Project Report

On

FACTORS AFFECTING CAPITAL STRUCTURE DECISIONS: A STUDY OF S&P CNX NIFTY 50

Submitted By:

Mohit Udar

Roll no. - 2K12/MBA/32

Under the Guidance

Of:

Asst Prof. Dr. Archana Singh

Delhi School of Management, Delhi Technological University

DELHI SCHOOL OF MANAGEMENT Delhi Technological University Bawana Road Delhi 110042

CERTIFICATE

This is to certify that the Project Report titled "Factors affecting capital structure decisions: A study of S&P CNX NIFTY 50" is a bonafide work carried out by Mr. Mohit Udar of MBA 2012-14 and submitted to Delhi School of Management, Delhi Technological University, Bawana Road, Delhi-42 in partial fulfilment of the requirement for the award of the Degree of Masters of Business Administration.

Prof. P.K Suri HOD, DSM Place: Delhi

Date:

Declaration

I Mohit Udar, student of MBA 2012-14 of Delhi School of Management, Delhi Technological University, Bawana Road, Delhi-42 declare that dissertation report entitled Factors affecting capital structure decisions: A study of S&P CNX NIFTY 50 submitted in partial fulfillment of Degree of Masters of Business Administration is the original work conducted by me.

The information and data given in the report is authentic to the best of my knowledge.

This Report is not being submitted to any other University for award of any other Degree, Diploma and Fellowship.

Place: Delhi Mohit Udar

Date: 2K12/MBA/32

Acknowledgement

I gratefully acknowledge my profound indebtedness towards my esteemed guide, Dr. Archana Singh Assistant Professor Delhi School of Management, Delhi Technological University, for his invaluable guidance, excellent supervision & constant encouragement during the entire duration of the project. This project would never have been possible without his guidance & supervision.

I am also thankful to all the faculty members of Delhi School of Management, DTU, New Delhi.

And last but not the least I am heartily thankful to our batch of 2014, my fellow students & batch mates of Delhi School of Management for their support & encouragement throughout my work.

Date: Mohit Udar udarmohit@gmail.com

Table of Contents

1	INT	RODUCTION	5
	1.1	Capital Structure	5
	1.2	Need of Capital Structure	7
	1.3	Theory of Capital Structure	8
2	REV	IEW OF LITERATURE	14
3	KES	EARCH DESIGN	20
	3.1	Need for the Study	20
	3.2	Research objectives	20
	3.3	Hypotheses testing	20
	3.4	Research Methodology	21
	3.4.1	DATA SET AND SAMPLE	21
	3.4.2	Tools of Analysis	
	3.5	Computation of Variables	22
4	TUO	SEE DETERMINIANTS OF CARITAL STRUCTURE (RESPECTION ANALYSIS)	20
4		EE DETERMINANTS OF CAPITAL STRUCTURE (REGRESSION ANALYSIS)	
	4.1	Determinants of Debt-equity Ratio	26
	4.1.1	AUTOMOBILE SECTOR	26
	4.1.2		
	4.1.3		
	4.1.4		
	4.1.5	PHARMA	
		MAIN FINDINGS	
	4.2	Determinants of Debt to Total Long Term Funds Ratio	43
	4.2.1	AUTOMOBILE	43
	4.2.2	CONSTRUCTION	 46
	4.2.3		 49
	4.2.4	OIL, POWER AND ENERGY	<i>53</i>
	4.2.5		
	4.2.6		
	4.3	Determinants of Degree of Financial Leverage	
	4.3.1	AUTOMOBILES	62
	4.3.2		
	4.3.3		
	4.3.4		
	4.3.5	Pharma	78

	4.3.6 MAIN FINDINGS	82
5	SUMMARY	84
6	CONCLUSION	85
7	REFERENCES	86

1 INTRODUCTION

1.1 Capital Structure

Capital Structure is referred to as the ratio of different kinds of securities raised by a firm as long-term finance. The capital structure involves two decisions-

- a. Type of securities to be issued are equity shares, preference shares and long term borrowings (Debentures). These are discussed below
 - i. **Equity Capital**: This refers to money put up and owned by the shareholders (owners). Typically, equity capital consists of two types: 1.) contributed capital, which is the money that was originally invested in the business in exchange for shares of stock or ownership and 2.) retained earnings, which represents profits from past years that have been kept by the company and used to strengthen the balance sheet or fund growth, acquisitions, or expansion.

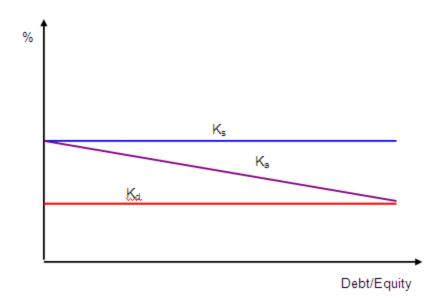
Many consider equity capital to be the most expensive type of capital a company can utilize because its "cost" is the return the firm must earn to attract investment. A speculative mining company that is looking for silver in a remote region of Africa may require a much higher return on equity to get investors to purchase the stock than a firm such as Procter & Gamble, which sells everything from toothpaste and shampoo to detergent and beauty products.

ii. **Debt Capital**: The debt capital in a company's capital structure refers to borrowed money that is at work in the business. The safest type is generally considered long-term bonds because the company has years, if not decades, to come up with the principal, while paying interest only in the meantime.

Other types of debt capital can include short-term commercial paper utilized by giants such as Wal-Mart and General Electric that amount to billions of dollars in 24-hour loans from the capital markets to meet day-to-day working capital requirements such as payroll and utility bills. The cost of debt capital in the capital structure depends on the health of the company's balance sheet - a triple AAA rated firm is going to be able to borrow at extremely low rates versus a speculative company with tons of debt, which may have to pay 15% or more in exchange for debt capital.

- iii. Other Forms of Capital: There are actually other forms of capital, such as vendor_financing where a company can sell goods before they have to pay the bill to the vendor that can drastically increase return on equity but don't cost the company anything. This was one of the secrets to Sam Walton's success at Wal-Mart. He was often able to sell Tide detergent before having to pay the bill to Procter & Gamble, in effect, using PG's money to grow his retailer. In the case of an insurance company, the policyholder "float" represents money that doesn't belong to the firm but that it gets to use and earn an investment on until it has to pay it out for accidents or medical bills, in the case of an auto insurer. The cost of other forms of capital in the capital structure varies greatly on a case-by-case basis and often comes down to the talent and discipline of managers.
- b. Relative ratio of securities can be determined by process of capital gearing. On this basis, the companies are divided into two-
 - Highly geared companies Those companies whose proportion of equity capitalization is small.
 - ii. **Low geared companies** Those companies whose equity capital dominates total capitalization.

1.2 Need of Capital Structure


Financing and investment are two major decision areas in a firm. In the financing decision the manager is concerned with determining the best financing mix or capital structure for his firm. Capital structure could have two effects. First, firms of the same risk class could possibly have higher cost of capital with higher leverage. Second, capital structure may affect the valuation of the firm, with more leveraged firms, being riskier, being valued lower than less leveraged firms. If we consider that the manager of a firm has the shareholders' wealth maximization as his objective, then capital structure is an important decision, for it could lead to an optimal financing mix which maximizes the market price per share of the firm.

Capital structure has been a major issue in financial economics ever since Modigliani and Miller (henceforth referred to as MM) showed in 1958 that given frictionless markets, homogeneous expectations, etc., the capital structure decision of the firm is irrelevant. This conclusion depends entirely on the assumptions made. By relaxing the assumptions and analyzing their effects, theory seeks to determine whether an optimal capital structure exists or not, and if so what could possibly be its determinants. If capital structure is not irrelevant, then there is also another thing to consider: the interaction between financing and investment. But in order to try to distinguish the effects of various determinants on capital structure, it is assumed in this paper that the investment decision is held constant. Having regard to the difference in the risk return characteristics of different sources of capital, capital structure decision is important due to following reasons:-

- Capital structure affects the financial risk assumed by the firm
- Capital structure affects the firm's cost of capital
- Capital structure affects the value of the firm by affecting either its expected earnings or the cost of capital or both.
- Capital structure decision of a firm represents the attitude of its management towards risk and return.

1.3 Theory of Capital Structure

Determination of an optimal capital structure has frustrated theoreticians for decades. The early work made numerous assumptions in order to simplify the problem and assumed that both the cost of debt and the cost of equity were independent of capital structure and that the relevant figure for consideration was the net income of the firm. Under these assumptions, the average cost of capital decreased with the use of leverage and the value of the firm (the value of the debt and equity combined) increased while the value of the equity remained constant.

Modigliani and Miller showed that this could not be the case. Their contention was that two identical firms, differing only in their capital structure, must have identical total values. If they did not, individuals would engage in arbitrage and create the market forces that would drive the two values to be equal.

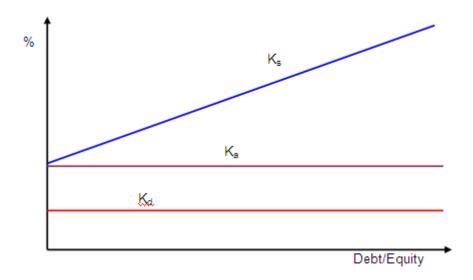
Their proof of this proposition was based upon several assumptions (many of which have subsequently been relaxed without changing the results):

- All investors have complete knowledge of what future returns will be
- All firms within an industry have the same risk regardless of capital structure

- No taxes (we will relax this assumption subsequently)
- No transactions costs
- Individuals can borrow as easily and at the same rate of interest as the corporation
- All earnings are paid out as dividends (thus, earnings are constant and there is no growth)
- The average cost of capital is constant

Since no taxes have been assumed, the operating income (EBIT) is equivalent to the net income which is all paid out as dividends. Thus, the value of the firm is equal to

$$V = \frac{EBIT}{k_a}$$

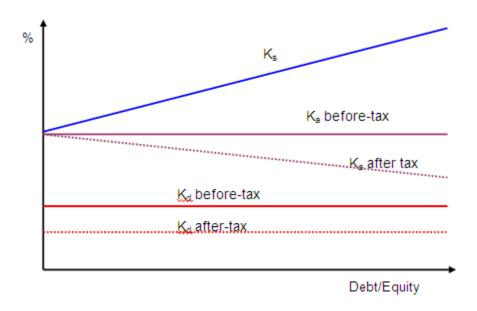

Since the value of the firm is equal to the sum of the value of the debt and equity,

$$V = D + E$$
then
$$k_a V = k_a (D + E)$$
and
$$k_a = k_s (\frac{E}{D + E}) + k_d (\frac{D}{D + E})$$

Substituting the last equation into the preceding equation and solving for K_s

$$k_s = k_a + (k_a - k_d) \frac{D}{E}$$

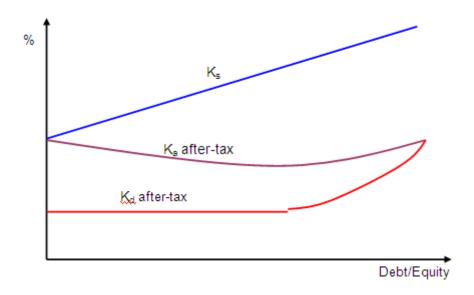
Thus, k_s must go up as debt is added to the capital structure.



The lesson that is intended by this is that value cannot be created by simply substituting one form of financing for another.

Subsequent to this analysis, it was pointed out that corporate taxes have an impact on the valuation. Without going through the mathematics (which is in your textbook), suffice it to say that the result was that the value of the firm *increased* with increased leverage. Specifically,

$$V_L = V_U + t * D$$


The fact that the government is a "partner" in the business results in a subsidy when debt financing is used and a deductible expense (unlike equity payments). When corporate taxes were taken into account, the average cost of capital was found to *decrease* with increased leverage:

This implies that a firm should use as much debt as possible. Yet, we do not see companies using 100% debt. It might be pointed out that during the late 1980s there was a considerable amount of substitution of debt for equity among firms, particularly in the case of leveraged buyouts. However, many of those firms subsequently failed (for example, Unocal) and the typical debt/equity ratio today is similar to earlier levels.

So why do we not see more debt employed by companies? The answer to this question has been sought by many and two primary proposals have been put forth. First, bankruptcy costs were invoked as a factor. That is, the more debt a firm uses, the higher the probability that the firm would default and go into bankruptcy. Therefore, the present value of bankruptcy costs had to be deducted from the value of the firm. A second factor was that of "agency" costs, such as the necessity of reporting regularly to lenders (audited financial statements, bank "monitoring" fees, trustees for debt payments, etc.) that accompany the use of debt. Both of these costs increase in present value of expected costs terms as the proportion of debt increases. Another way of viewing these costs is that the *risk* of receiving full interest and principal payments increases and thus the required rate of return of lenders increases. (For example, "junk" bonds often yield higher rates of interest than the required rate of return on equity for companies with very

little debt.) Consequently, the cost of debt increases and the average cost of capital will ultimately increase.

As can be observed from the graph, a minimum average cost of capital exists, but exactly where it should be has yet to be determined within a theoretical framework.

So what are the insights that we can gain from this theoretical view of capital structure? First, we should note that, while debt financing is "cheap" in the sense that required rates of return on equity will always be higher than the interest rate on debt, there is a "hidden" cost in that the cost of equity rises as we utilize more debt financing. This is one reason that using the average cost of capital in valuing a project or company is more appropriate, even if we intend to borrow all of the money to finance it. While we may use cheap debt to finance a project, the increased risk to shareholders from increasing our financial leverage results in an increase in the cost of equity. The average cost of capital reflects both the cost of debt as well as the cost of equity and thus will reflect the increased cost of equity associated with the use of more debt financing.

The second important concept is that tax-deductible debt financing results in a tax subsidy by the government. This subsidy adds value to the firm. For example, what is the "advantage" of being a home owner with a mortgage rather than leasing a home? It is the taxes that you will save. The reason that Congress eliminated the deductibility of credit card interest is that it did not want to encourage, through a tax subsidy, the financing of purchases purely for consumption. On the other hand, the purchase of a home (which is still tax-deductible) is an "investment", not to mention the political consequences of voting to end the subsidy of the American Dream of home ownership.

2 REVIEW OF LITERATURE

Anthony (2012) examines the impact of capital structure on financial performance of Nigerian firms using a sample of thirty non-financial firms listed on the Nigerian Stock Exchange during the seven year period, 2004 - 2010. Panel data for the selected firms were generated and analyzed using ordinary least squares (OLS) as a method of estimation. The result shows that a firm's capital structure surrogated by Debt Ratio has a significantly negative impact on the firm's financial measures (Return on Asset, ROA, and Return on Equity, ROE). The study of these findings, indicate consistency with prior empirical studies and provide evidence in support of Agency cost theory.

Esmaeelzadeh, Ahmadifard & Boustani(2012) investigates the relationship between the selected independent variables (size of company, debt ratio, level of disclosure, and type of industry) and dependent variable (cost of capital). For this purpose, the quantitative required information and data have been extracted from the financial statements of companies listed in Tehran Stock Exchange, and the statistical population of about 90 eligible companies has been chosen using a classification sampling method. For data analysis, first the cost of capital was calculated through five models introduced in the research and then the significance test was done for determining the differences in results of models. Then the calculations were performed using the excel software, and the statistical softwares sas.spss-10 were used for the statistical analysis. The results of research indicate that the accounting evaluation model is considered as the most appropriate model for calculating the capital cost, and type of industry and the size of company are selected as the factors affecting the cost of capital.

Antoniou, Guney & Paudyal (2008) investigates how firms operating in capital marketoriented economies (the U.K. and the U.S.) and bank-oriented economies (France, Germany, and Japan) determine their capital structure. Using panel data and a two-step system-GMM procedure, the paper finds that the leverage ratio is positively affected by the tangibility of assets and the size of the firm, but declines with an increase in firm profitability, growth opportunities, and share price performance in both types of economies. The leverage ratio is also affected by the market conditions in which the firm operates. The degree and effectiveness of these determinants are dependent on the country's legal and financial traditions. The results also confirm that firms have target leverage ratios with French firms being the fastest in adjusting their capital structure toward their target level and Japanese firms the slowest. Overall, the capital structure of a firm is heavily influenced by the economic environment and its institutions, corporate governance practices, tax systems, the borrower-lender relation, exposure to capital markets, and the level of investor protection in the country in which the firm operates.

Jong, Kabir & Nguyen (2008) analyzed the importance of firm-specific and country-specific factors in the leverage choice of firms from 42 countries around the world. The analysis yielded two new results. First, it found out that firm-specific determinants of leverage differ across countries, while prior studies implicitly assumed equal impact of those determinants. Second, although it concurred with the conventional direct impact of country- specific factors on the capital structure of firms, it showed that there is an indirect impact because country-specific factors also influence the roles of firm-specific determinants of leverage.

Lambert , Leuz , Verrecchia (2007) examines whether and how accounting information about a firm manifests in its cost of capital, despite the forces of diversification. They build a model that is consistent with the Capital Asset Pricing Model and explicitly allows for multiple securities whose cash flows are correlated. They demonstrate that the quality of accounting information can influence the cost of capital, both directly and indirectly. The direct effect occurs because higher quality disclosures affect the firm's assessed covariance with other firms' cash flows, which is no diversifiable. The indirect effect occurs because higher quality disclosures affect a firm's real decisions, which likely changes the firm's ratio of the expected future cash flows to the covariance of these cash flows with the sum of all the cash flows in the market. They show that this effect can go in either direction, but also derive conditions under which an increase in information quality leads to an unambiguous decline in the cost of capital.

Buferna, Bangassa & Hodginkson (2006) provided further evidence of the capital structure theories pertaining to a developing country and examined the impact of the lack of a secondary capital market by analyzing capital structure question with reference to the Libyan business environment. The results showed that both the static trade-off theory and the agency cost theory are pertinent theories to the Libyan companies' capital structure whereas there was little evidence to support the asymmetric information theory

Tong & Green (2005) studied the pecking order and trade-off hypotheses of corporate financing decisions using a cross-section of the largest Chinese listed companies. The study is built on Allen (1993), Baskin (1989) and Adedeji (1998) to set up three models in which trade-off and pecking order theories give distinctively different predictions: (1) the determinants of leverage; (2) the relationship between leverage and dividends; and (3) the determinants of corporate investment. In model 1, a significant negative correlation is found between leverage and profitability; in model 2 a significant positive correlation between current leverage and past dividends is found. These results broadly support the pecking order hypothesis over trade-off theory. However, model 3 is inconclusive. Overall, the results provide tentative support for the pecking order hypothesis and demonstrate that a conventional model of corporate capital structure can explain the financing behaviour of Chinese companies.

Deesomsak (2004) contributes to the capital structure literature by investigating the determinants of capital structure of firms operating in the Asia Pacific region, in four countries with different legal, financial and institutional environments, namely Thailand, Malaysia, Singapore and Australia. The results suggest that the capital structure decision of firms is influenced by the environment in which they operate, as well as firm-specific factors identified in the extant literature. The financial crisis of 1997 is also found to have had a significant but diverse impact on firm's capital structure decision across the region.

Chen (2004) develops a preliminary study to explore the determinants of capital structure of Chinese-listed companies using firm-level panel data. The findings reflect the transitional nature of the Chinese corporate environment. They suggest that some of the

insights from modern finance theory of capital structure are portable to China in that certain firm-specific factors that are relevant for explaining capital structure in developed economies are also relevant in China. However, neither the trade-off model nor the Pecking order hypothesis derived from the Western settings provides convincing explanations for the capital choices of the Chinese firms. The capital choice decision of Chinese firms seems to follow a "new Pecking order"—retained profit, equity, and long-term debt. This is because the fundamental institutional assumptions underpinning the Western models are not valid in China. These significant institutional differences and financial constraints in the banking sector in China are the factors influencing firms' leverage decision and they are at least as important as the firm-specific factors. The study has laid some groundwork upon which a more detailed evaluation of Chinese firms' capital structure could be based.

Bhaduri (2002) studied the capital structure choice of Less Developed Countries (LDCs) through a case study of the Indian Corporate sector. The objective is to develop a model that accounts for the possibility of restructuring costs in attaining an optimal capital structure and addresses the measurement problem that arises due to the unobservable nature of the attributes influencing the optimal capital structure. The evidence presented here suggests that the optimal capital structure choice can be influenced by factors such as growth, cash cow, size, and product and industry characteristics. The results also con®rm the existence of restructuring costs in attaining an optimal capital structure.

Miguel & Pindado (2001) analyzes the firm characteristics which are determinants of capital structure according to different explanatory theories, and how institutional characteristics affect capital structure. They have developed a target adjustment model, which has then been confirmed by our empirical evidence. It highlights the fact that the transaction costs borne by Spanish firms are inferior to those borne by US firms. Their results are consistent with tax and financial distress theories and with the interdependence between investment and financing decisions; they also provide additional evidence on the pecking order and free cash flow theories. Finally, the evidence obtained confirms the impact of some institutional characteristics on capital structure.

Pandey (2001) founded the capital structure of Malaysian companies utilizing data from 1984 to 1999. It classifies data into four sub-periods that correspond to different stages of Malaysian capital market. Debt is decomposed into three categories: short-term, long-term and total debt. Both book value and market value debt ratios are calculated. The results of pooled OLS regressions show that profitability, size, growth, risk and tangibility variables have significant influence on all types of debt. These results are normally consistent with the results of fixed effect estimation with the exception that risk variable loses its significance. Unlike the evidence from the developed markets, investment opportunity (market-to-book value ratio) has no significant impact on debt policy in the emerging market of Malaysia. The results are generally robust to time periods, but the significance of some variables changes over time. Profitability has a persistent and consistent negative relationship with all types of debt ratios in all periods and under all estimation methods. This confirms the capital structure prediction of the pecking order theory in an emerging capital market.

.Fama & French (1999) estimates the internal rates of return earned by nonfinancial firms on (i) the initial market values of their securities and (ii) the cost of their investments. The return on value is an estimate of the overall corporate cost of capital. The estimate of the real cost of capital for 1950–96 is 5.95 percent. The real return on cost is larger, 7.38 percent; so on average corporate investment seems to be profitable. A by-product of calculating these returns is information about the history of corporate earnings, investment, and financing decisions that is perhaps more interesting than the returns

Majumdar & Chhibber (1999) examined the relationship between the levels of debt in the capital structure and performance for a sample of Indian firms. Existing theory posits a positive relationship; however, analysis of the data reveals the relationship for Indian firms to be significantly negative. The structure of capital markets in India, where both short-term and long-term lending institutions are government-owned, is hypothesized to account for the finding of this relationship, and it asserted that corporate governance

mechanisms which work in the West will not work in the Indian context unless the supply of loan capital is privatized.

Harris & Raviv (1991) surveys capital structure theories based on agency costs, asymmetric information, product/input market interactions, and corporate control considerations(but excluding tax-based theories). For each type of model, a brief overview of the papers surveyed and their relation to each other is provided. The central papers are described in some detail, and their results are summarized and followed by a discussion of related extensions. Each section concludes with a summary of the main implications of the models surveyed in the section. Finally, these results are collected and compared to the available evidence. Suggestions for future research are provided.

There is no consistency in the combination of variables used by different researchers for explaining the determinants of capital structure. It is important to make an attempt to analyze important factors which could govern the determinants of capital structure. Also when studying the relationship between capital structure and cost of capital, the empirical studies attempted by various researchers have not given uniform conclusions.

3 RESEARCH DESIGN

3.1 Need for the Study

There is no consistency in the combination of variables used by different researchers for explaining the determinants of capital structure. It is important to make an attempt to analyze important factors which could govern the determinants of capital structure. Also when studying the relationship between capital structure and cost of capital, the empirical studies attempted by various researchers have not given uniform conclusions. However, these studies have thrown some light on the subject and built a good theoretical base. The present study is an attempt to examine the important factors that determine capital structure decisions in various sectors and whether these factors are different across different sectors or not.

3.2 Research objectives

- 1. To determine whether or not factors affecting capital structure decision significantly vary amongst the sample companies of different sector.
- 2. To identify most significant factors considered by sample companies for design of capital structure.

3.3 Hypotheses testing

Since the objective of the study is to examine the cause effect relationship among determinants, hypotheses can be formulated in following manner.

H₁₀: Factors affecting Debt-Equity Ratio do not vary among various sectors.

H_{11:} Factors affecting Debt-Equity Ratio do vary among various sectors.

H₂₀: Factors affecting Debt-Long term Funds do not vary among various sectors.

H₂₁: Factors affecting Debt-Long term Funds vary among various sectors.

H₃₀: Factors affecting Degree of Financial Leverage do not vary among various sectors.

H₃₁: Factors affecting Degree of Financial Leverage vary among various sectors.

3.4 Research Methodology

3.4.1 Data set and sample

The research is based on secondary data only. In this research it is two stage processes. In the first stage five industries are considered in IT, Cement, Automobile, Pharmacy, Oil, Power and energy and in the second stage companies from each industry would be selected from the firms listed in Nifty 50.So in total 35 companies have been used from 5 sectors. The data is collected from National stock Exchange directory, CMIE prowess.

3.4.2 Tools of Analysis

In this study statistical and econometric techniques would be used for analyzing the impact of explanatory variables on dependent variables.

3.4.2.1 Correlation

The preliminary analysis of the degree of linear association between variables has been done with the help of Karl Pearson's Correlation method. The significance of the correlation coefficient has been tested with the help of students t-test distribution at one, five and ten percent level of significance.

3.4.2.2 Backward Linear regression analysis

This model has been selected to identify the most significant variables out of various selected explanatory variables.

In the backward linear regression analysis, firstly all the selected explanatory variables have been regressed together. In the subsequent steps the explanatory variables were eliminated from the regression equation in order of their insignificance, i.e most insignificant variable has been eliminated from the regression equation first and so on. In the final equation only those explanatory variables were left which have a significant

influence on the dependent variable. Following is the general form of backward stepwise regression equation:

Step 1 Y = bo + b1X1 + b2X2 + b3X3 +bnXn

Step 2

Step 3

Last step Y = bo + b1Xs1 + b2Xs2 + b3Xs3 and so on

Where,

Y = Dependent variable

b0=Regression constant

b1=(where 1 varies from 1,2,3....n) are the regression coefficients of explanatory variables, X1, X2, X3.... Xsn are significant variables turned out in the last equation.

The regression results have been interpreted with the help of t-test, R square and f-test.

3.5 Computation of Variables

I. Leverage Ratio

The relative amount of a company's capital that was obtained from various sources is a matter of great importance in analyzing the soundness of the company's financial position. Among the other variable in capital structure attention is often focused on the sources of permanent capital, that is long term liabilities and shareholders' liability. Following are the formulae of leverage ratios

LR1 = TD/Equity

Where

LR1 = Debt-Equity Ratio

TD=Total Long term debt

Equity=Equity share capital+ Reserves and surplus

LR2=TD/Capital Employed

Where

LR2=Debt to total long term funds

TD=Total Long term debt

Capital Employed=Total long term debt+ preference share capital+ Equity share capital + Reserves & Surplus.

II. Size

SA = Log(A)

Where

SA=Size measured in terms of fixed assets

A=Arithmetic mean of fixed assets for five years.

III. Profitability

PROF = EBIT/TA

Where

PROF = Profitability

EBIT = Earnings before interest and tax

TA = Total Assets.

IV. Growth

A company's long term financing policy is likely to be influenced by its growth rate. For example a rapidly growing company will typically need to access the financial markets more frequently than slow growing companies in order to finance its expansion plans .Therefore growth can be one of the significant determinant of capital structure. Two measures of growth have been used in the present study

GA= Growth measured in terms of assets

GS= Growth measured in terms of sales

V. <u>Dividend Payout Ratio</u>

Appropriation of profits between dividends and retained earnings is bound to

affect capital structure because greater the retained earnings lesser would be

dependence on external resources of funds and vice-versa. The dividend payout

ratio can be measured as follows.

DPR= DPS/EPS

Where

DPR = Dividend Payout Ratio

DPS = Dividend per Share

EPS = Earnings per Share

VI. <u>Interest Coverage</u>

Coverage ratio is designed to relate the financial charges of a firm to its ability to

service it. Higher the coverage ratio greater is the capacity to service debt. ,which

consequently results into larger deployment of debt in the capital structure.

IC = EBIT/I

Where

IC = Interest coverage

EBIT = Earnings before interest and tax

I = interest

VII. Cash flow coverage

The analysis of the ability of the firm to meet its fixed payment obligations from

its cash flow is perhaps a good way to view the firm's solvency as far as debt

service is concerned. Cash flow coverage has been measured as follows

 $\mathbf{CFC} = \mathbf{CFO/I}$

Where

CFO = Cash flow from operating activities

I = Interest

24

VIII. <u>Tax Shield</u>

The tax Shield model suggests that the major benefit of using debt financing is corporate tax deduction. The tax shield resulting from the deployment of debt has been measured as follows

TS = Log I (tr)

Where

I = Interest

tr=Rate of tax

4 THREE DETERMINANTS OF CAPITAL STRUCTURE (REGRESSION ANALYSIS)

4.1 Determinants of Debt-equity Ratio

4.1.1 Automobile Sector

4.1.1.1 Correlation Matrix and Results

Correlations

				1							
		LR1	IC	DPR	TS	PROF	CFC	GS	GA	SA	PE
LR1	Pearson Correlation	1	396	.312	.233	460	456'	275	.175	.361	.092
	Sig. (2-tailed)		.050	.128	.262	.021	.022	.184	.404	.076	.663
	N	25	25	25	25	25	25	25	25	25	25
IC	Pearson Correlation	396	1	.181	.061	.746"	.929"	.362	079	418	093
	Sig. (2-tailed)	.050		.387	.771	.000	.000	.076	.709	.037	.659
	N	25	25	25	25	25	25	25	25	25	25
DPR	Pearson Correlation	.312	.181	1	.232	.187	.287	.001	095	.083	.487
	Sig. (2-tailed)	.128	.387		.264	.370	.164	.998	.652	.693	.013
	N	25	25	25	25	25	25	25	25	25	25
TS	Pearson Correlation	.233	.061	.232	1	.261	.030	262	.023	057	.059
	Sig. (2-tailed)	.262	.771	.264		.208	.888	.206	.915	.787	.780
	N	25	25	25	25	25	25	25	25	25	25
PROF	Pearson Correlation	460'	.746"	.187	.261	1	.751"	.225	131	720"	250
	Sig. (2-tailed)	.021	.000	.370	.208		.000	.281	.533	.000	.228
	N	25	25	25	25	25	25	25	25	25	25
CFC	Pearson Correlation	456	.929"	.287	.030	.751"	1	.286	.058	483	105
	Sig. (2-tailed)	.022	.000	.164	.888	.000		.166	.783	.014	.617
	N	25	25	25	25	25	25	25	25	25	25
GS	Pearson Correlation	275	.362	.001	262	.225	.286	1	181	.019	.076
	Sig. (2-tailed)	.184	.076	.998	.206	.281	.166		.387	.927	.719
	N	25	25	25	25	25	25	25	25	25	25
GA	Pearson Correlation	.175	079	095	.023	131	.058	181	1	184	473
	Sig. (2-tailed)	.404	.709	.652	.915	.533	.783	.387		.378	.017
	N	25	25	25	25	25	25	25	25	25	25
SA	Pearson Correlation	.361	418'	.083	057	720"	483'	.019	184	1	.570"
	Sig. (2-tailed)	.076	.037	.693	.787	.000	.014	.927	.378		.003
	N	25	25	25	25	25	25	25	25	25	25
PE	Pearson Correlation	.092	093	.487	.059	250	105	.076	473	.570"	1
	Sig. (2-tailed)	.663	.659	.013	.780	.228	.617	.719	.017	.003	
	N	25	25	25	25	25	25	25	25	25	25

^{*.} Correlation is significant at the 0.05 level (2-tailed).

The zero order correlation matrix shows that growth in terms of assets(.175) ,size in terms of assets(.229), PE ratio(.092), Tax shield(.233) and dividend payout ratio(.312) has positive correlation with the dependent variable LR1. Variables like growth in terms of sales (-.275), Interest coverage (-.396), Profitability (-.460) and Cash flow coverage(-.456) are having negative correlation. Significant correlation is found between profitability, Profitability and Cash flow coverage.

^{**.} Correlation is significant at the 0.01 level (2-tailed).

4.1.1.2 Regression Analysis and Results

Model Summary

						Cha	inge Statistic	s	
Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.829°	.688	.500	.70676086	.688	3.672	9	15	.013
2	.829b	.688	.532	.68439862	.000	.004	1	15	.953
3	.827°	.685	.555	.66734477	003	.163	1	16	.691
4	.823 ^d	.677	.569	.65627221	008	.408	1	17	.532
5	.797⁴	.636	.540	.67850199	041	2.309	1	18	.146

a. Predictors: (Constant), PE, TS, CFC, GS, GA, DPR, SA, PROF, IC

b. Predictors: (Constant), PE, TS, CFC, GS, GA, DPR, PROF, IC

c. Predictors: (Constant), PE, TS, CFC, GA, DPR, PROF, IC

d. Predictors: (Constant), PE, TS, CFC, DPR, PROF, IC

e. Predictors: (Constant), PE, CFC, DPR, PROF, IC

ANOVA^f

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	16.507	9	1.834	3.672	.013=
	Residual	7.493	15	.500		
	Total	24.000	24			
2	Regression	16.506	8	2.063	4.405	.006
	Residual	7.494	16	.468		
	Total	24.000	24			
3	Regression	16.429	7	2.347	5.270	.002°
	Residual	7.571	17	.445		
	Total	24.000	24			
4	Regression	16.248	6	2.708	6.287	001ء
	Residual	7.752	18	.431		
	Total	24.000	24			
5	Regression	15.253	5	3.051	6.627	.001
	Residual	8.747	19	.460		
	Total	24.000	24			

a. Predictors: (Constant), PE, TS, CFC, GS, GA, DPR, SA, PROF, IC

b. Predictors: (Constant), PE, TS, CFC, GS, GA, DPR, PROF, IC

c. Predictors: (Constant), PE, TS, CFC, GA, DPR, PROF, IC

d. Predictors: (Constant), PE, TS, CFC, DPR, PROF, IC

e. Predictors: (Constant), PE, CFC, DPR, PROF, IC

f. Dependent Variable: LR1

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidenc	e Interval for B
Model		В	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound
1	(Constant)	1.248E-18	.141		.000	1.000	301	.301
	IC	.991	.468	.991	2.117	.051	007	1.988
	DPR	.743	.199	.743	3.743	.002	.320	1.166
	TS	.179	.185	.179	.966	.349	216	.574
	PROF	540	.389	540	-1.386	.186	-1.370	.290
	CFC	-1.226	.508	-1.226	-2.414	.029	-2.309	144
	GS	063	.174	063	364	.721	434	.307
	GA	.125	.211	.125	.594	.561	324	.574
	SA	017	.285	017	059	.953	623	.590
	PE	380	.245	380	-1.552	.141	901	.142
2	(Constant)	3.988E-17	.137		.000	1.000	290	.290
	IC	.986	.446	.986	2.210	.042	.040	1.932
	DPR	.742	.192	.742	3.871	.001	.336	1.148
	TS	.176	.173	.176	1.020	.323	190	.542
	PROF	525	.284	525	-1.847	.083	-1.127	.078
	CFC	-1.225	.491	-1.225	-2.494	.024	-2.266	184
	GS	066	.163	066	404	.691	411	.280
	GA	.127	.201	.127	.633	.536	299	.554
	PE	384	.226	384	-1.697	.109	864	.096
3	(Constant)	4.472E-17	.133		.000	1.000	282	.282
	IC	.940	.420	.940	2.235	.039	.053	1.826
	DPR	.745	.187	.745	3.986	.001	.350	1.139
	TS	.199	.159	.199	1.255	.226	136	.534
	PROF	540	.275	540	-1.964	.066	-1.119	.040
	CFC	-1.192	.472	-1.192	-2.523	.022	-2.188	195
	GA	.125	.196	.125	.638	.532	289	.539
	PE	397	.218	397	-1.819	.087	858	.064
4	(Constant)	-6.003E-18	.131		.000	1.000	276	.276
	IC	.855	.392	.855	2.179	.043	.031	1.679
	DPR	.759	.182	.759	4.159	.001	.375	1.142
	TS	.228	.150	.228	1.520	.146	087	.542
	PROF	628	.234	628	-2.686	.015	-1.119	137
	CFC	-1.053	.413	-1.053	-2.553	.020	-1.920	187
	PE	480	.173	480	-2.783	.012	843	118
5	(Constant)	-5.736E-18	.136		.000	1.000	284	.284
	IC	.906	.404	.906	2.242	.037	.060	1.751
	DPR	.821	.184	.821	4.470	.000	.437	1.206
	PROF	504	.226	504	-2.225	.038	978	030
	CFC	-1.205	.414	-1.205	-2.910	.009	-2.071	338
	PE	478	.178	478	-2.677	.015	851	104

a. Dependent Variable: LR1

The regression analysis shows that the coefficient of determination i.e R^2 , explained 68.8% variation in LR1 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 63.6% over the total variation. The t test shows that the Significant variables found in the equation are Interest coverage, Dividend payout ratio, Profitability, Cash flow coverage, PE ratio that are significant up to 5% level.

LR1 = (-5.736E-18) + .906 (IC) + .821 (DPR) - .504 (PROF) - 1.205 (CFC) - .478 (PE)

4.1.2 Construction Sector

4.1.2.1 Correlation Matrix and Results

Correlations

		LR1	IC	DPR	TS	PROF	CFC	GS	GA	SA	PE
LR1	Pearson Correlation	1	574"	219	023	491"	516"	.147	.166	453"	.255
	Sig. (2-tailed)		.000	.174	.888	.001	.001	.364	.307	.003	.112
	N	40	40	40	40	40	40	40	40	40	40
IC	Pearson Correlation	574"	1	.209	014	.663"	.943"	179	182	.280	346
	Sig. (2-tailed)	.000		.195	.933	.000	.000	.269	.261	.080	.029
	N	40	40	40	40	40	40	40	40	40	40
DPR	Pearson Correlation	219	.209	1	213	.071	.237	.045	.017	148	.200
	Sig. (2-tailed)	.174	.195		.188	.663	.141	.784	.915	.362	.215
	N	40	40	40	40	40	40	40	40	40	40
TS	Pearson Correlation	023	014	213	1	.007	045	062	.108	.428"	225
	Sig. (2-tailed)	.888	.933	.188		.965	.785	.702	.508	.006	.164
	N	40	40	40	40	40	40	40	40	40	40
PROF	Pearson Correlation	491"	.663"	.071	.007	1	.546"	019	211	.137	380'
	Sig. (2-tailed)	.001	.000	.663	.965		.000	.906	.191	.398	.016
	N	40	40	40	40	40	40	40	40	40	40
CFC	Pearson Correlation	516"	.943"	.237	045	.546"	1	220	188	.294	361
	Sig. (2-tailed)	.001	.000	.141	.785	.000		.172	.246	.065	.022
	N	40	40	40	40	40	40	40	40	40	40
GS	Pearson Correlation	.147	179	.045	062	019	220	1	.659"	453"	.251
	Sig. (2-tailed)	.364	.269	.784	.702	.906	.172		.000	.003	.119
	N	40	40	40	40	40	40	40	40	40	40
GA	Pearson Correlation	.166	182	.017	.108	211	188	.659"	1	247	.202
	Sig. (2-tailed)	.307	.261	.915	.508	.191	.246	.000		.124	.212
	N	40	40	40	40	40	40	40	40	40	40
SA	Pearson Correlation	453"	.280	148	.428"	.137	.294	453"	247	1	539"
	Sig. (2-tailed)	.003	.080	.362	.006	.398	.065	.003	.124		.000
	N	40	40	40	40	40	40	40	40	40	40
PE	Pearson Correlation	.255	346	.200	225	380	361	.251	.202	539"	1
	Sig. (2-tailed)	.112	.029	.215	.164	.016	.022	.119	.212	.000	
	N	40	40	40	40	40	40	40	40	40	40

^{**.} Correlation is significant at the 0.01 level (2-tailed).

The zero order correlation matrix shows that growth in terms of assets (.166), growth in terms of sale (.147), PE ratio (.255) has positive correlation with the dependent variable LR1. Variables like Interest coverage (-.574), Profitability (-.491) and Cash flow coverage (-.516), Dividend payout ratio (-.219), Tax shield (-.023), Sales in terms of asset (-.453) are having negative correlation. Significant correlation is found between Interest coverage, Profitability, Cash flow coverage and sales in terms of assets.

^{*.} Correlation is significant at the 0.05 level (2-tailed).

4.1.2.2 Regression Analysis and Results

Model Summary

						Cha	nge Statistic	s	
Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.724*	.524	.382	.78633881	.524	3.675	9	30	.003
2	.724	.524	.402	.77359153	.000	.003	1	30	.956
3	.722°	.521	.416	.76422084	004	.229	1	31	.635
4	.716 ^d	.513	.425	.75845386	008	.504	1	32	.483
5	.708°	.502	.429	.75590689	011	.772	1	33	.386
6	.698 ^r	.487	.429	.75579927	015	.990	1	34	.327
7	.6759	.455	.410	.76812386	032	2.184	1	35	.148

a. Predictors: (Constant), PE, DPR, GA, TS, PROF, CFC, SA, GS, IC

b. Predictors: (Constant), PE, DPR, TS, PROF, CFC, SA, GS, IC

c. Predictors: (Constant), PE, DPR, TS, PROF, SA, GS, IC

d. Predictors: (Constant), PE, DPR, TS, PROF, SA, IC

e. Predictors: (Constant), PE, DPR, PROF, SA, IC

f. Predictors: (Constant), DPR, PROF, SA, IC

g. Predictors: (Constant), DPR, PROF, SA

ANOVA^h

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	20.450	9	2.272	3.675	.003=
	Residual	18.550	30	.618		
	Total	39.000	39			
2	Regression	20.448	8	2.556	4.271	.002 b
	Residual	18.552	31	.598		
	Total	39.000	39			
3	Regression	20.311	7	2.902	4.968	.001°
	Residual	18.689	32	.584		
	Total	39.000	39			
4	Regression	20.017	6	3.336	5.799	.000d
	Residual	18.983	33	.575		
	Total	39.000	39			
5	Regression	19.573	5	3.915	6.851	.000°
	Residual	19.427	34	.571		
	Total	39.000	39			
6	Regression	19.007	4	4.752	8.318	.000'
	Residual	19.993	35	.571		
	Total	39.000	39			
7	Regression	17.759	3	5.920	10.033	.000a
	Residual	21.241	36	.590		
	Total	39.000	39			

a. Predictors: (Constant), PE, DPR, GA, TS, PROF, CFC, SA, GS, IC

b. Predictors: (Constant), PE, DPR, TS, PROF, CFC, SA, GS, IC

c. Predictors: (Constant), PE, DPR, TS, PROF, SA, GS, IC

d. Predictors: (Constant), PE, DPR, TS, PROF, SA, IC

e. Predictors: (Constant), PE, DPR, PROF, SA, IC

f. Predictors: (Constant), DPR, PROF, SA, IC

g. Predictors: (Constant), DPR, PROF, SA

h. Dependent Variable: LR1

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidenc	ce Interval for B
Model		В	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound
1	(Constant)	1.383E-15	.124		.000	1.000	254	.254
	IC	458	.454	458	-1.009	.321	-1.385	.469
	DPR	170	.138	170	-1.232	.227	453	.112
	TS	.142	.148	.142	.963	.343	160	.444
	PROF	261	.195	261	-1.336	.192	659	.138
	CFC	.196	.416	.196	.471	.641	653	1.045
	GS	101	.190	101	532	.599	488	.287
	GA	.010	.179	.010	.055	.956	356	.376
	SA	551	.181	551	-3.039	.005	921	181
	PE	139	.168	139	827	.415	482	.204
2	(Constant)	1.380E-15	.122		.000	1.000	249	.249
	IC	457	.446	457	-1.024	.314	-1.366	.453
	DPR	170	.136	170	-1.252	.220	447	.107
	TS	.144	.143	.144	1.008	.321	147	.435
	PROF	263	.185	263	-1.422	.165	641	.114
	CFC	.196	.409	.196	.479	.635	638	1.030
	GS	094	.142	094	662	.513	384	.196
	SA	551	.178	551	-3.089	.004	914	187
	PE	139	.165	139	841	.407	476	.198
3	(Constant)	1.408E-15	.103	133	.000	1.000	246	.246
Ĭ	IC	261	.178	261	-1.468	.152	624	.101
	DPR							.110
	TS	161	.133	161	-1.209	.235	431	
	PROF	.136	.140	.136	.970	.340	149	.421
	GS	293	.172	293	-1.701	.099	644	.058
	SA	099	.140	099	710	.483	385	.186
	PE	550	.176	550	-3.125	.004	909	192
4		155	.159	155	975	.337	480	.169
4	(Constant)	1.307E-15	.120		.000	1.000	244	.244
	IC DDD	248	.176	248	-1.414	.167	606	.109
	DPR	162	.132	162	-1.231	.227	430	.106
	TS	.121	.137	.121	.879	.386	159	.400
	PROF	307	.170	307	-1.808	.080	653	.039
	SA	502	.161	502	-3.112	.004	831	174
-	PE (0 t t)	158	.158	158	-1.002	.324	480	.163
5	(Constant)	1.218E-15	.120		.000	1.000	243	.243
	IC	266	.174	266	-1.531	.135	620	.087
	DPR	177	.130	177	-1.358	.183	442	.088
	PROF	300	.169	300	-1.775	.085	644	.043
	SA	448	.149	448	-3.015	.005	750	146
	PE	157	.158	157	995	.327	477	.164
6	(Constant)	1.093E-15	.120		.000	1.000	243	.243
l	IC DDD	257	.174	257	-1.478	.148	609	.096
	DPR	203	.128	203	-1.590	.121	462	.056
	PROF SA	255 276	.163	255	-1.566 2.007	.126	586	.076
7	(Constant)	376 1.126E-15	.130 .121	376	-2.897 .000	.006 1.000	639 246	113 .246
	DPR	254	.121	254	-2.033	.049	246 507	.000
ı	PROF	414	.125	414	-3.318	.002	667	161
	SA	434	.126	434	-3.448	.001	689	179

a. Dependent Variable: LR1

The regression analysis shows that the coefficient of determination i.e R^2 , explained 52.4% variation in LR1 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 45.5% over the total variation. The t test shows that Dividend payout ratio, Profitability and Size in terms of assets are significant upto 5% level.

LR1= 1.126E-15 -.254 (DPR) -.414 (PROF) -.434 (SA)

4.1.3 IT Sector

4.1.3.1 Correlation Matrix and Results

Correlations

		LR1	IC	DPR	TS	PROF	CFC	GS	GA	SA	PE
LR1	Pearson Correlation	1	304	211	.198	383	275	023	.127	.152	.150
	Sig. (2-tailed)		.140	.311	.343	.059	.183	.915	.545	.468	.474
	N	25	25	25	25	25	25	25	25	25	25
IC	Pearson Correlation	304	1	.256	.024	.364	.456	.091	.082	.146	.045
	Sig. (2-tailed)	.140		.217	.909	.074	.022	.666	.697	.486	.832
	N	25	25	25	25	25	25	25	25	25	25
DPR	Pearson Correlation	211	.256	1	484	.368	.182	.282	.031	.042	.430
	Sig. (2-tailed)	.311	.217		.014	.071	.385	.172	.884	.843	.032
	N	25	25	25	25	25	25	25	25	25	25
TS	Pearson Correlation	.198	.024	484	1	730"	120	267	270	348	393
	Sig. (2-tailed)	.343	.909	.014		.000	.567	.197	.192	.088	.052
	N	25	25	25	25	25	25	25	25	25	25
PROF	Pearson Correlation	383	.364	.368	730"	1	.444	.435'	.322	.578"	.366
	Sig. (2-tailed)	.059	.074	.071	.000		.026	.030	.117	.002	.072
	N	25	25	25	25	25	25	25	25	25	25
CFC	Pearson Correlation	275	.456	.182	120	.444	1	.065	.273	.047	.044
	Sig. (2-tailed)	.183	.022	.385	.567	.026		.758	.187	.824	.834
	N	25	25	25	25	25	25	25	25	25	25
GS	Pearson Correlation	023	.091	.282	267	.435	.065	1	.170	.257	.227
	Sig. (2-tailed)	.915	.666	.172	.197	.030	.758		.418	.215	.276
	N	25	25	25	25	25	25	25	25	25	25
GA	Pearson Correlation	.127	.082	.031	270	.322	.273	.170	1	120	044
	Sig. (2-tailed)	.545	.697	.884	.192	.117	.187	.418		.569	.833
	N	25	25	25	25	25	25	25	25	25	25
SA	Pearson Correlation	.152	.146	.042	348	.578''	.047	.257	120	1	.474
	Sig. (2-tailed)	.468	.486	.843	.088	.002	.824	.215	.569		.017
	N	25	25	25	25	25	25	25	25	25	25
PE	Pearson Correlation	.150	.045	.430	393	.366	.044	.227	044	.474	1
	Sig. (2-tailed)	.474	.832	.032	.052	.072	.834	.276	.833	.017	
	N	25	25	25	25	25	25	25	25	25	25

^{*.} Correlation is significant at the 0.05 level (2-tailed).

The zero order correlation matrix shows that growth in terms of assets (.127), size in terms of assets (.152), PE ratio (.150) and Tax shield (.98) has positive correlation with the dependent variable LR1. Variables like Interest coverage (-.304), Dividend payout ratio (-.211), Profitability (-.383), Cash flow coverage (-.275) and Growth in terms of sales (-0.023) are having negative correlation. No variable is found to be significant here.

^{**.} Correlation is significant at the 0.01 level (2-tailed).

4.1.3.2 Regression Analysis and Results

Model Summary

						Cha	inge Statistic	s	
Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.821ª	.674	.479	.72198329	.674	3.449	9	15	.017
2	.821 ª	.674	.511	.69914632	.000	.004	1	15	.952
3	.821°	.674	.539	.67872960	.000	.022	1	16	.885
4	.816 ^d	.665	.554	.66809167	008	.440	1	17	.516
5	.805°	.648	.555	.66707349	018	.942	1	18	.345
6	.790 ^r	.625	.549	.67120856	023	1.249	1	19	.278
7	.7699	.592	.534	.68293578	033	1.740	1	20	.202

- a. Predictors: (Constant), PE, CFC, GS, GA, IC, TS, SA, DPR, PROF
- b. Predictors: (Constant), PE, CFC, GS, GA, IC, TS, SA, PROF
- c. Predictors: (Constant), PE, CFC, GS, GA, TS, SA, PROF
- d. Predictors: (Constant), PE, GS, GA, TS, SA, PROF
- e. Predictors: (Constant), GS, GA, TS, SA, PROF
- f. Predictors: (Constant), GA, TS, SA, PROF
- g. Predictors: (Constant), GA, SA, PROF

ANOVA^h

NIOVA												
Model		Sum of Squares	df	Mean Square	F	Sig.						
1	Regression	16.181	9	1.798	3.449	.017=						
	Residual	7.819	15	.521								
	Total	24.000	24									
2	Regression	16.179	8	2.022	4.137	.008						
	Residual	7.821	16	.489								
	Total	24.000	24									
3	Regression	16.169	7	2.310	5.014	.003°						
	Residual	7.831	17	.461								
	Total	24.000	24									
4	Regression	15.966	6	2.661	5.962	.001ª						
	Residual	8.034	18	.446								
	Total	24.000	24									
5	Regression	15.545	5	3.109	6.987	.001°						
	Residual	8.455	19	.445								
	Total	24.000	24									
6	Regression	14.990	4	3.747	8.318	.000°						
	Residual	9.010	20	.451								
	Total	24.000	24									
7	Regression	14.206	3	4.735	10.153	.000a						
	Residual	9.794	21	.466								
	Total	24.000	24									

- a. Predictors: (Constant), PE, CFC, GS, GA, IC, TS, SA, DPR, PROF
- b. Predictors: (Constant), PE, CFC, GS, GA, IC, TS, SA, PROF
- c. Predictors: (Constant), PE, CFC, GS, GA, TS, SA, PROF
- d. Predictors: (Constant), PE, GS, GA, TS, SA, PROF
- e. Predictors: (Constant), GS, GA, TS, SA, PROF
- f. Predictors: (Constant), GA, TS, SA, PROF
- g. Predictors: (Constant), GA, SA, PROF
- h. Dependent Variable: LR1

Coefficients

		Unctandardiza	d Coefficients	Standardized Coefficients			05% Confiden	co Intorval for B
		Unstandardized Coefficients			₊	Sia.	95% Confidence Interval for B	
Model 1 (Constant)		B -6.873E-16	Std. Error .144	Beta	.000	1,000	Lower Bound 308	Upper Bound .308
'	IC	-0.873E-16 022	.198	022	112	.912	308	.400
	DPR	013	.211	013	062	.952	462	.436
	TS	287	.297	287	965	.350	921	.347
	PROF	-1.418	.387	-1.418	-3.666	.002	-2.242	594
	CFC	.125	.195	.125	.642	.531	291	.542
	GS	.177	.176	.177	1.007	.330	198	.552
	GA	.548	.175	.548	3.125	.007	.174	.922
	SA	.817	.238	.817	3.433	.004	.310	1.324
	PE	.154	.193	.154	.799	.437	257	.565
2	(Constant)	-6.925E-16	.140		.000	1.000	296	.296
	IC	026	.180	026	147	.885	408	.355
	TS	280	.263	280	-1.062	.304	837	.278
	PROF	-1.416	.373	-1.416	-3.793	.002	-2.207	625
	CFC	.125	.189	.125	.660	.519	276	.525
	GS	.174	.165	.174	1.057	.306	176	.525
	GA	.551	.166	.551	3.324	.004	.199	.902
	SA	.822	.218	.822	3.773	.002	.360	1.283
	PE	.149	.172	.149	.871	.397	214	.513
3	(Constant)	-6.995E-16	.136		.000	1.000	286	.286
	TS	295	.235	295	-1.257	.226	790	.200
	PROF	-1.438	.331	-1.438	-4.348	.000	-2.136	740
	CFC	.120	.180	.120	.663	.516	261	.500
	GS	.177	.160	.177	1.109	.283	160	.513
	GA	.553	.160	.553	3.453	.003	.215	.891
	SA	.826	.210	.826	3.941	.001	.384	1.268
4	PE	.148	.166	.148	.891	.385	203	.499
4	(Constant) TS	-6.670E-16	.134		.000	1.000	281	.281
	PROF	230	.210	230	-1.096	.288	671	.211
	GS GS	-1.307 .153	.261 .153	-1.307 .153	-5.009 1.001	.000 .330	-1.855 168	759 .475
	GA	.153	.157	.193	3.560	.002	.230	.890
	SA	.780	.195	.780	4.004	.002	.371	1.190
	PE	.158	.163	.158	.971	.345	184	.501
5	(Constant)	-7.183E-16	.133	.130	.000	1.000	279	.279
	TS	285	.202	285	-1.414	.173	707	.137
	PROF	-1.330	.259	-1.330	-5.129	.000	-1.873	788
	GS	.170	.152	.170	1.117	.278	148	.488
	GA	.550	.157	.550	3.512	.002	.222	.879
	SA	.844	.183	.844	4.611	.000	.461	1.228
				•		•	•	•
l 6	(Constant)	I 7040540 I	404		1	4 1	1	I
"		-7.342E-16	.134		.000	1.000	280	.280
	TS	267	.202	267	-1.319	.202	688	.155
	PROF	-1.247	.250	-1.247	-4.989	.000	-1.768	726
	GA	.558	.158	.558	3.539	.002	.229	.886
	SA	.847	.184	.847	4.597	.000	.463	1.231
7	(Constant)	-6.975E-16	.137		.000	1.000	284	.284
	PROF	-1.036	.195	-1.036	-5.307	.000	-1.441	630
	GA	.558	.160	.558	3.481	.002	.225	.892
	SA	.818	.186	.818	4.394	.000	.431	1.205
5A o Donandant Vari			.186	.818	4.394	.000	.431	1.205

a. Dependent Variable: LR1

The regression analysis shows that the coefficient of determination i.e R^2 , explained 67.4% variation in LR1 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 59.2% over the total variation. The t test shows that the Significant variables found in the equation are Profitability, Growth in terms of asset, Size in terms of assets significant upto 5%.

LR1=-6.975E-16 -1.036 (PROF) +.558 (GA) +.818 (SA)

4.1.4 Oil, Power and Energy

4.1.4.1 Correlation Matrix and Results

Correlations

		LR1	IC	DPR	TS	PROF	CFC	GS	GA	SA	PE
LR1	Pearson Correlation	1	316	.046	.280'	512"	154	.086	100	.383"	.118
	Sig. (2-tailed)		.014	.724	.030	.000	.241	.513	.449	.002	.371
	N	60	60	60	60	60	60	60	60	60	60
IC	Pearson Correlation	316	1	.203	.127	.314	.042	048	026	051	110
	Sig. (2-tailed)	.014		.120	.333	.014	.750	.716	.842	.696	.403
	N	60	60	60	60	60	60	60	60	60	60
DPR	Pearson Correlation	.046	.203	1	.386"	128	123	270	370"	.254	.085
	Sig. (2-tailed)	.724	.120		.002	.330	.349	.037	.004	.050	.518
	N	60	60	60	60	60	60	60	60	60	60
TS	Pearson Correlation	.280'	.127	.386"	1	309	404"	210	411"	.221	088
	Sig. (2-tailed)	.030	.333	.002		.016	.001	.107	.001	.090	.502
	N	60	60	60	60	60	60	60	60	60	60
PROF	Pearson Correlation	512"	.314	128	309"	1	.589"	.416"	.530"	611"	335"
	Sig. (2-tailed)	.000	.014	.330	.016		.000	.001	.000	.000	.009
	N	60	60	60	60	60	60	60	60	60	60
CFC	Pearson Correlation	154	.042	123	404"	.589"	1	.452"	.779"	331"	157
	Sig. (2-tailed)	.241	.750	.349	.001	.000		.000	.000	.010	.232
	N	60	60	60	60	60	60	60	60	60	60
GS	Pearson Correlation	.086	048	270	210	.416"	.452"	1	.359"	225	082
	Sig. (2-tailed)	.513	.716	.037	.107	.001	.000		.005	.084	.536
	N	60	60	60	60	60	60	60	60	60	60
GA	Pearson Correlation	100	026	370"	411"	.530"	.779"	.359"	1	421"	069
	Sig. (2-tailed)	.449	.842	.004	.001	.000	.000	.005		.001	.600
	N	60	60	60	60	60	60	60	60	60	60
SA	Pearson Correlation	.383"	051	.254	.221	611"	331"	225	421"	1	.037
	Sig. (2-tailed)	.002	.696	.050	.090	.000	.010	.084	.001		.779
	N	60	60	60	60	60	60	60	60	60	60
PE	Pearson Correlation	.118	110	.085	088	335"	157	082	069	.037	1
	Sig. (2-tailed)	.371	.403	.518	.502	.009	.232	.536	.600	.779	
	N	60	60	60	60	60	60	60	60	60	60

^{*.} Correlation is significant at the 0.05 level (2-tailed).

The zero order correlation matrix shows that growth in terms of sale (.086), PE ratio (.118), Tax shield (.280), Dividend payout ratio (.046) has positive correlation with the dependent variable LR1. Variables like Interest coverage (-.316), Profitability (-.512) and Cash flow coverage (-.154), Growth in terms of assets (-1.0) are having negative correlation. Significant correlation is found between Interest coverage, Profitability, Tax shield, sales in terms of assets.

^{**.} Correlation is significant at the 0.01 level (2-tailed).

4.1.4.2 Regression Analysis and Results

Model Summary

					Change Statistics					
Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	
1	.684*	.467	.371	.79292273	.467	4.871	9	50	.000	
2	.683 °	.467	.383	.78556108	.000	.057	1	50	.812	
3	.682°	.465	.393	.77900138	001	.135	1	51	.715	
4	.680 ^d	.463	.402	.77332730	002	.231	1	52	.633	
5	.670°	.448	.397	.77642123	015	1.433	1	53	.237	
6	.661 ^r	.436	.395	.77758692	012	1.165	1	54	.285	

a. Predictors: (Constant), PE, SA, IC, GS, TS, DPR, GA, PROF, CFC

b. Predictors: (Constant), PE, SA, IC, GS, TS, DPR, GA, PROF

c. Predictors: (Constant), SA, IC, GS, TS, DPR, GA, PROF

d. Predictors: (Constant), SA, IC, GS, TS, GA, PROF

e. Predictors: (Constant), IC, GS, TS, GA, PROF

f. Predictors: (Constant), GS, TS, GA, PROF

ANOVA9

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	27.564	9	3.063	4.871	-000
	Residual	31.436	50	.629		
	Total	59.000	59			
2	Regression	27.528	8	3.441	5.576	.000
	Residual	31.472	51	.617		
	Total	59.000	59			
3	Regression	27.444	7	3.921	6.461	.000°
	Residual	31.556	52	.607		
	Total	59.000	59			
4	Regression	27.304	6	4.551	7.609	.000d
	Residual	31.696	53	.598		
	Total	59.000	59			
5	Regression	26.447	5	5.289	8.774	.000
	Residual	32.553	54	.603		
	Total	59.000	59			
6	Regression	25.745	4	6.436	10.645	.000°
	Residual	33.255	55	.605		
	Total	59.000	59			

a. Predictors: (Constant), PE, SA, IC, GS, TS, DPR, GA, PROF, CFC

b. Predictors: (Constant), PE, SA, IC, GS, TS, DPR, GA, PROF

c. Predictors: (Constant), SA, IC, GS, TS, DPR, GA, PROF

d. Predictors: (Constant), SA, IC, GS, TS, GA, PROF

e. Predictors: (Constant), IC, GS, TS, GA, PROF

f. Predictors: (Constant), GS, TS, GA, PROF

g. Dependent Variable: LR1

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidenc	ce Interval for B
Model		В	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound
1	(Constant)	-3.493E-16	.102		.000	1.000	206	.206
	IC	148	.119	148	-1.245	.219	386	.091
	DPR	.080	.135	.080	.592	.557	191	.350
	TS	.227	.129	.227	1.763	.084	032	.486
	PROF	590	.193	590	-3.066	.003	977	204
	CFC	047	.198	047	240	.812	445	.350
	GS	.333	.126	.333	2.637	.011	.079	.587
	GA	.302	.192	.302	1.575	.121	083	.687
	SA	.133	.143	.133	.928	.358	154	.420
	PE	047	.120	047	394	.695	289	.194
2	(Constant)	-3.578E-16	.101		.000	1.000	204	.204
	IC	147	.117	147	-1.250	.217	383	.089
	DPR	.068	.124	.068	.547	.587	181	.316
	TS	.234	.124	.234	1.891	.064	015	.483
	PROF	597	.188	597	-3.170	.003	976	219
	GS	.324	.120	.324	2.710	.009	.084	.564
	GA	.270	.135	.270	2.003	.050	.000	.540
	SA	.130	.141	.130	.919	.362	154	.413
	PE	043	.118	043	368	.715	280	.193
3	(Constant)	-3.809E-16	.101		.000	1.000	202	.202
	IC	151	.116	151	-1.304	.198	384	.081
	DPR	.057	.120	.057	.480	.633	183	.298
	TS	.246	.119	.246	2.074	.043	.008	.485
	PROF	566	.166	566	-3.405	.001	899	232
	GS -	.319	.118	.319	2.708	.009	.083	.555
	GA	.265	.133	.265	1.993	.052	002	.531
	SA	.144	.135	.144	1.071	.289	126	.414
4	(Constant)	-3.976E-16	.100		.000	1.000	200	.200
	IC	147	.115	147	-1.278	.207	376	.083
	TS BBOE	.262	.113	.262	2.311	.025	.035	.489
	PROF	550	.162	550	-3.401	.001	875	226
	GS	.308	.115	.308	2.684	.010	.078	.539
	GA	.251	.129	.251	1.949	.057	007	.509
5	SA (Constant)	.157	.131	.157	1.197	.237	106	.419
) "	(Constant) IC	-3.627E-16	.100		.000	1.000	201	.201
		122	.113	122	-1.079	.285	349	.105
	TS	.258	.114	.258	2.265	.028	.030	.486
	PROF GS	651	.139	651	-4.687	.000	929	372
	GA GA	.322	.115	.322	2.805	.007	.092	.552
6	(Constant)	.232	.128	.232	1.810	.076	025	.490
"	(Constant) TS	-3.779E-16	.100		.000	1.000	201	.201
	PROF	.235	.112	.235	2.098	.040	.011	.459
	GS GS	716	.125	716	-5.718	.000	967	465
	GA GA	.343	.113	.343	3.024	.004	.116	.570
	ependent Varia	.253	.127	.253	1.993	.051	001	.508

a. Dependent Variable: LR1

The regression analysis shows that the coefficient of determination i.e R², explained 46.7% variation in LR1 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 43.6% over the total variation. The t test shows that Growth in terms of sales, Profitability, tax shield are significant upto 5% level and Growth in terms of assets upto 10% level.

LR1=-3.779E-16 + .235 (TS) -0.716 (PROF) +0.343 (GS) +0.253 (GA)

4.1.5 Pharma

4.1.5.1 Correlation Matrix and results

Correlations

	5511 513115115										
		LR1	IC	DPR	TS	PROF	CFC	GS	GA	SA	PE
LR1	Pearson Correlation	1	467	282	067	754"	289	.138	.077	.229	602"
	Sig. (2-tailed)		.019	.172	.750	.000	.161	.510	.715	.270	.001
	N	25	25	25	25	25	25	25	25	25	25
IC	Pearson Correlation	467	1	.331	164	.393	099	.120	145	169	.439
	Sig. (2-tailed)	.019		.106	.433	.052	.637	.567	.488	.421	.028
	N	25	25	25	25	25	25	25	25	25	25
DPR	Pearson Correlation	282	.331	1	.054	.556"	.176	.003	157	311	.488
	Sig. (2-tailed)	.172	.106		.798	.004	.399	.989	.455	.130	.013
	N	25	25	25	25	25	25	25	25	25	25
TS	Pearson Correlation	067	164	.054	1	072	147	.052	040	.149	002
	Sig. (2-tailed)	.750	.433	.798		.732	.484	.804	.848	.478	.993
	N	25	25	25	25	25	25	25	25	25	25
PROF	Pearson Correlation	754"	.393	.556"	072	1	.199	.182	221	321	.706"
	Sig. (2-tailed)	.000	.052	.004	.732		.340	.384	.289	.117	.000
	N	25	25	25	25	25	25	25	25	25	25
CFC	Pearson Correlation	289	099	.176	147	.199	1	465	222	283	.305
	Sig. (2-tailed)	.161	.637	.399	.484	.340		.019	.286	.170	.139
	N	25	25	25	25	25	25	25	25	25	25
GS	Pearson Correlation	.138	.120	.003	.052	.182	465	1	.165	018	.020
	Sig. (2-tailed)	.510	.567	.989	.804	.384	.019		.430	.931	.925
	N	25	25	25	25	25	25	25	25	25	25
GA	Pearson Correlation	.077	145	157	040	221	222	.165	1	188	553"
	Sig. (2-tailed)	.715	.488	.455	.848	.289	.286	.430		.367	.004
	N	25	25	25	25	25	25	25	25	25	25
SA	Pearson Correlation	.229	169	311	.149	321	283	018	188	1	067
	Sig. (2-tailed)	.270	.421	.130	.478	.117	.170	.931	.367		.750
	N	25	25	25	25	25	25	25	25	25	25
PE	Pearson Correlation	602"	.439	.488	002	.706"	.305	.020	553"	067	1
	Sig. (2-tailed)	.001	.028	.013	.993	.000	.139	.925	.004	.750	
	N	25	25	25	25	25	25	25	25	25	25

^{*.} Correlation is significant at the 0.05 level (2-tailed).

The zero order correlation matrix shows that growth in terms of sales (.138), growth in terms of assets(.077) and size in terms of assets(.229) has positive correlation with the dependent variable LR1. Variables like Interest coverage(-.467), Dividend payout ratio(-.282) ,Tax shield(-.067) ,Profitability(-.754) and Cash flow coverage(-.289) are having negative correlation. Significant correlation is found between profitability, PE ratio and Interest coverage.

^{**.} Correlation is significant at the 0.01 level (2-tailed).

4.1.5.2 Regression Analysis and Results

Model Summary

					Change Statistics					
Mode L	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Siq. F Change	
1	.921	.849	.758	.49189534	.849	9.354	9	15	.000	
2	.921	.848	.771	.47807174	001	.113	1	15	.741	
3	.917°	.841	.776	.47307941	006	.647	1	16	.433	
4	.907 ^d	.823	.764	.48576864	018	1.979	1	17	.178	

a. Predictors: (Constant), PE, TS, GS, SA, IC, DPR, GA, CFC, PROF.

b. Predictors: (Constant), PE, TS, GS, IC, DPR, GA, CFC, PROF

c. Predictors: (Constant), PE, TS, GS, IC, DPR, GA, PROF

d. Predictors: (Constant), TS, GS, IC, DPR, GA, PROF

ANOVA®

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	20.371	9	2.263	9.354	= 000.
	Residual	3.629	15	.242		
	Total	24.000	24			
2	Regression	20.343	8	2.543	11.126	.000b
	Residual	3.657	16	.229		
	Total	24.000	24			
3	Regression	20.195	7	2.885	12.891	.000°
	Residual	3.805	17	.224		
	Total	24.000	24			
4	Regression	19.753	6	3.292	13.951	.000d
	Residual	4.247	18	.236		
	Total	24.000	24			

a. Predictors: (Constant), PE, TS, GS, SA, IC, DPR, GA, CFC, PROF

b. Predictors: (Constant), PE, TS, GS, IC, DPR, GA, CFC, PROF

c. Predictors: (Constant), PE, TS, GS, IC, DPR, GA, PROF.

d. Predictors: (Constant), TS, GS, IC, DPR, GA, PROF

e. Dependent Variable: LR1

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidenc	ce Interval for B
Model		В	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound
1	(Constant)	-6.128E-16	.098		.000	1.000	210	.210
	IC	315	.124	315	-2.544	.022	580	051
	DPR	.345	.128	.345	2.695	.017	.072	.619
	TS	238	.106	238	-2.239	.041	464	011
	PROF	819	.167	819	-4.905	.000	-1.175	463
	CFC	117	.137	117	850	.409	410	.176
	G8	.335	.122	.335	2.747	.015	.075	.596
	GA	302	.130	302	-2.323	.035	580	025
	SA	041	.123	041	337	.741	303	.220
	PE	195	.193	195	-1.014	.326	606	.215
2	(Constant)	-4.946E-16	.096		.000	1.000	203	.203
	IC	308	.119	308	-2.596	.019	560	057
	DPR	.354	.122	.354	2.898	.010	.095	.613
	TS	240	.103	240	-2.327	.033	458	021
	PROF	805	.157	805	-5.124	.000	-1.138	472
	CFC	101	.125	101	804	.433	367	.165
	G8	.339	.118	.339	2.871	.011	.089	.590
	GA	295	.125	295	-2.366	.031	559	031
	PE	210	.182	210	-1.157	.264	596	.175
3	(Constant)	-5.181E-16	.095		.000	1.000	200	.200
	IC	280	.112	280	-2.495	.023	517	043
	DPR	.349	.121	.349	2.890	.010	.094	.603
	TS	223	.100	223	-2.235	.039	434	013
	PROF	816	.155	816	-5.272	.000	-1.143	490
	GS	.385	.102	.385	3.762	.002	.169	.601
	GA	298	.123	298	-2.418	.027	558	038
	PE	246	.175	246	-1.407	.178	614	.123
4	(Constant)	-4.730E-16	.097		.000	1.000	204	.204
	IC	319	.112	319	-2.864	.010	554	085
	DPR	.328	.123	.328	2.670	.016	.070	.587
	TS	234	.102	234	-2.286	.035	449	019
	PROF	944	.129	944	-7.315	.000	-1.215	673
	GS	.393	.105	.393	3.742	.001	.172	.613
	GA	201	.105	201	-1.916	.071	421	.019

a. Dependent Variable: LR1

The regression analysis shows that the coefficient of determination i.e R^2 , explained 84.9% variation in LR1 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 82.3%. The t test shows that the Significant variables found in the equation are Interest coverage, Dividend payout ratio, Tax shield, Profitability, Growth in terms of sale significant upto 5% level. LR1=(-4.730E-16) -.319 (IC) +.328 (DPR) -.234 (TS) -.944 (PROF) -.393 (GS) -.201 (GA)

4.1.6 Main Findings

Correlation

	Automobile	Construction	IT	Oil, Power& Energy	Pharma
IC	*	(**)		(*)	(*)
DPR					
TS				*	
PROF	(*)	(**)	(*)	(**)	(**)
CFC	(*)	(**)			
GS					
GA					
SA	*	(**)		**	
PE					(**)

Regression

	Automobile	Construction	IT	Oil, Power&	Pharma
				Energy	
IC	*				(*)
DPR	**	(*)			*
TS				*	(*)
PROF	(*)	(**)	(**)	(**)	(**)
CFC	**				
GS				**	**
GA			**	*	(*)
SA		(**)	**		
PE	(*)				
Variation explained	68.8%	52.4%	67.4%	46.7%	84.9%
by all factors					
Variation explained	63.6%	45.5%	59.2%	43.6%	82.3%
by significant					
variable					

- As we can see from above tables Profitability is negatively correlated to Debt-Equity ratio amongst all the 5 sectors.
- Also Growth in terms of assets is significantly related in IT, Oil, Power and Energy and Pharma sector.
- Dividend payout ratio is significantly correlated in Automobile, Construction and Pharma sector.

Hence H_{01} is accepted and we can say factors affecting Debt-Equity ratio do not vary among different sectors of India.

4.2 Determinants of Debt to Total Long Term Funds Ratio

4.2.1 Automobile

4.2.1.1 Correlation Matrix and Results

Correlations

		LR2	IC	DPR	TS	PROF	CFC	GS	GA	SA	PE
LR2	Pearson Correlation	1	429	.303	.240	456	494	229	.145	.336	.115
	Sig. (2-tailed)		.032	.141	.247	.022	.012	.271	.488	.101	.584
	N	25	25	25	25	25	25	25	25	25	25
IC	Pearson Correlation	429	1	.181	.061	.746"	.929"	.362	079	418	093
	Sig. (2-tailed)	.032		.387	.771	.000	.000	.076	.709	.037	.659
	N	25	25	25	25	25	25	25	25	25	25
DPR	Pearson Correlation	.303	.181	1	.232	.187	.287	.001	095	.083	.487
	Sig. (2-tailed)	.141	.387		.264	.370	.164	.998	.652	.693	.013
	N	25	25	25	25	25	25	25	25	25	25
TS	Pearson Correlation	.240	.061	.232	1	.261	.030	262	.023	057	.059
	Sig. (2-tailed)	.247	.771	.264		.208	.888	.206	.915	.787	.780
	N	25	25	25	25	25	25	25	25	25	25
PROF	Pearson Correlation	456	.746"	.187	.261	1	.751"	.225	131	720"	250
	Sig. (2-tailed)	.022	.000	.370	.208		.000	.281	.533	.000	.228
	N	25	25	25	25	25	25	25	25	25	25
CFC	Pearson Correlation	494	.929"	.287	.030	.751"	1	.286	.058	483	105
	Sig. (2-tailed)	.012	.000	.164	.888	.000		.166	.783	.014	.617
	N	25	25	25	25	25	25	25	25	25	25
GS	Pearson Correlation	229	.362	.001	262	.225	.286	1	181	.019	.076
	Sig. (2-tailed)	.271	.076	.998	.206	.281	.166		.387	.927	.719
	N	25	25	25	25	25	25	25	25	25	25
GA	Pearson Correlation	.145	079	095	.023	131	.058	181	1	184	473
	Sig. (2-tailed)	.488	.709	.652	.915	.533	.783	.387		.378	.017
	N	25	25	25	25	25	25	25	25	25	25
SA	Pearson Correlation	.336	418	.083	057	720"	483	.019	184	1	.570"
	Sig. (2-tailed)	.101	.037	.693	.787	.000	.014	.927	.378		.003
	N	25	25	25	25	25	25	25	25	25	25
PE	Pearson Correlation	.115	093	.487	.059	250	105	.076	473	.570"	1
	Sig. (2-tailed)	.584	.659	.013	.780	.228	.617	.719	.017	.003	
	N	25	25	25	25	25	25	25	25	25	25

^{*.} Correlation is significant at the 0.05 level (2-tailed).

The zero order correlation matrix shows that growth in terms of assets(.145) ,size in terms of assets(.336), PE ratio(.115), Tax shield(.240) and dividend payout ratio(.303) has positive correlation with the dependent variable LR2. Variables like growth in terms of sales (-.229), Interest coverage (-.429), Profitability (-.456) and Cash flow coverage(-.494) are having negative correlation. Significant correlation is found between profitability, Profitability and Cash flow coverage and Interest coverage.

^{**.} Correlation is significant at the 0.01 level (2-tailed).

4.2.1.2 Regression Analysis and Results

Model Summary

					Change Statistics					
Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	
1	.825	.681	.490	.71419865	.681	3.561	9	15	.015	
2	.825 °	.681	.521	.69189451	.000	.016	1	15	.900	
3	.822°	.676	.542	.67669452	005	.261	1	16	.616	
4	.816 ^d	.666	.555	.66707494	009	.492	1	17	.493	
5	.793°	.629	.532	.68444501	037	2.002	1	18	.174	

a. Predictors: (Constant), PE, TS, CFC, GS, GA, DPR, SA, PROF, IC

b. Predictors: (Constant), PE, TS, CFC, GA, DPR, SA, PROF, IC

c. Predictors: (Constant), PE, TS, CFC, GA, DPR, PROF, IC

d. Predictors: (Constant), PE, TS, CFC, DPR, PROF, IC

e. Predictors: (Constant), PE, CFC, DPR, PROF, IC

ANOVA^f

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	16.349	9	1.817	3.561	.015*
	Residual	7.651	15	.510		
	Total	24.000	24			
2	Regression	16.341	8	2.043	4.267	.0076
	Residual	7.659	16	.479		
	Total	24.000	24			
3	Regression	16.215	7	2.316	5.059	.003°
	Residual	7.785	17	.458		
	Total	24.000	24			
4	Regression	15.990	6	2.665	5.989	.001 ^d
	Residual	8.010	18	.445		
	Total	24.000	24			
5	Regression	15.099	5	3.020	6.446	.001°
	Residual	8.901	19	.468		
	Total	24.000	24			

a. Predictors: (Constant), PE, TS, CFC, GS, GA, DPR, SA, PROF, IC

b. Predictors: (Constant), PE, TS, CFC, GA, DPR, SA, PROF, IC

c. Predictors: (Constant), PE, TS, CFC, GA, DPR, PROF, IC

d. Predictors: (Constant), PE, TS, CFC, DPR, PROF, IC

e. Predictors: (Constant), PE, CFC, DPR, PROF, IC

f. Dependent Variable: LR2

Coefficients^a

Mode					Ctandordizad					
1										
IC			_		Beta	t			Upper Bound	
DPR	1						l	l		
T8								l	1.958	
PROF -5.559 3.94 -5.559 -1.422 1.76 -1.388 2.79 CFC			.725	.201	.725	3.615	.003	.298	1.153	
CFC -1.286 .513 -1.286 -2.505 .024 -2.380 1.92 68 .022 .176 .022 .128 .900 .352 .397 6A .121 .213 .121 .569 .578 .333 .575 8A .147 .288 .147 .511 .617 .760 .466 PE .299 .247 .299 .1209 .246 .826 .228 2 (Constant) 1.866E-17 .138 .000 1.000 .293 .293 IC .963 .449 .963 .2145 .048 .011 .1914 DPR .724 .194 .724 3.729 .002 .312 .1135 TB .201 .168 .201 .1187 .249 .155 .557 PROF .547 .368 .547 .1484 .157 .1327 .234 CFC .1.296 .492		. –	.210	.187	.210	1.122	.280	189	.609	
GS .022 .176 .022 .128 .900 .352 .397 GA .121 .213 .121 .569 .578 .333 .575 SA 147 .288 .147 511 .617 .760 .466 PE .299 .247 .299 -1.209 .246 .926 .228 2 (Constant) 1.866E-17 .138 .000 1.000 .293 .293 IC .963 .449 .963 2.145 .048 .011 1.914 DPR .724 .194 .724 3.729 .002 .312 1.135 TS .201 .168 .201 1.197 .249 -1.55 .557 PROF 547 .388 547 -1.484 .157 -1.327 .234 CFC -1.296 .492 -1.296 -2.633 .018 -2.339 -2.232 QA .123 .206			559	.394	559	-1.422	.176	-1.398	.279	
GA			-1.286	.513	-1.286	-2.505	.024	-2.380	192	
SA 147 .298 147 511 .617 760 .466 PE 299 .247 299 -1.209 .246 826 .228 2 (Constant) 1.866E-17 .138 .000 1.000 .293 .293 IC .963 .449 .963 2.145 .048 .011 1.914 DPR .724 .194 .724 3.729 .002 .312 1.135 TS .201 .168 .201 1.197 .249 -1.55 .557 PROF 547 .368 547 -1.484 .157 -1.327 .234 CFC -1.296 .492 -1.296 -2.633 .018 -2.339 257 GA .123 .206 .123 .597 .559 .314 .559 SA .138 .270 .138 .511 .616 .710 .434 PE .297 .239 </td <td></td> <td></td> <td>.022</td> <td>.176</td> <td>.022</td> <td>.128</td> <td>.900</td> <td>352</td> <td>.397</td>			.022	.176	.022	.128	.900	352	.397	
PE 299 .247 299 -1.209 .246 826 .228 2 (Constant) 1.866E-17 1.138 .000 1.000 293 .293 IC .963 .449 .963 2.145 .048 .011 1.914 DPR .724 .194 .724 3.729 .002 .312 1.135 TS .201 .168 .201 1.197 .249 155 .557 PROF 547 .388 547 1.1484 .157 -1.327 .234 CFC -1.296 .492 -1.296 -2.633 .018 -2.339 252 GA .123 .206 .123 .597 .559 314 .559 SA .138 .270 .138 .511 .616 .710 .434 PE 297 .233 .227 .138 .511 .616 .710 .434 GOnstant) <td< td=""><td></td><td></td><td>.121</td><td>.213</td><td>.121</td><td>.569</td><td>.578</td><td>333</td><td>.575</td></td<>			.121	.213	.121	.569	.578	333	.575	
2 (Constant) 1.866E-17 .138 .000 1.000 293 .293 IC .963 .449 .963 2.145 .048 .011 1.914 DPR .724 .194 .724 3.729 .002 .312 1.135 TS .201 .168 .201 .118 .201 .1197 .249 .155 .567 PROF 547 .388 547 -1.484 .167 -1.327 .234 CFC -1.296 .492 -1.296 -2.633 .018 -2.339 252 GA .123 .206 .123 .597 .559 314 .559 SA .138 .270 -138 .561 .616 -770 .434 PE 297 .239 297 -1.242 .232 .804 .210 3 (Constant) 3.356E-16 .135 .000 1.000 1.000 .286 .286 <			147	.288	147	511	.617	760	.466	
IC			299	.247	299	-1.209	.246	826	.228	
DPR 7.724 1.94 7.24 3.729 0.002 3.312 1.135 TS .201 1.68 .201 1.197 .249 156 .567 PROF 547 .368 547 -1.484 .157 -1.327 .234 CFC -1.296 .492 -1.296 -2.633 .018 -2.339 252 GA .123 .206 .123 .597 .559 .314 .559 SA .138 .270 .138 -511 .616 -710 .434 PE .297 .239 297 -1.242 .232 804 .210 3 (Constant) 3.356E-16 .135 .000 .000 .000 .000 .000 .000 .286 .286 IC .908 .426 .908 2.130 .048 .009 1.807 DPR .717 .189 .717 3.787 .001 .318 1.	2	` '	1.866E-17	.138		.000	1.000	293	.293	
TS			.963	.449	.963	2.145	.048	.011	1.914	
PROF 547 .368 547 -1.484 1.157 -1.327 .234 CFC -1.296 .492 -1.296 -2.633 .018 -2.339 252 GA .123 .206 .123 .597 .559 314 .559 SA .138 .270 .138 511 .616 .710 .434 PE .297 .239 297 -1.242 .232 804 .210 JC .908 .426 .908 2.130 .048 .009 1.807 DPR .717 .189 .717 3.787 .001 .318 1.117 TS .184 .161 .184 1.142 .249 .156 .523 PROF .427 .279 .427 -1.533 .144 -1.015 .161 CFC -1.271 .479 -1.271 -2.663 .017 -2.281 -2.60 GA .133 .199			.724	.194	.724	3.729	.002	.312	1.135	
CFC			.201	.168	.201	1.197	.249	155	.557	
GA 1.123 2.06 1.123 5.597 5.599 314 5.559 SA 138 2.70 138 511 .616 710 .434 PE 297 2.39 297 -1.242 .232 804 .210 3 (Constant) 3.356E-16 1.135 .000 1.000 286 .286 IC .908 .426 .908 2.130 .048 .009 1.807 DPR .717 .189 .717 3.787 .001 .318 1.117 TS .184 .161 .184 1.142 .269 156 .523 PROF 427 .279 427 -1.533 .014 -1.015 .161 CFC -1.271 .479 -1.271 -2.653 .017 -2.281 260 GA .139 .199 .139 .701 .493 -280 .559 PE 336 <		PROF	547	.368	547	-1.484	.157	-1.327	.234	
SA 138 .270 138 511 .616 710 .434 PE 297 .239 297 -1.242 .232 804 .210 3 (Constant) 3.356E-16 .135 .000 1.000 286 .286 IC .908 .426 .908 2.130 .048 .009 1.807 DPR .717 .189 .717 3.787 .001 .318 1.117 TS .184 .161 .184 1.142 .269 156 .523 PROF 427 .279 427 1.533 .144 -1.015 .161 CFC -1.271 .479 -1.271 -2.653 .017 -2.281 260 GA .139 .199 .139 .701 .493 280 .559 PE 336 .221 336 -1.518 .147 803 .131 Jorostanto 2.791E-16		CFC	-1.296	.492	-1.296	-2.633	.018	-2.339	252	
PE 297 239 297 -1.242 232 804 210 3 (Constant) 3.356E-16 1.135 .000 1.000 286 .286 IC .908 .426 .908 2.130 .048 .009 1.807 DPR .717 .189 .717 3.787 .001 .318 1.117 TS .184 .161 .184 1.142 .269 156 .523 PROF 427 .279 427 -1.533 .144 -1.015 .161 CFC -1.271 .479 -1.271 -2.653 .017 -2.281 -2.600 GA .139 .199 .139 .701 .493 -280 .559 PE 336 .221 336 -1.518 .147 803 .131 4 (Constant) 2.791E-16 .133 .000 1.000 280 .280 IC .814		GA	.123	.206	.123	.597	.559	314	.559	
3			138	.270	138	511	.616	710	.434	
IC		PE	297	.239	297	-1.242	.232	804	.210	
DPR .717 .189 .717 3.787 .001 .318 1.117 TS .184 .161 .184 1.142 .269 156 .523 PROF 427 .279 427 -1.533 .144 -1.015 .161 CFC -1.271 .479 -1.271 -2.653 .017 -2.281 260 GA .139 .199 .139 .701 .493 280 .559 PE 336 .221 336 -1.518 .147 803 .131 4 (Constant) 2.791E-16 .133 .000 1.000 280 .280 IC .814 .399 .814 2.041 .056 024 1.651 DPR .733 .185 .733 3.954 .001 .344 1.123 TS .215 .152 .215 1.415 .174 104 .535 PROF 525 <td< td=""><td>3</td><td>(Constant)</td><td>3.356E-16</td><td>.135</td><td></td><td>.000</td><td>1.000</td><td>286</td><td>.286</td></td<>	3	(Constant)	3.356E-16	.135		.000	1.000	286	.286	
TS 184 161 1.84 1.142 2.69156 5.23 PROF427 2.79427 1.533 1.144 -1.015 1.61 CFC -1.271 4.79 -1.271 -2.653 .017 -2.281260 GA 1.39 1.99 1.39 .701 4.93280 5.59 PE336 .221336 -1.518 1.147803 1.31 4 (Constant) 2.791E-16 1.33			.908	.426	.908	2.130	.048	.009	1.807	
PROF 427 279 427 -1.533 .144 -1.015 .161 CFC -1.271 .479 -1.271 -2.653 .017 -2.281 260 GA .139 .199 .139 .701 .493 280 .559 PE 336 .221 336 -1.518 .147 803 .131 4 (Constant) 2.791E-16 .133 .000 1.000 280 .280 IC .814 .399 .814 2.041 .056 024 1.651 DPR .733 .185 .733 3.954 .001 .344 1.123 TS .215 .152 .215 1.415 .174 104 .535 PROF 525 .238 525 -2.211 .040 -1.024 026 CFC -1.116 .419 -1.116 -2.662 .016 -1.998 235 PE 429		DPR	.717	.189	.717	3.787	.001	.318	1.117	
CFC -1.271 .479 -1.271 -2.653 .017 -2.281 260 GA 1.139 .199 .139 .701 .493 280 .559 PE 336 .221 336 -1.518 .147 803 .131 4 (Constant) 2.791E-16 .133 .000 1.000 280 .280 IC .814 .399 .814 2.041 .056 024 1.651 DPR .733 .185 .733 3.954 .001 .344 1.123 TS .215 .152 .215 1.415 .174 104 .535 PROF 525 .238 525 -2.211 .040 -1.024 026 CFC -1.116 .419 -1.116 -2.662 .016 -1.998 235 PE 429 .175 429 -2.444 .025 797 060 5 (Constant) </td <td></td> <td>TS</td> <td>.184</td> <td>.161</td> <td>.184</td> <td>1.142</td> <td>.269</td> <td>156</td> <td>.523</td>		TS	.184	.161	.184	1.142	.269	156	.523	
GA 1.39 1.99 1.39 .701 .493 -280 .559 PE 336 .221 336 -1.518 .147 803 .131 4 (Constant) 2.791E-16 .133 .000 1.000 280 .280 IC .814 .399 .814 2.041 .056 024 1.651 DPR .733 .185 .733 3.954 .001 .344 1.123 TS .215 .152 .215 1.415 .174 104 .535 PROF 525 .238 525 -2.211 .040 -1.024 026 CFC -1.116 .419 -1.116 -2.662 .016 -1.998 235 PE 429 .175 429 -2.444 .025 797 060 5 (Constant) 2.794E-16 .137 .000 1.000 287 .287 IC .862		PROF	427	.279	427	-1.533	.144	-1.015	.161	
PE 336 .221 336 -1.518 .147 803 .131 4 (Constant) 2.791E-16 .133 .000 1.000 280 .280 IC .814 .399 .814 2.041 .056 024 1.651 DPR .733 .185 .733 3.954 .001 .344 1.123 TS .215 .152 .215 1.415 .174 104 .535 PROF 525 .238 525 -2.211 .040 -1.024 -026 CFC -1.116 .419 -1.116 -2.662 .016 -1.998 -235 PE 429 .175 429 -2.444 .025 797 060 5 (Constant) 2.794E-16 .137 .000 1.000 287 .287 IC .862 .408 .862 2.114 .048 .009 .404 1.180 PROF		CFC	-1.271	.479	-1.271	-2.653	.017	-2.281	260	
4 (Constant) 2.791E-16 .133 .000 1.000 280 .280 IC .814 .399 .814 2.041 .056 024 1.651 DPR .733 .185 .733 3.954 .001 .344 1.123 TS .215 .152 .215 1.415 .174 104 .535 PROF 525 .238 525 -2.211 .040 -1.024 026 CFC -1.116 .419 -1.116 -2.662 .016 -1.998 235 PE 429 .175 429 -2.444 .025 797 060 5 (Constant) 2.794E-16 .137 .000 1.000 287 .287 IC .862 .408 .862 2.114 .048 .009 1.715 DPR .792 .185 .792 4.275 .000 .404 1.180 PROF 408 <td></td> <td>GA</td> <td>.139</td> <td>.199</td> <td>.139</td> <td>.701</td> <td>.493</td> <td>280</td> <td>.559</td>		GA	.139	.199	.139	.701	.493	280	.559	
IC		PE	336	.221	336	-1.518	.147	803	.131	
DPR	4	(Constant)	2.791E-16	.133		.000	1.000	280	.280	
TS		IC	.814	.399	.814	2.041	.056	024	1.651	
PROF525		DPR	.733	.185	.733	3.954	.001	.344	1.123	
CFC -1.116		TS	.215	.152	.215	1.415	.174	104	.535	
PE429		PROF	525	.238	525	-2.211	.040	-1.024	026	
5 (Constant) 2.794E-16 .137 .000 1.000 287 .287 IC .862 .408 .862 2.114 .048 .009 1.715 DPR .792 .185 .792 4.275 .000 .404 1.180 PROF 408 .228 408 -1.786 .090 886 .070 CFC -1.260 .418 -1.260 -3.016 .007 -2.134 386		CFC	-1.116	.419	-1.116	-2.662	.016	-1.998	235	
IC		PE	429	.175	429	-2.444	.025	797	060	
DPR .792 .185 .792 4.275 .000 .404 1.180 PROF408 .228408 -1.786 .090886 .070 CFC -1.260 .418 -1.260 -3.016 .007 -2.134386	5	(Constant)	2.794E-16	.137		.000	1.000	287	.287	
PROF408 .228408 -1.786 .090886 .070 CFC -1.260 .418 -1.260 -3.016 .007 -2.134386		IC	.862	.408	.862	2.114	.048	.009	1.715	
CFC -1.260 .418 -1.260 -3.016 .007 -2.134386		DPR	.792	.185	.792	4.275	.000	.404	1.180	
CFC -1.260 .418 -1.260 -3.016 .007 -2.134386		PROF	408	.228	408	-1.786	.090	886	.070	
PE426 .180426 -2.368 .029803049		CFC	-1.260	.418	-1.260	-3.016	.007	l	386	
		PE	426	.180	426	-2.368	.029	803	049	

a. Dependent Variable: LR2

The regression analysis shows that the coefficient of determination i.e R^2 , explained 68.1% variation in LR2 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 62.9% over the total variation. The t test shows that the Significant variables found in the equation are Interest coverage, Dividend payout ratio, Cash flow coverage, PE ratio that are significant upto 5% level and Profitability is significant upto 10% level.

LR2 = 2.749E-16 + 0.862 (IC) + 0.792 (DPR) - .408 (PROF) - 1.26 (CFC) - .426 (PE)

4.2.2 Construction

4.2.2.1 Correlation Matrix and Results

Correlations

Sig. (2-tailed)						Correlation						
Sig. (2-tailed)			LR2	IC	DPR	TS	PROF	CFC	GS	GA	SA	PE
N	LR2	Pearson Correlation	1	692"	322	.009	553"	637"	.196	.248	523"	.322'
Temporal Correlation Figure Figur		Sig. (2-tailed)		.000	.043	.954	.000	.000	.225	.123	.001	.043
Sig. (2-tailed) 0.000		N	40	40	40	40	40	40	40	40	40	40
N	IC	Pearson Correlation	692"	1	.209	014	.663"	.943"	179	182	.280	346
DPR Pearson Correlation Sig. (2-tailed) -322' 209 1 -213 .071 .237 .045 .017 -148 .20 BIg. (2-tailed) .043 .195 .188 .663 .141 .784 .915 .362 .21 N 40 <td></td> <td>Sig. (2-tailed)</td> <td>.000</td> <td></td> <td>.195</td> <td>.933</td> <td>.000</td> <td>.000</td> <td>.269</td> <td>.261</td> <td>.080</td> <td>.029</td>		Sig. (2-tailed)	.000		.195	.933	.000	.000	.269	.261	.080	.029
Sig. (2-tailed)		N	40	40	40	40	40	40	40	40	40	40
N	DPR	Pearson Correlation	322	.209	1	213	.071	.237	.045	.017	148	.200
TS Pearson Correlation 0.009 -0.14 -2.13 1 0.007 -0.045 -0.062 1.108 4.28" -2.23 1.88 0.965 7.785 7.702 5.508 0.006 1.168 N 40 40 40 40 40 40 40		Sig. (2-tailed)	.043	.195		.188	.663	.141	.784	.915	.362	.215
Sig. (2-tailed)		N	40	40	40	40	40	40	40	40	40	40
N	TS	Pearson Correlation	.009	014	213	1	.007	045	062	.108	.428"	225
PROF Pearson Correlation Sig. (2-tailed) 553" .663" .071 .007 .007 1 .546" .000 019211 .137 .388 .01 N 40 <		Sig. (2-tailed)	.954	.933	.188		.965	.785	.702	.508	.006	.164
Sig. (2-tailed) 0.000 0.000 0.663 0.965 0.000 0.906 0.191 0.398 0.01		N	40	40	40	40	40	40	40	40	40	40
N 40 </td <td>PROF</td> <td>Pearson Correlation</td> <td>553"</td> <td>.663"</td> <td>.071</td> <td>.007</td> <td>1</td> <td>.546"</td> <td>019</td> <td>211</td> <td>.137</td> <td>380'</td>	PROF	Pearson Correlation	553"	.663"	.071	.007	1	.546"	019	211	.137	380'
CFC Pearson Correlation Sig. (2-tailed) 637" .943" .237 045 .546" 1 220 188 .294 36" .938" .943" .237 045 .546" 1 220 188 .294 36" .938 .948"<		Sig. (2-tailed)	.000	.000	.663	.965		.000	.906	.191	.398	.016
Sig. (2-tailed) .000 .000 .141 .785 .000 .172 .246 .065 .02 N 40		N	40	40	40	40	40	40	40	40	40	40
N 40 </td <td>CFC</td> <td>Pearson Correlation</td> <td>637"</td> <td>.943"</td> <td>.237</td> <td>045</td> <td>.546"</td> <td>1</td> <td>220</td> <td>188</td> <td>.294</td> <td>361</td>	CFC	Pearson Correlation	637"	.943"	.237	045	.546"	1	220	188	.294	361
GS		Sig. (2-tailed)	.000	.000	.141	.785	.000		.172	.246	.065	.022
Sig. (2-tailed) .225 .269 .784 .702 .906 .172 .000 .003 .111 N 40		N	40	40	40	40	40	40	40	40	40	40
Sig. (2-tailed)	GS	Pearson Correlation	.196	179	.045	062	019	220	1	.659"	453"	.251
GA Pearson Correlation 248 -182 .017 .108 .211 -188 .659" 1 247 .20 .20 .21 .20 .20 .21 .20		Sig. (2-tailed)	.225	.269	.784	.702	.906	.172		.000		.119
Sig. (2-tailed) 123 2.61 .915 .508 .191 .246 .000 .124 .216 .2		N	40	40	40	40	40	40	40	40	40	40
N 40 </td <td>GA</td> <td>Pearson Correlation</td> <td>.248</td> <td>182</td> <td>.017</td> <td>.108</td> <td>211</td> <td>188</td> <td>.659"</td> <td>1</td> <td>247</td> <td>.202</td>	GA	Pearson Correlation	.248	182	.017	.108	211	188	.659"	1	247	.202
SA Pearson Correlation Sig. (2-tailed) 523" .280 148 .428" .137 .294 453" 247 .1 538 Sig. (2-tailed) .001 .080 .362 .006 .398 .065 .003 .124 .00 N 40 <		Sig. (2-tailed)	.123	.261	.915	.508	.191	.246	.000		.124	.212
Sig. (2-tailed) .001 .080 .362 .006 .398 .065 .003 .124 .00 N 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 50 381 .251 .202 539° <		N	40	40	40	40	40	40	40	40	40	40
N 40 </td <td>SA</td> <td>Pearson Correlation</td> <td>523"</td> <td>.280</td> <td>148</td> <td>.428"</td> <td>.137</td> <td>.294</td> <td>453"</td> <td>247</td> <td>1</td> <td>539"</td>	SA	Pearson Correlation	523"	.280	148	.428"	.137	.294	453"	247	1	539"
PE Pearson Correlation 322' -346' .200 -225 -380' -361' .251 .202 -539" Sig. (2-tailed) .043 .029 .215 .164 .016 .022 .119 .212 .000		Sig. (2-tailed)	.001	.080	.362	.006	.398	.065	.003	.124		.000
Sig. (2-tailed) .043 .029 .215 .164 .016 .022 .119 .212 .000		N	40	40	40	40	40	40	40	40	40	40
Sig. (2-tailed) .043 .029 .215 .164 .016 .022 .119 .212 .000	PE	Pearson Correlation	.322	346	.200	225	380	361	.251	.202	539"	1
		Sig. (2-tailed)	.043	.029	.215	.164	.016	.022	.119	.212		
14 40 40 40 40 40 40 40		N	40	40	40	40	40	40	40	40	40	40

^{**.} Correlation is significant at the 0.01 level (2-tailed).

The zero order correlation matrix shows that growth in terms of assets (.248), growth in terms of sale (.196), PE ratio (.322) and Tax shield (.009) has positive correlation with the dependent variable LR2. Variables like Interest coverage (-.692), Profitability (-.553) and Cash flow coverage (-.637), Dividend payout ratio (-.322), Sales in terms of asset (-.523) are having negative correlation. Significant correlation is found between Interest coverage, Profitability, Cash flow coverage, sales in terms of assets, Dividend payout ratio and PE ratio.

^{*.} Correlation is significant at the 0.05 level (2-tailed).

4.2.2.2 Regression Analysis and Results

Model Summary

					Change Statistics							
Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change			
1	.861ª	.742	.665	.57899326	.742	9.593	9	30	.000			
2	.859	.738	.671	.57391343	004	.458	1	30	.504			
3	.856⁴	.734	.675	.56987007	005	.551	1	31	.464			
4	.852 ^d	.727	.677	.56829639	007	.818	1	32	.373			
5	.848°	.719	.678	.56764460	008	.922	1	33	.344			
6	.835 ^r	.697	.663	.58058422	022	2.614	1	34	.115			

a. Predictors: (Constant), PE, DPR, GA, TS, PROF, CFC, SA, GS, IC

b. Predictors: (Constant), PE, DPR, GA, TS, PROF, SA, GS, IC

c. Predictors: (Constant), PE, DPR, TS, PROF, SA, GS, IC

d. Predictors: (Constant), PE, DPR, TS, PROF, SA, IC

e. Predictors: (Constant), DPR, TS, PROF, SA, IC

f. Predictors: (Constant), DPR, PROF, SA, IC

ANOVA⁸

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	28.943	9	3.216	9.593	.000 =
	Residual	10.057	30	.335		
	Total	39.000	39			
2	Regression	28.789	8	3.599	10.926	.000
	Residual	10.211	31	.329		
	Total	39.000	39			
3	Regression	28.608	7	4.087	12.585	.000°
	Residual	10.392	32	.325		
	Total	39.000	39			
4	Regression	28.342	6	4.724	14.626	.000d
	Residual	10.658	33	.323		
	Total	39.000	39			
5	Regression	28.045	5	5.609	17.407	.000
	Residual	10.955	34	.322		
	Total	39.000	39			
6	Regression	27.202	4	6.801	20.175	.000′
	Residual	11.798	35	.337		
	Total	39.000	39			

a. Predictors: (Constant), PE, DPR, GA, TS, PROF, CFC, SA, GS, IC

b. Predictors: (Constant), PE, DPR, GA, TS, PROF, SA, GS, IC

c. Predictors: (Constant), PE, DPR, TS, PROF, SA, GS, IC

d. Predictors: (Constant), PE, DPR, TS, PROF, SA, IC

e. Predictors: (Constant), DPR, TS, PROF, SA, IC

f. Predictors: (Constant), DPR, PROF, SA, IC

g. Dependent Variable: LR2

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confiden	ce Interval for B
Model		В	Std. Error	Beta	t	Sia.	Lower Bound	Upper Bound
1	(Constant)	1.181E-15	.092		.000	1.000	187	.187
	IC	560	.334	560	-1.676	.104	-1.243	.122
	DPR	268	.102	268	-2.633	.013	476	060
	TS	.175	.109	.175	1.609	.118	047	.397
	PROF	212	.144	212	-1.474	.151	505	.082
	CFC	.207	.306	.207	.677	.504	418	.832
	GS	155	.140	155	-1.110	.276	440	.130
	GA	.097	.132	.097	.732	.470	173	.366
	SA	609	.133	609	-4.563	.000	881	336
	PE	093	.124	093	754	.457	346	.159
2	(Constant)	1.211E-15	.091		.000	1.000	185	.185
	IC	354	.135	354	-2.625	.013	628	079
	DPR	258	.100	258	-2.585	.015	461	054
	TS	.166	.107	.166	1.554	.130	052	.385
	PROF	243	.135	243	-1.803	.081	518	.032
	GS	161	.138	161	-1.165	.253	443	.121
	GA	.097	.131	.097	.742	.464	170	.363
	SA	608	.132	608	-4.600	.000	878	338
	PE	111	.120	111	925	.362	355	.133
3	(Constant)	1.176E-15	.090		.000	1.000	184	.184
	IC	341	.133	341	-2.570	.015	611	071
	DPR	257	.099	257	-2.590	.014	458	055
	TS	.182	.104	.182	1.740	.092	031	.394
	PROF	271	.129	271	-2.106	.043	533	009
	GS	095	.104	095	904	.373	307	.118
	SA	608	.131	608	-4.632	.000	876	341
	PE	111	.119	111	933	.358	353	.131
4	(Constant)	1.080E-15	.090		.000	1.000	183	.183
	IC	329	.132	329	-2.498	.018	597	061
	DPR	258	.099	258	-2.613	.013	459	057
	TS	.167	.103	.167	1.626	.113	042	.377
	PROF	284	.127	284	-2.231	.033	543	025
	SA	563	.121	563	-4.653	.000	809	317
	PE	114	.119	114	960	.344	355	.127
5	(Constant)	9.885E-16	.090		.000	1.000	182	.182
	IC	322	.131	322	-2.453	.019	589	055
	DPR	277	.097	277	-2.867	.007	474	081
	TS	.166	.103	.166	1.617	.115	043	.375
	PROF	251	.123	251	-2.051	.048	500	002
	SA	510	.108	510	-4.737	.000	729	291
6	(Constant)	8.672E-16	.092		.000	1.000	186	.186
	IC	347	.133	347	-2.599	.014	617	076
	DPR	297	.098	297	-3.029	.005	496	098
	PROF	243	.125	243	-1.937	.061	497	.012
	SA	436	.100	436	-4.374	.000	638	234

a. Dependent Variable: LR2

The regression analysis shows that the coefficient of determination i.e R^2 , explained 74.2% variation in LR2 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 69.7% over the total variation. The t test shows that Interest Coverage, Dividend payout ratio and Size in terms of assets are significant upto 5% level and Profitability upto 10% level.

LR2= (8.627E-16) -0.347 (IC) -0.297 (DPR) -0.243 (PROF) -0.436 (SA)

4.2.3 IT

4.2.3.1 Correlation Matrix and Results

Correlations

		LR2	IC	DPR	TS	PROF	CFC	GS	GA	SA	PE
LR2	Pearson Correlation	1	308	203	.197	394	281	028	.103	.147	.168
	Sig. (2-tailed)		.134	.332	.345	.051	.174	.894	.623	.482	.423
	N	25	25	25	25	25	25	25	25	25	25
IC	Pearson Correlation	308	1	.256	.024	.364	.456	.091	.082	.146	.045
	Sig. (2-tailed)	.134		.217	.909	.074	.022	.666	.697	.486	.832
	N	25	25	25	25	25	25	25	25	25	25
DPR	Pearson Correlation	203	.256	1	484	.368	.182	.282	.031	.042	.430
	Sig. (2-tailed)	.332	.217		.014	.071	.385	.172	.884	.843	.032
	N	25	25	25	25	25	25	25	25	25	25
TS	Pearson Correlation	.197	.024	484	1	730"	120	267	270	348	393
	Sig. (2-tailed)	.345	.909	.014		.000	.567	.197	.192	.088	.052
	N	25	25	25	25	25	25	25	25	25	25
PROF	Pearson Correlation	394	.364	.368	730"	1	.444	.435	.322	.578"	.366
	Sig. (2-tailed)	.051	.074	.071	.000		.026	.030	.117	.002	.072
	N	25	25	25	25	25	25	25	25	25	25
CFC	Pearson Correlation	281	.456	.182	120	444	1	.065	.273	.047	.044
	Sig. (2-tailed)	.174	.022	.385	.567	.026		.758	.187	.824	.834
	N	25	25	25	25	25	25	25	25	25	25
GS	Pearson Correlation	028	.091	.282	267	.435	.065	1	.170	.257	.227
	Sig. (2-tailed)	.894	.666	.172	.197	.030	.758		.418	.215	.276
	N	25	25	25	25	25	25	25	25	25	25
GA	Pearson Correlation	.103	.082	.031	270	.322	.273	.170	1	120	044
	Sig. (2-tailed)	.623	.697	.884	.192	.117	.187	.418		.569	.833
	N	25	25	25	25	25	25	25	25	25	25
SA	Pearson Correlation	.147	.146	.042	348	.578"	.047	.257	120	1	.474
	Sig. (2-tailed)	.482	.486	.843	.088	.002	.824	.215	.569		.017
	N	25	25	25	25	25	25	25	25	25	25
PE	Pearson Correlation	.168	.045	.430	393	.366	.044	.227	044	.474	1
	Sig. (2-tailed)	.423	.832	.032	.052	.072	.834	.276	.833	.017	
	N	25	25	25	25	25	25	25	25	25	25

^{*.} Correlation is significant at the 0.05 level (2-tailed).

The zero order correlation matrix shows that growth in terms of assets (.103), size in terms of assets (.147), PE ratio (.168) and Tax shield (.197) has positive correlation with the dependent variable LR2. Variables like Interest coverage (-.308), Dividend payout ratio (-.203), Profitability (-.394), Cash flow coverage (-.281) and Growth in terms of sales (-0.028) are having negative correlation. No variable is found to be significant here.

^{**.} Correlation is significant at the 0.01 level (2-tailed).

4.2.3.2 Regression Analysis and Results

Model Summary

						Cha	nge Statistic	s	
Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.822ª	.675	.481	.72066510	.675	3.468	9	15	.016
2	.822 °	.675	.513	.69794454	.000	.007	1	15	.934
3	.822⁴	.675	.541	.67748196	.000	.018	1	16	.896
4	.816 ^d	.665	.554	.66785380	009	.492	1	17	.493
5	.804°	.647	.554	.66760030	018	.986	1	18	.334
6	.792 ^r	.627	.552	.66923731	020	1.098	1	19	.308
7	.7629	.581	.521	.69184300	046	2.443	1	20	.134

- a. Predictors: (Constant), PE, CFC, GS, GA, IC, TS, SA, DPR, PROF
- b. Predictors: (Constant), PE, CFC, GS, GA, TS, SA, DPR, PROF
- c. Predictors: (Constant), PE, CFC, GS, GA, TS, SA, PROF
- d. Predictors: (Constant), PE, GS, GA, TS, SA, PROF
- e. Predictors: (Constant), PE, GA, TS, SA, PROF
- f. Predictors: (Constant), PE, GA, SA, PROF
- g. Predictors: (Constant), GA, SA, PROF

ANOVA^h

			MINORM			
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	16.210	9	1.801	3.468	.016=
	Residual	7.790	15	.519		
	Total	24.000	24			
2	Regression	16.206	8	2.026	4.159	.007
	Residual	7.794	16	.487		
	Total	24.000	24			
3	Regression	16.197	7	2.314	5.041	.003€
	Residual	7.803	17	.459		
	Total	24.000	24			
4	Regression	15.971	6	2.662	5.968	ە001.
	Residual	8.029	18	.446		
	Total	24.000	24			
5	Regression	15.532	5	3.106	6.970	.001°
	Residual	8.468	19	.446		
	Total	24.000	24			
6	Regression	15.042	4	3.761	8.396	.000°
	Residual	8.958	20	.448		
	Total	24.000	24			
7	Regression	13.948	3	4.649	9.714	.000a
	Residual	10.052	21	.479		
	Total	24.000	24			

- a. Predictors: (Constant), PE, CFC, GS, GA, IC, TS, SA, DPR, PROF
- b. Predictors: (Constant), PE, CFC, GS, GA, TS, SA, DPR, PROF
- c. Predictors: (Constant), PE, CFC, GS, GA, TS, SA, PROF
- d. Predictors: (Constant), PE, GS, GA, TS, SA, PROF
- e. Predictors: (Constant), PE, GA, TS, SA, PROF
- f. Predictors: (Constant), PE, GA, SA, PROF
- g. Predictors: (Constant), GA, SA, PROF
- h. Dependent Variable: LR2

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidenc	e Interval for B
Model		В	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound
1	(Constant)	-7.456E-16	.144		.000	1.000	307	.307
	IC	017	.198	017	084	.934	438	.405
	DPR	019	.210	019	092	.928	468	.429
	TS	307	.297	307	-1.035	.317	940	.325
	PROF	-1.439	.386	-1.439	-3.727	.002	-2.261	616
	CFC	.132	.195	.132	.676	.509	284	.548
	GS	.179	.176	.179	1.019	.325	195	.553
	GA	.523	.175	.523	2.985	.009	.150	.896
	SA	.801	.238	.801	3.372	.004	.295	1.307
	PE	.180	.193	.180	.933	.365	231	.590
2	(Constant)	-7.469E-16	.140		.000	1.000	296	.296
	DPR	025	.191	025	133	.896	430	.379
	TS	319	.252	319	-1.267	.223	854	.215
	PROF	-1.452	.341	-1.452	-4.257	.001	-2.175	729
	CFC	.130	.187	.130	.692	.499	267	.526
	GS	.181	.167	.181	1.083	.295	173	.536
	GA	.523	.170	.523	3.083	.007	.163	.882
	SA	.801	.230	.801	3.482	.003	.313	1.289
	PE	.181	.186	.181	.976	.343	212	.575
3	(Constant)	-7.594E-16	.135		.000	1.000	286	.286
	TS	310	.234	310	-1.322	.204	804	.184
	PROF	-1.455	.330	-1.455	-4.407	.000	-2.152	759
	CFC	.126	.180	.126	.701	.493	254	.506
	GS	.177	.159	.177	1.111	.282	159	.513
	GA	.528	.160	.528	3.306	.004	.191	.866
	SA	.812	.209	.812	3.880	.001	.370	1.253
	PE	.172	.166	.172	1.033	.316	179	.522
4	(Constant)	-7.252E-16	.134		.000	1.000	281	.281
	TS	241	.210	241	-1.149	.266	681	.200
	PROF	-1.317	.261	-1.317	-5.048	.000	-1.865	769
	GS	.152	.153	.152	.993	.334	170	.473
	GA	.536	.157	.536	3.407	.003	.205	.866
	SA	.764	.195	.764	3.919	.001	.354	1.173
	PE	.182	.163	.182	1.118	.278	160	.525
5	(Constant)	-7.333E-16	.134		.000	1.000	279	.279
	TS	218	.208	218	-1.048	.308	654	.218
	PROF	-1.240	.249	-1.240	-4.979	.000	-1.762	719
	GA	.543	.157	.543	3.460	.003	.215	.872
	SA	.759	.195	.759	3.897	.001	.351	1.166
	PE	.200	.162	.200	1.237	.231	139	.539

6	(Constant)	-6.905E-16	.134		.000	1.000	279	.279
	PROF	-1.075	.193	-1.075	-5.566	.000	-1.477	672
	GA	.546	.157	.546	3.470	.002	.218	.874
	SA	.718	.191	.718	3.754	.001	.319	1.117
	PE	.245	.157	.245	1.563	.134	082	.572
7	(Constant)	-7.608E-16	.138		.000	1.000	288	.288
	PROF	-1.033	.198	-1.033	-5.225	.000	-1.444	622
	GA	.532	.162	.532	3.278	.004	.195	.870
	SA	.808	.188	.808	4.289	.000	.416	1.200

a. Dependent Variable: LR2

The regression analysis shows that the coefficient of determination i.e R^2 , explained 67.5% variation in LR2 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 58.9% over the total variation. The t test shows that the Significant variables found in the equation are Profitability, Growth in terms of asset, Size in terms of assets significant upto 5%.

LR2=(-7.608E-16)-1.033 (PROF)+.532 (GA)+.808 (SA)

4.2.4 Oil, Power and Energy

4.2.4.1 Correlation Matrix and Results

Correlations

		LR2	IC	DPR	TS	PROF	CFC	GS	GA	SA	PE
LR2	Pearson Correlation	1	305	.003	.479"	495"	153	047	129	.291	.028
	Sig. (2-tailed)		.018	.983	.000	.000	.244	.720	.327	.024	.829
	N	60	60	60	60	60	60	60	60	60	60
IC	Pearson Correlation	305	1	.203	.127	.314	.042	048	026	051	110
	Sig. (2-tailed)	.018		.120	.333	.014	.750	.716	.842	.696	.403
	N	60	60	60	60	60	60	60	60	60	60
DPR	Pearson Correlation	.003	.203	1	.386"	128	123	270	370"	.254	.085
	Sig. (2-tailed)	.983	.120		.002	.330	.349	.037	.004	.050	.518
	N	60	60	60	60	60	60	60	60	60	60
TS	Pearson Correlation	.479"	.127	.386"	1	309	404"	210	411"	.221	088
	Sig. (2-tailed)	.000	.333	.002		.016	.001	.107	.001	.090	.502
	N	60	60	60	60	60	60	60	60	60	60
PROF	Pearson Correlation	495"	.314	128	309"	1	.589"	.416"	.530"	611"	335"
	Sig. (2-tailed)	.000	.014	.330	.016		.000	.001	.000	.000	.009
	N	60	60	60	60	60	60	60	60	60	60
CFC	Pearson Correlation	153	.042	123	404"	.589"	1	.452"	.779"	331"	157
	Sig. (2-tailed)	.244	.750	.349	.001	.000		.000	.000	.010	.232
	N	60	60	60	60	60	60	60	60	60	60
GS	Pearson Correlation	047	048	270	210	.416"	.452"	1	.359"	225	082
	Sig. (2-tailed)	.720	.716	.037	.107	.001	.000		.005	.084	.536
	N	60	60	60	60	60	60	60	60	60	60
GA	Pearson Correlation	129	026	370"	411"	.530"	.779"	.359"	1	421"	069
	Sig. (2-tailed)	.327	.842	.004	.001	.000	.000	.005		.001	.600
	N	60	60	60	60	60	60	60	60	60	60
SA	Pearson Correlation	.291	051	.254	.221	611"	331"	225	421"	1	.037
	Sig. (2-tailed)	.024	.696	.050	.090	.000	.010	.084	.001		.779
	N	60	60	60	60	60	60	60	60	60	60
PE	Pearson Correlation	.028	110	.085	088	335"	157	082	069	.037	1
	Sig. (2-tailed)	.829	.403	.518	.502	.009	.232	.536	.600	.779	
	N	60	60	60	60	60	60	60	60	60	60

^{*.} Correlation is significant at the 0.05 level (2-tailed).

The zero order correlation matrix shows that PE ratio (.028), Tax shield (0.479), Dividend payout ratio (.003) and sales in terms of assets (0.291) has positive correlation with the dependent variable LR2. Variables like Interest coverage (-.305), Profitability (-0.495) and Cash flow coverage (-0.153), Growth in terms of assets (-.129), growth in terms of sales (-0.47) are having negative correlation. Significant correlation is found between Interest coverage, Profitability, Tax shield.

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Regression Analysis and Results

Model Summary

					Change Statistics					
Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	
1	.728	.529	.445	.74517372	.529	6.250	9	50	.000	
2	.727	.529	.455	.73801420	.000	.025	1	50	.876	
3	.726°	.527	.464	.73244035	002	.218	1	51	.643	
4	.725 ^d	.525	.471	.72700546	002	.216	1	52	.644	
5	.722°	.521	.477	.72349467	004	.480	1	53	.492	

a. Predictors: (Constant), PE, SA, IC, GS, TS, DPR, GA, PROF, CFC

b. Predictors: (Constant), PE, IC, GS, TS, DPR, GA, PROF, CFC

c. Predictors: (Constant), PE, IC, GS, TS, DPR, PROF, CFC

d. Predictors: (Constant), IC, GS, TS, DPR, PROF, CFC

e. Predictors: (Constant), IC, TS, DPR, PROF, CFC

ANOVA^f

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	31.236	9	3.471	6.250	.000=
	Residual	27.764	50	.555		
	Total	59.000	59			
2	Regression	31.222	8	3.903	7.165	.000
	Residual	27.778	51	.545		
	Total	59.000	59			
3	Regression	31.104	7	4.443	8.283	.000°
	Residual	27.896	52	.536		
	Total	59.000	59			
4	Regression	30.988	6	5.165	9.771	.000d
	Residual	28.012	53	.529		
	Total	59.000	59			
5	Regression	30.734	5	6.147	11.743	.000°
	Residual	28.266	54	.523		
	Total	59.000	59			

a. Predictors: (Constant), PE, SA, IC, GS, TS, DPR, GA, PROF, CFC

b. Predictors: (Constant), PE, IC, GS, TS, DPR, GA, PROF, CFC

c. Predictors: (Constant), PE, IC, GS, TS, DPR, PROF, CFC

d. Predictors: (Constant), IC, GS, TS, DPR, PROF, CFC

e. Predictors: (Constant), IC, TS, DPR, PROF, CFC

f. Dependent Variable: LR2

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidenc	e Interval for B
Model		В	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound
1	(Constant)	1.356E-16	.096		.000	1.000	193	.193
	IC	188	.111	188	-1.684	.098	411	.036
	DPR	151	.127	151	-1.191	.239	405	.103
	TS	.548	.121	.548	4.523	.000	.305	.791
	PROF	527	.181	527	-2.910	.005	890	163
	CFC	.259	.186	.259	1.394	.169	114	.633
	GS	.090	.119	.090	.756	.453	149	.328
	GA	.086	.180	.086	.474	.637	277	.448
	SA	.021	.134	.021	.157	.876	249	.291
	PE	054	.113	054	480	.633	281	.173
2	(Constant)	1.429E-16	.095		.000	1.000	191	.191
	IC	184	.109	184	-1.699	.095	402	.034
	DPR	147	.123	147	-1.195	.238	394	.100
	TS	.545	.119	.545	4.583	.000	.306	.784
	PROF	543	.145	543	-3.754	.000	834	253
	CFC	.262	.184	.262	1.427	.160	107	.630
	GS	.092	.117	.092	.790	.433	142	.326
	GA	.083	.178	.083	.466	.643	274	.440
	PE	059	.108	059	545	.588	276	.158
3	(Constant)	1.216E-16	.095		.000	1.000	190	.190
	IC	189	.107	189	-1.755	.085	404	.027
	DPR	172	.109	172	-1.576	.121	392	.047
	TS	.550	.118	.550	4.666	.000	.313	.786
	PROF	529	.140	529	-3.771	.000	810	247
	CFC	.322	.130	.322	2.487	.016	.062	.582
	GS	.083	.114	.083	.728	.470	146	.312
	PE	049	.105	049	465	.644	260	.162
4	(Constant)	1.009E-16	.094		.000	1.000	188	.188
	IC	190	.107	190	-1.786	.080	404	.023
	DPR	180	.107	180	-1.675	.100	395	.035
	TS	.563	.113	.563	4.979	.000	.336	.790
	PROF	508	.132	508	-3.853	.000	772	243
	CFC	.324	.128	.324	2.525	.015	.067	.582
	GS .	.078	.113	.078	.693	.492	148	.304
5	(Constant)	1.071E-16	.093		.000	1.000	187	.187
	IC	199	.105	199	-1.895	.063	410	.012
	DPR	196	.104	196	-1.884	.065	405	.013
	TS	.571	.112	.571	5.092	.000	.346	.795
	PROF	486	.127	486	-3.815	.000	742	231
	CFC	.348	.123	.348	2.830	.007	.102	.595

a. Dependent Variable: LR2

The regression analysis shows that the coefficient of determination i.e R^2 , explained 52.9% variation in LR2 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 52.1% over the total variation. The t test shows that Cash flow coverage, Profitability, tax shield are significant upto 5% level and Interest coverage and Dividend payout ratio upto 10% level.

LR2 = (1.071E-16) - 0.199 (IC) - .196 (DPR) + 0.571 (TS) - 0.486 (PROF) + 0.348 (CFC)

4.2.5 Pharma

4.2.5.1 Correlation Matrix and Results

orrelations

		LR2	IC	DPR	TS	PROF	CFC	GS	GA	SA	PE
LR2	Pearson Correlation	1	523"	267	019	643"	397	.201	.165	.170	565"
	Sig. (2-tailed)		.007	.197	.929	.001	.050	.336	.430	.418	.003
	N	25	25	25	25	25	25	25	25	25	25
IC	Pearson Correlation	523"	1	.331	164	.393	099	.120	145	169	.439
	Sig. (2-tailed)	.007		.106	.433	.052	.637	.567	.488	.421	.028
	N	25	25	25	25	25	25	25	25	25	25
DPR	Pearson Correlation	267	.331	1	.054	.556"	.176	.003	157	311	.488
	Sig. (2-tailed)	.197	.106		.798	.004	.399	.989	.455	.130	.013
	N	25	25	25	25	25	25	25	25	25	25
TS	Pearson Correlation	019	164	.054	1	072	147	.052	040	.149	002
	Sig. (2-tailed)	.929	.433	.798		.732	.484	.804	.848	.478	.993
	N	25	25	25	25	25	25	25	25	25	25
PROF	Pearson Correlation	643"	.393	.556"	072	1	.199	.182	221	321	.706"
	Sig. (2-tailed)	.001	.052	.004	.732		.340	.384	.289	.117	.000
	N	25	25	25	25	25	25	25	25	25	25
CFC	Pearson Correlation	397	099	.176	147	.199	1	465	222	283	.305
	Sig. (2-tailed)	.050	.637	.399	.484	.340		.019	.286	.170	.139
	N	25	25	25	25	25	25	25	25	25	25
GS	Pearson Correlation	.201	.120	.003	.052	.182	465	1	.165	018	.020
	Sig. (2-tailed)	.336	.567	.989	.804	.384	.019		.430	.931	.925
	N	25	25	25	25	25	25	25	25	25	25
GA	Pearson Correlation	.165	145	157	040	221	222	.165	1	188	553"
	Sig. (2-tailed)	.430	.488	.455	.848	.289	.286	.430		.367	.004
	N	25	25	25	25	25	25	25	25	25	25
SA	Pearson Correlation	.170	169	311	.149	321	283	018	188	1	067
	Sig. (2-tailed)	.418	.421	.130	.478	.117	.170	.931	.367		.750
	N	25	25	25	25	25	25	25	25	25	25
PE	Pearson Correlation	565"	.439	.488	002	.706"	.305	.020	553"	067	1
	Sig. (2-tailed)	.003	.028	.013	.993	.000	.139	.925	.004	.750	
	N	25	25	25	25	25	25	25	25	25	25

 $^{^{\}star\star}.$ Correlation is significant at the 0.01 level (2-tailed).

The zero order correlation matrix shows that growth in terms of sales (.201), growth in terms of assets (.165) and size in terms of assets (.170) has positive correlation with the dependent variable LR2. Variables like Interest coverage(-.523), Dividend payout ratio(-.267), Tax shield(-.019), Profitability(-.643), Cash flow coverage(-.397) and PE ratio(-0.565) are having negative correlation. Significant correlation is found between profitability, PE ratio, Interest coverage, Profitability and Cash flow coverage.

^{*.} Correlation is significant at the 0.05 level (2-tailed).

4.2.5.2 Regression Analysis and Results

Model Summary

					Change Statistics					
Mode L	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	
1	.874	.763	.621	.61524237	.763	5.378	9	15	.002	
2	.874 º	.763	.645	.59585971	.000	.008	1	15	.931	
3	.866°	.750	.646	.59463510	014	.930	1	16	.349	
4	.858 ^d	.736	.648	.59291509	013	.896	1	17	.357	
5	.834°	.695	.615	.62071334	041	2.823	1	18	.110	
6	.809 ^r	.655	.585	.64384548	040	2.518	1	19	.129	
7	.7849	.615	.560	.66348468	040	2.301	1	20	.145	

a. Predictors: (Constant), PE, TS, GS, SA, IC, DPR, GA, CFC, PROF

b. Predictors: (Constant), TS, GS, SA, IC, DPR, GA, CFC, PROF c. Predictors: (Constant), TS, GS, IC, DPR, GA, CFC, PROF d. Predictors: (Constant), TS, GS, IC, DPR, CFC, PROF

e. Predictors: (Constant), GS, IC, DPR, CFC, PROF f. Predictors: (Constant), GS, IC, DPR, PROF

g. Predictors: (Constant), GS, IC, PROF

ANOVA^h

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	18.322	9	2.036	5.378	.002=
	Residual	5.678	15	.379		
	Total	24.000	24			
2	Regression	18.319	8	2.290	6.450	.001
	Residual	5.681	16	.355		
	Total	24.000	24			
3	Regression	17.989	7	2.570	7.268	.000€
	Residual	6.011	17	.354		
	Total	24.000	24			
4	Regression	17.672	6	2.945	8.378	.000ª
	Residual	6.328	18	.352		
	Total	24.000	24			
5	Regression	16.680	5	3.336	8.658	.000°
	Residual	7.320	19	.385		
	Total	24.000	24			
6	Regression	15.709	4	3.927	9.474	.000°
	Residual	8.291	20	.415		
	Total	24.000	24			
7	Regression	14.756	3	4.919	11.173	.000a
	Residual	9.244	21	.440		
	Total	24.000	24			

a. Predictors: (Constant), PE, TS, GS, SA, IC, DPR, GA, CFC, PROF

b. Predictors: (Constant), TS, GS, SA, IC, DPR, GA, CFC, PROF

c. Predictors: (Constant), TS, GS, IC, DPR, GA, CFC, PROF

d. Predictors: (Constant), TS, GS, IC, DPR, CFC, PROF

e. Predictors: (Constant), GS, IC, DPR, CFC, PROF

f. Predictors: (Constant), GS, IC, DPR, PROF

g. Predictors: (Constant), GS, IC, PROF

h. Dependent Variable: LR2

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidenc	e Interval for B
Model		В	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound
1	(Constant)	-8.165E-16	.123		.000	1.000	262	.262
	IC	492	.155	492	-3.176	.006	823	162
	DPR	.278	.160	.278	1.733	.104	064	.619
	TS	213	.133	213	-1.608	.129	497	.070
	PROF	665	.209	665	-3.182	.006	-1.110	220
	CFC	345	.172	345	-2.008	.063	711	.021
	GS	.258	.153	.258	1.687	.112	068	.583
	GA	175	.163	175	-1.073	.300	522	.172
	SA	136	.154	136	888	.389	464	.191
	PE	021	.241	021	088	.931	534	.492
2	(Constant)	-8.213E-16	.119		.000	1.000	253	.253
	IC	497	.142	497	-3.507	.003	797	197
	DPR	.276	.154	.276	1.795	.092	050	.601
	TS	215	.128	215	-1.678	.113	486	.057
	PROF	675	.166	675	-4.063	.001	-1.028	323
	CFC	350	.159	350	-2.202	.043	686	013
	G8	.256	.147	.256	1.740	.101	056	.569
	GA	168	.138	168	-1.217	.241	460	.124
	SA	140	.145	140	964	.349	446	.167
3	(Constant)	-4.117E-16	.119		.000	1.000	251	.251
	IC	483	.141	483	-3.434	.003	780	186
	DPR	.301	.151	.301	1.993	.063	018	.620
	TS	225	.127	225	-1.767	.095	493	.044
	PROF	652	.164	652	-3.972	.001	998	306
	CFC	304	.151	304	-2.011	.060	624	.015
	GS	.267	.147	.267	1.821	.086	042	.576
	GA	122	.129	122	947	.357	395	.150
4	(Constant)	-3.561E-16	.119		.000	1.000	249	.249
	IC	467	.139	467	-3.355	.004	760	175
	DPR	.298	.151	.298	1.981	.063	018	.615
	TS	212	.126	212	-1.680	.110	477	.053
	PROF	629	.162	629	-3.886	.001	968	289
	CFC	287	.150	287	-1.914	.072	601	.028
	G8	.248	.145	.248	1.714	.104	056	.553
5	(Constant)	-3.651E-16	.124		.000	1.000	260	.260
	IC	419	.143	419	-2.938	.008	718	121
	DPR	.258	.156	.258	1.657	.114	068	.584
	PROF	618	.169	618	-3.652	.002	972	264
	CFC	245	.155	245	-1.587	.129	569	.078
	GS	.249	.152	.249	1.640	.117	069	.566

6	(Constant)	-4.191E-16	.129	[.000	1.000	269	.269
	IC	373	.145	373	-2.574	.018	675	071
	DPR	.244	.161	.244	1.517	.145	092	.581
	PROF	700	.167	700	-4.188	.000	-1.049	351
	G8	.372	.135	.372	2.757	.012	.091	.654
7	(Constant)	-3.671E-16	.133		.000	1.000	276	.276
	IC	339	.148	339	-2.297	.032	646	032
	PROF	573	.149	573	-3.845	.001	882	263
	GS	.346	.138	.346	2.505	.021	.059	.632

a. Dependent Variable: LR2

The regression analysis shows that the coefficient of determination i.e R^2 , explained 76.3% variation in LR2 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 61.5% over the total variation. The t test shows that the Significant variables found in the equation are Interest coverage, Profitability, Growth in terms of sale significant upto 5% level.

LR2=-(3.671E-16) -0.339 (IC) -0.573 (PROF) +0.346 (GS)

4.2.6 Main Findings

Correlation

	Automobile	Construction	IT	Oil, Power& Energy	Pharma
IC	(*)	(**)		(*)	(**)
DPR		(*)			
TS				**	
PROF	(*)	(*)		(**)	(**)
CFC	(*)	(**)			(*)
GS					
GA					
SA		(**)		**	
PE					(**)

Regression

Automobile	Construction	IT	Oil, Power&	Pharma
			Energy	
*	(*)		(*)	(*)
**	(**)		(*)	*
			**	(*)
(*)	(*)	(**)	(**)	(**)
(**)			**	
				**
		**		(*)
	(**)	**		
(*)				
68.1%	74.2%	67.5%	52.9%	76.3%
62.9%	69.7%	58.1%	52.1%	61.5%
	* ** (*) (**) (*) 68.1%	* (*) ** (**) (*) (**) (**) (**) (**) (**) 68.1% 74.2%	* (*) ** (*) (*) (*) (**) ** (**) ** (**) ** (**) 68.1% 74.2% 67.5%	* (*) (*) ** (**) (*) (*) (**) (**) (**) ** (**) ** (*) ** (*) 68.1% 74.2% 67.5% 52.9%

- As we can see Profitability is negatively correlated to Debt-Long term funds in all the 5 sectors.
- Dividend Payout Ratio is significantly related to Debt-Long Term Funds in 4 of the 5 sectors.
- Interest Coverage is significantly related to Debt-Long Term Funds in 4 of the 5 sectors.

Hence H_{20} is accepted and we can say Factors affecting Debt-Long Term Funds do not vary amongst various Indian sectors.

4.3 Determinants of Degree of Financial Leverage

4.3.1 Automobiles

4.3.1.1 Correlation Matrix and Results

Correlations

				555		55.55	252				
LR3	Pearson Correlation	LR3	IC	DPR	TS	PROF	CFC	GS	GA	SA 400'	PE
LK3		1	196	.205	.334	331	171	201	.144	.468'	.323
	Sig. (2-tailed)		.347	.325	.103	.106	.413	.335	.491	.018	.115
10	N	25	25	25	25	25	25	25	25	25	25
IC	Pearson Correlation	196	1	.181	.061	.746"	.929"	.362	079	418	093
	Sig. (2-tailed)	.347		.387	.771	.000	.000	.076	.709	.037	.659
	N	25	25	25	25	25	25	25	25	25	25
DPR	Pearson Correlation	.205	.181	1	.232	.187	.287	.001	095	.083	.487
	Sig. (2-tailed)	.325	.387		.264	.370	.164	.998	.652	.693	.013
	N	25	25	25	25	25	25	25	25	25	25
TS	Pearson Correlation	.334	.061	.232	1	.261	.030	262	.023	057	.059
	Sig. (2-tailed)	.103	.771	.264		.208	.888	.206	.915	.787	.780
	N	25	25	25	25	25	25	25	25	25	25
PROF	Pearson Correlation	331	.746"	.187	.261	1	.751"	.225	131	720"	250
	Sig. (2-tailed)	.106	.000	.370	.208		.000	.281	.533	.000	.228
	N	25	25	25	25	25	25	25	25	25	25
CFC	Pearson Correlation	171	.929"	.287	.030	.751"	1	.286	.058	483	105
	Sig. (2-tailed)	.413	.000	.164	.888	.000		.166	.783	.014	.617
	N	25	25	25	25	25	25	25	25	25	25
GS	Pearson Correlation	201	.362	.001	262	.225	.286	1	181	.019	.076
	Sig. (2-tailed)	.335	.076	.998	.206	.281	.166		.387	.927	.719
	N	25	25	25	25	25	25	25	25	25	25
GA	Pearson Correlation	.144	079	095	.023	131	.058	181	1	184	473
	Sig. (2-tailed)	.491	.709	.652	.915	.533	.783	.387		.378	.017
	N	25	25	25	25	25	25	25	25	25	25
SA	Pearson Correlation	.468'	418'	.083	057	720"	483	.019	184	1	.570"
	Sig. (2-tailed)	.018	.037	.693	.787	.000	.014	.927	.378		.003
	N	25	25	25	25	25	25	25	25	25	25
PE	Pearson Correlation	.323	093	.487	.059	250	105	.076	473	.570"	1
	Sig. (2-tailed)	.115	.659	.013	.780	.228	.617	.719	.017	.003	·
	N	25	25	25	25	25	25	25	25	25	25

^{*.} Correlation is significant at the 0.05 level (2-tailed).

The zero order correlation matrix shows that growth in terms of assets(.144) ,size in terms of assets(.468), PE ratio(.323), Tax shield(.334) and dividend payout ratio(.205) has positive correlation with the dependent variable LR3. Variables like growth in terms of sales (-.201), Interest coverage (-.196), Profitability (-.331) and Cash flow coverage(-.171) are having negative correlation. Significant correlation is found between Sales in terms of assets.

^{***.} Correlation is significant at the 0.01 level (2-tailed).

4.3.1.2 Regression Analysis and Results

Model Summary

						Cha	inge Statistic	s	
Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.665*	.443	.108	.94433125	.443	1.324	9	15	.303
2	.665 °	.443	.164	.91436190	.000	.001	1	15	.981
3	.664°	.441	.211	.88828197	002	.044	1	16	.836
4	.661 ^d	.437	.250	.86613790	004	.114	1	17	.740
5	.658°	.433	.284	.84645858	005	.146	1	18	.706
6	.652 ^r	.426	.311	.83014568	007	.237	1	19	.632
7	.6359	.403	.318	.82606859	023	.794	1	20	.383
8	.5921	.350	.291	.84210842	053	1.863	1	21	.187

a. Predictors: (Constant), PE, TS, CFC, GS, GA, DPR, SA, PROF, IC

b. Predictors: (Constant), PE, TS, CFC, GS, GA, SA, PROF, IC

c. Predictors: (Constant), PE, TS, CFC, GS, GA, SA, PROF

d. Predictors: (Constant), PE, TS, CFC, GS, GA, SA

e. Predictors: (Constant), PE, TS, GS, GA, SA

f. Predictors: (Constant), PE, TS, GA, SA

g. Predictors: (Constant), TS, GA, SA

h. Predictors: (Constant), TS, SA

ANOVA

ANOVA											
Model		Sum of Squares	df	Mean Square	F	Sig.					
1	Regression	10.624	9	1.180	1.324	.303=					
	Residual	13.376	15	.892							
	Total	24.000	24								
2	Regression	10.623	8	1.328	1.588	.205					
	Residual	13.377	16	.836							
	Total	24.000	24								
3	Regression	10.586	7	1.512	1.917	.129°					
	Residual	13.414	17	.789							
	Total	24.000	24								
4	Regression	10.496	6	1.749	2.332	.077ª					
	Residual	13.504	18	.750							
	Total	24.000	24								
5	Regression	10.387	5	2.077	2.899	.041					
	Residual	13.613	19	.716							
	Total	24.000	24								
6	Regression	10.217	4	2.554	3.706	.021′					
	Residual	13.783	20	.689							
	Total	24.000	24								
7	Regression	9.670	3	3.223	4.724	.0119					
	Residual	14.330	21	.682							
	Total	24.000	24								
8	Regression	8.399	2	4.199	5.922	.009 מי					
	Residual	15.601	22	.709							
	Total	24.000	24								

- a. Predictors: (Constant), PE, TS, CFC, GS, GA, DPR, SA, PROF, IC
- b. Predictors: (Constant), PE, TS, CFC, GS, GA, SA, PROF, IC
- c. Predictors: (Constant), PE, TS, CFC, GS, GA, SA, PROF
- d. Predictors: (Constant), PE, TS, CFC, GS, GA, SA
- e. Predictors: (Constant), PE, TS, GS, GA, SA
- f. Predictors: (Constant), PE, TS, GA, SA
- g. Predictors: (Constant), TS, GA, SA h. Predictors: (Constant), TS, SA
- i. Dependent Variable: LR3

Coefficients

			10	Standardized			0500 0 64	a lata and to B
		Unstandardize		Coefficients		01	95% Confidence	
Model 1	(Constant)	B 1.168E-15	Std. Error .189	Beta	.000	Siq. 1.000	Lower Bound 403	Upper Bound .403
l '	IC	118	.169	118	189	.853	403 -1.451	1.215
	DPR	.006	.025	.006	.024	.981	559	.572
	TS	.360	.248	.360	1.453	.167	168	.888
	PROF	158	.520	158	304	.765	-1.267	.951
	CFC	.271	.679	.271	.399	.696	-1.176	1.717
	GS	085	.232	085	366	.719	580	.410
	GA	.225	.282	.225	.798	.437	375	.825
	SA	.410	.380	.410	1.078	.298	401	1.220
	PE	.156	.327	.156	.477	.640	541	.853
2	(Constant)	1.170E-15	.183		.000	1.000	388	.388
	IC	122	.583	122	210	.836	-1.357	1.113
	TS	.361	.238	.361	1.518	.149	143	.864
	PROF	156	.497	156	315	.757	-1.211	.898
	CFC	.275	.627	.275	.439	.667	-1.055	1.605
	GS	085	.224	085	380	.709	561	.391
	GA	.226	.270	.226	.835	.416	347	.799
	SA	.410	.367	.410	1.118	.280	368	1.189
	PE	.160	.278	.160	.573	.574	431	.750
3	(Constant)	1.148E-15	.178		.000	1.000	375	.375
	TS	.353	.228	.353	1.547	.140	128	.835
	PROF	163	.482	163	337	.740	-1.180	.855
	CFC	.164	.327	.164	.502	.622	526	.854
	GS	096	.213	096	451	.658	544	.353
	GA	.244	.249	.244	.982	.340	280	.768
	SA	.398	.352	.398	1.131	.274	345	1.141
	PE	.175	.261	.175	.669	.513	377	.726
4	(Constant)	1.336E-15	.173		.000	1.000	364	.364
	TS	.311	.186	.311	1.674	.111	079	.701
	CFC	.085	.223	.085	.383	.706	383	.554
	GS -	116	.199	116	580	.569	534	.303
	GA	.288	.207	.288	1.389	.182	147	.723
	SA	.476	.259	.476	1.837	.083	068	1.020
	PE	.187	.252	.187	.743	.467	342	.717

			·	t		· · · · · · · · · · · · · · · · · · ·	t	· · · · · · · · · · · · · · · · · · ·											
5	(Constant)	1.221E-15	.169		.000	1.000	354	.354											
	TS	.316	.181	.316	1.743	.097	063	.695											
	GS	089	.182	089	486	.632	470	.293											
	GA	.299	.200	.299	1.494	.152	120	.718											
	SA	.422	.213	.422	1.980	.062	024	.869											
	PE	.212	.238	.212	.889	.385	287	.711											
6	(Constant)	1.244E-15	.166		.000	1.000	346	.346											
	TS	.339	.171	.339	1.980	.062	018	.696											
	GA	.314	.194	.314	1.616	.122	091	.719											
	SA	.427	.209	.427	2.041	.055	009	.863											
	PE	.208	.234	.208	.891	.383	279	.696											
7	(Constant)	1.423E-15	.165		.000	1.000	344	.344											
	TS	.359	.169	.359	2.125	.046	.008	.710											
	GA	.234	.172	.234	1.365	.187	123	.591											
	SA	.532	.172	.532	3.097	.005	.175	.889											
8	(Constant)	1.239E-15	.168		.000	1.000	349	.349											
	TS	.362	.172	.362	2.102	.047	.005	.719											
	SA	.489	.172	.489	2.840	.010	.132	.846											

a. Dependent Variable: LR3

The regression analysis shows that the coefficient of determination i.e R^2 , explained 44.3% variation in LR3 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 35% over the total variation. The t test shows that Tax shield and Size in terms of assets are significant upto 5% level.

LR3 = 1.239E-15 + 0.362TS + 0.489SA

4.3.2 Construction

4.3.2.1 Correlation Matrix and Results

Correlations

		LR3	IC	DPR	TS	PROF	CFC	GS	GA	SA	PE
LR3	Pearson Correlation	1	211	.003	103	092	166	190	290	.020	057
	Sig. (2-tailed)		.191	.986	.526	.574	.307	.241	.070	.902	.727
	N	40	40	40	40	40	40	40	40	40	40
IC	Pearson Correlation	211	1	.209	014	.663"	.943"	179	182	.280	346
	Sig. (2-tailed)	.191		.195	.933	.000	.000	.269	.261	.080	.029
	N	40	40	40	40	40	40	40	40	40	40
DPR	Pearson Correlation	.003	.209	1	213	.071	.237	.045	.017	148	.200
	Sig. (2-tailed)	.986	.195		.188	.663	.141	.784	.915	.362	.215
	N	40	40	40	40	40	40	40	40	40	40
TS	Pearson Correlation	103	014	213	1	.007	045	062	.108	.428"	225
	Sig. (2-tailed)	.526	.933	.188		.965	.785	.702	.508	.006	.164
	N	40	40	40	40	40	40	40	40	40	40
PROF	Pearson Correlation	092	.663"	.071	.007	1	.546"	019	211	.137	380'
	Sig. (2-tailed)	.574	.000	.663	.965		.000	.906	.191	.398	.016
	N	40	40	40	40	40	40	40	40	40	40
CFC	Pearson Correlation	166	.943"	.237	045	.546"	1	220	188	.294	361
	Sig. (2-tailed)	.307	.000	.141	.785	.000		.172	.246	.065	.022
	N	40	40	40	40	40	40	40	40	40	40
GS	Pearson Correlation	190	179	.045	062	019	220	1	.659"	453"	.251
	Sig. (2-tailed)	.241	.269	.784	.702	.906	.172		.000	.003	.119
	N	40	40	40	40	40	40	40	40	40	40
GA	Pearson Correlation	290	182	.017	.108	211	188	.659"	1	247	.202
	Sig. (2-tailed)	.070	.261	.915	.508	.191	.246	.000		.124	.212
	N	40	40	40	40	40	40	40	40	40	40
SA	Pearson Correlation	.020	.280	148	.428"	.137	.294	453"	247	1	539"
	Sig. (2-tailed)	.902	.080	.362	.006	.398	.065	.003	.124		.000
	N	40	40	40	40	40	40	40	40	40	40
PE	Pearson Correlation	057	346	.200	225	380	361	.251	.202	539"	1
	Sig. (2-tailed)	.727	.029	.215	.164	.016	.022	.119	.212	.000	
	N	40	40	40	40	40	40	40	40	40	40

^{**.} Correlation is significant at the 0.01 level (2-tailed).

The zero order correlation matrix shows that Dividend payout ratio (.003) and Sales in terms of assets (.02). Variables like Interest coverage (-.211), Profitability (-.092), Cash flow coverage (-.166), Dividend payout ratio (-.003), growth in terms of sales (-.190), Growth in terms of assets (-.290), Tax shield(-.103) are having negative correlation. None of the variables are found to be significant here.

^{*.} Correlation is significant at the 0.05 level (2-tailed).

4.3.2.2 Regression Analysis and Results

Model Summary

					Change Statistics						
Mode I	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change		
1	.429ª	.184	060	1.02973560	.184	.753	9	30	.659		
2	.429ª	.184	026	1.01301352	.000	.001	1	30	.971		
3	.429°	.184	.005	.99734213	.000	.018	1	31	.895		
4	.428 ^d	.183	.035	.98254964	.000	.028	1	32	.867		
5	.425°	.181	.060	.96950873	003	.103	1	33	.750		
6	.417 ^r	.174	.079	.95960579	007	.289	1	34	.595		
7	.4059	.164	.094	.95166447	010	.407	1	35	.528		
8	.395*	.156	.110	.94318100	008	.343	1	36	.562		

a. Predictors: (Constant), PE, DPR, GA, TS, PROF, CFC, SA, GS, IC

b. Predictors: (Constant), PE, DPR, GA, TS, PROF, CFC, GS, IC

c. Predictors: (Constant), PE, DPR, GA, TS, PROF, CFC, IC

d. Predictors: (Constant), PE, DPR, GA, TS, CFC, IC

e. Predictors: (Constant), PE, DPR, GA, TS, IC

f. Predictors: (Constant), PE, GA, TS, IC

g. Predictors: (Constant), PE, GA, IC

h. Predictors: (Constant), GA, IC

ANOVA1

ANOVA.											
Model		Sum of Squares	df	Mean Square	F	Sig.					
1	Regression	7.189	9	.799	.753	.659=					
	Residual	31.811	30	1.060							
	Total	39.000	39								
2	Regression	7.188	8	.898	.876	.547					
	Residual	31.812	31	1.026							
	Total	39.000	39								
3	Regression	7.170	7	1.024	1.030	.430°					
	Residual	31.830	32	.995							
	Total	39.000	39								
4	Regression	7.142	6	1.190	1.233	.315 ^d					
	Residual	31.858	33	.965							
	Total	39.000	39								
5	Regression	7.042	5	1.408	1.498	.216°					
	Residual	31.958	34	.940							
	Total	39.000	39								
6	Regression	6.770	4	1.693	1.838	.144°					
	Residual	32.230	35	.921							
	Total	39.000	39								
7	Regression	6.396	3	2.132	2.354	.088ª					
	Residual	32.604	36	.906							
	Total	39.000	39								
8	Regression	6.085	2	3.043	3.420	.043*					
	Residual	32.915	37	.890							
	Total	39.000	39								

- a. Predictors: (Constant), PE, DPR, GA, TS, PROF, CFC, SA, GS, IC
- b. Predictors: (Constant), PE, DPR, GA, TS, PROF, CFC, GS, IC
- c. Predictors: (Constant), PE, DPR, GA, TS, PROF, CFC, IC
- d. Predictors: (Constant), PE, DPR, GA, TS, CFC, IC
- e. Predictors: (Constant), PE, DPR, GA, TS, IC
- f. Predictors: (Constant), PE, GA, TS, IC
- g. Predictors: (Constant), PE, GA, IC
- h. Predictors: (Constant), GA, IC
- i. Dependent Variable: LR3

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidenc	ce Interval for B
Model		В	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound
1	(Constant)	-6.202E-17	.163		.000	1.000	333	.333
	IC	538	.594	538	905	.373	-1.752	.676
	DPR	.082	.181	.082	.455	.652	287	.452
	TS	088	.194	088	452	.654	483	.308
	PROF	.050	.255	.050	.196	.846	471	.572
	CFC	.183	.544	.183	.335	.740	929	1.295
	GS	028	.248	028	114	.910	536	.479
	GA	289	.234	289	-1.233	.227	768	.190
	SA	.009	.237	.009	.037	.971	476	.493
	PE	124	.220	124	564	.577	573	.325
2	(Constant)	-4.696E-17	.160		.000	1.000	327	.327
	IC	536	.583	536	920	.365	-1.725	.653
	DPR	.082	.178	.082	.462	.648	281	.445
	TS	085	.175	085	485	.631	441	.271
	PROF	.049	.249	.049	.196	.846	459	.557
	CFC	.183	.536	.183	.341	.735	910	1.275
	GS	031	.234	031	133	.895	508	.446
	GA	289	.231	289	-1.254	.219	760	.181
	PE	127	.198	127	641	.526	532	.277
3	(Constant)	-5.870E-17	.158		.000	1.000	321	.321
	IC	534	.574	534	930	.359	-1.703	.635
	DPR	.082	.175	.082	.466	.644	275	.438
	TS	081	.170	081	478	.636	427	.265
	PROF	.040	.235	.040	.168	.867	440	.519
	CFC	.187	.526	.187	.356	.724	884	1.259
	GA	310	.167	310	-1.853	.073	650	.031
	PE	131	.193	131	677	.503	525	.263
4	(Constant)	-6.372E-17	.155		.000	1.000	316	.316
	IC	481	.473	481	-1.016	.317	-1.444	.482
	DPR	.082	.173	.082	.477	.637	269	.433
	TS	083	.167	083	497	.623	423	.257
	CFC	.156	.484	.156	.322	.750	828	1.139
	GA	313	.164	313	-1.909	.065	646	.021
	PE	139	.184	139	756	.455	514	.236
5	(Constant)	-3.513E-17	.153		.000	1.000	312	.312
	IC	340	.175	340	-1.942	.060	695	.016
	DPR	.090	.168	.090	.537	.595	252	.433
	TS	088	.164	088	539	.594	422	.245
	GA	314	.162	314	-1.941	.061	642	.015
	PE	149	.179	149	833	.411	513	.215

6	(Constant)	-8.611E-18	.152		.000	1.000	308	.308
	IC	312	.166	312	-1.886	.068	648	.024
	TS	102	.160	102	638	.528	428	.223
	GA	311	.160	311	-1.942	.060	635	.014
	PE	125	.172	125	729	.471	474	.223
7	(Constant)	-9.417E-18	.150		.000	1.000	305	.305
	IC	304	.164	304	-1.855	.072	635	.028
	GA	326	.157	326	-2.078	.045	644	008
	PE	096	.164	096	586	.562	429	.237
8	(Constant)	-3.087E-17	.149		.000	1.000	302	.302
	IC	273	.154	273	-1.776	.084	584	.038
	GA	340	.154	340	-2.211	.033	651	028

a. Dependent Variable: LR3

The regression analysis shows that the coefficient of determination i.e. R², explained 18.4% variation in LR3 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 15.6% over the total variation. The t test shows that Growth in terms of assets are significant upto 5% level and Interest coverage upto 10% level.

LR3= -3.087E-17 -0.273IC -0.34GA

4.3.3 IT

4.3.3.1 Correlation Matrix and Results

JIII DE PRODUCTION

		LR3	IC	DPR	TS	PROF	CFC	GS	GA	SA	PE
LR3	Pearson Correlation	1	058	112	.056	094	068	063	224	.237	.146
	Sig. (2-tailed)		.782	.593	.791	.656	.746	.766	.282	.255	.486
	N	25	25	25	25	25	25	25	25	25	25
IC	Pearson Correlation	058	1	.256	.024	.364	.456	.091	.082	.146	.045
	Sig. (2-tailed)	.782		.217	.909	.074	.022	.666	.697	.486	.832
	N	25	25	25	25	25	25	25	25	25	25
DPR	Pearson Correlation	112	.256	1	484	.368	.182	.282	.031	.042	.430
	Sig. (2-tailed)	.593	.217		.014	.071	.385	.172	.884	.843	.032
	N	25	25	25	25	25	25	25	25	25	25
TS	Pearson Correlation	.056	.024	484	1	730"	120	267	270	348	393
	Sig. (2-tailed)	.791	.909	.014		.000	.567	.197	.192	.088	.052
	N	25	25	25	25	25	25	25	25	25	25
PROF	Pearson Correlation	094	.364	.368	730"	1	.444	.435	.322	.578"	.366
	Sig. (2-tailed)	.656	.074	.071	.000		.026	.030	.117	.002	.072
	N	25	25	25	25	25	25	25	25	25	25
CFC	Pearson Correlation	068	.456	.182	120	.444	1	.065	.273	.047	.044
	Sig. (2-tailed)	.746	.022	.385	.567	.026		.758	.187	.824	.834
	N	25	25	25	25	25	25	25	25	25	25
GS	Pearson Correlation	063	.091	.282	267	.435	.065	1	.170	.257	.227
	Sig. (2-tailed)	.766	.666	.172	.197	.030	.758		.418	.215	.276
	N	25	25	25	25	25	25	25	25	25	25
GA	Pearson Correlation	224	.082	.031	270	.322	.273	.170	1	120	044
	Sig. (2-tailed)	.282	.697	.884	.192	.117	.187	.418		.569	.833
	N	25	25	25	25	25	25	25	25	25	25
SA	Pearson Correlation	.237	.146	.042	348	.578''	.047	.257	120	1	.474
	Sig. (2-tailed)	.255	.486	.843	.088	.002	.824	.215	.569		.017
	N	25	25	25	25	25	25	25	25	25	25
PE	Pearson Correlation	.146	.045	.430	393	.366	.044	.227	044	.474	1
	Sig. (2-tailed)	.486	.832	.032	.052	.072	.834	.276	.833	.017	
	N	25	25	25	25	25	25	25	25	25	25

^{*.} Correlation is significant at the 0.05 level (2-tailed).

The zero order correlation matrix shows that the size in terms of assets (.237), PE ratio (.146) and Tax shield (.056) has positive correlation with the dependent variable LR3. Variables like Interest coverage (-.058), Dividend payout ratio (-.112), Profitability (-.094), Cash flow coverage (-.068), Growth in terms of sales (-0.063) and Growth in terms of assets (-.224) are having negative correlation. No variable is found to be significant here.

^{**.} Correlation is significant at the 0.01 level (2-tailed).

4.3.3.2 Regression Analysis and Results

Model Summary

					Change Statistics					
Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	
1	.4112	.169	330	1.15307581	.169	.339	9	15	.947	
2	.410b	.168	247	1.11682080	.000	.010	1	15	.923	
3	.409⁴	.167	176	1.08440131	001	.027	1	16	.871	
4	.401 ^d	.161	119	1.05766682	006	.123	1	17	.730	
5	.397 °	.158	064	1.03131433	003	.065	1	18	.802	
6	.390°	.152	017	1.00853104	006	.126	1	19	.726	
7	.3769	.142	.019	.99047209	011	.255	1	20	.619	
8	.369*	.136	.057	.97092862	006	.140	1	21	.712	
9	.2371	.056	.015	.99249977	080	2.033	1	22	.168	
10	.000	.000	.000	1.00000000	056	1.364	1	23	.255	

a. Predictors: (Constant), PE, CFC, GS, GA, IC, TS, SA, DPR, PROF

b. Predictors: (Constant), PE, CFC, GA, IC, TS, SA, DPR, PROF

c. Predictors: (Constant), PE, CFC, GA, TS, SA, DPR, PROF

d. Predictors: (Constant), CFC, GA, TS, SA, DPR, PROF

e. Predictors: (Constant), CFC, GA, TS, SA, PROF

f. Predictors: (Constant), CFC, TS, SA, PROF

g. Predictors: (Constant), CFC, SA, PROF

h. Predictors: (Constant), SA, PROF i. Predictors: (Constant), SA

j. Predictor: (constant)

ANOVA*

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4.056	9	.451	.339	.947=
	Residual	19.944	15	1.330		
	Total	24.000	24			
2	Regression	4.043	8	.505	.405	.901
	Residual	19.957	16	1.247		
	Total	24.000	24			
3	Regression	4.009	7	.573	.487	.831°
	Residual	19.991	17	1.176		
	Total	24.000	24			
4	Regression	3.864	6	.644	.576	.745 ^d
	Residual	20.136	18	1.119		
	Total	24.000	24			
5	Regression	3.791	5	.758	.713	.621°
	Residual	20.209	19	1.064		
	Total	24.000	24			
6	Regression	3.657	4	.914	.899	.483 ^r
	Residual	20.343	20	1.017		
	Total	24.000	24			
7	Regression	3.398	3	1.133	1.155	.350 ⁹
	Residual	20.602	21	.981		
	Total	24.000	24			
8	Regression	3.261	2	1.630	1.729	.201 מי
	Residual	20.739	22	.943		
	Total	24.000	24			
9	Regression	1.344	1	1.344	1.364	.255 ¹
	Residual	22.656	23	.985		
	Total	24.000	24			
10	Regression	.000	0	.000		Ţ
	Residual	24.000	24	1.000		
	Total	24.000	24			

a. Predictors: (Constant), PE, CFC, GS, GA, IC, TS, SA, DPR, PROF

b. Predictors: (Constant), PE, CFC, GA, IC, TS, SA, DPR, PROF.

c. Predictors: (Constant), PE, CFC, GA, TS, SA, DPR, PROF.

d. Predictors: (Constant), CFC, GA, TS, SA, DPR, PROF

e. Predictors: (Constant), CFC, GA, TS, SA, PROF

f. Predictors: (Constant), CFC, TS, SA, PROF

g. Predictors: (Constant), CFC, SA, PROF

h. Predictors: (Constant), SA, PROF

i. Predictors: (Constant), SA

j. Predictor: (constant)

k. Dependent Variable: LR3

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confiden	e Interval for B
Model		В	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound
1	(Constant)	-4.156E-16	.231		.000	1.000	492	.492
	IC	.055	.316	.055	.175	.864	619	.730
	DPR	132	.337	132	393	.700	850	.585
	TS	230	.475	230	484	.635	-1.243	.783
	PROF	540	.618	540	875	.396	-1.856	.776
	CFC	.147	.312	.147	.470	.645	519	.812
	GS	.028	.281	.028	.098	.923	571	.626
	GA	106	.280	106	378	.711	703	.491
	SA	.390	.380	.390	1.025	.322	420	1.200
	PE	.106	.308	.106	.343	.737	551	.762
2	(Constant)	-4.177E-16	.223		.000	1.000	474	.474
	IC	.050	.302	.050	.165	.871	590	.690
	DPR	124	.316	124	393	.700	795	.546
	TS	217	.441	217	492	.630	-1.151	.718
	PROF	517	.554	517	934	.364	-1.691	.657
	CFC	.140	.295	.140	.475	.642	486	.766
	GA	103	.270	103	382	.707	675	.469
	SA	.389	.368	.389	1.057	.306	391	1.169
	PE	.106	.298	.106	.356	.726	526	.739
3	(Constant)	-4.130E-16	.217		.000	1.000	458	.458
	DPR	107	.291	107	369	.716	721	.506
	TS	183	.381	183	482	.636	987	.620
	PROF	483	.498	483	969	.346	-1.533	.568
	CFC	.149	.282	.149	.529	.604	446	.744
	GA	104	.262	104	398	.695	657	.448
	SA	.389	.357	.389	1.088	.292	365	1.143
	PE	.101	.288	.101	.351	.730	507	.709
4	(Constant)	-4.632E-16	.212		.000	1.000	444	.444
	DPR	066	.260	066	255	.802	611	.479
	TS	201	.368	201	546	.592	974	.572
	PROF	507	.481	507	-1.055	.305	-1.517	.503
	CFC	.152	.275	.152	.551	.588	426	.729
	GA	101	.255	101	395	.697	638	.436
	SA	.444	.314	.444	1.415	.174	215	1.102
5	(Constant)	-4.866E-16	.206		.000	1.000	432	.432
	TS	169	.337	169	501	.622	875	.537
	PROF	520	.466	520	-1.116	.278	-1.496	.456
	CFC	.144	.267	.144	.541	.595	414	.702
	GA	086	.242	086	355	.726	593	.421
	SA	.462	.298	.462	1.549	.138	162	1.085
6	(Constant)	-5.156E-16	.202		.000	1.000	421	.421
	TS	166	.330	166	505	.619	854	.522
	PROF	566	.438	566	-1.291	.211	-1.480	.348
	CFC	.139	.260	.139	.536	.598	404	.683
	SA	.499	.272	.499	1.835	.081	068	1.067

7	(Constant)	-4.819E-16	.198		.000	1.000	412	.412
	PROF	402	.288	402	-1.393	.178	-1.001	.198
	CFC	.088	.235	.088	.375	.712	401	.578
	SA	.465	.259	.465	1.797	.087	073	1.003
8	(Constant)	-4.635E-16	.194		.000	1.000	403	.403
	PROF	346	.243	346	-1.426	.168	850	.157
	SA	.437	.243	.437	1.799	.086	067	.941
9	(Constant)	-2.971E-16	.198		.000	1.000	411	.411
	SA	.237	.203	.237	1.168	.255	182	.656
10	(Constant)	-5.329E-17	.200		.000	1.000	413	.413

a. Dependent Variable: LR3

The regression analysis shows that the coefficient of determination i.e R^2 , explained 16.9% variation in LR1 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 0% over the total variation. The t test shows that there is no significant variable in this case.

4.3.4 Oil, Power and Energy

4.3.4.1 Correlation Matrix and Results

Correlations

		LR3	IC	DPR	TS	PROF	CFC	GS	GA	SA	PE
LR3	Pearson Correlation	1	.025	.054	252	.031	.037	.062	.056	016	.275
	Sig. (2-tailed)		.847	.684	.052	.814	.781	.640	.673	.902	.034
	N	60	60	60	60	60	60	60	60	60	60
IC	Pearson Correlation	.025	1	.203	.127	.314	.042	048	026	051	110
	Sig. (2-tailed)	.847		.120	.333	.014	.750	.716	.842	.696	.403
	N	60	60	60	60	60	60	60	60	60	60
DPR	Pearson Correlation	.054	.203	1	.386"	128	123	270	370"	.254	.085
	Sig. (2-tailed)	.684	.120		.002	.330	.349	.037	.004	.050	.518
	N	60	60	60	60	60	60	60	60	60	60
TS	Pearson Correlation	252	.127	.386"	1	309	404"	210	411"	.221	088
	Sig. (2-tailed)	.052	.333	.002		.016	.001	.107	.001	.090	.502
	N	60	60	60	60	60	60	60	60	60	60
PROF	Pearson Correlation	.031	.314	128	309	1	.589"	.416"	.530"	611"	335"
	Sig. (2-tailed)	.814	.014	.330	.016		.000	.001	.000	.000	.009
	N	60	60	60	60	60	60	60	60	60	60
CFC	Pearson Correlation	.037	.042	123	404"	.589"	1	.452"	.779"	331"	157
	Sig. (2-tailed)	.781	.750	.349	.001	.000		.000	.000	.010	.232
	N	60	60	60	60	60	60	60	60	60	60
GS	Pearson Correlation	.062	048	270	210	.416"	.452"	1	.359"	225	082
	Sig. (2-tailed)	.640	.716	.037	.107	.001	.000		.005	.084	.536
	N	60	60	60	60	60	60	60	60	60	60
GA	Pearson Correlation	.056	026	370"	411"	.530"	.779"	.359"	1	421"	069
	Sig. (2-tailed)	.673	.842	.004	.001	.000	.000	.005		.001	.600
	N	60	60	60	60	60	60	60	60	60	60
SA	Pearson Correlation	016	051	.254	.221	611"	331"	225	421"	1	.037
	Sig. (2-tailed)	.902	.696	.050	.090	.000	.010	.084	.001		.779
	N	60	60	60	60	60	60	60	60	60	60
PE	Pearson Correlation	.275	110	.085	088	335"	157	082	069	.037	1
	Sig. (2-tailed)	.034	.403	.518	.502	.009	.232	.536	.600	.779	
	N	60	60	60	60	60	60	60	60	60	60

^{*.} Correlation is significant at the 0.05 level (2-tailed).

^{**.} Correlation is significant at the 0.01 level (2-tailed).

The zero order correlation matrix shows that PE ratio (.275), Dividend payout ratio (.054), Interest coverage (.025), Profitability (.031), Cash flow coverage (.037), Growth in terms of assets(.056), Growth in terms of sales(.062) has positive correlation with the dependent variable LR3. Variables like Tax shield (-.252) and Sales in terms of assets (-.016) are having negative correlation. Significant correlation is found between PE ratio.

4.3.4.2 Regression Analysis and Results

Model Summary

					Change Statistics						
Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change		
1	.401ª	.161	.010	.99491852	.161	1.067	9	50	.403		
2	.400ª	.160	.028	.98566605	.000	.056	1	50	.814		
3	.400°	.160	.047	.97630075	.000	.017	1	51	.898		
4	.396 ^d	.157	.061	.96880576	003	.189	1	52	.665		
5	.391 °	.153	.074	.96214669	004	.260	1	53	.612		
6	.386′	.149	.087	.95539702	004	.231	1	54	.633		
7	.3819	.145	.099	.94900667	004	.253	1	55	.617		
8	.3571	.128	.097	.95016389	017	1.139	1	56	.290		

a. Predictors: (Constant), PE, SA, IC, GS, TS, DPR, GA, PROF, CFC

b. Predictors: (Constant), PE, IC, GS, TS, DPR, GA, PROF, CFC

c. Predictors: (Constant), PE, IC, GS, TS, DPR, GA, CFC

d. Predictors: (Constant), PE, IC, GS, TS, DPR, CFC

e. Predictors: (Constant), PE, IC, GS, TS, DPR

f. Predictors: (Constant), PE, GS, TS, DPR

g. Predictors: (Constant), PE, TS, DPR

h. Predictors: (Constant), PE, TS

ANOVA¹

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	9.507	9	1.056	1.067	.403°
	Residual	49.493	50	.990		
	Total	59.000	59			
2	Regression	9.452	8	1.181	1.216	.309
	Residual	49.548	51	.972		
	Total	59.000	59			
3	Regression	9.436	7	1.348	1.414	.220°
	Residual	49.564	52	.953		
	Total	59.000	59			
4	Regression	9.255	6	1.543	1.643	.154 ^d
	Residual	49.745	53	.939		
	Total	59.000	59			
5	Regression	9.011	5	1.802	1.947	.102 °
	Residual	49.989	54	.926		
	Total	59.000	59			
6	Regression	8.797	4	2.199	2.409	.060 ^r
	Residual	50.203	55	.913		
	Total	59.000	59			
7	Regression	8.566	3	2.855	3.170	.0319
	Residual	50.434	56	.901		
	Total	59.000	59			
8	Regression	7.540	2	3.770	4.176	.020
	Residual	51.460	57	.903		
	Total	59.000	59			

- a. Predictors: (Constant), PE, SA, IC, GS, TS, DPR, GA, PROF, CFC
- b. Predictors: (Constant), PE, IC, GS, TS, DPR, GA, PROF, CFC
- c. Predictors: (Constant), PE, IC, GS, TS, DPR, GA, CFC
- d. Predictors: (Constant), PE, IC, GS, TS, DPR, CFC
- e. Predictors: (Constant), PE, IC, GS, TS, DPR
- f. Predictors: (Constant), PE, GS, TS, DPR
- g. Predictors: (Constant), PE, TS, DPR
- h. Predictors: (Constant), PE, TS
- i. Dependent Variable: LR3

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confiden	ce Interval for B
Model		В	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound
1	(Constant)	-4.285E-16	.128		.000	1.000	258	.258
	IC	.053	.149	.053	.356	.724	246	.352
	DPR	.178	.169	.178	1.050	.299	162	.517
	TS	305	.162	305	-1.886	.065	630	.020
	PROF	.059	.242	.059	.242	.810	427	.544
	CFC	168	.248	168	677	.502	667	.331
	GS	.094	.158	.094	.592	.556	224	.412
	GA	.098	.241	.098	.409	.685	385	.582
	SA	.042	.179	.042	.236	.814	318	.403
	PE	.245	.151	.245	1.621	.111	058	.548
2	(Constant)	-4.139E-16	.127		.000	1.000	255	.255
	IC	.059	.145	.059	.408	.685	232	.350
	DPR	.185	.164	.185	1.128	.265	144	.515
	TS	310	.159	310	-1.949	.057	629	.009
	PROF	.025	.193	.025	.129	.898	363	.413
	CFC	163	.245	163	665	.509	655	.329
	GS	.099	.156	.099	.633	.530	214	.411
	GA	.093	.237	.093	.392	.696	384	.570
	PE	.235	.144	.235	1.630	.109	054	.525
3	(Constant)	-4.159E-16	.126		.000	1.000	253	.253
	IC	.067	.131	.067	.508	.614	197	.330
	DPR	.187	.162	.187	1.157	.253	138	.512
	TS	314	.154	314	-2.045	.046	622	006
	CFC	159	.241	159	660	.512	642	.324
	GS	.104	.148	.104	.703	.485	193	.401
	GA	.100	.229	.100	.435	.665	361	.560
	PE	.229	.134	.229	1.709	.093	040	.497
4	(Constant)	-4.444E-16	.125		.000	1.000	251	.251
	IC	.067	.130	.067	.516	.608	194	.329
	DPR	.157	.145	.157	1.083	.284	133	.447
	TS	312	.152	312	-2.049	.045	618	007
	CFC	080	.156	080	510	.612	394	.234
	GS	.097	.146	.097	.664	.510	196	.390
	PE	.236	.132	.236	1.797	.078	027	.500
5	(Constant)	-4.426E-16	.124		.000	1.000	249	.249
	IC	.062	.129	.062	.481	.633	197	.321
	DPR	.146	.142	.146	1.026	.310	139	.431
	TS	281	.138	281	-2.030	.047	558	003
	GS BE	.065	.131	.065	.498	.621	198	.329
<u> </u>	PE	.250	.128	.250	1.947	.057	007	.507
6	(Constant)	-4.364E-16	.123		.000	1.000	247	.247
	DPR	.158	.139	.158	1.139	.260	120	.436
	TS	278	.137	278	-2.028	.047	553	003
	GS	.066	.131	.066	.503	.617	196	.327
	PE	.242	.126	.242	1.915	.061	011	.495

7	(Constant)	-4.377E-16	.123		.000	1.000	245	.245
	DPR	.144	.135	.144	1.067	.290	126	.415
	TS	287	.135	287	-2.124	.038	558	016
	PE	.237	.125	.237	1.894	.063	014	.488
8	(Constant)	-4.770E-16	.123		.000	1.000	246	.246
	TS	230	.124	230	-1.850	.069	478	.019
	PE	.254	.124	.254	2.048	.045	.006	.503

a. Dependent Variable: LR3

The regression analysis shows that the coefficient of determination i.e R^2 , explained 16.1% variation in LR3 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 12.8% over the total variation. The t test shows that PE ratio is significant upto 5% level and Tax Shield upto 10% level.

LR3 = -4.770E-16 - .230TS + 0.254PE

4.3.5 Pharma

4.3.5.1 Correlation Matrix and Results

Correlations	

1.00	D	LR3	IC	DPR	TS	PROF	CFC	G8	GA	SA	PE
LR3	Pearson Correlation	1	276	216	023	242	.181	234	.019	108	360
	Sig. (2-tailed)		.181	.299	.914	.244	.387	.260	.927	.607	.077
	N	25	25	25	25	25	25	25	25	25	25
IC	Pearson Correlation	276	1	.331	164	.393	099	.120	145	169	.439
	Sig. (2-tailed)	.181		.106	.433	.052	.637	.567	.488	.421	.028
	N	25	25	25	25	25	25	25	25	25	25
DPR	Pearson Correlation	216	.331	1	.054	.556"	.176	.003	157	311	.488
	Sig. (2-tailed)	.299	.106		.798	.004	.399	.989	.455	.130	.013
	N	25	25	25	25	25	25	25	25	25	25
TS	Pearson Correlation	023	164	.054	1	072	147	.052	040	.149	002
	Sig. (2-tailed)	.914	.433	.798		.732	.484	.804	.848	.478	.993
	N	25	25	25	25	25	25	25	25	25	25
PROF	Pearson Correlation	242	.393	.556"	072	1	.199	.182	221	321	.706''
	Sig. (2-tailed)	.244	.052	.004	.732		.340	.384	.289	.117	.000
	N	25	25	25	25	25	25	25	25	25	25
CFC	Pearson Correlation	.181	099	.176	147	.199	1	465	222	283	.305
	Sig. (2-tailed)	.387	.637	.399	.484	.340		.019	.286	.170	.139
	N	25	25	25	25	25	25	25	25	25	25
G8	Pearson Correlation	234	.120	.003	.052	.182	465	1	.165	018	.020
	Sig. (2-tailed)	.260	.567	.989	.804	.384	.019		.430	.931	.925
	N	25	25	25	25	25	25	25	25	25	25
GA	Pearson Correlation	.019	145	157	040	221	222	.165	1	188	553"
	Sig. (2-tailed)	.927	.488	.455	.848	.289	.286	.430		.367	.004
	N	25	25	25	25	25	25	25	25	25	25
SA	Pearson Correlation	108	169	311	.149	321	283	018	188	1	067
	Sig. (2-tailed)	.607	.421	.130	.478	.117	.170	.931	.367		.750
	N	25	25	25	25	25	25	25	25	25	25
PE	Pearson Correlation	360	.439	.488	002	.706"	.305	.020	553"	067	1
	Sig. (2-tailed)	.077	.028	.013	.993	.000	.139	.925	.004	.750	
	N	25	25	25	25	25	25	25	25	25	25
	11	20	23	23	20	20	20	20	23	20	23

^{*.} Correlation is significant at the 0.05 level (2-tailed).

The zero order correlation matrix shows that growth in terms of assets (.019) and Cash flow coverage (.181) has positive correlation with the dependent variable LR3. Variables like Interest coverage(-.276), Dividend payout ratio(-.216) ,Tax shield(-.023)

^{**.} Correlation is significant at the 0.01 level (2-tailed).

,Profitability(-.242), Growth in terms of sales(-0.234), sales in terms of assets(-0.108) and PE ratio(-0.360) are having negative correlation. No variable is found significant in this case.

4.3.5.2 Regression Analysis and Results

Model Summary

					Change Statistics					
Mode L	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	
1	.541°	.293	132	1.06380269	.293	.690	9	15	.708	
2	.540°	.292	062	1.03053263	.000	.015	1	15	.905	
3	.537°	.289	004	1.00196286	003	.070	1	16	.794	
4	.532⁴	.283	.044	.97794246	006	.147	1	17	.706	
5	.528 °	.278	.088	.95479961	004	.111	1	18	.742	
6	.524 ^r	.274	.129	.93327549	004	.108	1	19	.746	
7	.5119	.261	.155	.91901579	013	.363	1	20	.554	
8	.472 ^h	.223	.152	.92083048	038	1.087	1	21	.309	
9	.360 ¹	.130	.092	.95292649	093	2.631	1	22	.119	

a. Predictors: (Constant), PE, TS, GS, SA, IC, DPR, GA, CFC, PROF.

b. Predictors: (Constant), PE, GS, SA, IC, DPR, GA, CFC, PROF

c. Predictors: (Constant), PE, GS, SA, DPR, GA, CFC, PROF.

d. Predictors: (Constant), PE, GS, SA, DPR, GA, CFC

e. Predictors: (Constant), PE, GS, SA, GA, CFC

f. Predictors: (Constant), PE, SA, GA, CFC

g. Predictors: (Constant), PE, GA, CFC

h. Predictors: (Constant), PE, CFC

i. Predictors: (Constant), PE

ANOVA^j

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7.025	9	.781	.690	.708=
	Residual	16.975	15	1.132		
	Total	24.000	24			
2	Regression	7.008	8	.876	.825	.593
	Residual	16.992	16	1.062		
	Total	24.000	24			
3	Regression	6.933	7	.990	.987	.473°
	Residual	17.067	17	1.004		
	Total	24.000	24			
4	Regression	6.785	6	1.131	1.182	.359⁴
	Residual	17.215	18	.956		
	Total	24.000	24			
5	Regression	6.679	5	1.336	1.465	.247°
	Residual	17.321	19	.912		
	Total	24.000	24			
6	Regression	6.580	4	1.645	1.889	.152 ^r
	Residual	17.420	20	.871		
	Total	24.000	24			
7	Regression	6.264	3	2.088	2.472	.0909
	Residual	17.736	21	.845		
	Total	24.000	24			
8	Regression	5.346	2	2.673	3.152	.063*
	Residual	18.654	22	.848		
	Total	24.000	24			
9	Regression	3.114	1	3.114	3.430	.0771
	Residual	20.886	23	.908		
	Total	24.000	24			

a. Predictors: (Constant), PE, TS, GS, SA, IC, DPR, GA, CFC, PROF

b. Predictors: (Constant), PE, GS, SA, IC, DPR, GA, CFC, PROF.

c. Predictors: (Constant), PE, GS, SA, DPR, GA, CFC, PROF

d. Predictors: (Constant), PE, GS, SA, DPR, GA, CFC

e. Predictors: (Constant), PE, GS, SA, GA, CFC

f. Predictors: (Constant), PE, SA, GA, CFC

g. Predictors: (Constant), PE, GA, CFC

h. Predictors: (Constant), PE, CFC

i. Predictors: (Constant), PE

j. Dependent Variable: LR3

Coefficients

		Unstandardize	d Coofficients	Standardized Coefficients			95% Confidenc	a Internal for B
			Std. Error	Beta		Sig.	Lower Bound	Upper Bound
Model 1	(Constant)	B -4.469E-16	.213	Beta	.000	1.000	Lower Bound 453	.453
'	IC	-4.469E-16 060	.213	060	223	.827	453 631	.453
	DPR	106	.277	106	223 381	.709	696	
	TS							.485
		.028	.230	.028	.122	.905	461	.517
	PROF	.136	.361	.136	.375	.713	634	.905
	CFC	.202	.297	.202	.678	.508	432	.835
	GS	105	.264	105	399	.696	668	.458
	GA	270	.282	270	960	.352	871	.330
	SA	148	.266	148	555	.587	714	.419
	PE	597	.416	597	-1.434	.172	-1.484	.291
2	(Constant)	-4.407E-16	.206		.000	1.000	437	.437
	IC	067	.253	067	265	.794	603	.469
	DPR	100	.265	100	378	.710	663	.462
	PROF	.131	.348	.131	.377	.711	607	.870
	CFC	.196	.284	.196	.689	.501	406	.797
	GS	105	.256	105	410	.687	647	.437
	GA	271	.273	271	993	.336	849	.307
	SA	146	.257	146	567	.578	690	.399
	PE	592	.401	592	-1.475	.160	-1.442	.259
3	(Constant)	-4.074E-16	.200		.000	1.000	423	.423
	DPR	106	.257	106	412	.686	648	.437
	PROF	.130	.339	.130	.384	.706	585	.845
	CFC	.219	.263	.219	.833	.416	335	.773
	GS	100	.248	100	405	.691	624	.423
	GA	274	.265	274	-1.035	.315	833	.285
	SA	133	.245	133	541	.595	650	.385
	PE	625	.370	625	-1.691	.109	-1.406	.155
4	(Constant)	-4.917E-16	.196		.000	1.000	411	.411
	DPR	081	.243	081	334	.742	591	.429
	CFC	.219	.256	.219	.856	.403	319	.758
	GS	081	.237	081	342	.736	580	.417
	GA	259	.256	259	-1.014	.324	797	.278
	SA	158	.231	158	684	.503	643	.327
	PE	158 540	.288	158 540		.077		.065
5	(Constant)	-4.435E-16	.191	540	-1.874 .000	1.000	-1.145 400	.400
"	CFC	.226	.250	.226	.905	.377	400 296	.748
	GS							
	GA	076	.231	076	329	.746	560	.408
	SA	266	.249	266	-1.068	.299	787	.255
	PE	135	.215	135	627	.538	585	.315
	FE	584	.251	584	-2.329	.031	-1.108	059
6	(Constant)	-4.523E-16	.187		.000	1.000	389	.389
	CFC	.267	.211	.267	1.268	.219	172	.707
	GA	279	.240	279	-1.161	.259	781	.222
	SA	126	.208	126	603	.554	560	.309
	PE PE				1	1		1
7		604	.237	604	-2.549	.019	-1.099	110
l '	(Constant)	-7.974E-17	.184		.000	1.000	382	.382
	CFC	.306	.197	.306	1.551	.136	104	.717
	GA	235	.226	235	-1.043	.309	704	.234
	PE	584	.231	584	-2.526	.020	-1.064	103
8	(Constant)	2.397E-17	.184		.000	1.000	382	.382
	CFC	.320	.197	.320	1.622	.119	089	.729
	PE	458	.197	458	-2.320	.030	867	048
9	(Constant)	3.723E-17	.191		.000	1.000	394	.394
	PE	360	.195	360	-1.852	.077	763	.042
_	onondont\/orig		.100	500	1.002	.017	103	.042

a. Dependent Variable: LR3

The regression analysis shows that the coefficient of determination i.e R^2 , explained 29.3% variation in LR3 when all the variables are taken together. After removing all insignificant variables coefficient of determination comes out to be 13% over the total variation. The t test shows that the Significant variables found in the equation is PE ratio and that to be significant at 10% level.

LR3= 3.723E-17 -.360PE

4.3.6 Main Findings

Correlation

	Automobile	Construction	IT	Oil, Power& Energy	Pharma
IC					
DPR					
TS					
PROF					
CFC					
GS					
GA					
SA	*				
PE				*	(*)

Regression

Regression	Automobile	Construction	IT	Oil, Power&	Pharma
				Energy	
IC		(*)			
DPR					
TS	*			(*)	
PROF					
CFC					
GS					
GA		(*)			
SA	*				
PE				*	(*)
Variation explained	44.3%	18.4%	16.9%	16.1%	19.3%
by all factors					
Variation explained	35%	15.6%	0%	12.8%	13%
by significant					
variable					

As we can see from above tables Degree of Financial Leverage is not significantly related to any variables. Hence **H**₃₀ is **rejected** and we can say Factors affecting Degree of Financial Leverage vary amongst various sectors of India.

5 SUMMARY

Capital Structure is referred to as the ratio of different kinds of securities raised by a firm as long-term finance. Financing and investment are two major decision areas in a firm. In the financing decision the manager is concerned with determining the best financing mix or capital structure for his firm.

The study has two objectives 1) To determine whether or not factors affecting capital structure decision significantly vary amongst the sample companies of different sector.2)To identify most significant factors considered by sample companies for design of capital structure.

There are 3 dependent variables used to measure Capital Structure i.e Debt-Equity ratio, Debt-Long Term Funds and Degree of Financial Leverage. 9 Independent variables are used in this study. Those are Size, Growth in terms of assets, and Growth in terms of sales, Interest Coverage, PE ratio, Profitability, Cash Flow Coverage, Dividend Payout Ratio and Tax Shield.

The research is based on secondary data only. In this research it is two stage processes. In the first stage five industries are considered in IT, Cement, Automobile, Pharmacy, Oil, Power and energy and in the second stage companies from each industry would be selected from the firms listed in Nifty 50.So in total 35 companies have been used from 5 sectors. The data is collected from National stock Exchange directory, CMIE prowess.

Three different statistical tools and models have been used in the study. These are descriptive statistics, Pearson correlation and Multiple Linear Backward Regression.

6 CONCLUSION

We conclude that

- Factors affecting Debt-Equity Ratio do not vary among various sectors.
- Factors affecting Debt-Total Long Term Funds do not vary among various sectors.
- Factors affecting Degree of Financial Leverage vary among various sectors.
- Important determinants of Capital structure are Profitability, Dividend Payout Ratio, Growth in terms of Assets and Interest Coverage.

7 REFERENCES

Jong, Abe.; Kabir, Rezaul.; and Nguyen, Thuy Thu. (2007), "Capital Structure around the world: The roles of firm- and country-specific determinants", *Journal of Banking & Finance*, 32, pp. 1954-1969.

Tong, Guanqun.; and Green, Christopher J. (2005), "Pecking order of trade off hypothesis? Evidence on the capital structure of Chinese companies", *Applied Economics*, 2005, 37,pp. 2179-2189

Majumdar, Sumit K.; and Chhibber, Pradeep. (1997), "Capital structure and performance: Evidence from a transition economy on an aspect of corporate governance", *Public choice* 98: pp. 287-305.

Bhaduri, Sumit N. (2002), "Determinants of Corporate Borrowing: Some evidence from the Indian corporate structure", *Journal of Economics and Finance*, 26(2).

Pandey, I.M. (2001), "Capital structure and the firm characteristics: Evidence from an emerging market", IIMA Working Paper No. 2001-10-04.

Buferna, Fakher.; Bangassa, Kenbata.; and Hodgkinson, Lynn. (2006), "Determinants of Capital structure from Libya", *Research paper series*, University of Liverpool, No. 2005-08.

Jean J. Chen (2004), "Determinants of capital structure of Chinese listed companies", *Journal of Business Research*,57(12).

Alberto de Miguel, Julio Pindado (2012)," Determinants of Capital Structure :new evidence from Spanish panel data", *Journal of Corporate Finance*, 7(1).

Antonios Antoniou, Yilmoz Geneu, Krishna Pandyal (2008), "Determinants of Capital Structure: Capital Market oriented Versus Bank oriented institution", *Journal of Finance and Quantitative*, 43(01), pp 59-62.

Richard Lambert, Christian Leuz, Robert E. Verrecchia (2007), "Accounting Information, Disclosure and Cost of Capital", *Journal of Accounting Research*, 45(2),pp 385-420.

Eugene F. Fama, Kenneth R. French (1999),"The corporate Cost of Capital and Return on Corporate Investment", *Journal of Finance*, 54(6), pp 1939-1969