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Abstract

This thesis documents our investigation of state estimation in systems modelled by

ordinary differential equations (ODE’s) and partial differential equations (PDE’s). The

complete study can be classified as an investigation of two related problems. The

first problem is to obtain the precise mathematical model that presents accurately the

dynamics of the nonlinear system. Generally, a system is described using a set of

differential equations. By solving these equations, we obtain the input-output relation

of a system. But, nonlinear system presents difficulties in obtaining the input-output

relation. For this nonlinear representation, three different approaches have been used

in this thesis. They are :- (i) Approximate input-output relation using perturbation tech-

nique. (ii) Implementation of Kronecker product to represent dynamics of a nonlinear

system. (iii) Kronecker based wavelet representation of a system. After obtaining the

input-output relation of a nonlinear system, we have to implement the estimation algo-

rithm. So, the second problem is to choose the state estimation method that provides

real-time estimation, simplicity, less computational complexity and compression. For

state estimation, we implemented following two methods:- (i) Kalman filter (KF) and

Extended Kalman filter (EKF). (ii) Block processing estimation based on wavelet trans-

form.

At first, we used perturbation theory to derive the closed form nonlinear relation of

following circuits:-

(i) Bipolar junction transistor (BJT) based cross coupled oscillator circuit.

(ii) BJT differential amplifier (DA) circuit.

(iii) Metal oxide semiconductor field effect transistor (MOSFET) circuit.

In these, we computed the distortion occurring due to the use of linear part only, which

show the importance of nonlinear expression. The second problem deals with the es-

timation of following two circuits:-

(i) BJT based DA.
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(ii) MOSFET circuit.

The EKF method has been used for estimation purpose. The simulation results have

been compared with the recursive least squares (RLS) method for different noisy sig-

nals. The root mean square error (RMSE) computation presents the superiority of the

EKF method as compared to the RLS method.

As a third problem, we estimated the output voltage of MOSFET using EKF by mod-

eling the nonlinear system dynamics using Kronecker product. The proposed method

has been compared with Kronecker based wavelet transform (WT) representation of

the system and estimation using least mean square (LMS). The proposed method has

the following advantages:- (i) It can be used for any mode of transistor operation. (ii) It

can also be used for large amplitude input signal. (iii) The method presents the real-

time estimation. (iv) Use of Kronecker product presents more accurate representation

of the system.

As a fourth problem, we estimated the electric and magnetic fields of Hertzian an-

tenna using KF and compared the results with RLS estimator. The proposed method

uses the Kronecker product for compact representation of discretized field in the form

of vectors and partial differential operators in the form of matrices. Simulation results

show that the KF presents better results than the RLS.

xii
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Chapter 1

Introduction

This thesis documents our investigation of state estimation in systems modelled by

ordinary differential equations (ODE’s) and partial differential equations (PDE’s). The

complete study can be classified as an investigation of two related problems. The

first problem is to obtain the precise mathematical model that presents the dynamics

of the nonlinear system accurately. Generally, a system is described using a set of

differential equations. By solving these equations, we obtain the input-output relation

of a system. But, nonlinear system presents difficulties in obtaining the input-output

relation. For this nonlinear representation, three different approaches have been used

in this thesis. They are :-

(i) Approximate input-output relation using perturbation technique.

(ii) Implementation of Kronecker product to represent dynamics of a nonlinear system.

(iii) Kronecker based wavelet representation of a system.

After obtaining the input-output relation of a nonlinear system, we have to implement

the estimation algorithm. So, the second problem is to choose the state estimation

method that provides real-time estimation, simplicity, less computational complexity

and compression. For state estimation, we implemented following two methods:-

(i) Kalman filter (KF) and Extended Kalman filter (EKF).

(ii) Block processing estimation based on wavelet transform (WT).

We modelled the input as an Ornstein - Uhlenbeck (O.U.) process to account the

both, white noise and Brownian process. The formal derivation of Brownian motion is

1
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white noise. But, to deal with the white noise in dynamical system, perturbed by noise,

we used Îto calculus rather than white noise calculus. The Kushner Kollainpur nonlin-

ear filter is a real-time filter but, of infinite dimensional. So, impossible to implement in

a computer. It is derived by Îto calculus combined with Bayes’ rule, recombined with

conditional density. To get over infinite dimensionality, we expand the Kushner Kol-

lainpur equation around the conditional mean, retained up to quadratic order in states

estimation errors. In this way, we get finite dimensional filter EKF, which gives the joint

evaluation of conditional mean and conditional error covariance. We compared EKF

with block processing estimates based on WT. Here, we take an advantage of the fact

that over different time slots, minimum and maximum frequencies are different. So,

we adjust the resolution in each block in such a way, so that we do not have to use all

the wavelet coefficients to get reasonable estimates. The minimum and maximum in-

dices are different by minimum and maximum frequencies within each time slot. The

final outcome of the wavelet based estimate is that although it is block processing

and not the real-time processing based estimation, but we are able to estimate using

lesser data storage i.e. having compression. EKF is a real-time estimation and has

been compared with WT based block processing as regards, complexity, real-time

estimation and compression as all the samples are not used for estimation.

Above discussed methods have been implemented for state estimation of linear and

nonlinear systems. We implemented the perturbation theory on the following nonliear

circuits described by ODE’s:-

(i) Bipolar junction transistor (BJT) based cross coupled oscillator (CCO) circuit,

(ii) BJT based differential amplifier (DA) circuit,

(iii) Metal oxide semiconductor field effect transistor (MOSFET) circuit.

and Kronecker based nonlinear representation on the circuit.

Further we implemented the EKF estimation of the following two representations of

the circuit:-

(i) MOSFET using Enz-Krummenacher-Vittoz (EKV) model.

(ii) Kronecker based representation of MOSFET.

We also used KF for estimation purpose in Hertzian antenna electric and magnetic

field. For this, system is described by PDE’s.
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1.1 A Brief Contextual Review of State Estimation

State estimation is important for various control applications [1] [2], robotics [3] [4]

etc. The purpose of state estimation is to adjust the model parameters in such a way

so that they are closer to observed values by minimizing the errors that affect the

model parameters. The measured data usually contain noise due to device inaccu-

racy, electrical and environmental disturbances. Also, the device parameter values

given in the manufacturer data sheet may introduce errors as they are measured

under standard conditions. Thus, the data sheet values are not the same as those

measured under real environmental conditions. Since, the device states changes with

the environmental conditions, it requires online estimation of device states.

The batch, discrete time estimation problem formulation is as follows:-

Motion model: xk = Ak−1xk−1 +vk +wk, k = 1, ...,K (1.1)

Observation model: yk = Ckxk +nk, k = 0, ...,K (1.2)

where k represents discrete time index.

System state: xk ∈ RN

Initial state: x0 ∈ RN ∼N (x̌0, P̌0)

Input: vk ∈ RN

Process noise: wk ∈ RN ∼N (0,Qk)

Measurement: yk ∈ RN

Measurement noise: nk ∈ RN ∼N (0,Rk)

All the above variables are random excluding vk, which is deterministic. Here, it is

assumed that the noise variables and initial state information are uncorrelated with

one another. Ak ∈RN×N is known as the transition matrix and Ck ∈RM×N is known as

the observation matrix.

Using the above defined models, the state estimation is defined as:-

The problem of state estimation is to provide an estimate x̂k of the true state of a

system, at one or more time step k, given the knowledge of initial state x̌0, a sequence

of measurements y0:k,meas, a sequence of inputs, v1:k, as well as knowledge of the

system’s dynamics and observation models.
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The batch linear Gaussian estimation problem is important as the batch solution

for computing state estimates uses all the measurements in the estimation of all the

states at once, hence the term ’batch’ [5]. But, the disadvantage of the batch method

is that it can not be used in real time, as one can not use future measurements to

estimate past states. It uses all the data in the estimate of every state. This requires

recursive state estimation and the Kalman filter (KF) is the classical solution to this.

The general state estimation problem can be formulated as follows:-

Suppose x(t) represents a "state", a vector-valued function of a parameter t, z(t)

represents the observational data. It is also vector function of t. θ(t) represents ad-

ditive observation errors. f[x(t), t] representing a function describing the dependence

of observations on the state, when there were no observation errors. Representing

z(t) as

z(t) = f[x(t), t]+θ(t) (1.3)

In general state formulation, z, f, θ are vector-valued as it may contain various ob-

servational data. The parameter ′t ′ is time. In general, ′t ′ may represent some other

parameter also and can be represented by a vector t.

In linear case, f depends linearly on the x. The problem is to work on the observa-

tional data z(t) to estimate the state or functionals of the state. There are two different

cases:-

(i) x may be viewed as a deterministic function of t and presents a set of unknown

initial parameters. Then, state estimation problem becomes a parameter estimation

problem of these parameters. In the "state equation" terms, the deterministic function

is the solution of the state equation and unknown initial parameters represent the ini-

tial condition. This corresponds to "no system noise" in state equation.

(ii) x may be viewed as a stochastic process, then it will have a covariance function

X(t, t ′). This case corresponds to the presence of "system noise".

State estimation is also important for monitoring applications, industrial process-

es as there are many disturbing components that affects the process control. In the

power systems context, state estimation has been classified as static state estimation

(SSE) and dynamic state estimation (DSE). Weighted least square (WLS) method is

an example of SSE method [6] - [8]. KF method [9] [10], H∞ filter [11] [12], parti-

cle filter (PF) [13] - [16], adaptive filter [17], maximum-likelihood method [18] - [20],
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Ensemble-Kalman filter [21] - [23], EKF [24] - [28] are various DSE methods. Wu [7]

presented a review of decoupled, stable and robust estimators used for power sys-

tem state estimation. Different methods have been proposed in literature for systems

described by differential equation. In [29], Raissi et al. proposed the prediction correc-

tion approach based method for state estimation of systems described by nonlinear

differential equations, where the prediction step is improved by using a more accu-

rate interval computation of the solution of the ordinary differential equation. In [30],

Zhang et al. presented the state estimation for systems described by the continuous,

linear n-dimensional ordinary differential equation. The solution proposed is based

on optimal filtering theory for Îto-Volterra systems. In [31], Mandela et al. proposed

a modified EKF method for state estimation of constrained nonlinear differential al-

gebraic equation. This method has the advantage of using measurement of both

algebraic and differential states. It is a recursive approach that includes constraints

also. In [32], Mobed et al. proposed a modified EKF that handles the uncertainties in

both differential and algebraic equations and equality constraints.

1.2 Perturbation Method

Perturbation theory is used to model as a small deformation of a system that is ex-

actly solvable. It is implemented on a system that can not be solved exactly. It uses

the mathematical method of approximation to obtain the solution of a deformed sys-

tem. It is the method that continuously improves the previously obtained approximate

solution to a problem. In this way, the method allows to implement the computational

efficiency of idealized systems to more realistic problems. Also, it presents the analyt-

ic insight into complex problems. The method is implemented by adding a small term

’ε ’ to exactly solvable problem as

A = A0 + εA1 + ε
2A2 + ... (1.4)

where A0 is the known solution to the exactly solvable problem and A1, A2,... are non-

linear terms. Use of only linear model for nonlinear system presents error between

the actual response and linear approximation, so nonlinear model is important. Non-

linear closed form input output relation is also important for design and simulation of

complex circuits as transfer of physical description into mathematical form is required

for simulation.
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Perturbation theory is widely used for different applications. Buonomo and Schi-

avo [33] used perturbation method for periodic response of forced nonlinear circuit

and also considered the harmonic distortion. Majumdar and Parthasarathy [34] im-

plemented perturbation technique to Ebers-Moll modelled transistor amplifier circuit.

This method has been used to derive the closed form Volterra series. Rathee and

Parthasarathy [35] proposed perturbation-based Fourier series model for representa-

tion of nonlinear distortion in circuits. This method has the advantage of simple imple-

mentation. Rathee and Parthasarathy [36] used perturbation method to decompose

the driving force and circuit state into linear and nonlinear components. Further, the

nonlinear circuit is represented by a nonlinear differential equation, in which the fluc-

tuations are modelled using Îto stochastic differential equations. The results obtained

in this way are compared with perturbation based deterministic differential equations.

This comparison presents the noise component. Dang et al. [37] used perturbation

method for space variance of range envelope in synthetic aperture radar. In [38],

perturbation method is implemented on 64-PSK.

1.3 Wavelet Transform

WT is used in various applications [39] - [41] due to its time frequency localization

characteristics. Compact support, vanishing moments of higher order, dilation rela-

tion, smoothness, generator of an orthonormal basis of function spaces L2(R) are

some of the characteristics of WT. Time frequency localization characteristics of the

WT makes it important tool for signal analysis.

The main characteristic of the mother wavelet is given by

∫
∞

−∞

ψ(t)dt = 0. (1.5)

This implies that it is oscillatory and has zero mean value. Also, this function needs to

satisfy the admissibility condition

∫
∞

−∞

|ψ̂(ω)|2

|ω|
dω = 0. (1.6)

The admissibility condition allows the reconstruction of the original signal using in-

verse WT.

There are two different types of wavelets:- (i) Continuous wavelet transform (CWT),
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(ii) Discrete wavelet transform (DWT).

The CWT maps a function f (t) onto time scale space by

Wf < a, b >=
∫

∞

−∞

ψa,b(t) f (t)dt (1.7)

=< ψa,b(t), f (t)> (1.8)

The CWT uses the translations and dilations of a prototype or mother function ψ(t).

CWT is described by the following equation

X(a, b) =
1

|a| 12

∫
∞

−∞

x(t)ψ∗
(

t−b
a

)
dt, a > 0, b ∈ R (1.9)

where ψ(t) is the mother wavelet. a is the scaling parameter. b is the translation pa-

rameter. ∗ denotes the complex conjugate. a > 1 gives dilated wavelet. a < 1 gives

contracted wavelet. 1

|a|
1
2

is the energy normalization factor. Wavelets are mathemati-

cal functions that decompose the data into different frequency components and then

analyze each component with a resolution matched to its scale.

In DWT, scaling and translation parameters are discretized, a = 2 j, b = 2 j k. So the

DWT is

ψ j,k(t) = 2
− j
2 ψ(2− jt− k), j, k ∈ Z (1.10)

The orthonormal wavelets satisfy the condition:-

∫
∞

−∞

ψ j, k(t)ψ j′, k′(t)dt =

 1, if j = j′ and k = k′;

0, Otherwise.
(1.11)

There are very effective techniques of construction of the mother wavelet function ψ

from the "scaling sequence". Depending on the choice of the scaling sequence, we

have Daubechies wavelet, Haar wavelet, Shannon wavelet etc. having specific prop-

erties required for specific kinds of applications. Daubechies wavelets are example

of orthogonal wavelets. These are DWT. In this way, time series data analysis using

WT presents scale and position information. The scaling and wavelet functions of

Daubechies wavelets have longer supports, which offers improved capability of these

transformations. These transformations offer powerful tool for various signal process-

ing such as compression, noise removal, image enhancement etc.
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1.4 Recursive Least Squares Algorithm

The recursive least square (RLS) is an adaptive filtering. It obtains the filter coef-

ficients in recursive manner. It uses the minimization of weighted least square cost

function criteria to obtain the filter weights by considering the input signal as the de-

terministic signal. It has wide spread application in engineering including signal pro-

cessing and communication. Various form of this algorithm also used in literature

for parameter estimation and system identification purpose. The two classes of least

square methods are:-

(i) Iterative method for offline identification.

(ii) Recursive methods for online identification.

The least squares have applications in control and function fitting, estimation and

system identification. The RLS filter is used in different applications [42] - [45].

RLS computes the state recursively and gives the optimal solution in the mean

squared sense [46]. In the RLS algorithm, the past errors are rounded-off and present

state computations are propagated to the future instant which results in error accu-

mulation. Consider the desired signal dk and optimum solution Wk = [W1 W2...WM−1]
T .

The desired signal is given by

dk = yT
k Wk +w(R)

k (1.12)

where yk = [yk...yk−M+1]
T is the observation vector, w(R)

k is the zero mean white Gaus-

sian noise. The aim of the RLS algorithm is to estimate Wk such that sum of weighted

mean square error
k
∑
j=1

λ k− j[d j−WkyT
j ]

2 is minimized. Here λ is forgetting factor. Con-

sider the correlation matrix Ck = ∑
k
i=1 λ k−iy(i)yT (i) = λCk−1 + y(i)yT (i). P(R)

k is the

inverse correlation matrix given by P(R)
k = C−1

k . The steps involved in RLS algorithm

are

ζk = dk−yT
k Wk (1.13)

K(R)
k =

P(R)
k−1yk

1+yT
k P(R)

k−1yk

(1.14)

Wk = Wk−1 +K(R)
k ζk. (1.15)

λk = 1−

(
1−yT

k K(R)
k

)
ζ 2

k

χ
(1.16)



9

P(R)
k = λ

−1
k P(R)

k−1−λ
−1
k K(R)

k yT
k P(R)

k−1 (1.17)

where ζ is the estimation error, K(R)
k is the RLS gain. χ is constant value. The variable

forgetting factor is used to stabilize P(R)
k as it is sensitive to any disturbance that causes

the increase in estimation error. This algorithm can be easily derived using the so

called matrix inversion lemma.

1.5 Kronecker Product

The Kronecker product of two matrices A(p × q) and B(m × n) is denoted by A ⊗ B

[47] [48] and is a pm × qn matrix is given by

A ⊗ B =


a11 B a12 B . . . a1q B

a21 B a22 B . . . a2q B
...

... . . . ...

ap1 B ap2 B . . . apq B

 . (1.18)

Let In be the identity matrix of size n× n, the Kronecker product satisfies following

properties

(i) In⊗A = diag[A, A, . . .A].

(ii) (k A) ⊗ B = A ⊗ (k B) = k (A ⊗ B), where k is the constant value.

(iii) (A ⊗ B)T = AT ⊗ BT , where T denotes the transpose of matrix.

(iv) (A ⊗ B)(C ⊗ D) = AC ⊗ BD.

(v) If X is a matrix and Vec(X) denotes the column vector obtained by arranging all

the columns of X serially one below the other, then Vec(AXB) = (BT ⊗A)Vec(X).

This identity is useful in manipulating parameters/data which are in matrix rather

than in vector form.

1.6 Organization of the Thesis

The organization of the problems investigated in the thesis is as follows:-

Chapter 2 deals with the implementation of perturbation theory to derive the linear

and nonlinear closed form expressions of the following three circuits:-
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(i) BJT based CCO circuit.

(ii) BJT based DA circuit.

(iii) MOSFET circuit.

It also presents the computation of the distortion occurring due to linear part only.

Chapter 3 presents the state estimation of the following nonlinear circuits using

EKF:-

(i) BJT based DA circuit.

(ii) MOSFET circuit.

We present the brief description of few recent methods of state estimation and com-

pare estimation using EKF with that using RLS method.

In Chapter 4, we present the formulation of nonlinear circuit dynamics modelling

using Kronecker product and the estimation using EKF. Also, we compared the s-

tate estimation with WT based representation of the nonlinear circuit using Kronecker

product and estimation using least mean square (LMS). The advantages of both the

methods are presented. We present the numerical computation of both the methods.

This chapter also discusses few recent methods used for state estimation and their

disadvantages.

Chapter 5 presents the stochastic filtering in electromagnetics. This chapter deals

with the formulation of electric and magnetic field estimation using KF and discrete

set of measurements. The formulation uses the Kronecker product for compact rep-

resentation of discretized field in the form of vectors and partial differential operators

in the form of matrices. It compares the KF based field estimation with the RLS based

field estimation.

Finally, some concluding remarks are presented in Chapter 6 and some future work

direction is also presented.
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Chapter 2

Perturbation Based Nonlinear Modelling

of Analog Circuits

This chapter1 presents the modelling of following circuits using perturbation theory:-

(i) Cross coupled oscillator (CCO) circuit.

(ii) Bipolar junction transistor (BJT) differential amplifier (DA) circuit.

(iii) MOSFET circuit.

Generally, nonlinear circuit components are approximated by linear model for dif-

ferent applications. But, use of linear model causes signal distortion, which affect

the performance of the nonlinear circuit component. This requires nonlinear closed

form expression of circuit components. The nonlinearity of amplifier can not be ne-

glected as little change in input may affect output significantly. Differential circuits and

device topologies are also useful in wireless system applications as compared to s-

ingle ended architectures, as they are immune to electromagnetic coupling and have

improved even order linearity. Also, inherently available voltage swing in amplifier is

useful for integrated circuits that has to cope up with very low supply voltages. One of

1The result of this chapter is based on the following research papers (i) Bansal R, Majumdar S. Nonlinear
modelling and simulation of cross coupled oscillator, J Adv Research Dynamical Control Syst, vol. 9, issue
11, pp. 35-45, 2017, (ii) Bansal R, Majumdar S, Perturbation based modelling of differential amplifier circuit.
Int J Electron Commun Eng. 2018;12(4), 331-336, (iii) Bansal R, Majumdar S, Nonlinear analysis differential
amplifier circuit, IEEE WiSPNET-2017, pp. 770-776, 2017, (iv) Bansal R, Majumdar S, Perturbation based
nonlinear analysis of MOSFET circuit. IEEE (ICPEICES-2018). 2018.

13
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the most important consideration in the design of amplifier is the harmonic distortion

resulting from the nonlinear components of the circuits. Amplifier circuits are usually

analyzed using the approximate linear model of nonlinear components, which lead-

s to small discrepancies between the actual response and the approximated linear

one. Also, many applications of amplifier require linear response. As two signals

are input to amplifier containing BJT (nonlinear device), it may create intermodulation

power. These intermodulation effects may cause interference to the desired signal.

In practice, the degree of balance of a differential circuit depends on matching of cir-

cuit components. High degree balance of a differential amplifier requires the identical

performance and electrical properties of two transistors comprising the amplifier cir-

cuit. But, due to semiconductor fabrication limitations, this matching is difficult, which

causes even order nonlinearity. This nonlinearity degrades the system performance

that uses differential amplifier. This requires the mathematical expressions of nonlin-

earity of differential amplifier. Nonlinear circuit analysis can be done using different

methods [49] - [58].

Kuntman [49] used the Ebers-Moll model of the transistor to obtain the optimum

source resistance of the amplifier circuit. To obtain the nonlinear nodal solution, New-

ton Raphson method has been used. Fong and Meyer [50] presented the Volterra

model of common emitter amplifier and differential pair transconductance using large

signal model. Song et al. [51] used Volterra model together with memory polynomial

model for compensation of nonlinear distortion of a power amplifier.

Though Volterra series is the extension of linear system theory, but large number

of parameters related with the Volterra series limits the practical application of this

model having modest memory. Also, Volterra series has the disadvantage that mod-

elling using this requires immoderate computations as the determination of unknown

coefficients increases exponentially with degree of nonlinearity and the Volterra fil-

ter length. The perturbation theory has the advantage of simple implementation as

the method is applied by continuously improving the previously obtained approximate

solution of a problem. It is implemented by a small deformation of a system that is

exactly solvable. Wu et al. [52] used the perturbation technique to get the amount of

asymmetry and nonuniformity during the transfer from differential to common mode

in a differential circuit. Afifi and Dusseaux [53] implemented perturbation method on

scattering of electromagnetic wave to obtain the coherent and incoherent intensities.

Mishra and Yadava [54] studied the effect of internal and external noise perturbations
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in chaotic Colpitts oscillator. Liu et al. [55] presented a robust Kalman filter in which

a random perturbation is taken into account. These random perturbations of param-

eters have been considered in state and measurement matrices, which are known

as state dependent multiplicative noises. Thuan and Huong [56] studied the effect of

nonlinear perturbations on stability and passivity of delayed switched systems, as the

instability of system leads in poor performance of the dynamic system. Buonomo and

Schiavo [57] derived the nonlinear distortion in analog circuits using perturbation the-

ory that use single and two tone input signal. Wang et al. [58] presented perturbation

projection vector modelling of an oscillator which is based on memristor and used it

for pattern recognition. Wang et al. [61] studied the effect of nonlinear perturbation.

Lakshmanan et al. [62] presented the effect of nonlinear perturbation on uncertain

systems.

Nonlinear modelling of CCO using Ebers-Moll model of the BJT together with per-

turbation method has been presented in Section 2.1.1. To observe the effect of non-

linear expression, simulation results have been presented in Section 2.1.2. Section

2.2.1 presents the mathematical derivation of linear and nonlinear expressions of DA

circuit by retaining the quadratic terms of BJT Ebers-Moll model and perturbation

method. The derived expressions have been plotted in MATLAB software and shown

in Section 2.2.2. Mathematical derivation closed form linear and nonlinear expression

of MOSFET using EKV model of MOSFET and perturbation has been presented in

Section 2.4.1. These also make use of Kirchhoff’s laws. MATLAB simulations of these

derived expressions have been shown in Section 2.4.2. Also the distortion calculation

due to consideration of linear term only is shown is Table 2.4.

2.1 Cross Coupled Oscillator Circuit Analysis Using Pertur-

bation Method

2.1.1 Nonlinear Modelling of Cross Coupled Oscillator

Figure 2.1 shows BJT CCO with common emitter (CE) configuration in which col-

lector of first transistor Q1 is coupled with the base of other transistor Q2. Applying

Kirchhoff laws to the circuit as shown in Figure 2.1, we have

vC1 +Z1IC1 =VCC (2.1)
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Figure 2.1: Cross coupled oscillator circuit.

vC2 +Z2IC2 =VCC (2.2)

−vo +ZO(IB1 + IB2)+ IB2Z2 + vB2 = 0 (2.3)

−vo +ZO(IB1 + IB2)+ IB2Z3 + vB1 = 0 (2.4)

IC1

(
1+

1
β1

)
− IE1 = 0 (2.5)

where vB1 , vC1 , vE1, vB2 and vC2 are state variables. Equations (2.1)-(2.5) are obtained

by Kirchhoff’s voltage law and Kirchhoff’s current law. Replacing the transistor circuit

by Ebers-Moll model [34] [59] [60], the collector current IC and the emitter current IE

can be written as

IC = αF IES

[
exp vBE

VT
−1
]
− ICS

[
exp vBC

VT
−1
]

(2.6)

IE =−IES

[
exp vBE

VT
−1
]
+αRICS

[
exp vBC

VT
−1
]

(2.7)
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ICS and IES are reverse saturation currents at the collector and emitter junctions re-

spectively. VT is the thermal voltage. VT = k̄T
q where k̄ is Boltzmann constant in Joules

per degree Kelvin, q is the magnitude of charge of an electron and T is the temperature

in Kelvin. αF and αR are current gains in normal and inverted operation respectively.

Now, separating the linear and nonlinear parts in the collector and emitter currents

of both the transistors and relating only upto quadratic order in the expansion of the

exponentials, we have

IC1 =a11v(0)B1
+a12v(0)C1

+a13v(0)E1
+ ε f1(v

(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)

=a11v(0)B1
+a12v(0)C1

+a13v(0)E1
+ ε(b11v2(0)

B1
+b12v2(0)

C1
+b13v2(0)

E1
+b14v(0)B1

v(0)E1
+b15v(0)B1

v(0)C1
)

(2.8)

IC2 =a21v(0)B2
+a22v(0)C2

+a23v(0)E2
+ ε f2(v

(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)

=a21v(0)B2
+a22v(0)C2

+a23v(0)E2
+ ε(b21v2(0)

B2
+b22v2(0)

C2
+b23v2(0)

E2
+b24v(0)B2

v(0)E2
+b25v(0)B2

v(0)C2
)

(2.9)

IE1 =c11v(0)B1
+ c12v(0)C1

+ c13v(0)E1
+ εg1(v

(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)

=c11v(0)B1
+ c12v(0)C1

+ c13v(0)E1
+ ε(d11v2(0)

B1
+d12v2(0)

C1
+d13v2(0)

E1
+d14v(0)B1

v(0)E1
+d15v(0)B1

v(0)C1
)

(2.10)

where f1, f2 and g1 are quadratic functions of arguments. The small signal equivalent

circuit model of the transistor is given by the linear terms of IC and IE , whereas the

nonlinear terms give the corrections, when the voltage amplitude is large. The a’s, b’s,

c’s and d’s are

a11 =
αF1 IES1−ICS1

VT
, a12 =

ICS1
VT

, a13 =−
αF1 IES1

VT
, a21 =

αF2 IES2−ICS2
VT

a22 =
ICS2
VT

, a23 =−
αF2 IES2

VT
, b11 =

αF1 IES1
2V 2

T
− ICS1

2V 2
T

, b12 =−
ICS1
2V 2

T
,

b21 =
αF2 IES2

2V 2
T
− ICS2

2V 2
T

, b13 =
αF1 IES1

2V 2
T

, b22 =−
ICS2
2V 2

T
, b23 =

αF2 IES2
2V 2

T

c11 =
αR1 ICS1−IES1

VT
, c12 =−

αR1 ICS1
VT

, c21 =
αR2 ICS2−IES2

VT
, c13 =

IES1
VT

b24 =−
αR2 IES2

V 2
T

, b25 =
IES2
V 2

T
, d11 =

αR1 ICS1
2V 2

T
− IES1

2V 2
T

, b14 =−
αF1 IES1

V 2
T

,

b15 =
ICS1
V 2

T
, c22 =−

αR2 ICS2
VT

, c23 =
IES2
VT

, d15 =−
αR1 ICS1

V 2
T

d12 =
αR1 ICS1

2V 2
T

, d13 =−
IES1
2V 2

T
, d14 =

IES1
V 2

T
.

We have attached a perturbation tag ε to the nonlinear part which signifies the fac-
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t that the nonlinear contribution to the circuit dynamics is small as compared to the

linear contribution. The perturbation method involves expanding the solution to the

nonlinear state algebraic equations in powers of ε and after substituting this expan-

sion into the equations, we equate equal powers of ε on both sides. It then turns onto

that the nth order term in the perturbation expansion of the state that satisfies a linear

differential algebraic equation driven by nonlinear functions of the lower order terms

which have been already determined. We carry out one procedure only for εn, n = 0,1,

as this much gives satisfactory good approximation for the nonlinear effects.

Now applying perturbation method to the voltage parameters, we have

vo = v(0)o + εv(1)o (2.11)

vB1 = v(0)B1
+ εv(1)B1

(2.12)

vC1 = v(0)C1
+ εv(1)C1

(2.13)

vE1 = v(0)E1
+ εv(1)E1

(2.14)

vB2 = v(0)B2
+ εv(1)B2

(2.15)

vC2 = v(0)C2
+ εv(1)C2

(2.16)

Substituting values of vo, vB1, vC1 , vE1, vB2 and vC2 from (2.11)-(2.16) into (2.1)-(2.5), we

get

(v(0)C1
+ εv(1)C1

)+Z1{a11v(0)B1
+a12v(0)C1

+a13v(0)E1
+ ε(b11v2(0)

B1
+b12v2(0)

C1
+b13v2(0)

E1

+b14v(0)B1
v(0)E1

+b15v(0)B1
v(0)C1

)}=VCC (2.17)

(v(0)C2
+ εv(2)C1

)+Z4{a21v(0)B2
+a22v(0)C2

+a23v(0)E2
+ ε(b21v2(0)

B2
+b22v2(0)

C2
+b23v2(0)

E2

+b24v(0)B2
v(0)E2

+b25v(0)B2
v(0)C2

)}=VCC (2.18)

− (v(0)o + εv(1)o )+

(
Zo

β1

)
{a11v(0)B1

+a12v(0)C1
+a13v(0)E1

+ ε(b11v2(0)
B1

+b12v2(0)
C1

+b13v2(0)
E1

+b14v(0)B1
v(0)E1

+b15v(0)B1
v(0)C1

)}+
(

Zo +Z2

β2

)
{a21v(0)B2

+a22v(0)C2
+a23v(0)E2

+ ε(b21v2(0)
B2

+b22v2(0)
C2

+b23v2(0)
E2

+b24v(0)B2
v(0)E2

+b25v(0)B2
v(0)C2

)}+ v(0)B1
+ εv(1)B1

= 0 (2.19)
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− (v(0)o + εv(1)o )+

(
Zo +Z3

β1

)
{a11v(0)B1

+a12v(0)C1
+a13v(0)E1

+ ε(b11v2(0)
B1

+b12v2(0)
C1

+b13v2(0)
E1

+b14v(0)B1
v(0)E1

+b15v(0)B1
v(0)C1

)}+
(

Zo

β2

)
{a21v(0)B2

+a22v(0)C2
+a23v(0)E2

+ ε(b21v2(0)
B2

+b22v2(0)
C2

+b23v2(0)
E2

+b24v(0)B2
v(0)E2

+b25v(0)B2
v(0)C2

)}+ v(0)B2
+ εv(1)B2

= 0 (2.20)

(
1+

1
β1

)
[a11v(0)B1

+a12v(0)C1
+a13v(0)E1

+ ε(b11v2(0)
B1

+b12v2(0)
C1

+b13v2(0)
E1

+b14v(0)B1
v(0)E1

+b15v(0)B1
v(0)C1

)]− [c11v(0)B1
+ c12v(0)C1

+ c13v(0)E1
+ ε(d11v2(0)

B1
+d12v2(0)

C1
+d13v2(0)

E1
+d14v(0)B1

v(0)E1

+d15v(0)B1
v(0)C1

)] = 0 (2.21)

Zeroth order expressions or linear expressions are obtained by comparing the coeffi-

cients of ε(0) terms in equations (2.17)-(2.21).

v(0)B1
(a11Z1)+ v(0)C1

(1+a12Z1) =VCC (2.22)

v(0)B2
(a21Z4)+ v(0)C2

(1+a22Z4) =VCC (2.23)

−v(0)o + v(0)B1

(
a11Zo

β1

)
+ v(0)C1

(
a12Zo

β1

)
+ v(0)B2

(
1+

a21(Zo +Z2)

β2

)
+ v(0)C2

(
a22(Zo +Z2)

β2

)
= 0

(2.24)

−v(0)o + v(0)B1

(
1+

a11(Zo +Z3)

β1

)
+ v(0)C1

(
a12(Zo +Z3)

β1

)
+ v(0)B2

(
a21Zo

β2

)
+ v(0)C2

(
a22Zo

β2

)
= 0

(2.25)

v(0)B1

((
1+

1
β1

)
a11− c11

)
+ v(0)C1

((
1+

1
β1

)
a12− c12

)
+ v(0)E1

((
1+

1
β1

)
a13− c13

)
= 0.

(2.26)

Representing the unperturbed state vector as

X0(s) =
[
v(0)o v(0)B1

v(0)C1
v(0)B2

v(0)C2

]T

These equations have been solved by using Laplace transform.

A(s)X0(s) = B(s)VCC

X0(s) = A−1(s)B(s)VCC (2.27)
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where A(s) and B(s) are

A =



0 a11Z1 1+a12Z1 0 0

0 0 0 a21Z4 1+a22Z4

−1
(

a11Zo
β1

) (
a12Zo

β1

) (
1+ a21(Zo+Z2)

β2

) (
a22(Zo+Z2)

β2

)
−1

(
1+ a11(Zo+Z3)

β1

) (
a22(Zo+Z3)

β1

) (
a21Zo

β2

) (
a22Zo

β2

)
0

(
1+ 1

β1

)
a11− c11

(
1+ 1

β1

)
a12− c12 0 0


.

B(s) = [1 1 0 0 0]T .

Take Φ1(t) = v(0)o (t), Φ2(t) = v(0)B1
(t), Φ3(t) = v(0)C1

(t), Φ4(t) = v(0)B2
(t), Φ5(t) = v(0)C2

(t).

Therefore,

Φ1(s) =
A11 +A21

|A|
VCC (2.28)

Φ2(s) =
A12 +A22

|A|
VCC (2.29)

Φ3(s) =
A13 +A23

|A|
VCC (2.30)

Φ4(s) =
A14 +A24

|A|
VCC (2.31)

Φ5(s) =
A15 +A25

|A|
VCC (2.32)

where |A| is the determinant of matrix A11,A12...A55 are the cofactors of matrix A. The
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linear expression is

vo(t) =k8u(t)+ k44

[
b

a2 +b2

(
− b

a2 +b2 e−atcos(bt)− a
a2 +b2 e−atsin(bt)

)]
VCCu(t)

− k44

[
a

a2 +b2

(
b

a2 +b2 e−atsin(bt)− a
a2 +b2 e−atcos(bt)

)]
VCCu(t)

+
k44(k43−a)

b

[
−b

a2 +b2

(
b

a2 +b2 e−atsin(bt)− a
a2 +b2 e−atcos(bt)

)]
VCCu(t)

− k44(k43−a)
b

[
a

a2 +b2

(
− b

a2 +b2 e−atcos(bt)− a
a2 +b2 e−atsin(bt)

)]
VCCu(t)

(2.33)

Now, we compare the coefficients of ε(1) in equations (2.17)-(2.21) to obtain nonlinear

expressions.

Representing the perturbed state vector as

X1(s) =
[
v(1)o v(1)B1

v(1)C1
v(1)B2

v(1)C2

] T

A(s)X1(s) = Ii(s)Z(s) (2.34)

where i=1, 2, 3, Z(s) = [U11,U12,U21], X1(s) = L[x1(t)]

I1(s) = [−1 0 −1 −1 −1]T

I2(s) = [0 −1 −1 −1 0]T

I3(s) = [0 0 0 0 1]T

Here, L denotes the Laplace transform operator. The first order nonlinear operator is

expressed as

U11(s) = L[u11(t)] = L[ f1(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)] (2.35)

U12(s) = L[u12(t)] = L[ f2(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)] (2.36)

U21(s) = L[u21(t)] = L[g1(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)] (2.37)
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u11(t) = f1(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)

= (b11v2(0)
B1

+b12v2(0)
C1

+b13v(0)B1
v(0)C1

) (2.38)

u12(t) = f2(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)

= (b21v2(0)
B2

+b22v2(0)
C2

+b23v(0)B2
v(0)C2

) (2.39)

u21(t) = g1(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)

= (d11v2(0)
B1

+d12v2(0)
C1

+d13v(0)B1
v(0)C1

) (2.40)

The nonlinear expression output for the CCO is

v(1)o (s) =−A11 +A31 +A41 +A51

|A|
U11(s)−

A21 +A31 +A41

|A|
U11(s)+

A51

|A|
U11(s). (2.41)

Now, using Z2, Z3 as capacitors C2, C3 and Z1, Z4 as inductors L1, L4 and impedance

Z0 as output capacitance C0, we have

v(1)o (s) =
s8(k46− k25)+ s7(k47− k26)+ s6(k48− k27)+ s5(k49− k28)

s4((s+a)2 +b2)3

+
s4(k50− k29)+ s3(k51− k30)+ s2(k52− k31)+ s1(k53− k32)+(k54− k33)

s4((s+a)2 +b2)3

− s7k38 + s6k39 + s5k40 + s4k41 + s3k42 + s2k43 + s1k44 + k45

s3((s+a)2 +b2)3 (2.42)

where

k0 = kβ1 +
a21a22L4kβ1

Coβ2
− a11a21L1kβ2

C2β2
,

k1 = L4a22kβ1−L4a21kβ1−L4a22a21kβ1−L1a11kβ2 +
a21a22a12L1L4kβ1

Coβ2
,

k2 = L4L1a22a12kβ1−L1L4a2
21kβ1−L1L4a22a11kβ2,

k3 =−L1L2
4a2

21a22kβ1,

k4 =
a21kβ1
Coβ2

+
a21kβ1
C2β2

,

k5 =−
a21a12kβ1
C2

oβ1β2
− a21a11kβ2

CoC3β1β2
− a21a11kβ2

CoC2β1β2
− a21a11kβ2

C2C3β1β2
+

a21a12kβ2
β1β2

(
1

Co
+ 1

C2

)(
1

Co
+ 1

C3

)
,

k6 =
(a21a22L4kβ1

C2
oβ1β2

− a21a22L4kβ1
β1β2

(
1

Co
+ 1

C2

)(
1

Co
+ 1

C3

)
− a11kβ2

C3β1
− a21kβ2

Coβ2
− a21kβ2

C2β2
− a12kβ2

β1

(
1

Co
+ 1

C3

)
+

a21kβ2
Coβ2

− a22kβ1
Coβ2

)
,
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k7 =
a12a22L1kβ1

Coβ2
− a11a22L1kβ2

Coβ2
− kβ2−

a11a22L4kβ2
β1

(
1

Co
+ 1

C2

)(
1

Co
+ 1

C3

)
,

k8 =−L4a22kβ2, k9 =−
a21kβ2
C2β2

, k10 =−L4a22kβ2

k11 =
2a21kβ2

Coβ2
+

a21kβ1
C2β2

k12 = 1, k13 = L4a22kβ1, k14 =
a11kβ2
C3β1

− a12kβ1
C3β1

− a22kβ1
C2β2

,

k15 =
a11a22L4 p2

C2β2
− a12a22L4kβ1

β1

(
1

C2
+ 1

C2

)
,

k16 = L4a22kβ2,

k17 =
a21kβ1
C2β2

,

k18 =
a11a21L4 p2

C3β1
− a12a21L4kβ1

C3β1
− a11a21L1kβ2

C2β2
+ kβ1 +

a12a21L1kβ1
C2β2

,

k19 = L4a21kβ1−L1a11kβ2 +L1a12kβ1,

k20 =−
a21a12kβ1

β1β2

(
1

Co
+ 1

C2

)(
1

Co
+ 1

C3

)
+

a21a11kβ2
β1β2

(
1

Co
+ 1

C2

)(
1

Co
+ 1

C3

)
+ a21a11

β1β2

(
1

Co
+ 1

C2

)
×
(

1
Co

+ 1
C3

)
− a21a11

C2
oβ1β2

,

k21 =
a22a12L4kβ1

C2
oβ1β2

− a22a21a12L4kβ1
C2

oβ1β2
− a22a21a12L4kβ1

β1β2

(
1

Co
+ 1

C2

)(
1

Co
+ 1

C3

)
− a11kβ2

C3β1
− a21kβ2

Coβ2

−a21kβ2
C2β2

+
a12kβ2

β1

(
1

Co
+ 1

C3

)
+

a22kβ1
Coβ2

+
a21kβ1
Coβ2

+
(a22−a11)a21a12(L1+L4)kβ1

β1β2

(
1

Co
+ 1

C2

)(
1

Co
+ 1

C3

)
+a21

β2

(
1

Co
+ 1

C2

)
+ a11

β1

(
1

Co
+ 1

C3

)
,

k22 = 1− kβ2−
a11a22L4kβ2

β1

(
1

Co
+ 1

C3

)
− a12a22L1kβ1

Coβ2
− a11a22L1kβ2

Coβ2
+

(a12−a11)a21L1kβ2
Coβ2

+
a11a12L1kβ2

β2

(
1

Co
+ 1

C2

)
+ a21a12L1

β2

(
1

Co
+ 1

C2

)
+ a11a12L4

β1

(
1

Co
+ 1

C3

)
,

k23 = L4a22kβ2 +L1a11kβ2 +L1a12 +L4a22,

k24 = (a12−a11)a22L1L4kβ2,

k25 = b11k24k2
10 +b12k24k2

13 +b13k24k10k13

k26 = b11k23k2
10 +2b12k24k12k13 +b12k23k2

13 +b13k24k10k12 +b13k23k10k13

k27 = b11k22k2
10 +2b11k24k9k10 +b12k24k2

12 +2b12k24k13k11 +2b12k23k13k12 +b12k22k2
13

+b13k24k9k13 +b13k24k10k11 +b13k22k10k13 ,

k28 = b11k21k2
10 +2b11k23k9k10 +b12k23k2

12 +2b12k24k12k11 +2b12k23k13k11 +2b12k22k13k12

+b12k21k2
13 +b13k24k9k12 +b13k23k9k13 +b13k23k10k11 +b13k22k10k12 +b13k21k10k13 ,

k29 = b11k20k2
10+2b11k21k9k10+b11k24k2

9+b12k24k2
11+b12k22k2

12+2b12k23k12k11+2b12k22k13k11

+2b12k21k13k12 +b12k20k2
13 +b13k24k9k11 +b13k23k9k12 +b13k22k10k11 +b13k22k9k13

+b13k21k10k12 +b13k20k10k13 ,

k30 = b11k20k2
10+2b11k21k9k10+b11k23k2

9+b12k23k2
11+b12k21k2

12+2b12k22k12k11+2b12k21k13k11

+2b12k20k13k12 +b13k23k9k11 +b13k22k9k12 +b13k21k10k11 +b13k21k9k13 +b13k20k10k12 ,

k31 = b11k22k2
9 +2b11k20k9k10 +b12k22k2

11 +2b12k21k12k11 +b12k20k2
12 +2b12k20k13k11

+b13k22k9k11 +b13k21k9k12 +b13k20k13k12 +b13k20k10k11 ,

k32 = b11k21k2
9 +b12k21k2

11 +2b12k20k12k11 +b13k21k9k11 +b13k20k9k12,

k33 = b11k20k2
9 +b12k20k2

11 +b13k20k9k11,

k34 =−a11a22L1L4kβ2,

k35 = a11L1kβ2 ,
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k36 =
a12a22L1kβ1

Coβ2
− a11a22L1 p2

Coβ2
+ a12a21L1 p2

Coβ2
− a11a21L1 p2

Coβ2
+ a11a12L1 p2

Coβ2
+ a11a21L1 p2

C2β2
,

k37 =
a22kβ1
Coβ2

+
a21kβ1
Coβ2

,

k38 = a12a22L1L4,

k39 = a21L1 +a22L4,

k40 = 1+ a21a12L1
β2

(
1

Co
+ 1

C2

)
+ a11a22L4

β1

(
1

Co
+ 1

C3

)
,

k41 =−a21(a11−a22)a12(L1+L4)
β1β2

(
1

Co
+ 1

C3

)(
1

Co
+ 1

C2

)
,

k42 =− a11a21
C2

oβ1β2
+ a11a21

C2
oβ1β2

(
1

Co
+ 1

C3

)(
1

Co
+ 1

C2

)
,

k46 = d11k38k2
10 +d12k38k2

13 +d13k38k10k13

k47 = d11k39k2
10 +2d12k38k12k13 +d12k39k2

13 +d13k38k10k12 +d13k39k10k13

k48 = d11k40k2
10 +2d11k38k9k10 +d12k38k2

12 +2d12k38k13k11 +2d12k39k13k12 +d12k40k2
13

+d13k38k9k13 +d13k38k10k11 +d13k40k10k13 ,

k49 = d11k41k2
10 +2d11k39k9k10 +d12k39k2

12 +2d12k38k12k11 +2d12k39k13k11 +2d12k40k13k12

+d12k41k2
13 +d13k38k9k12 +d13k39k9k13 +d13k39k10k11 +d13k40k10k12 +d13k41k10k13 ,

k50 = d11k42k2
10 +2d11k41k9k10 +d11k38k2

9 +d12k38k2
11 +d12k40k2

12 +2d12k39k12k11

+2d12k41k13k12 +d12k42k2
13 +d13k38k9k11 +b13k39k9k12 +d13k40k10k11 +d13k40k9k13

+d13k41k10k12 +d13k42k10k13 +2d12k40k13k11 ,

k51 = d11k42k2
10+2d11k41k9k10+d11k39k2

9+d12k39k2
11+d12k41k2

12+2d12k40k12k11+2d12k41k13k11

+2d12k42k13k12 +d13k39k9k11 +d13k40k9k12 +b13k41k10k11 +d13k41k9k13 +d13k42k10k12 ,

k52 = d11k40k2
9 +2d11k42k9k10 +d12k40k2

11 +2d12k41k12k11 +d12k42k2
12 +2d12k42k13k11

+d13k41k9k12 +d13k42k13k12 +d13k42k10k11 +d13k40k9k11 ,

k53 = d11k41k2
9 +d12k41k2

11 +2d12k42k12k11 +d13k41k9k11 +d13k42k9k12,

k54 = d11k42k2
9 +d12k42k2

11 +d13k42k9k11,

k55 = b21k34k2
16 +b22k34k2

19 +b23k34k16k19,

k56 = b21k35k2
16 +2b21k34k16k15 +b22k35k2

19 +2b22k34k18k19 +b23k34k18k16 +b23k34k15k19

+b23k35k16k19 ,

k57 = b21k36k2
16 +b21k34k2

15 +2b21k34k16k14 +2b21k35k16k15 +2b22k34k17k19 +b22k34k2
18

+b22k36k2
19 +b23k34k17k16 +b23k34k15k18 +b23k34k14k19 +b23k35k16k18 +b23k35k15k19

+b23k36k16k19 +2b22k35k17k19 ,

k58 = b21k35k2
15 +2b21k34k15k14 +2b21k35k16k14 +2b21k36k16k15 +2b21k37k2

16 +b22k35k2
18

+2b22k34k17k18 +2b22k35k17k19 +2b22k36k18k19 +b22k37k2
19 +b23k34k15k17

+b23k34k14k18 +b23k35k16k17 +b23k35k15k18 +b23k35k14k19 +b23k36k16k18

+b23k36k15k19 +b23k37k16k19 ,

k59 = b21k34k2
14 +2b21k35k15k14 +b21k36k2

15 +2b21k36k16k14 +2b21k37k16k15 +b22k34k2
17

+b22k36k2
18 +2b22k35k17k18 +2b22k36k17k19 +2b22k37k19k18 +b23k34k14k17 +b23k35k15k17
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+b23k35k14k18 +b23k36k16k17 +b23k36k15k18 +b23k36k14k19 +b23k37k16k18 +b23k37k15k19 ,

k60 = b21k35k2
14 +2b21k36k15k14 +2b21k37k16k14 +b21k37k2

15 +b22k35k2
17 +2b22k36k15k18

+2b22k37k19k17 +2b22k37k2
18 +b23k35k14k17 +b23k36k15k17 +b23k36k14k18 +b23k37k16k17

+b23k37k15k18 +b23k37k14k19 ,

k61 = b21k36k2
14 +2b21k37k15k14 +b22k36k2

17 +2b22k37k18k17 +b23k36k14k17 +b23k37k15k17

+b23k37k14k19 ,

k62 = b21k37k2
14 +b22k37k2

17 +b23k37k14k17,

kβ1 =
(

1+ 1
β1

)
a11− c11,

kβ2 =
(

1+ 1
β1

)
a12− c12.

2.1.2 Simulation Results for Cross Coupled Oscillator Circuit

The linear and nonlinear output voltages have been plotted in MATLAB. Figure 2.2(a)

shows linear output, whereas nonlinear output is presented in Figure 2.2(b). The sim-

ulated result shows the deviation of the nonlinear output from the linear output. Math-

ematically, the percentage distortion due to only linear term has been calculated using

following expression.

Percentage distortion =
v0− v(0)0

v0
×100% (2.43)

where vo represents the sum of linear and nonlinear output voltage. v(0)o denotes only

linear output voltage.

Table 2.1: Distortion error for different capacitors and inductors in BJT cross coupled oscilla-
tor.

L1(nH) L4(nH) C2(pF) C4(pF) Percentage distortion
6000 7000 1000 5 0.333%
600 700 0.5 0.1 0.428%
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(a) Linear output. (b) First order nonlinear output

(c) zero and first order nonlinear output.

Figure 2.2: Cross coupled output voltage.
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2.2 Differential Amplifier Circuit Analysis Using Perturba-

tion Method

2.2.1 Nonlinear Modelling of Differential Amplifier Circuit

BJT DA circuit is shown in Figure 2.3. It has transistors Q1 and Q2. Applying Kirch-

hoff’s voltage law (KVL) and Kirchhoff’s current law (KCL) to DA circuit, we have

Figure 2.3: Differential amplifier circuit.

VEE + vE

RE
+(IE1 + IE2) = 0 (2.44)

iLRL +
1

CL

∫
iLdt = vC1− vC2 (2.45)

VCC− vC1

RC1

− IL− IC1 = 0 (2.46)
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VCC− vC2

RC2

+ IL− IC2 = 0 (2.47)

From the circuit, we have, vBE1 = v1−vE , vBE2 = v2−vE , vBC1 = v1−vC1, vBC2 = v2−vC2,

where vC1, vC2, vE and qL are the state vectors. Also,
∫

iLdt = qL, where qL is the charge

at load. The collector current and emitter current for the transistors Q1 i.e. IC1, IE1 are

IC1 = β1I0

[
e
( vBE1

VT

)
−1
]

(2.48)

IE1 =
I0

1−α1

[
e
( vBE1

VT

)
−1
]

(2.49)

Similarly, the collector currents and emitter current for the transistors Q2 i.e. IC2, IE2

are

IC2 = β2I0

[
e
( vBE2

VT

)
−1
]

(2.50)

IE2 =
I0

1−α2

[
e
( vBE2

VT

)
−1
]

(2.51)

Expanding equations (2.48)-(2.51) in Taylor series expansion, we get

IC1 = β1I0

(
v1− vE

VT

)
+

β1I0

2

(
v1− vE

VT

)2

+Higher order terms (2.52)

IE1 =
I0

1−α1

(
v1− vE

VT

)
+

I0

2(1−α1)

(
v1− vE

VT

)2

+Higher order terms (2.53)

IC2 = β2I0

(
v2− vE

VT

)
+

β2I0

2

(
v2− vE

VT

)2

+Higher order terms (2.54)

IE2 =
I0

1−α2

(
v2− vE

VT

)
+

I0

2(1−α2)

(
v2− vE

VT

)2

+Higher order terms (2.55)

Then, from equations (2.44)-(2.47) and neglecting the higher order terms in equations

(2.52)-(2.55), we have

VEE + vE

RE
+

I0

1−α1

(
v1− vE

VT

)
+

I0

2(1−α1)

(
v1− vE

VT

)2

+
I0

1−α2

(
v2− vE

VT

)
+

I0

2(1−α2)

(
v2− vE

VT

)2

= 0 (2.56)

RL
dqL

dt
+

qL

CL
− vC1 + vC2 = 0 (2.57)
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VCC− vC1

RC1

− dqL

dt
−β1I0

(
v1− vE

VT

)
+

β1I0

2

(
v1− vE

VT

)2

= 0 (2.58)

VCC− vC2

RC2

+
dqL

dt
−β2I0

(
v2− vE

VT

)
+

β2I0

2

(
v2− vE

VT

)2

= 0 (2.59)

Now, applying perturbation to state variables as: vC1 = v(0)C1
+ εv(1)C1

, vC2 = v(0)C2
+ εv(1)C2

,

vE = v(0)E + εv(1)E and qL = q(0)L + εq(1)L

Applying perturbation method to equations (2.56)-(2.59) and rearranging the equa-

tions, we have

(v(0)E + εv(1)E )

(
1

RE
− I0

VT (1−α1)
− I0

VT (1−α2)

)
=−VEE

RE
− v1I0

VT (1−α1)
− v2I0

VT (1−α2)

− (v1− vE)
2 I0

2V 2
T (1−α1)

− (v2− vE)
2 I0

2V 2
T (1−α2)

(2.60)

(v(0)C1
+ εv(1)C1

)+(q(0)L + εq(1)L )

(
RL

d
dt

+
1

CL

)
+(v(0)C2

+ εv(1)C2
) = 0 (2.61)

(v(0)C1
+ εv(1)C1

))

(
1

RC1

)
+(q(0)L + εq(1)L )

(
d
dt

)
+(v(0)E + εv(1)E )×

(
−β1I0

VT

)
=

VCC

RC1

+ v1

(
−β1I0

VT

)
+(v1− vE)

2
(
−β1I0

2V 2
T

)
(2.62)

(v(0)C2
+ εv(1)C2

))

(
1

RC2

)
+(q(0)L + εq(1)L )

(
− d

dt

)
+(v(0)E + εv(1)E )×

(
−β2I0

VT

)
=

VCC

RC2

+ v2

(
−β2I0

VT

)
+(v2− vE)

2
(
−β2I0

2V 2
T

)
. (2.63)

Linear terms are obtained by comparing the coefficients of ε(0) in equations (2.60)-

(2.63). They are:

v(0)E

(
1

RE
− I0

VT (1−α1)
− I0

VT (1−α2)

)
=−VEE

RE
− v1I0

VT (1−α1)
− v2I0

VT (1−α2)
(2.64)

v(0)C1
+q(0)L

(
RL

d
dt

+
1

CL

)
+ v(0)C2

= 0 (2.65)
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v(0)C1

(
1

RC1

)
+q(0)L

(
d
dt

)
+ v(0)E

(
−β1I0

VT

)
=

VCC

RC1

+ v1

(
−β1I0

VT

)
(2.66)

v(0)C2

(
1

RC2

)
+q(0)L

(
− d

dt

)
+ v(0)E

(
−β2I0

VT

)
=

VCC

RC2

+ v2

(
−β2I0

VT

)
(2.67)

A(s)X0(s) = B1(s)v1(s)+B2(s)v2(s)+C1(s)VEE +C2(s)VCC (2.68)

X0(s) =
[

v(0)C1
v(0)C2

v(0)E q(0)L

]
(2.69)

A =


0 0

{
1

RE
− I0

VT (1−α1)
− I0

VT (1−α2)

}
0

1
RC1

0 −β1I0
VT

d
dt

0 1
RC2

−β2I0
VT

− d
dt

−1 1 0 RL
d
dt +

1
CL

 (2.70)

B1(s) =
[
− I0

VT (1−α1)
−β1I0

VT
0 0

]
(2.71)

B2(s) =
[
− I0

VT (1−α2)
0− β2I0

VT
0
]

(2.72)

C1(s) =
[
− 1

RE
0 0 0

]
(2.73)

C2(s) =
[

0 1
RC1

1
RC2

0
]

(2.74)

v(0)C1
=

{
− I0

VT (1−α1)
× A11

|A|
− β1I0

VT
× A21

|A|

}
∗ v1(t)+

{
− I0

VT (1−α2)
× A11

|A|
− β2I0

VT
× A31

|A|

}
∗ v2(t)−

1
RE
× A11

|A|
VEE +

(
1

RC1

× A21

|A|
+

1
RC2

× A31

|A|

)
VCC (2.75)

v(0)C2
=

{
− I0

VT (1−α1)
× A12

|A|
− β1I0

VT
× A22

|A|

}
∗ v1(t)+

{
− I0

VT (1−α2)
× A12

|A|
− β2I0

VT
× A32

|A|

}
∗ v2(t)−

1
RE
× A12

|A|
VEE +

(
1

RC1

× A22

|A|
+

1
RC2

× A32

|A|

)
VCC (2.76)

v(0)E =

{
− I0

VT (1−α1)
× A13

|A|
− β1I0

VT
× A23

|A|

}
∗ v1(t)+

{
− I0

VT (1−α2)
× A13

|A|
− β2I0

VT
× A33

|A|

}
∗ v2(t)−

1
RE
× A13

|A|
VEE +

(
1

RC1

× A23

|A|
+

1
RC2

× A33

|A|

)
VCC (2.77)
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q(0)L =

{
− I0

VT (1−α1)
× A14

|A|
− β1I0

VT
× A24

|A|

}
∗ v1(t)+

{
− I0

VT (1−α2)
× A14

|A|
− β2I0

VT
× A34

|A|

}
∗ v2(t)−

1
RE
× A14

|A|
VEE +

(
1

RC1

× A24

|A|
+

1
RC2

× A34

|A|

)
VCC (2.78)

To obtain first order nonlinear terms, we compare coefficients of ε(1) in equations

(2.60)-(2.63). We have

v(1)E

(
1

RE
− I0

VT (1−α1)
− I0

VT (1−α2)

)
=−

(v1− v(0)E )2I0

2V 2
T (1−α1)

−
(v2− v(0)E )2I0

2V 2
T (1−α2)

(2.79)

v(1)C1
+q(1)L

(
RL

d
dt

+
1

CL

)
+ v(1)C2

= 0 (2.80)

v(1)C1

(
1

RC1

)
+q(1)L

(
d
dt

)
+ v(1)E

(
−β1I0

VT

)
=−(v1− v(0)E )2

(
β1I0

2V 2
T

)
(2.81)

v(1)C2

(
1

RC2

)
+q(1)L

(
− d

dt

)
+ v(1)E

(
−β2I0

VT

)
=−(v2− v(0)E )2

(
β2I0

2V 2
T

)
(2.82)

X1(s) =
[

v(1)C1
v(1)C2

v(1)E q(1)L

]
(2.83)

v(1)C1
=

{
− I0

2V 2
T (1−α1)

× A11

|A|
− β1I0

2V 2
T
× A21

|A|

}
∗ (v1− v(0)E )2

+

{
− I0

2V 2
T (1−α2)

× A11

|A|
− β2I0

2V 2
T
× A31

|A|

}
∗ (v2− v(0)E )2 (2.84)

v(1)C2
=

{
− I0

2V 2
T (1−α1)

× A12

|A|
− β1I0

2V 2
T
× A22

|A|

}
∗ (v1− v(0)E )2

+

{
− I0

2V 2
T (1−α2)

× A12

|A|
− β2I0

2V 2
T
× A32

|A|

}
∗ (v2− v(0)E )2 (2.85)

2.2.2 Simulation Results for Differential Amplifier Circuit

Nonlinear equations derived for BJT DA have been implemented in MATLAB. Circuit

element values used in simulations are: VCC = 12V ,VEE =−12V , RC1 = 8kΩ, RC2 = 8kΩ,

RE = 0.08kΩ, RL = 10kΩ, CL = 10µC and sampling time is 10µsec. Linear and first

order nonlinear terms have been plotted for different amplitudes and input frequen-

cies. Table 2.2 shows the percentage error due to linear term only for different input

amplitudes and frequencies. Percentage distortion has been calculated using the

expression as given in equation (2.43).
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(b) Linear differential output voltage.
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(c) First order nonlinear differential output voltage.
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(d) Linear and nonlinear differential output voltage.

Figure 2.4: Differential amplifier output voltage.
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Table 2.2: Differential Gain and Percentage Distortion
S. No. Input at

Q1 (V)
Input at
Q2 (V)

VPP, Peak to
peak differential
input (mV)

Frequency
(Hz)

Gain
(dB)

Percentage
distortion

1. 1 1.001 2 100 23.49 0.642%
2. 1 1.0015 3 100 23.49 0.643%
3. 1 1.001 2 1000 23.50 0.644%
4. 1 1.0015 3 1000 23.50 0.650%
5. 1 1.001 2 10000 23.50 0.658%
6. 1 1.0015 3 10000 23.51 0.660%

2.3 Ebers-Moll Modelled Differential Amplifier Circuit Anal-

ysis Using Perturbation Method

2.3.1 Nonlinear Modelling of Ebers-Moll Modelled Differential Amplifi-

er Circuit

After setting up the KVL and KCL equations for a BJT transistor circuit, we make

second degree approximations to the Ebers-Moll exponential function and then use

perturbation theory for nonlinear differential equation to obtain approximate solution

to the state equations.

Following equations have been obtained for the differential amplifier circuit shown in

Figure 2.5 by implementing Kirchhoff’s laws.

vBE1 +RE(IE1 + IE2) = v1 +VEE (2.86)

vBE2 +RE(IE1 + IE2) = v2 +VEE (2.87)

vC1 +RC1IC1 =VCC (2.88)

vC2 +RC2IC2 =VCC (2.89)

IC1

(
1+

1
β1

)
− IE1 = 0 (2.90)

IC2

(
1+

1
β2

)
− IE2 = 0 (2.91)

where vB1, vC1, vE1, vB2 , vC2 and vE2 are state variables. Equations (2.86)-(2.89) are

obtained by KVL and equations (2.90)-(2.91) are obtained by KCL. Replacing transistor
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Figure 2.5: Differential amplifier circuit diagram.

circuit by Ebers-Moll model, the collector current IC and the emitter current IE can be

written as

IC = αF IES

[
exp vBE

VT
−1
]
− ICS

[
exp vBC

VT
−1
]

(2.92)

IE =−IES

[
exp vBE

VT
−1
]
+αRICS

[
exp vBC

VT
−1
]

(2.93)

ICS and IES are reverse saturation currents at the collector and emitter junctions re-

spectively. VT is the thermal voltage. αF and αR are current gains in normal and

inverted operation respectively. By separating the linear and nonlinear parts in above

mentioned IC and IE expressions for two transistors Q1 and Q2, we have

IC1 = p11v(0)B1
+ p12v(0)C1

+ p13v(0)E1
+ ε f1(v

(0)
B1
,v(0)C1

,v(0)E1
(2.94)

= p11v(0)B1
+ p12v(0)C1

+ p13v(0)E1
+ ε(q11v2(0)

B1
+q12v2(0)

C1
+q13v2(0)

E1
+q14v(0)B1

v(0)E1
+q15v(0)B1

v(0)C1
)
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IC2 = p21v(0)B2
+ p22v(0)C2

+ p23v(0)E2
+ ε f2(v

(0)
B2
,v(0)C2

,v(0)E2
) (2.95)

= p21v(0)B2
+ p22v(0)C2

+ p23v(0)E2
+ ε(q21v2(0)

B2
+q22v2(0)

C2
+q23v2(0)

E2
+q24v(0)B2

v(0)E2
+q25v(0)B2

v(0)C2
)

IE1 = r11v(0)B1
+ r12v(0)C1

+ r13v(0)E1
+ εg1(v

(0)
B1
,v(0)C1

,v(0)E1
) (2.96)

= r11v(0)B1
+ r12v(0)C1

+ r13v(0)E1
+ ε(s11v2(0)

B1
+ s12v2(0)

C1
+ s13v2(0)

E1
+ s14v(0)B1

v(0)E1
+ s15v(0)B1

v(0)C1
)

IE2 = r21v(0)B2
+ r22v(0)C2

+ r23v(0)E2
+ εg2(v

(0)
B2
,v(0)C2

,v(0)E2
) (2.97)

= r21v(0)B2
+ r22v(0)C2

+ r23v(0)E2
+ ε(s21v2(0)

B2
+ s22v2(0)

C2
+ s23v2(0)

E2
+ s24v(0)B2

v(0)E2
+ s25v(0)B2

v(0)C2
)

where f1, f2, g1 and g2 are quadratic functions of arguments. The p’s, q’s, r’s and s’s

are

p11 =
αF1 IES1

VT
− ICS1

VT
, p12 =

ICS1
VT

, p13 =−
αF1 IES1

VT
, d12 =

αR1 ICS1
2V 2

T

p21 =
αF2 IES2

VT
− ICS2

VT
, p22 =

ICS2
VT

, p23 =−
αF2 IES2

VT
, s13 =−

IES1
2V 2

T
,

q11 =
αF1 IES1

2V 2
T
− ICS1

2V 2
T

, q12 =−
ICS1
2V 2

T
, q13 =

αF1 IES1
2V 2

T
, s14 =

IES1
V 2

T
,

q21 =
αF2 IES2

2V 2
T
− ICS2

2V 2
T

, q22 =−
ICS2
2V 2

T
, q23 =

αF2 IES2
2V 2

T
, s15 =−

αR1 ICS1
V 2

T

r11 =
αR1 ICS1

VT
− IES1

VT
, r12 =−

αR1 ICS1
VT

, r13 =
IES1
VT

, s22 =
αR2 ICS2

2V 2
T

,

r21 =
αR2 ICS2

VT
− IES2

VT
, q24 =−

αR2 IES2
V 2

T
, q25 =

IES2
V 2

T
, s23 =−

IES2
2V 2

T
,

s11 =
αR1 ICS1

2V 2
T
− IES1

2V 2
T

, q14 =−
αF1 IES1

V 2
T

, q15 =
ICS1
V 2

T
, s24 =

IES2
V 2

T

d21 =
αR2 ICS2

2V 2
T
− IES2

2V 2
T

, r22 =−
αR2 ICS2

VT
, r23 =

IES2
VT

, s25 =−
αR2 ICS2

V 2
T

.

Substituting the values of IC, IE and applying perturbation method, we have

vB1 = v(0)B1
+ εv(1)B1

(2.98)

vC1 = v(0)C1
+ εv(1)C1

(2.99)

vE1 = v(0)E1
+ εv(1)E1

(2.100)

vB2 = v(0)B2
+ εv(1)B2

(2.101)

vC2 = v(0)C2
+ εv(1)C2

(2.102)

vE2 = v(0)E2
+ εv(1)E2

(2.103)

where, v(0)B , v(0)C and v(0)E are the linear components of Ebers-Moll model and v(1)B , v(1)C

and v(1)E are the nonlinear components of the Ebers-Moll model. Substituting these
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expressions into the equations (2.86) - (2.91) of the amplifier circuit, we get

[v(0)B1
+ εv(1)B1

]− [v(0)E1
+ εv(1)E1

]+RE [r11v(0)B1
+ r12v(0)C1

+ r13v(0)E1
+ ε(s11v2(0)

B1
+ s12v2(0)

C1
+ s13v2(0)

E1

+ s14v(0)B1
v(0)E1

+ s15v(0)B1
v(0)C1

)]+ [r21v(0)B2
+ r22v(0)C2

+ r23v(0)E2
+ ε(s21v2(0)

B2
+ s22v2(0)

C2
+ s23v2(0)

E2

+ s24v(0)B2
v(0)E2

+ s25v(0)B2
v(0)C2

)] = v1 +VEE (2.104)

[v(0)B2
+ εv(1)B2

]− [v(0)E2
+ εv(1)E2

]+RE [r11v(0)B1
+ r12v(0)C1

+ r13v(0)E1
+ ε(s11v2(0)

B1
+ s12v2(0)

C1
+ s13v2(0)

E1

+ s14v(0)B1
v(0)E1

+ s15v(0)B1
v(0)C1

)]+ [r21v(0)B2
+ r22v(0)C2

+ r23v(0)E2
+ ε(s21v2(0)

B2
+ s22v2(0)

C2
+ s23v2(0)

E2

+ s24v(0)B2
v(0)E2

+ s25v(0)B2
v(0)C2

)] = v2 +VEE (2.105)

[v(0)C1
+ εv(1)C1

]+RC1[p11v(0)B1
+ p12v(0)C1

+ p13v(0)E1
+ ε(q11v2(0)

B1
+q12v2(0)

C1
+q13v2(0)

E1
+q14v(0)B1

v(0)E1

+q15v(0)B1
v(0)C1

)] =VCC (2.106)

[v(0)C2
+ εv(1)C2

]+RC2[p21v(0)B2
+ p22v(0)C2

+ p23v(0)E2
+ ε(q21v2(0)

B2
+q22v2(0)

C2
+q23v2(0)

E2
+q24v(0)B2

v(0)E2

+q25v(0)B2
v(0)C2

)] =VCC (2.107)

(
1+

1
β1

)
[p11v(0)B1

+ p12v(0)C1
+ p13v(0)E1

+ ε(q11v2(0)
B1

+q12v2(0)
C1

+q13v2(0)
E1

+q14v(0)B1
v(0)E1

+q15v(0)B1
v(0)C1

)]− [r11v(0)B1
+ r12v(0)C1

+ r13v(0)E1
+ ε(s11v2(0)

B1
+ s12v2(0)

C1
+ s13v2(0)

E1
+ s14v(0)B1

v(0)E1

+ s15v(0)B1
v(0)C1

)] = 0 (2.108)

(
1+

1
β2

)
[p21v(0)B2

+ p22v(0)C2
+ p23v(0)E2

+ ε(q21v2(0)
B2

+q22v2(0)
C2

+q23v2(0)
E2

+q24v(0)B2
v(0)E2

+q25v(0)B2
v(0)C2

)]− [r21v(0)B2
+ r22v(0)C2

+ r23v(0)E2
+ ε(s21v2(0)

B2
+ s22v2(0)

C2
+ s23v2(0)

E2
+ s24v(0)B2

v(0)E2

+ s25v(0)B2
v(0)C2

)] = 0. (2.109)

To obtain the linear expression, we compare the coefficients of ε(0) in equations

(2.104)-(2.109), we get

v(0)B1
[1+REr11]+ v(0)C1

[REr12]+ v(0)E1
[−1+REr13]+ v(0)B2

[REr21]+ v(0)C2
[REr22]+ v(0)E2

[REr23]

= v1 +VEE (2.110)
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v(0)B1
[REr11]+ v(0)C1

[REr12]+ v(0)E1
[REr13]+ v(0)B2

[1+REr21]+ v(0)C2
[REr22]+ v(0)E2

[−1+REc23]

= v2 +VEE (2.111)

v(0)B1
[RC1 p11]+ v(0)C1

[1+RC1 p12]+ v(0)E1
[RC1 p13] =VCC (2.112)

v(0)B2
[RC2 p21]+ v(0)C2

[1+RC2 p22]+ v(0)E2
[RC2 p23] =VCC (2.113)

v(0)B1

[(
1+

1
β1

)
p11− r11

]
+ v(0)C1

[(
1+

1
β1

)
a12− r12

]
+ v(0)E1

[(
1+

1
β1

)
p13− r13

]
= 0

(2.114)

v(0)B2

[(
1+

1
β2

)
p21− r21

]
+ v(0)C2

[(
1+

1
β2

)
p22− r22

]
+ v(0)E2

[(
1+

1
β2

)
p23− r23

]
= 0.

(2.115)

Representing the unperturbed state vector as

X0(s) = [v(0)B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

]T

Using Laplace transform, we have

A(s)X0(s) = B1(s)v1(s)+B2(s)v2(s)+D(s)VEE +E(s)VCC

where A(s) is a matrix-valued function of the complex variable s and B1(s), B2(s), D(s)

and E(s) are vector-valued functions of the complex variable s. The solution is given

by

X0(s) = A−1(s)B1(s)v1(s)+A−1(s)B2(s)v2(s)+A−1(s)D(s)VEE +A−1(s)E(s)VCC (2.116)

where matrix A is

A =



x11 x12 x13 x14 x15 x16

x21 x22 x23 x24 x25 x26

x31 x32 x33 x34 x35 x36

x41 x42 x43 x44 x45 x46

x51 x52 x53 x54 x55 x56

x61 x62 x63 x64 x65 x66


.

where

x11 = 1+REr11, x12 = REr12, x13 =−1+REr13, x14 = REr21, x15 = REr22,

x16 = REr23, x21 = REr11, x22 = REr12, x23 = RC1 p13, x24 = 1+REr21,

x25 = REr22, x26 =−1+REr23, x31 = RC1 p11, x32 = 1+RC1 p12, x33 = RC1 p13
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x34 = 0, x35 = 0, x36 = 0, x41 = 0, x42 = 0,

x43 = 0, x44 = RC2 p21, x45 = 1+RC2a22, x46 = RC2 p23, x51 = x1 p11−r11,

x52 = x1 p12− r12, x53 = x1 p13− r13, x54 = 0, x55 = 0, x66 = 0, x61 = 0, x62 = 0, x63 = 0

x64 =
(

1+ 1
β2

)
p21− r21, x65 =

(
1+ 1

β2

)
p22− r22, x66 =

(
1+ 1

β2

)
p23− r23

B1(s) = [1 0 0 0 0 0]T

B2(s) = [0 1 0 0 0 0]T

D(s) = [1 1 0 0 0 0]T

E(s) = [0 0 1 1 0 0]T

The expression for v(0)B1
, v(0)C1

, v(0)E1
, v(0)B2

, v(0)C2
, v(0)E2

are given by

v(0)B1
(t) = h(1)1 ∗ v1(t)+g(1)1 ∗ v2(t)+Φ1(t)+Ψ1(t) (2.117)

v(0)C1
(t) = h(1)2 ∗ v1(t)+g(1)2 ∗ v2(t)+Φ2(t)+Ψ2(t) (2.118)

v(0)E1
(t) = h(1)3 ∗ v1(t)+g(1)3 ∗ v2(t)+Φ3(t)+Ψ3(t) (2.119)

v(0)B2
(t) = h(1)4 ∗ v1(t)+g(1)4 ∗ v2(t)+Φ4(t)+Ψ4(t) (2.120)

v(0)C2
(t) = h(1)5 ∗ v1(t)+g(1)5 ∗ v2(t)+Φ5(t)+Ψ5(t) (2.121)

v(0)E2
(t) = h(1)6 ∗ v1(t)+g(1)6 ∗ v2(t)+Φ6(t)+Ψ6(t) (2.122)

where ∗ is convolution operator. The expressions for H(1)
1 (s), H(1)

2 (s) , H(1)
3 (s), H(1)

4 (s),

H(1)
5 (s) and H(1)

6 (s) are

H(1)
1 (s) = A11

|A| , H(1)
2 (s) = A12

|A| , H(1)
3 (s) = A13

|A| , H(1)
4 (t) = A14

|A| , H(1)
5 (s) = A15

|A| , H(1)
6 (s) = A16

|A|

The expressions for G(1)
1 (s), G(1)

2 (s) , G(1)
3 (s), G(1)

4 (s), G(1)
5 (s) and G(1)

6 (s) are

G(1)
1 (s) = A21

|A| , G(1)
2 (s) = A22

|A| , G(1)
3 (s) = A23

|A| , G(1)
4 (s) = A24

|A| , G(1)
5 (s) = A25

|A| , G(1)
6 (s) = A26

|A|

where |A| is Determinant of matrix A.

The expressions for Φ1(s), Φ2(s), Φ3(s), Φ4(t), Φ5(s) and Φ6(s) are

Φ1(s) =
A11+A21
|A| VEE , Φ2(s) =

A12+A22
|A| VEE , Φ3(s) =

A13+A23
|A| VEE , Φ4(s) =

A14+A24
|A| VEE ,

Φ5(s) =
A15+A25
|A| VEE , Φ6(s) =

A16+A26
|A| VEE

And the expressions for Ψ1(s), Ψ2(s), Ψ3(s), Ψ4(s), Ψ5(s) and Ψ6(s) are

Ψ1(s) =
A31+A41
|A| VCC, Ψ2(s) =

A32+A42
|A| VCC, Ψ3(s) =

A33+A43
|A| VCC, Ψ4(s) =

A34+A44
|A| VCC,

Ψ5(s) =
A35+A45
|A| VCC, Ψ6(s) =

A36+A46
|A| VCC
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The impulse response of the small signal model equivalent are

v(0)B1
(t) = n1δ (t)∗ v1(t)+n2δ (t)∗ v2(t)+n3δ (t)VEE +n4δ (t)VCC (2.123)

v(0)C1
(t) = n5δ (t)∗ v1(t)+n6δ (t)∗ v2(t)+n7δ (t)VEE +n8δ (t)VCC (2.124)

v(0)E1
(t) = n9δ (t)∗ v1(t)+n10δ (t)∗ v2(t)+n11δ (t)VEE +n12δ (t)VCC (2.125)

v(0)B2
(t) = n13δ (t)∗ v1(t)+n14δ (t)∗ v2(t)+n15δ (t)VEE +n16δ (t)VCC (2.126)

v(0)C2
(t) = n17δ (t)∗ v1(t)+n18δ (t)∗ v2(t)+n19δ (t)VEE +n20δ (t)VCC (2.127)

v(0)E2
(t) = n21δ (t)∗ v1(t)+n22δ (t)∗ v2(t)+n23δ (t)VEE +n24δ (t)VCC (2.128)

where

n1 =
A11
|A| , n2 =

A21
|A| , n3 =

A11+A21
|A| , n4 =

A31+A41
|A|

n5 =
A12
|A| , n6 =

A22
|A| , n7 =

A12+A22
|A| , n8 =

A32+A42
|A|

n9 =
A13
|A| , n10 =

A23
|A| , n11 =

A13+A23
|A| , n12 =

A33+A43
|A|

n13 =
A14
|A| , n14 =

A24
|A| , n17 =

A14+A24
|A| , n16 =

A34+A44
|A|

n17 =
A15
|A| , n18 =

A25
|A| , n19 =

A15+A25
|A| , n20 =

A35+A45
|A|

n21 =
A16
|A| , n22 =

A26
|A| , n23 =

A16+A26
|A| , n24 =

A36+A46
|A| .

The nonlinear expressions are obtained by comparing the coefficients of ε(1) in e-

quations (2.104)-(2.109).

A(s)X1(s) = Ii(s)Z(s)

where i=1, 2, 3, 4 , Z(s) = [U11,U12,U21,U22], X1(s) = L[x1(t)],

X1(s) = [v(1)B1
,v(1)C1

,v(1)E1
,v(1)B2

,v(1)C2
,v(1)E2

]T

I1(s) = [0,0,−RC1 ,0,−x1,0]T

I2(s) = [0,0,0,−RC2,0,−x2]
T

I3(s) = [−RE ,−RE ,0,0,1,0]T

I4(s) = [−RE ,−RE ,0,0,0,1]T

Here, L represents the Laplace transform operator. These first order state vectors

have been written in terms of zeroth order state vectors to solve the nonlinear equa-

tions.

U11(s) = L[u11(t)] = L[ f1(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)]
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U12(s) = L[u12(t)] = L[ f2(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)]

U21(s) = L[u21(t)] = L[g1(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)]

U22(s) = L[u22(t)] = L[g2(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)]

or

u11(t) = f1(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)

= (q11v2(0)
B1

+q12v2(0)
C1

+q13v2(0)
E1

+q14v(0)B1
v(0)E1

+q15v(0)B1
v(0)C1

) (2.129)

u12(t) = f2(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)

= (q21v2(0)
B2

+q22v2(0)
C2

+q23v2(0)
E2

+q24v(0)B2
v(0)E2

+q25v(0)B2
v(0)C2

) (2.130)

u21(t) = g1(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)

= (s11v2(0)
B1

+ s12v2(0)
C1

+ s13v2(0)
E1

+ s14v(0)B1
v(0)E1

+ s15v(0)B1
v(0)C1

) (2.131)

u22(t) = g2(v
(0)
B1
,v(0)C1

,v(0)E1
,v(0)B2

,v(0)C2
,v(0)E2

)

= (s21v2(0)
B2

+ s22v2(0)
C2

+ s23v2(0)
E2

+ s24v(0)B2
v(0)E2

+ s25v(0)B2
v(0)C2

) (2.132)

v(1)C1
(s) =−

Rc1A32 +
(

1+ 1
β1

)
A52

|A|
U11(s)−

Rc2A42

|A|
+

(
1+ 1

β2

)
A62

|A|

U12(s)

− REA12 +REA22−A52

|A|
×U21(s)−

REA12 +REA22−A62

|A|
U22(s) (2.133)

v(1)C2
(s) =−

Rc1A35 +
(

1+ 1
β1

)
A55

|A|
U11(s)−

Rc2A45

|A|
U12(s)−

(
1+ 1

β2

)
A65

|A|
U12(s)

− REA15 +REA25−A55

|A|
×U21(s)−

REA15 +REA25−A65

|A|
U22(s). (2.134)

Thus the nonlinear output voltage expressions are:

v(1)C1
(t) = n25δ (t)∗u11(t)+n26δ (t)∗u12(t)+n27δ (t)∗u21(t)+n28δ (t)∗u22(t) (2.135)
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v(1)C2
(t) = n29δ (t)∗u11(t)+n30δ (t)∗u12(t)+n31δ (t)∗u21(t)+n32δ (t)∗u22(t) (2.136)

where

n25 =−RE A12+RE A22−A52
|A| , n26 =−

Rc1A32+
(

1+ 1
β1

)
A52

|A| , n27 =−
Rc2 A42+

(
1+ 1

β2

)
A62

|A| ,

n31 =−RE A15+RE A25−A55
|A| , n30 =−

Rc2A45+
(

1+ 1
β2

)
A65

|A| , n29 =−
Rc1 A35+

(
1+ 1

β1

)
A55

|A| ,

n28 =−RE A12+RE A22−A62
|A| , n32 =−RE A15+RE A25−A65

|A| .

It should be remarked here that we have approximated the exponential nonlinearity

in the Ebers-Moll model by linear quadratic functions. This is a good enough approx-

imation as our experiments show, provided the voltage swings are high to prevent

linearization from giving good results, but not too high to require cubic approximation.

2.3.2 Simulation Results for Ebers-Moll Model Based Differential Am-

plifier Circuit

The zeroth and first order output voltages have been plotted for different input volt-

ages and frequencies in MATLAB (Figure 2.6). The percentage distortion due to linear

term only has been calculated using expression (2.43). Table 2.3 shows the percent-

age error distortion.

Table 2.3: Distortion error percentage for Ebers-Moll modelled differential amplifier.
S. No. Input at

Q1 (V)
Input at
Q2 (V)

VPP, Peak to
peak differential
input (mV)

Frequency
(KHz)

Percentage
distortion

1. 1 1.001 2 1 0.3516%
2. 1 1.0015 3 1 0.3518%
3. 1 1.001 2 1 0.3540%
4. 1 1.0015 3 10 0.3565%
5. 1 1.001 2 10 0.3566%
6. 1 1.0015 3 10 0.3568%
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(a) Input to differential amplifier.
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(b) Linear output.
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(c) First order nonlinear output.
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(d) Zero and first order output.

Figure 2.6: Ebers-Moll modelled differential amplifier output at input frequency 1000 Hz and
peak to peak input 2 mV.
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2.4 MOSFET Circuit Analysis Using Perturbation Method

2.4.1 Nonlinear Modelling of MOSFET Circuit

MOSFET circuit is shown in Figure 2.7(a). MOSFET equivalent EKV model is shown

in Figure 2.7(b). Applying Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law

(KCL) and replacing the MOS transistor by EKV model [63] [64], we have:

(a) MOSFET circuit diagram (b) EKV equivalent circuit for MOSFET.

Figure 2.7: MOSFET and its EKV equivalent circuit.

(CGS +CGS0)

(
dvS(t)

dt
− dvG(t)

dt

)
+(CGD +CGD0)×

(
dvD(t)

dt
− dvG(t)

dt

)
+(CGB +CGB0)

×
(

dvB(t)
dt
− dvG(t)

dt

)
= 0 (2.137)

(CGD +CGD0)

(
dvG(t)

dt
− dvD(t)

dt

)
+CBD

(
dvB(t)

dt
− dvD(t)

dt

)
= IDS + IDB (2.138)

(CGS +CGS0)

(
dvG(t)

dt
− dvS(t)

dt

)
+CBS

(
dvB(t)

dt
− dvS(t)

dt

)
=−IDS (2.139)

CGX

(
dvin

dt
− dvG(t)

dt

)
+

VIN− vG(t)
Rin

= 0 (2.140)

where vG(t), vS(t), vD(t) and vB(t) are the state variables. CGD, CGS and CGB are

the drain to channel capacitance, source to channel capacitance and base to channel
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capacitance respectively. COX is oxide capacitance. Drain current ID is

ID = IDS + IDB (2.141)

As IDB ∼= 0, therefore ID ∼= IDS. From the EKV model of weak inversion, we have

ID = IDS = I0
W
L

e
vGB−VT0

ηUT

(
e−

vSB
UT − e−

vDB
UT

)
(2.142)

where W
L is the aspect ratio, VT0 and UT are the equilibrium threshold voltage and

thermal voltage respectively. I0 is unary specific current. η is subthreshold slope

factor.

Expanding (2.142) using Taylor series and retaining up to quadratic terms, we have

ID =
I0W
UT L

{
(vD− vS)

(
1− VT0

ηUT
+

V 2
T0

2η2U2
T
− 1

6

V 3
T0

η3U3
T

)}
+

I0W
2U2

T L

{(
v2

S− v2
D

−2(vSvB− vDvB)− vDvS + vSvD)×

(
1− VT0

ηUT
+

V 2
T0

2η2U2
T
− 1

6

V 3
T0

η3U3
T

)}

+
I0W
UT L

{
(vGvD− vBvD− vGvS + vBvS)×

(
1

ηUT
− VT0

η2U2
T
+

3V 2
T0

η3U3
T

)}
. (2.143)

Using CGS+CGS0 =CS, CGD+CGD0 =CD and CGB+CGB0 =CB and separating linear and

first order nonlinear terms of state variables as:

vG(t) = v(0)G (t)+ εv(1)G (t) (2.144)

vD(t) = v(0)D (t)+ εv(1)D (t) (2.145)

vS(t) = v(0)S (t)+ εv(1)S (t) (2.146)

vB(t) = v(0)B (t)+ εv(1)B (t) (2.147)

where linear state variables are v(0)G (t), v(0)D (t), v(0)S (t), v(0)B (t) and first order nonlinear

terms of state variables are v(1)G (t), v(1)D (t), v(1)S (t), v(1)B (t). Thus from (2.137)-(2.140) and

(2.143)-(2.147), we have

{v(0)G (t)+ εv(1)G (t)}
(

d
dt

+
1

RinCGX

)
=

VIN

RinCGX
+ v

′
in (2.148)
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CD
d{v(0)G (t)+ εv(1)G (t)}

dt
+{v(0)D (t)+ εv(1)D (t)}

(
−CD

d
dt
−CBD

d
dt
−M1

)
+M1{v

(0)
S (t)

+ εv(1)S (t)}+CBD
d{v(0)B (t)}

dt
+CBD

d{εv(1)B (t)}
dt

= M1vT{v2(0)
S (t)− v2(0)

D (t)−2v(0)S v(0)B

+2v(0)D (t)v(0)B (t)}+M2{v
(0)
G (t)v(0)D (t)− v(0)B (t)v(0)D (t)− v(0)G (t)v(0)S (t)+ vB(t)vS(t)} (2.149)

CS
d{v(0)G (t)+ εv(1)G (t)}

dt
+{v(0)S (t)+ εv(1)S (t)}

(
−CS

d
dt
−CBS

d
dt
−M1

)
+M1{v

(0)
D (t)

+ εv(1)D (t)}+CBS
d{v(0)B (t)}

dt
+CBS

d{εv(1)B (t)}
dt

=−M1vT{v2(0)
S (t)− v2(0)

D (t)−2vSvB

+2vD(t)vB(t)}−M2{v
(0)
G (t)v(0)D (t)− v(0)B (t)v(0)D (t)− v(0)G (t)v(0)S (t)+ v(0)B (t)v(0)S (t)} (2.150)

{v(0)G (t)+ εv(1)G (t)}(−CG−CD−CB)+CD{v(0)D + εv(1)D }+CS{v
(0)
S (t)+ εv(1)S (t)}

+CB{v(0)B (t)+ εv(1)B (t)}= 0 (2.151)

where

M1 =
I0

UT

W
L

(
1− VT0

ηUT
+

V 2
T0

2η2U2
T
− 1

6

V 3
T0

η3U3
T

)

M2 =
I0

UT

W
L

(
1

ηUT
− VT0

η2U2
T
+

V 2
T0

2η3U3
T

)

and v
′
in =

d vin
dt .

Comparing ε(0) terms in (2.148)-(2.151) to obtain zeroth order terms

v(0)G (t)
(

d
dt

+
1

RinCGX

)
=

VIN

RinCGX
+ v

′
in (2.152)

CD
dv(0)G (t)

dt
+ v(0)D (t)

(
−CD

d
dt
−CBD

d
dt
−M1

)
+M1v(0)S (t)+CBD

dv(0)B (t)
dt

= 0 (2.153)

CS
dv(0)G (t)

dt
+ v(0)S (t)

(
−CS

d
dt
−CBS

d
dt
−M1

)
+M1v(0)D (t)+CBS

dv(0)B (t)
dt

= 0 (2.154)
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v(0)G (t)(−CG−CD−CB)+CDv(0)D (t)+CSv(0)S (t)+CBv(0)B (t) = 0 (2.155)

Laplace transformed equation is

A1(s)x(0)(s) = B1(s)u1(s) (2.156)

where s is complex variable and u1 =
(

VIN
RinCGX

+ v
′
in

)
. State vector x(0)(s) is

x(0)(s) =
[

v(0)G (s) v(0)D (s) v(0)S (s) v(0)B (s)
]T

,

Where A1(s) is

A1(s) =


A1a 0 0 0

sCD A1b M1 sCBD

sCS M1 A1c sCBS

A1d CD CS CB

 , (2.157)

where

A1a =
(

s+ 1
RinCGX

)
, A1b = (−sCD− sCBD−M1),

A1c = (−sCS− sCBS−M1), A1d =−CG−CD−CB

where B1(s) is

B1(s) =
[

1 0 0 0
]T

Solution of (2.156) is given by

x(0)(s) = A−1
1 (s)B1(s)u1(s) (2.158)

Impulse responses of linear model are

vG
(0)(t) =

A11

|A1|
∗u1(t) (2.159)

vD
(0)(t) =

A12

|A1|
∗u1(t) (2.160)

vS
(0)(t) =

A13

|A1|
∗u1(t) (2.161)

vB
(0)(t) =

A14

|A1|
∗u1(t) (2.162)
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where ∗ is convolution operator. A11, A12...A44 are the cofactors of matrix A1 and |A1|

is the determinant of matrix A1.

vG
(0)(t) = e−

1
RinCGX

tu(t)∗u1(t) (2.163)

vD
(0)(t) =

[
M5

M3
m1e−

1
RinCGX

tu(t)+
M5

M3
m2e−

M1M4
M3

tu(t)
]
∗u1(t) (2.164)

vS
(0)(t) =

[
M7

M3
m3e−

1
RinCGX

tu(t)+
M7

M3
m4e−

M1M4
M3

tu(t)
]
∗u1(t) (2.165)

vB
(0)(t) =

[
M9

M3
m5e−

1
RinCGX

tu(t)+
M9

M3
m6e−

M1M4
M3

tu(t)
]
∗u1(t) (2.166)

where

M3 = (CDCBCS +CDCBCBS +CSCBCBS +CDCBDCBS +CDCSCBS +CSCBDCBS)

M4 = {CBCD +CBCBD +CBCS +CBCBS +CSCBS +CDCBS +CSCBD +CDCBD}

M5 =
{

CDCBCS +CDCBCBS +CDCSCBS +CBD(CS +CBS)(CS +CD +CBD)−C2
SCBD

}
M6 = {CDCB +CSCB +CSCBS +CBCBS +CDCBS +CBD(CS +CD +CBD)}

M7 =
{
−C2

DBS +(CD +CBD)(CSCB +CSCBS +CBCBS +CDCBS)+CSCDCBD
}

M8 = (CBCD +CBCS +CSCBS +CBCBS +CDCBS +CSCBD +CBCBD +CDCBD)

M9 = (CSCDCBS +CSCBDCBS +CSCDCBD +CDCBDCBS +CSCBCD +CBCDCBS

+CSCBDCB +CBCBDCBS)

M10 = {CSCBD +CSCBS +CDCBD +CDCBS +CDCB +CBCBD +CSCB +CBCBS}

m1 =

(
− 1

RinCGX
+

k1k6
k5

)
(
− 1

RinCGX
+

k1k4
k3

) , m2 =

(
− k1k4

k3
+

k1k6
k5

)
(

1
RinCGX

− k1k4
k3

) , m3 =

(
− 1

RinCGX
+

k1k8
k7

)
(
− 1

RinCGX
+

k1k4
k3

) ,

m4 =

(
− k1k4

k3
+

k1k8
k7

)
(

1
RinCGX

− k1k4
k3

) , m5 =

(
− 1

RinCGX
+

k1k10
k9

)
(
− 1

RinCGX
+

k1k4
k3

) , m6 =

(
− k1k4

k3
+

k1k10
k9

)
(

1
RinCGX

− k1k4
k3

) .

Comparing ε(1) terms in (2.148)-(2.151) to obtain first order nonlinear terms, we have

v(1)G (t)
(

d
dt

+
1

RinCGX

)
= 0 (2.167)
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CD
dv(1)G (t)

dt
+ v(1)D (t)

(
−CD

d
dt
−CBD

d
dt
−M1

)
+M1v(1)S +CBD

dv(1)B (t)
dt

= M1vT{v2(0)
S (t)

− v2(0)
D (t)−2v(0)S v(0)B +2v(0)D (t)v(0)B (t)}+M2{v

(0)
G (t)v(0)D (t)− v(0)B (t)v(0)D (t)− v(0)G (t)v(0)S (t)

+ v(0)B (t)v(0)S (t)} (2.168)

CS
dv(1)G (t)

dt
+ v(1)S (t)

(
−CS

d
dt
−CBS

d
dt
−M1

)
+M1v(1)D =CBS

dv(1)B (t)
dt

−M1vT{v2(0)
S (t)

− v2(0)
D (t)−2v(0)S v(0)B +2v(0)D (t)v(0)B (t)}−M2{v

(0)
G (t)v(0)D (t)− v(0)B (t)v(0)D (t)− v(0)G (t)v(0)S (t)

+ v(0)B (t)v(0)S (t)} (2.169)

v(1)G (t)(−CG−CD−CB)+CDv(1)D (t)+CSv(1)S (t)+CBv(1)B (t) = 0. (2.170)

Laplace transformed equation is

A2(s)x(1)(s) = B2(s)u2(s). (2.171)

State vector x(1)(s) is

x(1)(s) =
[

v(1)G (s) v(1)D (s) v(1)S (s) v(1)B (s)
]T

where A2(s) is

A2(s) =


A2a 0 0 0

sCD A2b M1 sCBD

sCS M1 A2c sCBS

A2d CD CS CB

 , (2.172)

where

A2a =
(

s+ 1
RinCGX

)
, A2b = (−sCD− sCBD−M1),

A2c = (−sCS− sCBS−M1), A2d =−CG−CD−CB

and B2(s) is

B2(s) =
[

0 1 −1 0
]T
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Solution of (2.171) is

x(1)(s) = A−1
2 (s)B2(s)u2(s). (2.173)

The first order nonlinear output is

vD
(1)(t) =

A22

|A2|
∗u2(t)−

A32

|A2|
∗u2(t) =−

M11

M3
e−

M1M4
M3

t ∗u2(t) (2.174)

where

u2(t) = M1vT{v2(0)
S (t)− v2(0)

D (t)−2v(0)S (t)v(0)B (t)+2v(0)D }× v(0)B (t)−M2{v
(0)
G (t)v(0)D (t)

−v(0)B (t)v(0)D (t)− v(0)G (t)v(0)S (t)+ v(0)B (t)v(0)S (t)}

M11 =CBCS +CBCBS +CSCBS +CBCBD.

2.4.2 Simulation Results for MOSFET Circuit

The linear and nonlinear expressions derived have been simulated in MATLAB for

different input amplitude values and different frequencies. Parameters used for simu-

lations are: UT = 0.0256V , VT0 = 0.5V , Rin = 5kΩ, CGX = 6.0×10−10, CS = 0.5×10−9F ,

CD = 1.0×10−9F , CB = 1.5×10−10F , CBS = 1×10−11F , CBD = 1.15×10−9F , I0 = 1.0×

10−9A and η = 1. Figure 2.8 shows linear and nonlinear output voltage for 20mV peak

to peak input. Table 2.4 shows the percentage distortion error due to use of linear

term only. Percentage distortion is calculated using (2.43).

Table 2.4: Percentage distortion when different voltage amplitude and frequency is given at
input of MOSFET circuit.

S. No. Input voltage (V) Input frequency Percentage distortion

1. 0.010 100 0.062%
2. 0.010 1000 0.063%
3. 0.010 10000 0.066%
4. 0.025 100 0.067%
5. 0.025 1000 0.068%
6. 0.025 10000 0.071%
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(a) Input to MOSFET circuit.
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(b) Zeroth order output voltage.
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(c) First order output voltage.
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(d) Zeroth and first order output voltage.

Figure 2.8: MOSFET output voltage for sinusoidal input with peak to peak value 20mV.



Chapter 3

Extended Kalman Filter Based State

Estimation of Analog Circuits

This chapter1 presents the implementation of extended Kalman filter (EKF) for esti-

mation of output voltage of following two circuits:-

(i) MOSFET circuit.

(ii) Bipolar junction transistor (BJT) differential amplifier (DA) circuit.

Kirchhoff’s current law (KCL) and Enz-Krummenacher-Vittoz (EKV) model of MOS-

FET have been used to obtain the state space model of the MOSFET circuit as the

maximal precision of simulation needs modelling of electronic circuit in terms of cir-

cuit components and device parameters. Ebers-Moll model, KCL and Kirchhoff’s volt-

age law (KVL) have been used to obtain the state space model of BJT DA circuit.

The proposed method has been compared with the recursive least squares (RLS)

method [46]. Simulation results illustrate the better accuracy of estimation using EKF

as compared to the RLS method.

Various methods have been used for state estimation. Kamas and Sanders [65]

used the Lyapunov function-based state estimation method for power electronic cir-

cuits. Beadle and Djuric [66] presented weighted Bayesian bootstrap filter for state

1This chapter comprises the content which is based on research article (i) Extended Kalman filter based
state estimation of MOSFET circuit, COMPEL, doi.org/10.1108/COMPEL09-2018-0367, 2019. (ii) Bansal R,
Majumdar S. State estimation of differential amplifier circuit using EKF. (Communicated).

51
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estimation of nonlinear model. This filter has the advantage that it is not limited by lin-

ear or Gaussian noise assumption. Chen et al. [67] proposed weighted least absolute

value state estimation together with transformations for state estimation of the power

system. Yu et al. [68] proposed an adaptive Kalman filter (KF) for dynamic harmonic

state estimation. This filter has the advantage that it does not require the knowledge of

the noise covariance matrix which is essential for KF. Kyriakides et al. [69] proposed

the Huber function technique which is used for power application. Zhao et al. [70]

presented forecasting aided state estimation for power system, which is based on

generalized maximum likelihood estimator in which spatial and temporal correlations

are also considered. In this way, it presents more accurate results. This method has

the advantage of good efficiency and robustness. Rana et al. [71] proposed distribut-

ed dynamic state estimation for microgrids. The main advantage of the method is that

it requires small iterations for good estimation. Kong et al. [72] proposed three stage

estimation method for AC-DC distribution networks. The method has the advantage

of smaller computational complexity as compared to the centralized state estimation

method and it has better accuracy as compared to other conventional methods. Su-

tivong et al. [73] proposed the state estimation of Gaussian channels which are state

dependent. The method uses power sharing to obtain the optimal solution. Zhao

et al. [74] presented state estimation method for false data injection attack on power

system. They used vector relaxing error for state estimation. Netto and Mil [75] pro-

posed Kalman filter for state estimation of power system, which is based on gener-

alized maximum likelihood (GM) Koopman operator. This method has the advantage

of data driven and model independent approach. Zhao [76] presented for extended

Kalman filter for dynamic estimation that considers model uncertainties also. Zheng

et al. [77] proposed distributed robust bilinear method for state estimation of power

system. The method has the advantage of compressing the bad measurements. Yu

et al. [78] proposed an filter based approach that estimates static and dynamic states

of power system. Wang et al. [79] developed integrated state estimation and con-

trol method for management of battery used for power grid systems. Cao et al. [80]

proposed state estimation for cyber physical systems, where the performance of es-

timation depends on the quality of wireless communication. This method has the

better performance as compared to the estimation based on random mechanism. Li

et al. [81] proposed state estimation of frequency traffic which uses ensemble learning

framework to macroscopic traffic flow model. Farnoosh et al. [82] presented parame-

ter estimation of RL circuit using the least squares and Bayesian approach. The EKF
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has several advantages [83] - [88]. Hu and Gallacher [87] presented the parameter

estimation of ring vibratory gyroscope using EKF. Paschero et al. [88] proposed the

multi cell EKF for state of charge estimation of an energy storage system.

The output voltage estimation i.e. state estimation of MOSFET is proposed using

EKF in Section 3.1.2. The EKF described in appendix Section A.2 has been used in

this section. The estimation using EKF requires the state space modelling of the circuit

which has been derived for two different modes of MOSFET. They are conduction

mode and saturation mode. The derivation of state space representation uses KCL

and EKV model of the transistor. The EKV model is shown in Figure 3.1 (b). The

estimation using EKF has been compared with RLS method and PSPICE simulated

values in Section 3.1.3. The Section 3.2.1 deals with the derivation of state space

representation of DA circuit. This representation is used for state estimation the circuit

using EKF in Section 3.2.2. Finally, some general remarks have been discussed at

the end of Section 3.2.3. The innovation process and the effect of small measurement

noise are discussed in this section.

3.1 State Estimation of MOSFET Circuit

The MOSFET circuit is shown in Figure 3.1(a). The EKV model of the MOSFET

circuit is shown in Figure 3.1(b). Applying KCL to the circuit, we have

(a) MOSFET circuit diagram (b) EKV equivalent circuit for MOSFET.

Figure 3.1: MOSFET and its EKV equivalent circuit.
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(CGS +CGS0)

(
dvS

dt
− dvG

dt

)
+(CGD +CGD0)

(
dvD

dt
− dvG

dt

)
+(CGB +CGB0)×

(
dvB

dt
− dvG

dt

)
= 0 (3.1)

(CGD +CGD0)

(
dvG

dt
− dvD

dt

)
+CBD

(
dvB

dt
− dvD

dt

)
= IDS + IDB (3.2)

(CGS +CGS0)

(
dvG

dt
− dvS

dt

)
+CBS

(
dvB

dt
− dvS

dt

)
=−IDS (3.3)

CGX

(
dvin

dt
− dvG

dt

)
+

VIN− vG

Rin
= 0 (3.4)

where vG, vD, vS and vB are the state variables. CGD, CGS and CGB are the drain to

channel capacitance, source to channel capacitance and base to channel capacitance

respectively. COX is oxide capacitance. Drain current ID is

ID = IDS + IDB (3.5)

As IDB ∼= 0, therefore ID ∼= IDS.

3.1.1 MOSFET Circuit Analysis

(i) Conduction Mode:-

From the EKV model of weak inversion, we have

ID = IDS = I0
W
L

e
vGB−VT0

ηUT

(
e−

vSB
UT − e−

vDB
UT

)
(3.6)

where W is the width and L is the length of the MOSFET channel, W
L is the aspect ratio,

VT0 and UT are the the equilibrium threshold voltage and thermal voltage respectively.

I0 is the unary specific current. η is the subthreshold slope factor. Expanding (3.6)

using Maclaurin series and retaining up to quadratic terms, as computation of higher

order terms leads to increase in complexity. Expansion up to quadratic terms give

more accurate results than the use of linear term only. Though higher order terms

present more accurate result, but the gist of the nonlinearity can be obtained using
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the second order terms only.

ID =
I0W
UT L

{
(vD− vS)

(
1− VT0

ηUT
+

V 2
T0

2η2U2
T
− 1

6

V 3
T0

η3U3
T

)}
+

I0W
2U2

T L

{(
v2

S− v2
D

−2(vSvB− vDvB)− vDvS + vSvD)×

(
1− VT0

ηUT
+

V 2
T0

2η2U2
T
− 1

6

V 3
T0

η3U3
T

)}

+
I0W
UT L

{
(vGvD− vBvD− vGvS + vBvS)×

(
1

ηUT
− VT0

η2U2
T
+

3V 2
T0

η3U3
T

)}
. (3.7)

Using CGS +CGS0 =CS, CGD +CGD0 =CD and CGB +CGB0 =CB, we have

dvG

dt
=− vG

RinCGX
+

VIN

RinCGX
+ v

′
in (3.8)

dvB

dt
=− p2vG

RinCGX
+ p1 p7 (vD− vS)−

p1 p7

UT
vSvB +

p1 p7

UT
vDvB−

p1 p7

2UT
vDvS +

p1 p7

2UT
vSvD

+ p1 p8(vGvD− vGvS + vBvS− vBvD)+
p1 p7

2UT
v2

S−
p1 p7

2UT
v2

D + k2

(
VIN

RinCGX
+ v

′
in

)
(3.9)

dvS

dt
=− p4vG

RinCGX
+ p3 p7 (vD− vS)−

p3k7

UT
vSvB +

p3k7

UT
vDvB−

p3 p7

2UT
vDvS +

p3 p7

2UT
vSvD

+ p3 p8(vGvD− vGvS + vBvS− vBvD)+
p3 p7

2UT
v2

S−
p3k7

2UT
v2

D + p4

(
VIN

RinCGX
+ v

′
in

)
(3.10)

dvD

dt
=− p6vG

RinCGX
+ p5 p7 (vD− vS)−

p5 p7

UT
vSvB +

p5 p7

UT
vDvB−

p5 p7

2UT
vDvS +

p5 p7

2UT
vSvD

+ p5 p8(vGvD− vGvS + vBvS− vBvD)+
p5 p7

2UT
v2

S−
p5 p7

2UT
v2

D + p6

(
VIN

RinCGX
+ v

′
in

)
(3.11)

where

p1 =
CD(CS+CBS)(CSCBS+CSCBD)

CSCBS(CBDCS(−CS−CBS)+CSCBS(−CD−CBD))
− 1

CBS
,

p2 =
[

CD(CS+CBS){−CSCDCBS−CSCBD(CS+CBS)}
CSCBS{CSCBD(−CS−CBS)+CSCBS(−CD−CBD)} +

CD(CS+CBS){−CBD(CS+CD+CB)(CS+CBS)}
CSCBS{CSCBD(−CS−CBS)+CSCBS(−CD−CBD)}

+ (CS+CB+CD)(CS+CBS)
CSCBS

− CS
CBS

]
,

p3 =
CD(CBS+CBD)

{CSCBD(CS+CBS)+CSCBS(CS+CBD)} ,

p4 =
[

CD
CS

{
CSCDCBS−C2

SCBD+CBD(CS+CBS)(CS+CD+CB)
CDCBD(CS+CBS)+CSCBS(CD+CBD)

}
+CS+CD+CB

CS

]
,
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p5 =
CS(CBS+CBD)

CDCBD(−CS−CBS)+CSCBS(−CD−CBD)
,

p6 =
−CSCDCBS+C2

SCBD+CBD(−CS−CBS)(CS+CD+CB)
CDCBD(−CS−CBS)+CSCBS(−CD−CBD)

,

p7 =
I0

UT
W
L

(
1− VT0

ηUT
+

V 2
T0

2η2U2
T
− 1

6
V 3

T0
η3U3

T

)
,

p8 =
I0

UT
W
L

(
1

ηUT
− VT0

η2U2
T
+

V 2
T0

2η3U3
T

)
,

v
′
in =

d
dt vin.

(ii) Saturation Mode:-

The drain current in saturation mode of weak inversion is given by

ID = IDS =
W
L

I0 e
vGS−VT0

UT (3.12)

Expansion of (3.12) using Maclaurin series up to quadratic terms gives

ID = IDS =
W
L

I0

[(
1− VT0

UT
+

V 2
T0

U2
T

)
+(vG− vS)

(
1

UT
− VT0

U2
T

)
+

v2
G

2U2
T
+

v2
S

2U2
T
−

vGvS

U2
T

]
.

(3.13)

So, the dynamical equations of the circuit in saturation region are

dvG

dt
=− vG

RinCGX
+

VIN

RinCGX
+ v

′
in (3.14)

dvB

dt
=− p2vG

RinCGX
+ p1 p9 (vG− vS)+

p1WI0

2LU2
T

(
v2

G + v2
S−2vGvS

)
+ p1 p10 + p2

(
VIN

RinCGX
+ v

′
in

)
(3.15)

dvS

dt
=− p4vG

RinCGX
+ p3 p9 (vG− vS)+

p3WI0

2LU2
T

(
v2

G + v2
S−2vGvS

)
+ p3 p10 + p4

(
VIN

RinCGX
+ v

′
in

)
(3.16)

dvD

dt
=− p6vG

RinCGX
+ p5 p9 (vG− vS)+

p5WI0

2LU2
T

(
v2

G + v2
S−2vGvS

)
+ p5 p10 + p6

(
VIN

RinCGX
+ v

′
in

)
(3.17)

where

p9 =
I0W

L

(
1

UT
− VT0

U2
T

)
,

p10 =
I0W

L

(
1− VT0

UT
+

V 2
T0

U2
T

)
.

Euler-Maruyama method has been used to obtain discrete time state space equa-

tion using tk− tk−1 = TS such that

Fk = eF(tk−tk−1) ≈ I +FTS (3.18)
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Bk =
∫ tk

tk−1

eF(tk−τ)Bdτ ≈ BTS. (3.19)

where Ts is the sampling time [89].

3.1.2 Applying EKF to MOSFET Circuit

The MOSFET output voltage has been estimated using EKF. We estimated the drain

voltage of EKV modelled MOSFET circuit. Discrete time state space equations are

xk = fk−1(xk−1,uk−1,vk−1) (3.20)

yk = hk(xk,wk) (3.21)

(i) Conduction Mode:-

Equation (3.20) in conduction mode is represented by

x(c)k = F(c)
k−1x(c)k−1 +B(c)

k−1uk−1 (3.22)

where

x(c)k =
[

vG vB vS vD

]T
.

F(c)
k−1 =

∂ f (c)k−1(x̂k−1|k−1,uk−1)

∂x(c)k−1

(3.23)

=


Fc

11 Fc
12 Fc

13 Fc
14

Fc
21 Fc

22 Fc
23 Fc

24

Fc
31 Fc

32 Fc
33 Fc

34

Fc
41 Fc

42 Fc
43 Fc

44

 . (3.24)

where

Fc
11 = 1− Ts

RinCGX
, Fc

21 =−
p2Ts

RinCGX
+Ts p1 p8(vD− vS),

Fc
23 =−p1 p7Ts +

p1 p7Ts
UT

(vD
2 + vS

)
, Fc

22 = 1+ p1 p8Ts(−vD + vS),

Fc
24 = p1 p7Ts +

p1 p7Ts
UT

(
vB− vD− vS

2

)
, Fc

31 =−
p4Ts

RinCGX
+Ts p3 p8(vD− vS),

Fc
32 = p3 p8Ts(−vD + vS), Fc

33 = 1− p3 p7Ts +
p3 p7Ts

UT

(vD
2 + vS

)
,

Fc
34 = p3 p7Ts +

p3 p7Ts
UT

(
vB− vD− vS

2

)
, Fc

41 =−
p6Ts

RinCGX
+Ts p5 p8(vD− vS),

Fc
42 = p5 p8Ts(−vD + vS), Fc

43 =−p5 p7Ts +
p5 p7Ts

UT

(vD
2 + vS

)
,

Fc
44 = 1+ p5 p7Ts +

p5 p7Ts
UT

(
vB− vD− vS

2

)
,
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Fc
12 = 0, Fc

13 = 0, Fc
14 = 0,

B(c)
k−1 =

∂ f(c)k−1(x̂
(c)

k−1|k−1,uk−1)

∂uk−1
(3.25)

=
[

Ts p2Ts p4Ts p6Ts

]T
(3.26)

where u =
(

VIN
RinCGX

+ v
′
in

)
.

Measurement model in conduction mode is

y(c)k = H(c)
k x(c)k (3.27)

where

H(c)
k =

∂h(c)k ( f (c)k−1(x̂
(c)

k−1|k−1))

∂x(c)k

(3.28)

=
[

0 0 0 1
]
. (3.29)

The state space representation of the circuit in the conduction mode is


vGk

vBk

vSk

vDk

=


Fc

11 Fc
12 Fc

13 Fc
14

Fc
21 Fc

22 Fc
23 Fc

24

Fc
31 Fc

32 Fc
33 Fc

34

Fc
41 Fc

42 Fc
43 Fc

44




vGk−1

vBk−1

vSk−1

vDk−1

+


Ts

p2Ts

p4Ts

p6Ts


(

VIN

RinCGX
+ v

′
in

)
(3.30)

(ii) Saturation Mode:-

Equation (3.20) in saturation mode is represented as:

x(s)k = F(s)
k−1x(s)k−1 +B(s)

k−1uk−1 +C(s)
k−1 (3.31)

where

x(s)k =
[

vG vB vS vD

]T
.

F(s)
k−1 =


Fs

11 Fs
12 Fs

13 Fs
14

Fs
21 Fs

22 Fs
23 Fs

24

Fs
31 Fs

32 Fs
33 Fs

34

Fs
41 Fs

42 Fs
43 Fs

44

 (3.32)
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where

Fs
11 = 1− Ts

RinCGX
, Fs

12 = 0, Fs
13 = 0, Fs

14 = 0,

Fs
21 = p1 p9Ts− p2Ts

RinCGX
+ p1TsWI0

LU2
T

(vG− vS), Fs
22 = 1,

Fs
23 =−p1 p9Ts +

p1TsWI0
LU2

T
vS, Fs

24 = 0,

Fs
31 = p3 p9Ts− p4Ts

RinCGX
+ p3TsWI0

LU2
T

(vG− vS), Fs
32 = 0,

Fs
33 = 1− p3 p9Ts +

p3TsWI0
LU2

T
vS, Fs

34 = 0,

Fs
41 = p5 p9Ts− p6Ts

RinCGX
+ p5TsWI0

LU2
T

(vG− vS), Fs
42 = 0,

Fs
43 =−p5k9Ts +

p5TsWI0
LU2

T
vS, Fs

44 = 1,

B(s)
k−1 =

[
Ts p2Ts p4Ts p6Ts

]T
(3.33)

C(s)
k−1 =

[
0 p1 p10Ts p3 p10Ts p5 p10Ts

]T
. (3.34)

Measurement model in saturation mode is

y(s)k = H(s)
k x(s)k (3.35)

where

H(s)
k =

[
0 0 0 1

]
. (3.36)

The state space representation of the circuit in the saturation mode is


vGk

vBk

vSk

vDk

=


Fs

11 Fs
12 Fs

13 Fs
14

Fs
21 Fs

22 Fs
23 Fs

24

Fs
31 Fs

32 Fs
33 Fs

34

Fs
41 Fs

42 Fs
43 Fs

44




vGk−1

vBk−1

vSk−1

vDk−1

+


Ts

p2Ts

p4Ts

p6Ts


(

VIN

RinCGX
+ v

′
in

)

+


0

p1 p10Ts

p3 p10Ts

p5 p10Ts

 . (3.37)

The process noise vk and and the measurement noise wk are added to (3.22) and

(3.27) respectively to apply EKF algorithm in conduction mode. We have

x(c)k = F(c)
k−1x(c)k−1 +B(c)

k−1uk−1 +vk−1 (3.38)

y(c)k = H(c)
k x(c)k +wk (3.39)
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Similarly, process noise vk and measurement noise wk are added to ((3.31) and (3.35)

respectively to apply EKF algorithm in saturation mode as:

x(s)k = F(s)
k−1x(s)k−1 +B(s)

k−1uk−1 +C(s)
k−1 +vk−1 (3.40)

y(s)k = H(s)
k x(s)k +wk (3.41)

The EKF method described in appendix section A.2 has been applied to MOSFET

circuit shown in Figure 3.1. After initialization, iterative process between the time

update and measurement update have been used.

3.1.3 Simulation Results for MOSFET Circuit

Simulations have been performed in MATLAB software. The parameters used for

simulations are: UT = 0.0256V , VT0 = 0.5V , Rin = 3kΩ, CGX = 1.0× 10−11, CS = 1.5×

10−10F , CD = 1.5×10−10F , CB = 4×10−10F , CBS = 0.99×10−11F , CBD = 1.0×10−11F ,

I0 = 1.0×10−9A and η = 1. The sampling frequency is taken as the ten times of input

frequency. The output voltage estimation using EKF method has been compared

with the RLS method and PSPICE simulated values. PSPICE simulated values have

been considered as actual value. Simulations have been performed for two different

scenarios: - (i) noiseless input signal (ii) noisy input signal. Gaussian noise with

zero mean and different variance have been used for noisy input signal. Initial values

assigned to covariances are: Qk = diag [0.0025 0.002 0.002 0.002] and Rk = 0.01. As

the EKF performance depends on proper selection of covariance matrices, Qk, Rk and

P(0) have been selected by trial and error method.

We simulated the output estimation in the weak inversion for two different modes

of transistor (i) the conduction mode, (ii) the saturation mode. Figure 3.2 and Fig-

ure 3.3 show the output voltage estimation for noiseless and noisy input respectively

in conduction mode. Figure 3.4 and Figure 3.5 show the output voltage estimation

in saturation mode for noiseless and noisy input respectively. These figures compare

the EKF estimated output voltage with the RLS method and actual values. The EKF

presents better estimation as compared to RLS as measurement noise is taken into

account by the EKF method. Table 3.1 and Table 3.2 show the root mean square error

(RMSE) comparison in conduction and saturation mode, respectively, using EKF and
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RLS method.

RMSE =

√√√√ 1
N

N

∑
k=1

e2
k (3.42)

where ek is the difference between actual value and estimated value. N is the total

number of samples used. Table 3.3 and Table 3.4 show the residual mean comparison

using RLS and EKF method in conduction and saturation mode respectively. Figure

3.6 and Figure 3.7 show the estimation error for conduction and saturation mode,

respectively.
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(a) Noiseless input to MOSFET.
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(b) Estimated MOSFET output voltage for noiseless input.

Figure 3.2: Estimation without noise in conduction mode.

Table 3.1: RMSE of Output voltage estimation in conduction mode using EKF and RLS.
S. No. Gaussian noise

at input source
Input frequency
(Hz)

EKF
RMSE

RLS
RMSE

1. µ = 0, σ = 0.25 100 0.3242 0.6223
2. µ = 0, σ = 0.25 1000 0.3242 0.6241
3. µ = 0, σ = 0.25 10000 0.3243 0.6260
4. µ = 0, σ = 0.10 100 0.2707 0.5353
5. µ = 0, σ = 0.10 1000 0.2708 0.5364
6. µ = 0, σ = 0.10 10000 0.2710 0.5365
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(a) Noisy input to MOSFET.
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(b) Estimated MOSFET output voltage for noisy input.

Figure 3.3: Estimated output voltage for noisy input in conduction mode. White Gaussian
noise of zero mean and 0.25 variance is used.
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(b) Estimated MOSFET output voltage for noiseless input.

Figure 3.4: Estimation without noise in saturation mode.
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(b) Estimated MOSFET output voltage for noisy input.

Figure 3.5: Estimated output voltage for noisy input in saturation mode. White Gaussian noise
of zero mean and 0.25 variance is used.
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(a) RMSE in conduction mode.
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(b) RMSE in saturation mode.

Figure 3.6: RMSE of estimated voltage in using (i) RLS, (ii) EKF.
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(a) Residual in conduction mode.
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(b) Residual in saturation mode

Figure 3.7: Residual of estimated voltage in using (i) RLS, (ii) EKF.

Table 3.2: RMSE of output voltage estimation in saturation mode using EKF and RLS.
S. No. Gaussian noise

at input source
Input frequency
(Hz)

EKF
RMSE

RLS
RMSE

1. µ = 0, σ = 0.25 100 0.4024 0.6043
2. µ = 0, σ = 0.25 1000 0.4028 0.6044
3. µ = 0, σ = 0.25 10000 0.4031 0.6048
4. µ = 0, σ = 0.10 100 0.3460 0.6144
5. µ = 0, σ = 0.10 1000 0.3461 0.6144
6. µ = 0, σ = 0.10 10000 0.3461 0.6145
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Table 3.3: Residual mean and variance of output estimation in conduction mode using EKF
and RLS.

S.
No.

Gaussian noise
at input source

Input
frequency
(Hz)

EKF
Residual
mean

RLS
Residual
mean

EKF
Residual
variance

RLS
Residual
variance

1. µ = 0, σ = 0.25 100 0.0643 0.4410 0.3742 1.0429
2. µ = 0, σ = 0.25 1000 0.0643 0.4411 0.3744 1.0586
3. µ = 0, σ = 0.25 10000 0.0645 0.4412 0.3744 1.0646
4. µ = 0, σ = 0.10 100 0.0619 0.4184 0.3611 1.0243
5. µ = 0, σ = 0.10 1000 0.0622 0.4235 0.3614 1.0365
6. µ = 0, σ = 0.10 10000 0.0625 0.4251 0.3620 1.0358

Table 3.4: Residual mean and variance of output estimation in saturation mode using EKF and
RLS.

S.
No.

Gaussian noise
at input source

Input
frequency
(Hz)

EKF
Residual
mean

RLS
Residual
mean

EKF
Residual
variance

RLS
Residual
variance

1. µ = 0, σ = 0.25 100 0.0506 0.4373 0.3456 1.0229
2. µ = 0, σ = 0.25 1000 0.0507 0.4374 0.3459 1.0286
3. µ = 0, σ = 0.25 10000 0.0510 0.4382 0.3460 1.0346
4. µ = 0, σ = 0.10 100 0.0422 0.3995 0.3436 0.9414
5. µ = 0, σ = 0.10 1000 0.0423 0.3996 0.3438 0.9454
6. µ = 0, σ = 0.10 10000 0.0423 0.4016 0.3441 0.9586
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3.2 State Estimation of Differential Amplifier Circuit

3.2.1 State Space Model of Differential Amplifier Circuit

Figure 3.8 shows the differential amplifier circuit diagram, which consists of two

BJTs Q1 and Q2. By applying KVL and KCL, we have

Figure 3.8: Differential amplifier circuit.

iLRL +
1

CL

∫
iLdt = vC1− vC2 (3.43)

VEE + vE

RE
+(IE1 + IE2) = 0 (3.44)

VCC− vC1

RC1

= iL + IC1 (3.45)

VCC− vC2

RC2

=−iL + IC2 (3.46)

where vC1, vC2, vE and qL are the state variables. Using qL =
∫

iLdt, we have
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RL
dqL

dt
+

qL

CL
= vC1− vC2 (3.47)

where qL is the charge at load RL. Replacing Q1 and Q2 with Ebers-Moll model, we

have

IC1 = αF1IES1

[
exp

vBE1

VT
−1
]
− ICS1

[
exp

vBC1

VT
−1
]

(3.48)

IC2 = αF2IES2

[
exp

vBE2

VT
−1
]
− ICS2

[
exp

vBC2

VT
−1
]

(3.49)

IE1 =−IES1

[
exp

vBE1

VT
−1
]
+αR1ICS1

[
exp

vBC1

VT
−1
]

(3.50)

IE2 =−IES2

[
exp

vBE2

VT
−1
]
+αR2ICS2

[
exp

vBC2

VT
−1
]

(3.51)

ICS1, ICS2 are the reverse saturation currents at the collector junction of Q1 and Q2

respectively. IES1 and IES2 are the reverse saturation currents at the emitter junction of

Q1 and Q2 respectively. VT is the thermal voltage. αF1 , αF2 and αR1, αR2 are current

gains of two transistors in forward and reverse mode respectively.

Solving for dvE
dt , dqL

dt ,
dvC1

dt and
dvC2

dt , we have

dvE(t)
dt

=

[{
r8

r7
− r5

r7

(
1+

r2

r1

)}
× 1

VT

{
−r2r5

r1r7
− r4r6

r3r7

}
v
′
1 +

{
r9

r7
− r6

r7

(
1+

r4

r3

)}
× 1

VT

{
−r2r5

r1r7
− r4r6

r3r7

}
v
′
2

]
vE +

[
−
{(

1+
r2r5

r1r7
+

r4r6

r3r7

)(
1+

r2

r1

)(
r5

VT
+

ICS1

V 2
T

)
+

r2

r1r7

(
r8−

r5

r1
(r1 + r2)

)(
r5

VT
+

ICS1

V 2
T

)}
v
′
1

r7
+

{
r2

r1r7

(
r9−

r6

r3
(r3 + r4)

)
×
(

r5

VT
+

ICS1

V 2
T

)}
v
′
2

r7

]
vC1 +

[{
−
(

1+
r2r5

r1r7
+

r4r6

r3r7

)(
1+

r4

r3

)(
r6

VT
+

ICS2

V 2
T

)
+

r4

r3r7

(
r9−

r6

r3
(r3 + r4)

)(
r5

VT
+

ICS1

V 2
T

)}
v
′
2

r7
+

{
r4

r3r7

(
r8−

r5

r1
(r1 + r2)

)
×
(

r6

VT
+

ICS2

V 2
T

)}
v
′
1

r7

]
vC2 +

[{
1+

r2r5

r1r7
+

r4r6

r3r7

}
×
{

r8

r7
− r5

r7

(
1+

r2

r1

)}]
v
′
1

+

[{
1+

r2r5

r1r7
+

r4r6

r3r7

}
×
{

r9

r7
− r6

r7

(
1+

r4

r3

)}]
v
′
2 (3.52)

dqL

dt
=− qL

RLCL
+

vC1−vC2
RL

(3.53)
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dvC1

dt
=

r2

r1VT

[{
1+

r2r5

r1r7
+

r4r6

r3r7

}{
r8

r7
− r5

r7

(
1+

r2

r1

)}
v
′
1 +

(
1+

r2r5

r1r7
+

r4r6

r3r7

)
×
{

r9

r7
− r6

r7

(
1+

r4

r3

)}
v
′
2

]
vE +

[(
1+

r2

r1VT

)
− r2

r1VT

{
1+

r2r5

r1r7
+

r4r6

r3r7

}
×
{

r8

r7
− r5

r7

(
1+

r2

r1

)}
v
′
1 +

r2

r1VT

{
1+

r2r5

r1r7
+

r4r6

r3r7

}
×
{

r9

r7
− r6

r7

(
1+

r4

r3

)}
v
′
2

]
× vC1 +

[(
1+

r2

r1

)
− r2

r1

{
1+

r2r5

r1r7
+

r4r6

r3r7

}
×
{

r8

r7
− r5

r7

(
1+

r2

r1

)}]
v
′
1

− r2

r1VT

[{
1+

r2r5

r1r7
+

r4r6

r3r7

}
×
{

r9

r7
− r6

r7

(
1+

r4

r3

)}]
v
′
2 (3.54)

dvC2

dt
=

r4

r3VT

[{
1+

r2r5

r1r7
+

r4r6

r3r7

}{
r8

r7
− r5

r7

(
1+

r2

r1

)}
v
′
1 +

(
1+

r2r5

r1r7
+

r4r6

r3r7

)
×
{

r9

r7
− r6

r7

(
1+

r4

r3

)}
v
′
2

]
vE +

[(
1+

r4

r3VT

)
− r4

r3VT

{
1+

r2r5

r1r7
+

r4r6

r3r7

}
×
{

r8

r7
− r5

r7

(
1+

r2

r1

)}
v
′
1 +

r2

r1VT

{
1+

r2r5

r1r7
+

r4r6

r3r7

}
×
{

r9

r7
− r6

r7

(
1+

r4

r3

)}
v
′
2

]
× vC2−

r4

r3VT

[{
1+

r2r5

r1r7
+

r4r6

r3r7

}
×
{

r9

r7
− r6

r7

(
1+

r4

r3

)}]
v
′
1

+

[(
1+

r4

r3

)
− r2

r1

{
1+

r2r5

r1r7
+

r4r6

r3r7

}
×
{

r8

r7
− r5

r7

(
1+

r2

r1

)}]
v
′
2 (3.55)

y = vC1− vC2 (3.56)

where

r1 =
αR1 ICS1

(
1+ 1

β1

)
VT

+
ICS1
VT

, r2 =−
αF1 IES1

(
1+ 1

β1

)
VT

− IES1
VT

, r3 =
αR2 ICS2

(
1+ 1

β2

)
VT

+
ICS2
VT

,

r4 =−
αF2 IES2

(
1+ 1

β2

)
VT

− IES2
VT

, r5 =
1

RC1
+

ICS1
VT

, r6 =
1

RC2
+

ICS2
VT

,

r7 =−
αF1 IES1

VT
− αF2 IES2

VT
, r8 =−

αF1 IES1
VT

+
ICS1
VT

, r9 =−
αF2 IES2

VT
+

ICS2
VT

,

and v
′
1 =

d
dt v1, v

′
2 =

d
dt v2

3.2.2 Applying EKF to Differential Amplifier Circuit

The EKF algorithm can be applied for parameter estimation by using the unknown

parameters as extended state variables. We estimate the collector voltage of both the

transistors. Discrete time state space equations (3.52)-(3.56) are

xk = fk−1(xk−1,uk−1) (3.57)

yk = hk(xk) (3.58)
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The state model is

xk = Fk−1xk−1 +B(1)
k−1u1 +B(2)

k−1u2 (3.59)

where

xk =
[

vEk qLk vC1k
vC2k

]T
(3.60)

Fk−1 =
∂ fk−1(x̂k−1,uk−1)

∂xk−1
(3.61)

=


F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

 (3.62)

where

F11 =
[{

r8
r7
− r5

r7

(
1+ r2

r1

)}
1

VT

{
− r2r5

r1r7
− r4r6

r3r7

}
v
′
1 +
{

r9
r7
− r6

r7

(
1+ r4

r3

)}
1

VT

{
− r2r5

r1r7
− r4r6

r3r7

}
v
′
2

]
,

F13 =

[
−
{(

1+ r2r5
r1r7

+ r4r6
r3r7

)(
1+ r2

r1

)(
r5
VT

+
ICS1
V 2

T

)
r2

r1r7

(
r8− r5

r1
(r1 + r2)

)(
r5
VT

+
ICS1
V 2

T

)}
v
′
1

r7

+
{

r2
r1r7

(
r9− r6

r3
(r3 + r4)

)(
r5
VT

+
ICS1
V 2

T

)}
v
′
2

r7

]
,

F14 =

[{
−
(

1+ r2r5
r1r7

+ r4r6
r3r7

)(
1+ r4

r3

)(
r6
VT

+
ICS2
V 2

T

)
+ r4

r3r7

(
r9− r6

r3
(r3 + r4)

)(
r5
VT

+
ICS1
V 2

T

)}
v
′
2

r7

+
{

r4
r3r7

(
r8− r5

r1
(r1 + r2)

)(
r6
VT

+
ICS2
V 2

T

)}
v
′
1

r7

]
,

F31 =
r2

r1VT

[{
1+ r2r5

r1r7
+ r4r6

r3r7

}{
r8
r7
− r5

r7

(
1+ r2

r1

)}
v
′
1 +
(

1+ r2r5
r1r7

+ r4r6
r3r7

){
r9
r7
− r6

r7

(
1+ r4

r3

)}
v
′
2

]
,

F33 =
[(

1+ r2
r1VT

)
− r2

r1VT

{
1+ r2r5

r1r7
+ r4r6

r3r7

}
×
{

r8
r7
− r5

r7

(
1+ r2

r1

)}
v
′
1

r2
r1VT

+
{

1+ r2r5
r1r7

+ r4r6
r3r7

}
×
{

r9
r7
− r6

r7

(
1+ r4

r3

)}
v
′
2

]
,

F41 =
r4

r3VT

[{
1+ r2r5

r1r7
+ r4r6

r3r7

}{
r8
r7
− r5

r7

(
1+ r2

r1

)}
v
′
1 +
(

1+ r2r5
r1r7

+ r4r6
r3r7

){
r9
r7
− r6

r7

(
1+ r4

r3

)}
v
′
2

]
,

F44 =
[(

1+ r4
r3VT

)
− r4

r3VT

{
1+ r2r5

r1r7
+ r4r6

r3r7

}{
r8
r7
− r5

r7

(
1+ r2

r1

)}
v
′
1

k2
r1VT

+
{

1+ r2r5
r1r7

+ r4r6
r3r7

}
×
{

r9
r7
− r6

r7

(
1+ r4

r3

)}
v
′
2

]
,

F12 = 0, F32 = 0, F42 = 0

B(1)
k−1 =

∂ fk−1(x̂k−1,uk−1)
∂u1

(3.63)

=
[

B1 B2 B3 B4

]T
(3.64)
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B(2)
k−1 =

∂ fk−1(x̂k−1,uk−1)
∂u2

(3.65)

=
[

B5 B6 B7 B8

]T
(3.66)

where

B1 = Ts

[{
1+ r2r5

r1r7
+ r4r6

r3r7

}
×
{

r8
r7
− r5

r7

(
1+ r2

r1

)}]
,

B3 = Ts

[(
1+ r2

r1

)
− r2

r1

{
1+ r2r5

r1r7
+ r4r6

r3r7

}
×
{

r8
r7
− r5

r7

(
1+ r2

r1

)}]
,

B4 =− r4Ts
r3VT

[{
1+ r2r5

r1r7
+ r4r6

r3r7

}
×
{

r9
r7
− r6

r7

(
1+ r4

r3

)}]
,

B5 = Ts

[{
1+ r2r5

r1r7
+ r4r6

r3r7

}
×
{

r9
r7
− r6

r7

(
1+ r4

r3

)}]
,

B7 =− r2Ts
r1VT

[{
1+ r2r5

r1r7
+ r4r6

r3r7

}
×
{

r9
r7
− r6

r7

(
1+ r4

r3

)}]
,

B8 = Ts

[(
1+ r4

r3

)
− r2

r1

{
1+ r2r5

r1r7
+ r4r6

r3r7

}
×
{

r8
r7
− r5

r7

(
1+ r2

r1

)}]
,

B2 = 0, B6 = 0.

Ts is sampling time.

The measurement model is

yk = Hkxk (3.67)

Hk =
∂hk(fk−1(x̂k−1))

∂xk
(3.68)

=
[

0 0 1 −1
]
. (3.69)

The extended state space model is: xk

θk

 =

 Fk−1 0

0 1

 xk−1

θk−1

+
 Bk−1

0

vi +

 vxk−1

vθk−1

 (3.70)

yk = Hkxk +wk (3.71)

where

xk =
[

vEk qLk

]T

and θk = [vC1k
,vC2k

]. The discrete time state space equation for proposed BJT DA

circuit is:
vEk

qLk

vC1k

vC2k

=


F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44




vEk−1

qLk−1

vC1k−1

vC2k−1

+


B1

B2

B3

B4

v
′
1 +


B5

B6

B7

B8

v
′
2
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yk = vC1k
− vC2k

(3.72)

where

xk =
[

vEk qLk vC1k
vC2k

]T
(3.73)

Fk−1 =


F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

 (3.74)

B(1)
k−1 =

[
B1 B2 B3 B4

]T
(3.75)

B(2)
k−1 =

[
B5 B6 B7 B8

]T
(3.76)

Hk =
[

0 0 1 −1
]

(3.77)

3.2.3 Simulation Results for Differential Amplifier Circuit

The estimation of collector voltages of BJT DA has been performed in MATLAB

using EKF. The EKF estimated values have been compared with the RLS estimated

method and PSPICE simulated values. PSPICE simulated values have been consid-

ered as the actual value. Peak to peak differential input voltage is 2mV. Parameters

used in simulation are: RC1 = 8kΩ, RC2 = 8kΩ, RE = 0.10kΩ, RL = 10kΩ, CL = 10µF . In-

put signal frequency is 1 kHz. Sampling time is 0.0001 seconds. Figure 3.9 to Figure

3.11 show the estimation for noiseless and noisy input using EKF and RLS method

and compares with PSPICE simulated values. The white Gaussian noise with zero

mean and different variances have been used as noisy input for estimation purpose.

Qk= diag [0.01 0.01 0.01 0.01] and Rk=0.1. Qk and Rk have been selected by trial and

error method. Table 3.5 presents the root mean square error (RMSE) of EKF and RLS

methods for noisy inputs. EKF method has smaller RMSE value as compared to RLS

method.
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Table 3.5: RMSE of output estimation using EKF and RLS for peak to peak differential input
of 2mV.

S. No. Gaussian noise
at input source

Input frequency
(Hz)

EKF
RMSE

RLS
RMSE

1. µ = 0, σ = 0.005 100 0.00034 0.00040
2. µ = 0, σ = 0.010 1000 0.00037 0.00045
3. µ = 0, σ = 0.025 10000 0.00043 0.00048
4. µ = 0, σ = 0.050 100 0.00051 0.00085
5. µ = 0, σ = 0.100 1000 0.00054 0.00093

(a) (b)

Figure 3.9: Differential amplifier output for sinusoidal input. (a). Noiseless DA input voltage.
(b). Estimated DA output voltage for noiseless input.

General Remarks

(i) Considering w[n] as independent and identically distributed (i.i.d.), w∼ N(0, I) and

v[n] as i.i.d., v∼ N(0, I) , we have

E(dw(t)dw(t)T ) = dt I (3.78)

E(dv(t)dv(t)T ) = dt I (3.79)

where E represents the expectation value. Now replacing dt by ∆, we have

E(
√

∆w[n+1]
√

∆w[n+1] T ) = ∆ I. (3.80)

The factor of
√

∆ comes because by Itô formulae. Similarly, we have for v(t).

x[n+1] = (I + f∆)x[n]+
√

∆v[n+1] (3.81)
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(a) (b)

Figure 3.10: DA output for noisy input. White Gaussian noise of zero mean and 0.01 variance
is used. Peak to peak differential input voltage is 2mV. (a): Noisy DA input voltage. (b).
Estimated DA output voltage for noisy input.

(a) (b)

Figure 3.11: : DA output for noisy input. White Gaussian noise of zero mean and 0.1 variance
is used. Peak to peak differential input voltage is 2mV. (a): Noisy DA input voltage. (b).
Estimated DA output voltage for noisy input.
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y[n+1] = y[n]+h(x[n])∆+
√

∆w[n+1] (3.82)

x̂[n+1]− x̂[n] = f(x̂[n])∆+P[n]R−1h′(x̂[n])T (y[n+1]−y[n]−h(x̂[n])∆) (3.83)

The difference between measured and estimated output is known as the inno-

vation process and is represented by i[n].

i[n] = y[n+1]−y[n]−h(x̂[n])∆

= h(x[n+1])+
√

∆w[n+1]−h′(x̂[n])∆

= h(x[n])∆−h(x̂[n])∆+
√

∆w[n+1]

≈ ∆h′(x̂[n])e[n]+
√

∆w[n+1]

(3.84)

e[n] = x[n]− x̂[n] (3.85)

E(i[n]i[n]T ) = ∆
2E(h′(x̂[n])Pn|nh′(x̂[n]))+∆ I (3.86)

E(i[n]i[n+ r]T ) = 0, r ≥ 1. (3.87)

So, it is white non-Gaussian process.

(ii) Though it seems that large measurement noise will cause bad estimates, but

above EKF equations imply that if the variance of measurement noise is very

small as compared to some matrix norm, R−1 will be very large and will cause

instability.





Chapter 4

Extended Kalman Filter Based Nonlinear

System Identification Described in Terms

of Kronecker Product

This Chapter1 presents the implementation of extended Kalman filter (EKF) on MOS-

FET for output voltage estimation. For this, the nonlinear system dynamics has been

modelled using Kronecker product. To obtain the state space model of the circuit,

Enz-Krummenacher-Vittoz (EKV) model of the MOSFET and Kirchhoff’s current law

(KCL) have been used. This method has been compared with the wavelet transform

(WT) representation of the system using Kronecker product, where the least mean

square (LMS) has been implemented for state estimation. Simulation results validate

the superiority of EKF method on Kronecker representation of the system.

Major contributions of the proposed work are (i) EKF in literature has been applied

mostly to control problems as in robotics, but very little of EKF has been applied to

nonlinear electronic circuit. (ii) Usually parameter estimation in circuits is based on

block processing algorithms and not on real time algorithms. (iii) Applying WT to non-

linear dynamical system described by the circuit, by transforming the dynamical state

equations using Kronecker product (tensor product) into a form, where the gradient

1This chapter consists the results of research article "Bansal R, Majumdar S, Parthasarthy H. Extended
Kalman filter based nonlinear system identification described in terms of kronecker product, AEU-Int J Elec-
tron C, 108, pp. 107-117, 2019".

75
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algorithm can be applied. For block processing algorithm, we use wavelets which take

into account resolution/scaling properties of the circuit signals over different time slot-

s. This enables us to store lesser data i. e. achieve compression during estimation

process. (iv) Comparing real time EKF for state estimation with WT based param-

eter estimation by representing the dynamical system using the Kronecker product

enables easy approach to both the methods. Wavelet based parameter estimation

is usually applied to linear models. Here, we applied to a nonlinear model by rep-

resenting the dynamics of the nonlinearity using Kronecker products. (v) This work

presents a comparison between real time algorithm and block processing based al-

gorithm. The former has the lesser complexity but, the later provides compression as

all the samples are not used for estimation.

Several methods have been presented for state estimation in literature. The Kalman

filter (KF) algorithm is widely used for estimation in different applications [90] - [96].

Though it is an optimal estimator, but it can be used for linear systems only. It al-

so assumes that the process and measurement noise are Gaussian in nature and

stationarity of the external noise. These assumptions are not followed in various prac-

tical applications. For such cases, H∞ and particle filter (PF) are used. But, most

of the literature presents the use of H∞ filter on linear systems. Implementation of

nonlinear version of H∞ filter leads to instability of the system [97]. PF is also used

as an alternative to Gaussian assumption, but its estimation accuracy is affected by

particle degradation. The basic method of particle filter is that more weights are giv-

en to more probable states for given measurements. It is well suited for Markovian

state dynamics [98]. For state estimation of nonlinear systems, version of KF, namely

EKF has been used. The EKF applies KF for system dynamics obtained from the

linearization of the original nonlinear dynamics around the previous state estimates.

EKF has been widely used in various applications [99] - [102]. In [103], the state and

measurement models are linear and hence, the KF and its modification works. In [78],

the EKF has been applied to state estimation. But in large circuits, there are far more

number of state variables to be estimated. In [77], no state dynamics is assumed.

Only a nonlinear measurement model is assumed and parameters are estimated by

block processing algorithm. We used both, the state dynamics, following KCL applied

to a nonlinear circuit along with a measurement model and results are compared with

block processing algorithm.

Large inconsistent observations occur in measurements, known as outliers. The
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outliers degrade the performance of linear recursive algorithm, if the measurements

are assumed to be Gaussian distributed. To overcome this problem, various methods

have been proposed [104] - [105]. [104] presented the identification of ARX mod-

el with constrained output in the presence of non-Gaussian distribution of measure-

ments. Constraints present an important role in estimation problem as they reduce

the degradation of product quality. Optimization also plays an important role in esti-

mation, when several parameters have to be estimated. Various optimization methods

have been used in literature for accurate estimation purpose. The main drawback of

classical optimization methods is that they are not suitable for complex optimization

problems. So, metaheuristic optimization methods have been proposed, which are in-

spired by natural selection and social adaption. These metaheuristic algorithms make

use of the best features of nature and have been applied in various applications such

as robotics, power converters etc. [106] - [108].

The Kronecker product has been used for representation of nonlinear system to ob-

tain the more accurate representation of the system dynamics. The O. U. process has

been used as an input to consider the both, white noise and the Brownian process.

The formal derivation of Brownian motion is white noise, but Îto calculus is preferred

as compared to white noise calculus to deal with dynamical systems perturbed by

noise. The Kushner Kallainpur filter is an infinite dimensional, real time filter. So, to

implement on a computer we expand this equation around the conditional mean and

retain up to quadratic order in state estimation errors. This filter is derived by Îto cal-

culus together with Bayes’ rule and conditional density. The finite filter, EKF obtained

in this way has been used in this chapter for output voltage estimation of MOSFET.

Estimation using the EKF has been compared with wavelet based block processing

method. In wavelet representation, the minimum and maximum frequencies are dif-

ferent in various slots. This provides the advantage of using only a portion of wavelet

coefficients for estimation by adjusting the resolution in each block. The minimum and

maximum indices are different by minimum and maximum frequencies within each

time slot. The advantage of wavelet based estimation is that it does not require all the

wavelet coefficients for estimation, thus, requires smaller data storage. It is block pro-

cessing based estimation, so it can not be used for real-time estimation. On the other

hand, EKF is real-time estimation and has less complexity as compared to wavelet

based estimation

The circuit state space representation using EKV model of MOSFET and Kronecker
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product has been derived in Section 4.1. Section 4.2 presents the derivation of WT

based system representation using Kronecker product. Section 4.3 presents imple-

mentation of EKF to MOS circuit. Simulation results are presented in Section 4.4.

Section 4.5 draws the concluding remarks. At the end of this chapter, general re-

marks are given that discusses the presence of outliers also. The comparison of the

computational complexity of both representation is proposed in Table 4.3 and 4.4.

4.1 Modelling of MOSFET Circuit Dynamics Using Kro-

necker Product

MOSFET circuit is shown in Figure 4.1(a). The EKV model of MOSFET is shown

in Figure 4.1(b). Applying KCL and replacing the MOS transistor by EKV model, we

have:

(a) MOSFET circuit diagram (b) EKV equivalent circuit for MOSFET.

Figure 4.1: MOSFET and its EKV equivalent circuit.

(CGS +CGS0)

(
dvS

dt
− dvG

dt

)
+(CGD +CGD0)

(
dvD

dt
− dvG

dt

)
+(CGB +CGB0)×

(
dvB

dt
− dvG

dt

)
= 0 (4.1)

(CGD +CGD0)

(
dvG

dt
− dvD

dt

)
+CBD

(
dvB

dt
− dvD

dt

)
= IDS + IDB (4.2)
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(CGS +CGS0)

(
dvG

dt
− dvS

dt

)
+CBS

(
dvB

dt
− dvS

dt

)
=−IDS (4.3)

CGX

(
dvin

dt
− dvG

dt

)
+

VIN− vG

Rin
= 0 (4.4)

where vG, vD, vS and vB are the state variables. CGD, CGS and CGB are the drain to

channel capacitance, source to channel capacitance and base to channel capacitance

respectively. COX is oxide capacitance. Drain current ID is

ID = IDS + IDB (4.5)

As IDB ∼= 0, therefore ID ∼= IDS. From the EKV model of weak inversion, we have

ID = IDS = I0
W
L

e
vGB−VT0

ηUT

(
e−

vSB
UT − e−

vDB
UT

)
(4.6)

where W is the width and L is the length of the MOSFET channel, W
L is the aspect ratio,

VT0 and UT are the the equilibrium threshold voltage and thermal voltage respectively.

I0 is the unary specific current. η is the subthreshold slope factor.

Expanding (4.6) using Taylor series and retaining up to quadratic terms, we have

ID =
I0W
UT L

{
(vD− vS)

(
1− VT0

ηUT
+

V 2
T0

2η2U2
T
− 1

6

V 3
T0

η3U3
T

)}
+

I0W
2U2

T L

{(
v2

S− v2
D

−2(vSvB− vDvB)− vDvS + vSvD)×

(
1− VT0

ηUT
+

V 2
T0

2η2U2
T
− 1

6

V 3
T0

η3U3
T

)}

+
I0W
UT L

{
(vGvD− vBvD− vGvS + vBvS)×

(
1

ηUT
− VT0

η2U2
T
+

3V 2
T0

η3U3
T

)}
. (4.7)

Now, modelling the input as O. U. process, to account for both kinds of extreme be-

haviour namely, the white Gaussian noise process and the Brownian process, we

have:
dvin

dt
=−γvin +σ jρ jN j(t) (4.8)

where γ, σ j and ρ j are non-negative constants. N j(t) is white Gaussian noise with

zero mean and unit variance.

dvin(t) =−γvindt +σ jρ j dβ j(t) (4.9)
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where β j(t) is the Brownian motion process. Using CGS +CGS0 = CS, CGD +CGD0 =

CD and CGB +CGB0 = CB and converting the above differential equations (4.1)-(4.4) to

stochastic differential equations (SDE), we have

dvG(t) =−
vG

RinCGX
dt +

VIN

RinCGX
dt− γvindt +σ1ρ1 dβ1(t) (4.10)

dvB(t) =
[
− s2vG

RinCGX
+

I0

UT

W
L

s1s7 (vD− vS)−
s1s7

UT
vSvB +

s1s7

UT
vDvB

+
s1s7

2UT
(−vDvS + vSvD)+ s1s8(vGvD− vGvS)+ s1s8(vBvS− vBvD)

+
s1s7

2UT
(v2

S− v2
D)

]
dt + s4{−γvindt +σ2ρ2 dβ2(t)}+

s2VIN

RinCGX
dt (4.11)

dvS(t) =
[
− s4vG

RinCGX
+

I0

UT

W
L

s3s7 (vD− vS)−
s3s7

UT
vSvB +

s3s7

UT
vDvB

+
s3s7

2UT
(−vDvS + vSvD)+ s3s8(vGvD− vGvS)+ s3s8(vBvS− vBvD)

+
s3s7

2UT
(v2

S− v2
D)

]
dt + k4{−γvindt +σ3ρ3 dβ3(t)}+

s4VIN

RinCGX
dt (4.12)

dvD(t) =
[
− s6vG

RinCGX
+

I0

UT

W
L

s5s7 (vD− vS)−
s5s7

UT
vSvB +

s5s7

UT
vDvB

+
s5s7

2UT
(−vDvS + vSvD)+ s5s8(vGvD− vGvS)+ s5s8(vBvS− vBvD)

+
s5s7

2UT
(v2

S− v2
D)

]
dt + s6{−γvindt +σ4ρ4 dβ4(t)}+

s6VIN

RinCGX
dt (4.13)

z(t) = vD(t) (4.14)

s1 =
CD(CS+CBS)(CSCBS+CSCBD)

CSCBS(CBDCS(−CS−CBS)+CSCBS(−CD−CBD))
− 1

CBS
,

s2 =
[

CD(CS+CBS){−CSCDCBS−CSCBD(CS+CBS)}
CSCBS{CSCBD(−CS−CBS)+CSCBS(−CD−CBD)} −

CS
CBS

+ (CS+CB+CD)(CS+CBS)
CSCBS

+ CD(CS+CBS){−CBD(CS+CD+CB)(CS+CBS)}
CSCBS{CSCBD(−CS−CBS)+CSCBS(−CD−CBD)}

]
,

s3 =
CD(CBS+CBD)

{CSCBD(CS+CBS)+CSCBS(CS+CBD)} ,

s4 =
CD
CS

{
CSCDCBS−C2

SCBD+CBD(CS+CBS)(CS+CD+CB)
CDCBD(CS+CBS)+CSCBS(CD+CBD)

}
+ CS+CD+CB

CS
,

s5 =
CS(CBS+CBD)

CDCBD(−CS−CBS)+CSCBS(−CD−CBD)
,

s6 =
−CSCDCBS+C2

SCBD+CBD(−CS−CBS)(CS+CD+CB)
CDCBD(−CS−CBS)+CSCBS(−CD−CBD)

,

s7 =
I0

UT
W
L

(
1− VT0

ηUT
+

V 2
T0

2η2U2
T
− 1

6
V 3

T0
η3U3

T

)
, s8 =

I0
UT

W
L

(
1

ηUT
− VT0

η2U2
T
+

V 2
T0

2η3U3
T

)
.

After retaining up to quadratic terms in Taylor series expansion of the function f and
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h around the quiescent points, we get a vector of the form

dx(t) =A1x(t)+A2(x(t)⊗x(t))+A3u1(t)+A4u2(t)+A5(x(t)⊗u(t))

+A6dβ (t)+A7(x(t)⊗dβ (t)) (4.15)

x(t) =
[

vG(t) vB(t) vS(t) vD(t)
]T

,

A1 =


− 1

RinCGX
0 0 0

− s2
RinCGX

s1s7 −s1s7 0

− s4
RinCGX

s3s7 −s3s7 0

− s6
RinCGX

s5s7 −s5s7 0



A2 =

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 s1s8 −s1s8 0 0 − s1s7
2UT

− s1s7
2UT

s1s7
UT

0 s1s7
2UT

s1s7
2UT

− s1s7
UT

0 −s1s8 s1s8 0

0 s3s8 −s3s8 0 0 − s3s7
2UT

− s3s7
2UT

s3s7
UT

0 s3s7
2UT

s3s7
2UT

− s3s7
UT

0 −s3s8 s3s8 0

0 s5s8 −s5s8 0 0 − s5s7
2UT

− s5s7
2UT

s5s7
UT

0
s5s7
2UT

s5s7
2UT

− s5s7
UT

0 −s5s8 s5s8 0

,
A3 =

[
−γ −γs2 −γs4 −γs6

]T
,

A4 =
[

1
RinCGX

s2
RinCGX

s4
RinCGX

s6
RinCGX

]T
,

A5 = 0,

A6 =


ρ1σ1 0 0 0

0 ρ2σ2 0 0

0 0 ρ3σ3 0

0 0 0 ρ4σ4

 ,

and A7 = 0. Input source u1 = vin, u2 =VIN .

dβ (t) =
[

dβ1(t) dβ2(t) dβ3(t) dβ4(t)
]T

.

The same method can be applied to the circuit shown in Figure 4.2. Figure 4.2 consist-

s of cascade of two MOSFET amplifiers which is the MOS analogue of the classical

bipolar junction transistor (BJT) Darlington pair. The state vector for this circuit is

x(2)(t) =
[

vG1(t) vB1(t) vS1(t) vD1(t) vG2(t) vB2(t) vS2(t) vD2(t)
]T

The Kronecker product is applicable to this vector by replacing x(t) by x(2)(t). The

simulation can be expanded slightly by including the small signal equivalent model
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Figure 4.2: Darlington pair circuit using MOSFET.

cascade of the two MOSFET amplifiers, which is the MOS analogue of the BJT Dar-

lington pair amplifier. By enlarging the state vector, the resulting state equation can

be put in general form (4.15). The formalism is the same except with A1, A1,...,A7 will

be changed to the larger matrices. The source voltage of the first MOSFET amplifi-

er is applied as input to second MOS amplifier i. e. vin2 = vS1(t), while writing KCL

equations.

4.2 System Representation Using Kronecker Product Based

Wavelet Transform Method

Representing the measurement model as:

dy(t) = H x(t)dt +σvdw(t) (4.16)

where

H =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,

w(t) is vector valued Brownian motion process. Expanding x(t) using wavelet basis

as

x(t) = ∑
N1≤n≤N2,kmin(n)≤k≤kmax(n)

c(n,k)Ψn,k(t)
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or

x(t) = ∑
(n,k)∈D

c(n,k)Ψn,k(t) (4.17)

where Ψn,k(t) is the mother wavelet. Resolution range [N1,N2] is chosen appropriately

based on characteristic frequency of operation and the time duration of the measure-

ment. Using

Ψn,k(t) = 2
n
2 Ψ(2nt− k). (4.18)

Let Ψ(t) be concentrated on [a, b] and let wmin and wmax be the lowest and the highest

frequency of operation. Let [0,T ] be the time duration of the measurement process.

Then, for a given resolution index n, the range of the transition index k must be such

that a≤ 2nt−k≤ b, t ∈ [0,T ]. Thus, 2nt−b≤ k≤ 2nt−a, t ∈ [0,T ] or −b≤ k≤ 2nT −a, t ∈

[0,T ]. Frequency of the wavelet Ψn,k(t) is

∣∣∣∣∣
dΨn,k(t)

dt
Ψn,k(t)

∣∣∣∣∣= 2n |Ψ′(2nt− k)|
|Ψ(2nt− k)|

∈ [2n
λmin,2

n
λmax] (4.19)

where

λmax = max
t

|Ψ′(t)|
|Ψ(t)|

,

λmin = min
t

|Ψ′(t)|
|Ψ(t)|

,

so the resolution indexes N1, N2 must be chosen such that

2N2λmax ≈
w2

2π
,

2N1λmin ≈
w1

2π

or

N1 ≈ log2

(
w1

2πλmin

)
,

N2 ≈ log2

(
w2

2πλmax

)
.

Choosing the resolution index range in this way enables us to store lesser data for

parameter estimation i.e. we have parameter estimation with compression. For the

application of wavelet technique, we must either directly measure the entire set of x(t)

of the state variables or else it must be a square non-singular matrix. In the latter
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case, we have

x(t)≈H −1 dy(t)
dt

(4.20)

and so

d2y(t)
dt2 ≈H

dx(t)
dt

(4.21)

≈H A1x(t)+H A2(x(t)⊗x(t))+H (A3u1(t)+A4u2(t))+H A5x(t)⊗u(t)

Representing the signals ẏ(t) and ÿ(t) using wavelets as:

ẏ(t)≈∑
n,k

cẏ[n,k]Ψn,k(t) (4.22)

ÿ(t)≈∑
n,k

cÿ[n,k]Ψn,k(t) (4.23)

Substituting (4.22) and (4.23) into (4.21) and omitting noise terms, we have

∑
n,k

cÿ[n,k]Ψn,k(t)

≈∑
n,k

H A1H
−1cẏ[n,k]Ψn,k(t)+∑

n,k
H A2(H

−1⊗H −1)(cẏ[n,k]⊗ cẏ[n,k])

×Ψn,k(t)Ψm,r(t)+H A3u1(t)+H A4u2(t)+∑
n,k

H A5(H
−1⊗ I)(I⊗ u(t))

× cẏ[n,k]Ψn,k(t) (4.24)

where

cẏ[n,k]≈
∫ T

0
ẏ(t)Ψn,k(t)dt =< ẏ,Ψn,k >= ẏ[n,k]. (4.25)

Taking inner product with Ψp,q on both sides of (4.24) gives

∑
n,k

cÿ[n,k]< Ψn,k,Ψp,q >

≈∑
n,k

H A1H
−1cẏ[n,k]< Ψn,k,Ψp,q >+ ∑

n,k,m,r
H A2(H

−1⊗H −1)

cẏ[n,k]⊗ cẏ[m,r]< Ψn,k,Ψm,r,Ψp,q >+H A3u1[p,q]+H A4u2[p,q]

+∑
n,k

H A5(H
−1⊗ I)(I⊗ u(t))cẏ[n,k]< Ψn,k,Ψp,q > (4.26)

where u(t)=∑u[n,k]Ψn,k(t), i.e. u[n,k] =<u,Ψn,k >. Equation (4.26) can be expressed
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as

cÿ[p,q] =∑
n,k

m1[p,q|n,k]cẏ[n,k]+δ ∑
n,k,m,r

m2[p,q|n,k,m,r](cẏ[n,k]⊗ cẏ[m,r])

+∑
n,k

m3[p,q|n,k]u[n,k] (4.27)

where m1, m2 and m3 are expressible in terms of H , A1,...,A5. m1, m2 depend on Θ,

so we write

cÿ[p,q] =∑
n,k

m1[p,q|n,k,Θ]cẏ[n,k]+δ ∑
n,k,m,r

m2[p,q|n,k,m,r,Θ](cẏ[n,k]

⊗ cẏ[m,r])+∑
n,k

m3[p,q|n,k]u[n,k] (4.28)

Applying perturbation theory up to O(δ 2) terms

cÿ[n,k] = c(0)ÿ [n,k]+δc(1)ÿ [n,k]+δ
2c(2)ÿ [n,k]+O(δ 3) (4.29)

Equating coefficients of δ (0), δ (1), δ (2) respectively, we have

c(0)ÿ [p,q] = ∑
n,k

m1[p,q|n,k,Θ]c(0)ẏ [n,k]+∑
n,k

m3[p,q|n,k,Θ]u[n,k] (4.30)

c(1)ÿ [p,q] = ∑
n,k,m,r

m2[p,q|n,k,m,r](c(0)ẏ [n,k]⊗ c(0)ẏ [m,r])+m1c(1)ẏ [p,q|n,k]

∆
=m2(c

(0)
ẏ ⊗ c(0)ẏ )[p,q]+m1c(1)ẏ [p,q] (4.31)

c(2)ÿ [p,q] = m1c(2)ẏ [p,q]+m2(c
(0)
ẏ ⊗ c(1)ẏ + c(1)ẏ ⊗ c(0)ẏ )[p,q] (4.32)

where c(0)ẏ [n,k], c(1)ẏ [n,k] and c(2)ẏ [n,k] are obtained from wavelet transform of ẏ(0)[n,k],

ẏ(1)[n,k] and ẏ(2)[n,k] respectively by comparing O(δ 0), O(δ 1) and O(δ 2) variations

represented in y(t).

We can retain up to O(δ 0) or O(δ 1) or O(δ 2) terms in expansion of the above e-

quation. Without using perturbation theory, we can estimate Θ plainly by applying the
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gradient search algorithm to minimize

ξ (Θ) =∑
p,q
||cÿ[p,q]−∑

n,k
m1[p,q|n,k,Θ]cẏ[n,k]− ∑

n,k,m,r
m2[p,q|n,k,m,r,Θ]

× (cẏ[n,k]⊗ cẏ[m,r])−∑
n,k

m3[p,q|n,k]u[n,k]||2. (4.33)

The computational burden of WT method is O(n5
x) per iteration.

4.3 Applying EKF to MOSFET Circuit

Representing equations (4.10)-(4.14) as a state space model

xk = fk−1(xk−1,uk−1,βk−1) (4.34)

zk = hk(xk) (4.35)

Representing equation (4.34) in terms of Kronecker product, we have :

xk = F(1)
k−1xk−1 +F(2)

k−1(xk−1⊗xk−1)+B(1)
k−1u1 +B(2)

k−1u2 +Zk−1βk−1 (4.36)

where

xk =
[

vG vB vS vD

]T

F(1)
k−1 =

∂ fk−1(x̂k−1|k−1,uk−1)

∂xk−1
(4.37)

=


1− Ts

RinCGX
0 0 0

− s2Ts
RinCGX

1+Tss1s7 −Tss1s7 0

− s4Ts
RinCGX

Tss3s7 1−Tss3s7 0

− s6Ts
RinCGX

Tss5s7 −Tss5s7 1

 (4.38)

F(2)
k−1 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 Tss1s8 −Tss1s8 0 0 − Tss1s7
2UT

− Tss1s7
2UT

Tss1s7
UT

0 Tss1s7
2UT

Tss1s7
2UT

− Tss1s7
UT

0 −Tss1s8 Tss1s8 0

0 Tss3s8 −Tss3s8 0 0 − Tss3s7
2UT

− Tss3s7
2UT

Tss3k7
UT

0 Tss3s7
2UT

Tss3s7
2UT

− Tss3s7
UT

0 −Tss3s8 Tss3s8 0

0 Tss5s8 −Tss5s8 0 0 − Tss5s7
2UT

− Tss5s7
2UT

Tss5s7
UT

0
Tss5s7

2UT
Tss5s7

2UT
− Tss5s7

UT
0 −Tss5k8 Tss5s8 0

 (4.39)
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xk⊗xk = (4.40)

[ vGvG vGvB vGvS vGvD vBvG vBvB vBvS vBvD vSvG vSvB vSvS vSvD vDvG vDvB vDvS vDvD ]T

B(1)
k−1 =

∂ fk−1(x̂k−1|k−1,uk−1)

∂u1
(4.41)

=
[
−γTs −γs2Ts −γs4Ts −γs6Ts

]T
(4.42)

B(2)
k−1 =

∂ fk−1(x̂k−1|k−1,uk−1)

∂u2
(4.43)

=
[

Ts
RinCGX

s2Ts
RinCGX

s4Ts
RinCGX

s6Ts
RinCGX

]T
(4.44)

Zk−1 =


Tsρ1σ1 0 0 0

0 Tsρ2σ2 0 0

0 0 Tsρ3σ3 0

0 0 0 Tsρ4σ4

 (4.45)

where Ts is sampling period. βk is the Brownian motion process given by:

β k =
[

β1 β2 β3 β4

]T
. (4.46)

Measurement model is

zk = Hkxk (4.47)

where

Hk =
∂hk( fk−1(x̂k−1|k−1))

∂xk
(4.48)

=
[

0 0 0 1
]

(4.49)

EKF algorithm has been implemented to the discrete equations by adding process

noise vk and measurement noise wk to (4.36) and (4.47) respectively.

xk =F(1)
k−1xk−1 +F(2)

k−1(xk−1⊗xk−1)+B(1)
k−1u1 +B(2)

k−1u2

+Zk−1βk−1 +vk−1 (4.50)
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zk = Hkxk +wk (4.51)

4.4 Simulation Results

We have implemented the proposed estimation method on both (i) data obtained

using hardware and (ii) PSPICE simulated data. In both the cases, the estimation

has been performed in MATLAB. IRFZ44N IC has been used for hardware imple-

mentation to obtain the practical data. Figure 4.3 shows the output estimated data

using the practical data and compares the estimated output with measured practi-

cal data. Figure 4.4 - Figure 4.7 show the output estimated data using PSPICE

simulated for different values of L and W . The MOSFET circuit is represented us-

ing Kronecker product. The proposed method has been compared with Kronecker

product based WT representation method. The LMS is used for parameter esti-

mation of Kronecker product based WT representation. Peak to peak input voltage

is 20mV . Parameters used for PSPICE simulations are: UT = 0.0256V , VT0 = 0.5V ,

Rin = 3kΩ, CGX = 1.0× 10−11, CS = 1.5× 10−10F , CD = 1.5× 10−10F , CB = 4× 10−10F ,

CBS = 0.99× 10−11F , CBD = 1.0× 10−11F , I0 = 1.0× 10−9A, η = 1, ρ j = 1 and γ = 1.

As the EKF performance depends on proper selection of covariance matrices, Qk,

Rk and P(0) have been selected by trial and error method. To begin the EKF, we re-

quire an initial state estimate x̂(0|0) based on no measurement and initial covariance

matrix P(0|0). The covariance of process noise is Qk = diag[10−8 10−8 10−8 10−8].

The covariance of measurement noise is Rk = 10−6. If the Pk is singular at any stage,

the convergence will be affected. P−1
k should generally replaced with pseudo inverse

or generalized inverse of Pk. For hardware implementation the measured output has

been taken as actual value. The initialization required for executing EKF are (i) x̂(t)

the initial state estimate and (ii) state estimate covariance matrix P(t) at t = 0. The

obvious choice of initial condition is

x̂(0) = 0 (4.52)

P(0) = Cov(x(0))≈Qk (4.53)

= Process noise covariance



89

Time (ms)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
m

pl
itu

de
 (

V
)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(a) Noisy input to MOSFET.
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(b) Estimated MOSFET output voltage.

Figure 4.3: Output voltage estimation for noisy input (white Gaussian noise of zero mean and
0.001 variance) using (i) EKF on Kronecker based system representation (ii) LMS on WT
based system representation. Input frequency is 1000 Hz.

The choice of the initial state error covariance may be based on the following logic:-

d x(t)
dt

= f (t,x(t))+σ
dβ (t)

dt
(4.54)

Using, T as characteristic time scale and where ∆ = T
N is the discretized step size,

then
x(∆)−x(0)

∆
= σ

dβ (t)
∆

(4.55)

x(∆) = σ dβ (t) (4.56)

Cov(x(∆)) = σ
2

∆ I (4.57)

since dt ≈ ∆

Cov(d β (t)) = dt I (4.58)

≈ ∆ I. (4.59)

By comparing these figures Figure 4.3 - Figure 4.7, we see that the state estimation

based on Kronecker based EKF smoothens out the process noise present in the o-

riginal dynamical system. The Kronecker based WT also smoothens out the process

noise but, not to extend as the EKF. Reason being the WT method is based on ne-

glecting measurement noise unlike the EKF. The estimation have been performed for

different process and measurement noise values. Root mean square error (RMSE) is

computed using the mathematical expression (3.42). If xk is the true state and x̂k is
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(b) Estimated MOSFET output voltage

Figure 4.4: Output voltage estimation for noisy input (white Gaussian noise of zero mean and
0.001 variance) using (i) EKF on Kronecker based system representation (ii) LMS on WT
based system representation. Input frequency is 1000 Hz. W=2µm, L=2µm.
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(b) Estimated MOSFET output voltage.

Figure 4.5: Output voltage estimation for noisy input (white Gaussian noise of zero mean and
0.001 variance) using (i) EKF on Kronecker based system representation (ii) LMS on WT
based system representation. Input frequency is 1000 Hz. W=20µm, L=20µm.
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(b) Estimated MOSFET output voltage

Figure 4.6: Output voltage estimation for noisy input (white Gaussian noise of zero mean and
0.001 variance) using (i) EKF on Kronecker based system representation (ii) LMS on WT
based system representation. Input frequency is 1000 Hz. W=10µm, L=20µm.
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(b) Estimated MOSFET output voltage.

Figure 4.7: Output voltage estimation for noisy input (white Gaussian noise of zero mean and
0.001 variance) using (i) EKF on Kronecker based system representation (ii) LMS on WT
based system representation. Input frequency is 1000 Hz. W=10µm, L=2µm.
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Table 4.1: RMSE of output voltage estimation using EKF and wavelet transform method when
peak to peak MOSFET input is 20mV for practical data.

S.
No.

Gaussian noise
at input source

Input
frequency
(Hz)

Estimation using
EKF on Kronecker
based representation

Estimation using LMS
on Kronecker based
wavelet representation

1. µ = 0, σ2 = 0.001 100 0.001667 0.002852
2. µ = 0, σ2 = 0.001 1000 0.001683 0.002868
3. µ = 0, σ2 = 0.001 10000 0.001690 0.002866
4. µ = 0, σ2 = 0.0025 100 0.001944 0.003251
5. µ = 0, σ2 = 0.0025 1000 0.001947 0.003260
6. µ = 0, σ2 = 0.0025 10000 0.001956 0.003283

Table 4.2: RMSE of output voltage estimation using EKF and wavelet transform method when
peak to peak MOSFET input is 20mV.

S.
No.

Gaussian noise
at input source

Input
frequency
(Hz)

Estimation using EKF
on Kronecker based
representation

Estimation using LMS on
Kronecker based wavelet
representation

W = 2µm

L = 2µm

W = 20µm

L = 20µm

W = 10µm

L = 20µm

W = 2µm

L = 2µm

W = 20µm

L = 20µm

W = 10µm

L = 20µm

1. µ = 0, σ2 = 0.001 100 0.001456 0.001391 0.001424 0.002522 0.002481 0.002492

2. µ = 0, σ2 = 0.001 1000 0.001459 0.001393 0.001426 0.002531 0.002484 0.002495

3. µ = 0, σ2 = 0.001 10000 0.001460 0.001401 0.001430 0.002537 0.002490 0.002501

4. µ = 0, σ2 = 0.0025 100 0.001836 0.001802 0.001812 0.002982 0.002740 0.002823

5. µ = 0, σ2 = 0.0025 1000 0.001838 0.001803 0.001816 0.002985 0.002751 0.002830

6. µ = 0, σ2 = 0.0025 10000 0.001840 0.001807 0.001820 0.002986 0.002755 0.002831

EKF estimate, the ek =xk− x̂k for kth realization, so that

1
N

N

∑
k=1

e2
k ≈

1
N

N

∑
k=1
||xk− x̂k||2. (4.60)

On the other hand, if Θ̂ is the parameter estimate in the proposed WT approach, x̂k

is generated using the differential equation

dx̂(t)
dt

=A1(Θ̂)x̂(t)+A2(Θ̂)(x̂(t)⊗ x̂(t))+A3(Θ̂)u1(t)+A4(Θ̂)u2(t)

+A5(Θ̂)(x̂(t)⊗u(t)) (4.61)

i. e. we use the state equation (4.15) after setting the noise to zero and replacing the

parameters by their estimates.

Table 4.1 shows the RMSE for different noise and different frequencies for both the

methods for practical data (hardware implementation). Table 4.2 shows the RMSE for

different values of W and L for both the methods for PSPICE simulated data.
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General remarks:

1. In the presence of outliers [109], the Gaussian distribution of measuremen-

t noise gets perturbed by a small non-Gaussian component. This can be taken

care into EKF formalism. As EKF is derived from Kushner nonlinear filter equa-

tion, which works, when the state is any Markov process and the measurement

noise is white Gaussian. If the measurement noise is non-white Gaussian noise,

then also, the nonlinear filter can be developed based on the Bayesian method

for computing the conditional probabilities using non-Gaussian probability den-

sity functions. The method works mainly because, although the measurement

noise is non-Gaussian, it is white and the state process is Markov. First dis-

cretize the state model as

xn+1 = f (xn,un+1)+vn+1 (4.62)

z(n) = h(xn)+wn (4.63)

zn = {z(n) : k ≤ n} (4.64)

p(xn+1|zn+1) =
p(xn+1,zn+1)

p(zn+1)
=

p(z(n+1),zn,xn+1)

p(zn+1)
(4.65)

=

∫
p(z(n+1)|xn+1)p(xn+1|xn)p(xn|zn)dxn∫

p(z(n+1)|xn+1)p(xn+1|xn)p(xn|zn)dxndxn+1
(4.66)

=

∫
pwn+1(z(n+1)−h(xn+1))pvn+1(xn+1− f (xn,un+1))p(xn|zn)dxn∫

pwn+1(z(n+1)−h(xn+1))pvn+1(xn+1− f (xn,un+1))p(xn|zn)dxndxn+1
(4.67)

x̂n+1|n+1 = argmax
x

∫
pwn+1(z(n+1)−h(x))pvn+1(x− f (xn,un+1))p(xn|zn)dxn.

(4.68)

Based on such Bayesian arguments the nonlinear filter can be developed, when

state is an arbitrary Markov process and when process or measurement noise

are arbitrary non-Gaussian process. Note that in our notation, z(n) is the instan-

taneous measurement at the time n, while zn = {zk : k ≤ n} is the aggregate of

all measurements taken upto time n.

2. Although it may appear that a large measurement noise variance will cause bad

estimates, if the measurement noise variance R is very small with respect to

some matrix norm, the R−1 will be very large, causing numerical instability.
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3. The main difficulty in the proposed method is obtaining the exact noise vari-

ances. However, this can be overcome by blocking the input signal and taking

only noise measurements in the circuit and estimating the noise variance by

assuming ergodicity after linearizing the circuit. The main computational diffi-

culty in WT method is the application of the gradient algorithm for parameter

estimation, since the matrices of A j(Θ), j = 1,2, ...7, have the high nonlinear

dependence of the parameter Θ.

4. In PSPICE simulation, the leakage current does not appear. When we scale the

time and amplitude variables from submicron to a higher scale, the noise effects

become small. For example, consider a differential equation

dV (t)
dt

= f (V (t))+w(t). (4.69)

Suppose we scale time and amplitude V1(t) = λ V (t), t1 = µ t. Then

V (t) =
1
λ

V1

(
t1
µ

)
. (4.70)

So

dV (t)
dt

=
1
λ

dV1

dt
=

µ

λ

dV1

dt1
(4.71)

and then differential equation becomes after scaling

µ

λ

dV1

dt1
= f

(
V1

λ

)
+w (4.72)

or
dV1

dt1
− λ

µ
f
(

V1

λ

)
=

λ

µ
w. (4.73)

Choosing λ

µ
<< 1, we see that noise effects reduce. Whenever we simulate a

system defined on a very small scale, we have to scale both amplitude and time

so that computer can handle the variables at a classical scale.

5. The idea of scaling both time and amplitude is frequently used in quantum me-

chanics where time and amplitude are on the Planckian scale and hence to

simulate the dynamics of a quantum system, such a scaling is required.

6. Taking xk ∈ Rnx×1, Fk ∈ Rnx×nx , u1 ∈ R1×p, u2 ∈ R1×p, P ∈ Rnx×nx , Lk ∈ Rnx×nx , Qk ∈
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Rnx×nx , Hk ∈ Rd×nx , Kk ∈ Rnx×d, zk ∈ Rd×nx , A1 ∈ Rnx×nx , A2 ∈ Rnx×n2
x , xk⊗xk ∈ Rn2

x×1,

A3 ∈ Rnx×1, A4 ∈ Rnx×1, A5 ∈ Rnx×nx p.

Table 4.3: Computational burden for EKF algorithm.
Equation number Number of multiplication

(A.12) 2n2
x +nx p

(A.13) 4n3
x

(A.14) 2n2
xd +2nxd2

(A.15) 2n2
xd

(A.16) 3n3
x

Total multiplication 7n3
x +4n2

xd +2nxd2 +2n2
x +nx p

Total multiplication in (4.15) n3
x +n2

x +n2
x p+2nx p

Table 4.4: Computational burden for WT method.
Equation number Number of multiplication

(4.21) n4
x +3n3

x +3n2
x +2nx p+n2

x p
(4.26) n5

x +n4
x +3n3

x +4n2
x +2n3

x p+2nx p+n3
x p2

7. It should be remarked that given any stochastic nonlinear dynamical system

with unknown parameters, another way for state estimation is to first estimate

the parameters of the systems from the input-output data and then substitute

these parameters into the dynamical system differential equations with process

noise set equal to zero. That is the approach used in the proposed work for the

WT based state estimation technique.





Chapter 5

Stochastic Filtering in Electromagnetics

In the previous chapters, we have developed the extended Kalman filter (EKF) for

estimating the states of systems driven by nonlinear ordinary differential equations

(ODE’s). The prototype examples for that problem were transistor circuits. In this

chapter, we develop the Kalman filter (KF) for estimating the state of a linear system

driven by a partial differential equation (PDE) with the prototype example being that

of the electromagnetic field generated by random charge and current densities of an

antenna. In the previous problem, we took noisy measurements on a subset of the

states. In this problem, we take noisy measurements on the field of a sparse discrete

set of spatial pixels.

This chapter1 presents the estimation of electric and magnetic fields using the KF.

The entire electric and magnetic fields have been estimated using the scalar and vec-

tor potential by measurements at a discrete set of spatial pixels. To implement the KF,

the state space model has been obtained using the wave equation with sources satis-

fied by the scalar and vector potential. The proposed method has been implemented

on Hertzian dipole antenna. The field estimated using KF has been compared with

the recursive least squares (RLS) method. The KF presents better estimation than

RLS, as it is an optimal estimator. The proposed method uses the Kronecker prod-

uct for compact representation of discretized fields in the form of vectors and partial

differential operators in the form of matrices. These representations enable effective

1This chapter consists the results of research article "Bansal R, Majumdar S, Parthasarthy H. Stochastic filter-
ing in electromagnetics. (Communicated)".
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computer simulation. It can be applied for detection of enemy transmitter. Suppose

enemy is transmitting signal to his friend. Then by measuring electromagnetic signal

at discrete points, then entire field can be estimated using this method. Further it can

be used to determine the shape and location of enemy transmitter.

Major contributions of this work are: (i) Wave equation with noisy current source for

magnetic vector potential and electric scalar potential have been set up. (ii) Spatial

discretization of (i) leads to finite dimensional linear state variable model. (iii) Electric

and magnetic fields are expressed in terms of potentials and the measurement model

is discretized. (iv) KF is applied to estimate the entire potential from sparse discrete

measurements.

Estimation of electric and magnetic fields is important in various applications. Esti-

mation of magnetic field is used for vehicle guidance and motion control applications

as positioning is based on the magnetic field sensing. Field estimation is also required

for base station antenna used in mobile communication [110]. The electromagnetic

devices used for diagnostic and therapeutic applications such as transcranial mag-

netic simulation (TMS) also need estimation of electric field [111]. Pei et al. [112]

used field estimation for pedestrian dead reckoning (PDR) algorithm, which calculate

the user location. The field estimation is also needed for medical instruments, mine

detection, power transmission fields, pipelines, telecommunication lines etc.

Various methods have been used for electric and magnetic field estimation. Belhadj

and El-Ferik [113] used artificial neural network for electric and magnetic field estima-

tion of live transmission line workers. Wang et al. [114] presented electric field esti-

mation in human body exposed to low frequency magnetic field that uses a boundary

element procedure. Zenczak [115] proposed electric and magnetic field estimation

in distributed and centralized power systems. Paffi et al. [116] proposed a method to

calculate the electric field induced inside the brain by a TMS method. The electric field

induced by TMS coils inside a brain model is obtained by magnetic resonance imag-

ing (MRI) images. This method is integrated with neuro navigation tools, resulting in

efficient application. Puthe et al. [117] proposed a method that uses three dimensional

(3D) modelling of induction process in the earth and source model obtained by spher-

ical harmonics of observed magnetic data. Petrovic et al. [118] proposed a method

for estimation of low frequency magnetic field of the overhead power line as these low

frequency magnetic field create health risks. To estimate the extremely low frequen-

cy fields, Petrovic et al. used Biot-Savart law based model that considers the pillar
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geometry and conductor mutual position and its catenary shape. [119] proposed the

estimation of photospheric electric fields using magnetic field sequence and Doppler

measurement. De-Doncker et al. [120] proposed statistical approach to deduce the

local behaviour of the fields when a set of field values are given. Ekonomou et al. [121]

presented electric and magnetic field radiated by electrostatic discharges using artifi-

cial neural network. This method has the advantage that electromagnetic field can be

calculated easily and accurately by measuring the discharge current only. Azpurua

and Ramos [122] reviewed the various interpolatory techniques to estimate the aver-

age electromagnetic field to represent the continuous dataset over a map of complete

plot area. Colak et al. [123] developed a visual software, having 3D screening unit

using artificial neural network and grid data users can estimate electromagnetic field

using in and out of the measurement points using this software.

Sate space derivation of Maxwell’s equation in terms of Kronecker product is pre-

sented in Section 5.1. This representation of Hertzian dipole antenna is derived in

Section 5.2. The KF method as described in appendix Section A.1 is implemented

on the state space representation of Hertzian dipole antenna in Section 5.3 for elec-

tric and magnetic field estimation. The estimated fields for different noisy cases are

shown in figures in Section 5.4.

5.1 Sate Space Representation of Maxwell’s Equation

The electromagnetic field is described by two fields namely, the electric field inten-

sity (~E) and magnetic field intensity (~H). Both the quantities depend on the position

in space and time. A complete solution of Maxwell’s equations results in well known

wave equations. In empty space, the scalar potential (Φ), vector potential (~A), electric

field (~E), magnetic flux density (~B), all satisfy the wave equation. The Maxwell’s equa-

tions can also be expressed in terms of differential equations for the scalar and vector

potential. Maxwell’s equations are the time independent first order differential equa-

tions. Though, these equations can be solved simultaneously, but generally, they are

reduced to two second order differential equations, known as wave equations. Elec-

tric and magnetic fields can be easily evaluated using the scalar and vector potentials.

The scalar potential and the vector potential, satisfy the wave equation with the source

terms ρ

ε0
and µ0J respectively, where ρ is the volume charge density, ε0 is permittiv-

ity of free space, µ0 is vacuum permeability and J is the current density. The wave
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equations of ~A and Φ are obtained using the Lorentz gauge condition (∇.~A =− 1
c2

∂Φ

∂ t ).

The advantage of Lorentz gauge is that the vectorial differential equation for ~A is de-

coupled into a set of three independent scalar differential equations and there is no

mixing of the components i. e. (r, θ , φ ) so that each vector component (~Ai) or (Φi)

depends only on the source component (Ji) or (ρi). The vector potential at position

~r = (x,y,z) satisfies the wave equation with source:

1
c2

∂ 2~A(t,~r)
∂ t2 = ∇

2~A(t,~r)+µ0J(t,~r)+wJ(t,~r) (5.1)

where c is the velocity of light in free space and wJ is the noise in the current density

field.

Similarly, the scalar potential at position~r satisfies the partial differential equation

1
c2

∂ 2Φ(t,~r)
∂ t2 = ∇

2
Φ(t,~r)+

ρ(t,~r)
ε0

+wρ(t,~r) (5.2)

where wρ is the noise in the charge density field. These two equations are derived

from the complete set of four Maxwell’s equations and then importing the Lorentz

gauge condition div ~A + 1
c2

∂Φ

∂ t = 0 on the potentials.

We define the state vector matrix as

ξ (t,~r) =
[
~AT (t,~r) ∂~AT (t,~r)

∂ t Φ(t,~r) ∂Φ(t,~r)
∂ t

]T

=
[
~AT (t,~r) ~V T (t,~r) Φ(t,~r) Ψ(t,~r)

]T
. (5.3)

where ~V (~r, t) = ∂~A(t,~r)
∂ t and Ψ(t,~r) = ∂Φ(t,~r)

∂ t . Equation (5.1) and (5.2) can be written in

the state-space form

∂~A(t,~r)
∂ t

=~V (t,~r) (5.4)

∂~V (t,~r)
∂ t

= c2
∇

2~A(t,~r)+ c2
µ0J(t,~r)+ c2wJ(t,~r) (5.5)

∂Φ(t,~r)
∂ t

= Ψ(t,~r) (5.6)

∂Ψ(t,~r)
∂ t

= c2
∇

2
Φ(t,~r)+ c2 ρ(t,~r)

ε0
+ c2wρ(t,~r). (5.7)

On discretizing the spatial variables into N3 pixels, we represent the above vector and

scalar fields at the time t in the form of N3× 1 vectors for scalar fields and 3N3× 1
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vectors for vector fields:

~A(t) =
N

∑
x,y,z=1

~A(t,x,y,z)⊗ ex⊗ ey⊗ ez (5.8)

~V (t) =
N

∑
x,y,z=1

~V (t,x,y,z)⊗ ex⊗ ey⊗ ez (5.9)

Φ(t) =
N

∑
x,y,z=1

Φ1(t,x,y,z)ex⊗ ey⊗ ez (5.10)

Ψ(t) =
N

∑
x,y,z=1

Φ2(t,x,y,z)ex⊗ ey⊗ ez (5.11)

J(t) =
N

∑
x,y,z=1

J(t,x,y,z)ex⊗ ey⊗ ez (5.12)

ρ(t) =
N

∑
x,y,z=1

ρ(t,x,y,z)ex⊗ ey⊗ ez (5.13)

where ex is the N × 1 vector with a one in the xth positions and 0’s at all the other

positions. We can represent the operator ∇2 by a N3×N3 matrix D0, when acting

on scalar fields and by a 3N3× 3N3 matrix D = I3⊗D0 when acting on vector fields.

Specifically,

∑
x,y,z

∇
2x(t,x,y,z)⊗ ex⊗ ey⊗ ez = Dx (5.14)

where

x(t) = ∑
x,y,z

x(t,x,y,z)⊗ ex⊗ ey⊗ ez. (5.15)

For example if x(t,x,y,z) is a vector field, then

∇
2x =

N

∑
x,y,z=1

[
{x(t,x+1,y,z)+x(t,x−1,y,z)−2x(t,x,y,z)}

∆2

+
{x(t,x,y+1,z)+x(t,x,y−1,z)−2x(t,x,y,z)}

∆2

+
{x(t,x,y,z+1)+x(t,x,y,z−1)−2x(t,x,y,z)}

∆2

]
⊗ ex⊗ ey⊗ ez (5.16)

∇
2x =

1
∆2 ∑

x,y,z
x(t,x,y,z)⊗

[
(ex+1 + ex−1−2ex)⊗ ey⊗ ez + ex⊗ (ey+1 + ey−1−2ey)⊗ ez

+ex⊗ ey⊗ (ez+1 + ez−1−2ez)] . (5.17)
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Using

D1 = ∑
x,y,z

[
((ex+1 + ex−1−2ex)⊗ ey⊗ ez)(ex⊗ ey⊗ ez)

T ] (5.18)

and likewise D2, D3, we have

∇
2x =

1
∆2 (I3⊗D1 + I3⊗D2 + I3⊗D3)x(t)

=
1

∆2 (I3⊗ (D1 +D2 +D3))x(t)

=I3⊗D0 ∈ R3N3×3N3
(5.19)

where D0 =
1

∆2 I3⊗ (D1 +D2 +D3) ∈ RN3×N3
.

In matrix form (5.4)-(5.7) can be cast as

∂ξ (t)
∂ t

= F(t)ξ (t)+B(1)(t)J(t)+B(2)(t)ρ(t)+B(3)(t)w(t) (5.20)

where

ξ (t) =
[
~AT (t) ~V T (t) Φ(t) Ψ(t)

]T
∈ RN3×1

F(t,~r) =


0 I 0 0

c2(I3⊗D0) 0 0 0

0 0 0 I

0 0 c2D0 0



B(1)(t,~r) =
[

0 c2µ0 0 0
]T

B(2)(t,~r) =
[

0 0 0 c2

ε0

]T

B(3)(t,~r) =


c2 0

0 0

0 0

0 c2


w(t) =

[
wJ wρ

]T
.

After electric and magnetic potentials estimation, electric and magnetic field intensity
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can be estimated using the expression

~E(t,x,y,z) =−∇Φ(t,x,y,z)− ∂~A(t,x,y,z)
∂ t

. (5.21)

Specifically, the electric field is

~E(t) =
N

∑
x,y,z=1

~E(t,x,y,z)⊗ ex⊗ ey⊗ ez (5.22)

where
~E(t,x,y,z) =−∇Φ(t,x,y,z)−V(t,x,y,z) (5.23)

so

~E(t) =− 1
∆

∑
x,y,z


Φ(t,x+1,y,z)−Φ(t,x,y,z)

Φ(t,x,y+1,z)−Φ(t,x,y,z)

Φ(t,x,y,z+1)−Φ(t,x,y,z)

⊗ ex⊗ ey⊗ ez−V(t) (5.24)

which can be expressed as

E(t) =−G1Φ(t)−V(t) (5.25)

where G1 is a 3N3×N3 matrix that represents the gradient operator.

∇Φ = ∇Φ(t,x,y,z)⊗ ex⊗ ey⊗ ez

=
1
∆

∑
x,y,z


Φ(t,x+1,y,z)−Φ(t,x,y,z)

Φ(t,x,y+1,z)−Φ(t,x,y,z)

Φ(t,x,y,z+1)−Φ(t,x,y,z)

⊗ ex⊗ ey⊗ ez

=
1
∆

∑
x,y,z


((ex+1− ex)⊗ ey⊗ ez)

T Φ(t)

(ex⊗ (ey+1− ey)⊗ ez)
T Φ(t)

(ex⊗ ey⊗ (ez+1− ez))
T Φ(t)

⊗ ex⊗ ey⊗ ez

=G1Φ(t) (5.26)

where G1 =
1
∆ ∑x,y,z


((ex+1− ex)⊗ ey⊗ ez)

T

(ex⊗ (ey+1− ey)⊗ ez)
T

(ex⊗ ey⊗ (ez+1− ez))
T

⊗ ex⊗ ey⊗ ez ∈ R3N3×N3
.
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Likewise the magnetic flux is

~B(t,x,y,z) = ∇×~A(t,x,y,z) (5.27)

i. e.

~B(t) =
N

∑
x,y,z=1

~B(t,x,y,z)⊗ ex⊗ ey⊗ ez (5.28)

=C~A(t) (5.29)

where ~A(t) = ∑
N
x,y,z= l

~A(t,x,y,z)⊗ ex⊗ ey⊗ ez. C is a 3N3× 3N3 matrix that represents

the curl operator. Let M ∈ Rp×6N3
represent the measurement matrix of the electro-

magnetic field of p pixels (p << N3). M is a sparse matrix of ones and zeros. The

measurement model is then

z(t) = M

 ~E(t)

~B(t)

 (5.30)

= M

 −G1Φ(t)−V(t)

C~A(t)

+ εv(t) (5.31)

It is interesting for the reader to write down the explicit form of the sparse matrix M

where the told number of pixels is 23 = 8 and measurements of the electromagnetic

field on the (1, 1, 1) and (2, 2, 2) pixels are made.

z(t) = M

 0 −I −G1 0

C 0 0 0




~A(t)

~V (t)

~φ(t)

~ψ(t)

+ εv(t) = Hξ (t)+ εv(t) (5.32)

where εv(t) is the measurement noise.

5.2 State Space Modelling of Hertzian Dipole Antenna

Estimation of electric and magnetic field in the space surrounding the antenna is

important in antenna analysis. Given an antenna structure together with input exci-

tation, the establishment of current distribution on the antenna structure satisfies the

Maxwell’s equations everywhere at all times. The antenna analysis has two parts: -
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Figure 5.1: Hertzian dipole antenna.

1. Determination of current distribution due to excitation

2. Field evaluation due to this current distribution in the surrounding space of the

antenna.

Hertzian dipole is the most basic antenna element. It is an elemental antenna con-

sisting of an infinitesimally long wire carrying an alternating current (I(t)). Consider a

Hertzian dipole antenna of dl length oriented along z-axis and carrying current I0e jwt

as shown in Figure 5.1. This dipole antenna is driven by time dependent current

charge

J =−S ε0cos(ωt) (5.33)

and volume charge density

ρ =− S
µ0

cos(ωt) (5.34)

where S is the shape function. Consider a point P(r,θ ,φ) in spherical coordinate

system. The magnetic vector potential components at point P(r,θ ,φ) are as given by
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Green’s function

Ar =
µ0

4π
I0 dl e j(ωt−β r)cos(θ) âr (5.35)

Aθ =− µ0

4π
I0 dl e j(ωt−β r)sin(θ) âθ (5.36)

Aφ = 0. (5.37)

The state space equations are

∂~A(t,~r)
∂ t

=~V (t,~r) (5.38)

∂~V (t,~r)
∂ t

=c2
{

µ0

4π
I0 dl e j(ωt−β r)cos(θ)

(
jβ
r2 −

β 2

r
+

1
r3

)}
âr

+ c2
{

µ0

4π
I0 dl e j(ωt−β r)sin(θ)

(
β

r2

)}
âθ + c2

µ0 {−S ε0cos(ωt)}+ c2wJ(t)

(5.39)

∂Φ(t,~r)
∂ t

=Ψ(t,~r) (5.40)

∂Ψ(t,~r)
∂ t

=c2
{

ω

4πε0
I0 dl e j(ωt−β r)cos(θ)

(
−β

r
+

j
r2

)}
+ c2

{
− S

µ0
cos(ωt)

}
ε0

+ c2wρ(t).

(5.41)

We used Euler-Maruyama method to obtain discrete time state space matrix. Math-

ematically, tk− tk−1 = Ts and Fk = eF(tk−tk−1) ≈ I +FTs and Bk = ∑
tk− l
tk eF(tk−τ)Bdτ ≈ BTs,

where Ts is the sampling time. I is the identity matrix.

5.3 Applying KF to Hertzian Dipole

Differential equation (5.38)-(5.41) can be expressed in terms of discrete time state

space equation as

xk = Fk−1xk−1 +B(1)
k−1u1 +B(2)

k−1u2 +B(3)
k−1wk−1 +Zk (5.42)

z(1)k = H(1)
k xk (5.43)

z(2)k = H(2)
k xk (5.44)
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where

xk =
[
~A ~V Φ Ψ

]T
,

Fk−1 =


1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1

 ,

B(1)
k−1 =

[
0 Tsc2µ0 0 0

]T
,

u1 =−S ε0cos(ωt),

B(2)
k−1 =

[
0 0 0 Tsc2

ε0

]T
,

u2 =−
S
µ0

cos(ωt).

B(3)
k−1 =


Tsc2 0

0 0

0 0

0 Tsc2



wk−1 =
[

wJ wρ

]T
.

Zk =
[

Zk1 Zk2 Zk3 Zk4

]T

where

Zk1 = 0,

Zk2 = Tsc2
{

µ0
4π

I0 dl e j(ωt−β r)cos(θ)
(

jβ
r2 − β 2

r + 1
r3

)}
âr

+Tsc2
{

µ0
4π

I0 dl e j(ωt−β r)sin(θ)
(

β

r2

)}
âθ ,

Zk3 = 0,

Zk4 = Tsc2
{

ω

4πε0
I0 dl e j(ωt−β r)cos(θ)

(
−β

r +
j

r2

)}
H(1)

k =
[

0 0 1 0
]
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H(2)
k =

[
1 0 0 0

]
.

State space representation for Hertzian dipole antenna is


~Ak

~Vk

~φk

~ψk

=


1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1




~Ak−1

~Vk−1

~φk−1

~ψk−1

+


0

Tsc2µ0

0

0

u1 +


0

0

0
Tsc2

ε0

u2

+


Tsc2 0

0 0

0 0

0 Tsc2


 wJ

wρ

+


Zk1

Zk2

Zk3

Zk4

 .

Implementation of KF algorithm on the discrete equations is done by adding process

noise vk to (5.42) and measurement noise wk to (5.43) and (5.44).

xk = Fk−1xk−1 +B(1)
k−1u1 +B(2)

k−1u2 +B(3)
k−1wk−1 +Zk +vk (5.45)

z(1)k = H(1)
k xk +wk (5.46)

z(2)k = H(2)
k xk +wk (5.47)

KF algorithm, as given in Chapter 2, is applied to the above equations (5.45)-(5.47).

Time update and measurement update has been done iteratively after initialization.

After estimating the scalar potential and vector potential, electric and magnetic field

intensity is computed using (5.25) and (5.27) respectively.

Remark

A more direct way to apply the KF on the Hertzian model is to use the partial differen-

tial equations

∂ 2~A(t,x,y,z)
∂ t2 = c2

∇
2~A(t,x,y,z)+ c2

µ0J(t,x,y,z)+ c2wJ(t,x,y,z) (5.48)
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∂ 2Φ(t,x,y,z)
∂ t2 = c2

∇
2
Φ(t,x,y,z)+ c2 ρ(t,x,y,z)

ε0
+ c2wρ(t,x,y,z) (5.49)

where

J(t,x,y,z) = I0 cos(ωt)δ (x)δ (y) Θ

( z
δ l

)
0

0

1


and

ρ(t,x,y,z) =−
∫ t

0
divJ dt

=
I0

ω
sin(ωt)

(
δ

(
z− dl

2

)
−δ

(
z+

dl
2

))
δ (x)δ (y)

and use smooth approximation for the δ -function.

5.4 Simulation Results

The derived expressions have been implemented in MATLAB software. Figure 5.2

to Figure 5.3 and Figure 5.5 to Figure 5.6 show the electric field estimation of (r,θ ,φ )

components for various noise for near field and far field respectively. Figure 6.4

and Figure 5.7 show the magnetic field estimation of (r,θ ,φ ) components for vari-

ous noise for near field and far field respectively. Figure 5.8 and Figure 5.10 show the

3-dimensional estimation of electric field for various noise for near field and far field re-

spectively. Figure 5.9 and Figure 5.11 show the 3-dimensional estimation of magnetic

field for various noise for near field and far field respectively. Initial values assigned to

the KF are: The covariance of process noise, Qk = diag[0.0001 0.001 0.0001 0.01].

The covariance of measurement noise, Rk = 0.01. The predicted covariance, P(0) =

diag[0.0001 0.0001 0.0001 0.0001]. RMSE is computed using the expression given in

(3.42).

Table 5.1-Table 5.12 show the RMSE for electric and magnetic field estimation using

KF and compares the result with RLS and theoretical value. The KF presents better

accuracy as compared to the RLS method as it is an optimal estimator that minimizes

the mean square of the estimation error.
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(a) Noisy electric field intensity (Er).
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Figure 5.2: Electric field intensity (Er) for noisy driving source (white Gaussian noise of zero
mean and 0.00025 variance) for near-field.
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(a) Noisy electric field intensity (Eθ ).
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(b) Estimated electric field intensity (Eθ ).

Figure 5.3: Electric field intensity (Eθ ) for noisy driving source (white Gaussian noise of zero
mean and 0.00025 variance) for near-field.
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(a) Noisy magnetic field intensity (Hφ ).
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Figure 5.4: Magnetic field intensity (Hφ ) for noisy driving source (white Gaussian noise of
zero mean and 0.00025 variance) for near-field.
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(a) Noisy electric field intensity (Er).
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Figure 5.5: Electric field intensity (Er) for noisy driving source (white Gaussian noise of zero
mean and 0.00025 variance) for far-field.
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(a) Noisy electric field intensity (Eθ ).
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(b) Estimated electric field intensity (Eθ ).

Figure 5.6: Electric field intensity (Eθ ) for noisy driving source (white Gaussian noise of zero
mean and 0.00025 variance)for far-field.
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(a) Noisy magnetic field intensity (Hφ ).
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Figure 5.7: Magnetic field intensity (Hφ ) for noisy driving source (white Gaussian noise of
zero mean and 0.00025 variance) for far-field.
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Figure 5.8: (a): Estimated E-field using KF for near field. (b): Estimated E-field using RLS
for near field.
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Figure 5.9: (a): Estimated H-field using KF for near field. (b): Estimated H-field using RLS
for near field.
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Figure 5.10: (a): Estimated E-field using KF for far field. (b): Estimated E-field using RLS
for far field.
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Figure 5.11: (a): Estimated H-field using KF for far field. (b): Estimated H-field using RLS
for far field.

Table 5.1: RMSE of electric field (Er) estimation using KF for near-field.
S.
No.

Gaussian noise
at driving source

Imag(Er)
estimation
using KF

Real(Er)
estimation
using KF

Absolute E-field
estimation using KF

1. µ = 0, σ = 0.00025 1.91×10−5 1.98×10−5 1.92×10−5

2. µ = 0, σ = 0.00050 5.10×10−5 5.14×10−5 5.23×10−5

Table 5.2: RMSE of electric field (Eθ ) estimation using KF for near-field.
S.
No.

Gaussian noise
at driving source

Imag(Eθ )
estimation
using KF

Real (Eθ )
estimation
using KF

Absolute E-field
estimation using KF

1. µ = 0, σ = 0.00025 4.573×10−7 4.671×10−7 4.708×10−7

2. µ = 0, σ = 0.00050 6.802×10−7 6.824×10−7 7.027×10−7

Table 5.3: RMSE of magnetic field (Hφ ) estimation using KF for near-field.

S.
No.

Gaussian noise
at driving source

Imag(Hφ )
estimation
using KF

Real (Hφ )
estimation
using KF

Absolute H-field
estimation using KF

1. µ = 0, σ = 0.00025 0.0102 0.0101 0.0102
2. µ = 0, σ = 0.00050 0.0124 0.0122 0.0124
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Table 5.4: RMSE of electric field (Er) estimation using RLS for near-field.
S.
No.

Gaussian noise
at driving source

Imag(Er)
estimation
using RLS

Real(Er)
estimation
using RLS

Absolute E-field
estimation using RLS

1. µ = 0, σ = 0.00025 3.46×10−5 3.44×10−5 3.41×10−5

2. µ = 0, σ = 0.00050 5.56×10−5 5.59×10−5 5.65×10−5

Table 5.5: RMSE of electric field (Eθ ) estimation using RLS for near-field.
S.
No.

Gaussian noise
at driving source

Imag(Eθ )
estimation
using RLS

Real (Eθ )
estimation
using RLS

Absolute E-field
estimation using RLS

1. µ = 0, σ = 0.00025 8.963×10−7 8.998×10−7 9.212×10−7

2. µ = 0, σ = 0.00050 1.127×10−6 1.634×10−6 1.886×10−6

Table 5.6: RMSE of magnetic field (Hφ ) estimation using RLS for near-field.

S.
No.

Gaussian noise
at driving source

Imag(Hφ )
estimation
using RLS

Real (Hφ )
estimation
using RLS

Absolute H-field
estimation using RLS

1. µ = 0, σ = 0.00025 0.0108 0.0109 0.0109
2. µ = 0, σ = 0.00050 0.0141 0.0146 0.0146

Table 5.7: RMSE of electric field (Er) estimation using KF for far-field.
S.
No.

Gaussian noise
at driving source

Imag(Er)
estimation
using KF

Real(Er)
estimation
using KF

Absolute E-field
estimation using KF

1. µ = 0, σ = 0.00025 1.95×10−7 1.94×10−7 1.92×10−7

2. µ = 0, σ = 0.00050 4.29×10−7 4.32×10−7 4.45×10−7

Table 5.8: RMSE of electric field (Eθ ) estimation using KF for far-field.
S.
No.

Gaussian noise
at driving source

Imag(Eθ )
estimation
using KF

Real (Eθ )
estimation
using KF

Absolute E-field
estimation using KF

1. µ = 0, σ = 0.00025 6.82×10−7 6.92×10−7 6.84×10−7

2. µ = 0, σ = 0.00050 8.10×10−7 8.19×10−7 8.12×10−7
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Table 5.9: RMSE of magnetic field (Hφ ) estimation using KF for far-field.

S.
No.

Gaussian noise
at driving source

Imag(Hφ )
estimation
using KF

Real (Hφ )
estimation
using KF

Absolute H-field
estimation using KF

1. µ = 0, σ = 0.00025 7.03×10−4 7.05×10−4 7.06×10−4

2. µ = 0, σ = 0.00050 7.26×10−4 7.28×10−4 7.29×10−4

Table 5.10: RMSE of electric field (Er) estimation using RLS for far-field.
S.
No.

Gaussian noise
at driving source

Imag(Er)
estimation
using RLS

Real(Er)
estimation
using RLS

Absolute E-field
estimation using RLS

1. µ = 0, σ = 0.00025 7.84×10−7 7.74×10−7 7.75×10−7

2. µ = 0, σ = 0.00050 9.56×10−7 9.64×10−7 9.61×10−7

Table 5.11: RMSE of electric field (Eθ ) estimation using RLS for far-field.
S.
No.

Gaussian noise
at driving source

Imag(Eθ )
estimation
using RLS

Real (Eθ )
estimation
using RLS

Absolute E-field
estimation using RLS

1. µ = 0, σ = 0.00025 9.56×10−7 9.54×10−7 9.58×10−7

2. µ = 0, σ = 0.00050 1.37×10−6 1.35×10−6 1.54×10−6

Table 5.12: RMSE of magnetic field (Hφ ) estimation using RLS for far-field.

S.
No.

Gaussian noise
at driving source

Imag(Hφ )
estimation
using RLS

Real (Hφ )
estimation
using RLS

Absolute H-field
estimation using RLS

1. µ = 0, σ = 0.00025 1.22×10−3 1.22×10−3 1.23×10−3

2. µ = 0, σ = 0.00050 1.46×10−3 1.48×10−3 1.49×10−3





Chapter 6

Conclusions and Future Scope

6.1 Conclusions

We have studied the state estimation of linear and nonlinear systems described

by ordinary differential equations and partial differential equations using Kalman filter

(KF) and extended Kalman filter (EKF). We recapitulate the salient features of this

investigation study and results obtained for state estimation in the following points:-

1. As a first problem, we derived the closed form linear and nonlinear expressions

of following three circuits:-

(i) Bipolar junction transistor (BJT) based cross coupled oscillator circuit.

(ii) BJT based differential amplifier circuit.

(iii) MOSFET circuit.

The main advantage of the method is that the use of nonlinear expressions

obtained using perturbation theory instead of using the linear expression repre-

sents distortion which shows the importance of nonlinear expression. Percent-

age distortion for CCO circuit is approximately 0.428 %. Percentage distortion

for DA circuit using perturbation theory is approximately 0.60 % and for MOSFET

is 0.07 %.

2. As a second problem, we estimated the states of following two nonlinear circuits

using EKF:-

(i) BJT based differential amplifier circuit.

(ii) MOSFET circuit.

It also compares the estimation results with recursive least square (RLS) method.
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The EKF method presents better estimate than RLS as the EKF accounts for

measurement noise. Also, the maximal precision of simulation requires the

modeling of circuit in terms of device parameters and circuit elements, so the

method is able to provide good estimation. The proposed method has also the

advantage that it can be used for any mode of MOSFET operation besides qui-

escent point region. It can also be used for large input amplitude. The method

presents the real-time estimation. RMSE for MOSFET circuit using EKF is 0.32

and using RLS is 0.62 approximately. RMSE for DA circuit using EKF and RLS

are 0.0005 and 0.0009 respectively.

3. The third problem presents the state estimation using EKF, where the circuit dy-

namics is represented using Kronecker product and compares the result with

implementation of least mean square (LMS) on Kronecker based wavelet trans-

formation of the circuit.

The method has the following advantages:-

(i) It can be used for any mode of transistor operation besides near the quiescent

point region. The nonlinearity in saturation can be considered in the proposed

method.

(ii) The method can be used for large amplitude input signal. For small ampli-

tude input signal, KF can be used, which results in inaccurate estimation due to

linearization of nonlinear system.

(iii) The method presents real time parameter estimation, as EKF has been used

for nonlinear system. It is able to track the parameters, when they are slowly

changing with time.

(iv) Use of Kronecker product presents more accurate representation of nonlin-

ear system.

(v) The final outcome of the wavelet based estimation is that although it is block

processing based estimation and not the real time processing based estimation,

but we are able to estimate using the lesser data storage, i.e. having com-

pression. EKF is a real time estimation and has been compared with wavelet

transform based block processing as regards, complexity, real time estimation

and compression as all the samples are not used for estimation. The RMSE for

EKF based estimation using Kronecker product based system representation is

0.00195 whereas using LMS on Kronecker product based wavelet representa-

tion is 0.00328.
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4. The fourth problem presents the field estimation of Hertzian antenna using KF

and discrete set of measurements. The formulation uses Kronecker product for

compact representation of fields. The method compares the KF estimation with

RLS estimation. The KF presents better estimate than RLS as the process and

measurement noise is taken into account by it. The main advantage of applying

KF for estimating the electromagnetic field in space time is that the KF is a real-

time estimation and moreover it takes advantage of apriori dynamics of the field

in the entire space time zone to provide estimation over this entire zone by only

taking measurements over a sparse zone. The RMSE using KF for near field

electric (Er) is 3.41×10−5 whereas using RLS is 3.91×10−5. The RMSE for near

field (Eθ ) using KF is 1.6×10−6 whereas using RLS is 1.88×10−6.

6.2 Scope for Future Work

1. The EKF can be developed for estimating the electromagnetic field within a

waveguide or cavity resonator when the probes contain noisy currents. The

electromagnetic fields satisfy 2-dimensional Helmholtz equations at a given fre-

quency with boundary conditions.

2. The EKF can be developed to estimate the line voltage and current along a

transmission line in the presence of noisy sources and random line voltage and

current loading. The line voltage and current satisfy first order partial differential

equations (PDE’s) in space and time.

3. The EKF can be developed for estimating the wave function of a quantum me-

chanical system defined by a noisy Shrödinger equation with noisy measure-

ments taken on set of observations. The additional condition to be accounted

for this is collapse of the wave function following a measurement.

4. The EKF can be developed to estimate a quantum field like the quantum elec-

tromagnetic field or the quantum Dirac field of electron and positron from noisy

measurements of the average value of the quantum fields in a given state.

5. The EKF has been extended by V. P. Belavkin to quantum filtering theory involv-

ing estimating states and observations of quantum systems evolving according

to the Hudson-Parthasarthy noisy Shrödinger equation based on non-demolition
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measurements. This scheme can be applied to estimate states and observation-

s obtained via canonical quantization of classical noisy quantum system.
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Appendix A

A.1 Kalman Filter

KF algorithm is the most widely used state and parameter estimation technique to

optimize the states taking measurement noise and process noise into consideration

for better accuracy. Its main advantage is that it is a real time algorithm and is therefore

computationally cheap. Discrete state and measurement model for the KF model is

xk = Ak−1xk−1 +Bk−1uk−1 +vk−1 (A.1)

yk = Ckxk +wk (A.2)

where xk is the state vector, Ak is the state matrix. Bk is the coefficient matrix. uk is

the known input. yk is the measurement vector. Ck is the observation matrix. vk and

wk are process and measurement noise. These are Gaussian noise with zero mean

and covariance matrices Qk and Rk respectively.

KF algorithm consists of following steps:

1. Initialization:- This step initialize the following parameters: PK
k−1|k−1, x̂k−1|k−1,

Qk−1 and Rk.

2. Time update:- It consists of following steps:-

(a) Prediction of state time update:-

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk. (A.3)
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(b) Error covariance time update:-

PK
k|k−1 = Ak−1PK

k−1|k−1AT
k−1 +Qk−1 (A.4)

3. Measurement update:- It consists of following steps:-

(a) Kalman gain is calculated as:-

KK
k = PK

k|k−1CT
k

[
CkPK

k|k−1CT
k +Rk

]−1
(A.5)

(b) State estimate measurement is updated using:-

x̂k|k = x̂k|k−1 +KK
k [yk−Ckx̂k|k−1] (A.6)

(c) Error covariance measurement is updated as:-

PK
k|k =

[
I−KK

k Ck
]

PK
k|k−1 (A.7)

where (k|k−1) and (k|k) represents a prior estimate and post estimate respectively. I

is the identity matrix.

A.2 Extended Kalman Filter

In general, a nonlinear system can be represented using following equations :

xk = fk−1(xk−1,uk−1,vk−1) (A.8)

zk = hk(xk,wk) (A.9)

where xk is the state vector, fk(.) and hk(.) are the nonlinear functions. uk is the

known input. zk is the measurement vector. vk and wk are the process noise and

measurement noise respectively. They are zero mean white Gaussian noise with

covariance Qk and Rk respectively.

Expanding (A.8) and (A.9) using Taylor series expansion, we have

xk ≈ fk−1(x̂k−1|k−1)+Fk−1x̃k−1 +∆ f (x̃2
k−1)+vk−1 (A.10)
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zk ≈ hk( fk−1(x̂k−1|k−1))+Hkx̃k +∆h(x̃2
k−1)+wk (A.11)

where x̃k = xk − x̂k−1. ∆ f (x̃2
k−1) and ∆h(x̃2

k−1) are the higher order terms in Taylor

series expansion.

Fk−1 =
∂ fk−1(x̂k−1|k−1)

∂xk−1
,

Lk−1 =
∂ fk−1(x̂k−1|k−1)

∂vk−1
,

Hk =
∂hk( fk−1(x̂k−1|k−1))

∂xk
,

Mk =
∂hk( fk−1(x̂k−1|k−1))

∂wk
.

EKF method consists of following steps:

1. Initialization:- This step initializes the following parameters: PE
k−1|k−1, x̂k−1|k−1,

Qk−1 and Rk.

2. Time update:- It consists of following steps:-

(a) Prediction of state time update:-

x̂k|k−1 = fk−1(x̂k−1|k−1,uk−1). (A.12)

(b) Error covariance time update:-

PE
k|k−1 = Fk−1PE

k−1|k−1FT
k−1 +Lk−1Qk−1LT

k−1 (A.13)

3. Measurement update:- It consists of following steps:-

(a) Kalman gain is calculated as:-

KE
k = PE

k|k−1HT
k

[
HkPE

k|k−1HT
k +MkRkMT

k

]−1
(A.14)

(b) State estimate measurement is updated using:-

x̂k|k = x̂k|k−1 +KE
k [zk−hk(x̂k|k−1)]. (A.15)
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(c) Error covariance measurement is updated as:-

PE
k|k =

[
I−KE

k Hk
]

PE
k|k−1 (A.16)

where (k|k−1) and (k|k) represent a prior estimate and post estimate respectively. I is

the identity matrix. The time prediction step consists of computing the state projection

and error covariance estimation. Measurement update step is also known as the

correction step, which consists of computing the Kalman gain, state correction and

covariance update. Kalman gain is used to correct the expected state. In this step,

observed measurements and expected values are compared for state correction and

covariance estimation. The flowchart of EKF algorithm is shown in Figure A.1.

Figure A.1: EKF algorithm flowchart.


