLA than hydroxyl
end group [184].

4. Applications

PLA is a biodegradable thermoplastic because, of
its good mechanical property, biodegradability and
non-toxicity degradation products, it is being used
for number of application from biomedical to con-
ventional thermoplastics. PLA has been used in the
field of sustained drug delivery system, before 1980
protein based drug such as insulin and growth hor-
mones were produced by extraction from tissue and
few such drugs were in wide clinical use. With the
advent of molecular biology, protein could be made
synthetically and introduced into cells. A major driv-
ing force in the development is needed to deliver ther-
apeutic agents directly to the circulatory system,
which is important to the drugs that undergo signif-
icant inactivation by the liver. PLA and its copoly-
mers have been used for applications like drug
delivery system [185–192], protein encapsulation
and delivery [193–195], development of microspheres
[139,196–203], hydrogels [204], etc. In fracture fixa-
tion, metal devices are generally used to align bone
fragments into close proximity, and control the rela-
tive motion of fragments so that union can take
place. However, complete healing of the bone
depends on its bearing normal loads, which is pre-
vented as long as the device bears part of the load.
Furthermore, sudden removal of the device can leave
the bone temporarily week and subject to refracture.
However, in the case of PLA based devices, degrada-
tion reduces in cross-section area as well as the elastic
modulus and the load is transferred gradually to the
healing bone and after the complete degradation the
device will be completely absorbed, and a second sur-
gical procedure is not necessary. PLA based fracture
device has considerably lower tensile modulus than
metal fixature device, but it can be improved by care-
ful attention by fabrication using high modulus fibre
reinforcement. PLA has been used for application
like biodegradable/bioabsorbable fibrous articles



Fig. 12. Application of PLA.
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for medical applications [205,206], orthopaedics
screw [207]. The commercially available devices are
BioScerw�, PHUSILINE� and SYSORB� interfer-
ence screw, BIOFIX� and PL-FIX� pins. The other
biomedical applications of PLA include the develop-
ment of scaffolds [208], biocomposite material
[209,210], sutures [211–215], prosthesis, etc. More-
over, low molecular weight PLA is used for tissue
engineering [216–219].

Since, the mechanical properties of high molecular
weight PLA are comparable to other commodity
thermoplastics like polystyrene and PET, and there-
fore it has large opportunities to replace these poly-
mers for numerous applications. But its high cost
has prevented it from being used in other spheres.
But now latest technological advances have given rise
to PLA that are commercially viable and can compete
with petrochemical plastics. Recent advances in the
production process of PLA together with improve-
ment in the material properties have also opened up
a promising outlook in the sector of fibres and nonwo-
vens, films, thermoformed and injection moulded
articles. PLA finds its application in a number of
growing applications, such as injection moulded arti-
cles, fibres, textile, and packaging. Injection moulded
articles have the moulding shrinkage of about 02–
04% of the mould size, or almost the same level as
for polystyrene. The mould is therefore recom-
mended same as that for PS. Articles have transpar-
ency equivalent to or higher than PS and PET.
Fibres of PLA made by thermal spinning possess
physical properties similar to PET and nylon. More-
over, PLA is aliphatic polyester and does not contain
any aromatic ring structures. Hence, moisture regains
and wicking properties are superior to those of PET,
and garments made from PLA or with wool or cotton
are more comfortable with silky touch. Being a non-
flammable polymer, the fibre shows improved self
extinguishing characteristics [220–222]. Fibres can
either be manufactured by solvent or by melt spinning
processes. The fibres prepared by solvent spinning
usually have higher mechanical properties than the
fibre prepared by thermal spinning, because of the
thermal degradation during melt spinning [223].

PLA possesses high transparency and is an excel-
lent material for packaging. PLA is an inherently
polar material due to its basic repeated unit of lactic
acid. This high polarity leads to a number of unique
attributes such as high critical surface energy that
yields excellent printability. Another benefit of this
polar polyester polymer is the resistance to aliphatic
molecules such as oils and terpenes. Apart from this,
PLA possesses stiffness, clarity and twist retention,
low-temperature heat saleability, as well as an excel-
lent combination of barrier properties including fla-
vour and aroma barrier characteristics. Non-
oriented films can easily be moulded by vacuum of
pneumatic process into transparent containers and
trays (see Fig. 12).

PLA also finds applications in agricultural films,
degradable rubbish bags, thermoformed trays for
fruits and vegetables, disposable plates and cups,
toys, cutlery, fibre composites [224], PLA layered
silicate nanocomposites [225–230], home furnishing
and household articles. In agriculture for applica-
tions like mulch films, temporary replanting pots,
delivery system for fertilisers and pesticides.
5. Conclusion

PLA and its copolymers offer the prospective
applications in a number of fields like orthopedics
and pharmaceuticals. Research is needed for the
deliberate synthesis of PLA using proper catalyst
and monomer, to get tailored property in respect
to degradability and strength for a particular appli-
cation. Moreover, there is a great potential to use
PLA polymers in a number of unexplored applica-
tions by replacing the conventional polymer, where
it can contribute a significant role in the form of
composites, copolymers and blends to get different
properties for different applications. But the cost
of PLA is still higher than those of other plastics.
There is a surge of research in the area to develop
the technology to produce PLA at a lower cost.
By improving the synthesis and properties using
optimum catalysts system, we can further augment
this polymer.
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