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ABSTRACT

The Simulation and Emulation of the digital circuits are discussed in this present work in
which there is an enhancement to increase the capacity and performance of the digital chips
and ICs where it reduces its size with help of the memory inference in complex circuits, the
number of multiplexers, adders and subtractors are replaced with the memory block which

reduces the area of the digital ICs and the capacity of the digital circuit is getting enhanced.

It also reduces the compilation time of the simulating circuits during gate level and behavioral
level synthesis of the circuit. The importance of the work is that all the circuits and ICs can be
tested in fraction of seconds using this optimization which reduces a lot of money and time
consumption of an organization. The testing of this optimization is done by simulating the
module where the analysis of the various scenarios is done on simulator.

The optimization is further tested on emulator where the replica of the module can be created,
the emulator can act as the same piece of hardware where the compilation time is reduced.

Methodology adopted is Verilog and VHDL the hardware descriptive language is used. All the
scripting of the various scenarios is done with shell scripting. The coding for the optimization
of memory ports is written in C/C++ in which all the read and write ports are analyzed.

In memory optimization enhancement various tools for simulation like Questa and precession
are used for simulating all the modules of the hardware descriptive Language.

Further, for creating the Real Replica of the hardware, emulator is used where the Register
transfer level compiler and Emulator (Veloce) are used of validating all the results in velcomp
flow where the quad core processor is used , all the modules are compiled in the parallel
manner . It makes the system for informative in which core processor, it is compiling all the
Modules with high speed and efficiency. So this optimization reduces the speed of the
simulator and emulators in terms of the area and the compilation time of the gate level

synthesis where the register transfer level design is transformed into logic gates.
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CHAPTER 1

INTRODUCTION

1.0 INTRODUCTION
In the design flow, design specifications are introduced . Specifications provides
functionality interface and overall architecture of the designed digital circuit . A behavioral
description is made to analyze the design with respect to functionality and performance.
Behavioral descriptions are often written in Verilog, VHDL and system Verilog .
EDA tools have appeared to simulate behavioral description of digital circuits, these
tools have merged the powerful concepts from HDLs and object oriented programming
like C/C++. The behavioral description is converted into RTL description in an HDL.
The logic synthesis tools transforms the RTL description into gate-level netlist
describes the circuit in terms of gates and connections between them. The synthesis tool
makes that the gate level netlist meets the timing area and power specifications in Fig 1.1.
The gate level netlist is put into an automatic place and route tool, then a layout is created,

then the layout is fully verified and fabricates on a digital chip .

Design Specification

l Behavioral Description
. '
( RTL Description (HDL) &
Functic I Verificatic
and Te: l nb
Logic Synthesis)
Timing Verification
Gate-Level Netlist ‘
Logical Verification
and l'c:-ung
l | K)l PI mll 2 |
P I c Jl’ld Route [
l Physical Layout I
I Layout Verifi ‘P’ !

l Implementation ]

Fig 1.1 Design Flow for various digital circuits
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1.1 DESIGN OF DIGITAL SYSTEM
The digital design system is described in Verilog because high level Verilog designs are
usually described at the level that consist of system registers and transfer of data between
various registers through buses, this level of high level description is called as register
transfer level (RTL). Verilog construction used in RTL level design are procedural

statements continuous assignments and instantiation statements.

1.2 TESTBENCH IN VERILOG

A digital system designed in Verilog should be simulated and tested for functionality
before it is turned out into a hardware while simulation design errors and incompatibility
of components in the digital design, all are detected. In simulation, a digital design need

generation of test data and observation of all simulation results. This process can be done
by use of a Verilog module that is called as a test bench. A Verilog test bench uses HDLs
constructs for generation of data monitoring of response and even handshaking of the
design. In the test bench, the design is instantiated which is being simulated the test bench
together with digital design, forms a model of simulation which is used by Verilog

simulation.

1.3 SIMULATION
Mentor Graphics uses “QUESTA” as a simulating tool, simulation of a design
requires testing of data, and test data can be generated graphically using editors for wave
form or with the help of a test bench. For simulating with the help of a Verilog test bench,
the test bench instantiates the design under test (DUT) and as a part of the test bench, it

applies test data to the instantiated circuit in Fig 1.2.

Verilog code of a digital circuit and its test bench and the result of simulation are in the
form of waveform. Simulation validates the functionality of the digital circuit being tested the
timing diagram that the circuit output changed with the rising edge of the clock and no

gate delays and the propagation delays are shown in the timing diagram.
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Figure 1.2. Test bench or a waveform editor for simulation

1.5 COMPILATION AND SYNTHESIS
Synthesis is the process of transforming the HDL design into gate level netlist, a
Verilog representation for synthesis cannot include signal and gate level timing
specifications that do not translate to sequential or combinational logic equations, Verilog
representation for thesis should follow certain styles of coding for combinational and
sequential circuits for example: we have to specify an Application specific integrated
circuit(ASIC) or field programmable gate array(FPGA) as our target hardware. When the
hardware with detailed timing and specifications become available to the compilation
process. The compilation process translates various parts of design to an analysis phase
and generates synthesis phase and places and routes components of the target hardware
and generates timing details.
15.1 ANAYLSIS
Before the complete design emerged into hardware, the design must be
analyzed properly a uniform format must be generated for the complete design,
this analysis space also checks the syntax and semantics of the input Verilog code.
15.2 GENERIC HARDWARE GENERATION
After obtaining uniform representation of all the components of design, the
synthesis begins its operation by turning the design into a generic hardware, such
as a set of Boolean expressions or a netlist of gates.
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1.6 LOGIC OPTIMIZATION

1.7

This phase of synthesis after a design is converted into a set of Boolean expressions
or basic gates is called the optimization phase in Fig 1.3, this phase is responsible for
reducing expressions with continuous input and removing redundant logic expressions

output of this phase is in the form of Boolean expressions, logic representations or gate
netlist.

BINDING
After the logic optimization phase, the synthesis uses information from the given
hardware to decide exactly what logic elements are required for the realization of the

circuit, this process is called the binding as shown in Fig 1.3. And its output is ASIC or
custom IC.

Design Specification

modide cason (. . )

asagn

abways

compil. . )
endmoduie

' T |
ComptUl(...p ™~
Comp2U2

Inmamediate Fomat

= |

wirys | POGecoe CX Analys:s
g o

ComonUn(.. .\ | Tl ) bus=w

........................................................................................................

Target Hardware
oo0D) (Tmies) (o oar

Generic Lisdia : !
- =3 Hardware og Binding ‘-

Generation OpSrsaon

Figure 1.3. Compilation and synthesis process of HDL modules
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An example of synthesis the counter circuit used in the simulation is being synthesized,
the Verilog description of the design is converted into gates and flip-flops using the synthesis
tool, the output of the synthesis is the gates and the flip-flops and their inter connections,

this graphical representation of the output, that is generated by the synthesis tool of

Altera’s Quartus 2 in Fig 1.4 depicts the complete flow for the Synthesis Run to
synthesize the module in Verilog..

' module Chap1Counter (Clk, Reset, Count). )

input Cik, Reset;

output [3:0] Count:

reg [3:0] Count; ‘\
always @(posedge Cik) begin

if (Reset) Count = 0; Design to Synthesize
else Count = Count + 1;
end
endmodule
\ J
{ } Targel hardware specification
List of primitive components
- Flip-flops
Synthesis Tool - Logic elements

Timing spedifications
= Pin-to-pin iming

Count{2}+ex0 oG
Raesat Rm ‘ h . Reset
1-Coj2) 5 OUT1 a0
0
c Ch 3.0
Cl e 16 ENA SRS
CLR 3. 0]
Rosat N— ADDER
Couny
£l i 17 OUTS [PRE]
cH1 L ©
17 ENA
CLR
-~
! 1“‘ Counti0}eeg0
coft] 0 18 0UTt [PRE
c1 el
18 ENA
CLR

Figure 1.4. Module Compilation and synthesis run of hardware circuits.
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1.8 ROUTING AND PLACEMENT

Routing and placement decides placement of cells of the target hardware, the inputs
and outputs of these cells through wiring and switching areas of the target hardware is

given by routing and placement phase in Fig 1.5. The output of this phase is specific to
the hardware being used for the manufacturing of an ASIC.

1.9 TIMING ANALYSIS

There is a timing analysis phase after the compilation process, this phase generates
worst case delays, clocking speed and delay from one gate to another, setup time and

require whole time in Fig 1.5. Designers use these information to decide the speed of the
clock or more precisely the speed of the circuits.

1.10 HARDWARE GENERATION

This is the last stage of the Verilog based design in case of hardware generation, this stage
generates a netlist for application specific integrated circuit(ASIC) a program for

programming field programmable logic devices(FPLDs) or layout of custom IC cells or
layout of custom IC cells in Fig 1.5.

Chip
Routing - Operating | \sanufacturing
iming Condiion
~ ek Analysis -
Placement Device
Programming

Figure 1.5. Routing and placement of the chip with Timing Analysis.
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1.11 REGISTER TRANSFER LEVEL DESIGN WITH VERLOG
The register transfer level (RTL) design for digital systems gives us how the
Verilog is used for description testing synthesis of various RTL level components of
a digital system. The RTL level design and how a complete system is put together at
this abstraction level. The basic structure of the Verilog such as modules, ports,
utilities for verification of digital components are introduced in this RTL level design.
1.11.1 RTL LEVEL DESIGN
Design of hardware components are done by representing the hardware
for synthesis and implementing the design by CAD tools. A large design
requires planning design and partitioning before its various parts can be
represented in Verilog for synthesis in Fig 1.6 shows the RT Level Design.
1.11.2 CONTROL OR DATA PARTIONING
The RTL level design is the partitioning of the digital design into control
and data part, the control part is a state machine generating control signals
that control the flow of data in the data part and the data part consist of the

data components in Fig 1.6 shows the Control and data partitioning.

RT Level Design

DataPath Control
eq )
l:] Flags & status a
— » Control
Data Inputs ——1") |:I Opcode + Outputs
Data flow
Control signals|
Data Outputs : - Control
< * Inputs

Figure 1.6. Control or data partitioning of RT Level Design
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1.12 OBJECTIVE OF THE PRESENT WORK

1. The verification of digital chip and circuits to optimize the area, capacity and performance of
the digital chips and ICs

2. The optimization of the memory ports oand reducing the area of the digital circuits and ICs is
done by inferring memory into it. This optimization also reduces the compilation time and the
area of the circuits.

3. Inthe present work, it is tried to optimize the adders, muxs into the memory declaration.

4. The testing of the optimization of digial circuits and ICs, using the mentor simulation

software named questa and the emulation software named veloce.

1.13 OUTLINE OF THE THESIS

This dissertation includes total 6 chapters:

1. Chapter 1 gives the brief introduction about the verification of digital design circuits, the
hardware languages like Verilog and VHDL help in generating the testbench by which it can
verify the circuits and help in creating the Register Transfer level .

2. Chapter 2 gives the brief introduction about the Mentor graphics Hardware model veloce, it
works to test millions of chips in very less time frame and with accurate precesion with the use
of memory optimization in Emulator.

3. Chapter 3 gives the brief introduction about the Register transfer level compiler flow which
generates the graph level optimization where it can mark the memory in order to decrease the
size of the chip to increase its capacity and performance.

4. Chapter 4 gives the brief introduction about the optimization of memory ports , sometimes due
to large no. of read and write data memory is not marked , but using the for to if optimization
the memory is marked and compilation time is reduced.

5. Chapter 5 gives the brief introduction about the comparison between the RTLC and questa like
the simulation model and the emulation model both provide the same results or not.

6. Chapter 6 gives the brief introduction about the Future scope and the work, the tasks and the

function and the generate block will be supported with memory declaration.
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2.0.

2.1

2.2.

CHAPTER 2

EMULATION PLATFORM (VELOCE)

INTRODUCTION

The emulation is basically a hardware which acts exactly like something which

want to test by all the rules of the system being emulated. The Veloce is used for the
verification of system on chips (SoCs) and is a core technology by Mentor Graphics. It
provides hardware architecture innovative operating system and versatile peripheral
solutions to provide high speed, high capacity and verification of the design and Veloce

accelerates the simulation and used for the hardware debugging.

EMULATOR

Everything in a world of system on chip in which we have processors like
embedded CPUs, GPUs and MMUs. Memory like SDRAM, DDRAM, and cache
memory. Peripherals like multiple IP blocks and protocols and software like instruction
sets and operating systems, drivers and application software’s. So these SoCs designs
gave the challenges for efficient verification.

DESIGN AND VERIFICATION

System on chips (SoCs) makes existing verification challenges more difficult, a
large amount of verification time spent on running stimulation in terms of speed and
capacity. In debugging in terms of power and predictability. In test bench development
in stimulus coverage and reuse and test planning in terms of metrics analysis and

processes in Fig 2.1 shows how much time is spend on Debugging and simulation.
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Debug
Simulation
Testbench
Planning
Other

Figure 2.1. Verification time spent on complete design flow

2.3. MENTOR GRAPHICES VERIFICATION PLATFORM

It works on the faster, smarter and stronger verification.

2.3.1. VIRTULA PROTOTYPING

2.3.2.

It involves modelling of a system simulating and visualizing its behavior under
real world operating conditions and refining its design through iterative process.
Virtual prototyping to build and test prototypes and realistically simulate them on
their computers both visually and mathematically. Users can explore multiple
design variations testing and refining until system performance is optimized this
can help reduce the time and cost of new product development which significantly

improves the quality of overall design in Fig 2.2 shows the virtual prototyping.

FORMAL VERIFICATION

It is a process of checking the design with respect to certain properties a
formal verification tool examines the design to make sure that given properties
holds true under all conditions if the input conditions make a property are regarded
as property counter examples, property coverage indicates how much of the
complete design is exercised by the property in Fig 2.2 there is formal verify.
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2.3.3. SIMULATION

2.34.

2.3.5.

It is a process of using a simulation software or simulator to verify the
functional correctness of the digital design that is modeled using a hardware
descriptive language HDL like Verilog in Fig 2.2.

EMULATION

Emulation is a system that acts exactly like something else.The emulation
model is usually based on hardware description language like Verilog and VHDL
as a source code which is compiled into the format used by emulation system. The
goal is normally debugging and functional verification the system being designed,
an emulator is fast enough to be plugged into a working target system. In place of a

yet to be built chip. So that whole system can be debugged with live data. This is a
case of hardware emulation in Fig 2.2.

FPGA PROTOTYPING

FPGA prototyping is a technique for verifying the functionality and performance
of application specific integrated circuit (ASICS) and System on chips by porting their
RTL to a field programmable gate array. FPGA, it is being used more widely because
hardware complexity is increasing and the amount of related software that

needs validating is rising. It gave us the benefit in terms of performance cost,
infrastructure, portability and availability in Fig 2.2.

Management
“ " AnaIVSis
Verification Infrastructure

Virtual
Prototype

Fig. 2.2 Verification Infrastructure of stimulus and debugging
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2.4. VELOCE THE COMPLETE VERIFICATION PLATFORM

Veloce strato platform has sufficient execution speed, full visibility, capabilities and ease
of use. In model creation and Veloce power application also boost the run time and
performance of the power flow upto 4.5x. Veloce virtual peripherals and host devices
make the emulator a shared resource for multiple hardware and software engineers. The
Veloce emulation platform reduces the risk in the verification of today’s complex SoCs

and is the core technology of mentor verification platform. The Veloce emulator
accelerates clock and full SoC RTL simulations during all the phases of design process.
Test bench xpress(TBX) co modelling software makes Veloce an ultra-fast verification

engine up to 10,000 times faster than software simulators significantly reducing
development schedule risks.

Virtual Network DEte;fgéniStiC oFT
“ ﬁg::;?gsé SVI\-IiYDCe(t))fl\Jjg/ Fault Visualization Ef;teerr\r;;se
Transactor | Virwal || ICE
Solutions | renoy [T St 1] ot |
oS Veloce Strato OS
Strato2M
. 5B Gate
Quattré”
i 256M 152t;a(t;o1; StratoM v
Platform Gate .2B Gate il 7s_'SB|GmE
/e Strato4M
Veocez ’/5/06'5 10B Gate
— A 5T RATD

Figure 2.3. Veloce verification system of visualization and assertions
Veloce strato platform is fully scalable, it is engineered to scale to support 15 billion
gate designs and capable of verifying the largest chips ever designed in terms of capacity
and their design size grow in Fig 2.3 shows the verification complete flow.
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2.5. VELOCEZ2 EMULATOR

The Veloce2 Emulator increases the full System on chip (Soc) RTL simulations
during all phases of the design. It makes pre silicon testing and debug at hardware
speeds, using real world data, both software and software designs. It improves end
product quality by increasing the total verification cycles on the design before
committing to silicon prototypes. It is a scalable verification platform with capacities
from 16 million to 2 billion gates. Veloce2 significantly reduces the verification of

the largest hardware and software systems.

2.6. VELOCE TESTBENCH XPRESS

The test bench Xpress (TBX) co modelling software makes the Veloce emulator, an
ultra-fast transaction level modelling and verification engine. The Veloce emulator and
the Veloce TBX reduce the risk while leveraging transaction models used during
simulation. In co-modelling, the test benches are interfaced to synthesizable trans actors
are put together with the DUT in Veloce TBX automatically generate a direct
communication interface between c/c++ or system ¢ environment on a host and the

SoC(system on chip) DUT in the Veloce 2 emulator in Fig 2.4.

mame PCI-E X-actor

mmmd  AGP X-actor

e USB X-actor

o
»
—
o
®
=
0O
-

st Memory X-actor

Fig 2.4 comodelling between the testbench and design
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2.7. VELOCE IMPROVES VERIFICATION AND PRODUCTIVITY
2.7.1. COMPILE
It provides fast compiling up to 300 MG/hr. and it also provides fast
downloading of the digital design (2min/2BG) in Fig 2.5.
2.7.2. RUN
It has very fast and high bandwidth interface between workstation and
Veloce, it is up to 40 physical interface links/2BG in Fig 2.5.

2.7.3. DEBUG
It provides and 100% visibility, 1M cycle/2BG design in 5 minutes

RTL Design

Crystal SoC

Compiler, | Fi—=2:0-, | Compiler
n v - | |

Fig 2.5 Veloce Flow of RTL design and Crystal Soc
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2.8. VELOCE ACCLERATING BASED SIMULATING DESIGN

B r
Testbench > .
C/C++/SC SV DPI/UVM Design
uvMm/sv < Under Test
J 3

ey

Testbench
C/C++/SC

Design
Under Test

Fig 2.6 Design under Test of the Testbench including C/C++

The Veloce2 Emulator increases the full System on chip (Soc) RTL simulations during all
phases of the design. It makes pre silicon testing and debug at hardware speeds, using real
world data, both software and software designs. It improves end product quality by
increasing the total verification cycles on the design before committing to silicon prototypes.
It is a scalable verification platform with capacities from 16 million to 2 billion gates.

Veloce 2 significantly reduces the verification of the largest hardware and software systems
in Fig 2.6.



2.10 SOFTWARE DEBUG SOLUTIONS FOR VELOCE

Fig 2.8 Software debug solutions for Veloce

The emulation is basically a hardware which acts exactly like something which we want to
test by all the rules of the system being emulated. The Veloce is used for the verification
of system on chips (SoCs) and is a core technology of Mentor Graphics. It provides
hardware architecture innovative operating system and versatile peripheral solutions to
provide high speed, high capacity and verification of the design and Veloce accelerates the

simulation and used for the hardware debugging in Fig 2.8.

System on chips (SoCs) makes existing verification challenges more difficult, a large amount
of verification time spent on running stimulation in terms of speed and capacity. In
debugging in terms of power and predictability. In test bench development in stimulus

coverage and reuse and test planning in terms of metrics analysis and processes.
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2.11 JTAG PROBE

Embeddaed Debugger

/7
i
)

Fig 2.9 JTAG probe and logic analyzer
A boundary —scan (JTAG) based simple logic analyzer and circuit debugging software which

test on chip internal logic, e.g debug CPLD firmware .No special knowledge is required to use
boundary —scan technology as JTAG Probe in Fig 2.9.

2.12 DESIGN OF MEMORY PORTS IN VELOCE

The Veloce is multicore processor in which all the designs and processors work parallely with
8 times speed then the simulator .the memory ports can be designed with the inference of the
memory declaration. With this optimization the memory inference cen be increased and the

Memory ports can be decreased using the one hot logic technology.

2.13 CONCLUSION

The following chapter discusses the emulater product named veloce, how this emulator work.
The specifications of the veloce, how veloce will able to resolve the problems related to
simulator and what is need for an emulator. The efficiency and precesion of the emulator. The
Emulator is like a replica of the actual hardware and the chip in which we can test the things in
real world which is not handled in simulator. So the Emulator is able to decarese the

compilation time and improve all the acuaracy which is not achieved by using the simulator.

Page 17 of 60



CHAPTER 3
REGISTER TRANSFER LEVEL (RTLC) COMPILER FLOW

3.0 INRTODUCTION
In the Veloce compile flow, Register Transfer Level Compiler acts as a front end. It reads
the RTL description (in verilog/vhdl/systemVerilog) and converts that to a structural
netlist with the logic mapped to Veloce FPGAs. RTLC has multiple phases — (1) Analyze
phase which reads the RTL description and dumps an Object Model of it (2) Synthesis
engine which operates on this Object Model and converts that its own representation of the
OM (NOM) and synthesizes the netlist. It also accepts netlist description (netlist created by
RTLC or other tools targeting a different FPGA technology). Apart from dumping the
netlist equivalent of RTL, to enable debugging, RTLC also dumps the debug database —
containing information about signals that will have required name-map(since netlist can’t

have 2D/3D signals) and information related to signals that were transformed to memories.

Fig 3. 1 Analysis and Synthesis for RTLC FLOW

3.1 THE RTL DESCRIPITION IN VERILOG/VHDL
RTL in Fig 3.1 could also be a verilog netlist description mapped to a different FPGA
technology (may be station). In such a case of verilog netlist, the description of the behavior
of the technology cells of that FPGA should also be provided to analyzer. RTLC compile
can be imagined as a three step process — (1) Analyze the RTL (2) Elaborate and partition

the design (3) Synthesized RTL in each partition.
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on a user option. It takes the user RTL, does syntax checks, and dumps an OM
representation of the RTL. Driver reads this OM, elaborates the design, creates a folded
graph with nodes as modules, associates cost for each node and partitions the graph into
sub graphs and invokes synthesis phase(s) on a sets of sub graphs. NodeExpander reads
the velsyn options, and dumps an annotation file for RTLC collating the information in
velsyn annotation files. Thie helps RTLC instrument ceratian nets in a way to allow

velsyn to successfully apply the user annotation.

3.2. MODULE ELABORATION

The VHL module of upward hier ref path in which top , middle and bottom modules are given

module top_ver()
mid_vhdl m1();
mid_vhdl m2();
endmodule

entity mid_vhdlI();
end;

architecture rtl of mid_vhdl
bot: bot_ver();
leaf: leaf_ver();
end rtl;

module bot_ver();
leaf_ver 11();
endmodule
module leaf ver();

endmodule

For the given RTL description, the folded view created in RTLC-Elaborate will be as
shown ...The numbers b/w <> represent the cost of compiling the module. Lets assume
that the maximum cost per partition allowed is 400. We start with traversing from the
‘top’. We first traverse along the cross language children so that they can be partitioned
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3.3

out and the rest of the children can be partitioned later. The hier-costs of each of the
modules will be sum of cost of that module and hier-costs of all its children. Since top has a
vhdl module, we try to partition that first. Now we enter mid_vhdl. Since this has cross
language modules, we try to partition those. We enter bot_ver. The hier-cost of bot_ver =
120 + 500 > 400. So we first need to create a partition for leaf_ver and then worry about
bot_ver. Now we enter leaf ver. The cost of this module is 500 > 400 but we can’t partition
this further. So we create partitionl for leaf_ver. Back to bot_ver, the hier-cost of bot_ver
will now be just 120. We can put this in a partition — partition 2. This partition has a free
space of 280 still. Back to mid_vhdl. The hier-cost of mid_vhdl now is 240. We create a
vhdl partition — partition3 for this. Now we enter top_ver. The hier-cost is only 200, since
all its children are already partitioned. There is a verilog parittion with a free space of 280.

Therefore both bot_ver and top_ver will be in the same partition.

RTLC-VLE SYNTHESIS ENGINE

The core synthesis is done by rtlc-vle ,The general flow is divided into various steps as
shown .rtlc-vle will work on multiple tops as suggested by rtlc-elaborate during
partitioning. It needs to elaborate the part of the design that was alloted to this
partition, create an intermediate DS to hold the module information and operate on that
DS. First such intermediate DS is the CDFG (CFG + DFG). This is created for each
concurrent statement (ex: always block). We traverse along these graphs, partition
them at various points, identify the various paths in the graph, the values each operand
takes along those paths, perform the data flow analysis — based on which we categorize
each net as simple wire/ reg/ latch. Then we allocate resources along the datapath —
such as adders/multipliers etc. We perform optimizations on the eventual netlist object
model. The eventual optimized NOM is fed to techmap to dump the final netlist.
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3.4 CDFG (CONTROL AND DATA FLOW GRAPH)

case (a[1:0] & b[1:0])
D:a=b+c;
l:a=b-c:

default: a=bh*c:
endcase

Fig 3.2 Exapnsion of control and data flow graph

This is a simple example to show the Control and data flow graph (CDFG) representation
of a simple case statement. Note that, as simple a description as this results in a lot of
temporary variables to deal.

It Represents control flow graph of the case statement, how the case statements work
internally the conversion of the assignment statement actually move through the control
And data flow graph. The case statements which are used in Verilog and VHL coding
internally work in this control and data flow Graph (CDFG).
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3.4 CDFG EXAMPLE 2 (CONTROL AND DATA FLOW GRAPH)

“DEE DH
Qxampy—><t- D)
1 -

l 2
temp2

DHINST
alwaysl

Fig 3.3 Expansion of control and data flow graph in tasks and function

This control and data flow graph in Fig 3.3 expands the tasks and the function code in
Verilog with this flow, we can expand the function and the task.

The CFGs of the module contains only the instantiation of always block. The CFG of
the always internally has the instance(s) of the task. Based on the cost (some heuristic),
the DH_TASK may be chosen for flattening. Note that Pseudo state cuts are created at
the root of each CFG. Pseudo state cuts are also created at each join node (such as end
of if condition/ endcase in case statement etc). Based on the statecuts, the CFG is
considered to be consisting of various paths containing path segments. A data structure
(PVM) containing information about each operand along each path of the CFG is

created.

Page 21|60



3.5

A 0 e

CDFG (CONTROL AND DATA FLOW GRAPH)
7 S R S DH i
\examp_ly "\task 1_/ always l/
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ol s B B, templ = inl |
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Fig 3.4 Control and data flow graph with always block

20;

The CFGs in Fig 3.4 of the module contains only the instantiation of always block. The
CFG of the always internally has the instance(s) of the task. Based on the cost (some
heuristic), the DH_TASK may be chosen for flattening. Note that Pseudo state cuts are
created at the root of each CFG. Pseudo state cuts are also created at each join node
(such as end of if condition/ endcase in case statement etc). Based on the statecuts, the
CFG is considered to be consisting of various paths containing path segments. A data
structure (PVM) containing information about each operand along each path of the
CFG is created.
The CFGs of the module contains only the instantiation of always block.
The CFG of the always internally has the instance(s) of the task.
Based on the cost (some heuristic), the DH_TASK may be chosen for flattening.
Note that Pseudo state cuts are created at the root of each CFG. Pseudo state cuts
are also created at each join node (such as end of if condition/ endcase in case
statement etc).
Based on the statecuts, the CFG is considered to be consisting of various
paths containing path segments.
A data structure (PVM) containing information about each operand along each path
of the CFG is created.
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7. Such a DS for the two states of the always block is shown above.
8. The condition for the paths is also present.

9. Based on the values taken by each operand along various paths of the CFG, resources
(such a MUX/ADDER/etc) are allocated.

3.6 TECHCELL FLOW
Apart from handling RTL, RTLC can also optimally handle the structural pre-
synthesized netlist. The technology cells need to be specified through the “-techlib”
option. RTLC remaps this net list to optimal MED_<LUT/Cell> equivalent.

1. Verilog code for The Techcell Flow how the modules like gtech _and are
instantiated inside the Top Module.

module Top(inl, in2, in3, in4, out);
output out;
input inl, in2, in3, in4;
wire templ, temp2;
gtech_and il (inl, in2, t1);
gtech_and i2 (in3, in4, t2);
gtech_and i3 (t1, t2, out);
endmodule
module gtech_and(inl, in2, out);
output out;
input inl, in2;
assignout=1il & i2;
endmodule
This is usually the flow employed while importing netlist(compiled for a certain target
Technology). The basic cells of that technology are referred to as techCells. Since the
behavioral definitions of techCells is provided to RTLC, they will be treated as being
no different from regular modules.However, these basic blocks need to be flattened out
to get optimal mapping for Veloce FPGA. To enable this, all the modules that refer to
these technology cells, should be provided to RTLC for analysis with the option —
techlib. The analysis OM of these modules will be marked as techcells and shall be

flattened out by default.
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3.7 FLATTENING SUPPORT

Motivation for flattening a module
1. To reduce the database size.
2. To Enable cross boundary logic optimizations.

3. To Enable retiming across boundaries to reduce the critical path delay.

Options provided by RTLC to enable flattening
1. -flatten_mod <module_name>
2. All the instances of the specified module get flattened into respective parents where
ever possible (e.g. instances will not get flattened into cross-language parents).
3. Flatten_hier <module_name>
This option can be used to flatten all the instances under a particular hierarchy (i.e. all
modules under <mod name>). This reduces user’s effort in specifying —flatten_mod

on a number of modules which essentially get covered under a particular hierarchy.

3.8 DESIGNWARE INETGRATION WITH RTLC

1. Support for seamless integration with Synopsys DW component

2. Support for complicated floating point and FIFO controllers have been added which are
extensively used at Intel.

3. DW component support is provided on customer requirement basis.
4. Similar to library integration, where RTLC selects its definition where no DW definition is
given.(i.e. user specified RTL modeling gets higher priority)

Design Ware components are building block IP components. DC/Synopsys provides a library
of DW components (which are building block IP components — various commonly used
functions/data path resources). Designers can instantiate their components directly without
having to worry about the implementation details. It is expected that their implementations
shall be optimal(capacity/performance). The RTL written by our customers have these
components instantiated and their definitions may not be provided with the assumption that
they are part of library. Based on the simulation model provided by Synopsis, RTLC created

(not complete) a library of synthesizable model (fairly optimized).
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3.9

EXAMPLE FOR DESIGN WARE INTEGRATION

The design ware components behave like macro in which only the name DWO01_addsub is
Used for the direct addition and subrataction, It is not needed to write full code for the

Subraction and addition only the design ware macro can be used to implement this code.

module top(A,B,CI,ADD_SUB,SUM,CO, temp);

output [7 : 0] SUM;

output CO;

input [7 : 0] A, B;

input CI, ADD_SUB;

output [7 : 0] temp;

DWO01 addsub #(8)
DWO01_addsub_test(.A(A),.B(B),.CI(~Cl),.,ADD_SUB(ADD_SUB),.SUM(SUM),.CO( CO));

assign temp = A;

Endmodule

module DW_mag_module(a, 2);
parameter width=9;

parameter size=8;

input signed [width-1:0] a;

output signed [size-1:0] z;

‘include "DW_dp absval function.inc*
assign z = DWF_dp_absval(a);

endmodule
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3.10

EXAMPLE OF THE DESIGN WARE COMPONENTS

Here the VHDL code dor the Design ware component DWO1 is written, Here it is not

Needed to write the whole code of the generic mapping , only the macro for the DW

Is used for decoding the generic mapping in which the design ware library for the

DWOL1 is used with the IEEE libraray.

library IEEE,DWO01;

use IEEE.std_logic_1164.all;

entity top is

port(A : in std_logic_vector(3 downto 0);
B : out std_logic_vector(15 downto 0));
end top;

architecture sim of top is

component DWO01_decode

generic(width : POSITIVE);

port(A : in std_logic_vector(width-1 downto 0);
B : out std_logic_vector(((2**width) - 1)
downto 0));

end component;

begin

test : DWO01_decode generic map (4)
port map ( A=>A,B=>B);

end sim;
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3.11 TRADITIONAL ENCRYPTION TECHNIQUES

Unencrypted Unencrypted
Source File
Key Key

Communicate the key

oo
T )\ /‘\

A symmetrical algorithm
uses identical keys

Send the data
| e -1
Encrypted Encrypted
Result File
N o N e A
Originater End User

Fig 3.5 The Encryption techniques with originator and end user
Traditional encryption techniques are of two types in Fig 3.5 —

(1) Symmetric — Where the encryption key is shared by the originator with the end user.

Only those with this key can decrypt the source.
- This is fast but less secure

(2) Asymmetric — Where the encryption is done using keyl while decryption is done with
key?2 i.e. a key pair is used here. The Encryption key is a public key shared by the end
user with the originator. The originator encrypts the source and sends the encrypted
data to the end user. The end user will use the private key (key?2), the access to which
is available only with the end user, to decrypt the encrypted source.

- This is more secure but slow
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Automatic memory inference is supported in both vhdl & verilog for

® 2-Dimensional Signal
" N-Dimensional Signal
® Byte Enable Memory
Array of complex structure/record

Most important optimization to optimize the capacity of the design.
Memory inference is dependent on both declaration and usage.
" Examples:

The Memory address is the gien which is the input to the data and then the data is
Written which acts like the write data the the data received is given to the output
Port which acts like the read data is received by the Read port. So the memory has

Read and the write data.

Usage : RAM[waddress] = data  // Memory write port

out = RAM[raddress] // Memory read port

reg [al:a2] RAM [b1:b2][c1:c3] // N-Dimensional Signal
Usage : RAM[waddrl1][waddr2] = data // Memory write port
out = RAM[raddr1][raddr2] /I Memory read port

Primary advantage of memory inference is improvement in capacity.
Memory is inferred for a signal based on its declaration and usage. Any access to such
a signal will be implemented via a readPort/writePort. Automatic Memory Inference
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3.11 MEMORY WITH SYNC_ASYNC RESET?SET

Here the Memory can be represented with the Asyncronous reset if the the reset is
Given in the problem statement , it is represented with synchronous reset if the

Reset is not mentioned in the problem statement.

Assigning complete memory in synchronous/asynchronous reset/set condition
reg [0:7] RAM [0:255];

always @ (posedge clock or posedge reset)

begin
if (reset)
for(int 1 = 0; | < 256; I++)
RAM[I] =0;
else
begin
RAM [waddr] = din;
Dout = RAM [raddr];
end
end

Subtype slv8 is std_logic_vector (0 to 7)
Type RAM is array (0 to 255) of slv8
Signal memory : RAM,;
Process (clock, reset)
Begin
if (reset) then
for 1in 0 to 255 loop
RAM(I) <= (others => ‘0’);
end loop;

elsif ( clock’ event && ( clock = ‘1”) ) then RAM (waddr) <= din; Dout
<= RAM (raddr);

end if;
End process;
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3.13 PRAGMA CONTROL
VERILOG PRAGMA ATTRIBUTE

Verilog:- // pragma attribute <signal-name> <pragma-name> 0/1
<signal-name> = name of register array
<pragma-name> = ram_block = force implementation as built-in memory

core logic_block = force implementation as register array gates 0 = disable, 1

= enable
The Verilog attribute is represented in the following manner where the Ram

Block 1 is mentioned.

Ex: reg [31:0] core [63:0]; // 64x32 bit memory array

// pragma attribute core ram_block 1

VHDL PRAGMA ATTRIBUTE

Vhdl:- attribute <pragma name> : boolean;

attribute <pragma name> of <signal-name> :

<signal/variable> is <true/false>
false = disable, true =
enable Ex:
VHDL attribute is
represented in the following
way in which RAM
BLOCK of type is true

signal core : ram_type; -- memory array

attribute ram_block : boolean;

attribute ram_block of core : signal is true;
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14 CROSS SHARING

Cross-sharing leads to false combinational loops.

False Loop

sel

|
A AL
— sel
ouT iﬁ X1.¥2

c

sel

out

Incorrect timing estimates.

Fig 3.7 Cross —Sharing between the combinational loops

Caution must be taken while sharing resources. Sharing must be done in such a way that it

does not result in any combination loop (albeit a false loop). In the above example in Fig 3.7,

since only two adders are required essentially, we can try to optimize the logic by sharing the
Adders. If Adders X2, Y1 are shared (owing especially to the shared input ‘B”) and Y2, X1 are
shared (owing to the shared input ‘C”), it would result in a false combinational loop. Note that

its not a loop in the strict sense —

Case (i) — When sel == 0 => The loop is broken at 15t Mux
Case (ii) — When sel == 1=> The loop is broken at 2" Mux

Such a false combination loop may not be solvable for a timing estimation tool resulting in

incorrect estimates.

3.15 CONCLUSION

This chapter gives brief introduction about the Register transfer level compile flow in which it

has analyzed the control and data flow graph in which it has many traversals.The system needs to

pick the most optimized control and data flow graph. This graph will optimize all the control and

data related issues .The control and data flow graph will analyze all the nodes of a register transfer

level module and then it has to optimize the path so this compile flow will tells where to optimize

all the RTL level.
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CHAPTER 4
OPTIMIZATION OF MEMORY PORTS

4.0. INTRODUCTION

This Optimization is done in case of there are large Number of ports which can hamper the
memory during synthesis. So with this conversion we are converting it into single port and
also we are reducing the compilation Time.

In case enrolling of the loop, it has the constant address in that case they are not declaring it as
memory, it can be declared as logic Block in which we have many adders, Multiplexers and
LUTs which takes a lot of area for the chip. Thus memory Inference is really important and
helpful in chip designing, In this to infer memory through this optimization in this case for
and if statement is converted into simple if statement, thus that only one write port works at a
time. This makes the memory to be inferred causing the small area and better performance of
the chip.

Compilation time is also got reduced with this optimization of ports of memory. In which
only the one write port is active at a time.

4.1 FOR IF LOOP IS CONVERTED ITO SIMPLE IF STATEMENT
The For loop and the if statememt are converted into single if statement using this conversion.

For (i=Cl;i<C2;i++)
begin
if(i == named Object Use)
<Assignments(only)>
end

( conversion )

if( (named Object Use >= C1) && (named Object Use < C2) )
<Assignments>
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‘ .'wr,ain,mn;' "
input [9:0] t&dr s

input [7:0]din ;
output [/:0] dout;
// pragma attribute mem ram block 1
integer i;
reg [7:0] mem{ :6];

initial
begin
for(i =0 ; i<
begin
mem[i] =
end
end

CREBoovowawmm

assign dout = mem[addr] ;
always @(posedge clock)
begin
for{i = 0; i < 50; i=i+l)
begin
if(i == addr)
mem[i] <= din ;
26 end
end
28 endmodule

top.v® 28L, 509C

Fig 4.1 the for if enrolling of the loop with memory declaration.

4.2 ALGORITHM AND APPROCH
Conversion is done while pre Traversal before CDFG conversion in Fig 4.1.

1. Check FOR Loop whether conversion is possible or not. (Eg check generic for loop , if

condition)

2. If conversion is not possible then return.

3. If conversion is possible save the for loop in a list.
4. Iterate over this list, once the traversal is done. Check for if conversion is possible (Eg memory

element. Mem access type pattern on that dimension.
5. If conversion is not possible, then traverse the non converted with different object.

6. If conversion is possible, then traverse the converted loop with the different object.
Store it into a table then finally we use it for the conversion.
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4.3 ACCESSING THE MEMORY BLOCK

Logic [7:0] memory [255:0] [3:0]

Logic block Memory block Logic block
1 2 3
ADDRESS
ACCESS ADDRESS DATA
TYPE ACCESS TYPE IACCESS TYPE
Static access Non static access Static access
[255:0] [3:0] [7:0]

Memory is declared which is really important to declare otherwise it causes the logic block to be
made which consists of adders, Multiplexers and logic blocks which increases the capacity of chip.
By memory inference we are able to mark memory. In this memory declaration we have 256 address

depth and 4 bits we have 3D memory and 8 bits the data width.

There is packed and unpacked array in which we have the data width is considered in case of packed
array and the unpacked array we have the address depth. The first bit is considered to be the no. of

memory blocks and second bit decides the no. of bits in the memory depth.

In unroll able for loop we have constant address in that case memory is not declared, it is assumed as
a logic block which makes the area of the chip to exponentially increases and memory is not inferred
where in case of optimization the conversion of for loop makes it non - static address corresponding
to it memory is inferred, this cause the chip size to decrease. Hence the optimization of device is

there.

So this optimization is really helpful in maintaing the balance between the area and the performance.
With the data out comparsion between the questa and Register Transfer level compiler, we can get the
results of memory inference with simulation and emulation. So the Questa and The Register Transfer

level compiler are very important in case of these simulation and Emulation.



input clock ;
nput |10 ] addr

input |':ofdin ;
astpet | 19] dout:
// prages attridete men ram_block 1
integer 3;
reg [ i) menm| |

initial
begin
forfa = ; 1 <
begin
semi] =
end
end

assign dout = mem{addr]| ;
always @(posedge clock)
Degin
forfl = 0; 1 « i A=i+1)
begin
1£{1 == addr)
mew{i| <= dia
end
27 end
28 endmodule

Fig 4.2 The Read and Write Ports of The Memory (There 50 write ports and one read port)

In this Verilog Program we have 50 write ports and one Read port with this optimization of
memory block in Fig 4.2 at a time only one Read port is active which is actually needed to compile
the testcase. Hence this optimization is good, because it helps in inference of memory causes this

enrolling of the for loop to convert it into the single if statement.
This Verilog program represent how we need to use the chain of muxes in case of the output. But

with this optimization we can stop this unrolling abd convert this for loop into the single if

statement.
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M vare

9 input
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lsout 3
I ware [31:0) 12
reg retlcond;

Fig 4.3 Questa output of the memory represtentaion.The simulation output of the results

Here in this CDFG represtation in Fig 4.3, we have the questa output, how the VMW PARAMEM
Formed .Here the different wires are declared like we have to represent it in the form of wires.

Where we have only inputs and outputs, there is no storage elements.

In Verilog the storage element is represented by register. So in this module we have clock, address
bits, data bits to represtent it the form of memory block.So this CDFG reprentation is helpful in

preanalyzing the data and control flow of the loop.

This Module is represented in the form of continuous enrolling of the For loop such that it helps in

the generaling the control and data flow graph without optimization.



4.4 VAILD SCENARIOS WHERE CONVERSION OCCURS

Here there is convertion of the for if loop in which I is used in dimension with Static , Non_ Static ,
Static + Non_Static Access Type and Default Access Type.

The Memory read and write
ports

module top(clock,addr,din,dout);

input clock ; input
[9:0] addr ; input
[7:0]di
output[7:0] dout;
integer i;
reg [7:0] mem[1023:0]
assign dout = mem[addr] ;
always @(posedge clock) begin
for(i = 0; i < 50; i=i+1)
begin
if(i == addr)
mem[i] <=din;
end
end
endmodule

Here The Mem Access Type of | is Static so we are converting this For If loop.

Here in This loop for conversion, we have to check the access type of the variable to be converted.

Hence it is determined with the help of register Transfer level Language, how this RTL language is
converted into the C language code. This is all about the conversion, there is the conversion of these
for loops into the if statement.Thus with the help of this code, there is the optimization which is
related to all the for loop conversion. Hence all the conversion is done according memory access
pattern. We should carefully observe all the memory patterns of theis loop is statements which helps

in the conversion of if statement.
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4.5 HANDLING OF DIFFERENT OPERATORS

The statement is the FOR loop conversion without memory block

The cases where the logical (And) (&&) operator is used we are checking whether there is logical
equal (==) operator is also used in that case we are converting. always @ *

Here Different operators are handled with certain limits and integer are handled and operator
and or operator, then have to merage all the operators if logical equal to operator is there. So the
Enable switches will not impact the optimization since they logical equal to operator is given
preference due to the preference of the logical equal to the OR operator and the AND operator
is not taken into considersation.

Handing of the operators in if condition is really important. Because if condition will decide
when we have to choose the differences in case of the operator handing.

All the Verilog program begins with the positive edge of the clock which decides at what edge
the clock, begins to work. The clock will stabilize and then will get the output in case of every
positive edge of the clock. Then the for loop starts to enroll, Thus this changes will cause the
positive edge of the clock to occur.

Since first of all the logical equal to operator is compared in case of the loops. Then will check
the logical and operator, so need to check the logical equal to operator and then need to check
the logical and operator. These are the comparisons which we need to made in case of the
logical and and equal to operator.

The For and if loop without memory Block.

Always@(posedge clk)
begin
outl =0;

for(integer i = 0; 1 < 8; i++)
if(i == in2 && (enablel || enable2))
outl[i] = inl[i;
end
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4.6 Enrolling of the For Loop
Here to discuss the internal working of the loops while expansion through control and data flow
graph (CDFG)

In case they are converting we will write on CDFG otherwise we will not.

/INOP_1;  J/CDF_1

[-]1i[31:0] [+]= [+]1'dO[0{0};  //CDF_2

[+] rtlcOn0 = ([+] 32°d00000000000000000000000000000000[31 :

{£00000000000000000000000000000000} [+] == [+]addr[9 : O]); JICDF_7

/INOP_8; /ICDF_8

/INOP_1260;  //CDF_1260

[+] rtlcOn102 [-1:-1] [+] = [+] rtlcONO; //CDF_1261

[+] rtlcO_mem_write_datain_n3 [7:0][7 : O] [+]= [+]din[7 : //CDF_11
0f;

This how it can seen the enrolling of the for loop at the CDFG level. The control the data flow
is that step in design flow when there is not optimization occurs.

A general graph is formed where we can decide whether this graph like structure in which we
have control and the data flow in which there can be enrolling the for loop which consist of the
graph like structure in terms of the control and the data flow ie CDFG level . Here we can see
that there is enrolling of the for loop occurs where we can see that no optimztion occurs at the
CDFG i.e control and data flow graph.
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The Memory Inference is handed for Hard constraints.
Path for all the test cases /in/innrtlc15/perry/testcase/memory/ which have been tested during my
testing.

= Testcases

0 k Bookmar

44 mod: _rdout

i wir:le r?;:calASGNF:gginMg;(addr, rtlc_radd N1, rtlc_rdout_nd, rtlc_re n5, dout);
46 input [9:0] addr;

47 wire [9:0] addr;

48 output [9:0] rtlc_radd Ni;
49 wire [9:0]  rtlc_radd_N1;

50 iqput [7:0] rtlc_rdout n4;

51 wire [7:0] rtlc rdout—n4;

52 output rtlc_re_n5; i

53 wire rtlc_re_ns;

54 supplyl rtlcVec;
[7:0] rtlcl_mem_read_decoder out nl;
[7:0] dout; el
[7:0] dout;

//CDF_0_ps_0
: 0] [+]= [+]addr[9 : 6]; //CDF_1

b3 assign [+] rtlc_radd_N1[9:0][9 : 0] [+]<= [+]rtlclnB[9 : 0];
b4 //vie_mem_inf (+] [ 1; //CDF_2
5

6 assign [+] rtlc_re_n5[-1:-1) [+]<= [+]rtlcVcc; //CDF_3
7 //vlie_mem_inf 3
8

9 assign [+] rtlcl_mem_read_decoder_out_nl[7:0][7 : 0] [+]= [+]rtlc_rdout_n4[7 : 0]; //COF 4

0
1
§ assign [+] dout[7:0][7 : 0] [+]<= [+]rtlcl_mem_read_decoder out_nl[7 : 0]; //CDF_5

//NOP_6; //CDF_6
b //rtlcing_o
V //rtlc_radd_N1_10
B //rtlc_re_n5_20
P //rtlcl_mem_read_decoder_out_nl 21
b ll/dout_29 7

Fig 4.4 the various read and the write ports in terms of control and data flow graph.

The various Address bits and data bits in Fig 4.4 are represented interms of CDFG level. The Model
is converted into a vele memory such that memory is inferred at this level. So that various data out
and memory is represented in the form of decoder the memory read decoder the memory write
decoder. All the input data read and output data write is represented interms of the decoder The Vcc

and address depth bits and data width all is represented interms of the decoder.
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The Netlist conversion of the Verilog Module. How the various LUTs and Modules are formed in

case of the Optimization of the loop.

o Testcases

15 wire [7:0]  rtlemn2;
16 supply@ rtlcVss_m n3;
17 supplyl rtlcVce_m_n4;

wire rtlc_int_n8l;
rtlclut_nl71 (.0(rtlc_int_n81), .i0(addr[!]), .I!(addr[:]), .I-(addr[*]), .l:(addr[4])};
rtlc_int_n82;
rtlclut_nl72 (.0(rtlc_int_n82), .I0(addr[4]), .Il(addr[ ]), .7 (rtlc_int_n81));
rtlc_int_n83;
rtlclut_nl73 (.0(rtlc_int_n83), .10(addr[5]), .71.(addr[/]), .’ (addr[¢]));
rtlclut_nl74 (.0(rtlc_we_n2), .I0(addr[°]), . (rtlc_int_n82), .I. (rtlc_int_n83));
rtlcbuf_nl75 (.Z(rtlc_re_n5), . )
Vm_PARAM_PEM_rtch_lO_B_S__B_l_L #( 10,8,5,0,1, mem (. (addr[:0] ), . (dout[7:06] ), . (rtlcmn®]
(rtlemn2[7:0] ), . (rtlemnl ));
rtlcreg_rtlcmn0_0 (.Q(rtlcmno , .D(addr[ » CP(clock ));
rtlcreg_rtlcmn®_L (.Q(rtlcmnO( , .D(addr[
rtlcreg_rtlcmn®_2 (.Q(rtlcmn@| , .D(addr[
rtlcreg_rtlcmn®_3 (.Q(rtlcmno[ , .D(addr|[
rtlcreg_rtlcmn@_4 (.Q(rtlcmnO] , .D(addr[
rtlcreg_rtlcmnG_5 (.Q(rtlcmnO] , .D(addr[
rtlcreg_rtlcmn0 6 (.Q(rtlcmnO| , .D(addr| A
rtlcreg_rtlcmn@_7 (.Q(rtlcmnO[7] ), .D(addr[’] ), . 7(clock
rtlcreg_rtlcm6_8 (.Q(rtlcmnOf , .D(addr[ , .CP(clock
rtlcreg_rtlcmn@_9 (.Q(rtlcmnO , .D(addr[ , «CP(clock ));
rtlcreg_rtlemnl (.Q(rtlcmnl ), , «CP(clock ));
rtlcreg_rtlcmn2_0 (.Q(rtlcmn2| , .D(din[0] ) (clock ));
rtlcreg_rtlcmn2_1 (
rtlcreg_rtlcmn2_2 (
rtlcreg_rtlcmn2_3 (
rtlcreg_rtlcmn2_4 (
rtlcreg_rtlemn2_5 (.Q(rtlcmn2| ;
rtlcreg_rtlcmn2 6 (.Q(rtlcmn2| ), .D(din|
rtlcreg_rtlemn2_7 (.Q(rtlcmn2[ ] ), .D(din|
rtlc_top_GLOBAL_SIGNAL rtlc_top_GLOBAL_SIGNAL_INST
rtlc_tbx HR_INSTR_MOD  rtlc_tbx HR_INSTR_INST ();
endmodule

Q(rtlemn2]
LQ(rtlemn2| D(din| (clock ));

] |
] .D(din[ 1]

14, )
Q(rtlemn2[ 3] ), .D(din["] ), . " (clock ));
] Jo)n s
] ]
] ]
| |

(

(clock ));

Q(rtlcmn2| .D(din|

D(din[

(clock ));
(clock ));
(clock ));
(clock )

)i

& pmitt rlogir & %d 1 %n @ commands | @1 tech | @ TRY ran = -

Fig 4.5 NETLIST and the memory declaration with the Look up Table (LUTS) Formation

In this module in Fig 4.5 we have vaious LUTs and Flip Flops are there as a storage elements
which helps in the formation of various components of the chip. Since the MED_FD which means
the mentor Emulation Division D flip flops means the data flip flops which are able to store the
data information. These Look up table can also be represented in any form in which there has to
represent the logic so the VMW _PARA_MEM is really important to optimize the area of the chip.
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4.6 COVERSION CASES
The memory can be respresented in the form of part select :

for(i = 0; i <50; i=i+1)
begin
if(i == addr)
mem[i+: 8] <=din;

Here the memory is represented in the form of the part select, in which it takes a only the part of
the memory

The digital design system is described in Verilog because high level Verilog designs are

usually described at the level that consist of system registers and transfer of data
between various registers through buses, this level of high level description is called as
register transfer level (RTL). Verilog construction used in RTL level design are procedural

statements continuous assignments and instantiation statements.

Since The part select conversion can include only the portion of the memory. Thus the complete
flow of the memory is not able to include the complete flow of the memory which causes the
memory to be optimally utized such that the part selection of the memory is not included interms
of the optimization. Thus the optimally inclusion of the memory needs the complete declaration.
Not the part selection of the memory.

A digital system designed in Verilog should be simulated and tested for functionality before it
is turned out into a hardware while simulation design errors and incompatibility of components in
the digital design, all are detected. In simulation, a digital design need generation of test data and
observation of all simulation results. This process can be done by use of a Verilog module that is
called as a test bench.

A Verilog test bench uses HDLs constructs for generation of data monitoring of response and even
handshaking of the design. In the test bench, the design is instantiated which is being simulated the
test bench together with digital design.
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- Testcases
File Fdit View SCY L K
40 Bire rtlc_we_nlls;

41 wire rtlc_we_nl22;

42 wire rtlc_we_nl26;

43 wire rtlc_we_nl30;

44 wire rtlc_we_nl34;

45 wire rtlc_we_nl38;

46 wire rtlc_we_nl42;

47 wire rtlc_we_nl46;

48 wire rtlc_we_nl50;

49 wire rtlc_we_nl54;
50 wire rtlc_we_nl58;
51 wire rtlc_we_nl62;
52 wire rtlc_we_nl66;
53 wire rtlc_we_nl70;

54 wire rtlc_we_nl74;

55 wire rtlc_we_nl7s;
56 wire rtlc_we_nl82;
57 wire rtlc_we_nls86;
58 wire rtlc_we_nl190;
59 wire rtlc_we_nl94;
60 wire rtlc_we_nl98;
61 wire rtlc_re_n20l;
62 supply0 rtlcVss;

63 wire rtlenl635;

64 wire rtlcnl636;

65 wire rtlcnl637;

66 wire rtlcnl638;

67 wire rtlenl639;

68 wire rtlcnl640;

69 wire rtlenl653;

70 wire rtlcslo0;

71 wire rtlcslos;

72 wire rtlcslos;

73 wire rtlcsllo;

74 wire rtlcsll3;

75 wire rtlcslls;

76 wire rtlcslly;

Fig 4.6 various parts of the memory the write enable and the input of the memory.

In Memory Block there are write enables and the read enable and the Byte enable as well how
much write and byte enable memory is required. Since the RTLC memory required for the write
enable as well as byte enable. There needs the memory to be declared with address read and wrte
ports. The data read and write port, the byte enable read and write port. The memory have various

enable which helps to write the adrees bit in memory in Fig 4.6.

In Verilog the storage element is represented by register. So in this module there is a clock,
address bits, data bits to represtent it the form of memory block.So this CDFG reprentation is

helpful in preanalyzing the data and control flow of the loop
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- Testcases
File f View Scr t k
40 Sire rtlc_we_nlls;

41 wire rtlc_we_nl22;

42 wire rtlc_we_nl26;

43 wire rtlc_we_nl30;
44 wire rtlc_we_nl34;
45 wire rtlc_we_nl3s;
46 wire rtlc_we_nl42;
47 wire rtlc_we_nl46;
48 wire rtlc_we_nl50;
49 wire rtlc_we_nl54;
50 wire rtlc_we_nl58;

51 wire rtlc_we_nl62;
52 wire rtlc_we_nl66;
53 wire rtlc_we_nl70;
54 wire rtlc_we_nl74;
55 wire rtlc_we_nl7s;
56 wire rtlc_we_nl82;
57 wire rtlc_we_nls86;
58 wire rtlc_we_nl190;
59 wire rtlc_we_nl94;
60 wire rtlc_we_nl98;
61 wire rtlc_re_n20l;
62 supply0 rtlcVss;

63 wire rtlenl635;

64 wire rtlcnl636;

65 wire rtlenl637;

66 wire rtlcnl638;

67 wire rtlenl639;

68 wire rtlcnl640;

69 wire rtlenl653;

70 wire rtlcsloo;

71 wire rtlcslos;

72 wire rtlcsl08;

73 wire rtlcsllo;

74 wire rtlcsll3;

75 wire rtlcslls;

76 wire rtlcslly;

toatr ™ | i n Testca & commands @ 1:tcsh @ TBX reqr & Regression & TBX

Fig 4.7 The memory formation also represents the write enables

In unroll able for loop in Fig 4.7 we have constant address in that case memory is not declared, it is
assumed as a logic block which makes the area of the chip to exponentially increases and memory
is not inferred where in case of optimization the conversion of for loop makes it non - static
address corresponding to it memory is inferred, this cause the chip size to decrease. Hence the

optimization of device is there.

So this optimization is really helpful in maintaing the balance between the area and the
performance. With the data out comparsion between the questa and Register Transfer level

compiler, we can get the results of memory inference with simulation and emulation
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Testcases

[+] rtlc_we n2[-1:-1] [+]= [+]Vss[0]{0}; BOCOF 15

//NOP_1; CDF 1

: //CDF_
[-] i[31:0] [+]= [+]1'de[6]{0]; //COF 2

([+]32'd06EE0000006060 :

it 000000000000606000[31 : 0] {00606000600000000000000000606000} [+]== [+]addr[9 : 0]):
//CDF_8

//NOP_1266; //CDF_1260

[+] rtlconl62[-1:-1] [+]= [+]TtlcOno; //CDF_1261

[+] rtlco_mem write_datain_n3[7:0][7 : 0] [+]= [+]din[7 : 6]; //CDF 11

[+] /r;é;gni?:elw : 0] [+]= [-]32'd00000000000000006000600660000000(31 : 0] {006006AG000000060000006000006000} ;

[+] rtlcOn2[7:0][7 : 0] [+]= [+]rtlcO_mem write_datain_n3[7 : 0]; //CDF_13
//vie_mem_inf i

[#] rtlcOnl04[7:0][7 : 6] [+]= [+]rtlcOn2[7 : 0); //CDF_15
//vie_mem_inf

//NOP_1262; //CDF_1262
//NOP_22; //CDF_22
//NOP_23; //CDF_23

rtlcon103[9 : 0] = (rtlcOnl02 ? 10'd0GA000G0OO[S : 0] : rtlc_wadd_no[9 : 6] );

[+] rtlc_wadd n0[9:0][9 : 0] [+]= [+]rtlcOnlO3[9 : 0]; //CDF_1265
//vie_mem_inf

rtlcOn105(7 : 0] = (rtlcGnlo2 ? rtlcOnlo4[7 : 0] : rtlc_wdin_nl[7 : 8] );
190 4l rtlc_wdin_nl[7:0][7 : 0] [+]= [+]rtlconl05(7 : O]; //CDF_1267

Fig 4.8 The CDFG flow of the rtlc param and memory flow

Here in this CDFG represtation in Fig 4.8, we have the questa output, how the VMW PARAMEM
Formed .Here the different wires are declared like we have to represent it in the form of wires.
Where we have only inputs and outputs, there is no storage elements.

Here in This loop for conversion, we have to check the access type of the variable to be
converted.Hence it is determined with the help of register Transfer level Language, how this RTL
language is converted into the C language code.

This is all about the conversion, we have converted these for loops into the if statement. Thus with
the help of this code, we can have the optimization which is related to all the for loop conversion.
Hence all the conversion is done according memory access pattern. We should carefully observe
all the memory patterns of theis loop is statements which helps in the conversion of if statement.
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Mon Jun 24, 7:49 PM Perry Mitt

TigerVNC: inndt206:1 (pmittal)

2 module top(clock, addr, din, dout);
3 input clock
4 wire clock
S input addr;
{ addr;
din;
1 din;
1 dout;
[ ] dout;
rtlc_we_n2;
rtlc_we_n6
rtlc_we_nlo;

[
[
[

2 rtlc_we_nl4

15 wire rtlc_we_nls;
16 wire rtlc_we_n22;
17 wire rtlc_we_n26;
rtlc_we_n30;
rtlc_we_n34;
rtlc_we_n38;
rtlc_we_n42;
rtlc_we_n4d6;
rtlc_we_n50
rtlc_we_n54

p re rtlc_we_n58;
26 wire rtlc_we_n62;
27 wire rtlc_we_n66;
28 wire rtlc_we_n76;
29 wire rtlc_we_n74
30 wire rtlc_we_n78;
31 wire rtlc_we n82;
32 wire rtlc_we_n86;
33 wire rtlc_we_n90;
34 wire rtlc_we_n94;
35 wire rtlc_we_n98

36 wire rtlc_we_nlo2;
37 wire rtlc_we_nl06

@ commands & 1:tcsh (@l TBX regr B Regression (@ TBX-For IF & DW functh < >

|._iCheetab UserGu | ANNC config sl iRXmessages il o) B W

Fig 4.9 Testcases related to the For If Optimization.

In case enrolling of the loop in Fig 4.9, we have the constant address in that case we are not
declaring it as memory, it can be declared as logic Block in which we have many adders,
Multiplexers and LUTs which takes a lot of area for the chip. Thus memory Inference is really
important and helpful in chip designing, we are able to infer memory through this optimization in
this case for and if statement is converted into simple if statement, thus that only one write port
works at a time. This makes the memory to be inferred causing the small area and better
performance of the chip.

All the Verilog program begins with the positive edge of the clock which decides at what edge the

clock, begins to work. The clock will stabilize and then it will the output in case of every positive
edge of the clock. Then the for loop starts to enroll, Thus this changes will cause the positive edge

of the clock to occur.
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4.7 HANDLING OF THE TASK AND FUNCTION

We are not handing the cases inside the task and function.

We also not handing the Initial block.

for (i=0; i<d1 ; i=i+1)
begin
if(i%3 ==1)
memory[i] = (2**word_sizel)-i-
1; else if(1%3 == 2)
memory[i] = (2**(word_sizel/2))-i-
1; else
memory[i] = i;
end

In case of else condition we also not converting the for if loop.

Here in This loop for conversion, we have to check the access type of the variable to be
converted.Hence it is determined with the help of register Transfer level Language, how this RTL
language is converted into the C language code. This is all about the conversion, we have

converted these for loops into the if statement.

Thus with the help of this code, we can have the optimization which is related to all the for loop
conversion. Hence all the conversion is done according memory access pattern. We should
carefully observe all the memory patterns of theis loop is statements which helps in the conversion

of if statement.
There is packed and unpacked array in which we have the data width is considered in case of

packed array and the unpacked array we have the address depth. The first bit is considered to be

the no. of memory blocks and second bit decides the no. of bits in the memory depth.
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4.9 MEMORY ACCESS TYPE OF THE MEM BLOCK

reg [7:0]mem[1024:0][101:0]
always @(posedge clock)
for(i=0;i<101; i=i+1)
if(i == sel)
mem[addr][i] =d1 ;

In this case also we are not converting because we have access pattern of | is not from the Static,
Non_static, Static + Non_static and Default Access Type.

A general graph is formed where we can decide whether this graph like structure in which we have
control and the data flow in which we can enroll the for loop which consist of the graph like structure
in terms of the control and the data flow ie CDFG level .

Here we can see that there is enrolling of the for loop occurs where we can see that no optimztion

occurs at the CDFG i.e control and data flow graph.

Here in This loop for conversion, we have to check the access type of the variable to be converted.
Hence it is determined with the help of register Transfer level Language, how this RTL language
is converted into the C language code. This is all about the conversion, we have converted these for

loops into the if statement.

Thus with the help of this code, we can have the optimization which is related to all the for loop
conversion. Hence all the conversion is done according memory access pattern. We should carefully
observe all the memory patterns of theis loop is statements which helps in the conversion of if

statement.
Compilation time is also got reduced with this optimization of ports of memory. In which only the

one write port is active at a time. This is done with the help of Register Transfer level (RTL)

compiler and the Questa simulator. We compared the results with the simulator as well as emulator
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4.10 EXAMPLE OF THE FOR_IF CONVERSION WITHOUT MEMORY
BLOCK

The Module with input and output ports without memory block.

module top( clock, addr, din, outl);
input clock ;
input [4:0] addr ;
input logic [7:0] din ;

integer i;
output logic [7:0] out1[31:0] ;
always @ (posedge clock)
begin
for(i=0;i<7;i=i+l)
begin
if(i == addr)
outl[i] <=din;
end
end
endmodule

The digital design system is described in Verilog because high level Verilog designs are

usually described at the level that consist of system registers and transfer of data between
various registers through buses, this level of high level description is called as register
transfer level (RTL). Verilog construction used in RTL level design are procedural

statements continuous assignments and instantiation statements.

4.11 CONCLUSION

This chapter gives the brief introduction about the Memory. The declaration of memory, how to
decrease the size of chip using the for if optimization, this chip introduces the for if optimization.

In which the memory inference take place by reducing the no. of ports which cause the addres ,
subractors and multiplxers are not formed in place of it memory is formed which causes the size of
the chip to reduce so it able to reduce the capacity of the ICs and chip . It also reduces the
compilation time which further inhances the performace of the circuit. So overall it able to enhance
the capacity, performance and speed of the digital circuits which causes our Verfication technology

to excel in the market.
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CHAPTER 5

RESULTS AND CONCLUSION

5.0INTRODUCTION

The below Table shows the comparsion between the compilation Time with and without
optimization. The memory is inferred in the case of optimization where in other case, the logic
Block is formed.

SIMULATION RESULTS EMULATION RESUTLS
Compilation Time without | Compilation Time with Compilation Time without | Compilation Time with
Optimization Optimization Optimization Optimization
8 sec 1sec 7 sec 1sec
12 sec 3 sec 10 sec 3 sec
15 sec 4 sec 12 sec 4 sec
17 sec 5sec 15 sec 5sec

Compilation time is also got reduced with this optimization of ports of memory. In which only the
one write port is active at a time. This is done with the help of Register Transfer level (RTL)
compiler and the Questa simulator. We compared the results with the simulator as well as
emulator.
Memory is not inferred where in case of optimization the conversion of for loop makes it non -
static address corresponding to it memory is inferred, this cause the chip size to decrease. Hence
the optimization of device is there.
In Memory Block there are write enables and the read enable and the Byte enable as well how
much write and byte enable memory is required. Since the RTLC memory required for the write
enable as well as byte enable. We need the memory to be declared with address read and wrte
ports. The data read and write port, the byte enable read and write port. The memory have various
enable which helps to write the adrees bit in memory.
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™ | Testcases

module top(clock,addr,din,dout);
input clock ;
input [9:0] addr ;
input [7:0]din ;
output [7:0] dout;

// pragma attribute mem ram_block 1
integer i;
reg [7:0] mem[1023:0];

initial
begin
for(i=0; i<
14 begin
15 mem[i] =
16 end
17 end
18
19 assign dout = mem[addr] ;
20  always @(posedge clock)
21  begin
22 for(i = 0; i < 50; i=i+1)
23 begin
24 if(i == addr)
25 mem(i] <= din ;
26 end
27 end
28 endmodule

PN 7 P g 17 D Jht |

"top.v" 28L, 509C

& pmittal : rlogin & %d : %n

& commands & 1 :tcsh & TBX regr & Regression - T
2ol & Testcase

Fig 5.1 The Verilog Module for the initialization of the memory.

5.1 FORMATION OF LUTS AND MULTIPLEXERS

In case enrolling of the loop in Fig 5.1, it has the constant address in that case we are not declaring
it as memory, it can be declared as logic Block in which it has many adders, Multiplexers and
LUTs which takes a lot of area for the chip. Thus memory Inference is really important and helpful
in chip designing, this is able to infer memory through this optimization in this case for and if
statement is converted into simple if statement, thus that only one write port works at a time.

So this optimization is really helpful in maintaing the balance between the area and the
performance. With the data out comparsion between the questa and Register Transfer level

compiler, we can get the results of memory inference with simulation and emulation
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module top(clock,addr,din,dout);
input clock
input [9:0] addr
input [7:0]din ;
output [7:0] dout;

// pragma attribute mem ram block 1
integer i;
reg [7:0] mem( :0];

initial
begin
forfi =0 ; i <
begin
mem[1] =
end
end

CREBvovwouns wne

assign dout = mem[addr] ;
always @(posedge clock)
begin
for(i =0; i < 50; i=i+l)
begin
if(i == addr)
mem[i] <= din ;
26 end
end
28 endmodule

RERETETT AR

"top.v" 28L, 509C

& commands & 1:tcsh & TBX reqr & Regression - Tl

Fig 5.2 Pragma Representation of the mem RAM-BLOCK 1

5.2 CONVERSION OF FOR TO IF STATEMENT

Here in this loop for conversion in Fig 5.2, it has to check the access type of the variable to be
converted.Hence it is determined with the help of register Transfer level Language, how this RTL
language is converted into the C language code. This is all about the conversion, it has converted
these for loops into the if statement. Thus with the help of this code, it can have the optimization
which is related to all the for loop conversion. Hence all the conversion is done according memory
access pattern.

In unrollable for loop it has constant address in that case memory is not declared, it is assumed as
a logic block which makes the area of the chip to exponentially increases and memory is not
inferred where in case of optimization the conversion of for loop makes it non - static address

corresponding to it memory is inferred, this cause the chip size to decrease.
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5.3 A COMPARTIVE ANALYSIS OF QUESTA AND REGISTER
TRANSFER LEVEL

The digital design system is described in Verilog because high level Verilog designs are

usually described at the level that consist of system registers and transfer of data
between various registers through buses, this level of high level description is called as
register transfer level (RTL). Verilog construction used in RTL level design are procedural

statements continuous assignments and instantiation statements.

In unrolling for loop it has constant address in that case memory is not declared, it is assumed as a
logic block which makes the area of the chip to exponentially increases and memory is not inferred
where in case of optimization the conversion of for loop makes it non - static address
corresponding to it memory is inferred, this cause the chip size to decrease. Hence the optimization

of device is there.

Here in This loop for conversion, it has to check the access type of the variable to be
converted.Hence it is determined with the help of register Transfer level Language, how this RTL
language is converted into the C language code. This is all about the conversion, it has to be
converted these for loops into the if statement. Thus with the help of this code, we can have the
optimization which is related to all the for loop conversion. Hence all the conversion is done
according memory access pattern. It should carefully observe all the memory patterns of theis loop

is statements which helps in the conversion of if statement.

In unroll able for loop it has constant address in that case memory is not declared, it is assumed as
a logic block which makes the area of the chip to exponentially increases and memory is not
inferred where in case of optimization the conversion of for loop makes it non - static address
corresponding to it memory is inferred, this cause the chip size to decrease. Hence the optimization

of device is there.
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Fig 5. 3 Precesion tool with for loop optimizatiom

5.4 READ AND WRITE ENABLE IN MEMORY BLOCK

In Memory Block there are write enables and the read enable and the Byte enable as well how
much write and byte enable memory is required. Since the RTLC memory required for the write
enable as well as byte enable. We need the memory to be declared with address read and write
ports. The data read and write port, the byte enable read and write port. The memory have various

enable which helps to write the adress bit into the memory.

The precesion tool in Fig 5.3 is the tool for the formal verification with use of all the LUTSs,
multiplexers with this tool which is very helpful for the gate level synthesis all the gate level

synthesis is done with the help of this precesion tool.



Fig 5.5 Precesion tool conversion of the FOR IF Optimization

This Precesion tool in Fig 5.5 makes the optimization is done in case of it has large Number of
ports which can hamper the memory during synthesis. So with this conversion it is converted into

single port and it is also reducing the compilation time.

5.4 CONCLUSION

In case enrolling of the For loop, it has the constant address in that case it is not declaring it as
memory, it can be declared as logic Block in which it has many adders, Multiplexers and LUTs
which takes a lot of area for the chip. Thus memory Inference is really important and helpful in
chip designing, it is able to infer memory through this optimization in this case for and if statement
is converted into simple if statement, thus that only one write port works at a time. This makes the

memory to be inferred causing the small area and better performance of the chip.



CHAPTER 6
MAIN CONCLUSION AND FUTURE SCOPE OF WORK

6.0 MAIN CONCLUSION

In this dissertation while working on the verification of digital design chips, the optimization of
time and space complexity is solved by using the memory inference and decreasing the number of
ports of memory. Various logic block like adders, subractors and multiplexers are solved by using
this optimization, further more all the results have been verified using the questa simulator of
mentor graphics and the Register transfer level compiler in which first of all it creates a library and
then analyze that file in disk and then compile the data , these both are the prcocedures for
simulations and then finally it also verified the results using emulator i.e VELOCE .The Emulation
process consists of the Velcomp flow in which it has a static graph which maintain all the
dependencies between each phase. In this flow in Fig 6.0 user needs to create the configuration file
named Veloce.config to provide all the options .So this present work concludes the optimization of
space of the chip and verification of the chip using the questa and register transfer level compiler
and the Emulator Veloce, where all the testing is done using the Velcomp flow which contains all
the PRERTLCFORDFT, PRERTLCFORUPF.

/PreRtIcForDFT \

PreRtIcForUPF

Zeroln

DesignCheck
RtlcAnalysis
TransactorAnalysInit
TransactorCompilelnit
VelsynForAdvisor
RtlcAdvisor

RtlcFinal
TransactorAnalysisFin
TransactorCompileFin

QualifyRetime /

Fig 6.0 Velcomp flow for the emulator
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6.1 FUTURE SCOPE OF WORK

This work can be extended in tasks and functions and other complex algorthims where every thing

works in repetitive fashion.

1. The process of synthesis and compilation is also reduced by decreasing the no. of flip flops with
enchancments in timing analysis.

2. A new logic can be developed which will enchance the optimzations for the no. of flip flops and
the retimmig which can also play a role in generating a new flow.

3. Retimming is also another technique which can decrease the timing analysis between two flip
flops which can be implemented in future in this project.

4. The verification of millions of IC and chips can be done with high precision and with less
amount of time. It can be supported for various other modules that can perform with larger
capacity.

5. Memory ports can be further decreased with more enchancements like creating the one hot logic
technique which can be implemented in future.

6. There can also be check for dissolving the bad memories as it can impact at the testcases where

bad memaories can be dissolved.

6.2 COMING EMULATOR AND SIMULATOR

The recent Emulators VeloceX and VeloceY can be used in further research work in which they
can boost the runtime anad performance by 4.5 X, so all the testing of chips and ICs are further
inhanced by 2 X speed . By using these emulators, the reseach work can be further improvised by
using the millions of chips to test with high optimization. The Emulators provide the complete
verification by using the accurate performance analysis and the various advanced verfications
methodologies. It provides the compele verification such that advanced the testing of all the chips
and IC with advanced accuracy and with high optimization.
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