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ABSTRACT 
 
 
 

 

The Simulation and Emulation of the digital circuits are discussed in this present work in 

which there is an enhancement to increase the capacity and performance of the digital chips 

and ICs where it reduces its size with help of the memory inference in complex circuits, the 

number of multiplexers, adders and subtractors are replaced with the memory block which 

reduces the area of the digital ICs and the capacity of the digital circuit is getting enhanced. 

 
 

It also reduces the compilation time of the simulating circuits during gate level and behavioral 

level synthesis of the circuit. The importance of the work is that all the circuits and ICs can be 

tested in fraction of seconds using this optimization which reduces a lot of money and time 

consumption of an organization. The testing of this optimization is done by simulating the 

module where the analysis of the various scenarios is done on simulator. 
 
The optimization is further tested on emulator where the replica of the module can be created, 

the emulator can act as the same piece of hardware where the compilation time is reduced. 

 

 

Methodology adopted is Verilog and VHDL the hardware descriptive language is used. All the 

scripting of the various scenarios is done with shell scripting. The coding for the optimization 

of memory ports is written in C/C++ in which all the read and write ports are analyzed. 

 

 

In memory optimization enhancement various tools for simulation like Questa and precession 

are used for simulating all the modules of the hardware descriptive Language. 
 
Further, for creating the Real Replica of the hardware, emulator is used where the Register 

transfer level compiler and Emulator (Veloce) are used of validating all the results in velcomp 

flow where the quad core processor is used , all the modules are compiled in the parallel 

manner . It makes the system for informative in which core processor, it is compiling all the 

Modules with high speed and efficiency. So this optimization reduces the speed of the 

simulator and emulators in terms of the area and the compilation time of the gate level 

synthesis where the register transfer level design is transformed into logic gates. 
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CHAPTER i1 
 
 

INTRODUCTION 
 
 
 
 

1.0 INTRODUCTION 
 

In ithe idesign iflow, idesign ispecifications iare iintroduced i. Specifications iprovides 
 

ifunctionality I,interface iand ioverall iarchitecture iof ithe idesigned idigital icircuit . iA ibehavioral 
 

idescription iis imade ito ianalyze ithe idesign iwith irespect ito ifunctionality iand iperformance. 
 

iBehavioral idescriptions iare ioften iwritten iin iVerilog, iVHDL iand isystem iVerilog . 
 

EDA itools ihave iappeared ito isimulate ibehavioral idescription iof idigital icircuits, ithese 

itools ihave imerged ithe ipowerful iconcepts ifrom iHDLs iand iobject ioriented iprogramming 

ilike iC/C++. i iThe ibehavioral idescription iis iconverted iinto iRTL idescription iin ian iHDL. 
 

The ilogic isynthesis itools itransforms ithe iRTL idescription iinto igate-level inetlist  

idescribes ithe icircuit iin iterms iof igates iand iconnections ibetween ithem. iThe I synthesis itool 

imakes ithat ithe igate ilevel inetlist imeets ithe itiming iarea iand ipower ispecifications in Fig 1.1. 

iThe igate ilevel inetlist iis iput iinto ian iautomatic iplace iand iroute itool, ithen ia ilayout iis icreated, 

ithen ithe ilayout iis ifully iverified iand ifabricates ion ia idigital ichip . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                       Fig i1.1 iDesign iFlow for various digital circuits 
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i  

1.1 DESIGN iOF iDIGITAL iSYSTEM i i i i i i i i i i i i i i i i i i i i i i i i 

 

The idigital idesign isystem iis idescribed iin iVerilog ibecause ihigh ilevel iVerilog idesigns iare 
 

iusually idescribed iat ithe ilevel ithat iconsist iof isystem iregisters iand itransfer iof idata ibetween 

ivarious iregisters ithrough ibuses, ithis ilevel iof ihigh ilevel idescription iis icalled ias iregister 

itransfer ilevel i(RTL). iVerilog iconstruction iused iin iRTL ilevel idesign iare iprocedural 

istatements icontinuous iassignments iand iinstantiation istatements. 

 
 

1.2 TESTBENCH iIN iVERILOG 
 

A idigital isystem idesigned iin iVerilog ishould ibe isimulated iand itested ifor ifunctionality 

ibefore iit iis iturned iout iinto ia ihardware iwhile isimulation idesign ierrors iand iincompatibility 

iof icomponents iin ithe idigital idesign, iall iare idetected. iIn isimulation, ia idigital idesign ineed 
 

igeneration iof itest idata iand iobservation iof iall isimulation iresults. iThis iprocess ican ibe idone 

iby iuse iof ia iVerilog imodule ithat iis icalled ias ia itest ibench. iA iVerilog itest ibench iuses iHDLs 

iconstructs ifor igeneration iof idata imonitoring iof iresponse iand ieven ihandshaking iof ithe 

idesign. iIn ithe itest ibench, ithe idesign iis iinstantiated iwhich iis ibeing isimulated ithe itest ibench 

itogether iwith idigital idesign, iforms ia imodel iof isimulation iwhich iis iused iby iVerilog 

isimulation. 

 
 

1.3 SIMULATION 
 

 iMentor iGraphics i iuses i“QUESTA” ias ia isimulating itool, isimulation iof ia idesign 

irequires itesting iof idata, iand itest idata ican ibe igenerated igraphically iusing ieditors ifor iwave 

iform ior iwith ithe ihelp iof ia itest ibench. iFor isimulating iwith ithe ihelp iof ia iVerilog itest ibench, 

ithe itest ibench iinstantiates ithe idesign iunder itest i(DUT) iand ias ia ipart iof ithe itest ibench, iit 

iapplies itest idata ito ithe iinstantiated icircuit in Fig 1.2. 

 

Verilog icode iof ia idigital icircuit iand iits itest ibench iand ithe iresult iof isimulation iare iin ithe 

iform iof iwaveform. iSimulation ivalidates ithe ifunctionality iof ithe idigital icircuit ibeing itested ithe 

itiming idiagram ithat ithe icircuit ioutput ichanged iwith ithe irising iedge iof ithe iclock iand ino 
 

igate idelays iand ithe ipropagation idelays iare ishown iin ithe itiming idiagram.  
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Figure i1.2. i iTest ibench ior ia iwaveform ieditor ifor isimulation 
 

 

1.5 COMPILATION AND SYNTHESIS i 

 

Synthesis iis ithe iprocess iof itransforming i ithe i iHDL idesign iinto igate ilevel inetlist, ia 

iVerilog irepresentation ifor isynthesis icannot iinclude isignal iand igate ilevel itiming 

ispecifications ithat ido inot itranslate ito isequential ior icombinational ilogic iequations, iVerilog 

irepresentation ifor ithesis ishould ifollow icertain istyles iof icoding ifor icombinational iand 

isequential icircuits ifor iexample: iwe ihave ito ispecify ian iApplication ispecific iintegrated 

icircuit(ASIC) ior ifield iprogrammable igate iarray(FPGA) i ias i iour itarget ihardware. iWhen ithe 

ihardware iwith idetailed itiming iand ispecifications ibecome iavailable ito ithe icompilation 

iprocess. iThe icompilation iprocess itranslates ivarious iparts iof idesign ito ian ianalysis iphase 

iand igenerates isynthesis iphase iand iplaces iand iroutes icomponents iof ithe itarget ihardware 

iand igenerates itiming idetails. 
 

1.5.1 ANAYLSIS 
 

Before ithe icomplete idesign iemerged iinto ihardware, ithe idesign imust ibe 

ianalyzed iproperly ia iuniform iformat imust ibe igenerated ifor ithe icomplete idesign, 

ithis ianalysis ispace ialso ichecks ithe isyntax iand isemantics iof ithe iinput iVerilog icode. 
 

1.5.2 GENERIC HARDWARE GENERATION 
 

After iobtaining iuniform irepresentation iof iall ithe icomponents iof idesign, ithe 
 

isynthesis ibegins iits ioperation iby iturning ithe idesign iinto ia igeneric ihardware, isuch 
 

ias ia iset iof iBoolean iexpressions ior ia inetlist iof igates. 
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1.6 LOGIC OPTIMIZATION 
 

This iphase iof isynthesis iafter ia idesign iis iconverted i iinto ia iset iof iBoolean iexpressions 

ior ibasic igates iis icalled ithe ioptimization iphase in Fig 1.3, ithis iphase iis iresponsible ifor 

ireducing iexpressions iwith icontinuous iinput iand iremoving iredundant ilogic iexpressions 

ioutput iof i ithis iphase iis iin ithe iform iof iBoolean iexpressions, ilogic irepresentations ior igate 

inetlist. 

 
 

1.7   BINDING 
 

After ithe ilogic ioptimization iphase, ithe isynthesis iuses iinformation ifrom ithe igiven 

ihardware ito idecide iexactly iwhat ilogic ielements iare irequired ifor ithe irealization iof ithe 

icircuit, ithis iprocess iis icalled ithe ibinding as shown in Fig 1.3. iAnd iits ioutput iis iASIC ior 

icustom iIC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure i1.3. iCompilation iand isynthesis iprocess of HDL modules 
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An iexample iof isynthesis ithe icounter icircuit iused iin ithe isimulation iis ibeing isynthesized, 

ithe iVerilog idescription iof ithe idesign iis iconverted iinto igates iand iflip-flops iusing ithe isynthesis 

itool, ithe ioutput iof ithe isynthesis iis ithe igates iand ithe iflip-flops iand itheir iinter iconnections, 
 

ithis igraphical irepresentation iof ithe ioutput, ithat iis igenerated iby ithe isynthesis itool iof 

iAltera’s iQuartus i2 in Fig 1.4 depicts the complete flow for the Synthesis Run to 

synthesize the module in Verilog.. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                      Figure i1.4. i iModule Compilation and synthesis run of hardware circuits. 
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1.8 ROUTING AND PLACEMENT 
 

Routing iand iplacement idecides iplacement iof icells iof ithe itarget ihardware, ithe iinputs 

iand ioutputs iof ithese icells ithrough iwiring iand iswitching iareas iof ithe itarget ihardware iis 

igiven iby irouting iand iplacement iphase in Fig 1.5. iThe ioutput iof ithis iphase iis ispecific ito 

ithe ihardware ibeing iused ifor ithe imanufacturing iof ian iASIC. i 

 
 

1.9 TIMING ANALYSIS 
 

There iis ia itiming ianalysis iphase iafter ithe icompilation iprocess, ithis iphase igenerates 

iworst icase idelays, iclocking ispeed iand idelay ifrom ione igate ito ianother, isetup itime iand 

irequire iwhole itime in Fig 1.5. iDesigners iuse ithese iinformation ito idecide ithe ispeed iof ithe 

iclock ior imore iprecisely ithe ispeed iof ithe icircuits. 

 
 

1.10 HARDWARE GENERATION 
 

This iis ithe ilast istage iof ithe iVerilog ibased idesign iin icase iof ihardware igeneration, ithis istage 
 

i igenerates ia inetlist ifor iapplication ispecific iintegrated icircuit(ASIC) ia iprogram ifor 

 

iprogramming ifield iprogrammable ilogic idevices(FPLDs) ior ilayout iof icustom iIC icells ior 

ilayout iof icustom iIC icells in Fig 1.5. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure i1.5. i iRouting and placement of the chip with Timing Analysis. 
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1.11 REGISTER iTRANSFER iLEVEL iDESIGN iWITH iVERLOG 
 

The iregister itransfer ilevel i(RTL) idesign ifor idigital isystems igives ius ihow ithe 

iVerilog iis iused ifor idescription itesting isynthesis iof ivarious iRTL ilevel icomponents iof 

ia idigital isystem.  H iThe iRTL ilevel idesign iand ihow ia icomplete isystem iis iput itogether iat 

ithis iabstraction ilevel. iThe ibasic istructure iof ithe iVerilog isuch ias imodules, iports, 

iutilities ifor iverification iof idigital icomponents iare iintroduced iin ithis iRTL ilevel idesign. 
 

1.11.1 RTL iLEVEL DESIGN 
 

Design iof ihardware icomponents iare idone iby irepresenting ithe ihardware 

ifor isynthesis iand iimplementing ithe idesign iby iCAD itools. iA ilarge idesign 

irequires iplanning idesign iand ipartitioning ibefore iits ivarious iparts ican ibe 

irepresented iin iVerilog ifor isynthesis in Fig 1.6 shows the RT Level Design. 
 

                  1.11.2 CONTROL OR DATA PARTIONING 
 

The iRTL ilevel idesign iis ithe ipartitioning iof ithe idigital idesign iinto icontrol 

iand idata ipart, ithe icontrol ipart iis ia istate imachine igenerating icontrol isignals 

ithat icontrol ithe iflow iof idata iin ithe idata ipart iand ithe idata ipart iconsist iof ithe 

idata icomponents in Fig 1.6 shows the Control and data partitioning. 
 

i  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

i i i i i Figure i1.6. iControl ior idata ipartitioning of  RT Level Design  
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1.12 OBJECTIVE OF THE PRESENT WORK 

 

1. The verification  of digital chip and circuits to optimize the area, capacity and performance of 

the digital chips and ICs 

2. The optimization of the memory ports oand reducing the area of the digital circuits and ICs is 

done by inferring memory into it. This optimization also reduces the compilation time and the 

area of the circuits. 

3. In the present work, it is tried to optimize the adders, muxs into the memory declaration. 

4. The testing of the optimization of digial circuits and ICs, using the mentor simulation 

software named questa and the emulation software named veloce. 

              

            1.13   OUTLINE OF THE THESIS 

 

                    This dissertation includes total 6 chapters: 

 

 

1. Chapter 1 gives the brief introduction about the verification of digital design circuits, the  

hardware languages like Verilog  and VHDL help in generating the testbench by which it can 

verify the circuits and help in creating the Register Transfer level . 

2. Chapter 2 gives the brief introduction about the Mentor graphics Hardware model veloce, it 

works to test millions of chips in very less time frame and with accurate precesion with the use 

of memory optimization in Emulator. 

3. Chapter 3 gives the brief introduction about the Register transfer level compiler flow which 

generates the graph level optimization where it can mark the memory in order to decrease the 

size of the chip to increase its capacity and performance. 

4. Chapter 4 gives the brief introduction about the optimization of memory ports , sometimes due 

to large no. of read and write data memory is not marked , but using the for to if optimization 

the memory is marked and compilation time is reduced. 

5. Chapter 5 gives the brief introduction about the comparison between the RTLC and questa like 

the simulation model and the emulation model both provide the same results or not.   

6. Chapter 6 gives the brief introduction about the Future scope and the work, the tasks and the 

function and the generate block will be supported with memory declaration. 
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                                  CHAPTER i2 
 

 

 iEMULATION PLATFORM (VELOCE) 
 
 
 

 

2.0. INTRODUCTION i 

 

The iemulation iis ibasically ia ihardware iwhich iacts iexactly ilike isomething iwhich i 

iwant ito itest iby iall ithe irules iof ithe isystem ibeing iemulated. iThe iVeloce iis iused ifor ithe 

iverification iof isystem ion ichips i(SoCs) iand iis ia icore itechnology iby iMentor iGraphics. iIt 

iprovides ihardware iarchitecture iinnovative ioperating isystem iand iversatile iperipheral 

isolutions ito iprovide ihigh ispeed, ihigh icapacity iand iverification iof ithe idesign iand iVeloce 

iaccelerates ithe isimulation iand iused ifor ithe ihardware idebugging. 

 

 

2.1. EMULATOR 
 

 iEverything iin ia iworld iof isystem ion ichip iin iwhich iwe ihave iprocessors ilike 

iembedded iCPUs, iGPUs iand iMMUs. iMemory ilike iSDRAM, iDDRAM, iand icache 

imemory. iPeripherals ilike imultiple iIP iblocks iand iprotocols iand isoftware ilike iinstruction 

isets iand ioperating isystems, idrivers iand iapplication isoftware’s. i iSo ithese iSoCs idesigns 

igave ithe  ichallenges ifor iefficient iverification. 

 
 

2.2. DESIGN AND VERIFICATION 
 

System ion ichips i(SoCs) imakes iexisting iverification ichallenges imore idifficult, ia 

ilarge iamount iof iverification itime ispent ion irunning istimulation iin iterms iof ispeed iand 

icapacity. iIn idebugging iin iterms iof ipower iand ipredictability. iIn itest ibench idevelopment 

iin istimulus icoverage iand ireuse iand itest iplanning iin iterms iof imetrics ianalysis iand 

iprocesses in Fig 2.1 shows how much time is spend on Debugging and simulation. 
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i i i i i i i i i i i i i i i i i i i i i iFigure i2.1. i iVerification I time ispent on complete design flow 
 
 

 

2.3. MENTOR GRAPHICES VERIFICATION PLATFORM 

 

It iworks ion ithe ifaster, ismarter iand istronger iverification. 
 

 

2.3.1. VIRTULA PROTOTYPING 
 

It iinvolves imodelling iof ia isystem isimulating iand ivisualizing iits ibehavior iunder 

ireal iworld ioperating iconditions iand irefining iits idesign ithrough iiterative iprocess. 

iVirtual iprototyping ito ibuild iand itest iprototypes iand irealistically isimulate ithem ion 

itheir icomputers iboth ivisually iand imathematically. iUsers ican iexplore imultiple 

idesign ivariations itesting iand irefining iuntil isystem iperformance iis ioptimized ithis 

ican ihelp ireduce ithe itime iand icost iof inew iproduct idevelopment iwhich isignificantly 

iimproves ithe iquality iof ioverall idesign in Fig 2.2 shows the virtual prototyping. 

 
 

2.3.2. FORMAL VERIFICATION 
 

It iis ia iprocess iof ichecking ithe idesign iwith irespect ito icertain iproperties ia 

iformal iverification itool iexamines ithe idesign ito imake isure ithat igiven iproperties 

iholds itrue iunder iall iconditions iif ithe iinput iconditions imake ia iproperty iare iregarded 

ias iproperty icounter iexamples, iproperty icoverage iindicates ihow imuch iof ithe 

icomplete idesign iis iexercised iby ithe iproperty in Fig 2.2 there is formal verify. 
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2.3.3. SIMULATION 
 

It iis a iprocess iof iusing ia isimulation isoftware ior isimulator ito iverify ithe 

ifunctional icorrectness iof ithe idigital idesign ithat iis imodeled iusing ia ihardware 

idescriptive ilanguage iHDL ilike iVerilog in Fig 2.2. 

 
 

2.3.4. EMULATION 
 

Emulation iis ia isystem ithat iacts iexactly ilike isomething ielse.The iemulation 

imodel iis iusually ibased ion ihardware idescription ilanguage ilike iVerilog iand iVHDL 

ias ia isource icode iwhich iis icompiled iinto ithe iformat iused iby iemulation isystem. The 

igoal iis inormally idebugging iand ifunctional iverification ithe isystem ibeing idesigned, 

ian iemulator iis ifast ienough ito ibe iplugged iinto ia iworking itarget isystem. iIn iplace iof ia 

iyet ito ibe ibuilt ichip. iSo ithat iwhole isystem ican ibe idebugged iwith ilive idata. iThis iis ia 

icase iof ihardware iemulation in Fig 2.2. 

 
 

2.3.5. FPGA iPROTOTYPINGi 

 

FPGA iprototyping iis ia itechnique ifor iverifying ithe ifunctionality iand iperformance 

iof iapplication ispecific iintegrated icircuit i(ASICS) iand iSystem ion ichips iby iporting itheir 

iRTL ito ia ifield iprogrammable igate iarray. iFPGA, iit iis ibeing iused imore iwidely ibecause 

ihardware icomplexity iis iincreasing iand ithe iamount iof irelated isoftware ithat 
 

ineeds ivalidating iis irising. iIt igave ius ithe ibenefit iin iterms iof iperformance icost, 

iinfrastructure, iportability iand iavailability in Fig 2.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i iFig. i2.2 iVerification iInfrastructure of stimulus and debugging 
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2.4. VELOCE iTHE COMPLETE VERIFICATION PLATFORM 
 

Veloce istrato iplatform ihas isufficient iexecution ispeed, ifull ivisibility, icapabilities iand iease 
 

iof iuse. iIn imodel icreation iand iVeloce ipower iapplication ialso iboost ithe irun itime iand 
 

iperformance iof ithe ipower iflow iupto i4.5x. iVeloce ivirtual iperipherals iand ihost idevices 

imake ithe iemulator ia ishared iresource ifor imultiple ihardware iand isoftware iengineers. iThe 

iVeloce iemulation iplatform ireduces ithe irisk iin ithe iverification iof itoday’s icomplex iSoCs 
 

iand iis ithe icore itechnology iof imentor iverification iplatform. iThe iVeloce iemulator 

iaccelerates iclock iand ifull iSoC iRTL isimulations iduring iall ithe iphases iof idesign iprocess. 

iTest ibench ixpress(TBX) ico imodelling isoftware imakes iVeloce ian iultra-fast iverification 

iengine iup ito i10,000 itimes ifaster ithan isoftware isimulators isignificantly ireducing 

idevelopment ischedule irisks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

i i i i i i i i i i i i i i i i i i i ii i i i iFigure i2.3. iVeloce iverification isystem of visualization and assertions 
 

Veloce istrato iplatform iis ifully iscalable, iit iis iengineered ito iscale ito isupport i15 ibillion 

igate idesigns iand icapable iof iverifying ithe ilargest ichips iever idesigned iin iterms iof icapacity 

iand itheir idesign isize igrow in Fig 2.3 shows the verification complete flow. 
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2.5. VELOCE2 EMULATOR 
 

The iVeloce2 iEmulator iincreases ithe ifull iSystem ion ichip i(Soc) iRTL isimulations 

iduring iall iphases iof ithe idesign. iIt imakes ipre isilicon itesting iand idebug iat ihardware 

ispeeds, iusing ireal iworld idata, iboth isoftware iand isoftware idesigns. iIt iimproves iend 

iproduct iquality iby iincreasing ithe itotal iverification icycles ion ithe idesign ibefore 

icommitting ito isilicon iprototypes. iIt iis ia iscalable iverification iplatform iwith icapacities 

ifrom i16 imillion ito i2 ibillion igates. iVeloce2 isignificantly ireduces ithe iverification iof 

ithe ilargest ihardware iand isoftware isystems. 

 
 

2.6. VELOCE TESTBENCH XPRESS 
 

The itest ibench iXpress i(TBX) ico imodelling isoftware imakes ithe iVeloce iemulator, ian 

iultra-fast itransaction ilevel imodelling iand iverification iengine. iThe iVeloce iemulator iand 

ithe iVeloce iTBX ireduce ithe irisk iwhile ileveraging itransaction imodels iused iduring 

isimulation. iIn ico-modelling, ithe itest ibenches iare iinterfaced ito isynthesizable i itrans iactors 

i iare iput itogether iwith ithe iDUT iin iVeloce iTBX iautomatically igenerate ia idirect 

icommunication iinterface ibetween ic/c++ ior isystem ic ienvironment ion ia ihost iand ithe 
 

iSoC(system ion ichip) iDUT iin ithe iVeloce i2 iemulator in  Fig 2.4. i  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                   

                                           Fig i2.4 i i icomodelling between the testbench and design 
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2.7. VELOCE IMPROVES VERIFICATION AND PRODUCTIVITY 
 

2.7.1. COMPILE 
 

It iprovides ifast icompiling iup ito i300 iMG/hr. iand iit ialso iprovides ifast 

idownloading iof ithe idigital idesign i(2min/2BG) in Fig 2.5. 
 

2.7.2. RUN 
 

It ihas ivery ifast iand ihigh ibandwidth iinterface ibetween iworkstation iand 

iVeloce, iit iis iup ito i40 iphysical iinterface ilinks/2BG in Fig 2.5. 
 

2.7.3. DEBUG 
 

It iprovides iand i100% ivisibility, i1M icycle/2BG idesign iin i5 iminutes   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                           Fig i2.5   Veloce Flow of RTL design and Crystal Soci i iVV 
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2.8. VELOCE ACCLERATING BASED SIMULATING DESIGN i  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     
 
 

                                 Fig 2.6 Design under Test of the Testbench including C/C++ 

 

 The iVeloce2 iEmulator iincreases ithe ifull iSystem ion ichip (Soc) iRTL isimulations iduring iall 

iphases iof ithe idesign. iIt imakes ipre isilicon itesting iand idebug iat ihardware ispeeds, iusing ireal 

iworld idata, iboth isoftware iand isoftware idesigns. iIt iimproves iend iproduct iquality iby 

iincreasing ithe itotal iverification icycles ion ithe idesign ibefore icommitting ito isilicon iprototypes. 

iIt iis ia iscalable iverification iplatform iwith icapacities ifrom i16 imillion ito i2 ibillion igates. 

iVeloce 2 isignificantly ireduces ithe iverification iof ithe ilargest ihardware iand isoftware isystems 

in Fig 2.6. 

 
 
 
 
 
 
 
 



2.10 iSOFTWARE DEBUG SOLUTIONS FOR VELOCE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

                                 Fig i2.8 iSoftware idebug isolutions ifor iVeloce 

 

 

 

The iemulation iis ibasically ia ihardware iwhich iacts iexactly ilike isomething iwhich iwe iwant ito 

itest iby iall ithe irules iof ithe isystem ibeing iemulated.  TheIVeloce iis iused ifor ithe iverification 

iof isystem ion ichips (SoCs) iand iis ia icore itechnology iof iMentor iGraphics. It iprovides 

ihardware iarchitecture iinnovative ioperating isystem iand iversatile iperipheral isolutions ito 

iprovide ihigh ispeed, ihigh icapacity iand iverification iof ithe idesign iand iVeloce iaccelerates ithe 

isimulation iand iused ifor ithe ihardware idebugging in Fig 2.8. 

 

 System ion ichips (SoCs) imakes iexisting iverification ichallenges imore idifficult, ia ilarge iamount 

iof iverification itime ispent ion irunning istimulation iin iterms iof ispeed iand icapacity. iIn 

idebugging iin iterms iof ipower iand ipredictability. iIn itest ibench idevelopment iin istimulus 

icoverage iand ireuse iand itest iplanning iin iterms iof imetrics ianalysis iand iprocesses. 
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2.11 JTAG PROBE  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                              Fig i2.9 iJTAG probe and logic analyzer 
 

  A boundary –scan (JTAG) based simple logic analyzer and circuit debugging software which 

test on chip internal logic, e.g debug CPLD firmware .No special knowledge is required to use 

boundary –scan technology as JTAG Probe in Fig 2.9. 

 

2.12 DESIGN OF MEMORY PORTS IN VELOCE 

The Veloce is multicore processor in which all the designs and processors work parallely with 

8 times speed then the simulator .the memory ports can be designed with the inference of the 

memory declaration. With this optimization the memory inference cen be increased and the 

Memory ports can be decreased using the one hot logic technology. 

 

 

2.13 CONCLUSION 

The following chapter discusses the emulater product named veloce, how this emulator work. 

The specifications of the veloce, how veloce will able to resolve the problems related to 

simulator and what is need for an emulator. The efficiency and precesion of the emulator. The 

Emulator is like a replica of the actual hardware and the chip in which we can test the things in 

real world which is not handled in simulator. So the Emulator is able to decarese the 

compilation time and improve all the acuaracy which is not achieved by using the simulator. 
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CHAPTER 3 
 

                                    REGISTER TRANSFER LEVEL (RTLC) COMPILER FLOW 
 
 

3.0 INRTODUCTION  

      In the Veloce compile flow, Register Transfer Level Compiler acts as a front end. It reads 

the RTL description (in verilog/vhdl/systemVerilog) and converts that to a structural 

netlist with the logic mapped to Veloce FPGAs. RTLC has multiple phases – (1) Analyze 

phase which reads the RTL description and dumps an Object Model of it (2) Synthesis 

engine which operates on this Object Model and converts that its own representation of the 

OM (NOM) and synthesizes the netlist. It also accepts netlist description (netlist created by 

RTLC or other tools targeting a different FPGA technology). Apart from dumping the 

netlist equivalent of RTL, to enable debugging, RTLC also dumps the debug database – 

containing information about signals that will have required name-map(since netlist can’t 

have 2D/3D signals) and information related to signals that were transformed to memories. 
 
 
 
 

 

RTL 
 

+ 
 

Structural 

net-list 
 
 
 

 

 Fig 3. 1 Analysis and Synthesis for RTLC FLOW 
 
 
 

 

3.1 THE RTL DESCRIPITION IN VERILOG/VHDL 
 

RTL in Fig 3.1 could also be a verilog netlist description mapped to a different FPGA 

technology (may be station). In such a case of verilog netlist, the description of the behavior 

of the technology cells of that FPGA should also be provided to analyzer. RTLC compile 

can be imagined as a three step process – (1) Analyze the RTL (2) Elaborate and partition 

the design (3) Synthesized RTL in each partition.  
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on a user option. It takes the user RTL, does syntax checks, and dumps an OM 

representation of the RTL. Driver reads this OM, elaborates the design, creates a folded 

graph with nodes as modules, associates cost for each node and partitions the graph into 

sub graphs and invokes synthesis phase(s) on a sets of sub graphs. NodeExpander reads 

the velsyn options, and dumps an annotation file for RTLC collating the information in 

velsyn annotation files. Thie helps RTLC instrument ceratian nets in a way to allow 

velsyn to successfully apply the user annotation. 

 
 

3.2. MODULE ELABORATION 
 

          The VHL module of upward hier ref path in which top , middle and bottom modules are given 

.. 

module top_ver() 
 

mid_vhdl m1(); 
 

mid_vhdl m2(); 
 

endmodule 
 

entity mid_vhdl(); 
 

end; 
 

architecture rtl of mid_vhdl 
 

bot: bot_ver(); 
 

leaf: leaf_ver(); 
 

end rtl; 
 

module bot_ver(); 
 

leaf_ver l1(); 
 

endmodule 
 

module leaf_ver(); 
 

endmodule 
 
 
 

 

For the given RTL description, the folded view created in RTLC-Elaborate will be as 

shown …The numbers b/w <> represent the cost of compiling the module. Lets assume 

that the maximum cost per partition allowed is 400. We start with traversing from the 

‘top’. We first traverse along the cross language children so that they can be partitioned 
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out and the rest of the children can be partitioned later. The hier-costs of each of the 

modules will be sum of cost of that module and hier-costs of all its children. Since top has a 

vhdl module, we try to partition that first. Now we enter mid_vhdl. Since this has cross 

language modules, we try to partition those. We enter bot_ver. The hier-cost of bot_ver = 

120 + 500 > 400. So we first need to create a partition for leaf_ver and then worry about 

bot_ver. Now we enter leaf_ver. The cost of this module is 500 > 400 but we can’t partition 

this further. So we create partition1 for leaf_ver. Back to bot_ver, the hier-cost of bot_ver 

will now be just 120. We can put this in a partition – partition 2. This partition has a free 

space of 280 still. Back to mid_vhdl. The hier-cost of mid_vhdl now is 240. We create a 

vhdl partition – partition3 for this. Now we enter top_ver. The hier-cost is only 200, since 

all its children are already partitioned. There is a verilog parittion with a free space of 280. 

Therefore both bot_ver and top_ver will be in the same partition. 

 
 

3.3        RTLC-VLE SYNTHESIS ENGINE 
 

The core synthesis is done by rtlc-vle ,The general flow is divided into various steps as 

shown .rtlc-vle will work on multiple tops as suggested by rtlc-elaborate during 

partitioning. It needs to elaborate the part of the design that was alloted to this 

partition, create an intermediate DS to hold the module information and operate on that 

DS. First such intermediate DS is the CDFG (CFG + DFG). This is created for each 

concurrent statement (ex: always block). We traverse along these graphs, partition 

them at various points, identify the various paths in the graph, the values each operand 

takes along those paths, perform the data flow analysis – based on which we categorize 

each net as simple wire/ reg/ latch. Then we allocate resources along the datapath – 

such as adders/multipliers etc. We perform optimizations on the eventual netlist object 

model. The eventual optimized NOM is fed to techmap to dump the final netlist. 
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3.4 CDFG (CONTROL AND DATA FLOW GRAPH)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                Fig 3.2 Exapnsion of control and data flow graph 

 

 

This is a simple example to show the Control and data flow graph (CDFG) representation 

of a simple case statement. Note that, as simple a description as this results in a lot of 

temporary variables to deal. 

It Represents control flow graph of the case statement, how the case statements work 

internally the conversion of the assignment statement actually move through the control 

And data flow graph. The case statements which are used in Verilog and VHL coding 

internally work in this control and data flow Graph (CDFG). 
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3.4 CDFG EXAMPLE 2 (CONTROL AND DATA FLOW GRAPH) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                       

                                  Fig 3.3 Expansion of control and data flow graph in tasks and function  

 

This control and data flow graph in Fig 3.3 expands the tasks and the function code in 

Verilog with this flow, we can expand the function and the task. 

The CFGs of the module contains only the instantiation of always block. The CFG of 

the always internally has the instance(s) of the task. Based on the cost (some heuristic), 

the DH_TASK may be chosen for flattening. Note that Pseudo state cuts are created at 

the root of each CFG. Pseudo state cuts are also created at each join node (such as end 

of if condition/ endcase in case statement etc). Based on the statecuts, the CFG is 

considered to be consisting of various paths containing path segments. A data structure 

(PVM) containing information about each operand along each path of the CFG is 

created. 
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3.5 CDFG (CONTROL AND DATA FLOW GRAPH)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig 3.4 Control and data flow graph with always block 

                                

The CFGs in Fig 3.4 of the module contains only the instantiation of always block. The 

CFG of the always internally has the instance(s) of the task. Based on the cost (some 

heuristic), the DH_TASK may be chosen for flattening. Note that Pseudo state cuts are 

created at the root of each CFG. Pseudo state cuts are also created at each join node 

(such as end of if condition/ endcase in case statement etc). Based on the statecuts, the 

CFG is considered to be consisting of various paths containing path segments. A data 

structure (PVM) containing information about each operand along each path of the 

CFG is created. 
 

1. The CFGs of the module contains only the instantiation of always block. 
 

2. The CFG of the always internally has the instance(s) of the task. 
 

3. Based on the cost (some heuristic), the DH_TASK may be chosen for flattening. 
 

4. Note that Pseudo state cuts are created at the root of each CFG. Pseudo state cuts 

are also created at each join node (such as end of if condition/ endcase in case 

statement etc). 
 

5. Based on the statecuts, the CFG is considered to be consisting of various 

paths containing path segments. 
 

6. A data structure (PVM) containing information about each operand along each path 

of the CFG is created. 
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7. Such a DS for the two states of the always block is shown above. 
 

8. The condition for the paths is also present. 
 

9. Based on the values taken by each operand along various paths of the CFG, resources 

(such a MUX/ADDER/etc) are allocated. 

 

 

3.6 TECHCELL FLOW 
 

Apart from handling RTL, RTLC can also optimally handle the structural pre-

synthesized netlist. The technology cells need to be specified through the “-techlib” 

option. RTLC remaps this net list to optimal MED_<LUT/Cell> equivalent. 
 

1. Verilog code for The Techcell Flow how the modules like gtech _and are 

instantiated inside the Top Module. 
 

module Top(in1, in2, in3, in4, out); 
 

output out; 
 

input in1, in2, in3, in4; 
 

wire temp1, temp2; 
 

gtech_and i1 (in1, in2, t1); 
 

gtech_and i2 (in3, in4, t2); 
 

gtech_and i3 (t1, t2, out); 
 

endmodule 
 

module gtech_and(in1, in2, out); 
 

output out; 
 

input in1, in2; 
 

assign out = i1 & i2; 
 

endmodule 
 

This is usually the flow employed while importing netlist(compiled for a certain target 

Technology). The basic cells of that technology are referred to as techCells. Since the 

behavioral definitions of techCells is provided to RTLC, they will be treated as being 

no different from regular modules.However, these basic blocks need to be flattened out 

to get optimal mapping for Veloce FPGA. To enable this, all the modules that refer to 

these technology cells, should be provided to RTLC for analysis with the option –

techlib. The analysis OM of these modules will be marked as techcells and shall be 

flattened out by default. 

 

P a g e  23 | 60 



3.7 FLATTENING SUPPORT 

 
                     Motivation for flattening a module

 
 

                1. To reduce the database size.  

                2. To Enable cross boundary logic optimizations.               

                3. To Enable retiming across boundaries to reduce the critical path delay. 
                     
                     
                    Options provided by RTLC to enable flattening

 
 

                 1.   -flatten_mod <module_name>  

                 2.  All the instances of the specified module get flattened into respective parents where   

ever   possible (e.g. instances will not get flattened into cross-language parents).  

                 3. Flatten_hier <module_name> 
 

This option can be used to flatten all the instances under a particular hierarchy (i.e. all 

modules under <mod_name>). This reduces user’s effort in specifying –flatten_mod 

on a number of modules which essentially get covered under a particular hierarchy. 

 
 

3.8 DESIGNWARE INETGRATION WITH RTLC 
 

   1. Support for seamless integration with Synopsys DW component  
 

   2. Support for complicated floating point and FIFO controllers have been added which are     

extensively used at Intel. 
 

   3. DW component support is provided on customer requirement basis. 
 

   4. Similar to library integration, where RTLC selects its definition where no DW definition is 

given.(i.e. user specified RTL modeling gets higher priority)
 

 

Design Ware components are building block IP components. DC/Synopsys provides a library 

of DW components (which are building block IP components – various commonly used 

functions/data path resources). Designers can instantiate their components directly without 

having to worry about the implementation details. It is expected that their implementations 

shall be optimal(capacity/performance). The RTL written by our customers have these 

components instantiated and their definitions may not be provided with the assumption that 

they are part of library. Based on the simulation model provided by Synopsis, RTLC created 

(not complete) a library of synthesizable model (fairly optimized). 
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3.9 EXAMPLE FOR DESIGN WARE INTEGRATION 
                 

                 The design ware components behave like macro in which only the name DW01_addsub is                           

                  Used for the direct addition and subrataction, It is not needed to write full code for the    

                  Subraction and addition only the design ware macro can be used to implement this code. 

                                     

 

module top(A,B,CI,ADD_SUB,SUM,CO, temp); 
 

output [7 : 0] SUM; 
 

output CO; 
 

input [7 : 0] A, B; 
 

input CI, ADD_SUB; 
 

output [7 : 0] temp; 
 

DW01_addsub #(8) 
 

DW01_addsub_test(.A(A),.B(B),.CI(~CI),.ADD_SUB(ADD_SUB),.SUM(SUM),.CO( CO)); 
 

 

assign temp = A; 
 

Endmodule 
 

module DW_mag_module(a, z); 
 

parameter width=9; 
 

parameter size=8; 
 

input signed [width-1:0] a; 
 

output signed [size-1:0] z; 
 

`include "DW_dp_absval_function.inc“ 
 

assign z = DWF_dp_absval(a); 
 

endmodule 
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3.10 EXAMPLE OF THE DESIGN WARE COMPONENTS 

                     

                   Here the VHDL code dor the Design ware component DW01 is written, Here it is not     

                   Needed to write the whole code of the generic mapping , only the macro for the DW  

                   Is used for decoding the generic mapping in which the design ware library for the  

                   DW01 is used with the IEEE libraray. 

 

 

  
 

library IEEE,DW01; 
 

use IEEE.std_logic_1164.all; 
 

entity top is 
 

port(A : in std_logic_vector(3 downto 0); 
 

B : out std_logic_vector(15 downto 0)); 
 

end top; 
 

architecture sim of top is 
 

component DW01_decode 
 

generic(width : POSITIVE); 
 

port(A : in std_logic_vector(width-1 downto 0); 
 

B : out std_logic_vector(((2**width) - 1) 
 

downto 0)); 
 

end component; 
 

begin 
 

test : DW01_decode generic map (4) 
 

port map ( A=>A,B=>B); 
 

end sim; 
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3.11 TRADITIONAL ENCRYPTION TECHNIQUES   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                  Fig 3.5 The Encryption techniques with originator and end user 

 
 

Traditional encryption techniques are of two types in Fig 3.5 – 

 
 

(1) Symmetric – Where the encryption key is shared by the originator with the end user. 

Only those with this key can decrypt the source. 
 

- This is fast but less secure 
 

(2) Asymmetric – Where the encryption is done using key1 while decryption is done with 

key2 i.e. a key pair is used here. The Encryption key is a public key shared by the end 

user with the originator. The originator encrypts the source and sends the encrypted 

data to the end user. The end user will use the private key (key2), the access to which 

is available only with the end user, to decrypt the encrypted source. 
 

- This is more secure but slow 
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                   Automatic memory inference is supported in both vhdl & verilog for 

 

 

◼ 2-Dimensional Signal 
 

◼ N-Dimensional Signal 
 

◼ Byte Enable Memory 
 

◼ Array of complex structure/record 
 

 

 

◼ Most important optimization to optimize the capacity of the design. 
 

◼ Memory inference is dependent on both declaration and usage. 
 

◼ Examples: 

 

                        The Memory address is the gien which is the input to the data and then the data is    

                         Written which acts like the write data the the data received is given to the output         

                         Port which acts like the read data is received by the Read port. So the memory has    

                         Read and the write data. 

 

 

Usage : RAM[waddress] = data // Memory write port 
 

out = RAM[raddress] // Memory read port 
 

reg [a1:a2] RAM [b1:b2][c1:c3]  // N-Dimensional Signal 
 

Usage : RAM[waddr1][waddr2] = data // Memory write port 
 

out = RAM[raddr1][raddr2] // Memory read port 

 

 

 
 

Primary advantage of memory inference is improvement in capacity. 
 

Memory is inferred for a signal based on its declaration and usage. Any access to such 
 

a signal will be implemented via a readPort/writePort.Automatic Memory Inference 
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3.11 MEMORY WITH SYNC_ASYNC RESET?SET 

 

                Here the Memory can be represented with the Asyncronous reset if the the reset is     

                Given in the problem statement , it is represented with synchronous reset if the  

                Reset is not mentioned in the problem statement. 

 

Assigning complete memory in synchronous/asynchronous reset/set condition 

reg [0:7] RAM [0:255]; 
 

always @ (posedge clock or posedge reset) 
 

begin 
 

if ( reset ) 
 

for(int I = 0; I < 256; I++) 
 

RAM[I] = 0; 
 

else 
 

begin 
 

RAM [waddr] = din; 
 

Dout = RAM [raddr]; 
 

end 
 

end 
 

Subtype slv8 is std_logic_vector (0 to 7) 
 

Type RAM is array (0 to 255) of slv8 
 

Signal memory : RAM; 
 

Process (clock, reset) 
 

Begin 
 

if ( reset ) then 
 

for I in 0 to 255 loop 
 

RAM(I) <= (others => ‘0’); 
 

end loop; 
 

elsif ( clock’ event && ( clock = ‘1’) ) then RAM (waddr) <= din; Dout 

<= RAM (raddr); 

 

 

end if; 
 

End process; 
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3.13 PRAGMA CONTROL 
                   
                
                 VERILOG PRAGMA ATTRIBUTE 
 
                   
                  Verilog:- // pragma attribute <signal-name> <pragma-name> 0/1

 

 

<signal-name> = name of register array 
 

<pragma-name> = ram_block = force implementation as built-in memory 

core logic_block = force implementation as register array gates 0 = disable, 1 

= enable 

The Verilog attribute is represented in the following manner where the Ram 

Block 1 is mentioned. 

 
 

Ex: reg [31:0] core [63:0]; // 64x32 bit memory array 
 

// pragma attribute core ram_block 1 
 

                 

                VHDL PRAGMA ATTRIBUTE 

 

                Vhdl:- attribute <pragma name> : boolean; 

 

 

                attribute <pragma name> of <signal-name> :               

 

               <signal/variable> is <true/false>
 

 

false = disable, true = 

enable Ex: 

VHDL attribute is    

represented in the following 

way in which RAM 

BLOCK of type is true 

  

signal core : ram_type;  -- memory array  

attribute ram_block : boolean;  

attribute ram_block of core : signal is true; 
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14 CROSS SHARING  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

             Fig 3.7 Cross –Sharing between the combinational loops 

 

Caution must be taken while sharing resources. Sharing must be done in such a way that it 

does not result in any combination loop (albeit a false loop). In the above example in Fig 3.7, 

since only two adders are required essentially, we can try to optimize the logic by sharing the 

Adders. If Adders X2, Y1 are shared (owing especially to the shared input ‘B’) and Y2, X1 are 

shared (owing to the shared input ‘C’), it would result in a false combinational loop. Note that 

its not a loop in the strict sense – 
 

Case (i) – When sel == 0 => The loop is broken at 1
st

 Mux 

Case (ii) – When sel == 1=> The loop is broken at 2
nd

 Mux 
 

Such a false combination loop may not be solvable for a timing estimation tool resulting in 

incorrect estimates. 

 

 3.15   CONCLUSION 

 

     This chapter gives brief introduction about the Register transfer level compile flow in which it 

has  analyzed the control and data flow graph in which it has many traversals.The system needs to 

pick the most optimized control and data flow graph. This graph will optimize all the control and 

data related issues .The control and data flow graph will analyze all the nodes of a register transfer 

level module and then it has to optimize the path so this compile flow will tells where to optimize 

all the RTL level. 
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CHAPTER 4 
 

                                        OPTIMIZATION OF MEMORY  PORTS  
 
 

 

4.0. INTRODUCTION 
 

This Optimization is done in case of there are  large Number of ports which can hamper the 

memory during synthesis. So with this conversion we are converting it into single port and 

also we are reducing the compilation Time. 

In case enrolling of the loop, it has the constant address in that case they are not declaring it as 

memory, it can be declared as logic Block in which we have many adders, Multiplexers and 

LUTs which takes a lot of area for the chip. Thus memory Inference is really important and 

helpful in chip designing, In this to infer memory through this optimization in this case for 

and if statement is converted into simple if statement, thus that only one write port works at a 

time. This makes the memory to be inferred causing the small area and better performance of 

the chip.  

 Compilation time is also got reduced with this optimization of ports of memory. In which 

only the one write port is active at a time. 

 

 

       4.1 FOR IF LOOP IS CONVERTED ITO SIMPLE IF STATEMENT 
 

The For loop and the if statememt are converted into single if statement using this conversion. 

 

                  For  ( i=C1 ; i< C2 ; i++ ) 

 begin  
if( i == named Object Use)  
<Assignments(only)>  

 end  
| 

 

             ( conversion ) 

 

  if( (named Object Use >= C1) && (named Object Use < C2) )  
    <Assignments> 
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Fig 4.1 the for if enrolling of the loop with memory declaration. 

 

 

 

   4.2 ALGORITHM AND APPROCH 

 

          Conversion is done while pre Traversal before CDFG conversion in Fig 4.1. 

 
 

1. Check FOR Loop whether conversion is possible or not. (Eg check generic for loop , if 

condition ) 
 

2. If conversion is not possible then return.  
3. If conversion is possible save the for loop in a list.  
4. Iterate over this list, once the traversal is done. Check for if conversion is possible (Eg memory 

element. Mem access type pattern on that dimension.  
5. If conversion is not possible, then traverse the non converted with different object.  
6. If conversion is possible, then traverse the converted loop with the different object. 

 

Store it into a table then finally we use it for the conversion. 
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4.3 ACCESSING THE MEMORY BLOCK  

 
 

 

Logic [7:0] memory [255:0] [3:0] 

 

 

Logic block Memory block Logic block 

1 2 3 

ADDRESS      

ACCESS 

TYPE   

ADDRESS 

ACCESS  TYPE 

DATA  

ACCESS TYPE 

Static access Non static access Static access 

[255:0] [3:0] [7:0] 
   

   

 

 

 

Memory is declared which is really important to declare otherwise it causes the logic block to be 

made which consists of adders, Multiplexers and logic blocks which increases the capacity of chip. 

 By memory inference we are able to mark memory. In this memory declaration we have 256 address 

depth and 4 bits we have 3D memory and 8 bits the data width. 

                      

There is packed and unpacked array in which we have the data width is considered in case of packed 

array and the unpacked array we have the address depth. The first bit is considered to be the no. of 

memory blocks and second bit decides the no. of bits in the memory depth. 

           

In unroll able for loop we have constant address in that case memory is not declared, it is assumed as 

a logic block which makes the area of the chip to exponentially increases and memory is not inferred 

where in case of optimization the conversion of for loop makes it non - static address corresponding 

to it memory is inferred, this cause the chip size to decrease. Hence the optimization of device is 

there.  

 

 So this optimization is really helpful in maintaing the balance between the area and the performance. 

With the data out comparsion between the questa and Register Transfer level compiler, we can get the 

results of memory inference with simulation and emulation. So the Questa and The Register Transfer 

level compiler are very important in case of these simulation and Emulation.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4.2 The Read and Write Ports of The Memory (There 50 write ports and one read port) 
 
 
 

In this Verilog Program we have 50 write ports and one Read port with this optimization of 

memory block in Fig 4.2 at a time only one Read port is active which is actually needed to compile 

the testcase. Hence this optimization is good, because it helps in inference of memory causes this 

enrolling of the for loop to convert it into the single if statement. 

 

This Verilog program represent how we need to use the chain of muxes in case of the output. But 

with this optimization we can stop this unrolling abd convert this for loop into the single if 

statement. 
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Fig 4.3 Questa output of the memory represtentaion.The simulation output of the results  

 

 
 
Here in this CDFG represtation in Fig 4.3, we have the questa output, how the VMW PARAMEM       

Formed .Here the different wires are declared like we have to represent it in the form of wires. 

Where we have only inputs and outputs, there is no storage elements. 

 

 In Verilog the storage element is represented by register. So in this module we have clock, address 

bits, data bits to represtent it the form of memory block.So this CDFG reprentation is helpful in 

preanalyzing the data and control flow of the loop. 

  

This Module is represented in the form of continuous enrolling of the For loop such that it helps in 

the generaling the control and data flow graph without optimization. 

 



4.4 VAILD SCENARIOS WHERE CONVERSION OCCURS 

  
Here there is  convertion of the for if loop in which I is used in dimension with Static , Non_ Static , 

Static + Non_Static Access Type and Default Access Type. 

 
 

The Memory read and write   

ports 

 

module top(clock,addr,din,dout); 

 

input clock ; input 

[9:0] addr ; input 

[7:0]di 

output[7:0] dout; 

         integer i; 

          reg [7:0] mem[1023:0]                                        

assign dout = mem[addr] ; 

always @(posedge clock) begin 

for(i = 0; i < 50; i=i+1)  

begin 

if(i == addr)  

mem[i] <= din ; 

end  

end 

endmodule 

Here The Mem Access Type of I is Static so we are converting this For If loop. 
 
 

Here in This loop for conversion, we have to check the access type of the variable to be converted. 

Hence it is determined with the help of register Transfer level Language, how this RTL language is 

converted into the C language code. This is all about the conversion, there is the conversion of these 

for loops into the if statement.Thus with the help of this code, there is the optimization which is 

related to all the for loop conversion. Hence all the conversion is done according memory access 

pattern. We should carefully observe all the memory patterns of theis loop is statements which helps 

in the conversion of if statement. 
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4.5 HANDLING OF DIFFERENT OPERATORS 

 

The statement is the FOR loop conversion without memory block 

 

The cases where the logical (And) (&&) operator is used we are checking whether there is logical 

equal (==) operator is also used in that case we are converting. always @ * 

 

Here Different operators are handled with certain limits and integer are handled and operator 

and or operator, then have to merage all the operators if logical equal to operator is there. So the 

Enable switches will not impact the optimization since they logical equal to operator is given 

preference due to the preference of the logical equal to the OR operator and the AND operator 

is not taken into considersation.   

 

Handing of the operators in if condition is really important. Because if condition will decide 

when we have to choose the differences in case of the operator handing.  

    

All the Verilog program begins with the positive edge of the clock which decides at what edge 

the clock, begins to work. The clock will stabilize and then will get the output in case of every 

positive edge of the clock. Then the for loop starts to enroll, Thus this changes will cause the 

positive edge of the clock to occur. 

  

Since first of all the logical equal to operator is compared in case of the loops. Then will check 

the logical and operator, so need to check the logical equal to operator and then need to check 

the logical and operator. These are the comparisons which we need to made in case of the 

logical and and equal to operator. 

 

The For and if loop without memory Block. 

 

          Always@(posedge clk) 

 

begin 
 

out1 = 0; 
 

for(integer i = 0; i < 8; i++) 
 

if(i == in2 && (enable1 || enable2)) 
 

out1[i] = in1[i]; 
 

end 
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    4.6 Enrolling of the For Loop 

     Here to discuss the internal working of the loops while expansion through control and data flow 

graph (CDFG) 

  
     In case they are converting we will write on CDFG otherwise we will not. 

 

     //NOP_1; //CDF_1 

 

 

    [-] i[31:0] [+]= [+]1'd0[0]{0}; //CDF_2 

 

     [+] rtlc0n0 = ([+] 32’d00000000000000000000000000000000[31 : 

 

 {00000000000000000000000000000000} [+] == [+]addr[9 : 0]); 

 

//CDF_7 

 

   //NOP_8; //CDF_8 

 

    //NOP_1260; //CDF_1260 

 

   [+] rtlc0n102 [-1:-1] [+] = [+] rtlc0n0; //CDF_1261 

 

   [+] rtlc0_mem_write_datain_n3 [7:0][7 : 0] [+]= [+]din[7 : 

0]; 

 

//CDF_11 

 

This how it can seen the enrolling of the for loop at the CDFG level. The control the data flow       

is that step in design flow when there is not optimization occurs. 

A general graph is formed where we can decide whether this graph like structure in which we 

have control and the data flow in which there can be enrolling the for loop which consist of the 

graph like structure in terms of the control and the data flow ie CDFG level . Here we can see 

that there is enrolling of the for loop occurs where we can see that no optimztion occurs at the 

CDFG i.e control and data flow graph. 
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The Memory Inference is handed for Hard constraints. 
 

Path for all the test cases /in/innrtlc15/perry/testcase/memory/ which have been tested during my 

testing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

     Fig 4.4 the various read and the write ports in terms of control and data flow graph. 

 
  

The various Address bits and data bits in Fig 4.4 are represented interms of CDFG level.The Model 

is converted into a vele memory such that memory is inferred at this level. So that   various data out 

and memory is represented in the form of decoder the memory read decoder the memory write 

decoder. All the input data read and output data write is represented interms of the decoder The Vcc 

and address depth bits and data width all is represented interms of the decoder.                      
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The Netlist conversion of the Verilog Module. How the various LUTs and Modules are formed in 

case of the Optimization of the loop. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
     Fig 4.5 NETLIST and the memory declaration with the Look up Table (LUTS) Formation 

 
 
 
In this module in Fig 4.5 we have vaious LUTs and Flip Flops are there as a storage elements 

which helps in the formation of various components of the chip. Since the MED_FD which means 

the mentor Emulation Division D flip flops means the data flip flops which are able to store the 

data information. These Look up table can also be represented in any form in which there has to 

represent the logic so the VMW_PARA_MEM is really important to optimize the area of the chip. 
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4.6 COVERSION CASES 

 
The memory can be respresented in the form of part select : 

 
                for(i = 0; i < 50; i=i+1) 
 

begin 
 

if(i == addr) 
 

mem[i+: 8] <= din ; 

 

 
Here the memory is represented in the form of the part select, in which it takes a only the part of 

the memory  
 
 

The idigital idesign isystem iis idescribed iin iVerilog ibecause ihigh ilevel iVerilog idesigns iare 

iusually idescribed iat ithe ilevel ithat iconsist iof isystem iregisters iand itransfer iof idata 

ibetween ivarious iregisters ithrough ibuses, ithis ilevel iof ihigh ilevel idescription iis icalled ias 

iregister itransfer ilevel i(RTL). Verilog iconstruction iused iin iRTL ilevel idesign iare iprocedural 

istatements icontinuous iassignments iand iinstantiation istatements. 

 

Since The part select conversion can include only the portion of the memory. Thus the complete 

flow of the memory is not able to include the complete flow of the memory which causes the 

memory to be optimally utized such that the part selection of the memory is not included interms 

of the optimization. Thus the optimally inclusion of the memory needs the complete declaration. 

Not the part selection of the memory. 

 

A idigital isystem idesigned iin iVerilog ishould ibe isimulated iand itested ifor ifunctionality ibefore iit 

iis iturned iout iinto ia ihardware iwhile isimulation idesign ierrors iand iincompatibility iof icomponents iin 

ithe idigital idesign, iall iare idetected. iIn isimulation, ia idigital idesign ineed igeneration iof itest idata iand 

iobservation iof iall isimulation iresults. iThis iprocess ican ibe idone iby iuse iof ia iVerilog imodule ithat iis 

icalled ias ia itest ibench. I 

 

 

A iVerilog itest ibench iuses iHDLs iconstructs ifor igeneration iof idata imonitoring iof iresponse iand ieven 

ihandshaking iof ithe idesign. iIn ithe itest ibench, ithe idesign iis iinstantiated iwhich iis ibeing isimulated ithe 

itest ibench itogether iwith idigital idesign. 
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    Fig 4.6   various parts of the memory the write enable and the input of the memory. 

 
 
In Memory Block there are write enables and the read enable and the Byte enable as well how 

much write and byte enable memory is required. Since the RTLC memory required for the write 

enable as well as byte enable. There needs the memory to be declared with address read and wrte 

ports. The data read and write port, the byte enable read and write port. The memory have various 

enable which helps to write the adrees bit in memory in Fig 4.6. 

 
 
 

 In Verilog the storage element is represented by register. So in this module there is a clock, 

address bits, data bits to represtent it the form of memory block.So this CDFG reprentation is 

helpful in preanalyzing the data and control flow of the loop 
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     Fig 4.7    The memory formation also represents the write enables 

 
 
In unroll able for loop in Fig 4.7 we have constant address in that case memory is not declared, it is 

assumed as a logic block which makes the area of the chip to exponentially increases and memory 

is not inferred where in case of optimization the conversion of for loop makes it non - static 

address corresponding to it memory is inferred, this cause the chip size to decrease. Hence the 

optimization of device is there.  

 

So this optimization is really helpful in maintaing the balance between the area and the 

performance. With the data out comparsion between the questa and Register Transfer level 

compiler, we can get the results of memory inference with simulation and emulation 
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Fig 4.8 The CDFG flow of the rtlc param and memory flow  

 

 

Here in this CDFG represtation in Fig 4.8, we have the questa output, how the VMW PARAMEM       

Formed .Here the different wires are declared like we have to represent it in the form of wires. 

Where we have only inputs and outputs, there is no storage elements. 

Here in This loop for conversion, we have to check the access type of the variable to be 

converted.Hence it is determined with the help of register Transfer level Language, how this RTL 

language is converted into the C language code.  

This is all about the conversion, we have converted these for loops into the if statement.Thus with 

the help of this code, we can have the optimization which is related to all the for loop conversion. 

Hence all the conversion is done according memory access pattern. We should carefully observe 

all the memory patterns of theis loop is statements which helps in the conversion of if statement. 
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Fig 4.9 Testcases related to the For If Optimization. 

 
 
 

In case enrolling of the loop in Fig 4.9, we have the constant address in that case we are not 

declaring it as memory, it can be declared as logic Block in which we have many adders, 

Multiplexers and LUTs which takes a lot of area for the chip. Thus memory Inference is really 

important and helpful in chip designing, we are able to infer memory through this optimization in 

this case for and if statement is converted into simple if statement, thus that only one write port 

works at a time. This makes the memory to be inferred causing the small area and better 

performance of the chip. 

All the Verilog program begins with the positive edge of the clock which decides at what edge the 

clock, begins to work. The clock will stabilize and then it will  the output in case of every positive 

edge of the clock. Then the for loop starts to enroll, Thus this changes will cause the positive edge 

of the clock to occur. 
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4.7 HANDLING OF THE TASK AND FUNCTION 

 

We are not handing the cases inside the task and function. 

 

      We also not handing the Initial block. 

  
for (i=0; i<d1 ; i=i+1) 

begin  
if(i%3 == 1)  

memory[i] = (2**word_size1)-i-

1; else if(i%3 == 2) 
 

memory[i] = (2**(word_size1/2))-i-

1; else  
memory[i] = i; 

 

end 
 

  

In case of else condition we also not converting the for if loop. 

 

 
 

Here in This loop for conversion, we have to check the access type of the variable to be 

converted.Hence it is determined with the help of register Transfer level Language, how this RTL 

language is converted into the C language code. This is all about the conversion, we have 

converted these for loops into the if statement. 

 

Thus with the help of this code, we can have the optimization which is related to all the for loop 

conversion. Hence all the conversion is done according memory access pattern. We should 

carefully observe all the memory patterns of theis loop is statements which helps in the conversion 

of if statement. 

 

There is packed and unpacked array in which we have the data width is considered in case of 

packed array and the unpacked array we have the address depth. The first bit is considered to be 

the no. of memory blocks and second bit decides the no. of bits in the memory depth. 
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4.9  MEMORY ACCESS TYPE OF THE MEM BLOCK 

 
 

 reg [7:0]mem[1024:0][101:0]          

always @(posedge clock) 

for(i = 0; i < 101; i=i+1) 
 

if(i == sel) 
 

mem[addr][i] = d1 ; 

 

 

In this case also we are not converting because we have access pattern of I is not from the Static, 

Non_static, Static + Non_static and Default Access Type. 

 

 

A general graph is formed where we can decide whether this graph like structure in which we have 

control and the data flow in which we can enroll the for loop which consist of the graph like structure 

in terms of the control and the data flow ie CDFG level .  

 

Here we can see that there is enrolling of the for loop occurs where we can see that no optimztion 

occurs at the CDFG i.e control and data flow graph. 

 

 Here in This loop for conversion, we have to check the access type of the variable to be converted. 

 Hence it is determined with the help of register Transfer level Language, how this RTL language       

is converted into the C language code. This is all about the conversion, we have converted these for 

loops into the if statement. 

 

Thus with the help of this code, we can have the optimization which is related to all the for loop 

conversion. Hence all the conversion is done according memory access pattern. We should carefully 

observe all the memory patterns of theis loop is statements which helps in the conversion of if 

statement. 

 

Compilation time is also got reduced with this optimization of ports of memory. In which only the 

one write port is active at a time. This is done with the help of Register Transfer level (RTL) 

compiler and the Questa simulator. We compared the results with the simulator as well as emulator 
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4.10 EXAMPLE OF THE FOR_IF CONVERSION WITHOUT MEMORY 

BLOCK 
 
The Module with input and output ports without memory block. 
 
module top( clock, addr, din, out1); 

 

input clock ; 
 

input [4:0] addr ; 
 

input logic [7:0] din ; 
 

integer i; 
 

output logic [7:0] out1[31:0] ; 
 

always @(posedge clock) 
 

begin 
 

for(i = 0; i < 7; i=i+1) 
 

begin 
 

if(i == addr) 
 

out1[i] <= din ; 
 

end 
 

end 
 

endmodule 
 
 

The idigital idesign isystem iis idescribed iin iVerilog ibecause ihigh ilevel iVerilog idesigns iare 

usually idescribed iat ithe ilevel ithat iconsist iof isystem iregisters iand itransfer iof idata ibetween 

ivarious iregisters ithrough ibuses, ithis ilevel iof ihigh ilevel idescription iis icalled ias iregister 

itransfer ilevel i(RTL). Verilog iconstruction iused iin iRTL ilevel idesign iare iprocedural 

istatements icontinuous iassignments iand iinstantiation istatements. 

 I 

4.11 CONCLUSION 

This chapter gives the brief introduction about the Memory. The declaration of memory, how to 

decrease the size of chip using the for if optimization, this chip introduces the for if optimization. 

In which the memory inference take place by reducing the no. of ports which cause the addres , 

subractors and multiplxers are not formed in place of it memory is formed which causes the size of 

the chip to reduce so it able to reduce the capacity of the ICs and chip . It also reduces the 

compilation time which further inhances the performace of the circuit. So overall it able to enhance 

the capacity, performance and speed of the digital circuits which causes our Verfication technology 

to excel in the market. 
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            CHAPTER 5 

 

RESULTS AND CONCLUSION 
 
 

5.0INTRODUCTION 

 
The below Table shows the comparsion between the compilation Time with and without 

optimization. The memory is inferred in the case of optimization where in other case, the logic 

Block is formed. 
 

 
 
 
    
            SIMULATION RESULTS        
 

  
             EMULATION RESUTLS 

 

  Compilation Time without                 

Optimization 

  Compilation Time with 

  Optimization 

   Compilation Time without  

    Optimization 

    Compilation Time with 

    Optimization 

      8 sec           1 sec         7 sec               1 sec 

     12 sec           3 sec         10 sec               3 sec 

     15 sec           4 sec         12 sec               4 sec 

      17 sec           5 sec         15 sec               5 sec 

 

 

 

 Compilation time is also got reduced with this optimization of ports of memory. In which only the 

one write port is active at a time. This is done with the help of Register Transfer level (RTL) 

compiler and the Questa simulator. We compared the results with the simulator as well as 

emulator. 

Memory is not inferred where in case of optimization the conversion of for loop makes it non - 

static address corresponding to it memory is inferred, this cause the chip size to decrease. Hence 

the optimization of device is there.  

In Memory Block there are write enables and the read enable and the Byte enable as well how 

much write and byte enable memory is required. Since the RTLC memory required for the write 

enable as well as byte enable. We need the memory to be declared with address read and wrte 

ports. The data read and write port, the byte enable read and write port. The memory have various 

enable which helps to write the adrees bit in memory. 
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      Fig 5.1 The Verilog Module for the initialization of the memory. 

 

5.1 FORMATION OF LUTS AND MULTIPLEXERS 

 

In case enrolling of the loop in Fig 5.1, it has the constant address in that case we are not declaring 

it as  memory, it can be declared as logic Block in which it has many adders, Multiplexers and 

LUTs which takes a lot of area for the chip. Thus memory Inference is really important and helpful 

in chip designing, this is able to infer memory through this optimization in this case for and if 

statement is converted into simple if statement, thus that only one write port works at a time.  

 So this optimization is really helpful in maintaing the balance between the area and the 

performance. With the data out comparsion between the questa and Register Transfer level 

compiler, we can get the results of memory inference with simulation and emulation 
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      Fig 5.2   Pragma Representation of the mem RAM-BLOCK 1 

 

5.2 CONVERSION OF FOR TO IF STATEMENT 

 Here in this loop for conversion in Fig 5.2, it has to check the access type of the variable to be 

converted.Hence it is determined with the help of register Transfer level Language, how this RTL 

language is converted into the C language code. This is all about the conversion, it has converted 

these for loops into the if statement.Thus with the help of this code, it can have the optimization 

which is related to all the for loop conversion. Hence all the conversion is done according memory 

access pattern. 

 In unrollable for loop it has constant address in that case memory is not declared, it is assumed as 

a logic block which makes the area of the chip to exponentially increases and memory is not 

inferred where in case of optimization the conversion of for loop makes it non - static address 

corresponding to it memory is inferred, this cause the chip size to decrease.  
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5.3 A COMPARTIVE ANALYSIS OF QUESTA AND REGISTER 

TRANSFER LEVEL 

 

 The idigital idesign isystem iis idescribed iin iVerilog ibecause ihigh ilevel iVerilog idesigns iare 

iusually idescribed iat ithe ilevel ithat iconsist iof isystem iregisters iand itransfer iof idata 

ibetween ivarious iregisters ithrough ibuses, ithis ilevel iof ihigh ilevel idescription iis icalled ias 

iregister itransfer ilevel i(RTL). Verilog iconstruction iused iin iRTL ilevel idesign iare iprocedural 

istatements icontinuous iassignments iand iinstantiation istatements. 

 

 

 In unrolling for loop it has constant address in that case memory is not declared, it is assumed as a 

logic block which makes the area of the chip to exponentially increases and memory is not inferred 

where in case of optimization the conversion of for loop makes it non - static address 

corresponding to it memory is inferred, this cause the chip size to decrease. Hence the optimization 

of device is there. 

                           

Here in This loop for conversion, it has  to check the access type of the variable to be   

converted.Hence it is determined with the help of register Transfer level Language, how this RTL 

language is converted into the C language code. This is all about the conversion, it has to be 

converted these for loops into the if statement.Thus with the help of this code, we can have the 

optimization which is related to all the for loop conversion. Hence all the conversion is done 

according memory access pattern. It should carefully observe all the memory patterns of theis loop 

is statements which helps in the conversion of if statement. 

 

 In unroll able for loop it has constant address in that case memory is not declared, it is assumed as 

a logic block which makes the area of the chip to exponentially increases and memory is not 

inferred where in case of optimization the conversion of for loop makes it non - static address 

corresponding to it memory is inferred, this cause the chip size to decrease. Hence the optimization 

of device is there.               
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      Fig 5. 3 Precesion tool with for loop optimizatiom  

 

5.4 READ AND WRITE ENABLE IN MEMORY BLOCK                   

 In Memory Block there are write enables and the read enable and the Byte enable as well how 

much write and byte enable memory is required. Since the RTLC memory required for the write 

enable as well as byte enable. We need the memory to be declared with address read and write 

ports. The data read and write port, the byte enable read and write port. The memory have various 

enable which helps to write the adress bit into the memory. 

                          

The precesion tool in Fig 5.3 is the tool for the formal verification with use of all the LUTs, 

multiplexers  with this tool which is very helpful for the gate level synthesis all the gate level 

synthesis is done with the help of this precesion tool. 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5.5 Precesion tool conversion of the FOR IF Optimization  

                                

This Precesion tool in Fig 5.5 makes the optimization is done in case of it has large Number of 

ports which can hamper the memory during synthesis. So with this conversion it is converted into 

single port and it is also reducing the compilation time. 

 
 

5.4 CONCLUSION                       

In case enrolling of the For loop, it has the constant address in that case it is not declaring it as 

memory, it can be declared as logic Block in which it has many adders, Multiplexers and LUTs 

which takes a lot of area for the chip. Thus memory Inference is really important and helpful in 

chip designing, it is able to infer memory through this optimization in this case for and if statement 

is converted into simple if statement, thus that only one write port works at a time. This makes the 

memory to be inferred causing the small area and better performance of the chip.  

 
 
                                                                                                                                                                   
 
                                                                                                                                                                          



                                                             CHAPTER 6 

            MAIN CONCLUSION AND FUTURE SCOPE OF WORK 

 

6.0 MAIN CONCLUSION         

In this dissertation while working on the verification of digital design chips, the optimization of 

time and space complexity is solved by using the memory inference and decreasing the number of 

ports of memory. Various logic block like adders, subractors and multiplexers are solved by using 

this optimization, further more all the results have been verified using the questa simulator of 

mentor graphics and the Register transfer level compiler in which first of all it  creates a library and 

then analyze that file in disk and then compile the data , these both are the prcocedures for 

simulations and then finally it also verified the results using emulator i.e VELOCE .The Emulation 

process consists of the Velcomp flow in which it has a static graph which maintain all the 

dependencies between each phase. In this flow in Fig 6.0 user needs to create the configuration file 

named Veloce.config to provide all the options .So this present work concludes the optimization of 

space of the chip and verification of the chip using the questa and register transfer level compiler 

and the Emulator Veloce, where all the testing is done using the Velcomp flow which contains all 

the PRERTLCFORDFT, PRERTLCFORUPF.  

 

 

 

 

 
 

 

 

 

 
 

                                      Fig 6.0 Velcomp flow for the emulator                                                                                                                                                                                                                 
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6.1 FUTURE SCOPE OF WORK 

 

This work can be extended in tasks and functions and other complex algorthims where every thing 

works in repetitive fashion.  

 

1. The process of synthesis and compilation is also reduced by decreasing the no. of flip flops with 

enchancments in timing analysis. 

2. A new logic can be developed which will enchance the optimzations for the no. of flip flops and 

the retimmig which can also play a role in generating a new flow.  

3. Retimming is also another technique which can decrease the timing analysis between two flip 

flops which can be implemented in future in this project.  

4. The verification of millions of IC and chips can be done with high precision and with less 

amount of time. It can be supported for various other modules that can perform with larger 

capacity.  

5. Memory ports can be further decreased with more enchancements like creating the one hot logic 

technique which can be implemented in future. 

6. There can also be check for dissolving the bad memories as it can impact at the testcases where 

bad memories can be dissolved.  

 

 

6.2 COMING EMULATOR AND SIMULATOR 

 

The recent Emulators VeloceX and VeloceY can be used in further research work in which they 

can boost the runtime anad performance by 4.5 X , so all the testing of chips and ICs are further 

inhanced by 2 X speed . By using these emulators, the reseach work can be further improvised by 

using the millions of chips to test with high optimization. The Emulators provide the complete 

verification by using the accurate performance analysis and the various advanced verfications 

methodologies. It provides the compele verification such that advanced the testing of all the chips 

and IC with advanced accuracy and with high optimization. 

                                                                                                                                                           

 

 

 

Page 60 i| i60 



                                                                                                                                                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

                               REFERENCES 

 

[1] Li H, Steurer M, Shi K L, et al.”development of a unified design, test, and research platform 

for wind energy systems based on hardware-in the-loop real-time simulation.” Industrial 

Electronics, IEEE Transactions on 53.4 (2006):1141-1151 

[2] Rakopoulos, C. D., and E. G. Glakoumis. "Sensitivity analysis of transient diesel engine 

simulation." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of 

Automobile Engineering 220.1 (2006): 89-101. 

[3] Bayat Sarmadi. S.. Miremadi. S.G.. Asadi. G., Ejlali. k, "Fast Prototyping with Co-operation 

of Simulation and Emulauon." in Proceedings of 12th  International conference on Field 

Programmable  Logic and Applications, 2002 

[4] Canellas, N.. Moreno. J. M.. “Speeding up hardware prototyping by incremental Simulation 

and Emulation”. in Proceedings of  11th  International Workshop on Rapid System Prototyping, 

2011. 

[5] Clement. B., Herremeulc, R.. Lmtreihccq. E.. Ramanadin. B., Coulomb. p., Pogodalla, F.. "Fast 

Prototyping: A System Design Flow Applied to a Complex System-On-Chip Multiprocessor 

Design". in Proc. Of the ACM IIEEE Design Automation Conference [DAC). 1999 

[6] De Micheli. G., Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994. 

[7] Evans, A.. Silburl, A., Vrckovnik, G., Brown. T.. Dufresne. M.. Hall, G.. Ho, T.. Liu., Y.. 

"Functional   Veri-cation of large ASICS". In   Proc. Of the ACM/ lEEE design Automation 

Conference (DAC). 1998. 

[8] IEEE Std 1076-1993: IECE Standard VHDL Language Reference Manual. 

[9] IEEE Std 1364-1995: IECE Standard Verilog HDL Language Reference Manual. 

[10] Kim, N.. Choi. H.. Lee, S., Lee. S., -C. Park. I.. -M. Kpn. C.. "Virtual Chip: Making Functional 

Models Work On Real Target Systems", in hoc. Of the ACM/lEEE Design Automation 

Conference (DAC), 1998. 

[11] ]Kudlugi. M. , Hassoun, S.. Selvidge. C.. Pryor. D.. "A Transaction-Bared Unified Simulation 

and Emulation Architecture for Functional Verification," in Proceedings of 38th ACM/IEEE 

Design automation conference, 2001, pp. 623.628. 

[12] Rowson, J. A.. "Hardware Software Co-Simulation", in Proceedings of3 1st ACM/IEEE 

Design Automation Conference. 1996. pp. 439440. 



[13] Varghese, J., Butts, M., and Batcheller, J., "An efficient logic emulation system," IEEE Trans. 

an  VLSl Syst., vol. I, June 1993, pp. I7 I. 174. 

[14] ] Y. Zheng and D. Nicol, “A virtual time system for openvz-based network emulations,” in 

2011 IEEE Workshop on Principles of Advanced and Distributed Simulation (PADS). IEEE, 2011, 

pp. 1–10. 

[15] D. Nicol, D. Jin, and Y. Zheng, “S3F: The Scalable Simulation Framework Revisited,” in 

Proceedings of the 2011 Winter Simulation Conference, Phoenix, AZ, December 2011. 

[16] M. Liljenstam, J. Liu, D. Nicol, Y. Yuan, G. Yan, and C. Grier, “Rinse: the real-time 

immersive network simulation environment for network security exercises,” in Proceedings of 

Workshop on Principles of Advanced and Distributed Simulation, 2005. PADS 2005. IEEE, 2005, 

pp. 119–128. 

[17] R. Fujimoto, “Parallel discrete event simulation,” in Proceedings of the 21st conference on 

Winter simulation. ACM, 1989, pp. 19–28. 

[18] Y. Zheng, D. Nicol, D. Jin, and N. Tanaka, “A Virtual Time System for Virtualization-Based 

Network Emulation and Simulation,” Journal of Simulation, 2011, To appear 

[19] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. McCanne, K. 

Varadhan, Y. Xu et al., “Advances in network simulation,” Computer, vol. 33, no. 5, pp. 59–67, 

2002. 

[20] ] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and ´ D. Becker, 

“Scalability and accuracy in a large-scale network emulator,” ACM SIGOPS Operating Systems 

Review, vol. 36, no. SI, pp. 271–284, 2002. 

[21] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower, R. Ostrenga, and S. 

Schwab, “Experience with DETER: A testbed for security research,” in 2nd International 

Conference on Testbeds and Research Infrastructures for the Development of Networks and 

Communities, 2006. TRIDENTCOM 2006. IEEE, 2006, pp. 10–388. 

[22] Co-Verification Debugger Enables Hardware and Software Communication for SoC 

Verification. [Online] Available. http://www.axiscorp.com/products/coverification.html 

[23] (2003, Feb.) Aptix and Zaiq Reseller Agreement to Improve Communication System Design 

Validation. [Online] Available. http://www.aptix.com/news/news.htm 

[24] D. Brahme, S. Cox, J. Gallo, M. Glasser, W. Grundmann, C. Ip, W. Paulsen, J. Pierce, J. Rose, 

D. Shea, and K. Whiting, The Transaction-Based Verification Methodology. Berkeley, CA: 

Cadence Berkeley Labs, 2000. 

[25] F. Carbognani, C. Lennard, C. Ip, A. Cochrane, and P. Bates, “Qualifying precision of abstract 

systemC models using the systemC verification standard,” in Proc. Design, Automation, Test in 

Europe, 2002 

http://www.axiscorp.com/products/coverification.html
http://www.aptix.com/news/news.htm


[26] F. Casaubielilh, A. McIssac, M. Benhamin, M. Barttley, F. Pogodalla, F. Rocheteau, M. 

Belhadj, J. Eggleton, G. Mas, G. Barrett, and C. Berthet, “Functional verification methodology of 

chameleon processor,” in Proc. ACM/IEEE Design Automation Conf., 1996, pp. 421–426. 

[27] B. Clement, R. Hersemeule, E. Lantreibecq, B. Ramanadin, P. Coulomb, and F. Pogodalla, 

“Fast prototyping: a system design flow applied to a complex system-on-chip multiprocessor 

design,” in Proc. ACM/IEEE Design Automation Conf., 1999, pp. 420–424. 

[28] A. Clouard, G. Mastrorocco, F. Carbognani, A. Perrin, and F. Ghenassia, “Toward bridging 

the precision gap between SoC transactional and cycle accurate levels,” in Proc. Design, 

Automation, Test in Europe Conf., 2002. 

[29] A. Evans, A. Silburt, G. Vrckovnik, T. Brown, M. Dufresne, G. Hall, T. Ho, and Y. Liu, 

“Functional verification of large ASICS,” in Proc. ACM/IEEE Design Automation Conf., 1998, 

pp. 650–655. 

[30] G. Ganapathy, R. Narayan, G. Jorden, and D. Fernandez, “Hardware emulation for functional 

verification for K5,” in Proc. ACM/IEEE Design Automation Conf., 1996, pp. 315–317 

[31] P. Hardee. Transaction-Level Modeling and the ConvergenSC Accelerated Transaction Based 

Co-Simulation Products. [Online] Available. http://www.coware.com 

[32] C. Ip and S. Swan. (2003) A Tutorial Introduction on the New SystemC Verification Standard. 

[Online] Available. http://www.systemC.org 

[33] M. Kantrowitz and L. Noack, “I’m done simulating: now what? Verification coverage 

analysis and correctness checking of the DEC-chip21164 alpha microprocessor,” in Proc. 

ACM/IEEE Design Automation Conf., 1996, pp. 325–330. 

[34] N. Kim, H. Choi, S. Lee, S. Lee, I.-C. Park, and C.-M. Kyun, “Virtual chip: making functional 

models work on real target systems,” in Proc. ACM/IEEE Design Automation Conf., 1998, pp. 

170–173. 

[35] A. Meyer. A Loosely Coupled C/Verilog Environment for System Level Verification. 

[Online] Available. http://www.zaiqtech.com 

[36] ] J. Monaco, D. Holloway, and R. Raina, “Functional verification methodology for the 

powerPC 604 microprocessor,” in Proc. ACM/IEEE Design Automation Conf., 1996, pp. 319–

324 

[37] I. Moussa, T. Grellier, and G. Nguyen, “Exploring SW performance using SoC transaction-

level modeling,” in Proc. Design, Automation, and Test in Europe Conf., 2003, pp. 120–125. 

[38] M. Newman, “Test benches in C speed verification by unifying emulation and simulation,” 

Integrated Syst. Design, pp. 34–40, 1999 

[39] Cadence Application Note. (2003) Accelerated transaction based co-simulation. [Online] 

Available. http://www.cadence.com 

http://www.coware.com/
http://www.systemc.org/
http://www.zaiqtech.com/
http://www.cadence.com/


[40] V. Popescu and B. McNamara, “Innovative verification strategy reduces design cycle time 

for high-end sparc processor,” in Proc. ACM/IEEE Design Automation Conf., 1996, pp. 311–314 

[41] B. Schnaider and E. Yogev, “Software development in a hardware simulation environment,” 

in Proc. ACM/IEEE Design Automation Conf., 1996, pp. 684–689. 

[42] R. Stevens, UNIX Network Programming, and Networking APIs: Sockets and XTI, 2nd ed. 

Englewood Cliffs, NJ: Prentice-Hall, 1997, vol. 1 

[43] S. Swan. (2001) An Introduction to System Level Modeling in SystemC 2.0. [Online] 

Available. http://www.systemC.org 

[44] M. Wannemacher, M. Munteanu, S. Perret, R. Singer, "Taking the best out of two worlds: 

prototyping and hardware emulation," Seventh IEEE International High-Level Design Validation 

and Test Workshop (HLDVT'02), 2002, pp.156-161. 

[45] P. Rashinkar, P. Paterson, and L. Singh, System-On-AChip Verification: Methodology and 

Techniques, Kluwer, 2000, p. 153. 

[46] I. Mavroidis and I. Papaefstathiou. “Efficient testbench code synthesis for a hardware 

emulator system,” Proceedings of the Conference on Design, Automation and Test in Europe 

(DATE '07). EDA Consortium, San Jose, CA, USA, pp. 888-893. 

[47] Mentor Graphics, “The Target Platform Methodology for HW/SW Debugging before 

Silicon”, White Paper, url: www.mentor.com. 

 

http://www.systemc.org/
http://www.mentor.com/

