
Simulation and Emulation of

Digital Circuits and Memory Ports

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

Control and Instrumentation

Submitted by:

PERRY MITTAL

2K17 / C&I / 13

Under the supervision of

prof. Madhusudan Singh
Electrical Engineering Department, DTU

&

Mr. Rohit Goel
Staff Engineer and Manager, Mentor Graphics

DEPARTMENT OF ELECTRICAL

ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

2019

DEPARTMENT OF ELECTRICAL

ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Perry Mittal, Roll No. 2K17/C&I/13 student of M. Tech. (Control and

Instrumentation), hereby declare that the thesis titled “Simulation and Emulation of

Digital circuits and memory ports” which is submitted by me to the Department of

Electrical Engineering, Delhi Technological University, Delhi in partial fulfilment of

the requirement for the award of the degree of Master of Technology in Control and

Instrumentation, is original and not copied from any source without proper citation.

This work has not previously formed the basis for the award of any Degree, Diploma

Associateship, Fellowship or other similar title or recognition.

Place: Delhi (PERRY MITTAL)

Date: 21.07.2019
(2K17/C&I/13)

ii

DEPARTMENT OF ELECTRICAL

ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Simulation and Emulation of

Digital circuits and memory ports” by Perry Mittal, Roll No. 2K17/C&I/13

Electrical Engineering Department, Delhi Technological University, Delhi in partial

fulfillment of the requirements for the award of the degree of Master of Technology,

in Control and Instrumentation is a record of project work carried out by the student

under our supervision. To the best of my knowledge this work has not been

submitted in part or full for award of any Degree or Diploma to this University or

elsewhere.

Place: Delhi (Prof. Madhusudan Singh)

Date: 21.06.2019
Supervisor

 Professor

 Electrical Engineering Department

 Delhi Technological University

(Mr. Rohit Goel)

Staff Engineer, Mentor Graphics

iii

ACKNOWLEDGEMENT

I would like to express my gratitude towards all the people who have

contributed their precious time and efforts to help me, without whom it would not

have been possible for me to understand and complete the project.

I would like to specially thank Prof. Madhusudan Singh, Department of

Electrical Engineering, my project supervisor for his kind, support, motivation and

encouragement throughout the period of this work was carried out. His readiness

for consultation at all times, his educative comments, his concern and assistance

even with practical things have been invaluable.

I would like to thanks Mentor Graphics and its staff members for co-

operating with me and providing me with the best possible working environment

for the projects.

I would like to thank all the faculty members of department of Electrical

engineering, DTU, Delhi for their constant encouragement.

I would like to thank all my M.Tech friends.

Place: Delhi (PERRY MITTAL)

Date: 21.07.2019

iv

ABSTRACT

The Simulation and Emulation of the digital circuits are discussed in this present work in

which there is an enhancement to increase the capacity and performance of the digital chips

and ICs where it reduces its size with help of the memory inference in complex circuits, the

number of multiplexers, adders and subtractors are replaced with the memory block which

reduces the area of the digital ICs and the capacity of the digital circuit is getting enhanced.

It also reduces the compilation time of the simulating circuits during gate level and behavioral

level synthesis of the circuit. The importance of the work is that all the circuits and ICs can be

tested in fraction of seconds using this optimization which reduces a lot of money and time

consumption of an organization. The testing of this optimization is done by simulating the

module where the analysis of the various scenarios is done on simulator.

The optimization is further tested on emulator where the replica of the module can be created,

the emulator can act as the same piece of hardware where the compilation time is reduced.

Methodology adopted is Verilog and VHDL the hardware descriptive language is used. All the

scripting of the various scenarios is done with shell scripting. The coding for the optimization

of memory ports is written in C/C++ in which all the read and write ports are analyzed.

In memory optimization enhancement various tools for simulation like Questa and precession

are used for simulating all the modules of the hardware descriptive Language.

Further, for creating the Real Replica of the hardware, emulator is used where the Register

transfer level compiler and Emulator (Veloce) are used of validating all the results in velcomp

flow where the quad core processor is used , all the modules are compiled in the parallel

manner . It makes the system for informative in which core processor, it is compiling all the

Modules with high speed and efficiency. So this optimization reduces the speed of the

simulator and emulators in terms of the area and the compilation time of the gate level

synthesis where the register transfer level design is transformed into logic gates.

v

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.0: INTRODUCTION .. 1

1.1: DESIGN OF DIGITAL SYSTEM ... 1

1.2: TEST BENCH IN VERILOG ... 2

1.3: SIMULATION……………………………………………………………….2

1.4: COMPILATION AND SYNTHESIS

1.4.1: ANALYSIS .. 3

1.4.2: GENERIC HARDWARE GENERATION .. 3

1.5: LOGIC OPTIMIZATION……………………………………………………4

1.6: BINDING…………………………………………………………………….4

1.7: ROUTING AND PLACEMENT…………………………………………….6

1.8: TIMING ANALYSIS………………………………………………………..6

1.10: HARDWARE GENERATION……………………………………………..6

1.11: REGISTER TRANSFER LEVEL DESIGN IN VERILOG……………....... 7

1.11.1: RTL LEVEL DESIGN..………………………………………………7

1.11.2: CONTROL OR DATA PARTITIONING……………………………7

1.12: OBJECTIVE OF THE PRESENT WORK..………………………………..8

1.13: OUTLINE OF THE THESIS……………………………………………….8

CHAPTER 2: EMULATION PLATFORM (VELOCE)

2.0: INTRODUCTION ... 9

2.1: EMULATOR ... 9

2.2: DESIGN AND VERIFICATION………..………………………………….9

2.4: MENTOR GRAPHICS VERIFICATION PLATFORM…………………...10

2.4.1: VIRTUAL PROTOTYPING ... 10

2.4.2: FORMAL VERIFICATION .. 10

2.4.3: SIMULATION... 11

2.4.4: EMULATION…………………………………………………………11

2.5: VELOCE THE COMPLETE PLATFORM ..12

2.6: VELOCE2 EMULATOR..……………………………………………….. 13

2.7: VELOCE TEST BENCH XPRESS……………………………………… 13

2.8 : VELOCE IMPROVES VERIFICATION…………………..………….. 14

2.8.1 COMPILE………………………………………………………… .. 14

2.8.2 RUN………………………………………………………………… 14

2.8.3 DEBUG………………………………………………………………15

2.9: VELOCE ACCELERATING SIMULATION…………..…………… 16

2.10: CONCLUSION………………………………………………………… 17

CHAPTER 3: REGISTER TRANSFER LEVEL COMPILER FLOW

3.0: INRODUCTION .. 18

3.2: ELABORATION.. 18

3.3: RTLC-VLE SYNTHESIS ENGINE…..…………………………………….19

3.4: CDFG………………………………………………………………………..19

3.5: CDFG EXAMPLE…………………………………………………………...20

3.6: TECHCELL FLOW………………………………………………………….21

3.7: FLATTENING SUPPORT…………………………………………………..22

3.8: DESIGNWARE INTEGRATION WITH RTLC…..……………………..……..23

3.9: EXAMPLE OF DESIGN WARE INTEGRATION………………………..…...24

3.10: EXAMPLE OF DESIGNWARE COMPONENTS…...……………………….25

3.11: TRADIONAL ENCRYPTION TECHNIQUES………………..................... 26

3.12: MEMORY WITH SYNC/ASYNC SET RESET………………………….….28

3.13: PRAGMA CONTROL…………………………………………………….31

vii

CHAPTER 4: OPTIMIZATION OF MEMORY PORTS

4.0: INTRODUCTION .. 32

4.1: CONVERSION ... 32

4.2: ALGORITHM AND APPROACH………………………………………33

4.3: ACCESSING MEMORY BLOCK…………………………………….....34

4.4: VALID CASES WHEN CONVERSION OCCURS……………………..35

4.5: HANDLING OF VARIOUS OPERATORS……………………………..36

4.6: ENROLLING OF FOR LOOP…………………………………………...40

4.8: CASES CONVERSION NOT OCCUR……………………………………. 43

4.9: HANDLING OF TASK AND FUNCTION……………………………..49

4.10: CONCLUSION………………………………………………………….50

CHAPTER 5: RESULTS AND CONCLUSION

5.0: INTRODUCTION…………………………………….………………….51

5.1: FORMATION OF LUTS AND MULTIPLXERS……………………….52

5.2: CONVERSION OF FOR TO IF STATEMENT…………………………54

5.3: COMPARATIVE ANALYSIS OF QUESTA AND RTL………….……56

5.4: CONCLUSION…………………………………………………………..58

CHAPTER 6: MAIN CONCLUSION AND FUTURE SCOPE OF WORK

6.0: MAIN CONCLUSION ………………………………………………….59

6.1: FUTURE SCOPE & WORK……………………………………………..60

6.2: COMING EMULATORS AND SIMULATORS………………………..60

REFERENCES………………………………………………………………61

 LIST OF FIGURES

Fig. No. Name of Figure Page No.

Fig. 1.1 Design Flow 1

Fig. 1.2 Test Bench or a Waveform editor for simulation 3

Fig.1.3 Compilation and synthesis process 5

Fig.1.4 Synthesis Run 6

Fig.1.5 Timing analysis 8

Fig.1.6 Control or data Partitioning 10

Fig.2.1 Verification Time spent 18

Fig.2.2 Verification Infrastructure 20

Fig.2.3 Veloce Verification system 22

Fig.2.4 Co Modelling 24

Fig.2.5 Veloce Flow 26

Fig.2.6 Design Under Test 27

Fig.2.7 Software Debug Solutions for Veloce 28

Fig.2.8 JTAG Probe 29

Fig.3.1 Analysis and Synthesis for RTLC Flow 30

Fig.3.2 Elaboration 26

Fig.3.3 CDFG 27

Fig.3.4 CDFG Example 2 28

Fig.3.5 CDFG Example 3 29

Fig.3.6 Techcell Flow 30

Fig.3.7 Example for Design Ware Integration 31

Fig.3.8 Traditional Encryption Techniques 32

Fig.3.9 Memory with sync-async reset 33

Fig.3.10 Cross sharing 34

ix

Fig.4.1 Ram block memory 39

Fig.4.2 Accessing a Memory Block 42

Fig.4.3 CDFG 44

Fig.4.4 The Cdfg enrolling for the n block data 45

Fig.4.5 The Cdfg without enrolling 46

Fig.4.6 Valid Cases for Conversion 47

Fig.4.7 Example of a for if Conversion 48

Fig.5.1 Testcase For Ram Block 49

Fig.5.2 Testcase For Logic Block 50

Fig.5.3 Precession Tool without optimization 51

Fig.5.4 Ram Block 52

Fig.5.5 The Precesion tool with optimization 53

x

CHAPTER i1

INTRODUCTION

1.0 INTRODUCTION

In ithe idesign iflow, idesign ispecifications iare iintroduced i. Specifications iprovides

ifunctionality I,interface iand ioverall iarchitecture iof ithe idesigned idigital icircuit . iA ibehavioral

idescription iis imade ito ianalyze ithe idesign iwith irespect ito ifunctionality iand iperformance.

iBehavioral idescriptions iare ioften iwritten iin iVerilog, iVHDL iand isystem iVerilog .

EDA itools ihave iappeared ito isimulate ibehavioral idescription iof idigital icircuits, ithese

itools ihave imerged ithe ipowerful iconcepts ifrom iHDLs iand iobject ioriented iprogramming

ilike iC/C++. i iThe ibehavioral idescription iis iconverted iinto iRTL idescription iin ian iHDL.

The ilogic isynthesis itools itransforms ithe iRTL idescription iinto igate-level inetlist

idescribes ithe icircuit iin iterms iof igates iand iconnections ibetween ithem. iThe I synthesis itool

imakes ithat ithe igate ilevel inetlist imeets ithe itiming iarea iand ipower ispecifications in Fig 1.1.

iThe igate ilevel inetlist iis iput iinto ian iautomatic iplace iand iroute itool, ithen ia ilayout iis icreated,

ithen ithe ilayout iis ifully iverified iand ifabricates ion ia idigital ichip .

 Fig i1.1 iDesign iFlow for various digital circuits

Page i1 iof i60

i

1.1 DESIGN iOF iDIGITAL iSYSTEM i

The idigital idesign isystem iis idescribed iin iVerilog ibecause ihigh ilevel iVerilog idesigns iare

iusually idescribed iat ithe ilevel ithat iconsist iof isystem iregisters iand itransfer iof idata ibetween

ivarious iregisters ithrough ibuses, ithis ilevel iof ihigh ilevel idescription iis icalled ias iregister

itransfer ilevel i(RTL). iVerilog iconstruction iused iin iRTL ilevel idesign iare iprocedural

istatements icontinuous iassignments iand iinstantiation istatements.

1.2 TESTBENCH iIN iVERILOG

A idigital isystem idesigned iin iVerilog ishould ibe isimulated iand itested ifor ifunctionality

ibefore iit iis iturned iout iinto ia ihardware iwhile isimulation idesign ierrors iand iincompatibility

iof icomponents iin ithe idigital idesign, iall iare idetected. iIn isimulation, ia idigital idesign ineed

igeneration iof itest idata iand iobservation iof iall isimulation iresults. iThis iprocess ican ibe idone

iby iuse iof ia iVerilog imodule ithat iis icalled ias ia itest ibench. iA iVerilog itest ibench iuses iHDLs

iconstructs ifor igeneration iof idata imonitoring iof iresponse iand ieven ihandshaking iof ithe

idesign. iIn ithe itest ibench, ithe idesign iis iinstantiated iwhich iis ibeing isimulated ithe itest ibench

itogether iwith idigital idesign, iforms ia imodel iof isimulation iwhich iis iused iby iVerilog

isimulation.

1.3 SIMULATION

 iMentor iGraphics i iuses i“QUESTA” ias ia isimulating itool, isimulation iof ia idesign

irequires itesting iof idata, iand itest idata ican ibe igenerated igraphically iusing ieditors ifor iwave

iform ior iwith ithe ihelp iof ia itest ibench. iFor isimulating iwith ithe ihelp iof ia iVerilog itest ibench,

ithe itest ibench iinstantiates ithe idesign iunder itest i(DUT) iand ias ia ipart iof ithe itest ibench, iit

iapplies itest idata ito ithe iinstantiated icircuit in Fig 1.2.

Verilog icode iof ia idigital icircuit iand iits itest ibench iand ithe iresult iof isimulation iare iin ithe

iform iof iwaveform. iSimulation ivalidates ithe ifunctionality iof ithe idigital icircuit ibeing itested ithe

itiming idiagram ithat ithe icircuit ioutput ichanged iwith ithe irising iedge iof ithe iclock iand ino

igate idelays iand ithe ipropagation idelays iare ishown iin ithe itiming idiagram.

Page i2 iof i60

Figure i1.2. i iTest ibench ior ia iwaveform ieditor ifor isimulation

1.5 COMPILATION AND SYNTHESIS i

Synthesis iis ithe iprocess iof itransforming i ithe i iHDL idesign iinto igate ilevel inetlist, ia

iVerilog irepresentation ifor isynthesis icannot iinclude isignal iand igate ilevel itiming

ispecifications ithat ido inot itranslate ito isequential ior icombinational ilogic iequations, iVerilog

irepresentation ifor ithesis ishould ifollow icertain istyles iof icoding ifor icombinational iand

isequential icircuits ifor iexample: iwe ihave ito ispecify ian iApplication ispecific iintegrated

icircuit(ASIC) ior ifield iprogrammable igate iarray(FPGA) i ias i iour itarget ihardware. iWhen ithe

ihardware iwith idetailed itiming iand ispecifications ibecome iavailable ito ithe icompilation

iprocess. iThe icompilation iprocess itranslates ivarious iparts iof idesign ito ian ianalysis iphase

iand igenerates isynthesis iphase iand iplaces iand iroutes icomponents iof ithe itarget ihardware

iand igenerates itiming idetails.

1.5.1 ANAYLSIS

Before ithe icomplete idesign iemerged iinto ihardware, ithe idesign imust ibe

ianalyzed iproperly ia iuniform iformat imust ibe igenerated ifor ithe icomplete idesign,

ithis ianalysis ispace ialso ichecks ithe isyntax iand isemantics iof ithe iinput iVerilog icode.

1.5.2 GENERIC HARDWARE GENERATION

After iobtaining iuniform irepresentation iof iall ithe icomponents iof idesign, ithe

isynthesis ibegins iits ioperation iby iturning ithe idesign iinto ia igeneric ihardware, isuch

ias ia iset iof iBoolean iexpressions ior ia inetlist iof igates.

Page i3 iof i60

1.6 LOGIC OPTIMIZATION

This iphase iof isynthesis iafter ia idesign iis iconverted i iinto ia iset iof iBoolean iexpressions

ior ibasic igates iis icalled ithe ioptimization iphase in Fig 1.3, ithis iphase iis iresponsible ifor

ireducing iexpressions iwith icontinuous iinput iand iremoving iredundant ilogic iexpressions

ioutput iof i ithis iphase iis iin ithe iform iof iBoolean iexpressions, ilogic irepresentations ior igate

inetlist.

1.7 BINDING

After ithe ilogic ioptimization iphase, ithe isynthesis iuses iinformation ifrom ithe igiven

ihardware ito idecide iexactly iwhat ilogic ielements iare irequired ifor ithe irealization iof ithe

icircuit, ithis iprocess iis icalled ithe ibinding as shown in Fig 1.3. iAnd iits ioutput iis iASIC ior

icustom iIC.

Figure i1.3. iCompilation iand isynthesis iprocess of HDL modules

 Page i4 iof i60

An iexample iof isynthesis ithe icounter icircuit iused iin ithe isimulation iis ibeing isynthesized,

ithe iVerilog idescription iof ithe idesign iis iconverted iinto igates iand iflip-flops iusing ithe isynthesis

itool, ithe ioutput iof ithe isynthesis iis ithe igates iand ithe iflip-flops iand itheir iinter iconnections,

ithis igraphical irepresentation iof ithe ioutput, ithat iis igenerated iby ithe isynthesis itool iof

iAltera’s iQuartus i2 in Fig 1.4 depicts the complete flow for the Synthesis Run to

synthesize the module in Verilog..

 Figure i1.4. i iModule Compilation and synthesis run of hardware circuits.

Page i5 iof i60

1.8 ROUTING AND PLACEMENT

Routing iand iplacement idecides iplacement iof icells iof ithe itarget ihardware, ithe iinputs

iand ioutputs iof ithese icells ithrough iwiring iand iswitching iareas iof ithe itarget ihardware iis

igiven iby irouting iand iplacement iphase in Fig 1.5. iThe ioutput iof ithis iphase iis ispecific ito

ithe ihardware ibeing iused ifor ithe imanufacturing iof ian iASIC. i

1.9 TIMING ANALYSIS

There iis ia itiming ianalysis iphase iafter ithe icompilation iprocess, ithis iphase igenerates

iworst icase idelays, iclocking ispeed iand idelay ifrom ione igate ito ianother, isetup itime iand

irequire iwhole itime in Fig 1.5. iDesigners iuse ithese iinformation ito idecide ithe ispeed iof ithe

iclock ior imore iprecisely ithe ispeed iof ithe icircuits.

1.10 HARDWARE GENERATION

This iis ithe ilast istage iof ithe iVerilog ibased idesign iin icase iof ihardware igeneration, ithis istage

i igenerates ia inetlist ifor iapplication ispecific iintegrated icircuit(ASIC) ia iprogram ifor

iprogramming ifield iprogrammable ilogic idevices(FPLDs) ior ilayout iof icustom iIC icells ior

ilayout iof icustom iIC icells in Fig 1.5.

Figure i1.5. i iRouting and placement of the chip with Timing Analysis.

Page i6 iof i60

1.11 REGISTER iTRANSFER iLEVEL iDESIGN iWITH iVERLOG

The iregister itransfer ilevel i(RTL) idesign ifor idigital isystems igives ius ihow ithe

iVerilog iis iused ifor idescription itesting isynthesis iof ivarious iRTL ilevel icomponents iof

ia idigital isystem. H iThe iRTL ilevel idesign iand ihow ia icomplete isystem iis iput itogether iat

ithis iabstraction ilevel. iThe ibasic istructure iof ithe iVerilog isuch ias imodules, iports,

iutilities ifor iverification iof idigital icomponents iare iintroduced iin ithis iRTL ilevel idesign.

1.11.1 RTL iLEVEL DESIGN

Design iof ihardware icomponents iare idone iby irepresenting ithe ihardware

ifor isynthesis iand iimplementing ithe idesign iby iCAD itools. iA ilarge idesign

irequires iplanning idesign iand ipartitioning ibefore iits ivarious iparts ican ibe

irepresented iin iVerilog ifor isynthesis in Fig 1.6 shows the RT Level Design.

 1.11.2 CONTROL OR DATA PARTIONING

The iRTL ilevel idesign iis ithe ipartitioning iof ithe idigital idesign iinto icontrol

iand idata ipart, ithe icontrol ipart iis ia istate imachine igenerating icontrol isignals

ithat icontrol ithe iflow iof idata iin ithe idata ipart iand ithe idata ipart iconsist iof ithe

idata icomponents in Fig 1.6 shows the Control and data partitioning.

i

i i i i i Figure i1.6. iControl ior idata ipartitioning of RT Level Design

Page i7 iof i60

1.12 OBJECTIVE OF THE PRESENT WORK

1. The verification of digital chip and circuits to optimize the area, capacity and performance of

the digital chips and ICs

2. The optimization of the memory ports oand reducing the area of the digital circuits and ICs is

done by inferring memory into it. This optimization also reduces the compilation time and the

area of the circuits.

3. In the present work, it is tried to optimize the adders, muxs into the memory declaration.

4. The testing of the optimization of digial circuits and ICs, using the mentor simulation

software named questa and the emulation software named veloce.

 1.13 OUTLINE OF THE THESIS

 This dissertation includes total 6 chapters:

1. Chapter 1 gives the brief introduction about the verification of digital design circuits, the

hardware languages like Verilog and VHDL help in generating the testbench by which it can

verify the circuits and help in creating the Register Transfer level .

2. Chapter 2 gives the brief introduction about the Mentor graphics Hardware model veloce, it

works to test millions of chips in very less time frame and with accurate precesion with the use

of memory optimization in Emulator.

3. Chapter 3 gives the brief introduction about the Register transfer level compiler flow which

generates the graph level optimization where it can mark the memory in order to decrease the

size of the chip to increase its capacity and performance.

4. Chapter 4 gives the brief introduction about the optimization of memory ports , sometimes due

to large no. of read and write data memory is not marked , but using the for to if optimization

the memory is marked and compilation time is reduced.

5. Chapter 5 gives the brief introduction about the comparison between the RTLC and questa like

the simulation model and the emulation model both provide the same results or not.

6. Chapter 6 gives the brief introduction about the Future scope and the work, the tasks and the

function and the generate block will be supported with memory declaration.

Page i8iof i60

 CHAPTER i2

 iEMULATION PLATFORM (VELOCE)

2.0. INTRODUCTION i

The iemulation iis ibasically ia ihardware iwhich iacts iexactly ilike isomething iwhich i

iwant ito itest iby iall ithe irules iof ithe isystem ibeing iemulated. iThe iVeloce iis iused ifor ithe

iverification iof isystem ion ichips i(SoCs) iand iis ia icore itechnology iby iMentor iGraphics. iIt

iprovides ihardware iarchitecture iinnovative ioperating isystem iand iversatile iperipheral

isolutions ito iprovide ihigh ispeed, ihigh icapacity iand iverification iof ithe idesign iand iVeloce

iaccelerates ithe isimulation iand iused ifor ithe ihardware idebugging.

2.1. EMULATOR

 iEverything iin ia iworld iof isystem ion ichip iin iwhich iwe ihave iprocessors ilike

iembedded iCPUs, iGPUs iand iMMUs. iMemory ilike iSDRAM, iDDRAM, iand icache

imemory. iPeripherals ilike imultiple iIP iblocks iand iprotocols iand isoftware ilike iinstruction

isets iand ioperating isystems, idrivers iand iapplication isoftware’s. i iSo ithese iSoCs idesigns

igave ithe ichallenges ifor iefficient iverification.

2.2. DESIGN AND VERIFICATION

System ion ichips i(SoCs) imakes iexisting iverification ichallenges imore idifficult, ia

ilarge iamount iof iverification itime ispent ion irunning istimulation iin iterms iof ispeed iand

icapacity. iIn idebugging iin iterms iof ipower iand ipredictability. iIn itest ibench idevelopment

iin istimulus icoverage iand ireuse iand itest iplanning iin iterms iof imetrics ianalysis iand

iprocesses in Fig 2.1 shows how much time is spend on Debugging and simulation.

Page i9 iof i60

i iFigure i2.1. i iVerification I time ispent on complete design flow

2.3. MENTOR GRAPHICES VERIFICATION PLATFORM

It iworks ion ithe ifaster, ismarter iand istronger iverification.

2.3.1. VIRTULA PROTOTYPING

It iinvolves imodelling iof ia isystem isimulating iand ivisualizing iits ibehavior iunder

ireal iworld ioperating iconditions iand irefining iits idesign ithrough iiterative iprocess.

iVirtual iprototyping ito ibuild iand itest iprototypes iand irealistically isimulate ithem ion

itheir icomputers iboth ivisually iand imathematically. iUsers ican iexplore imultiple

idesign ivariations itesting iand irefining iuntil isystem iperformance iis ioptimized ithis

ican ihelp ireduce ithe itime iand icost iof inew iproduct idevelopment iwhich isignificantly

iimproves ithe iquality iof ioverall idesign in Fig 2.2 shows the virtual prototyping.

2.3.2. FORMAL VERIFICATION

It iis ia iprocess iof ichecking ithe idesign iwith irespect ito icertain iproperties ia

iformal iverification itool iexamines ithe idesign ito imake isure ithat igiven iproperties

iholds itrue iunder iall iconditions iif ithe iinput iconditions imake ia iproperty iare iregarded

ias iproperty icounter iexamples, iproperty icoverage iindicates ihow imuch iof ithe

icomplete idesign iis iexercised iby ithe iproperty in Fig 2.2 there is formal verify.

 Page i10 iof i60

2.3.3. SIMULATION

It iis a iprocess iof iusing ia isimulation isoftware ior isimulator ito iverify ithe

ifunctional icorrectness iof ithe idigital idesign ithat iis imodeled iusing ia ihardware

idescriptive ilanguage iHDL ilike iVerilog in Fig 2.2.

2.3.4. EMULATION

Emulation iis ia isystem ithat iacts iexactly ilike isomething ielse.The iemulation

imodel iis iusually ibased ion ihardware idescription ilanguage ilike iVerilog iand iVHDL

ias ia isource icode iwhich iis icompiled iinto ithe iformat iused iby iemulation isystem. The

igoal iis inormally idebugging iand ifunctional iverification ithe isystem ibeing idesigned,

ian iemulator iis ifast ienough ito ibe iplugged iinto ia iworking itarget isystem. iIn iplace iof ia

iyet ito ibe ibuilt ichip. iSo ithat iwhole isystem ican ibe idebugged iwith ilive idata. iThis iis ia

icase iof ihardware iemulation in Fig 2.2.

2.3.5. FPGA iPROTOTYPINGi

FPGA iprototyping iis ia itechnique ifor iverifying ithe ifunctionality iand iperformance

iof iapplication ispecific iintegrated icircuit i(ASICS) iand iSystem ion ichips iby iporting itheir

iRTL ito ia ifield iprogrammable igate iarray. iFPGA, iit iis ibeing iused imore iwidely ibecause

ihardware icomplexity iis iincreasing iand ithe iamount iof irelated isoftware ithat

ineeds ivalidating iis irising. iIt igave ius ithe ibenefit iin iterms iof iperformance icost,

iinfrastructure, iportability iand iavailability in Fig 2.2.

i iFig. i2.2 iVerification iInfrastructure of stimulus and debugging

Page i11 iof i60

2.4. VELOCE iTHE COMPLETE VERIFICATION PLATFORM

Veloce istrato iplatform ihas isufficient iexecution ispeed, ifull ivisibility, icapabilities iand iease

iof iuse. iIn imodel icreation iand iVeloce ipower iapplication ialso iboost ithe irun itime iand

iperformance iof ithe ipower iflow iupto i4.5x. iVeloce ivirtual iperipherals iand ihost idevices

imake ithe iemulator ia ishared iresource ifor imultiple ihardware iand isoftware iengineers. iThe

iVeloce iemulation iplatform ireduces ithe irisk iin ithe iverification iof itoday’s icomplex iSoCs

iand iis ithe icore itechnology iof imentor iverification iplatform. iThe iVeloce iemulator

iaccelerates iclock iand ifull iSoC iRTL isimulations iduring iall ithe iphases iof idesign iprocess.

iTest ibench ixpress(TBX) ico imodelling isoftware imakes iVeloce ian iultra-fast iverification

iengine iup ito i10,000 itimes ifaster ithan isoftware isimulators isignificantly ireducing

idevelopment ischedule irisks.

i i i i i i i i i i i i i i i i i i i ii i i i iFigure i2.3. iVeloce iverification isystem of visualization and assertions

Veloce istrato iplatform iis ifully iscalable, iit iis iengineered ito iscale ito isupport i15 ibillion

igate idesigns iand icapable iof iverifying ithe ilargest ichips iever idesigned iin iterms iof icapacity

iand itheir idesign isize igrow in Fig 2.3 shows the verification complete flow.

Page i12 iof i60

2.5. VELOCE2 EMULATOR

The iVeloce2 iEmulator iincreases ithe ifull iSystem ion ichip i(Soc) iRTL isimulations

iduring iall iphases iof ithe idesign. iIt imakes ipre isilicon itesting iand idebug iat ihardware

ispeeds, iusing ireal iworld idata, iboth isoftware iand isoftware idesigns. iIt iimproves iend

iproduct iquality iby iincreasing ithe itotal iverification icycles ion ithe idesign ibefore

icommitting ito isilicon iprototypes. iIt iis ia iscalable iverification iplatform iwith icapacities

ifrom i16 imillion ito i2 ibillion igates. iVeloce2 isignificantly ireduces ithe iverification iof

ithe ilargest ihardware iand isoftware isystems.

2.6. VELOCE TESTBENCH XPRESS

The itest ibench iXpress i(TBX) ico imodelling isoftware imakes ithe iVeloce iemulator, ian

iultra-fast itransaction ilevel imodelling iand iverification iengine. iThe iVeloce iemulator iand

ithe iVeloce iTBX ireduce ithe irisk iwhile ileveraging itransaction imodels iused iduring

isimulation. iIn ico-modelling, ithe itest ibenches iare iinterfaced ito isynthesizable i itrans iactors

i iare iput itogether iwith ithe iDUT iin iVeloce iTBX iautomatically igenerate ia idirect

icommunication iinterface ibetween ic/c++ ior isystem ic ienvironment ion ia ihost iand ithe

iSoC(system ion ichip) iDUT iin ithe iVeloce i2 iemulator in Fig 2.4. i

 Fig i2.4 i i icomodelling between the testbench and design

Page i13 iof i60

2.7. VELOCE IMPROVES VERIFICATION AND PRODUCTIVITY

2.7.1. COMPILE

It iprovides ifast icompiling iup ito i300 iMG/hr. iand iit ialso iprovides ifast

idownloading iof ithe idigital idesign i(2min/2BG) in Fig 2.5.

2.7.2. RUN

It ihas ivery ifast iand ihigh ibandwidth iinterface ibetween iworkstation iand

iVeloce, iit iis iup ito i40 iphysical iinterface ilinks/2BG in Fig 2.5.

2.7.3. DEBUG

It iprovides iand i100% ivisibility, i1M icycle/2BG idesign iin i5 iminutes

 Fig i2.5 Veloce Flow of RTL design and Crystal Soci i iVV

Page i14 iof i60

2.8. VELOCE ACCLERATING BASED SIMULATING DESIGN i

 Fig 2.6 Design under Test of the Testbench including C/C++

 The iVeloce2 iEmulator iincreases ithe ifull iSystem ion ichip (Soc) iRTL isimulations iduring iall

iphases iof ithe idesign. iIt imakes ipre isilicon itesting iand idebug iat ihardware ispeeds, iusing ireal

iworld idata, iboth isoftware iand isoftware idesigns. iIt iimproves iend iproduct iquality iby

iincreasing ithe itotal iverification icycles ion ithe idesign ibefore icommitting ito isilicon iprototypes.

iIt iis ia iscalable iverification iplatform iwith icapacities ifrom i16 imillion ito i2 ibillion igates.

iVeloce 2 isignificantly ireduces ithe iverification iof ithe ilargest ihardware iand isoftware isystems

in Fig 2.6.

2.10 iSOFTWARE DEBUG SOLUTIONS FOR VELOCE

 Fig i2.8 iSoftware idebug isolutions ifor iVeloce

The iemulation iis ibasically ia ihardware iwhich iacts iexactly ilike isomething iwhich iwe iwant ito

itest iby iall ithe irules iof ithe isystem ibeing iemulated. TheIVeloce iis iused ifor ithe iverification

iof isystem ion ichips (SoCs) iand iis ia icore itechnology iof iMentor iGraphics. It iprovides

ihardware iarchitecture iinnovative ioperating isystem iand iversatile iperipheral isolutions ito

iprovide ihigh ispeed, ihigh icapacity iand iverification iof ithe idesign iand iVeloce iaccelerates ithe

isimulation iand iused ifor ithe ihardware idebugging in Fig 2.8.

 System ion ichips (SoCs) imakes iexisting iverification ichallenges imore idifficult, ia ilarge iamount

iof iverification itime ispent ion irunning istimulation iin iterms iof ispeed iand icapacity. iIn

idebugging iin iterms iof ipower iand ipredictability. iIn itest ibench idevelopment iin istimulus

icoverage iand ireuse iand itest iplanning iin iterms iof imetrics ianalysis iand iprocesses.

 Page i16 iof i58

2.11 JTAG PROBE

 Fig i2.9 iJTAG probe and logic analyzer

 A boundary –scan (JTAG) based simple logic analyzer and circuit debugging software which

test on chip internal logic, e.g debug CPLD firmware .No special knowledge is required to use

boundary –scan technology as JTAG Probe in Fig 2.9.

2.12 DESIGN OF MEMORY PORTS IN VELOCE

The Veloce is multicore processor in which all the designs and processors work parallely with

8 times speed then the simulator .the memory ports can be designed with the inference of the

memory declaration. With this optimization the memory inference cen be increased and the

Memory ports can be decreased using the one hot logic technology.

2.13 CONCLUSION

The following chapter discusses the emulater product named veloce, how this emulator work.

The specifications of the veloce, how veloce will able to resolve the problems related to

simulator and what is need for an emulator. The efficiency and precesion of the emulator. The

Emulator is like a replica of the actual hardware and the chip in which we can test the things in

real world which is not handled in simulator. So the Emulator is able to decarese the

compilation time and improve all the acuaracy which is not achieved by using the simulator.

 Page i17 iof i60

CHAPTER 3

 REGISTER TRANSFER LEVEL (RTLC) COMPILER FLOW

3.0 INRTODUCTION

 In the Veloce compile flow, Register Transfer Level Compiler acts as a front end. It reads

the RTL description (in verilog/vhdl/systemVerilog) and converts that to a structural

netlist with the logic mapped to Veloce FPGAs. RTLC has multiple phases – (1) Analyze

phase which reads the RTL description and dumps an Object Model of it (2) Synthesis

engine which operates on this Object Model and converts that its own representation of the

OM (NOM) and synthesizes the netlist. It also accepts netlist description (netlist created by

RTLC or other tools targeting a different FPGA technology). Apart from dumping the

netlist equivalent of RTL, to enable debugging, RTLC also dumps the debug database –

containing information about signals that will have required name-map(since netlist can’t

have 2D/3D signals) and information related to signals that were transformed to memories.

RTL

+

Structural

net-list

 Fig 3. 1 Analysis and Synthesis for RTLC FLOW

3.1 THE RTL DESCRIPITION IN VERILOG/VHDL

RTL in Fig 3.1 could also be a verilog netlist description mapped to a different FPGA

technology (may be station). In such a case of verilog netlist, the description of the behavior

of the technology cells of that FPGA should also be provided to analyzer. RTLC compile

can be imagined as a three step process – (1) Analyze the RTL (2) Elaborate and partition

the design (3) Synthesized RTL in each partition.

 Page i18 iof i58

on a user option. It takes the user RTL, does syntax checks, and dumps an OM

representation of the RTL. Driver reads this OM, elaborates the design, creates a folded

graph with nodes as modules, associates cost for each node and partitions the graph into

sub graphs and invokes synthesis phase(s) on a sets of sub graphs. NodeExpander reads

the velsyn options, and dumps an annotation file for RTLC collating the information in

velsyn annotation files. Thie helps RTLC instrument ceratian nets in a way to allow

velsyn to successfully apply the user annotation.

3.2. MODULE ELABORATION

 The VHL module of upward hier ref path in which top , middle and bottom modules are given

..

module top_ver()

mid_vhdl m1();

mid_vhdl m2();

endmodule

entity mid_vhdl();

end;

architecture rtl of mid_vhdl

bot: bot_ver();

leaf: leaf_ver();

end rtl;

module bot_ver();

leaf_ver l1();

endmodule

module leaf_ver();

endmodule

For the given RTL description, the folded view created in RTLC-Elaborate will be as

shown …The numbers b/w <> represent the cost of compiling the module. Lets assume

that the maximum cost per partition allowed is 400. We start with traversing from the

‘top’. We first traverse along the cross language children so that they can be partitioned

 Page i18 iof i60

out and the rest of the children can be partitioned later. The hier-costs of each of the

modules will be sum of cost of that module and hier-costs of all its children. Since top has a

vhdl module, we try to partition that first. Now we enter mid_vhdl. Since this has cross

language modules, we try to partition those. We enter bot_ver. The hier-cost of bot_ver =

120 + 500 > 400. So we first need to create a partition for leaf_ver and then worry about

bot_ver. Now we enter leaf_ver. The cost of this module is 500 > 400 but we can’t partition

this further. So we create partition1 for leaf_ver. Back to bot_ver, the hier-cost of bot_ver

will now be just 120. We can put this in a partition – partition 2. This partition has a free

space of 280 still. Back to mid_vhdl. The hier-cost of mid_vhdl now is 240. We create a

vhdl partition – partition3 for this. Now we enter top_ver. The hier-cost is only 200, since

all its children are already partitioned. There is a verilog parittion with a free space of 280.

Therefore both bot_ver and top_ver will be in the same partition.

3.3 RTLC-VLE SYNTHESIS ENGINE

The core synthesis is done by rtlc-vle ,The general flow is divided into various steps as

shown .rtlc-vle will work on multiple tops as suggested by rtlc-elaborate during

partitioning. It needs to elaborate the part of the design that was alloted to this

partition, create an intermediate DS to hold the module information and operate on that

DS. First such intermediate DS is the CDFG (CFG + DFG). This is created for each

concurrent statement (ex: always block). We traverse along these graphs, partition

them at various points, identify the various paths in the graph, the values each operand

takes along those paths, perform the data flow analysis – based on which we categorize

each net as simple wire/ reg/ latch. Then we allocate resources along the datapath –

such as adders/multipliers etc. We perform optimizations on the eventual netlist object

model. The eventual optimized NOM is fed to techmap to dump the final netlist.

P a g e 19 | 60

3.4 CDFG (CONTROL AND DATA FLOW GRAPH)

 Fig 3.2 Exapnsion of control and data flow graph

This is a simple example to show the Control and data flow graph (CDFG) representation

of a simple case statement. Note that, as simple a description as this results in a lot of

temporary variables to deal.

It Represents control flow graph of the case statement, how the case statements work

internally the conversion of the assignment statement actually move through the control

And data flow graph. The case statements which are used in Verilog and VHL coding

internally work in this control and data flow Graph (CDFG).

P a g e 20 | 60

3.4 CDFG EXAMPLE 2 (CONTROL AND DATA FLOW GRAPH)

 Fig 3.3 Expansion of control and data flow graph in tasks and function

This control and data flow graph in Fig 3.3 expands the tasks and the function code in

Verilog with this flow, we can expand the function and the task.

The CFGs of the module contains only the instantiation of always block. The CFG of

the always internally has the instance(s) of the task. Based on the cost (some heuristic),

the DH_TASK may be chosen for flattening. Note that Pseudo state cuts are created at

the root of each CFG. Pseudo state cuts are also created at each join node (such as end

of if condition/ endcase in case statement etc). Based on the statecuts, the CFG is

considered to be consisting of various paths containing path segments. A data structure

(PVM) containing information about each operand along each path of the CFG is

created.

P a g e 21 | 60

3.5 CDFG (CONTROL AND DATA FLOW GRAPH)

 Fig 3.4 Control and data flow graph with always block

The CFGs in Fig 3.4 of the module contains only the instantiation of always block. The

CFG of the always internally has the instance(s) of the task. Based on the cost (some

heuristic), the DH_TASK may be chosen for flattening. Note that Pseudo state cuts are

created at the root of each CFG. Pseudo state cuts are also created at each join node

(such as end of if condition/ endcase in case statement etc). Based on the statecuts, the

CFG is considered to be consisting of various paths containing path segments. A data

structure (PVM) containing information about each operand along each path of the

CFG is created.

1. The CFGs of the module contains only the instantiation of always block.

2. The CFG of the always internally has the instance(s) of the task.

3. Based on the cost (some heuristic), the DH_TASK may be chosen for flattening.

4. Note that Pseudo state cuts are created at the root of each CFG. Pseudo state cuts

are also created at each join node (such as end of if condition/ endcase in case

statement etc).

5. Based on the statecuts, the CFG is considered to be consisting of various

paths containing path segments.

6. A data structure (PVM) containing information about each operand along each path

of the CFG is created.

P a g e 22 | 60

7. Such a DS for the two states of the always block is shown above.

8. The condition for the paths is also present.

9. Based on the values taken by each operand along various paths of the CFG, resources

(such a MUX/ADDER/etc) are allocated.

3.6 TECHCELL FLOW

Apart from handling RTL, RTLC can also optimally handle the structural pre-

synthesized netlist. The technology cells need to be specified through the “-techlib”

option. RTLC remaps this net list to optimal MED_<LUT/Cell> equivalent.

1. Verilog code for The Techcell Flow how the modules like gtech _and are

instantiated inside the Top Module.

module Top(in1, in2, in3, in4, out);

output out;

input in1, in2, in3, in4;

wire temp1, temp2;

gtech_and i1 (in1, in2, t1);

gtech_and i2 (in3, in4, t2);

gtech_and i3 (t1, t2, out);

endmodule

module gtech_and(in1, in2, out);

output out;

input in1, in2;

assign out = i1 & i2;

endmodule

This is usually the flow employed while importing netlist(compiled for a certain target

Technology). The basic cells of that technology are referred to as techCells. Since the

behavioral definitions of techCells is provided to RTLC, they will be treated as being

no different from regular modules.However, these basic blocks need to be flattened out

to get optimal mapping for Veloce FPGA. To enable this, all the modules that refer to

these technology cells, should be provided to RTLC for analysis with the option –

techlib. The analysis OM of these modules will be marked as techcells and shall be

flattened out by default.

P a g e 23 | 60

3.7 FLATTENING SUPPORT

 Motivation for flattening a module

 1. To reduce the database size.

 2. To Enable cross boundary logic optimizations.

 3. To Enable retiming across boundaries to reduce the critical path delay.

 Options provided by RTLC to enable flattening

 1. -flatten_mod <module_name>

 2. All the instances of the specified module get flattened into respective parents where

ever possible (e.g. instances will not get flattened into cross-language parents).

 3. Flatten_hier <module_name>

This option can be used to flatten all the instances under a particular hierarchy (i.e. all

modules under <mod_name>). This reduces user’s effort in specifying –flatten_mod

on a number of modules which essentially get covered under a particular hierarchy.

3.8 DESIGNWARE INETGRATION WITH RTLC

 1. Support for seamless integration with Synopsys DW component

 2. Support for complicated floating point and FIFO controllers have been added which are

extensively used at Intel.

 3. DW component support is provided on customer requirement basis.

 4. Similar to library integration, where RTLC selects its definition where no DW definition is

given.(i.e. user specified RTL modeling gets higher priority)

Design Ware components are building block IP components. DC/Synopsys provides a library

of DW components (which are building block IP components – various commonly used

functions/data path resources). Designers can instantiate their components directly without

having to worry about the implementation details. It is expected that their implementations

shall be optimal(capacity/performance). The RTL written by our customers have these

components instantiated and their definitions may not be provided with the assumption that

they are part of library. Based on the simulation model provided by Synopsis, RTLC created

(not complete) a library of synthesizable model (fairly optimized).

P a g e 24 | 60

3.9 EXAMPLE FOR DESIGN WARE INTEGRATION

 The design ware components behave like macro in which only the name DW01_addsub is

 Used for the direct addition and subrataction, It is not needed to write full code for the

 Subraction and addition only the design ware macro can be used to implement this code.

module top(A,B,CI,ADD_SUB,SUM,CO, temp);

output [7 : 0] SUM;

output CO;

input [7 : 0] A, B;

input CI, ADD_SUB;

output [7 : 0] temp;

DW01_addsub #(8)

DW01_addsub_test(.A(A),.B(B),.CI(~CI),.ADD_SUB(ADD_SUB),.SUM(SUM),.CO(CO));

assign temp = A;

Endmodule

module DW_mag_module(a, z);

parameter width=9;

parameter size=8;

input signed [width-1:0] a;

output signed [size-1:0] z;

`include "DW_dp_absval_function.inc“

assign z = DWF_dp_absval(a);

endmodule

P a g e 25 | 60

3.10 EXAMPLE OF THE DESIGN WARE COMPONENTS

 Here the VHDL code dor the Design ware component DW01 is written, Here it is not

 Needed to write the whole code of the generic mapping , only the macro for the DW

 Is used for decoding the generic mapping in which the design ware library for the

 DW01 is used with the IEEE libraray.

library IEEE,DW01;

use IEEE.std_logic_1164.all;

entity top is

port(A : in std_logic_vector(3 downto 0);

B : out std_logic_vector(15 downto 0));

end top;

architecture sim of top is

component DW01_decode

generic(width : POSITIVE);

port(A : in std_logic_vector(width-1 downto 0);

B : out std_logic_vector(((2**width) - 1)

downto 0));

end component;

begin

test : DW01_decode generic map (4)

port map (A=>A,B=>B);

end sim;

P a g e 26 | 60

3.11 TRADITIONAL ENCRYPTION TECHNIQUES

 Fig 3.5 The Encryption techniques with originator and end user

Traditional encryption techniques are of two types in Fig 3.5 –

(1) Symmetric – Where the encryption key is shared by the originator with the end user.

Only those with this key can decrypt the source.

- This is fast but less secure

(2) Asymmetric – Where the encryption is done using key1 while decryption is done with

key2 i.e. a key pair is used here. The Encryption key is a public key shared by the end

user with the originator. The originator encrypts the source and sends the encrypted

data to the end user. The end user will use the private key (key2), the access to which

is available only with the end user, to decrypt the encrypted source.

- This is more secure but slow

P a g e 27 | 60

 Automatic memory inference is supported in both vhdl & verilog for

◼ 2-Dimensional Signal

◼ N-Dimensional Signal

◼ Byte Enable Memory

◼ Array of complex structure/record

◼ Most important optimization to optimize the capacity of the design.

◼ Memory inference is dependent on both declaration and usage.

◼ Examples:

 The Memory address is the gien which is the input to the data and then the data is

 Written which acts like the write data the the data received is given to the output

 Port which acts like the read data is received by the Read port. So the memory has

 Read and the write data.

Usage : RAM[waddress] = data // Memory write port

out = RAM[raddress] // Memory read port

reg [a1:a2] RAM [b1:b2][c1:c3] // N-Dimensional Signal

Usage : RAM[waddr1][waddr2] = data // Memory write port

out = RAM[raddr1][raddr2] // Memory read port

Primary advantage of memory inference is improvement in capacity.

Memory is inferred for a signal based on its declaration and usage. Any access to such

a signal will be implemented via a readPort/writePort.Automatic Memory Inference

 P a g e 28 | 60

3.11 MEMORY WITH SYNC_ASYNC RESET?SET

 Here the Memory can be represented with the Asyncronous reset if the the reset is

 Given in the problem statement , it is represented with synchronous reset if the

 Reset is not mentioned in the problem statement.

Assigning complete memory in synchronous/asynchronous reset/set condition

reg [0:7] RAM [0:255];

always @ (posedge clock or posedge reset)

begin

if (reset)

for(int I = 0; I < 256; I++)

RAM[I] = 0;

else

begin

RAM [waddr] = din;

Dout = RAM [raddr];

end

end

Subtype slv8 is std_logic_vector (0 to 7)

Type RAM is array (0 to 255) of slv8

Signal memory : RAM;

Process (clock, reset)

Begin

if (reset) then

for I in 0 to 255 loop

RAM(I) <= (others => ‘0’);

end loop;

elsif (clock’ event && (clock = ‘1’)) then RAM (waddr) <= din; Dout

<= RAM (raddr);

end if;

End process;

 P a g e 29 | 60

3.13 PRAGMA CONTROL

 VERILOG PRAGMA ATTRIBUTE

 Verilog:- // pragma attribute <signal-name> <pragma-name> 0/1

<signal-name> = name of register array

<pragma-name> = ram_block = force implementation as built-in memory

core logic_block = force implementation as register array gates 0 = disable, 1

= enable

The Verilog attribute is represented in the following manner where the Ram

Block 1 is mentioned.

Ex: reg [31:0] core [63:0]; // 64x32 bit memory array

// pragma attribute core ram_block 1

 VHDL PRAGMA ATTRIBUTE

 Vhdl:- attribute <pragma name> : boolean;

 attribute <pragma name> of <signal-name> :

 <signal/variable> is <true/false>

false = disable, true =

enable Ex:

VHDL attribute is

represented in the following

way in which RAM

BLOCK of type is true

signal core : ram_type; -- memory array

attribute ram_block : boolean;

attribute ram_block of core : signal is true;

 P a g e 30 | 60

14 CROSS SHARING

 Fig 3.7 Cross –Sharing between the combinational loops

Caution must be taken while sharing resources. Sharing must be done in such a way that it

does not result in any combination loop (albeit a false loop). In the above example in Fig 3.7,

since only two adders are required essentially, we can try to optimize the logic by sharing the

Adders. If Adders X2, Y1 are shared (owing especially to the shared input ‘B’) and Y2, X1 are

shared (owing to the shared input ‘C’), it would result in a false combinational loop. Note that

its not a loop in the strict sense –

Case (i) – When sel == 0 => The loop is broken at 1
st

 Mux

Case (ii) – When sel == 1=> The loop is broken at 2
nd

 Mux

Such a false combination loop may not be solvable for a timing estimation tool resulting in

incorrect estimates.

 3.15 CONCLUSION

 This chapter gives brief introduction about the Register transfer level compile flow in which it

has analyzed the control and data flow graph in which it has many traversals.The system needs to

pick the most optimized control and data flow graph. This graph will optimize all the control and

data related issues .The control and data flow graph will analyze all the nodes of a register transfer

level module and then it has to optimize the path so this compile flow will tells where to optimize

all the RTL level.

P a g e 31 | 60

CHAPTER 4

 OPTIMIZATION OF MEMORY PORTS

4.0. INTRODUCTION

This Optimization is done in case of there are large Number of ports which can hamper the

memory during synthesis. So with this conversion we are converting it into single port and

also we are reducing the compilation Time.

In case enrolling of the loop, it has the constant address in that case they are not declaring it as

memory, it can be declared as logic Block in which we have many adders, Multiplexers and

LUTs which takes a lot of area for the chip. Thus memory Inference is really important and

helpful in chip designing, In this to infer memory through this optimization in this case for

and if statement is converted into simple if statement, thus that only one write port works at a

time. This makes the memory to be inferred causing the small area and better performance of

the chip.

 Compilation time is also got reduced with this optimization of ports of memory. In which

only the one write port is active at a time.

 4.1 FOR IF LOOP IS CONVERTED ITO SIMPLE IF STATEMENT

The For loop and the if statememt are converted into single if statement using this conversion.

 For (i=C1 ; i< C2 ; i++)

 begin
if(i == named Object Use)
<Assignments(only)>

 end
|

 (conversion)

 if((named Object Use >= C1) && (named Object Use < C2))
 <Assignments>

 P a g e 32 | 60

Fig 4.1 the for if enrolling of the loop with memory declaration.

 4.2 ALGORITHM AND APPROCH

 Conversion is done while pre Traversal before CDFG conversion in Fig 4.1.

1. Check FOR Loop whether conversion is possible or not. (Eg check generic for loop , if

condition)

2. If conversion is not possible then return.
3. If conversion is possible save the for loop in a list.
4. Iterate over this list, once the traversal is done. Check for if conversion is possible (Eg memory

element. Mem access type pattern on that dimension.
5. If conversion is not possible, then traverse the non converted with different object.
6. If conversion is possible, then traverse the converted loop with the different object.

Store it into a table then finally we use it for the conversion.

P a g e 33 | 6

4.3 ACCESSING THE MEMORY BLOCK

Logic [7:0] memory [255:0] [3:0]

Logic block Memory block Logic block

1 2 3

ADDRESS

ACCESS

TYPE

ADDRESS

ACCESS TYPE

DATA

ACCESS TYPE

Static access Non static access Static access

[255:0] [3:0] [7:0]

Memory is declared which is really important to declare otherwise it causes the logic block to be

made which consists of adders, Multiplexers and logic blocks which increases the capacity of chip.

 By memory inference we are able to mark memory. In this memory declaration we have 256 address

depth and 4 bits we have 3D memory and 8 bits the data width.

There is packed and unpacked array in which we have the data width is considered in case of packed

array and the unpacked array we have the address depth. The first bit is considered to be the no. of

memory blocks and second bit decides the no. of bits in the memory depth.

In unroll able for loop we have constant address in that case memory is not declared, it is assumed as

a logic block which makes the area of the chip to exponentially increases and memory is not inferred

where in case of optimization the conversion of for loop makes it non - static address corresponding

to it memory is inferred, this cause the chip size to decrease. Hence the optimization of device is

there.

 So this optimization is really helpful in maintaing the balance between the area and the performance.

With the data out comparsion between the questa and Register Transfer level compiler, we can get the

results of memory inference with simulation and emulation. So the Questa and The Register Transfer

level compiler are very important in case of these simulation and Emulation.

Fig 4.2 The Read and Write Ports of The Memory (There 50 write ports and one read port)

In this Verilog Program we have 50 write ports and one Read port with this optimization of

memory block in Fig 4.2 at a time only one Read port is active which is actually needed to compile

the testcase. Hence this optimization is good, because it helps in inference of memory causes this

enrolling of the for loop to convert it into the single if statement.

This Verilog program represent how we need to use the chain of muxes in case of the output. But

with this optimization we can stop this unrolling abd convert this for loop into the single if

statement.

 P a g e 36 | 60

Fig 4.3 Questa output of the memory represtentaion.The simulation output of the results

Here in this CDFG represtation in Fig 4.3, we have the questa output, how the VMW PARAMEM

Formed .Here the different wires are declared like we have to represent it in the form of wires.

Where we have only inputs and outputs, there is no storage elements.

 In Verilog the storage element is represented by register. So in this module we have clock, address

bits, data bits to represtent it the form of memory block.So this CDFG reprentation is helpful in

preanalyzing the data and control flow of the loop.

This Module is represented in the form of continuous enrolling of the For loop such that it helps in

the generaling the control and data flow graph without optimization.

4.4 VAILD SCENARIOS WHERE CONVERSION OCCURS

Here there is convertion of the for if loop in which I is used in dimension with Static , Non_ Static ,

Static + Non_Static Access Type and Default Access Type.

The Memory read and write

ports

module top(clock,addr,din,dout);

input clock ; input

[9:0] addr ; input

[7:0]di

output[7:0] dout;

 integer i;

 reg [7:0] mem[1023:0]

assign dout = mem[addr] ;

always @(posedge clock) begin

for(i = 0; i < 50; i=i+1)

begin

if(i == addr)

mem[i] <= din ;

end

end

endmodule

Here The Mem Access Type of I is Static so we are converting this For If loop.

Here in This loop for conversion, we have to check the access type of the variable to be converted.

Hence it is determined with the help of register Transfer level Language, how this RTL language is

converted into the C language code. This is all about the conversion, there is the conversion of these

for loops into the if statement.Thus with the help of this code, there is the optimization which is

related to all the for loop conversion. Hence all the conversion is done according memory access

pattern. We should carefully observe all the memory patterns of theis loop is statements which helps

in the conversion of if statement.

P a g e 38 | 60

4.5 HANDLING OF DIFFERENT OPERATORS

The statement is the FOR loop conversion without memory block

The cases where the logical (And) (&&) operator is used we are checking whether there is logical

equal (==) operator is also used in that case we are converting. always @ *

Here Different operators are handled with certain limits and integer are handled and operator

and or operator, then have to merage all the operators if logical equal to operator is there. So the

Enable switches will not impact the optimization since they logical equal to operator is given

preference due to the preference of the logical equal to the OR operator and the AND operator

is not taken into considersation.

Handing of the operators in if condition is really important. Because if condition will decide

when we have to choose the differences in case of the operator handing.

All the Verilog program begins with the positive edge of the clock which decides at what edge

the clock, begins to work. The clock will stabilize and then will get the output in case of every

positive edge of the clock. Then the for loop starts to enroll, Thus this changes will cause the

positive edge of the clock to occur.

Since first of all the logical equal to operator is compared in case of the loops. Then will check

the logical and operator, so need to check the logical equal to operator and then need to check

the logical and operator. These are the comparisons which we need to made in case of the

logical and and equal to operator.

The For and if loop without memory Block.

 Always@(posedge clk)

begin

out1 = 0;

for(integer i = 0; i < 8; i++)

if(i == in2 && (enable1 || enable2))

out1[i] = in1[i];

end

P a g e 39 | 60

 4.6 Enrolling of the For Loop

 Here to discuss the internal working of the loops while expansion through control and data flow

graph (CDFG)

 In case they are converting we will write on CDFG otherwise we will not.

 //NOP_1; //CDF_1

 [-] i[31:0] [+]= [+]1'd0[0]{0}; //CDF_2

 [+] rtlc0n0 = ([+] 32’d00000000000000000000000000000000[31 :

 {00000000000000000000000000000000} [+] == [+]addr[9 : 0]);

//CDF_7

 //NOP_8; //CDF_8

 //NOP_1260; //CDF_1260

 [+] rtlc0n102 [-1:-1] [+] = [+] rtlc0n0; //CDF_1261

 [+] rtlc0_mem_write_datain_n3 [7:0][7 : 0] [+]= [+]din[7 :

0];

//CDF_11

This how it can seen the enrolling of the for loop at the CDFG level. The control the data flow

is that step in design flow when there is not optimization occurs.

A general graph is formed where we can decide whether this graph like structure in which we

have control and the data flow in which there can be enrolling the for loop which consist of the

graph like structure in terms of the control and the data flow ie CDFG level . Here we can see

that there is enrolling of the for loop occurs where we can see that no optimztion occurs at the

CDFG i.e control and data flow graph.

 P a g e 40 | 60

The Memory Inference is handed for Hard constraints.

Path for all the test cases /in/innrtlc15/perry/testcase/memory/ which have been tested during my

testing.

 Fig 4.4 the various read and the write ports in terms of control and data flow graph.

The various Address bits and data bits in Fig 4.4 are represented interms of CDFG level.The Model

is converted into a vele memory such that memory is inferred at this level. So that various data out

and memory is represented in the form of decoder the memory read decoder the memory write

decoder. All the input data read and output data write is represented interms of the decoder The Vcc

and address depth bits and data width all is represented interms of the decoder.

 P a g e 41 | 60

The Netlist conversion of the Verilog Module. How the various LUTs and Modules are formed in

case of the Optimization of the loop.

 Fig 4.5 NETLIST and the memory declaration with the Look up Table (LUTS) Formation

In this module in Fig 4.5 we have vaious LUTs and Flip Flops are there as a storage elements

which helps in the formation of various components of the chip. Since the MED_FD which means

the mentor Emulation Division D flip flops means the data flip flops which are able to store the

data information. These Look up table can also be represented in any form in which there has to

represent the logic so the VMW_PARA_MEM is really important to optimize the area of the chip.

 P a g e 42 | 60

4.6 COVERSION CASES

The memory can be respresented in the form of part select :

 for(i = 0; i < 50; i=i+1)

begin

if(i == addr)

mem[i+: 8] <= din ;

Here the memory is represented in the form of the part select, in which it takes a only the part of

the memory

The idigital idesign isystem iis idescribed iin iVerilog ibecause ihigh ilevel iVerilog idesigns iare

iusually idescribed iat ithe ilevel ithat iconsist iof isystem iregisters iand itransfer iof idata

ibetween ivarious iregisters ithrough ibuses, ithis ilevel iof ihigh ilevel idescription iis icalled ias

iregister itransfer ilevel i(RTL). Verilog iconstruction iused iin iRTL ilevel idesign iare iprocedural

istatements icontinuous iassignments iand iinstantiation istatements.

Since The part select conversion can include only the portion of the memory. Thus the complete

flow of the memory is not able to include the complete flow of the memory which causes the

memory to be optimally utized such that the part selection of the memory is not included interms

of the optimization. Thus the optimally inclusion of the memory needs the complete declaration.

Not the part selection of the memory.

A idigital isystem idesigned iin iVerilog ishould ibe isimulated iand itested ifor ifunctionality ibefore iit

iis iturned iout iinto ia ihardware iwhile isimulation idesign ierrors iand iincompatibility iof icomponents iin

ithe idigital idesign, iall iare idetected. iIn isimulation, ia idigital idesign ineed igeneration iof itest idata iand

iobservation iof iall isimulation iresults. iThis iprocess ican ibe idone iby iuse iof ia iVerilog imodule ithat iis

icalled ias ia itest ibench. I

A iVerilog itest ibench iuses iHDLs iconstructs ifor igeneration iof idata imonitoring iof iresponse iand ieven

ihandshaking iof ithe idesign. iIn ithe itest ibench, ithe idesign iis iinstantiated iwhich iis ibeing isimulated ithe

itest ibench itogether iwith idigital idesign.

P a g e 43 | 60

 Fig 4.6 various parts of the memory the write enable and the input of the memory.

In Memory Block there are write enables and the read enable and the Byte enable as well how

much write and byte enable memory is required. Since the RTLC memory required for the write

enable as well as byte enable. There needs the memory to be declared with address read and wrte

ports. The data read and write port, the byte enable read and write port. The memory have various

enable which helps to write the adrees bit in memory in Fig 4.6.

 In Verilog the storage element is represented by register. So in this module there is a clock,

address bits, data bits to represtent it the form of memory block.So this CDFG reprentation is

helpful in preanalyzing the data and control flow of the loop

 P a g e 44 | 60

 Fig 4.7 The memory formation also represents the write enables

In unroll able for loop in Fig 4.7 we have constant address in that case memory is not declared, it is

assumed as a logic block which makes the area of the chip to exponentially increases and memory

is not inferred where in case of optimization the conversion of for loop makes it non - static

address corresponding to it memory is inferred, this cause the chip size to decrease. Hence the

optimization of device is there.

So this optimization is really helpful in maintaing the balance between the area and the

performance. With the data out comparsion between the questa and Register Transfer level

compiler, we can get the results of memory inference with simulation and emulation

 P a g e 45 | 60

Fig 4.8 The CDFG flow of the rtlc param and memory flow

Here in this CDFG represtation in Fig 4.8, we have the questa output, how the VMW PARAMEM

Formed .Here the different wires are declared like we have to represent it in the form of wires.

Where we have only inputs and outputs, there is no storage elements.

Here in This loop for conversion, we have to check the access type of the variable to be

converted.Hence it is determined with the help of register Transfer level Language, how this RTL

language is converted into the C language code.

This is all about the conversion, we have converted these for loops into the if statement.Thus with

the help of this code, we can have the optimization which is related to all the for loop conversion.

Hence all the conversion is done according memory access pattern. We should carefully observe

all the memory patterns of theis loop is statements which helps in the conversion of if statement.

 P a g e 46 | 60

Fig 4.9 Testcases related to the For If Optimization.

In case enrolling of the loop in Fig 4.9, we have the constant address in that case we are not

declaring it as memory, it can be declared as logic Block in which we have many adders,

Multiplexers and LUTs which takes a lot of area for the chip. Thus memory Inference is really

important and helpful in chip designing, we are able to infer memory through this optimization in

this case for and if statement is converted into simple if statement, thus that only one write port

works at a time. This makes the memory to be inferred causing the small area and better

performance of the chip.

All the Verilog program begins with the positive edge of the clock which decides at what edge the

clock, begins to work. The clock will stabilize and then it will the output in case of every positive

edge of the clock. Then the for loop starts to enroll, Thus this changes will cause the positive edge

of the clock to occur.

 P a g e 47 | 60

4.7 HANDLING OF THE TASK AND FUNCTION

We are not handing the cases inside the task and function.

 We also not handing the Initial block.

for (i=0; i<d1 ; i=i+1)

begin
if(i%3 == 1)

memory[i] = (2**word_size1)-i-

1; else if(i%3 == 2)

memory[i] = (2**(word_size1/2))-i-

1; else
memory[i] = i;

end

In case of else condition we also not converting the for if loop.

Here in This loop for conversion, we have to check the access type of the variable to be

converted.Hence it is determined with the help of register Transfer level Language, how this RTL

language is converted into the C language code. This is all about the conversion, we have

converted these for loops into the if statement.

Thus with the help of this code, we can have the optimization which is related to all the for loop

conversion. Hence all the conversion is done according memory access pattern. We should

carefully observe all the memory patterns of theis loop is statements which helps in the conversion

of if statement.

There is packed and unpacked array in which we have the data width is considered in case of

packed array and the unpacked array we have the address depth. The first bit is considered to be

the no. of memory blocks and second bit decides the no. of bits in the memory depth.

P a g e 48 | 60

4.9 MEMORY ACCESS TYPE OF THE MEM BLOCK

 reg [7:0]mem[1024:0][101:0]

always @(posedge clock)

for(i = 0; i < 101; i=i+1)

if(i == sel)

mem[addr][i] = d1 ;

In this case also we are not converting because we have access pattern of I is not from the Static,

Non_static, Static + Non_static and Default Access Type.

A general graph is formed where we can decide whether this graph like structure in which we have

control and the data flow in which we can enroll the for loop which consist of the graph like structure

in terms of the control and the data flow ie CDFG level .

Here we can see that there is enrolling of the for loop occurs where we can see that no optimztion

occurs at the CDFG i.e control and data flow graph.

 Here in This loop for conversion, we have to check the access type of the variable to be converted.

 Hence it is determined with the help of register Transfer level Language, how this RTL language

is converted into the C language code. This is all about the conversion, we have converted these for

loops into the if statement.

Thus with the help of this code, we can have the optimization which is related to all the for loop

conversion. Hence all the conversion is done according memory access pattern. We should carefully

observe all the memory patterns of theis loop is statements which helps in the conversion of if

statement.

Compilation time is also got reduced with this optimization of ports of memory. In which only the

one write port is active at a time. This is done with the help of Register Transfer level (RTL)

compiler and the Questa simulator. We compared the results with the simulator as well as emulator

 P a g e 49 | 60

4.10 EXAMPLE OF THE FOR_IF CONVERSION WITHOUT MEMORY

BLOCK

The Module with input and output ports without memory block.

module top(clock, addr, din, out1);

input clock ;

input [4:0] addr ;

input logic [7:0] din ;

integer i;

output logic [7:0] out1[31:0] ;

always @(posedge clock)

begin

for(i = 0; i < 7; i=i+1)

begin

if(i == addr)

out1[i] <= din ;

end

end

endmodule

The idigital idesign isystem iis idescribed iin iVerilog ibecause ihigh ilevel iVerilog idesigns iare

usually idescribed iat ithe ilevel ithat iconsist iof isystem iregisters iand itransfer iof idata ibetween

ivarious iregisters ithrough ibuses, ithis ilevel iof ihigh ilevel idescription iis icalled ias iregister

itransfer ilevel i(RTL). Verilog iconstruction iused iin iRTL ilevel idesign iare iprocedural

istatements icontinuous iassignments iand iinstantiation istatements.

 I

4.11 CONCLUSION

This chapter gives the brief introduction about the Memory. The declaration of memory, how to

decrease the size of chip using the for if optimization, this chip introduces the for if optimization.

In which the memory inference take place by reducing the no. of ports which cause the addres ,

subractors and multiplxers are not formed in place of it memory is formed which causes the size of

the chip to reduce so it able to reduce the capacity of the ICs and chip . It also reduces the

compilation time which further inhances the performace of the circuit. So overall it able to enhance

the capacity, performance and speed of the digital circuits which causes our Verfication technology

to excel in the market.

 P a g e 50 | 60

 CHAPTER 5

RESULTS AND CONCLUSION

5.0INTRODUCTION

The below Table shows the comparsion between the compilation Time with and without

optimization. The memory is inferred in the case of optimization where in other case, the logic

Block is formed.

 SIMULATION RESULTS

 EMULATION RESUTLS

 Compilation Time without

Optimization

 Compilation Time with

 Optimization

 Compilation Time without

 Optimization

 Compilation Time with

 Optimization

 8 sec 1 sec 7 sec 1 sec

 12 sec 3 sec 10 sec 3 sec

 15 sec 4 sec 12 sec 4 sec

 17 sec 5 sec 15 sec 5 sec

 Compilation time is also got reduced with this optimization of ports of memory. In which only the

one write port is active at a time. This is done with the help of Register Transfer level (RTL)

compiler and the Questa simulator. We compared the results with the simulator as well as

emulator.

Memory is not inferred where in case of optimization the conversion of for loop makes it non -

static address corresponding to it memory is inferred, this cause the chip size to decrease. Hence

the optimization of device is there.

In Memory Block there are write enables and the read enable and the Byte enable as well how

much write and byte enable memory is required. Since the RTLC memory required for the write

enable as well as byte enable. We need the memory to be declared with address read and wrte

ports. The data read and write port, the byte enable read and write port. The memory have various

enable which helps to write the adrees bit in memory.

 P a g e 51 | 60

 Fig 5.1 The Verilog Module for the initialization of the memory.

5.1 FORMATION OF LUTS AND MULTIPLEXERS

In case enrolling of the loop in Fig 5.1, it has the constant address in that case we are not declaring

it as memory, it can be declared as logic Block in which it has many adders, Multiplexers and

LUTs which takes a lot of area for the chip. Thus memory Inference is really important and helpful

in chip designing, this is able to infer memory through this optimization in this case for and if

statement is converted into simple if statement, thus that only one write port works at a time.

 So this optimization is really helpful in maintaing the balance between the area and the

performance. With the data out comparsion between the questa and Register Transfer level

compiler, we can get the results of memory inference with simulation and emulation

 P a g e 52 | 58

 Fig 5.2 Pragma Representation of the mem RAM-BLOCK 1

5.2 CONVERSION OF FOR TO IF STATEMENT

 Here in this loop for conversion in Fig 5.2, it has to check the access type of the variable to be

converted.Hence it is determined with the help of register Transfer level Language, how this RTL

language is converted into the C language code. This is all about the conversion, it has converted

these for loops into the if statement.Thus with the help of this code, it can have the optimization

which is related to all the for loop conversion. Hence all the conversion is done according memory

access pattern.

 In unrollable for loop it has constant address in that case memory is not declared, it is assumed as

a logic block which makes the area of the chip to exponentially increases and memory is not

inferred where in case of optimization the conversion of for loop makes it non - static address

corresponding to it memory is inferred, this cause the chip size to decrease.

 P a g e 53|60

5.3 A COMPARTIVE ANALYSIS OF QUESTA AND REGISTER

TRANSFER LEVEL

 The idigital idesign isystem iis idescribed iin iVerilog ibecause ihigh ilevel iVerilog idesigns iare

iusually idescribed iat ithe ilevel ithat iconsist iof isystem iregisters iand itransfer iof idata

ibetween ivarious iregisters ithrough ibuses, ithis ilevel iof ihigh ilevel idescription iis icalled ias

iregister itransfer ilevel i(RTL). Verilog iconstruction iused iin iRTL ilevel idesign iare iprocedural

istatements icontinuous iassignments iand iinstantiation istatements.

 In unrolling for loop it has constant address in that case memory is not declared, it is assumed as a

logic block which makes the area of the chip to exponentially increases and memory is not inferred

where in case of optimization the conversion of for loop makes it non - static address

corresponding to it memory is inferred, this cause the chip size to decrease. Hence the optimization

of device is there.

Here in This loop for conversion, it has to check the access type of the variable to be

converted.Hence it is determined with the help of register Transfer level Language, how this RTL

language is converted into the C language code. This is all about the conversion, it has to be

converted these for loops into the if statement.Thus with the help of this code, we can have the

optimization which is related to all the for loop conversion. Hence all the conversion is done

according memory access pattern. It should carefully observe all the memory patterns of theis loop

is statements which helps in the conversion of if statement.

 In unroll able for loop it has constant address in that case memory is not declared, it is assumed as

a logic block which makes the area of the chip to exponentially increases and memory is not

inferred where in case of optimization the conversion of for loop makes it non - static address

corresponding to it memory is inferred, this cause the chip size to decrease. Hence the optimization

of device is there.

 P a g e i55 i| i60

 Fig 5. 3 Precesion tool with for loop optimizatiom

5.4 READ AND WRITE ENABLE IN MEMORY BLOCK

 In Memory Block there are write enables and the read enable and the Byte enable as well how

much write and byte enable memory is required. Since the RTLC memory required for the write

enable as well as byte enable. We need the memory to be declared with address read and write

ports. The data read and write port, the byte enable read and write port. The memory have various

enable which helps to write the adress bit into the memory.

The precesion tool in Fig 5.3 is the tool for the formal verification with use of all the LUTs,

multiplexers with this tool which is very helpful for the gate level synthesis all the gate level

synthesis is done with the help of this precesion tool.

Fig 5.5 Precesion tool conversion of the FOR IF Optimization

This Precesion tool in Fig 5.5 makes the optimization is done in case of it has large Number of

ports which can hamper the memory during synthesis. So with this conversion it is converted into

single port and it is also reducing the compilation time.

5.4 CONCLUSION

In case enrolling of the For loop, it has the constant address in that case it is not declaring it as

memory, it can be declared as logic Block in which it has many adders, Multiplexers and LUTs

which takes a lot of area for the chip. Thus memory Inference is really important and helpful in

chip designing, it is able to infer memory through this optimization in this case for and if statement

is converted into simple if statement, thus that only one write port works at a time. This makes the

memory to be inferred causing the small area and better performance of the chip.

 CHAPTER 6

 MAIN CONCLUSION AND FUTURE SCOPE OF WORK

6.0 MAIN CONCLUSION

In this dissertation while working on the verification of digital design chips, the optimization of

time and space complexity is solved by using the memory inference and decreasing the number of

ports of memory. Various logic block like adders, subractors and multiplexers are solved by using

this optimization, further more all the results have been verified using the questa simulator of

mentor graphics and the Register transfer level compiler in which first of all it creates a library and

then analyze that file in disk and then compile the data , these both are the prcocedures for

simulations and then finally it also verified the results using emulator i.e VELOCE .The Emulation

process consists of the Velcomp flow in which it has a static graph which maintain all the

dependencies between each phase. In this flow in Fig 6.0 user needs to create the configuration file

named Veloce.config to provide all the options .So this present work concludes the optimization of

space of the chip and verification of the chip using the questa and register transfer level compiler

and the Emulator Veloce, where all the testing is done using the Velcomp flow which contains all

the PRERTLCFORDFT, PRERTLCFORUPF.

 Fig 6.0 Velcomp flow for the emulator

 Page 59 i| i60

PreRtlcForDFT

PreRtlcForUPF

ZeroIn

DesignCheck

RtlcAnalysis

TransactorAnalysInit
TransactorCompileInit
VelsynForAdvisor
RtlcAdvisor
RtlcFinal
TransactorAnalysisFin

TransactorCompileFin

QualifyRetime

6.1 FUTURE SCOPE OF WORK

This work can be extended in tasks and functions and other complex algorthims where every thing

works in repetitive fashion.

1. The process of synthesis and compilation is also reduced by decreasing the no. of flip flops with

enchancments in timing analysis.

2. A new logic can be developed which will enchance the optimzations for the no. of flip flops and

the retimmig which can also play a role in generating a new flow.

3. Retimming is also another technique which can decrease the timing analysis between two flip

flops which can be implemented in future in this project.

4. The verification of millions of IC and chips can be done with high precision and with less

amount of time. It can be supported for various other modules that can perform with larger

capacity.

5. Memory ports can be further decreased with more enchancements like creating the one hot logic

technique which can be implemented in future.

6. There can also be check for dissolving the bad memories as it can impact at the testcases where

bad memories can be dissolved.

6.2 COMING EMULATOR AND SIMULATOR

The recent Emulators VeloceX and VeloceY can be used in further research work in which they

can boost the runtime anad performance by 4.5 X , so all the testing of chips and ICs are further

inhanced by 2 X speed . By using these emulators, the reseach work can be further improvised by

using the millions of chips to test with high optimization. The Emulators provide the complete

verification by using the accurate performance analysis and the various advanced verfications

methodologies. It provides the compele verification such that advanced the testing of all the chips

and IC with advanced accuracy and with high optimization.

Page 60 i| i60

 REFERENCES

[1] Li H, Steurer M, Shi K L, et al.”development of a unified design, test, and research platform

for wind energy systems based on hardware-in the-loop real-time simulation.” Industrial

Electronics, IEEE Transactions on 53.4 (2006):1141-1151

[2] Rakopoulos, C. D., and E. G. Glakoumis. "Sensitivity analysis of transient diesel engine

simulation." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of

Automobile Engineering 220.1 (2006): 89-101.

[3] Bayat Sarmadi. S.. Miremadi. S.G.. Asadi. G., Ejlali. k, "Fast Prototyping with Co-operation

of Simulation and Emulauon." in Proceedings of 12th International conference on Field

Programmable Logic and Applications, 2002

[4] Canellas, N.. Moreno. J. M.. “Speeding up hardware prototyping by incremental Simulation

and Emulation”. in Proceedings of 11th International Workshop on Rapid System Prototyping,

2011.

[5] Clement. B., Herremeulc, R.. Lmtreihccq. E.. Ramanadin. B., Coulomb. p., Pogodalla, F.. "Fast

Prototyping: A System Design Flow Applied to a Complex System-On-Chip Multiprocessor

Design". in Proc. Of the ACM IIEEE Design Automation Conference [DAC). 1999

[6] De Micheli. G., Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[7] Evans, A.. Silburl, A., Vrckovnik, G., Brown. T.. Dufresne. M.. Hall, G.. Ho, T.. Liu., Y..

"Functional Veri-cation of large ASICS". In Proc. Of the ACM/ lEEE design Automation

Conference (DAC). 1998.

[8] IEEE Std 1076-1993: IECE Standard VHDL Language Reference Manual.

[9] IEEE Std 1364-1995: IECE Standard Verilog HDL Language Reference Manual.

[10] Kim, N.. Choi. H.. Lee, S., Lee. S., -C. Park. I.. -M. Kpn. C.. "Virtual Chip: Making Functional

Models Work On Real Target Systems", in hoc. Of the ACM/lEEE Design Automation

Conference (DAC), 1998.

[11]]Kudlugi. M. , Hassoun, S.. Selvidge. C.. Pryor. D.. "A Transaction-Bared Unified Simulation

and Emulation Architecture for Functional Verification," in Proceedings of 38th ACM/IEEE

Design automation conference, 2001, pp. 623.628.

[12] Rowson, J. A.. "Hardware Software Co-Simulation", in Proceedings of3 1st ACM/IEEE

Design Automation Conference. 1996. pp. 439440.

[13] Varghese, J., Butts, M., and Batcheller, J., "An efficient logic emulation system," IEEE Trans.

an VLSl Syst., vol. I, June 1993, pp. I7 I. 174.

[14]] Y. Zheng and D. Nicol, “A virtual time system for openvz-based network emulations,” in

2011 IEEE Workshop on Principles of Advanced and Distributed Simulation (PADS). IEEE, 2011,

pp. 1–10.

[15] D. Nicol, D. Jin, and Y. Zheng, “S3F: The Scalable Simulation Framework Revisited,” in

Proceedings of the 2011 Winter Simulation Conference, Phoenix, AZ, December 2011.

[16] M. Liljenstam, J. Liu, D. Nicol, Y. Yuan, G. Yan, and C. Grier, “Rinse: the real-time

immersive network simulation environment for network security exercises,” in Proceedings of

Workshop on Principles of Advanced and Distributed Simulation, 2005. PADS 2005. IEEE, 2005,

pp. 119–128.

[17] R. Fujimoto, “Parallel discrete event simulation,” in Proceedings of the 21st conference on

Winter simulation. ACM, 1989, pp. 19–28.

[18] Y. Zheng, D. Nicol, D. Jin, and N. Tanaka, “A Virtual Time System for Virtualization-Based

Network Emulation and Simulation,” Journal of Simulation, 2011, To appear

[19] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. McCanne, K.

Varadhan, Y. Xu et al., “Advances in network simulation,” Computer, vol. 33, no. 5, pp. 59–67,

2002.

[20]] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and ´ D. Becker,

“Scalability and accuracy in a large-scale network emulator,” ACM SIGOPS Operating Systems

Review, vol. 36, no. SI, pp. 271–284, 2002.

[21] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower, R. Ostrenga, and S.

Schwab, “Experience with DETER: A testbed for security research,” in 2nd International

Conference on Testbeds and Research Infrastructures for the Development of Networks and

Communities, 2006. TRIDENTCOM 2006. IEEE, 2006, pp. 10–388.

[22] Co-Verification Debugger Enables Hardware and Software Communication for SoC

Verification. [Online] Available. http://www.axiscorp.com/products/coverification.html

[23] (2003, Feb.) Aptix and Zaiq Reseller Agreement to Improve Communication System Design

Validation. [Online] Available. http://www.aptix.com/news/news.htm

[24] D. Brahme, S. Cox, J. Gallo, M. Glasser, W. Grundmann, C. Ip, W. Paulsen, J. Pierce, J. Rose,

D. Shea, and K. Whiting, The Transaction-Based Verification Methodology. Berkeley, CA:

Cadence Berkeley Labs, 2000.

[25] F. Carbognani, C. Lennard, C. Ip, A. Cochrane, and P. Bates, “Qualifying precision of abstract

systemC models using the systemC verification standard,” in Proc. Design, Automation, Test in

Europe, 2002

http://www.axiscorp.com/products/coverification.html
http://www.aptix.com/news/news.htm

[26] F. Casaubielilh, A. McIssac, M. Benhamin, M. Barttley, F. Pogodalla, F. Rocheteau, M.

Belhadj, J. Eggleton, G. Mas, G. Barrett, and C. Berthet, “Functional verification methodology of

chameleon processor,” in Proc. ACM/IEEE Design Automation Conf., 1996, pp. 421–426.

[27] B. Clement, R. Hersemeule, E. Lantreibecq, B. Ramanadin, P. Coulomb, and F. Pogodalla,

“Fast prototyping: a system design flow applied to a complex system-on-chip multiprocessor

design,” in Proc. ACM/IEEE Design Automation Conf., 1999, pp. 420–424.

[28] A. Clouard, G. Mastrorocco, F. Carbognani, A. Perrin, and F. Ghenassia, “Toward bridging

the precision gap between SoC transactional and cycle accurate levels,” in Proc. Design,

Automation, Test in Europe Conf., 2002.

[29] A. Evans, A. Silburt, G. Vrckovnik, T. Brown, M. Dufresne, G. Hall, T. Ho, and Y. Liu,

“Functional verification of large ASICS,” in Proc. ACM/IEEE Design Automation Conf., 1998,

pp. 650–655.

[30] G. Ganapathy, R. Narayan, G. Jorden, and D. Fernandez, “Hardware emulation for functional

verification for K5,” in Proc. ACM/IEEE Design Automation Conf., 1996, pp. 315–317

[31] P. Hardee. Transaction-Level Modeling and the ConvergenSC Accelerated Transaction Based

Co-Simulation Products. [Online] Available. http://www.coware.com

[32] C. Ip and S. Swan. (2003) A Tutorial Introduction on the New SystemC Verification Standard.

[Online] Available. http://www.systemC.org

[33] M. Kantrowitz and L. Noack, “I’m done simulating: now what? Verification coverage

analysis and correctness checking of the DEC-chip21164 alpha microprocessor,” in Proc.

ACM/IEEE Design Automation Conf., 1996, pp. 325–330.

[34] N. Kim, H. Choi, S. Lee, S. Lee, I.-C. Park, and C.-M. Kyun, “Virtual chip: making functional

models work on real target systems,” in Proc. ACM/IEEE Design Automation Conf., 1998, pp.

170–173.

[35] A. Meyer. A Loosely Coupled C/Verilog Environment for System Level Verification.

[Online] Available. http://www.zaiqtech.com

[36]] J. Monaco, D. Holloway, and R. Raina, “Functional verification methodology for the

powerPC 604 microprocessor,” in Proc. ACM/IEEE Design Automation Conf., 1996, pp. 319–

324

[37] I. Moussa, T. Grellier, and G. Nguyen, “Exploring SW performance using SoC transaction-

level modeling,” in Proc. Design, Automation, and Test in Europe Conf., 2003, pp. 120–125.

[38] M. Newman, “Test benches in C speed verification by unifying emulation and simulation,”

Integrated Syst. Design, pp. 34–40, 1999

[39] Cadence Application Note. (2003) Accelerated transaction based co-simulation. [Online]

Available. http://www.cadence.com

http://www.coware.com/
http://www.systemc.org/
http://www.zaiqtech.com/
http://www.cadence.com/

[40] V. Popescu and B. McNamara, “Innovative verification strategy reduces design cycle time

for high-end sparc processor,” in Proc. ACM/IEEE Design Automation Conf., 1996, pp. 311–314

[41] B. Schnaider and E. Yogev, “Software development in a hardware simulation environment,”

in Proc. ACM/IEEE Design Automation Conf., 1996, pp. 684–689.

[42] R. Stevens, UNIX Network Programming, and Networking APIs: Sockets and XTI, 2nd ed.

Englewood Cliffs, NJ: Prentice-Hall, 1997, vol. 1

[43] S. Swan. (2001) An Introduction to System Level Modeling in SystemC 2.0. [Online]

Available. http://www.systemC.org

[44] M. Wannemacher, M. Munteanu, S. Perret, R. Singer, "Taking the best out of two worlds:

prototyping and hardware emulation," Seventh IEEE International High-Level Design Validation

and Test Workshop (HLDVT'02), 2002, pp.156-161.

[45] P. Rashinkar, P. Paterson, and L. Singh, System-On-AChip Verification: Methodology and

Techniques, Kluwer, 2000, p. 153.

[46] I. Mavroidis and I. Papaefstathiou. “Efficient testbench code synthesis for a hardware

emulator system,” Proceedings of the Conference on Design, Automation and Test in Europe

(DATE '07). EDA Consortium, San Jose, CA, USA, pp. 888-893.

[47] Mentor Graphics, “The Target Platform Methodology for HW/SW Debugging before

Silicon”, White Paper, url: www.mentor.com.

http://www.systemc.org/
http://www.mentor.com/

