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We introduce a concept, called the mutual uncertainty between two observables in a given quantum state,
which enjoys features similar to those of the mutual information for two random variables. Further, we
define conditional uncertainty as well as conditional variance and show that conditioning on more observables
reduces the uncertainty. Given three observables, we prove a “strong subadditivity” relation for the conditional
uncertainty under certain conditions. As an application, we show that by using the conditional variance one can
detect bipartite higher dimensional entangled states. The efficacy of our detection method lies in the fact that it
gives better detection criteria than most of the existing criteria based on geometry of the states. Interestingly, we
find that for N -qubit product states, the mutual uncertainty is exactly equal to N − √

N , and if it is other than
this value, the state is entangled. We also show that using the mutual uncertainty between two observables, one
can detect non-Gaussian steering where Reid’s criterion fails to detect it. Our results may open a direction of
exploration in quantum theory and quantum information using mutual uncertainty, conditional uncertainty, and
the strong subadditivity for multiple observables.
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I. INTRODUCTION

In quantum theory, Heisenberg’s uncertainty relation [1]
restricts the knowledge of physical observables one can have
about the quantum system. The Heisenberg-Robertson uncer-
tainty [2–5] relation suggests the impossibility of preparing
an ensemble where one can measure two noncommuting
observables with infinite precision. Later, Schrödinger [6]
improved the lower bound of this uncertainty relation. In
fact, Robertson and Schrödinger formulated mathematically
the uncertainty relation for any two observables. Recently, the
stronger uncertainty relations have been proved which go be-
yond the Robertson-Schrödinger uncertainty relation [7] and
this has strengthened the notion of incompatible observables
in quantum theory [8–13].

Shannon introduced entropy as a measure of information
contained in a classical random variable [14]. The introduc-
tion of entropy paved a path for a new field of “Classical
Information Science” [15]. Later, von Neumann extended the
idea of entropy to the quantum domain where one replaces the
probability distribution of random variables with the density
operators for the states of quantum systems. Undoubtedly, en-
tropy is an important quantity in quantum information science
[16,17]. As entropy measures lack of information about the
preparation of a system, one can also express uncertainty rela-
tions in terms of entropies [18,19]. However, in the quantum
world, variance of an observable is also a measure of lack
of information about the state preparation [20]. Therefore, it
may be natural to ask if using the variance as an uncertainty
measure, one can define analogous quantities such as mutual
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information, conditional entropy, and the notion of strong
subadditivity.

Once we define these quantities, one immediate question
is, Do they provide insight into the quantum systems? The
answer to this is in the affirmative. For example, mutual infor-
mation is the cornerstone in defining many important aspects
in information theory, such as unveiling correlations, channel
capacities, etc., in quantum information science [16,17]. Con-
ditional entropy is also inevitably an important quantity which
is relevant in quantum communication as well as quantum
computation [16,17]. While these analogies are very tempting
to address for quantum uncertainty related quantities, there
is a major departure between these two notions. Uncertainty
is a function of both a quantum state and an observable,
whereas the notion of entropy depends on either of the two
[16,17]. Moreover, while uncertainty captures only the second
moment, entropy contains all possible moments.

In this paper, we introduce the notions of mutual uncer-
tainty, conditional uncertainty, and strong subadditivity on
the basis of quantum uncertainties expressed in terms of
standard deviations and variances. Interestingly, we find that
the standard deviation (quantum uncertainty) behaves in many
ways like entropy. For example, we find that a chain rule for
the sum uncertainty holds. Due to this fact one can easily
define many important quantities like conditional mutual un-
certainty as well. Another important aspect of this formalism
is that one can have a version of strong subadditivity (SSA)
for quantum uncertainties which may have implications in
quantum information and this may be of independent interest.
Also, we prove the strong subadditivity for more than three
observables using mutual uncertainty.

Then we address the physical implication of all these
quantities introduced here. As illustrations, we consider two
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important aspects in quantum information science: detect-
ing entanglement [21–23] as well as quantum steering [24].
We find that using the conditional variance, we can detect
entanglement of higher dimensional bipartite mixed states.
The method we present here is stronger than the criteria
found by Vicente [25]. Moreover, we find that for N -qubit
product states, mutual uncertainty is exactly equal to N −√

N . This provides a sufficient condition to detect N -qubit
entanglement. The other important finding is that we derive
steering criterion based on mutual uncertainty. This criterion
is as powerful as Reid’s steering criterion [26] for two qubits,
and overpower them when we consider non-Gaussian bipartite
states. These results show the efficacy of our formalism. In
fact, from the perspective of experimental realizations, our
formalism might be one step ahead of the usual entropic for-
malism because variances are easy to measure experimentally
compared to entropic quantities which cannot be measured
directly.

The paper is organized as follows. In the next section,
we discuss the sum uncertainty relation. Then, we define
mutual uncertainty and conditional uncertainty and derive
some important identities and inequalities such as the chain
rule and the strong subadditivity of uncertainties in Sec. III. In
Sec. IV, we study the physical implication of these quantities,
namely, usefulness of the conditional variance in detecting
entangled states and finding steerable states using the mutual
uncertainty. We conclude in the last section.

II. SETTING THE STAGE:
SUM UNCERTAINTY RELATIONS

Let us consider a set of observables represented by Her-
mitian operators {Ai}, then the uncertainty of Ai in a given
quantum state ρ is defined as the statistical variance (�2) or
standard deviation (�) of the corresponding observable, i.e.,
�A2

i = 〈A2
i 〉 − 〈Ai〉2, where 〈Ai〉 = Tr[ρAi] for the state ρ.

This positive quantity can only be zero if ρ is an eigenstate of
Ai , representing the exact predictability of the measurement
outcome. Hence, a quantum state with zero uncertainty must
be a simultaneous eigenstate of all Ai . The “sum uncertainty
relation” [27] tells us that the sum of uncertainty of two
observables is greater than or equal to the uncertainty of
the sum of the observables on a quantum system. If A and
B are two general observables that represent some physical
quantities, then one may ask, What is the relation between
�(A + B ), �A, and �B? The following theorem answers
this.

Theorem. 1 [27]. Quantum fluctuation in the sum of any
two observables is always less than or equal to the sum of
their individual fluctuations, i.e., �(A + B ) � �A + �B.

The theorem was proved for pure states only, but one
can easily extend the result for the arbitrary mixed states
by employing the purification of the mixed states in higher
dimensional Hilbert space. The physical meaning of the
sum uncertainty relation is that if we have an ensemble of
quantum systems then the ignorance in totality is always
less than the sum of the individual ignorances. In the case
of two observables, if we prepare a large number of quantum
systems in the state ρ, and then perform the measurement
of A on some of those systems and B on some others, then

the standard deviations in A plus B will be more than the
standard deviation in the measurement of (A + B ) on those
systems. Hence, it is always advisable to go for the “joint
measurement” if we want to minimize the error. Another
aspect of this theorem is that it is similar in spirit to the
subadditivity of the von Neumann entropy, i.e., S(ρ12) �
S(ρ1) + S(ρ2), where ρ12 is a two-particle density operator
and ρ2 = Tr1(ρ12) is the reduced density for subsystem 2.

Noticing this resemblance of quantum entropy and stan-
dard deviation measure of uncertainty, it is tempting to see if
we can unravel some other features. Before doing that we will
first summarize the properties of the uncertainty (captured by
standard deviation) [27].

Properties of �(·). (i) �Ai � 0 for {Ai} in ρ. (ii) It is
convex in nature, i.e., �(

∑
i piAi ) � ∑

i pi�(Ai ), with 0 �
pi � 1 and

∑
i pi = 1. (iii) One cannot decrease the uncer-

tainty of an observable by mixing several states ρ = ∑
� λ�ρ�,

i.e., �(A)ρ � ∑
� λ��(A)ρ�

, with
∑

� λ� = 1. This is similar
to the fact that entropy is also a concave function of the density
matrices, i.e., S(

∑
� λ�ρ�) � ∑

� λ�S(ρ�).
In fact, it is not difficult to see that if we have more than

two observables (say three observables A, B, and C), then the
sum uncertainty relation will read as �(A + B + C) � �A +
�B + �C. In general, for observables {Ai}, we will have the
sum uncertainty relation as �(

∑
i Ai ) � ∑

i �Ai [27].

III. MUTUAL UNCERTAINTY

For any two observable A and B, mutual uncertainty in the
quantum state ρ is defined as

M (A : B ) := �A + �B − �(A + B ). (1)

We name M (A : B ) as the mutual uncertainty in the same
spirit as that of the mutual information. [The mutual infor-
mation for a bipartite state ρ12 is defined as I (ρ12) = S(ρ1) +
S(ρ2) − S(ρ12).] The quantity M (A : B ) captures how much
overlap two observables can have in a given quantum state.

Properties of M (A : B ). (i) M (A : B ) � 0, (ii) it is
symmetric in A and B, i.e., M (A : B ) = M (B : A), and
(iii) M (A : A) = 0. Note that I (ρ12) also satisfies similar
properties.

The above definition of mutual uncertainty can be gen-
eralized for n number of observables. Thus, given a set of
observables {Ai ; i = 1, 2, ..., n}, we have

M (A1 : A2 : · · · : An) :=
n∑

i=1

�Ai − �

(
n∑

i=1

Ai

)
. (2)

The above relation is analogous to the mutual information for
n-particle quantum state ρ12...n which is defined as I (ρ12...n) =∑n

i=1 S(ρi ) − S(ρ12...n) [28].
Note that all the observables may not have the same

physical dimension but one can make them of the same dimen-
sion by multiplying them with proper dimensional quantities.
Although in this article we have omitted this possibility by
considering dimensionless observables.

A. Conditional uncertainty and chain rule for uncertainties

We define a quantity called the conditional uncertainty
[similar to the conditional entropy S(ρ1|2) = S(ρ12) − S(ρ2)]
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as

�(A|B ) : = �(A + B ) − �B. (3)

This suggests how much uncertainty in (A + B ) remains after
we remove the uncertainty in B.

Properties of �(A|B ). (i) �(A|B ) � �A, i.e., condi-
tioning on more observables reduces the uncertainty. (ii)
�(A|B ) � 0 but can be negative if �(A + B ) < �B or vice
versa. (iii) �(A|A) = �A.

By noting that �(A|B ) = �A − M (A : B ) and M (A :
B ) � 0, we have property (i). A simple example will illustrate
property (ii) [29].

Now we will derive some useful results using mutual
uncertainty and conditional uncertainty.

Theorem 2. Chain rule for the sum uncertainty holds, i.e.,
�(

∑n
i=1 Ai ) = ∑n

i=1 �(Ai |Ai−1 + · · · + A1).
Proof. For three observables, the chain rule reads as

�(A + B + C) = �A + �(B|A) + �(C|A + B ).

Now consider

RHS = �A + �(B|A) + �(C|A + B )

= �A + �(B|A) + �(C + A + B ) − �(A + B )

= �(C + A + B ) = LHS.

Similarly, one can prove by mathematical induction that the
theorem holds for all positive integers n. �

This tells us that the sum uncertainty of two observables
is equal to the uncertainty of one observable plus the condi-
tional uncertainty of the other observables, i.e., �(A + B ) =
�(A) + �(B|A), which is similar to the entropy of the joint
random variables or the bipartite systems. We can also define
the following quantity as well.

Conditional mutual uncertainty. We define another quan-
tity which we call the conditional mutual uncertainty in the
same spirit of the conditional mutual information. This is de-
fined as M (A : B|C) := �(A|C) + �(B|C) − �(A + B|C),
which can be simplified as

M (A : B|C) = �(B|C) − �(B|C + A), (4)

using the chain rule for the mutual uncertainty.

B. Strong subadditivity relations

The strong subadditivity of entropy is an important result
in information science. It gives a fundamental limitation to
the distribution of entropy in a composite system [30,31]. In
the classical case it implies the non-negativity of the mutual
information. For the relative entropy based quantum mutual
information, I (ρ12...n) = S(ρ12...n‖ ⊗n

i=1 σi ) [32], the strong
subadditivity of entropy guarantees the positivity [33] but
not for the other versions of mutual information [34]. In a
broad sense, the strong subadditivity of entropy implies that
conditioning will not increase the entropy, i.e., S(ρ1|23) �
S(ρ1|2). Moreover, beyond three-particle systems we do not
know the actual form of strong subadditivity of quantum
entropy. Here, we will prove a strong subadditivity type of
relation concerning the uncertainties for multiple observables
in a given quantum state.

Theorem 3. If M (B : C) = 0, then �(A|B + C) �
�(A|B ), i.e., conditioning on more observables reduces the
uncertainty.

Proof. Lets start with the sum uncertainty relation, i.e.,

�(A + B + C) � �(A + B ) + �C,

�(A + B + C) − �(B + C) � �(A + B ) − �B + �B

+�C − �(B + C),

�(A|B + C) � �(A|B ) + M (B : C).

Hence, the proof �
The above relation can be understood as the “strong sub-

additivity” of uncertainty. The strong subadditivity relation
for uncertainty also ensures that the mutual uncertainty is
always positive. For an arbitrary number of observables,
the strong subadditivity relation says that if M (A2 + · · · +
An−1 : An) = 0, then �(A1|A2 + · · · + An) � �(A1|A2 +
· · · + An−1). Next we will prove two important relations
concerning the mutual uncertainty.

Inequality 1. Discarding the observables, one cannot in-
crease the mutual uncertainty, i.e., M (A : B ) � M (A : B +
C).

Proof. To prove this, let us start with the quantity M (A :
B + C).

M (A : B + C) = �A + �(B + C) − �(A + B + C),

�(A + B + C) = �A + �(B + C) − M (A : B + C),

� �A + �B + �C − M (A : B + C),

� M (A : B ) + �(A + B ) + �C

−M (A : B + C),

� (�A + �B + �C)

− [M (A : B + C) − M (A : B )].

Using the sum uncertainty relation for three observables

�(A + B + C) � �A + �B + �C

and Eq. (5), we get

M (A : B + C) − M (A : B ) � 0.

Hence the proof. �
This is another form of strong subadditivity in terms of

mutual uncertainty. Interestingly, mutual information also sat-
isfies I (ρ12) � I (ρ1(23)) [15]. Similarly, there is another total
correlation measure, called the entanglement of purification
[35], that satisfies E(ρ12) � E(ρ1(23)) [36]. These observa-
tions provide added motivation to explore these quantities in
greater detail.

All these inequalities resemble the well-known inequalities
concerning entropy, which are the cornerstone of quantum in-
formation science. However, we note that these similarities are
structural; actual interpretations of these inequalities might be
completely different.

Conditional variance. Here, we define conditional variance
(similar to conditional entropy) as

�(A|B )2 := �(A + B )2 − �B2. (5)

This quantity is equivalent to �A2 + 2 Cov(A,B ), where
Cov(A,B ) = 1

2 Tr[ρ(AB + BA)] − Tr[ρA] Tr[ρB] is the
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covariance of A and B. It says that if the covariance is nonzero
then the uncertainty in A may increase or decrease due to
the knowledge of the uncertainty of B since covariance can
take both positive (correlation) and negative (anticorrelation)
values. This is in some sense different from conditional uncer-
tainty.

IV. PHYSICAL IMPLICATIONS

In this section, we will focus on some applications of
the quantities we introduced in the main text, e.g., mutual
uncertainty, conditional uncertainty, and conditional variance.
We will study these quantities for discrete systems such as
qubit systems as well as higher dimensional systems and
continuous variable systems also.

A. Detection of entangled states

Entanglement is a crucial resource for many quantum
information protocols (e.g., see [22]). Hence, detection and
quantification of entanglement is an important task. Several
ways to detect entanglement have been proposed in the recent
past [23]. In the literature, uncertainty relations have been
employed to detect entanglement where operators can be
either locally applied on the subsystems [37] or globally
applied on the system as a whole [38]. This motivates us to
ask the natural question here, Can we detect entanglement
using the conditional variance or other introduced quantities
here? In the subsequent analysis, we answer this question in
the affirmative.

There exist many elegant methods to detect entanglement
using the local uncertainty relations [37,39–41] or using
geometry of quantum states [25,42–48]. It is worthwhile to
mention that by using local uncertainty relations, one can
detect a more general form of entanglement, known as gen-
eralized entanglement, which includes standard entanglement
as a special case [49–52].

In the following we use conditional variance to derive a
criterion that will detect the entanglement of two qudit mixed
states. We find that the criterion based on conditional variance
is better than the existent criteria based on the geometry of the
quantum states [25,39,40,47,48]. We also consider N -qubit
pure states and find a sufficient criterion for detecting its
entanglement using mutual uncertainty.

Bloch representation of N -particle quantum systems and
the condition for its separability. To express quantum states in
higher dimension geometrically, one needs to understand the
structure of the SU(d ) group. It contains d2 − 1 generators
termed as σi , which form the basis of the Lie algebra with
commutation and anticommutation relations, respectively,

[σi, σj ] = 2i
∑

k

fijkσk,

{σi, σj } = 4

d
δij + 2

∑
k

dijkσk.

Here fijk and dijk are the antisymmetric and symmetric struc-
ture constants. All σi are traceless Hermitian matrices which
satisfy σiσj = 2

d
δijId + ∑

k (ifijk + dijk )σk . For d = 2, the
symmetric structure constants dijk are ideally zero and the

generators are well-known Pauli matrices, whereas for d = 3,
the generators are Gell-Mann matrices.

Any arbitrary single-particle quantum state in d dimen-
sions can be expressed as � = 1

d
Id + 1

2 �r · �σ , where In is
the identity matrix of order n and |�r|2 � 2(d−1)

d
. The density

matrix � is a Hermitian matrix with � � 0, � � �2 (equality
holds when � is pure), and Tr[�] = 1.

The N -qudit state can be expressed in the generalized
Bloch vector representation as

ρ = 1

dN
IdN + 1

2dN−1

[�σ · �r ⊗ I⊗N−1
d + · · ·

+ I⊗N−1
d ⊗ �σ · �rN

] + 1

4dN−2

∑
ij

[
tij0···0σi ⊗ σj

× ⊗ I⊗N−2
d + · · · + t0···0ijI

⊗N−2
d ⊗ σi ⊗ σj

] + · · ·

+ 1

2N

∑
i1···iN

ti1···iN σi1 ⊗ · · · ⊗ σiN , (6)

where �ri are the Bloch vectors for the ith subsystem,
{[tij0···0], . . . , [t0···0ij ]} are pairwise correlation tensors, and
[ti1···iN ] is the N -way correlation tensor. There are other
types of correlation tensors, such as three-way, four-way,
and · · · , N − 1-way, which will not play a role in our
analysis. For notational simplicity, we will call T (k) the k-
way correlation tensor, where, for example, T (2) forms a
set {[tij0···0], . . . , [t0···0ij ]} and so on. The conditions required
to approve the above matrix as a valid density matrix are
– | �ri |2 � 2(d−1)

d
, ρ � 0, ρ � ρ2 (equality holds when ρ is

pure), and Tr[ρ] = 1.
Now we are ready to address the separability of the N -

particle quantum state expressed in Eq. (6). This problem
can easily be addressed by exploiting the Bloch-vector rep-
resentation of quantum systems as shown in Refs. [53–58]. In
order to describe the separability criteria, one can make use
of the Ky-Fan norm [59]. The Ky-Fan norm of a matrix, X,
is defined as the sum of the singular values (λi) of X, i.e.,
‖X‖KF := ∑

i λi (X) = Tr[
√

X†X], where † denotes complex
conjugation. In the Bloch-vector representation, for the state
ρ, if the reduced density matrix of a subsystem consisting of
k (2 � k � N ) out of N parts is separable then ‖T (k)‖KF �√

(1/2k )dk (d − 1)k [53]. This is a set of conditions which
leads to the hierarchy of entanglement structures [22]. How-
ever, in this work, we are restricting our analysis to two-
qudit states and multiqubit states. Note that for N = 2, the
separability condition is [25]

‖T ‖KF � d(d − 1)

2
, (7)

and for N -qubit states (d = 2), the separability conditions
become ‖T (k)‖KF � 1 [53].

1. Detecting entanglement in higher dimensional bipartite
quantum systems using conditional variance

A bipartite quantum state of d dimensions is entangled
when it cannot be expressed as ρ = ∑

i piρ
i
1 ⊗ ρi

2. This
means, for separable states, the correlation matrix can be ex-
pressed as T = ∑

i pi �r1i �r2
ᵀ
i , where pi is the classical mixing

parameter and ᵀ denotes the transposition. Here, we shed
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some light on the separability of the bipartite state using
quantities like the conditional variance and by exploiting the
Bloch-vector representation of the state.

Let A = {Ãi = �ai · �σ ; i = 1, . . . , d2 − 1} are a complete
set of orthogonal observables such that Tr[ÃiÃj ] = 2δij .
We can express these observables in a compact form like
Ãi = ∑

j �ij σj , where � ∈ SO(d2 − 1). Similarly, con-

sider another such set of observables, B = {B̃i = �bi · �σ ; i =
1, . . . , d2 − 1}, where �ai (�bi ) denotes the Bloch vector of the
orthogonal operators Ãi (B̃i ) with unit norm. For observables
like Ai = Ãi ⊗ Id and Bi = Id ⊗ B̃i , the sum of all condi-
tional variances is∑

i

�(Ai |Bi )
2 =

∑
i

�(Ai + Bi )
2 −

∑
i

�B2
i . (8)

For two-qudit separable states and the choice of the above
observables, we state the following theorem.

Theorem 4. For two-qudit separable states and the set of
observables {Ai} and {Bi} described above,

∑
i �(Ai |Bi )2 �

2(d − 1). This criterion is equivalent to ‖T ‖KF � 2(d−1)
d

−
1
2 (| �r1| − | �r2|)2.

Proof. For the two-qudit states, the sum of conditional
variances can be expressed as∑

i

�(Ai |Bi )
2

= 2

d
(d2 − 1) + 2

∑
i

�aᵀ
i T �bi

−
∑

i

( �r1i · �ai + �r2i · �bi )
2 + | �r2|2,

� 2

d
(d2 − 1) + 2

∑
i

�aᵀ
i T �bi − (| �r1|2 − 2| �r1‖ �r2|). (9)

While deriving the above relation, we have employed the
fact that the symmetric structure constant dijk follows∑d2−1

i=1 diik = 0, ∀ k.
However, for two-qudit separable states, the sum of condi-

tional variances can directly be calculated as∑
i

�(Ai |Bi )
2 = 2

d
(d2 − 1) + 2

∑
i,j

pj ( �r1j · �ai )( �r2j · �bi )

−
∑

i

⎡
⎣∑

j

pj ( �r1j · �ai + �r2j · �bi )

⎤
⎦

2

+ | �r2|2,

� 2

d
(d2 − 1) −

∑
j

pj (| �r1j |2 + | �r2j |2) + | �r2|2,

� 2(d − 1), (10)

where we used the relation, 2
∑

j pj ( �r1j · �ai )( �r2j · �bi ) =∑
j pj [( �r1j · �ai + �r2j · �bi )2 − {( �r1j · �ai )2 + ( �r2j · �bi )2}].

Equation (10) proves one part of Theorem 4.
Now from Eqs. (9) and (10), one could easily find that for

two-qudit separable states,∑
i

�aᵀ
i T �bi � −2(d − 1)

d
+ 1

2
(| �r1| − | �r2|)2. (11)

Equation (11) will be valid for any basis vector �ai and �bi . If
we choose �ai = �ui and �bi = −�vi , where �ui and �vi are left and
right singular vectors of T respectively, then Eq. (12) can be
cast as

‖T ‖KF � 2(d − 1)

d
− 1

2
(| �r1| − | �r2|)2. (12)

Hence, the theorem is proved. �
To show the efficacy of the proposed criterion, we have

considered the following examples.
Example 1. Let us consider a two-qubit state con-

sidered in canonical form, ρ = 1
4 [I4 + 2

5 (1 − α)σ3 ⊗ I2 −
3
5 (1 − α)I2 ⊗ σ3 − α

∑3
i=1 σi ⊗ σi], which is entangled for

α > 1
19(5

√
6−6)


 0.3288 as predicted by Peres-Horodecki cri-
terion [60]. According to the proposed criterion, the above
state is entangled when α > 49

74+5
√

221

 0.3303, whereas the

criterion in Eq. (7) detects it for α > 1
3 . This example displays

that the separability criterion derived in Eq. (12) is weaker
than the Peres-Horodecki criterion in 2 ⊗ 2 dimension, but it
is stronger than the criterion in Eq. (7).

Example 2. Now, we consider the bound entangled state
in 3 ⊗ 3 from Ref. [61], i.e., ρ = 1

4 [I9 − ∑4
i |ψi〉〈ψi |],

where |ψ0〉 = |0〉(|0〉 − |1〉)/
√

2, |ψ1〉 = (|0〉 − |1〉)|2〉/√2,
|ψ2〉 = |2〉(|1〉 − |2〉)/

√
2, |ψ3〉 = (|1〉 − |2〉)|0〉/√2, and

|ψ2〉 = (|0〉 + |1〉 + |2〉)(|0〉 + |1〉 + |2〉)/3. For this state
one readily finds that ‖T ‖KF 
 3.1603, which violates both
conditions (12) and (7). Hence, for this state, both the present
criterion and the criterion in Eq. (7) are able to detect its
entanglement. Note that in this case, the Peres-Horodecki
criterion fails.

2. Mutual uncertainty and the N-qubit pure states

Before proceeding toward N -qubit pure states, we consider
two-qubit pure states. Let us consider two observables A =
�a · �σ ⊗ I2 and B = I2 ⊗ �a · �σ with �a · �r1 = �b · �r2 = 0 and
|�a|2 = |�b|2 = 1, where �σ contains Pauli matrices only [62].
Then for arbitrary pure two-qubit states the mutual uncertainty

reads as M (A : B ) = 2 −
√

2 + 2 �aᵀT �b, where T = [tij ] is
the correlation matrix. For a pure product state, T = �r1 �r2

ᵀ, the
mutual uncertainty turns out to be M (A : B ) = 2 − √

2. This
result tells us that if the mutual uncertainty for a given pure
state is found to be other than 2 − √

2 ≈ 0.586, then the given
pure state is entangled. This gives a sufficient condition for
the detection of a pure entangled state. Thus, we can say that
the mutual uncertainty between two observables can detect
pure entangled states. This may provide direct detection of
pure entangled states in real experiments. Moreover, this is a
state-independent and observable-independent universal value
for mutual uncertainty.

There is another important aspect to this analysis for qubit
systems. To show it, we consider an arbitrary two-qubit entan-
gled state in Schmidt decomposition form as |�〉 = √

λ|00〉 +√
1 − λ|11〉. The mutual uncertainty for the arbitrary pure

two-qubit entangled state is given by

M (A : B )|�〉 = 2 − √
2 + 2Ct, (13)

where C is the concurrence of |�〉 [63] and t = a1b1 − a2b2.
Note that the concurrence of any arbitrary |�〉 is defined as
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C = |〈�|σ2 ⊗ σ2|�∗〉|, where ∗ indicates complex conjuga-
tion. Interestingly, from the above relation one can see that by
measuring the mutual uncertainty between two observables,
one can directly infer the concurrence as C = 1

2t
[2 + M (M −

4)]. Note that t depends on the choice of observables.
The above analysis paves the way to extending the

results for N qubits. The mutual uncertainty expres-
sion for an N -qubit state is M (A1 : · · · : AN ) = N −√

N + 2
∑

ij �aᵀ
i T (2)�aj , where we have considered Ai =

· · · ⊗ �ai · �σ ⊗ · · · , where i denotes the particular qubit
and �ai · �ri = 0, |�ai |2 = 1. (For example, A1 = �a1 · �σ ⊗ I2 ⊗
I2 · · · , A2 = I2 ⊗ �a2 · �σ ⊗ I2 ⊗ · · · , etc.) If the pure state
is completely factorized then the bicorrelation matrices can
be decomposed as {[tij0···] = �r1�rᵀ

2 , . . . , [t···0ij ] = �rN−1�rᵀ
N }.

Hence, for genuine product states,

M (A1 : · · · : AN ) = N −
√

N. (14)

Hence, we state the following proposition.
Proposition 1. For pure N -qubit states with all pairwise

correlation tensors of the form T (2) = �ri�rᵀ
j (i 
= j ) and the

set of N observables {Ai}, the mutual uncertainty is M (A1 :
· · · : AN ) = N − √

N , where ri is the Bloch vector of the ith
subsystem.

Negation of Proposition 1 for any pure N -qubit state
sufficiently tells us that the state contains at least pairwise
entanglement. Again, this provides a universal way to detect
multiqubit entanglement.

B. Detection of steerability of quantum states

Quantum steering is a nonlocal phenomenon introduced
by Schrödinger [24] while reinterpreting the Einstein Podol-
sky Rosen (EPR) paradox [64]. The presence of entangle-
ment between two subsystems in a bipartite state enables
one to control the state of one subsystem by its entangled
counterpart [24,26]. Later, it was mathematically formalized
in Refs. [65,66]. Let Alice prepare an entangled state ρ12

and send one particle to Bob. Her job is to convince Bob
that they are sharing nonlocal correlations (entanglement).
Bob will believe such a claim if his state cannot be ex-
pressed by the local hidden state (LHS) model, i.e., ρ̃e

1 =∑
μ p(μ)P (e|E,μ)ρQ

2 (μ), where F = {p(μ), ρQ
2 (μ)} is an

ensemble prepared by Alice and P (e|E,μ) is Alice’s stochas-
tic map. Here, p(μ) is the distribution of hidden variable
μ with constraint

∑
μ p(μ) = 1 and E denotes all possible

projective measurements for Alice. Conversely, if Bob cannot
find such F and P (e|E,μ), then, he must admit that Alice
can steer his system. Below, we present a strategy to detect
quantum steering using mutual uncertainty.

Strategy. To test whether a multiparticle state exhibits
steering, one can devise an inequality based on the quantum
properties of one of the particles, and the inequality will be
satisfied if the system has a LHS model description. The viola-
tion of such inequality will be the signature of the steerability
in the system.

Here, we will devise such an inequality based on a simple
property of the mutual uncertainty, i.e., M (A : B ) � 0. We
will employ the method used by Reid in Ref. [26]. If two
arbitrary observables A and C have nonzero correlations, i.e.,

Cov(A,C) 
= 0, then by knowing the measurement outcome
of C one can infer the value of A which may reduce the
error in the later measurement. Using this simple observation
one can derive steering inequalities using different types of
uncertainty relations [67–69].

If Alice infers the measurement outcomes of A performed
by Bob, then the inferred uncertainty of A is

�infA =
√

〈A − Aest (C)〉2, (15)

where Aest (C) is Alice’s estimate using her measurement
outcomes of C. In Ref. [68], it has been proved that the
following inequality holds if we assume that Bob has LHS
description:

�infA + �infB � �(A + B ).
(16)

Hence, Minf (A : B ) � 0,

where Minf (A : B ) = �infA + �infB − �(A + B ) might be
termed as the “inferred” mutual uncertainty. Equation (16) is
another type of steering inequality.

Proposition 2. For any bipartite quantum state and any two
observables, A and B, if Minf (A : B ) < 0, then the quantum
state can demonstrate steering.

To demonstrate the power of the steering criterion in
Proposition 2, we consider the following examples.

Example 1. To demonstrate our criterion in discrete sys-
tems, here we will discuss the steerability of the Werner state,

ρW = p|�−〉〈�−| + 1 − p

4
I4, (17)

where |�−〉 = 1√
2
(|01〉 − |10〉) and I4 is the identity matrix

of order 4. The state ρW is entangled for p > 1
3 , steerable for

p > 1
2 and Bell nonlocal for p > 1√

2
.

Let us consider two noncommuting observables, A = σx/2
and B = σz/2. In this case, the direct calculation shows that
Minf (A : B ) =

√
1 − p2 − 1/

√
2. Therefore, the Werner state

will show steerability if p > 1/
√

2 for two measurement
settings. However, there exist two measurement steering in-
equalities which are violated by the Werner state for p >

1/
√

2 [67,68,70]. Then the question is, What features does our
criterion entail? To show the power of our steering inequality,
we will consider the following continuous variable systems.

Example 2. We will consider the non-Gaussian state which
can be created from a two-mode squeezed vacuum by sub-
tracting a single photon from any of the two modes. The
Wigner function of such a state in terms of the conjugate
variables (X1, PX1 ), (X2, PX2 ) can be expressed as [71]

W (X1, PX1 , X2, PX2 )

= 1

π2
exp

[
2 sinh(2α)(X1X2 − PX1PX2 )

− cosh(2α)
2∑

i=1

(
X2

i + P 2
Xi

)]

× [− sinh(2α){(PX1 − PX2 )2 − (X1 − X2)2} +
× cosh(2α){(PX1 − PX1 )2 + (X1 − X2)2} − 1], (18)
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FIG. 1. Steerability of single-photon subtracted squeezed vac-
uum state. The solid blue curve depicts the plot of the product of
inferred uncertainties, �infX

2
1�infP

2
X1

, and the red dashed line repre-
sents the lower bound of Reid’s inequality; the inset graph shows the
plot of Minf (X1 : PX1 ) (solid black curve). It is clear that while the
criterion based on mutual uncertainty captures the steerability for any
value of α, the Reid criterion fails for α � 1

4 cosh−1( 13
3 ) ≈ 0.536.

where α is a squeezing parameter. Now, Alice will infer
the conjugate observables (X1, PX1 ) measured at Bob’s by
performing the observables (X2, PX2 ) at her side. The inferred
uncertainties can directly be calculated and hence the inferred
mutual uncertainty is

Minf (X1 : PX1 ) =
√

3

2

(
1

η−
+ 1

η+

)
− (η+ + η−), (19)

where η± = √
cosh(2α) ± cosh(α) sinh(α). If Minf (X1 :

PX1 ) < 0, then we can conclude that the state will demonstrate
steering. To compare, we consider Reid’s criterion for
steering, which for our case is �infX

2
1�infP

2
X1

� 1/4 [26].
For the state considered in Eq. (18), the right-hand side of
Reid’s inequality comes out to be

�infX
2
1�infP

2
X1

= 9

2[3 cosh(4α) + 5]
. (20)

Now to draw comparison between the two steering criteria,
we plot Eqs. (19) and (20). From Fig. 1, we find that the
steerability captured by the criterion based on mutual un-
certainty is more than that of Reid’s. More precisely, the
criterion based on mutual uncertainty captures steerability for
the whole range of α while Reid’s criterion fails for α �
1
4 cosh−1( 13

3 ) ≈ 0.536.

V. DISCUSSIONS AND CONCLUSIONS

We have introduced several quantities called mutual un-
certainty, conditional uncertainty, and conditional variance
which may be useful in many ways to develop faithful notions
in quantum information theory. In doing so, we have been
able to prove many results similar to those of entropic ones
such as the chain rule and strong subadditivity relations for
uncertainty. We have also shown that conditional variance
and mutual uncertainty are useful for witnessing entanglement
and quantum steering phenomena. Specifically, for physical
applications, we find that using conditional variance, one can
detect higher dimensional bipartite entangled states better
than with the criteria given in Ref. [25]. Also, we find that
the mutual uncertainty for N -qubit product states is exactly
equal to N − √

N , which provides a sufficient criterion to
detect entanglement in multiqubit pure states. Moreover, the
steering criterion based on mutual uncertainty is able to detect
non-Gaussian steering where Reid’s criterion [26] fails. In the
future, it may be interesting to see if these notions have other
implications in quantum information science.
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