
1

Project Report (Major Project- II)

on

Bug Severity Prediction

Submitted in partial fulfillment of the requirements

for the award of the degree of

Master of Technology

in

Software Technology

By

Lokesh Chugh

Roll No.: - 2K16/SWT/504

Under the guidance of

Dr. Ruchika Malhotra

Associate Professor

Department of Computer Science & Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Bawana Road, Delhi 110042

2019

2

Delhi Technological University

(Formerly Delhi College of Engineering)

Bawana Road, New Delhi-42

DECLARATION

I hereby declare that the thesis entitled “Bug Severity Prediction” which is being submitted to

the Delhi Technological University, in partial fulfillment of the requirements for the award of the

degree of Master of Technology in Software Technology is an authentic work carried out by me.

The material contained in this thesis has not been submitted to any university or institution for

the award of any degree.

DATE:

SIGNATURE:

LOKESH CHUGH

2K16/SWT/504

3

CERTIFICATE

Delhi Technological University

(Formerly Delhi College of Engineering)

Bawana Road, New Delhi-42

This is to certify that project report entitled “Bug Severity Prediction” done by me for the

Major Project 2 for the award of degree of Master of Technology Degree in Software

Technology in the Department of Computer Science & Engineering, Delhi Technological

University, New Delhi is an authentic work carried out by me.

Signature:

Student Name

Lokesh Chugh

2K16/SWT/504

Above Statement given by Student is Correct.

Project Guide:

Dr. Ruchika Malhotra

Associate Professor

Department of Computer Science
& Engineering

Delhi Technological University,
Delhi

4

Acknowledgement

No volume of words is enough to express my gratitude towards my guide Dr. Ruchika
Malhotra, Department of Computer Science & Engineering, Delhi Technological University,
Delhi, who has been very concerned and has aided for all the materials essentials for the
preparation of this project report. She has helped me to explore this vast topic in an organized
manner and provided me all the ideas on how to work towards a research-oriented venture.

I am also thankful to Dr. Rajni Jindal, HoD of Computer Science & Engineering Department
and Dr. Ruchika Malhotra, Coordinator, for the motivation and inspiration that triggered me
for the project work.

I would also like to thank the staff members and my colleagues who were always there at the
need of hour and provided with all the help and facilities, which I required, for the completion of
my project work.

Most importantly, I would like to thank my parents and the almighty for showing me the right
direction, to help me stay calm in the oddest of the times and keep moving even at times when
there was no hope.

Lokesh Chugh

(2K16/SWT/504)

5

ABSTRACT

Assessment of the degree of deformities is basic so as to designate assets for testing and to plan

inquire about exercises viably. We use content characterization methods in this paper to foresee

and assess the seriousness of deformities. The outcomes depend on the deformity portrayal of

Nasa venture issue necessities. We utilized the philosophy of Support Vector Machine to

evaluate the recurrence of the issue pro-acclamations. In this examination study, a basic word

lexicon approach is recommended to decide the earnestness of the bug as outrageous or non-

genuine. It is discovered that the example of exactness and accuracy is generally a similar

utilizing various methodologies of highlight choice and characterization. In any case, for each of

the four parts, Chi square test and KNN classifier give most extreme exactness and precision

effectiveness. The proposed work will assist Triage with identifying seriousness based bugs and

designate these bugs to explicit engineers. The paper introduces another and robotized technique

called Severity Problem Assessment that helps the test engineer in appointing levels of

seriousness to reports of imperfections. Severity depends on conventional content mining and AI

strategies for existing assortments of records of deformities. The paper gives a contextual

analysis on the utilization of Severity and ITS(issue tracking system) of Nasa. The discoveries of

the contextual investigation show that Severity is a decent indicator of the seriousness of the

issue, while it is easy to utilize and powerful.

6

Table of Contents
CHAPTER 1 .. 9

INTRODUCTION ... 9

1.1 EXISTING SYSTEM .. 10

1.2 PROPOSED SYSTEM .. 11

CHAPTER 2 .. 13

RESEARCH METHODOLOGY .. 13

2.1 SEVERITY CLASSIFICATION PROCESS ... 13

2.2 DEFECT TRACKING SYSTEM .. 14

CHAPTER 3 .. 18

SYSTEM DESIGN AND ARCHITECTURE ... 18

3.1 INTRODUCTION ... 18

3.2 SYSTEM DESIGN DOCUMENT .. 18

3.2.1 OVERVIEW .. 18

3.2.2 INTRODUCTION ... 18

3.2.3 SYSTEM ARCHITECTURE .. 18

3.2.4 FILE AND DATABASE DESIGN .. 19

3.2.5 HUMAN-MACHINE INTERFACE ... 19

3.2.6 DETAILED SYSTEM ANALYSIS: ... 19

3.2.7 SYSTEM INTEGRITY CONTROLS ... 20

3.2.8 THE SEVERIS: ... 20

CHAPTER 4 .. 24

KNN ALGORITHM .. 24

4.1 K-NEAREST NEIGHBORS’ CLASSIFICATION ... 24

4.2 PERFORMANCE ANALYSIS .. 25

4.2.1 PERFORMANCE PARAMETERS .. 25

4.2.2 COMPARISON PARAMETER: ... 26

4.3 SYSTEM TESTING .. 27

CHAPTER 5 .. 28

THE SOFTWARE PLATFORM ... 28

5.1 JAVA ... 28

7

5.2 JAVA PLATFORM ... 28

5.3 TOOLS USED ... 29

5.4 IMPLEMENTATION: .. 30

5.4.1 THE ADMIN MODULE .. 30

5.4.2 THE USER MODULE: .. 35

CHAPTER 6 .. 38

RESULTS .. 38

CHAPTER 7 .. 40

CONCLUSION AND FUTURE WORK .. 40

FUTURE WORK: ... 40

REFERENCES: ... 41

8

List of Figures

Figure 2.1: Detailed Methodology ... 14
Figure 2.2 : Top 25 terms in dataset after Feature Selection ... 16
Figure 2.3: Training for 5 Features .. 17
Figure 2.4: Training for 50 Features .. 17
Figure 3.1 : Workflow of Severis .. 22
Figure 3.2 : System Architecture of Bug Detection ... 23
Figure 4.1 : Distance Functions ... 24
Figure 4.2 : Confusion Matrix ... 27
Figure 5.1 : Java Program Flowchart ... 29
Figure 5.2 : Java Platform .. 29
Figure 5.3 : Sample Dataset ... 31
Figure 5.4 : Admin Login .. 32
Figure 5.5 : Upload Dataset ... 32
Figure 5.6 : View Dataset .. 33
Figure 5.7 : Pre-Processing Data ... 33
Figure 5.8 : Feature Extraction .. 34
Figure 5.9 : Calculate TF-IDF Score ... 34
Figure 5.10 : View Bug Severity ... 34
Figure 5.11 : User Registration .. 35
Figure 5.12 : User Login .. 35
Figure 5.13 : View Profile ... 36
Figure 5.14 : Add Bugs .. 37
Figure 5.15 : View Severity Level ... 37
Figure 6.1 : Accuracy of trained model ... 38
Figure 6.2 : Prediction Results ... 39

9

CHAPTER 1

INTRODUCTION

With the expanding reliance on programming frameworks, significance of programming quality

is getting increasingly basic. There are various approaches to guarantee quality in programming,

for example, code surveys and thorough testing with the goal that bugs can be evacuated as right

on time as conceivable to avoid the misfortune it might cause. Distortion reality assessment is

generally stressed over evaluation of significant worth degree of an item to see whether the item

is fit enough to be released. In every way that really matters, the flaw reports are filled physically

on intermittent reason. The estimation of reality levels doled out to gives up physically could be

not exactly equivalent to enrolled by content mining and rule learning. To forestall a engineer

from allotting incorrectly seriousness levels to an imperfection, to spare time if there should be

an occurrence of an earnest time limited application, to watch that no high seriousness issue has

been missed, a mechanized extraction and examination of content from issue reports has been

utilized [1][2]. Defect severity assessment is principally involved with assessment of quality

level of a package to visualize whether or not the package is work enough to be free. much, the

defect reports are stuffed manually on periodic basis. the worth of severity levels appointed to

defects manually is totally different from text mining and rule learning process.

In this paper we've a bent to gift a replacement approach for extracting general conclusions from

PITS info supported text mining and machine learning ways in which, that low value, automatic,

and rapid. we've a bent to designed and designed a tool named SEVERIS automatically review

issue reports and alert once a projected severity is abnormal. The severis is created provides the

probabilities that the assessment is correct. These possibilities are going to be used to guide

method} throughout this method. distribution the correct severity levels to issue reports is

extraordinarily necessary within the strategy used at office, as a result of it directly impacts

resource allocation and developing with of later defect fixing activities [8].

10

A. Severis Content mining methods are utilized to separate the applicable highlights of each

report, while AI procedures are utilized to relegate these highlights with appropriate

seriousness levels, in light of the characterizations of existing reports [8].

B. Bug: A Software bug can be delegated mistake, blemish, disappointment or flaw in any

framework because of which framework act in an ill-advised way, may give results which are not

expected or wrong outcomes. Different ways by which a bug can occur because of blemishes in

source code, planning of program or because of working frameworks or additionally can be

review of bugs assessment of bugs. The after effects of bugs finished up to be unsafe, from

different episodes in genuine world [3].

1.1 EXISTING SYSTEM

There are various approaches to guarantee quality in programming, for example, code surveys

and thorough testing with the goal that bugs can be expelled as ahead of schedule as conceivable

to avoid the misfortune it might cause. Programming bug is generally used to portray the event

of a shortcoming in a product framework which results it to act uniquely in contrast to its

determination bug following frameworks are one of the significant stores among all accessible

programming storehouses. Many open source programming tool have an open bug vault that

permits the two engineers and clients to submit imperfections or issues in the product, propose

potential improve and remark on existing bug reports.

Disadvantages:

• Another issue basic to these frameworks is that the majority of the information is unstructured.

Explicit to [PITS] is that the database fields in [PITS] continue changing,yet the idea of the

unstructured content stays steady [5].

• Many open source programming ventures have an open bug archive that enables the two

designers and clients to submit imperfections or issues in the product, recommend potential

upgrades, and remark on existing bug reports.

• As contrasted with more up to date frameworks, the issue with [PITS] is that there is an

absence of consistency in how every one of the undertakings gathered issue information.

11

1.2 PROPOSED SYSTEM

As the report is first sent into the information, it is perused and sent for being pre-prepared which

includes the decrease of trait so the superfluous and pointless words present in the huge measure

of information could be restricted to just the characteristics that are essentially significant. the

pre-handled words are sent for include determination in order to keep up a degree of consistency

among the traits by positioning them from generally essential to fundamentally less significant.

The traits are then applied with AI calculation in order to characterize the qualities based on

seriousness levels of their imperfections. The outcomes got from AI are then assessed utilizing f-

measure, which incorporates exactness and review, to know how much the outcomes acquired

hold fast to the ideal yield.

Reducing the number of attributes so as to get only the relevant and significantly important

attributes in order to save time in processing the entire chunk of data and shift our focus on

relevant attributes. Data pre-processing encompasses three steps in order as: tokenization, stop

word removal, and stemming.

Advantage:

A. Tokenization Process: It is the assignment of changing over a flood of characters into a

surge of handling units called tokens, which are the squares of content thought about

helpful piece of the unstructured content [6].

B. Stop Word Removal: Stop words are the most well-known words that are not prone to

convey any huge data in a specific setting and are, in this way, a bit much for content

mining application and are wiped out [6].

C. Stemming: Stemming is the procedure for lessening bent or now and then determined

words to their stem base or root structure commonly a composed word structure. For

instance: run, runs, ran, and running, are largely types of a similar root, customarily

composed as run and the job of a stemmer is to characteristic all the determined

structures to the base of the lexeme [6].

D. Feature Selection: Much after information pre-preparing on a record, the quantity of

characteristics is huge to the point that it further should be decreased. Highlight choice

12

exemplifies the method for finding the significance of a word based on different

strategies, for example, Info Gain [6].

E. Term frequency (TF) and Inverse Document Frequency (Idf):

Tf and idf is shorthand for term recurrence times reverse archive recurrence. The tf and

idf weight characterized for a word is frequently utilized in data recovery and content

mining. This weight is a factual measure used to assess how significant a word is to a

record in an assortment or corpus. The significance expands relatively to the occasions a

word shows up in the report however is counterbalanced by the recurrence of the word in

the corpus. The term recurrence in the given archive is basically the occasions a given

term shows up in that record.

13

CHAPTER 2

RESEARCH METHODOLOGY

2.1 SEVERITY CLASSIFICATION PROCESS

Bug reports are removed from separate bug archive. At that point pre-handling on printed data of

bug reports is applied to acquire progressively solid data. Term-record grid is made and by

utilizing highlight determination strategy lexicon of basic terms is made. At that point decreased

TDM got by utilizing basic word reference terms is sustained to classifier for characterization of

serious and non-extreme bug report. The entire procedure of seriousness characterization process

proposed in the theory can be outlined as underneath.

Figure 2.1 shows the following steps:

Step 1: Extraction of defective bug reports of open source software from bug repository.

Step 2: Preprocessing occurs when defective bug reports by using text mining approach

Step 3: Use TF / IDF score for creation of a term document matrix.

Step 4: The use of a feature selection method selection methods, information gain and Chisquare

method for dimensionality reduction.

Step 5: Creation of critical term dictionary using top-k terms that are obtained after

dimensionality reduction and will be fed to the hybrid algorithm proposed in the thesis.

Step 6: The establishment of Hybrid KNN-NBM algorithm for improved Bug severity

prediction.

Step 7: Severity process dection of the bugs reported.

Step 8: The dataset that we are using will be used from Bugzilla repository of mozilla firebox

OS.

14

Figure 2.1: Detailed Methodology

2.2 DEFECT TRACKING SYSTEM

It is a fundamental advance for venture the board. A deformity report shows the manner in which

a client sees the imperfection. For the duration of the existence cycle of the imperfection report,

it experiences a work process which comprises of six phases as new, Examined, Confirmed,

Resolved, Verified and Accepted [7].

15

At the point when an imperfection report is submitted into the framework, it is first arranged as

New. It is then guaranteed for quality administration by the quality affirmation faculty, at that

point it is sent into the analyzed state. Presently, when the deformity report is seen as causing a

disappointment in the activity of the part or a framework, it is sent to the affirmed state. On the

off chance that an answer is resolved to address the deformity experienced, the imperfection

report is moved into the settled status. The quality confirmation faculty at that point check the

answer for right the imperfection and if the redress is done accurately, the deformity report

currently moves to the confirmed state. Presently the arrangement is displayed to the customer to

be endorsed; on the off chance that it is affirmed, the deformity is moved to the acknowledged

state.

There can be a situation when a deformity report contains approaches to address the

imperfection, it can legitimately be moved from new or inspected to settled. Significantly after

an imperfection is in affirmed state and the data present has been seen as off base, it can follow

back to inspected state for further handling from affirmed. In the event that the remedy of the

deformity isn't right, it is revived from settled state to inspected [9].

The PITS A dataset was utilized for turning out with the outcome. 70% of the archives were

utilized for preparing and the rest 30% were utilized for testing the exactness and productivity

the preparation strategy and in this manner anticipating the viability of the content arrangement.

Figure 2.2 shows list of top 25 terms in the data set after feature selection has been done.

Figure 2.3 and Figure 2.4 shows graphs of Training Features with 5 and 50 features respectively.

16

Figure 2.2 : Top 25 terms in dataset after Feature Selection

17

The Graph of Feature Selection:

Figure 2.3: Training for 5 Features

Figure2.4: Training for 50 Features

When selected total 100 features, we got an accuracy of 84%. Figure 4 is a plot of the training

data based on SVM using LIBSVM.

18

CHAPTER 3

SYSTEM DESIGN AND ARCHITECTURE

3.1 INTRODUCTION

The product bugs that are recognized after the sending of programming influence the

dependability and nature of programming. Bug following frameworks enables clients to report

these bugs of many open source programming. Be that as it may, anticipating the seriousness

level of these bug report is raising issue [10].

3.2 SYSTEM DESIGN DOCUMENT

3.2.1 OVERVIEW

This document shows various requirements of the system, the operating system, files, database,

input, output, various interfaces, logic implemented, internal interface and external interface.

3.2.2 INTRODUCTION

Introduction part describes the following things:

1. Purpose and scope of the implementation

2. The summary of the project to be implemented from management view

3. The overview of the system using technical and non-technical. The flowchart and layout

of the project with appropriate diagrams.

4. Various constraints that are seen while implementing the project and any

imaginations/exceptions made by the team while developing.

5. Future problems that may arise after developing the system

6. Various stakeholders involved while implementing. These can be the Project Manager,

QA Manager, Security, Configuration, Organization, etc.

7. Various references that have been used while implementing the project

8. A summary of abbreviations and short forms that have been used.

3.2.3 SYSTEM ARCHITECTURE

19

This describes the architecture of the system that has been used. The architecture can be of the

hardware or the software level. Various architectures that are described are as follows:

1. System Hardware Architecture which includes the complete architecture of system

including various components.

2. System Software Architecture which described the software part, language, functions,

tools, classes, Object-oriented diagrams, etc.

3. Internal Communication Architecture which describes the communication between the

various components and modules of the system.

3.2.4 FILE AND DATABASE DESIGN

Along with the hardware and software part, the next important component is the file and

database design. This includes the interaction of the Database Administrator with the various

files (Both DBMS and non-DBMS files) which are related to the development of the project. It

also describes how the data is stored in the DBMS and what are the various schemas, sub-

schemas, tables, records, sets, etc used while storing the data in the DBMS. Various methods to

access the tables and records and the size of the database and tables described [11][12].

Non- DBMS files includes the description of the files with proper input and output. This also

includes methods of how to access the files in the database, that is, the keys and indexes or any

other reference data that has been used, ways to access the files that have been stored in the

DBMS.

3.2.5 HUMAN-MACHINE INTERFACE

Along with the hardware, software and communication with the database, the hardware must

interact with humans as well. This section explains the interaction of the hardware component

with humans. From the initial start of the project, the person using the project should be able to

understand the flow of the program and the next step involved in the program. The interaction

between machine and human should be smooth enough for the proper flow. Various parts

involved in this interface are Inputs and Outputs [13].

3.2.6 DETAILED SYSTEM ANALYSIS:

20

 This describes the designing of all the components involved which are hardware, software,

interaction between various modules, etc. Depending upon the implementation all the details are

required, some are as described below:

• Details of various hardware components used

• Various connectors / cables required

• Power requirement for input

• Memory requirement / Storage Space requirement

• Processor Speed and functionality

• Switches and cables used

• GUI of all the components used in the hardware

• Functions , algorithms and interaction of various modules used in the implementation

• Data Entry Methods and various ways to access the records and files structures.

• Various elements used in saving the data to a particular storage area.

• Communication ways used to transfer the data

• Topology of the cables and connections

• Number of Clients and server used in maintaining the connection

3.2.7 SYSTEM INTEGRITY CONTROLS

This includes ways to recover the data in case of complete failure, unauthorized access or misuse

of the implemented system. The system must be accessible and must be recoverable in such

cases and there should be proper security measures to recover the system in all such cases. There

should be proper review and audit system that must occur on a particular stage of the

implementation. Security must be of concern so that the implementation is not openly available

to all and must be controlled by limiting the number of users. All the data entered must be

verified with proper sources [14].

3.2.8 THE SEVERIS:

Severis depends on the computerized extraction and investigation of literary depictions from

issue reports in PITS. Content mining procedures are utilized to remove the significant highlights

of each report, while AI strategies are utilized to allot these highlights with appropriate

21

seriousness levels, in light of the groupings of existing reports. While, in its present structure is

explicitly custom-made to work with PITS reports, with little alterations, Severis can be utilized

with other deformity detailing frameworks, for example, bug in programs [8].

The delineates how Severis entomb works with the human examiner or his manager. Severis

checks the legitimacy of the seriousness levels relegated to issues in the accompanying manner:

After observing an issue in some antiquity, a human investigator produces some content notes

and appoints a seriousness level seriousness. Severis learns an indicator for issue seriousness

level from logs of notes, seriousness.

Severis checks the severity level as mentioned below :

1. The updating of the Severis beliefs and

2. It Shows how much self confidence a manager might have in the severis conclusions.

The learned knowledge, Severis reviews the analyst’s text and generates its own severity

level.

22

Figure 3.1 : Workflow of Severis

23

Figure 3.2 : System Architecture of Bug Detection

24

CHAPTER 4

KNN ALGORITHM

 4.1 K-NEAREST NEIGHBORS’ CLASSIFICATION

K closest neighbors is a straightforward calculation that stores every single accessible case and

characterizes new cases dependent on a closeness measure (e.g., separation capacities). KNN has

been utilized in measurable estimation and example acknowledgment as of now in the start of

1970's as a non-parametric strategy [15].

A case is classified by a majority vote of its neighbors, with the case being assigned to the class

most common amongst its K nearest neighbors measured by a distance function(Figure 4.1) , If

K = 1, then the case is simply assigned to the class of its nearest neighbor as shown

Figure 4.1 : Distance Functions

25

4.2 PERFORMANCE ANALYSIS

4.2.1 PERFORMANCE PARAMETERS

These are the exhibition parameters on which our calculation exactness, effectiveness and

multifaceted nature would be estimated.

Accuracy

Accuracy is the rate of proportion of the total number of predictions that are correct in the system

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision

Exactness or Confidence (as it is brought in Data Mining) indicates the extent of Predicted

positive cases that are effectively real positives.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall

Review or Sensitivity as it is brought in Psychology is the extent of Real Positive cases that are

effectively Predicted Positive.

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

26

4.2.2 COMPARISON PARAMETER:

These parameters help us in comparing our algorithm with other algorithms and techniques

which are used for software quality prediction.

1. Confusion Matrix: A table of confusion (sometimes also called a confusion matrix). Bug

Reports term document matrix new incoming bug term document matrix feature

selection preparation of critical term dictionary feature selection training classifier

prediction model severity prediction text mining stop word removal stemming text.

2. Mining tokenization Stemming Stop word expulsion is a table with two lines and two

sections that reports the quantity of bogus positives, bogus negatives, genuine positives,

and genuine negatives.

At the point when we get the, a great many pieces of information cleaning, pre-handling and

wrangling, the initial step we do is to sustain it to an exceptional model and obviously, get yield in

probabilities. In any case, hang on! How in the damnation would we be able to quantify the

viability of our model? Better the adequacy, better the presentation and that is actually what we

need. Also, it is the place the Confusion network comes into the spotlight. Disarray Matrix is a

presentation estimation as demonstrated as follows.

Figure 4.2 : Confusion Matrix

27

4.3 SYSTEM TESTING

The reason for testing is to find mistakes. Testing is the way toward attempting to find each

possible deficiency or shortcoming in a work item. It gives an approach to check the usefulness

of segments, sub-congregations, gatherings or potentially a completed item.

TYPES OF TESTS

Unit testing:

Unit testing includes the structure of experiments that approve that the interior program rationale

is working appropriately, and that program inputs produce legitimate yields.

Integration testing:

Reconciliation tests are intended to test incorporated programming parts to decide whether they

really run as one program.

Functional test:

Utilitarian tests give methodical exhibitions that capacities tried are accessible as determined by

the business and specialized necessities, framework documentation, and client manuals.

White Box Testing:

White Box Testing is a trying wherein in which the product analyzer knows about the internal

functions, structure and language of the product, or if nothing else its motivation.

28

CHAPTER 5

THE SOFTWARE PLATFORM

5.1 JAVA

Java is both a high-level language and a platform independent. For implementation of this

project Java language is used since Java is Simple, It’s a Object oriented , Portable, High

performance, Dynamic, Integrated and Secure. Figure 5.1 explains the basic flow of a Java

Program.

Figure 5.1 : Java Program Flowchart

5.2 JAVA PLATFORM

Java software has 2 parts as described below(Figure 5.2):

• The Java Virtual Machine (JVM) .

• The Java Application Programming Interface (Java API).

Figure 5.2 : Java Platform

MyProgram.java

MyProgram.class

MyProgram

Compiler

Interpreter..001100010…

Java Platform

Java API

Java Virtual Machine

29

5.3 TOOLS USED

OPERATING SYSTEM:

Windows 10

The project was performed on a Microsoft Windows 10 machine with 4GB RAM, intel Core i3

processor, 32MB cache memory. Code implementation was done with Java Language, apache-

tomcat-6.0.20, eclipse-jee-mars-2-win32-x86_64, SQLSERVER used for creating web

applications.

DATABASE:

 MYSQL

• MySQL is an open-source, fast reliable, and flexible relational database management system,

typically used with PHP. This chapter is an introductory chapter about MySQL, what is

MySQL, and the main features of MySQL are described

• Installing MySQL on one window is relatively simple. You only need to download the

MySQL installation package for the window version and install the installation package.

• A Sample Dataset image(Figure 5.3):

30

Figure 5.3 : Sample Dataset

INTEGRATED DEVELOPER ENVIROMENT (IDE):

NETBEANS

NetBeans is a coordinated advancement condition (IDE) for Java. NetBeans enables applications
to be created from a lot of measured programming parts called modules. It runs on Windows,
macOS, Linux and Solaris. Not with standing Java improvement, it has expansions for different
dialects like PHP, C, C++, HTML5, and it’s a javascript application dependent on Netbeans,
including the Netbeans ide, can be stretched out by outsider designers.

5.4 IMPLEMENTATION:

5.4.1 THE ADMIN MODULE

ADMIN LOGIN:

The developed tool allows admin to enter credentials as shown in Figure 5.4 and upload the
dataset as shown in Figure 5.5 to train the program about various bugs with their severity.

31

Figure 5.4 : Admin Login

Figure 5.5 : Upload Dataset

VIEW DATASET:

Once the admin is logged in and the dataset is uploaded, the same dataset can be viewed by
admin as shown in Figure 5.6. Admin can check whether the same dataset has been uploaded
correctly or not.

32

Figure 5.6 : View Dataset

PRE_PROCESSED DATA:

The next step in bug prediction is pre-processing the data using text mining technique which is
shown in Figure 5.7.

Figure 5.7 : Pre-Processing Data

33

FEATURE EXTRACTION:

Once the pre-processed data is collected, now the important features or words are extracted
which is shown in Figure 5.8. This step is known as feature extraction which helps in reducing
the overall word count.

Figure 5.8 : Feature Extraction

Calculate TF-IDF Score:

Now the TF and IDF score is calculated based on creation of a term document matrix. TF and
IDF values are shown in Figure 5.9. The TF and IDF weight characterized for a word is
frequently used in data recovery and content mining.

34

Figure 5.9 : Calculate TF-IDF Score

View Bugs Severity:

Finally the severity of bug can be viewed as shown in Figure 5.10

Figure 5.10 : View Bug Severity

35

5.4.2 THE USER MODULE:

The User Registration:

Along with admin login, any user can create credentials as shown in Figure 5.11and get logged
in which is shown in Figure 5.12.

Figure 5.11 : User Registration

Figure 5.12 : User Login

36

VIEW PROFILE:

User created profile can be viewed by the user as shown in Figure 5.13 which shows all the
details entered to be viewed by user.

Figure 5.13 : View Profile

ADD BUGS:

Users can add new detected bugs to the database as shown in Figure 5.14 with its severity. This
will allow the dataset to increase more in size with different keywords.

Figure 5.14 : Add Bugs

37

View Severity Level:

Finally, the severity of the bug can be detected as soon as any bug is entered in the tool. This is
shown in Figure 5.15.

Figure 5.15 : View Severity Level

38

CHAPTER 6

RESULTS

After training numerous models we were able to achieve an overwhelming best validation

accuracy of 80 % with the proposed solution. As a result this classification allows us to predict

the severity of the bug reported. The bugs that are reported after software deployment affect the

quality and reliability of the software. After training the model we were able to predict the

severity and classify the reported bug in particular category. Figure 6.1 shows the precision and

accuracy of the tool developed.

Figure 6.1 : Accuracy of trained model

The output of our tool shows the severity level of collected bugset. Prediction results have been

divided in various categories like critical, enhancement, trivial, major, minor, normal as shown in

Figure 6.2. Our proposed work depicted the approach to classify and select feature for

categorizing the bug into different levels.

39

Figure 6.2 : Prediction Results

40

CHAPTER 7

CONCLUSION AND FUTURE WORK

These product bugs are distinguished after sending programming influence the dependability and

nature of programming. Bug following frameworks enable clients to report these bugs of

numerous open source programming. Anyway, anticipating the seriousness level of these bug

report is rising issue. Various undertakings have been made to address the issue of reality figure,

yet no undertaking was made for making word reference of fundamental terms of earnestness

marker. The work displayed in this paper proposed a component decision and request approach

for arranging the bug reports into outrageous and non-genuine class. Feature assurance systems

filter through commonly instructive terms from datasets resulting to preprocessing steps.

FUTURE WORK:

In this exploration, content arrangement for evaluating the seriousness levels of the imperfection

reports and foreseeing the seriousness levels of inconspicuous deformity reports continuously

has been utilized. In future this examination is expected to utilize this instrument for non-

utilitarian prerequisites report and support demand report.

41

REFERENCES:

[1] D. Carbamic and G. C. Murphy, “Automatic bug triage using text categorization,”

in Proc Sixteenth International Conference on Software Engineering.

[2] L. Yu, C. Kong, L. Xu, J. Zhao and H. Zhang, "Mining Bug Classifier and Debug

Strategy Association Rules for Web-Based Applications," in 08 Proceedings of the

4th international conference on Advanced Data Mining and Applications , 2008.

[3] S. Ahsan , J. Ferzund and F. Wotawa, “Automatic Software Bug Triage System

(BTS) Based on Latent Semantic Indexing and Support Vector Machine,” in

Proceedings of the 2009 Fourth International Conference on Software Engineering

Advances, p.216-221, September 20-25, 2009.

[4] N.Suguna and Dr. K. T. di, "An Improved k-Nearest Neighbor Classification Using

Genetic Algorithm," in IJCSI International Journal of Computer Science Issues,

vol. 7, Issue 4, No 2, July 2010.

[5] G. Canfora and L. Cerulo, "Impact Analysis by Mining Software and Change

Request Repositories," in Proceedings 11th IEEE International Symposium on

Software Metrics (METRICS'05), September 19-22 2005, pp. 20-29.

[6] D. Cubranic and G. C. Murphy, "Automatic Bug Triage Using Text

Categorization," in Proceedings 6th International Conference on Software

Engineering & Knowledge Engineering (SEKE'04), 2004, pp. 92–97.

[7] M. P. ILIEV, “A method for automated prediction of defect severity using

ontologies,” in Master’s thesis, LIACS, Leiden University, Logica Netherlands,

2012

[8] T. Menzies and A. Marcus, “Automated severity assessment of software defect

reports,” in IEEE International Conference on Software Maintenance, 28 2008-Oct.

4 2008, pp. 346–355.

[9] I. Herraiz, D. German, J. Gonzalez-Barahona, and G. Robles, “Towards a

Simplification of the Bug Report Form in Eclipse,” in 5th International Working

Conference on Mining Software Repositories, May 2008.

42

[10] G. Jeong, S. Kim, and T. Zimmermann, “Improving Bug Triage with Tossing

Graphs,” in Proc. 17th ACM SIGSOFT Symp. Foundations of Software Engineering

(FSE ’09), Aug. 2009, pp. 111-120.

[11] G. Salton, “Automatic Text Processing: The Transformation, Analysis and

Retrieval of Information by Computer,” Addison-Wesley.

[12] T. Menzies, J. Greenwald and A. Frank, “Data Mining Static Code Attributes to

Learn Defect Predictors,” in IEEE Transactions on Software Engineering.

[13] J. H. Kang, W. Welbourne, B. Stewart, and G. Borriello, “Extracting Places from

Traces of Locations,” in Proceedings of the 2Nd ACM International Workshop on

Wireless Mobile Applications and Services on WLAN Hotspots, ser. WMASH 04.

Philadelphia, PA, USA: ACM, 2004, pp. 110–118.

[14] J. Reades, F. Calabrese, A. Sevtsuk, and C. Ratti, “Cellular Census: Explorations in

Urban Data Collection,” IEEE Pervasive Computing, vol. 6, no. 3, pp. 30–38, Jul.

2007.

[15] G. Rose, “Mobile Phones as Traffic Probes: Practices, Prospects and Issues,”

Transport Reviews, vol. 26, no. 3, May 2006.

