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ABSTRACT 

 

Image quality improvement has always been a topic of interest for the researchers. The 

ultimate objective of image quality improvement in a broad sense is to improve a 

degraded image that can express all the information of the scene. The need for the image 

quality improvement is necessitated because of the limited hardware capabilities of image 

capturing devices, the uneven lighting conditions, and noisy environment. In this 

scenario, post-processing is needed to improve the quality of the acquired image. This 

thesis explores new algorithms for image quality improvement. 

This thesis addresses several open questions: a) How do the repetitive geometric 

structures such as ridges and valleys in fingerprints can be exploited for better sparse 

representation of fingerprint images? b) How can denoising and superresolution 

algorithms be incorporated in traditional enhancement methods to help in reliable and 

accurate fingerprint matching? c) How can histogram equalization be effective in contrast 

enhancement of low exposure images? 

In an attempt to answer these questions, this thesis explores three aspects of image 

quality improvement i.e. denoising, super-resolution and contrast enhancement. Being 

motivated from recent advancements in sparse coding based image processing 

applications, a novel ridge orientation based clustered sparse dictionary is proposed for 

exploiting self-similarity in fingerprint images which often contains many repetitive 

geometric structures such as ridges and valleys. Instead of having a single dictionary, the 

proposed dictionary-learning method clusters the training patches into smooth, non-
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dominant orientation and dominant orientation groups. The use of sub-dictionaries based 

on dominant orientation best describes the underlying image data. This also improves the 

effectiveness of sparse modeling of information in a fingerprint image in the form of 

local ridge patterns and thus further improves denoising and super-resolution 

performance. Two novel fingerprint image denoising and super-resolution algorithms 

based on ridge orientation based clustered sparse dictionary are proposed.  

The fingerprint denoising approach undergoes three steps i.e. Ridge orientation 

based patch clustering, Sub-dictionary learning and sparse coefficient calculation. While 

reconstructing the denoised image in the final step, the minimum residual error criterion 

is used for choosing sub-dictionary that best suits for a particular patch.  

The fingerprint super-resolution algorithm involves learning of coupled sub-

dictionaries each for low and high-resolution training patch groups that are clustered 

based on dominant orientation. In the final step of superresolution, the iterative back 

projection is applied to eliminate the discrepancy in the estimate due to noise or 

inaccuracy in the sparse representation. 

To evaluate the performance of proposed fingerprint denoising and super-

resolution methods, a validation methodology consisting of three experiments i.e. 

comparison based on image quality measures, visual quality, and fingerprint matching is 

devised. The performance comparison results show that the proposed methods achieve 

better results in comparison with other methods and will help in improving the 

performance of fingerprint-identification systems. 
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This research also addresses the problem of low exposure imaging through 

contrast enhancement using histogram equalization. A novel Exposure based Sub-Image 

Histogram Equalization (ESIHE) method for contrast enhancement is proposed which 

partitions the image into sub-images i.e. under-exposed and over-exposed. The individual 

histograms of sub-images are equalized independently. The two recursive variants of 

ESIHE are also proposed that proves to be very effective for improvement in the quality 

of images acquired in low light conditions such as underwater sequences or night vision.  

The first method is Recursive Exposure based sub-image histogram equalization (R-

ESIHE) that recursively performs ESIHE method till the exposure residue among 

successive iteration is less than a predefined threshold. The second method is named as 

Recursively separated Exposure based sub-image histogram equalization (RS-ESIHE) 

that partitions the image histogram recursively. Each sub-histogram is further partitioned 

based on their respective exposure thresholds, and finally all the sub-histograms are 

equalized individually. The experimental results show that the proposed methods 

efficiently handled the low exposure image enhancement problem that was not addressed 

by earlier HE based methods. 

Another variant of histogram equalization i.e. Median-Mean based sub-image 

clipped histogram equalization (MMSICHE) method is developed to addresses the 

problem of preservation of mean brightness, entropy and control on the enhancement rate 

simultaneously. The algorithm consists of three steps, namely median and mean 

calculation, Histogram Clipping and Histogram Subdivision & Equalization. The 

important factors for accomplishing the objective by MMSICHE method can be 

summarized as (i) Bisecting the image based on the median value plays the role in 
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maximizing entropy and natural enhancement. (ii) Sub-dividing the image into four sub-

images based on mean intensity plays the role for brightness preservation. (iii) Histogram 

clipping approach provides the feature of control on over enhancement. The simulation 

results show that MMSICHE method avoids excessive enhancement and produces images 

with a natural appearance.  
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CHAPTER 1  

INTRODUCTION 

 

The need for the image quality improvement is necessitated because of the limited 

hardware capabilities of image capturing devices, the uneven lighting conditions, and 

noisy environment. Captured images are often not of desired quality and post-processing 

is needed to improve the quality of the acquired image. Software-based improvement 

tools are more popular as they are usually hardware independent and widely applicable. 

These tools improve the visual appearance of the image for better interpretation to assist 

in computer vision tasks i.e. analysis, segmentation, object detection, tracking, pattern 

recognition, biometric recognition  etc. This chapter discusses different aspects of image 

quality improvement techniques. A brief introduction on sparse representation based 

denoising and superresolution is also presented. In the final section, the main contribution 

and organization of thesis is elaborated.  

1.1   Background  

Practically there are two main aspects of designing an image quality improvement 

algorithm. The first one is the objective aspect where the missing ingredients of an image 

are estimated, and the degraded image is restored close to the original scene. The second 

is the subjective aspect where the degraded image is enhanced, and aesthetics are 

improved to please the human visual system.  A better quality image is perceived to have 
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higher contrast, better resolution, lesser noise, no blurring, less visual artifacts, and 

contains contextually meaningful information so that it can be better used for analysis.   

 

Figure 1.1 Image quality improvement techniques 
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Software-based image quality improvement techniques are more popular as they are 

usually hardware independent and widely applicable. The key techniques for quality 

improvement of an image include denoising, contrast enhancement, super-resolution, 

deblurring, demosaicing, inpainting, smoothing, interpolation, and so forth. Figure 1.1 

depicts various algorithms that contribute in image quality improvement. These tools 

improve the visual appearance of the image for better visual interpretation to assist in 

subsequent image processing tasks (analysis, detection, segmentation, and recognition). 

Image quality improvement aims to reproduce a high-quality image from its 

degraded measurement. Reconstructing a high-quality image from observed degraded 

version is an ill-posed inverse problem. This inverse problem can modeled as 

𝑌 = 𝛹𝜓𝑋 + 𝑉                      (1.1) 

where 𝑋 is the original high-quality image, and 𝛹 are 𝜓 quality degradation operators, 

and 𝑉 is Gaussian noise. This inverse problem in Equation 1.1 becomes  

 Denoising problem when 𝛹 and 𝜓 are identities;  

 Deblurring problem when 𝜓 is a blurring operator and 𝛹 is identity and   

 Super-resolution (single-image) when 𝛹 and 𝜓 are down-sampling and blurring 

operator respectively. 

For solving the ill-posed linear inverse problem in Equation 1.1, image prior knowledge 

is usually utilized for regularizing the solution to the following minimization problem 

argmin
𝑋

 ‖𝛹𝜓𝑋 − 𝑌‖2
2 + λ𝑃𝑟(𝑋)          (1.2) 
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The first term is 𝑙2 data fidelity term and second term  𝑃𝑟(𝑋) is called the regularization 

term denoting image prior and λ is the regularization parameter. Many regularization 

terms [1] [2] [3] has been purposed in past. Although these regularization terms are 

highly effective in preserving edges, however, they usually smear out image details and 

cannot deal well with fine structures [4]. 

In recent years, sparsity-based regularization has emerged as effective prior and 

has achieved excellent results in various image processing applications, such as denoising 

[5], deblurring [6], and super-resolution [7]. The sparse model is motivated from the idea 

that an image can be approximately coded as a linear combination of few columns 

(atoms) of an over-complete dictionary learned from natural images. The traditional 

dictionaries i.e. contourlet [8], curvelets [9], wedgelet [10], bandlets [11], etc. are based 

are not adaptive to the images, however; the learned dictionary being better adapted to 

the images enhances the sparsity and show impressive performance improvement. The 

matching pursuit [12] and the basis pursuit [13] class of sparse coding algorithm gave rise 

to the ability to address the image quality improvement problem as a direct sparse 

decomposition technique over redundant dictionaries. 

In this research three aspects of image quality improvement i.e. sparse 

representation based super-resolution, sparse representation based denoising and contrast 

enhancement are mainly explored. The application of super-resolution and denoising in 

the field of fingerprint quality improvement is extensively studied in this research.  

1.2   Sparse Representation based Image Denoising  
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The goal of quality improvement through image denoising algorithm is to suppress noise 

while producing sharp images without loss of finer details. The classic image denoising 

problem is modeled by assuming an ideal image being captured in the presence of an 

additive zero-mean white and homogeneous Gaussian noise with standard deviation. 

These days, images captured by imaging devices are invariably corrupted by noise. With 

the advent of high-resolution modern cameras, signal sensors are becoming increasingly 

dense hence with same aperture size, noise suppression has become more relevant [14].  

The concept of sparse based image denoising is motivated from the idea that a 

high-quality image X can be approximately coded as a linear combination of few columns 

(atoms) of an over-complete dictionary. Overcomplete dictionaries contain more atoms 

than the dimension of the signal.   A signal 𝑋 = {𝑥1, 𝑥2 … . . , 𝑥𝑛} is said to be sparse when 

very few of entries 𝑥𝑖  possess non-zero values. Sparse representation computes the 

summation of the constituent atoms weighted with their sparse coefficients vector. 

However, computing such sparse codes within overcomplete dictionaries is non-trivial, in 

particular because the decomposition of an image in terms of atoms of an overcomplete 

dictionary is not unique. Processing the whole image as a large vector is numerically 

cumbersome, Elad & Aharon [5], proposed breaking down the image into smaller patches 

and learning a dictionary of patch-sized atoms. Handling high dimensionality of data in 

image denoising is a major challenge, the patch-based method models the patches with 

relatively lower dimension, seems the effective solution to tackle this problem. 

1.2.1   Sparse Reconstruction Model for Image Denoising 

Given an image observation patch of size √𝑝  ×  √𝑝  ordered lexicographically as 

column vector  𝑥 ∈ 𝑅𝑝  and a sparsifying dictionary 𝜑 = {𝜑1, 𝜑2 … . . , 𝜑𝑐} ∈ 𝑅𝑛 × 𝑀 (the 
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columns 𝜑𝑖 ∈ 𝑅𝑀 represent the atoms), sparse representation refer to finding a coefficient 

vector 𝛼 ∈ 𝑅𝑝 in the domain spanned by the dictionary 𝜑 while synthesizing following 

equation 

�̂�  ∈  argmin
𝛼

‖𝛼‖0 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 = 𝜑𝛼        (1.3) 

The solution is indeed very sparse where‖�̂�‖0 ≪ 𝑛. While synthesizing approximately, 

the equality constraint in Equation (1.3) can be replaced by a 𝑙2 norm inequality 

constraint. 

�̂�  ∈  argmin
𝛼

‖𝛼‖0 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑥 − 𝜑𝛼‖2 ≤ 𝜀1      (1.4) 

where 𝜀 controls the misfitting between observed and recovered signal �̂� = 𝜑�̂�. Now 

considering a patch y, noisy version of x, contaminated with additive white Gaussian 

noise. The denoising of noisy patch y can be formulated as following optimization 

problem. 

�̂�  ∈ argmin
𝛼

‖𝛼‖0 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑦 − 𝜑𝛼‖2
2  ≤ 𝜀2      (1.5) 

The denoised patch can be recovered as �̂� = 𝜑�̂� . The optimization problem in Equation 

(1.5) can also be reformulated in its unconstrained penalized form. 

�̂� = argmin
𝛼

‖𝑦 − 𝜑𝛼‖2
2 +  𝛽‖α‖0          (1.6) 

The solution of Equation 1.5 is NP-hard problem; however, 𝑙1-norm can be used to make 

it computationally tractable (convex) as an alternate to 𝑙0-norm (non-convex). Matching 

pursuit [12] class of algorithms that include orthogonal matching pursuit (OMP) [15], 
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basis pursuit (BP) [13] and gradient pursuit (GP) provide efficient and computationally 

tractable solutions to the optimization problem. 

1.3   Sparse Representation based Image Superresolution 

Resolution enhancement algorithms are essential constituents in the field of medical 

imaging, satellite imaging and where diagnosis or analysis from low-quality images can 

be extremely difficult [7].  Quality improvement through image super-resolution (SR) 

offers the promise of overcoming some of the inherent resolution limitations of low-cost 

imaging sensors (e.g. cell phone or surveillance cameras). 

Classical SR methods attempted to restore a high-resolution (HR) image by 

combining multiple low-resolution (LR) observations. Due to difficulty in obtaining 

image sequences for same LR image, new age methods use information from the single 

LR observation to reconstruct HR image based on training sets. Due to this reason, 

training set based single-image super-resolution (SISR) methods have attracted more 

attention in recent years Superresolution of biometric images may also prove effective in 

improving the performance of identity recognition process. Specifically in crime 

investigation [16] scenarios, superresolution of fingerprints can be very effective where 

acquired images are of very low resolution. 

Recently, super-resolution methods based on learning techniques are a rapidly 

evolving field. This attention is based on the assumption that an image can be restored as 

a linear combination of atoms from an overcomplete dictionary. 
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1.3.1   Coupled Dictionary based Single Image Superresolution  

Instead of working on single dictionary here coupled dictionaries,  𝐷ℎ for high-resolution 

patches, and 𝐷𝑙 for low-resolution ones is learned [7]. The sparse coding of a low-

resolution patch in terms of 𝐷𝑙 can be directly applied to recover the corresponding high-

resolution patch using 𝐷ℎ. 

Using an overcomplete low resolution dictionary 𝐷𝑙  ∈  𝑅𝑛 × 𝑁 of N atoms, the 

observed low resolution  image patches of size √𝑛  × √𝑛 can be represented as a sparse 

linear combination of atoms as below: 

𝑦𝑖 =  𝐷𝑙 . 𝛼  ;  ‖𝛼‖0  <  𝜀           (1.7) 

where 𝑦𝑖 is the linear vector of LR image is patch and 𝛼 ∈  𝑅𝑁 is a coefficient vector. By 

training a set of HR and LR coupled dictionaries {𝐷ℎ, 𝐷𝑙}, it can be assumed that the 

sparse representation of a low-resolution patch in terms of 𝐷𝑙 can be directly used to 

recover the corresponding high-resolution patch 𝑥𝑖 from 𝐷ℎ    i.e. 

𝑥𝑖 =  𝐷ℎ. 𝛼             (1.8) 

where coupled dictionary means that each atom in 𝐷ℎ has its corresponding low-

resolution version in 𝐷𝑙 and vice versa [17]. 

The above problem can be modeled as the following optimization function [7] 

 𝑚𝑖𝑛‖𝛼‖0  𝑠. 𝑡. ‖𝐺𝐷𝑙𝛼 − 𝐺𝑦𝑖‖2
2  ≤  𝜖        (1.9) 

where  𝐺 is a gradient feature extraction operator i.e. 

 𝐺 =  {
𝜕𝐼(𝑢,𝑣)

𝜕𝑢
,

𝜕𝐼(𝑢,𝑣)

𝜕𝑣
,

𝜕2𝐼(𝑢,𝑣)

𝜕𝑢2 ,
𝜕2𝐼(𝑢,𝑣)

𝜕𝑣2 }
𝑇

      (1.10) 

According to results in [18], the 𝑙0-norm of above optimization problem can be relaxed as 

the 𝑙1-norm, and the optimization function can be reformulated as: 

 𝑚𝑖𝑛𝛼 ‖𝐺𝐷𝑙𝛼 − 𝐺𝑦𝑖‖2
2 +  𝜇‖𝛼‖1       (1.11) 
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Where μ is fidelity factor, which regularizes the sparsity. The above optimization 

problem can be solved using LARS [19] algorithm with LASSO [20] modification. 

1.4   Contrast Enhancement 

Contrast enhancement techniques are widely used for improving the visual quality of low 

contrast images. Contrast enhancement improves the visual quality of an image as well as 

the specific image features for further processing and analysis by a computer vision 

system.  There are several reasons behind poor contrast of an image [21]. 

 Poor quality of the used imaging device,  

 Lack of expertise of the operator, and  

 Low-light environment (e.g., in a dark room or during night time), at the time of 

acquisition 

Due to above mentioned factors, the complete dynamic range remains under-utilized. As 

a result, such images possess poor contrast and may not reveal all the details in the 

captured scene, and may have an unnatural look.  Contrast enhancement techniques find 

application in areas ranging from consumer electronics, medical image processing to 

radar and sonar image processing. 

1.5   Fingerprint Quality Improvement 

This research has also addressed the problem of quality improvement of fingerprint 

images. Automatic fingerprint identification systems (AFIS) are an integral part of man-

machine interface systems for verification of individual’s identity. Fingerprints have 

proved to be an effective biometric identifier and are extensively employed in forensic 

science [16] in criminal investigations, and in biometric systems such as civilian as well 
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as commercial identification devices [22]. The efficiency of fingerprint recognition 

systems is largely dependent on the quality of input fingerprint image [23]. There could 

be various factors behind the substandard quality of fingerprint images, such as efficiency 

of the image acquisition sensor, corrupted with noise due to variation in skin and 

impression condition and so on. Image quality improvement process helps in reducing the 

probability of error in the recognition process. Due to these reasons, quality improvement 

of fingerprint image has always been an active research area to support AFIS.  

1.6   Thesis Organization and Contributions 

In this thesis, various novel image quality improvement algorithms are developed. The 

thesis work is divided into different chapters. Chapter wise contribution of the thesis is as 

follows:  

Chapter 2: Literature Review  

 A detailed and exhaustive literature survey is presented for various image 

quality improvement techniques using denoising, superresolution, and contrast 

enhancement. 

 Based on the literature survey research gaps are identified, and research 

objective of the thesis are formulated. 

Chapter 3: Sparse Representation based Fingerprint Denoising  

 A novel algorithm is proposed for constructing ridge orientation based sparse 

sub-dictionary that exploits the self-similarity among fingerprint patches. 
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 Fingerprint denoising algorithm is proposed using ridge orientation based sub-

dictionaries and performance of proposed method is compared with other state 

of the art denoising methods on public fingerprint databases. 

Chapter 4: Sparse Representation based Fingerprint Superresolution   

 A novel method is described for fingerprint superresolution. This method 

utilizes the concept of ridge orientation based clustered coupled dictionary to 

enhance the superresolution performance. 

 Exhaustive performance comparison of proposed superresolution algorithm is 

presented not only in terms of image quality measures (PSNR and SSIM) but 

also in terms of fingerprint recognition accuracy.    

Chapter 5: Contrast Enhancement using Histogram Equalization  

 A new algorithm named as MMSICHE is presented for achieving the multi-

objective of preservation of mean brightness, entropy, and control on the 

enhancement rate simultaneously. 

 Novel exposure based sub-image histogram equalization (ESIHE) algorithm is 

proposed to address the problem of low-exposure imaging under low light or 

underwater conditions. 

 Two recursive variants of ESIHE algorithm are also developed to increase the 

robustness of ESIHE method for low-exposure images. 

 Detailed performance evaluation is performed for proposed methods in terms of 

image quality measures as well as visual quality inspection.   
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Chapter 6: Conclusion and Future Scope of Work 

 Conclusions of proposed image quality methods are drawn in this chapter. 

 A detailed discussion on possible avenues of future scope work is presented.



CHAPTER 2  

LITERATURE REVIEW 

 

This chapter presents the summary of relevant image quality improvement methods 

present in the literature. The review is focused on sparse representation based denoising 

and superresolution with application to fingerprint images. A detailed literature review of 

histogram equalization based contrast enhancement methods is also presented. 

2.1   Image Denoising 

Due to the increase of image sensors per unit area, imaging devices can be interrupted by 

noise. Therefore, denoising technique is an important step for improving the visual 

quality of images. The image denoising algorithms can be roughly classified into two 

categories i.e. spatial filtering methods and transform domain filtering methods [24]. 

Spatial filtering methods attempt to exploit the similarities between either pixels 

or patches by utilizing the spatial correlations. A wide variety of noise reducing spatial 

filters has been proposed in the past i.e. Wiener filter [25], Gabor filter [26], Anisotropic 

filtering [27], Total variation minimization [1] [28] etc. These filters are local in the sense 

that the filter coefficients are restricted by spatial distance. On the contrary to local filters, 

Nonlocal Means (NLM) [29] algorithm make use of the self-similarity of natural images 

in a global manner and obtains a denoised patch by weighted averaging all other similar 

patches in the same image. Considering the effectiveness of NLM method various 
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improvement of NLM were proposed [30] [31] [32] [33]. Although nonlocal spatial 

methods deal high noise efficiently but the major drawback of NLM is that it introduce 

artifacts such as over-smoothing. 

Transform domain methods transform the image into other domains, in which 

similarities of transformed coefficients are employed. The main motivation of denoising 

in the transform domain is that coefficients representing noise can be easily separated out 

from the image using shrinkage or thresholding methods. In the image denoising 

literature, a variety of transform domains has been proposed to suppress noise from an 

image.  Among the many transform domain approaches present in literature, the space-

frequency localization property of the wavelet domain makes it the most popular choice. 

There are numerous wavelet based denoising algorithms [34] [35] [36] [37] [38] present 

in literature to estimate image from its degraded version. Other popular transform domain 

filters are curvelets [39], contourlets [40], and bandelets [41]. Recently the third category 

of image denoising has evolved i.e. dictionary based denoising. The key difference with 

transform domain is that instead of representing images with fixed basis functions 

dictionary based methods adapts from the training images [5]. 

In this thesis, a specific approach i.e. sparsity-based image denoising is being 

focused. Elad & Aharon [5] addressed image denoising problem using K-SVD algorithm 

[42] of optimal overcomplete dictionary construction. In this method, each patch is 

denoised by representing a patch as a linear combination of only a few atoms in the 

dictionary. Mairal et al. [43] proposed multi-scale global dictionaries for performance 

improvement of dictionary learning. Chatterjee and Milanfar [14] proposed locally 

learned dictionaries (K-LLD) for image denoising, which performs clustering based on 
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similar geometric structures and employs local weight functions as features. Xiaoqiang et 

al. [44] proposed a Bayesian-based sparse coding algorithm, which employs spike and 

slab prior providing accurate prediction and effective sparse representation. Zhang et al. 

[45] introduced a new approach of image denoising, which creates 2D dictionary based 

on the self-similarity inherent in the images. This method relies on the idea that if a group 

of similar patches are assembled in matrix form, then there exist linear correlations 

among both columns and rows. Yang et al. [46] proposed new dictionary learning 

approach for image noise reduction, which exploits structural similarities of the image. 

The Wiener filter forms the basis of another celebrated denoising method i.e. BM3D [47] 

proposed by Dabov et al. BM3D algorithm is a unified framework of dictionary learning 

and structural clustering, which yields excellent PSNR performance. Considering the 

promising results of sparse representation based image denoising algorithms, addressing 

the fingerprint denoising with these algorithms will be an interesting research area.  

2.2   Superresolution 

Image superresolution techniques can be broadly categorized into interpolation-based 

methods, reconstruction-based methods and learning-based methods. The interpolation-

based approach estimate the high-resolution image by assigning an intensity value to the 

unknown pixels based on the surrounding known pixels. The simplest among 

interpolation based approaches is bicubic interpolation [48]. This method does not exploit 

underlying structures in images, thus tends to blur the high-frequency details and 

introduce artifacts. Improved interpolation based approaches [49] [50] [51] consider 

latent structures during interpolation process, thus improving the SR quality. The 

reconstruction based approach [52] [53] [54] enforces a reconstruction constraint which 
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requires that the smoothed and down-sampled version of the HR image should be close to 

the LR image. Back-projection [53] is a most celebrated reconstruction based SR method. 

The major drawback of reconstruction-based SR approaches is a degraded performance 

for higher magnification factors. 

 Classical reconstruction based SR methods attempted to restore a high-resolution 

image by combining multiple low-resolution observations. Due to difficulty in obtaining 

image sequences for same LR image, new age methods use information from single low-

resolution image to reconstruct HR image based on training sets. For this reason, learning 

based single-image super-resolution (SISR) methods have attracted more attention in 

recent years [55]. Learning-based approaches [56] [57] [58] [59] [7] embed more 

information into LR images from learning examples. These methods utilize this 

embedded information to model the relationship between the low-resolution and high-

resolution image patches.  The question still arises that how many training images are 

sufficient for the generic images. 

2.2.1   Sparse Representation based Superresolution 

Recently, sparse representation based learning methods  [6] [7] [55] [60] [61] [62] [63] 

[64] [65] [66] has drawn considerable attention in the field of superresolution. This 

attention is based on the assumption that an image can be restored as a linear combination 

of atoms from an overcomplete dictionary. Sparse representation based techniques 

identify ingredients of the image, also referred as atoms and construct overcomplete 

dictionaries of these atoms. Now same or similar image can be reconstructed back using 

few atoms from the dictionary. 
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 Yang et al. [7] presented a sparse coding-based superresolution framework, which 

learn coupled dictionaries from the training set of randomly sampled low and high-

resolution image patches and then utilize sparse representations of the low-resolution 

image patch to generate the corresponding high-resolution image patch. The major 

problem in this method lies in deciding the total number of atoms in the coupled 

dictionary. Large numbers of atom increases the computation time of algorithm, however 

reducing the number of atoms degrades the super-resolution results remarkably. Zeyde et 

al. [67] succeeded in reducing the overall computational complexity of Yang’s algorithm 

[7] by simplifying overall process. Zhu et al. [68] presented a self-example-learning-

based sparse reconstruction approach to increase the computation speed. Instead of 

having external training set containing a large collection of HR images for dictionary 

learning, this method samples patches from the low-resolution input image itself. Rueda 

et al. [61] proposed SR approach specific to MR images that was a combination of image 

multi-scale edge analysis and a dimensionality reduction scheme for improvement in the 

SR reconstruction accuracy and computational speed. Lu et al. [69] also presented an SR 

algorithm specific to MR images, which exploits the local manifold structure of image 

patch pair, and applied locally linear embedding (LLE) regularizer into the traditional 

sparse coding framework. Tang et al. [65] suggested improvements in Yang’s algorithm 

[7] by using flexible regression methods and L2-Boosting. 

 Further in the direction of accurate recovery of HR images Yang et al. [62] 

introduced the concept of examples-aided redundant dictionary learning. This method 

learns multiple compact dictionaries from the raw patches classified by K-means 

clustering. Yang et al. [66] proposed another method incorporating a Gaussian 
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neighbourhood based similarity regularizer term to exploit the non-local structural 

similarities of medical images. Liu et al. [63] applied the group sparse representation 

based SR approach to infrared surveillance. Recently Lu and Sun [70] proposed context-

aware single image super-resolution method for reconstructing edge-preserving HR 

image. Kato et al. [71] experimented with the multi-frame approach in sparse coding-

based image superresolution. Their main contribution was to handle a variable number of 

LR observations by the combination of sub-pixel accuracy block matching and LR atom 

generation from HR atoms. Motivated from multi-scale self-similarities in natural images 

Zhang et al. [72] proposed a structure-modulated sparse representation based SR method 

that combines multiple regularization prior i.e. structural self-similarity, the gradient 

histogram, and the nonlocal sparsity. In the present literature, there is a dearth of 

information related to sparse representation based fingerprint superresolution.  

2.3   Fingerprint Enhancement 

Fingerprint images are generally of low quality, because of the contexts of the image-

acquisition process.Various methods [23] [73] [74] [75] [76] [77]have been suggested in 

literature to enhance the quality of fingerprint images. Fingerprint enhancement methods 

are roughly categorized into spatial and frequency domain. Yang et al. [78] proposed a 

two-stage method with the combination of spatial and frequency domain filters. For 

eliminating noise from fingerprint image variety of filters were proposed earlier such as 

contextual filters [79], Gabor filters [73] [74], anisotropic filters [80], image-scale-based 

filters [81] [82], directional filters [23] [83]. 

 Although a lot of research has been conducted in past for enhancement of 

fingerprints to improve the performance of recognition process, but superresolution of 
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biometric images is still a gray area and needs the keen attention of researchers. The 

superresolution techniques can be incorporated into any traditional fingerprint 

enhancement for rendering better results [84] [85]. Better resolution enables the 

recognition algorithms based on minutiae detection or matching of ridge patterns to work 

more reliably and accurately. Specifically in crime investigation scenarios, 

superresolution of fingerprints can be very effective where acquired images are of very 

low resolution. 

2.4   Contrast Enhancement  

Poor contrast images do not occupy the complete dynamic range. Images having 

histogram bins concentrated toward a lower part or the darker grey levels possess low-

intensity exposure whereas images having histogram bins concentrated toward a higher 

part, or the brighter part possess high-intensity exposure. Both types of images possess 

low contrast and need suitable contrast enhancing tools to improve the overall quality of 

an image. Histogram equalization based contrast enhancement technique is most popular 

and extensively utilized technique due to ease of implementation and its simplicity [86].  

2.4.1   Histogram Equalization based Contrast Enhancement 

Many histogram equalization based image enhancement methods were proposed to cope 

with contrast related issues. HE flattens the probability distribution and stretches the 

dynamic range of gray levels, which in result improves the overall contrast of the image. 

Applying HE straight away on natural images is not suitable for most consumer 

electronics applications, due to the problem of mean-shift i.e., the mean brightness of the 

output image and input image have a significant difference. 
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Kim proposed brightness preserving bi-histogram equalization (BBHE) [87] to 

preserve the mean image brightness. BBHE method first partitions the image’s histogram 

into two sub-histograms based on the mean of the image’s brightness and then histogram 

equalization process is performed on two sub-histograms independently. Wang et al. [88] 

proposed an algorithm named dualistic sub-image histogram equalization (DSIHE) which 

divides the image histogram based on median value i.e. each sub-histogram contains 

almost equal number of pixels and achieves good results in terms of detail preservation. 

Minimum mean brightness error bi-histogram equalization (MMBEBHE) [89] method 

perform the partition using the separating point that yields the minimum absolute mean 

brightness error (AMBE). Recursive mean-separate histogram equalization (RMSHE) 

[90] and recursive sub-image histogram equalization (RSIHE) [91] were proposed as 

recursive variants of BBHE and DSIHE. RMSHE and RSIHE methods have a 

challenging task of finding the optimal value of iteration factor (𝑟) for producing efficient 

enhancement results. Kim and Chung [92] presented a method named Recursively 

Separated and Weighted Histogram Equalization (RSWHE) that modify the histogram by 

weighting process using normalized power law function. Clipped histogram based 

techniques [93] [94] [95] were proposed for controlling the over enhancement along with 

brightness preservation by histogram clipping. 

Wadud et. al. [96] proposed dynamic histogram equalization (DHE) method that 

added a new dimension in histogram partitioning by dividing the image histogram based 

on local minima. The major drawback of this method is that it remaps the histogram 

peaks by allocating new dynamic range, which significantly changes the mean brightness.  



Chapter 2:  Literature Review  

21 

Ibrahim and Kong [97], proposed a variant of the DHE named as brightness preserving 

dynamic histogram equalization (BPDHE) and the partitioning criterion is local maxima. 

BPDHE also applies Gaussian-smoothing filter before the histogram sub-division process. 

Sheet et. al. [98] proposed a modification of the BPDHE technique named as Brightness 

Preserving Dynamic Fuzzy Histogram Equalization (BPFDHE). This method uses Fuzzy 

histogram computation for smoothing operation of histogram before partitioning of the 

image into sub-histograms. The authors of BPDFHE method proved the superiority of the 

algorithm in terms of less computational time and brightness preservation. These dynamic 

methods are suitable only for the images having significant peaks in the histograms. 

Menotti et al. [99] proposed a Multi-Histogram equalization method to preserve 

the natural appearance of the image. Another method Dynamic Range Separate Histogram 

Equalization (DRSHE) [100] was proposed for preserving naturalness of an image, which 

separates the complete dynamic range into multiple parts and resizes the gray-scale range 

based on its area ratio. Quadrants dynamic histogram equalization (QDHE) [101] method 

is a hybrid approach where the histogram is partitioned into four sub-histograms. The 

partitioning criterion is the median value of intensity. In this method before assigning new 

dynamic range to each sub-histograms, the histogram clipping is performed based on the 

mean of the occupied intensity of the image.  DQHEPL [102] is an extension of RSIHE 

method, computes four sub-histograms, and then assigns a new dynamic range to each 

sub-histogram and apply clipping process in the final step.  Bi-Histogram equalization 

median plateau limit (BHEPLD) [102] is an extension of BHEPL, which applied the 

median value of intensity based criterion for clipping limit instead of the mean value of 

intensity occurrences. 
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Another variant of HE named as Brightness Preserving Weight Clustering 

Histogram Equalization (BPWCHE) [103] was introduced for simultaneously preserving 

the brightness of the image and enhancing visualization of the image. Simple Histogram 

Modification Scheme (SHMS) [104] algorithm is a histogram modification approach 

where the values of first and last boundary values of the support of histogram are changed. 

Although tremendous research has been conducted in the field of histogram equalization 

based contrast enhancement domain but still the potential of HE in solving the low-

exposure imaging problem in less studied area. 

 

2.5   Research Gaps 

Based upon the analysis of earlier state-of-the-art methods on image quality 

improvement, following research gaps are identified: 

 Fingerprint images often contain many repetitive geometric structures (or self-

similarity) such as ridges and valleys; this self-similarity among patches has not 

been exploited in earlier research for better sparse representation.  

 Considering the promising results of sparse representation based image denoising 

algorithms, addressing the fingerprint denoising with these algorithms is still less 

explored area.  

 The process of image quality improvement through super-resolution methods is 

still a gray area in the field of fingerprint identification. 

 In sparse representation based superresolution, self-similarity among patches in 

the form of repetitive geometric structures is less exploited.  
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 Poor contrast images do not occupy complete dynamic range. Natural images are 

often subject to low-exposure problems under low light or underwater conditions; 

contrast enhancement of low exposure images using histogram equalization is still 

a gray area. 

 Although various techniques were proposed to cater specific problem of contrast 

enhancement, the problem of preservation of mean brightness, entropy, and 

control on the enhancement rate simultaneously is not addressed in earlier 

research. 

 

2.6   Problems Addressed 

The work presented in the thesis is mainly focused on design and development of reliable 

image quality improvement techniques. The answers to following questions are conveyed 

in this dissertation. 

a) How do the repetitive geometric structures such as ridges and valleys in 

fingerprints can be exploited for better sparse representation of fingerprint 

images? 

b) How can denoising and superresolution algorithms be incorporated in traditional 

enhancement methods to help in reliable and accurate fingerprint matching? 

c) How can histogram equalization be effective in contrast enhancement of low 

exposure images? 

In an attempt to answer these questions, we explored three dimensions of image quality 

improvement i.e. Denoising, Superresolution, and Contrast Enhancement.  
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2.7   Research Objectives 

The major objective of this thesis is to propose novel image quality improvement 

techniques. Recent advancements in the field of sparse representation of images are the 

source of motivation behind formulating these research objectives. Based on the 

identified research problems in existing literature following objectives are formulated:  

 Design of ridge orientation based clustered sparse dictionary learning algorithm 

to exploit self-similarity among patches for better sparse representation to 

increase the denoising and superresolution performance for the fingerprint. 

 Design and development of sparse representation based fingerprint denoising 

algorithm. 

 Design and development of sparse based fingerprint superresolution algorithm. 

 Performance assessment of proposed fingerprint denoising and super-resolution 

method in terms of fingerprint recognition accuracy on standard public data sets. 

 Development of contrast enhancement algorithm to address the problem of low 

exposure imaging 

 Design and development of robust Histogram Equalization based contrast 

enhancement algorithm to cater problem of preservation of mean brightness, 

entropy and control on the enhancement rate simultaneously 

  



CHAPTER 3  

SPARSE REPRESENTATION BASED FINGERPRINT 

DENOISING 

 

The problem of fingerprint denoising is peculiar in nature and need special methods for 

denoising. In this chapter, a novel framework for denoising fingerprint images is 

proposed. Instead of having a single sparse dictionary, the proposed method clusters the 

training patches into groups based on the dominant orientation of patch. Use of sub-

dictionaries based on dominant orientation best describe the underlying image data and 

improves the effectiveness of sparse modeling of information in a fingerprint image in 

the form of local ridge patterns. Atoms from sub-dictionary with minimum residual error 

are used during reconstruction of patches. Denoising performance of proposed method is 

compared with other state-of-the-art denoising methods on public fingerprint databases. 

3.1   Sparse Representation based Denoising Framework 

The sparse based denoising framework comprises of restoring true image X from its 

noisy version Y contaminated with additive white Gaussian noise. The task involves 

suitable dictionary learning and coefficient calculation for efficient sparse representation 

of denoised image X. Elad and Aharon [5] proposed an image-denoising framework, 

which performs alternate minimization for learning patch-based dictionary where the size 

of each atom is equal to patch size. The energy minimization problem for image 

denoising boils down to 
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{�̂�, �̂�} = argmin
𝛼𝑖,𝑗,𝑋
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2 + ∑ (‖𝜑𝛼𝑖,𝑗 − 𝑃𝑖,𝑗(𝑋)‖

2

2
+   𝛽‖𝛼𝑖,𝑗‖

0
  )𝑖,𝑗  (3.5) 

where 𝑃𝑖,𝑗(𝑋) is patch extraction operator. The above minimization process is a 

combination of three penalty terms; the first term imposes demand of proximity between 

the measured image, and its denoised counterpart. The second and third term demands 

that each reconstructed patch can be sparsely represented as linear combination of very 

few coefficients and dictionary with minimum error. The image denoising algorithm via 

energy minimization in Equation 3.5 involves an iterative block-coordinate relaxation 

method, which updates sparse coefficients, dictionary and image alternatively once at a 

time and keep other unknowns fixed.  

3.2   Ridge Orientation Dictionary based Image Denoising  

The proposed denoising algorithm comprises of three main steps: Ridge orientation 

based clustering, Dictionary learning, and sparse coefficient calculation. 

3.2.1   Ridge Orientation based Clustering 

A fingerprint is the pattern of ridges and valleys on the surface of the finger. Considering 

the fact that images especially fingerprint images often contains many repetitive 

geometric structures (or self-similarity) such as ridges and valleys, this self-similarity 

among patches is exploited here for better sparse representation, which in turn increases 

the denoising performance. The idea behind this approach is to group the patches 

containing similar geometric structures or dominant orientation and construct separate 

sub-dictionaries for each group. The orientation of ridge or a valley has been exploited in 

fingerprint matching algorithms [105] [106] in past. In the proposed method, the same 

concept of ridge orientation in the fingerprint to group the patches and to subdivide a 
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large dictionary into an array of sub-dictionaries is utilized. Ridge and valleys are main 

texture information embedded in fingerprint images and sparse modeling based on these 

features can significantly enhance the performance of sparse representation based 

denoising approach. Firstly, the patches are categorized into the smooth and rough patch 

by applying a variance threshold τ on each image patch. The rough patches are further 

classified into dominant and non-dominant orientation patches by applying a threshold on 

the dominant measure calculated by singular value decomposition (SVD) of the gradient 

vector of each patch. The estimation of local orientation is based on singular value 

decomposition (SVD) of the gradient vectors of the patch [107].  The method for this 

classification is described in following: 

Calculate the local estimate of the gradient ∇y(u, v) at each ith pixel at location 

(u, v) in the image patch. 

∇𝑦(𝑢, 𝑣)𝑖 = {
𝜕𝐼(𝑢,𝑣)

𝜕𝑢
,

𝜕𝐼(𝑢,𝑣)

𝜕𝑣
}                  (3.6) 

The gradient map 𝐺 ∈ 𝑅𝑁×2 of the √𝑝  × √𝑝 patch is denoted as 

𝐺 = {∇𝑦(𝑢, 𝑣)1, ∇𝑦(𝑢, 𝑣)2, … . . , ∇𝑦(𝑢, 𝑣)𝑝}𝑇        (3.7) 

Next step is to compute SVD of the gradient map 

𝐺 = 𝑈𝑆𝑉𝑇             (3.8) 

Here 𝑈 ∈ 𝑅𝑁×𝑁 represents each vector’s contribution to the corresponding singular 

vector; 𝑆 ∈ 𝑅𝑁×2 represent the energy in the dominant directions; and 𝑉 ∈ 𝑅2×2  

represent the orientation, in which the columns v1 and v2 represents the dominant and 

subdominant orientation of the gradient field respectively. The categorization of rough 

patches into dominant or non-dominant orientation is decided based on a dominant 

measure 𝑅 calculated as 
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𝑅 =
𝑆1−𝑆2

𝑆1+𝑆2
         (3.9) 

where S1 and S2 are singular values representing the energy value in the dominant 

direction. The patches having dominant measure lesser than the significance level 

threshold R∗ i.e. the singular values are remarkably different, it is very likely that the 

corresponding patch is only pure white noise and contains no dominant orientation [107]. 

The rough patches are categorized in dominant or non-dominant orientation patches for 

which the value of R is higher or lesser than significance level threshold R∗ respectively.  

The ridge orientation angle of all the dominant oriented patches is estimated by 

horizontal and vertical gradients of the patch. For finding ridge orientation angle of each 

patch, a gradient operator, is applied to obtain the horizontal gradient value 𝐺𝑟 and 

vertical gradient value 𝐺𝑠 and the block horizontal and vertical gradients i.e. 𝐺𝑟𝑟 and 𝐺𝑟𝑠 , 

are calculated by summing up all the pixel gradients of the particular direction. 

 𝐺𝑟𝑠 = ∑  ∑  2𝐺𝑟(𝑢, 𝑣)
𝑗+(

𝑤

2
)

𝑣=𝑗−(
𝑤

2
)

𝑖+(
𝑤

2
)

𝑢=𝑖−(
𝑤

2
)

𝐺𝑠(𝑢, 𝑣)    (3.10) 

 𝐺𝑟𝑟 = ∑ ∑ (𝐺𝑟
2(𝑢, 𝑣) −

𝑗+(
𝑤

2
)

𝑣=𝑗−(
𝑤

2
)

𝑖+(
𝑤

2
)

𝑢=𝑖−(
𝑤

2
)

𝐺𝑠
2(𝑢, 𝑣))                               (3.11) 

The most probable ridge orientation of the patch can now be obtained as 

 𝑂(𝑢, 𝑣) =
1

2
tan−1(

𝐺𝑟𝑠

𝐺𝑟𝑟
)                       (3.12) 

Once the ridge orientation of each dominant oriented patch is estimated further clustering 

is applied on the angles to group patches of similar structure in one cluster. For this 

algorithm, unsupervised classification technique, K-means clustering algorithm, which 

performs clustering of patches into some prefixed number of clusters is used. At the end 

of the clustering process, we have 𝑁 clusters (classes𝛺𝑛), one for smooth, and one for 



Chapter 3:  Sparse Representation based Fingerprint Denoising  

29 

non-dominant orientation patches and 𝑁 − 2 clusters for different ridge orientation angle 

patches.  

3.2.2   Dictionary Learning 

The image divided in overlapped patches of size √𝑝  × √𝑝  and each patch is ordered 

lexicographically as column vector  𝑦𝑘 ∈ 𝑅𝑝 ; here k is the index of the patch. Next all 

the patches belonging to same sub-group are stacked in matrix denoted as  𝑦𝛺𝑛
 ∈ 𝑅𝑝 ×𝐶𝑛 

i.e. 𝑦𝛺𝑛
= {𝑦𝛺𝑛1

, 𝑦𝛺𝑛2 , … … , 𝑦𝛺𝑛𝐶
 } , which consists of each patch represented by a 

column of the matrix. 𝐶𝑛 is the number of patches in sub groups, and it may vary for 

different group. Once groups of patches of similar orientation are formed, next step is to 

train sub-dictionary for the individual group. The choice of dictionary 𝜑 is the heart of 

the sparse representation model.  

 

Figure 3.1 Ridge orientation based clustered sub-dictionaries (a) to (e) Dominant orientation (f). Smooth 

(g). Non-dominant orientation 
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The goal of dictionary learning is to optimize the dictionary and sparse coefficients 

jointly utilizing a set of given training image patches. The sub-dictionary training for 

each cluster can be formulated as  

{�̂�𝛺𝑛
, 𝜑(𝛺𝑛)} = argmin

𝛼,𝜑
∑ (‖𝜑(𝛺𝑛)𝛼𝛺𝑛

− 𝑦𝑘‖
2

2
+   𝛽‖𝛼𝛺𝑛

‖
0
  )𝑘∈𝛺𝑛

   (3.13) 

where n = 1,2, … . . N is the index of sub-dictionaries learned for each sub group of 

patches classified based on dominant orientation. K-SVD [42] is a natural choice for 

dictionary learning due to its simplicity and ease of implementation. In addition to it, the 

K-SVD dictionary learning process has in it a noise rejection capability [5].  The 

dictionary learning step yields N sub-dictionary {φ(Ω1), φ(Ω2), … . . , φ(ΩN)} and the 

number of atoms are adaptive to the total number of patches in each group. For 

fingerprint images, the smooth and non-dominant orientation groups have less number of 

patches; hence, a lesser number of atoms can be allotted to corresponding sub-dictionary. 

Figure 3.1 shows typical sub-dictionaries learned based on ridge orientation based 

clustered patches. 

3.2.3   Sparse Coefficient Calculation 

Once the sub-dictionaries are learned for each cluster, the next step is to calculate the 

sparse coefficients to obtain the denoised image. Estimation of the sparse coefficients �̂�, 

comes down to solve Equation 3.4. Orthogonal Matching Pursuit (OMP) algorithm is the 

best choice due to its speed and easy parameter tuning facility for solution of given 

optimization equation. Given the set of sub-dictionary {𝜑(𝛺1), 𝜑(𝛺2), … . . , 𝜑(𝛺𝑁)} we form 

a sparse coefficient matrix for each patch corresponding to every sub-dictionary. The 

Equation 3.4 can be re-formulated as  
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�̂�(𝛺𝑛) = argmin
𝛼

‖𝑦𝑘 − 𝜑(𝛺𝑛)𝛼‖
2

2
+  𝛽‖α‖1      (3.14) 

Here 𝑛 = 1,2, … . . 𝑁 is index for sub-dictionaries.  

To recover the denoised patch for a given noisy patch, the sparse coefficients {�̂�(𝛺𝑛)} are 

calculated using each of the sub-dictionaries and the residual error 𝜖(𝛺𝑛) is calculated by 

following equation for each dictionary 

 {𝜖(𝛺𝑛) } = ‖𝑦𝑘 −  𝜑(𝛺𝑛). �̂�(𝛺𝑛)‖
2
                            (3.15) 

The sub-dictionary having least residual error is chosen for that particular patch for 

reconstruction of the corresponding denoised patch. The final denoised image is obtained 

by aggregation of all estimated denoised patches {𝑦𝑘}. 

3.3   Experimental Results 

To evaluate the performance of proposed method we have devised a validation 

methodology consisting of three experiments. In the first experiment, the proposed 

method is compared with NLM [29], K-SVD [5] and KLLD [14] methods in terms of 

quality measures i.e. PSNR and SSIM. Further, the proposed method is investigated in 

terms of visual quality. Authors believe that visual inspection and quality measures are 

not sufficient to evaluate the performance of fingerprint denoising. Filter bank based 

fingerprint matching [105] techniques have proved to be very effective in fingerprint 

matching. We have also used the same concept for performance evaluation and compared 

the Euclidean distance parameter of proposed method with other methods. Zero mean 

additive white Gaussian noise with different standard deviation was added in images to 

produce the noisy version. The effectiveness of the proposed method is evaluated on 

public databases FVC2000, FVC2002 and FVC2004. We have set empirical values of 
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variance threshold τ = 50 and significance level threshold R∗ = 0.175 for the 

classification of image patches into smooth, dominant or non-dominant orientation. These 

values can be manually fine-tuned as per requirement of the data set, taking higher or 

lower values of these parameters can result into the classification of smooth/non-

dominant orientation patch into dominant orientation patch and vice versa. Total seven 

sub-dictionaries including one for smooth and one for non-dominant orientation are 

learned from the group of patches clustered on the basis of ridge orientation. Based on the 

distribution of patches in each group number of clusters is chosen. A higher number of 

clusters is not providing any significant improvement in results and sometimes results 

into very few patches in a sub group. 

3.3.1   Comparison of Denoising Performance  

For assessment of the performance of the algorithm, we have chosen two quality 

measures named as Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index 

(SSIM). 

PSNR is the ratio between the maximum possible power of a signal and the power of 

corrupting noise and expressed in terms of the logarithmic decibel scale. The PSNR is 

calculated as 

 𝑃𝑆𝑁𝑅 = 10 ×  log
2552

𝑀𝑆𝐸
;  𝑀𝑆𝐸 =

1

𝑀𝑁
∑ ∑ [ 𝐴(𝑚, 𝑛) − 𝐵(𝑚, 𝑛) ]2𝑁−1

𝑛=0
𝑀−1
𝑚=0      (3.16) 

A is original image and B is the output of proposed method. 

SSIM measures the structural similarity between the input and output images. SSIM 

depicts the distortion of the visual sensing. The SSIM is defined as  

 𝑆𝑆𝐼𝑀(𝑎, 𝑏) =
(2𝜇𝑎𝜇𝑏+ 𝑐1)(2𝜎𝑎𝑏+ 𝑐2)

(𝜇𝑎
2+ 𝜇𝑏

2+𝑐1)(𝜎𝑎
2+ 𝜎𝑏

2+𝑐2)
                   (3.17) 

http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Noise
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Decibel
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where 𝜇𝑎 and 𝜇𝑏 are the mean values of images A and B, 𝜎𝑎 and 𝜎𝑏 are the standard 

deviation, 𝜎𝑎𝑏 is the covariance, 𝑐1 = (𝐾1𝐿)2 and 𝑐2 = (𝐾2𝐿)2 ,with L being the 

maximum pixel value, 𝐾1 = 0.01 and 𝐾2 = 0.03) [108]. 

 Observation noise with varying variance is added, and four typical values of 

sigma 10, 20, 30 and 40 are taken for experimentation. The PSNR values depicted in 

Table 3.1 clearly defines the superiority of proposed method over other methods. A 

dataset of 40 test images selected from three databases is constructed, and mean PSNR is 

calculated for all the methods and results are presented in Table 3.1 for analysis purpose. 

From the analysis of results, we now conclude that the proposed algorithm has achieved 

highly competitive PSNR performance for all the target images. 

Table 3.1 The PSNR results (in dB) of all algorithms for various noise levels 

Image Sigma 
Proposed 

Method 
KSVD [5] NLM [29] KLLD [14] 

Fingerprint 1 

 

10 31.6769 30.9895 31.3191 30.8434 

20 27.7703 27.5687 27.1032 27.7517 

30 25.5703 25.8326 25.6037 24.5308 

40 24.6637 24.6077 24.2337 21.7344 

Fingerprint 2 

 

10 30.4791 30.2634 30.3297 29.9843 

20 26.8613 26.4305 26.5142 26.2517 

30 24.6845 24.6765 24.5067 24.4398 

40 23.5657 23.7767 23.4236 22.9374 

Fingerprint 3 

 

10 32.3242 32.0569 32.5172 32.1924 

20 28.8809 28.4793 28.6791 28.7545 

30 26.7896 26.6678 26.7243 26.6304 

40 25.2794 25.3067 25.3372 24.6609 
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Fingerprint 4 

 

10 31.7684 31.4329 31.5460 30.9760 

20 27.8767 27.6472 27.7545 27.1518 

30 25.7345 25.6985 25.4057 25.2378 

40 24.5574 24.5796 24.3289 24.1384 

Mean (40 

Images) 

 

10 32.5621 32.0856 32.3280 31.9990 

20 26.8473 26.4314 26.1127 26.0774 

30 25.6947 25.1188 25.5601 25.2097 

40 23.5165 23.3676 23.3308 22.3677 

Similar to Table 3.1, mean SSIM is calculated on same the dataset and Table 3.2 depicts 

the SSIM performance results of proposed method in comparison with other three 

methods.  From the comparative analysis, it is concluded that the proposed algorithm 

provides excellent SSIM performance for higher noise levels. 

Table 3.2 The SSIM results of all algorithms for various noise levels 

Image Sigma 
Proposed 

Method 
KSVD [5] NLM [29] KLLD [14] 

Fingerprint 1 

 

10 0.9210 0.8807 0.8761 0.9035 

20 0.8337 0.8026 0.8126 0.8594 

30 0.7856 0.7690 0.7791 0.7674 

40 0.7680 0.7421 0.7537 0.6634 

Fingerprint 2 

 

10 0.9323 0.9007 0.9167 0.9129 

20 0.8554 0.8664 0.8517 0.8429 

30 0.8119 0.8097 0.8023 0.8009 

40 0.7878 0.7756 0.7796 0.7239 

Fingerprint 3 

 

10 0.9192 0.9118 0.9087 0.9034 

20 0.8426 0.8336 0.8419 0.8287 

30 0.7998 0.7726 0.7829 0.7817 

40 0.7678 0.7624 0.7569 0.7556 



Chapter 3:  Sparse Representation based Fingerprint Denoising  

35 

Fingerprint 4 

 

10 0.8947 0.8959 0.8897 0.8761 

20 0.8267 0.8213 0.8179 0.8127 

30 0.7786 0.7623 0.7645 0.7527 

40 0.7492 0.7337 0.7423 0.7242 

Mean (40 

Images) 

 

10 0.9168 0.8772 0.8678 0.8589 

20 0.8396 0.8209 0.8110 0.8059 

30 0.7939 0.7784 0.7822 0.7756 

40 0.7682 0.7434 0.75812 0.7167 

 

3.3.2   Performance Assessment based on Fingerprint Matching 

Euclidean distance parameter [105] is used here for evaluating the performance in terms 

of fingerprint matching.  Results in Table 3.3 clearly indicate that proposed method is 

superior in terms of fingerprint matching. The Euclidean distance for proposed method is 

significantly less than other methods for most of the cases.  

Table 3.3  The Euclidean distance results of all algorithms for various noise levels 

Image Sigma 
Proposed 

Method 
KSVD [5] NLM [29] KLLD [14] 

Fingerprint 1 

 

10 20.3062 22.3375 115.6792 26.5409 

20 60.9436 88.9767 98.7143 74.2789 

30 91.1935 129.8676 133.5734 98.5879 

40 100.0349 136.6567 126.5106 111.6721 

Fingerprint 2 

 

10 32.3062 36.8976 69.7865 33.2789 

20 87.8761 87.6678 98.8978 86.2639 

30 102.3498 103.5610 112.5678 121.7754 

40 121.6123 124.1245 123.2730 125.7699 
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Fingerprint 3 

 

10 26.7645 29.3321 26.8961 27.8510 

20 56.5643 57.2331 59.0089 58.9002 

30 80.0126 82.2094 80.9429 83.2184 

40 98.0197 99.2970 100.5697 100.6573 

Fingerprint 4 

 

10 40.5692 40.1297 48.0371 40.3201 

20 85.9709 89.3264 86.2340 88.0362 

30 105.6931 109.3287 109.2367 103.1017 

40 132.0289 133.3079 138.4563 137.2843 

3.3.3   Visual Performance Comparison 

Figures 3.2 to 3.5 show the visual performance comparison of proposed method with 

KLLD, KSVD, and NLM method. It is important to emphasize that the visual 

impressions of resultant image of proposed method are very close to the original image.  

 

Figure 3.2 Visual performance comparison of different denoising methods (a). Original (b). Noisy (c). 

K-LLD (d). K-SVD (e). NLM (f). Our Method 

The visual similarity is the key feature for fingerprint matching; therefore, it is an 

important aspect to be taken under consideration while performing image denoising of 

fingerprints. From the results, it is evident that KSVD and NLM methods have 

introduced distortion of blur in the fingerprints in figure 3.3 and 3.4; however, the KLLD 

results are also close to the original image but KLLD is not able to filter out the noise 
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completely. The visual results accord with the numerical results in terms of Euclidean 

distance. 

 

Figure 3.3 Visual performance comparison of different denoising methods (a). Original (b). Noisy (c). 

K-LLD (d). K-SVD (e). NLM (f). Our Method 

 

Figure 3.4 Visual performance comparison of different denoising methods (a). Original (b). Noisy (c). 

K-LLD (d). K-SVD (e). NLM (f). Our Method 

 

Figure 3.5 Visual performance comparison of different denoising methods (a). Original (b). Noisy (c). 

K-LLD (d). K-SVD (e). NLM (f). Our Method 

3.4   Significant Findings 

This chapter addressed the problem of fingerprint denoising. A novel approach of ridge 

orientation based sparse dictionary learning is proposed. The significant findings of the 

chapter are listed below 
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(a) Sub-dictionary trained for sub-groups formed of geometrically similar patches, work 

more effectively and this will help in improving denoising performance.  

(b) Use of sub-dictionaries based on ridge orientation significantly improved the 

effectiveness of sparse modeling of information in a fingerprint image in the form 

local ridge patterns. 

(c) The simulation results demonstrate that the new method achieves better results in 

comparison with its counterparts and will establish in improving performances of 

fingerprint-identification systems 

This chapter is based on the following work: 

Kuldeep Singh, Rajiv Kapoor, Raunaq Nayar, “Fingerprint denoising using ridge 

orientation based clustered dictionaries”, Neurocomputing (Elsevier, Impact factor- 

2.292) 167(2015)418-423 (DOI:10.1016/j.neucom.2015.04.053) [109] 

 

  



CHAPTER 4  

SPARSE REPRESENTATION BASED FINGERPRINT 

SUPERRESOLUTION 

 

This chapter demonstrates a novel ridge orientation based sparse fingerprint 

superresolution algorithm. This approach is motivated by recent advancements in single 

image superresolution using sparse representation. The orientation of ridge or a valley 

has been exploited in fingerprint matching algorithms [106] [105] in past. In the proposed 

method, the same concept of dominant orientation has been utilized to subdivide a large 

dictionary into the array of sub-dictionaries to exploit self-similarity among patches. The 

training image patches are clustered into groups based on the orientation of ridge 

structures present in fingerprint images, and a sub-dictionary is learned for each cluster. 

While reconstructing HR patches, a suitable sub-dictionary is adaptively chosen by 

calculating residue error for each sub-dictionary. Back projection is further utilized to 

eliminate the discrepancy due to sparse modeling and noise.  

4.1   Fingerprint Superresolution using Clustered Coupled Sparse 

Dictionaries 

The proposed fingerprint superresolution algorithm comprises of three main steps: Ridge 

orientation based clustering, Dictionary learning, Sparse superresolution, and Back 

projection. 
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4.1.1   Ridge Orientation based Clustering 

This method is very similar to that of explained in Section 3.1.1; however, it is explained 

here for better understanding of chapter. A fingerprint image consists of textured 

information. A small patch in a fingerprint image contains local structures such as ridges 

and valleys. Considering the fact that fingerprint images often contains many repetitive 

geometric structures (or self-similarity), we exploit this self-similarity among patches for 

better sparse representation, which in turn increases the superresolution performance. The 

idea behind this approach is to group the patches containing similar geometric structures 

or dominant orientation and construct separate sub-dictionaries for each group. The 

orientation of a ridge or a valley in the local patch has been exploited in fingerprint 

matching algorithms [106] [105]. In our experiment, we have utilized the same concept 

of local ridge orientation to subdivide a larger dictionary into array of sub-dictionaries for 

different orientation angles i.e. 𝐷 = {𝐷1, 𝐷2, 𝐷3, … … … … … . 𝐷𝐾} . Dividing the dictionary 

based on dominant orientation helps in improving the effectiveness of sparse modeling of 

information in a fingerprint image in form local ridge patterns. The sub-dictionaries are 

trained separately using training patches classified according to dominant orientation of 

ridges. Preprocessing step is carried out to separate out the patches not having any 

dominant orientation are classified as flat, and a separate sub-dictionary is constructed for 

those patches. The variance of gradient features is compared with a threshold value (𝜎𝑡ℎ) 

to obtain the above classification. 

 For finding gradient features of each patch, a gradient operator, is applied to 

obtain the horizontal gradient value 𝐺𝑥 and vertical gradient value 𝐺𝑦.  The block 



Chapter 4:  Sparse Representation based Fingerprint Superresolution 

41 

horizontal and vertical gradients i.e. 𝐺𝑥𝑥 and 𝐺𝑥𝑦 , are calculated for dominant orientation 

patches by summing up all the pixel gradients of the particular direction .i.e. 

 𝐺𝑥𝑦 = ∑  ∑  2𝐺𝑥(𝑢, 𝑣)
𝑗+(𝑤/2)
𝑣=𝑗−(𝑤/2)

𝑖+(𝑤/2)
𝑢=𝑖−(𝑤/2) 𝐺𝑦(𝑢, 𝑣)    (4.1) 

  𝐺𝑥𝑥 = ∑ ∑ (𝐺𝑥
2(𝑢, 𝑣) −

𝑗+(
𝑤

2
)

𝑣=𝑗−(
𝑤

2
)

𝑖+(
𝑤

2
)

𝑢=𝑖−(
𝑤

2
)

𝐺𝑦
2(𝑢, 𝑣))                                (4.2) 

The most probable orientation of the patch can now be obtained as: 

 𝑂(𝑥, 𝑦) =
1

2
tan−1(

𝐺𝑥𝑦

𝐺𝑥𝑥
)                       (4.3) 

Once the ridge orientation of each patch is estimated further clustering is applied on the 

angles to group patches of similar structure in one cluster. For our algorithm, we run 

unsupervised classification technique, K-means clustering algorithm, which performs 

clustering of patches into some prefixed number of clusters. At the end of the clustering 

process, we have K clusters:  {𝐿} = {𝐿1, 𝐿2, 𝐿3, … … … … … . 𝐿𝐾} (classes𝛺𝑘), which 

includes one cluster for smooth patches.  

4.1.2   Dictionary Learning 

A separate coupled dictionary is trained for each cluster framed in above step to get K 

sub-dictionary {𝐷(𝛺1), 𝐷(𝛺2), … . . , 𝐷(𝛺𝐾)}  where D(Ωi) = {𝐷𝑙(Ωi)̃  𝐷ℎ(Ωi)}
𝑇
. For Dictionary 

construction a training set, composed by some high-resolution images {𝑋𝑗} is taken. The 

corresponding low-resolution image set {𝑌𝑗} is constructed by down-sampling, {𝑋𝑗} by a 

factor S. By using bicubic interpolator, an up-sampled set of images of expected high-

resolution size is constructed.  

The image divided in overlapped patches of size √𝑛  ×  √𝑛  and each patch is 

ordered lexicographically as column vector  𝑦𝑘 ∈ 𝑅𝑛 ; here k is the index of the patch. 
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Next all the patches belonging to same sub group are stacked in matrix denoted as  𝑦𝛺𝑖
 ∈

𝑅𝑛 ×𝐶𝑖 i.e. 𝑦𝛺𝑖
= {𝑦𝛺𝑖1

, 𝑦𝛺𝑖2 , … … , 𝑦𝛺𝑖𝐶𝑖
 } , similarly 𝑥𝛺𝑖

= {𝑥𝛺𝑖1
, 𝑥𝛺𝑖2 , … … , 𝑥𝛺𝑖𝐶𝑖

 }, which 

consists of each patch represented as a column of the matrix. 𝐶𝑖 is the number of patches 

in 𝑖𝑡ℎ subgroup. The number of patches may vary for different sub groups. Once groups 

of patches of similar orientation are formed, next step is to train sub-dictionary for the 

individual group. The core of the sparse representation modeling lies in the choice of 

dictionary 𝐷.  Textures, sharp edges, and corners of image play a crucial role in visual 

quality improvement while performing image super-resolution [17]. For that reason the 

gradient operator 𝐺 is chosen in dictionary learning phase in sync with the 

superresolution phase. Therefore, the gradient dictionary for one cluster 𝐷�̃�  ∈  𝑅4𝑛 × 𝑁 for 

LR images is defined as  

 𝐷𝑙(Ωi)̃ = 𝐺𝐷𝑙(Ωi)                        (4.4) 

Constructing an overcomplete dictionary involves the solution of following optimization 

problem 

 𝐷 = arg 𝑚𝑖𝑛𝐷,𝛼  ‖𝑋 − 𝐷𝛼‖2
2 +  𝜇‖𝛼‖1 𝑠. 𝑡. ‖𝐷𝑖‖2

2  ≤ 1, 𝑖 = 1,2, … … 𝑁       (4.5) 

For couple dictionary [55] corresponding to one cluster,𝐷 = {𝐷�̃�  𝐷ℎ}
𝑇
, 𝑋 =

 {𝐺{𝑦𝑖}, {𝑥𝑖}}
𝑇
and N is the number of columns in the dictionary. K-SVD [42] is a natural 

choice for dictionary learning due to its simplicity and ease of implementation. In 

addition to it, the K-SVD dictionary learning process has in it a noise rejection capability.  

Algorithm 4.1: Ridge Orientation based Dictionary Learning 

Input: Training set of HR images  
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Step1. Generate LR training set by down sampling HR images and then interpolating 

them back to the size of expected super-resolved output image using bicubic 

interpolation. 

Step2.  Take patches of size √𝑛 𝑋 √𝑛  from HR training set image {𝑥𝑖} , 𝑥𝑖 ∈  𝑅𝑛×1 and 

gradient of LR training set {𝐺𝑦𝑖} , 𝐺𝑦𝑖 ∈  𝑅4𝑛×1    

Step3. Calculate the variance of each patch and classify flat patches based on the 

threshold value. 

Step4. Compute ridge orientation for all patches using Equation (4.1) - (4.3) 

Step5. Cluster the orientation angles of patches into K-1 sets by K- mean clustering. 

Step6. Train coupled dictionary for each cluster using KSVD algorithm 

                     For k= 1 to K 

{𝐷ℎ𝑘 , 𝐷𝑙�̃�} = 𝐾𝑆𝑉𝐷({𝑥𝑘, 𝐺𝑦𝑘}) 

                      end 

 Output: Coupled dictionary 𝐷 = {𝐷ℎ𝑘, 𝐷𝑙�̃�};  k =  1 to K  𝐷ℎ𝑘 ∈  𝑅𝑛×200 𝑎𝑛𝑑  𝐷𝑙�̃� ∈

 𝑅4𝑛×200 

 

The K-SVD algorithm iteratively optimizes the above objective function and yields the 

coupled dictionary. The dictionary learning step yields K sub-dictionaries 

{𝐷(𝛺1), 𝐷(𝛺2), … . . , 𝐷(𝛺𝐾)}  and numbers of atoms are adaptive to the total number of 
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patches in each group. For fingerprint images, the smooth groups have less number of 

patches; hence, lesser number of atoms can be allotted to corresponding sub-dictionary. 

4.1.3   Sparse Superresolution 

Once the coupled sub-dictionaries are learned for each cluster, the next step is to 

calculate the sparse coefficients for individual LR patches using the LR dictionary. For 

estimation of the sparse coefficients �̂�, Orthogonal Matching Pursuit (OMP) algorithm is 

the best choice due to its speed and easy parameter tuning facility for the solution of 

given optimization equation. Given the set of LR sub-dictionary 

{𝐷𝑙(𝛺1)̃ , 𝐷𝑙(𝛺2)̃ , … … . . 𝐷𝑙(𝛺𝐾)
̃ } we form a sparse coefficient matrix for each patch 

corresponding to every sub-dictionary. The problem of coefficient estimation can be 

formulated as  

�̂�(𝛺𝑛) = argmin
𝛼

‖𝐺𝑦𝑘 − 𝐷𝑙(𝛺𝑛)̃ . 𝛼‖
2

2
+  𝛽‖α‖1        (4.6) 

Here 𝑛 = 1,2, … . . 𝐾 is index for sub-dictionaries.  

 To recover an HR patch for a given LR patch, the sparse coefficients {�̂�(𝛺𝑛)} are 

calculated using each of the sub-dictionaries and the residue error 𝜖(𝛺𝑛) is calculated by 

the following equation for each sub-dictionary 

{𝜖(𝛺𝑛) } = ‖𝐺𝑦𝑘 −  𝐷𝑙(𝛺𝑛)̃ . �̂�(𝛺𝑛)‖
2

                       (4.7) 

The sub-dictionary having least residue error is chosen for that particular patch for 

reconstruction of corresponding HR patch. The corresponding HR patch can be restored 

as  

 𝑥�̂� = 𝐷ℎ(𝛺𝑛). �̂�(𝛺𝑛)         (4.8) 
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The flat sub-dictionary classified earlier is used for reconstruction of HR flat patch. The 

final super-resolved image is obtained by aggregation of all estimated HR patches {𝑥𝑘}. 

4.1.4   Back Projection 

For enhancing the superresolution performance and to preserve subtle details of the 

image, we enforce an iterative back projection mechanism that compensates the error. 

Suppose 𝑌 is original LR image and �̂� is super-resolved image output of sparse 

superresolution step, now the �̂� is down sampled i.e. �̂� =  𝜓�̂�. Then we calculate the 

residual error 𝜀𝑟 = 𝑌 − �̂� = 𝑌 − 𝜓�̂�. We apply the same proposed sparse superresolution 

algorithm on the residual error to find the HR version of residual error 𝜀�̂� , the process 

can be defined as 𝜀𝑟 = 𝜓𝜀�̂�  . Finally, high-resolution residual error 𝜀�̂� is added to the 

restored HR image to yield final estimate of latent image 𝑋𝑓𝑖𝑛𝑎𝑙 =  �̂� +  𝜀�̂�. 

 

Algorithm 4.2:  Fingerprint Superresolution using Sparse Coding 

Input: Coupled Dictionary 𝐷 = {𝐷𝑘}; 𝑘 = 1 𝑡𝑜 𝐾, where 𝐷𝑘 = {𝐷ℎ𝑘, 𝐷𝑙�̃�} 𝐷ℎ𝑘 ∈

 𝑅𝑛×200, 𝐷𝑙𝑘 ∈  𝑅4𝑛×200 , a low-resolution image Y . 

Step1. Repeat the following steps for all the patches of input image 

1.1 Take √𝑛 𝑋 √𝑛 size patch 𝑦𝑖 of Y, with two overlapping pixels and Compute the 

mean pixel value 𝑚 of patch 𝑦𝑖. 

1.2 Compute first and second order gradient features to obtain 𝐺𝑦𝑖. 

1.3  For k =1 to K (K number of sub-dictionaries) 

Solve the optimization problem with 𝐷�̃�  and 𝐺𝑦𝑖  and find residue error 𝑟𝑘 
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𝑚𝑖𝑛𝛼 ‖𝐷𝑙�̃�𝛼𝑘 − 𝐺𝑦𝑖‖
2

2
+  𝜇‖𝛼𝑘‖1 

𝑟𝑘 = ‖𝐺𝑦𝑖 − 𝐷𝑙�̌�  . 𝛼𝑘‖
2
 

      end  

1.4 Find the dictionary with minimum residue error 𝑗 = 𝑚𝑖𝑛𝑘(𝑟𝑘) 

1.5 Generate the high-resolution patch 𝑥�̂� = 𝐷ℎ𝑗 . 𝛼𝑗 

1.6 Add mean value 𝑥𝑖
∗ =  𝑥�̂� +  𝑚𝑖 

 End  

Step2. Regenerate HR image �̂� by aggregation of HR patches {𝑥𝑖
∗} 

Step3. Apply back projection on �̂� for upto 5 iteration  

Output: Superresolution image 𝑋𝑓𝑖𝑛𝑎𝑙. 

4.1.5   Experimental Results 

To demonstrate the performance of proposed method we have devised a validation 

methodology consisting three tasks. Firstly, the proposed method is compared with 

bicubic interpolation method [48], Yang’s method [7] and Freeman’s method [57] in 

terms of quality measures i.e. PSNR and SSIM. Then the proposed method is investigated 

in terms of visual quality. Authors believe that visual inspection and quality measures are 

not sufficient to evaluate the performance of fingerprint super-resolution. Filter bank 

based fingerprint matching [105] technique has proved to be very effective technique in 
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fingerprint matching hence we have also used the same concept for performance 

evaluation in terms of matching accuracy of proposed method with other methods. 

4.1.6   Dataset and Simulation Details 

The performance of the proposed method is evaluated on public databases FVC2000, 

FVC2002 and FVC2004.  The images in the database are down sampled to constitute the 

LR set for training as well as test images for superresolution. The fingerprint images are 

randomly selected from all the 12 databases (4 databases each in FVC2000, FVC2002 

and FVC2004) for training and evaluation.  Results for scaling factor (SF) three and four 

are presented. Around 50000 image patches are sampled to train the coupled dictionaries, 

and the patches are clustered into six groups including one group for flat patches and five 

groups based on the dominant orientation of patch. The number of clusters is taken based 

on the distribution of patches in each group. Based on the distribution of patches in each 

group, the number of clusters is chosen. A higher number of clusters is not providing any 

significant improvement in results and sometimes results into very few patches in a 

group. 

Table 4.1 Centroids of Orientation angle clusters 

Cluster No 1 2 3 4 5 

Centroid 

angle 

(degrees) 

-74.1293 -47.148 2.0455 44.7824 75.0747 

 

Table 4.1 shows the centroid value of orientation angle for each cluster computed using 

the K-mean algorithm. For each cluster dictionary of 200 atoms are trained. The variance 

threshold taken for separating the flat patches is 𝜎𝑡ℎ = 0.003. This value can be manually 
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fine-tuned as per requirement of the data set. Taking higher or lower values of this 

parameter can result into the classification of the patch into dominant orientation patch 

and vice versa.  

 For reconstruction of the HR image, patches of size 9×9 (SF=3) and 11×11 

(SF=4) were taken with overlapping of two pixels between adjacent patches to maintain 

the continuity. In our experiment, we found 10 iterations of the LARS/Lasso algorithm to 

be sufficient to give visually pleasing results.  Increasing the number of iterations beyond 

a certain point does not lead to any improvement in the result but rather the sparsity of 

the solution i.e. ‖𝛼‖1 gets penalized to minimize the residue ‖𝐷𝑙�̃�𝛼𝑖 −  𝐺. 𝑦𝑖‖2

2
 , which 

leads to unnatural output HR image. After that the obtained HR image �̂� is fine-tuned by 

back projection for up to five iterations. Gaussian filter with 𝜎 = 1.5 is also applied in 

back projection step to eliminate noise.  

4.1.7   Performance Assessment based on Quantitative Performance Measures 

For assessment of performance of the algorithm, we have chosen two quality measures 

named as Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) 

[108]. Table 4.2 and 4.3 depict the PSNR values computed for various methods and 

proposed method has higher PSNR values in comparison to other methods especially for 

a higher scaling factor of four. It is also evident that back projection helps in improving 

the PSNR measure.  

Table 4.2  The PSNR (dB) of reconstructed image by different methods for SF=3 

Image Bicubic [48] Yang et al. [7] Freeman et al. [57] 
Proposed 

method without 

back projection 

Proposed 

method with 

back projection 
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Fingerprint1 20.7040 22.3151 20.4756 20.6401 22.6510 

Fingerprint2 18.9056 19.4280 18.3109 18.5615 19.5281 

Fingerprint3 20.2412 20.1977 19.2135 19.6374 20.8126 

Fingerprint4 25.2408 24.8742 23.5401 23.0860 25.4709 

Fingerprint5 20.5495 22.1194 20.8496 20.6637 23.0924 

Fingerprint6 19.8966 22.3512 20.4238 20.5230 22.9931 

Mean (50 

Images) 
20.8247 21.0349 20.8968 20.9768 22.1869 

 

Table 4.3 The PSNR (dB) of reconstructed image by different methods for SF=4 

Image Bicubic [48] Yang et al. [7] Freeman et al. [57] 
Proposed 

method without 

back projection 

Proposed 

method with 

back projection 

Fingerprint1 20.3446 21.6845 20.2956 20.5147 22.1582 

Fingerprint2 18.5363 19.3705 18.0118 18.1055 19.3793 

Fingerprint3 19.8424 20.6765 19.0978 19.2804 20.6995 

Fingerprint4 24.6913 25.0880 23.2395 23.0149 25.1248 

Fingerprint5 20.2012 22.5300 20.4756 20.4854 22.8605 

Fingerprint6 19.5344 21.6987 20.2983 20.3708 22.2079 

Mean (50 

Images) 

20.5693 21.0049 20.4971 20.7382 21.9754 
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Table 4.4  The SSIM of reconstructed image by different methods for SF=3 

Image Bicubic [48] Yang et al. [7] Freeman et al. [57] 
Proposed 

method without 

back projection 

Proposed 

method with 

back projection 

Fingerprint1 0.7064 0.7749 0.7377 0.7495 0.7831 

Fingerprint2 0.6332 0.7069 0.6772 0.6775 0.7093 

Fingerprint3 0.6992 0.7709 0.7291 0.7350 0.7732 

Fingerprint4 0.6692 0.7279 0.6875 0.6923 0.7199 

Fingerprint5 0.7499 0.8120 0.7721 0.7874 0.8150 

Fingerprint6 0.7290 0.8105 0.7913 0.7939 0.8270 

Mean (50 

Images) 
0.6868 0.7589 0.7198 0.7257 0.7698 

 

Table 4.5  The SSIM of reconstructed image by different methods for SF=4 

Image Bicubic [48] Yang et al. [7] Freeman et al. [57] 
Proposed 

method without 

back projection 

Proposed 

method with 

back 

projection 

Fingerprint1 0.6319 0.6880 0.6517 0.6509 0.7123 

Fingerprint2 0.5643 0.6360 0.5620 0.5687 0.6500 

Fingerprint3 0.6221 0.6907 0.6277 0.6288 0.6975 

Fingerprint4 0.6027 0.6517 0.5916 0.5905 0.6588 

Fingerprint5 0.6785 0.7425 0.6924 0.6986 0.7504 

Fingerprint6 0.6605 0.7369 0.6995 0.7017 0.7543 

Mean (50 

Images) 
0.6189 0.6810 0.6192 0.6278 0.7021 

 



Chapter 4:  Sparse Representation based Fingerprint Superresolution 

51 

Tables 4.4 and 4.5 show the results of SSIM measure, which judges the structural 

similarity between the original and reconstructed image. Proposed method with or 

without back projection yields higher SSIM value that implies that the method preserves 

the structural aspects while super resolving the image. 

 Also, as seen with PSNR measure, SSIM values are much better than Yang’s 

method for scaling factor four. It can be observed that quality of superresolution is better 

preserved with our method while Yang’s method deteriorates when the higher scaling 

factor is required. 

 

 

Figure 4.1 Visual performance comparison of different superresolution methods for Fingerprint1 

(SF=3) (a) Original low resolution, (b) Bicubic, (c) Yang et al. , (d) Freeman et al., (e) Proposed method 

without back projection, (f) With back projection 

A dataset of 50 test fingerprint images randomly selected from the databases is 

constructed and mean PSNR and mean SSIM is calculated for all the methods and results 
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are presented in Table 4.2-4.5 for analysis purpose. From the analysis of results, we now 

conclude that the proposed algorithm has achieved highly competitive PSNR and SSIM 

performance for all the target images.   

4.1.8   Performance Assessment based on Visual Inspection 

This subsection evaluates the performance of our algorithm in visual perspective. In 

figures 4.1-4.4, the low-resolution test image and the super-resolution images 

reconstructed by different super-resolution algorithms are depicted for super-resolution 

factor 3 and 4. Images taken here for visual inspection are of different contrast to test the 

robustness of the method.  

 

 

Figure 4.2 Visual performance comparison of different superresolution methods for Fingerprint2 

(SF=3) (a) Original low resolution, (b) Bicubic, (c) Yang et al. ,(d) Freeman et al. , (e) Proposed method 

without back projection, (f) With back projection 
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Original image in Figure 4.1 and 4.3 is of higher contrast and results show that Bicubic 

and Yang’s image are blurred in appearance, however; our method has produced blur-

free image. Results in Figure 4.2 and 4.4 shows that proposed method is also well suited 

for fingerprint images of low contrast with light thumb impression and better in terms of 

information preservation. In fact, all the results show that our algorithm reconstructs 

images with the balance between the high-resolution details and the artifacts. From visual 

inspection, it is being observed that the resultant image with back projection is visually 

closer to the original image.  However, from the result of image Fingerprint2 it is evident 

that back projection does not always lead to a better result. 

 

 

Figure 4.3  Visual performance comparison of different superresolution methods for Fingerprint1 

(SF=4) (a) Original low resolution, (b) Bicubic, (c) Yang et al. ,(d) Freeman et al. , (e) Proposed method 

without back projection, (f) With back projection 
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4.1.9   Performance Assessment based on Fingerprint Matching 

PSNR and SSIM measures are not sufficient to measure the performance for fingerprint 

superresolution. Filter-bank based fingerprint matcher [105] is used for evaluating the 

performance of proposed method in terms of matching accuracy. We evaluate the 

algorithms on a set of 800 images (100 users, 8 images each) derived from FVC2002 

DB1 database.  

 

Figure 4.4 Visual performance comparison of different superresolution methods for Fingerprint2 

(SF=4) (a) Original low resolution, (b) Bicubic, (c) Yang et al. ,(d) Freeman et al. , (e) Proposed method 

without back projection, (f) With back projection 

For genuine attempts, each fingerprint impression is matched with the remaining 

impressions of the same finger and for imposter attempts the first impression of each 

finger is matched against the first impression of the remaining fingers. The total number 

of genuine and impostor comparison are 2800 and 4950, respectively.  
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The performance of proposed method is evaluated in terms of Equal error rate (EER) and 

Detection error tradeoff (DET) curve. EER is a threshold-independent performance 

measure calculated as an average of the total errors when FAR equals FRR. Better 

fingerprint matching systems have lower EER value.  Figure 4.5 shows the DET curve of 

bicubic, Freeman et al., Yang et al. and proposed method with the back projection for 

scaling factor four. 

 

Figure 4.5. DET curve for different superresolution methods 

As per the EER results depicted in Table 4.6 the proposed algorithm has lowest EER 

value. From the matching results, we can conclude that the proposed fingerprint 

superresolution algorithm has the best performance among other methods taken for 

comparison in terms of matching accuracy. 
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Table 4.6 EER Results of different Superresolution Methods 

Methods Bicubic [48] Freeman et al. [57] Yang et al. [7] Proposed 

EER(%) 3.12 2.53 1.92 1.84 

 

4.2   Significant Findings 

This chapter addressed the problem of fingerprint superresolution using ridge orientation 

based clustered coupled sparse dictionaries. The significant findings of the chapter are 

listed below 

a) Use of sub-dictionaries based on dominant orientation (self-similarity) improved the 

effectiveness of sparse modeling of information in a fingerprint image in the form of 

local ridge patterns. 

b) The inclusion of sub-dictionary for flat patches improved the reconstruction where 

dominant ridge orientation is not present.  

c) Adaptive selection of suitable sub-dictionary while reconstruction based on 

minimum residue error criterion enhanced the performance of the algorithm.  

d) Use of back projection method eliminated discrepancy due to noise or inaccuracy in 

the sparse representation.  

This chapter is based on the following work: 

Kuldeep Singh, Anubhav Gupta , Rajiv Kapoor, “Fingerprint image super-resolution via 

ridge orientation based clustered coupled sparse dictionaries”, Journal of electronic 

imaging (SPIE, Impact factor- 0.832) 20(4) (2015) (DOI:10.1117/1.JEI.24.4.043015) 

[110] 

 



CHAPTER 5  

CONTRAST ENHANCEMENT USING HISTOGRAM 

EQUALIZATION 

 

This chapter explains three novel proposed histogram equalization based contrast 

enhancement methods. The MMSICHE [111] method caters the problem of preservation 

of mean brightness, entropy and control over enhancement rate simultaneously. For 

contrast enhancement of low light images, Exposure based sub-image histogram 

equalization (ESIHE) [112] and two variants of ESIHE i.e. RESIHE and RS-ESIHE 

[113] are proposed. Detailed performance analysis of proposed methods is presented in 

terms of image quality measures as well as in terms of visual quality.  

5.1   Median-Mean based Sub-Image Clipped Histogram Equalization 

This method achieves multi-objective of preserving brightness as well as image 

information content (entropy) along with control over enhancement rate, which in turn 

suits for consumer electronics applications. This method avoids excessive enhancement 

and produces images with natural enhancement. The algorithm consists of three steps, 

namely Median and Mean calculation, Histogram clipping and Histogram subdivision & 

equalization. Following subsections present description of each step of the algorithm. 

5.1.1   Median and Mean Calculation  
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The median of the image is denoted as an intensity value 𝑋𝑒where the cumulative density 

function is 0.5. Two mean intensity values (𝑋𝑚𝑙 & 𝑋𝑚𝑢) are calculated for two individual 

sub-histogram divided based on median value. The values of 𝑋𝑒, 𝑋𝑚𝑙 and 𝑋𝑚𝑢are 

calculated before histogram clipping process. Equation 5.1 computes the total number of 

samples N  for a given image   

𝑁 = ∑ ℎ(𝑘)𝐿−1
𝑘=0                 (5.1) 

ℎ(𝑘)is the histogram of the image and L is the total number of gray levels. For 

calculating 𝑋𝑒 consider a variable  𝑧(𝑘) 

𝑧(𝑘) = 𝑧(𝑘 − 1) + ℎ(𝑘)      for k = 0,1 … , L − 1 & z(0) = h(0)       (5.2) 

Median variable can be calculated as  

𝑋𝑒 = 𝑘 𝑤ℎ𝑒𝑟𝑒 𝑧(𝑘) ≥ 𝑁/2              (5.3) 

Mean variables 𝑋𝑚𝑙 and 𝑋𝑚𝑢 are expressed as  

𝑋𝑚𝑙 = ∑ 𝑃𝑙(𝑘) × 𝑘
𝑋𝑒−1
𝑘=0            (5.4) 

𝑋𝑚𝑢 = ∑ 𝑃𝑢(𝑘) × 𝑘𝐿−1
𝑋𝑒

           (5.5) 

where 𝑃𝑙(𝑘)and 𝑃𝑢(𝑘)are individual PDF the sub-histograms. Calculation of these PDFs 

is depicted below 

𝑃𝑙(𝑘) =
ℎ(𝑘)

𝑁𝑙
⁄  𝑓𝑜𝑟 𝑘 = 0,1, … … , 𝑋𝑒 − 1         (5.6) 

𝑃𝑢(𝑘) =
ℎ(𝑘)

𝑁𝑢
⁄  𝑓𝑜𝑟 𝑘 = 𝑋𝑒, 𝑋𝑒 + 1, … , 𝐿 − 1        (5.7) 
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𝑁𝑙 and 𝑁𝑢are total numbers of pixels in the lower and upper sub-histogram respectively.  

5.1.2   Histogram Clipping 

The idea behind the Histogram clipping is to control the enhancement rate consequently 

to result in a natural appearance of the image.  For limiting the enhancement rate, we 

need to limit the first derivative of the histogram or the histogram itself [95]. 

 

 

Figure 5.1 MMSICHE: Process of histogram clipping and sub division 

 

The histogram bins having the value greater than the clipping threshold are limited to the 

threshold. The clipping threshold is calculated as the median of occupied intensity. The 

clipping threshold 𝑇𝑐 and the clipped histogram is calculated as 

𝑇𝑐 = 𝑚𝑒𝑑𝑖𝑎𝑛[ℎ(𝑘)]             (5.8) 

ℎ𝑐(𝑘) = {
ℎ(𝑘), ℎ(𝑘) < 𝑇𝑐

𝑇𝑐, ℎ(𝑘) ≥ 𝑇𝑐
             (5.9) 

ℎ(𝑘)and ℎ𝑐(𝑘) are the original and clipped histogram. This method is computationally 

efficient and less time consuming. The clipping process is graphically illustrated in 

Figure 5.1. 
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5.1.3   Histogram Sub Division and Equalization  

The original histogram is first bisected based on median intensity value 𝑋𝑒. These 

individual sub-histograms are further divided into two small sub-histograms where the 

individual mean 𝑋𝑚𝑙 and 𝑋𝑚𝑢 acts as a separating point of sub-histograms. The 

histogram sub division process results in four sub-images 𝑊𝐿𝑙, 𝑊𝐿𝑢, 𝑊𝑈𝑙, and 

𝑊𝑈𝑢ranging from gray level 0 to 𝑋𝑚𝑙, 𝑋𝑚𝑙 + 1 to 𝑋𝑒, 𝑋𝑒 + 1 to 𝑋𝑚𝑢and 𝑋𝑚𝑢 + 1to L-1. 

𝑃𝐿𝑙(𝑘), 𝑃𝐿𝑢(𝑘), 𝑃𝑈𝑙(𝑘) and 𝑃𝑈𝑢(𝑘)are corresponding PDF of these sub-images. 

𝑃𝐿𝑙(𝑘) =
ℎ𝑐(𝑘)

𝑁𝐿𝑙
⁄  𝑓𝑜𝑟 0 ≤ 𝑘 ≤ 𝑋𝑚𝑙        (5.10) 

𝑃𝐿𝑢(𝑘) =
ℎ𝑐(𝑘)

𝑁𝐿𝑢
⁄  𝑓𝑜𝑟 𝑋𝑚𝑙 + 1 ≤ 𝑘 ≤ 𝑋𝑒       (5.11) 

𝑃𝑈𝑙(𝑘) =
ℎ𝑐(𝑘)

𝑁𝑈𝑙
⁄  𝑓𝑜𝑟 𝑋𝑒 + 1 ≤ 𝑘 ≤ 𝑋𝑚𝑢       (5.12) 

𝑃𝑈𝑢(𝑘) =
ℎ𝑐(𝑘)

𝑁𝑈𝑢
⁄  𝑓𝑜𝑟 𝑋𝑚𝑢 + 1 ≤ 𝑘 ≤ 𝐿 − 1       (5.13)  

𝑁𝐿𝑙, 𝑁𝐿𝑢, 𝑁𝑈𝑙 and 𝑁𝑈𝑢are total number of pixels in sub-images 𝑊𝐿𝑙, 𝑊𝐿𝑢, 𝑊𝑈𝑙 and 

𝑊𝑈𝑢respectively. 𝐶𝐿𝑙, 𝐶𝐿𝑢, 𝐶𝑈𝑙 and 𝐶𝑈𝑢 are corresponding CDF of individual sub-images 

as defined below  

𝐶𝐿𝑙(𝑘) = ∑ 𝑃𝐿𝑙(𝑘)𝑋𝑚𝑙
𝑘=0           (5.14) 

𝐶𝐿𝑢(𝑘) = ∑ 𝑃𝐿𝑢(𝑘)𝑋𝑒
𝑘=𝑋𝑚𝑙+1           (5.15) 

𝐶𝑈𝑙(𝑘) = ∑ 𝑃𝑈𝑙(𝑘)𝑋𝑚𝑢
𝑘=𝑋𝑒+1           (5.16) 

𝐶𝑈𝑢(𝑘) = ∑ 𝑃𝑈𝑢(𝑘)𝐿−1
𝑘=𝑋𝑚𝑢+1           (5.17) 
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The next step of MMSICHE is to equalize all the four sub-histograms individually. The 

transfer functions for histogram equalization can be defined as below 

𝐹𝐿𝑙 = 𝑋𝑚𝑙 × 𝐶𝐿𝑙           (5.18) 

𝐹𝐿𝑢 = (𝑋𝑚𝑙 + 1) + (𝑋𝑒 − 𝑋𝑚𝑙 + 1) × 𝐶𝐿𝑢        (5.19) 

𝐹𝑈𝑙 = (𝑋𝑒 + 1) + (𝑋𝑚𝑢 − 𝑋𝑒 + 1) × 𝐶𝑈𝑙        (5.20)  

𝐹𝑈𝑢 = (𝑋𝑚𝑢 + 1) + (𝐿 − 𝑋𝑚𝑢 + 1) × 𝐶𝑈𝑢        (5.21)  

𝐹𝐿𝑙, 𝐹𝐿𝑢, 𝐹𝑈𝑙 and 𝐹𝑈𝑢are the transfer functions used for equalizing the sub-histograms 

individually. The final step involves the integration of all sub-images into one complete 

image for analysis. The MMSICHE-ed output image is produced by the combination of 

all four transfer functions. 

5.1.4   Simulation Results of MMSIHE Method 

The simulation results of proposed MMSICHE method are compared with existing 

Histogram equalization based methods i.e. WTHE [93], QDHE [101], RSWHE [92], 

SHMS [104], BHEPL [95] and BHEPL-D [102]. To analyze and compare the existing 

methods five test images: Tank, U2, Field, Copter and Hands are used. For performance 

evaluation of MMSICHE, four image quality measures are chosen, i.e. Average 

Luminance, Absolute Mean Brightness Error (AMBE), Average Information content 

(Entropy) and Back Ground Gray Level (BGL) [114] . Average Luminance 𝜇 is the mean 

gray level or brightness of the image. An algorithm is deemed to be better if average 

luminance of enhanced image is very close to the low-quality image. Absolute Mean 

Brightness Error (AMBE) is the absolute difference between the mean brightness of 

enhanced and the test image. The calculation of 𝜇 and AMBE is expressed in (5.22) and 
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(5.23). 𝑋𝜇 is the mean value of the input image, while 𝑌𝜇 is the mean value of the output 

image. 

𝜇 = ∑ 𝑙 × 𝑃(𝑙)𝐿−1
𝑙=0            (5.22) 

𝐴𝑀𝐵𝐸 = |𝑋𝜇 − 𝑌𝜇|           (5.23) 

AMBE measures excessive brightness change and directly related to average luminance. 

For best performance, the AMBE value should be as low as possible i.e. the mean 

brightness of enhanced and test image should be very close. Average information content 

(entropy) is a measure of the richness of details of the image and usually measured in 

units as bits. The entropy here referred is the Shannon Entropy, and it measures of the 

uncertainty associated with gray levels in the image. A larger value of the entropy 

indicates that more information content is available in the image. Entropy E(p) is defined 

as  

𝐸(𝑝) = − ∑ 𝑃(𝑖)𝑙𝑜𝑔𝑃(𝑖)𝐿−1
𝑖=0           (5.24) 

Back Ground Gray level is the quality measure for natural enhancement. The BGL value 

close to the original image guarantees natural enhancement. 

Table 5.1  MMSICHE: Average luminance comparison 

 

Images 

 

Original 

 

WTHE 

[93] 

 

QDHE 

[101] 

 

RSWHE-M 

[92] 

 

SHMS 

[104] 

 

BHEPL 

[95] 

 

BHEPL-D 

[102] 

 

MMSICHE 

Tank 132.38 212.49 162.65 124.61 131.81 154.35 33.31 134.54 

U2 32.51 108.28 57.78 26.80 131.33 35.17 33.79 37.16 
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5.1.4.1  Performance Assessment based on Image Quality Measures 

Table 5.1-5.4 shows a matrix of all four IQM’s for 5 test images, where rows represent 

the test images and the columns represent various methods used for comparison. Average 

luminance and AMBE are two measures, which reflect the brightness preservation 

capability. Table 5.1 shows Average Luminance measures for all the images using 

various methods. Table 5.1 reveals that the average of all images is best for MMSICHE 

method in terms of its closeness to the average of the original image.  

Table 5.2  MMSICHE: Average mean brightness error (AMBE) comparison 

 

Images 

 

WTHE 

[93] 

 

QDHE 

[101] 

 

RSWHE-M 

[92] 

 

SHMS 

[104] 

 

BHEPL 

[95] 

 

BHEPL-D 

[102] 

 

MMSICHE 

Tank 80.10 30.27 7.77 0.57 21.96 99.07 2.16 

U2 75.77 25.27 5.72 98.82 2.66 1.28 4.64 

Field 26.42 33.78 11.17 22.63 13.89 73.14 6.37 

Copter 39.24 2.15 6.97 88.94 10.74 3.84 3.50 

Hands 122.94 11.45 6.69 123.34 2.35 5.06 3.08 

Mean 68.89 20.58 7.66 66.86 10.32 36.47 3.95 

 

The average of MMSIHE is 107.97 close to the average of the original image (110.52). 

Specifically for Copter, Hands and Field image, the MMSICHE method produces the 

Field 106.39 132.81 140.17 95.22 129.02 120.29 33.25 112.76 

Copter 219.46 180.22 217.31 205.43 130.52 208.73 215.62 215.96 

Hands 49.13 172.07 60.58 42.44 172.47 46.78 44.07 52.21 

Mean 107.97 161.17 127.69 98.90 139.03 113.06 72.00 110.52 
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images having average luminance very close to the original image. Table 5.2 shows the 

matrix of AMBE for all the images using various methods. Similar to average luminance 

MMSICHE provides best results in terms of AMBE among all methods. MMSICHE 

algorithm has least AMBE value for Copter, Hands, and Field image and further as 

shown in the last row the average of AMBE for all images is 3.95, which is significantly 

less than all other techniques. Better results in terms of Average Luminance and AMBE 

reflect that MMSICHE is well suited for mean brightness preservation required for 

consumer electronics devices.  

Table 5.3  MMSICHE: Average information content (Entropy) comparison 

 

Images 

 

Original 

 

WTHE 

[93] 

 

QDHE 

[101] 

 

RSWHE-M 

[92] 

 

SHMS 

[104] 

 

BHEPL 

[95] 

 

BHEPL-D 

[102] 

 

MMSICHE 

Tank 5.49 4.65 5.48 4.65 5.38 5.47 2.91 5.50 

U2 5.64 4.07 5.44 4.07 5.41 5.61 5.60 5.55 

Field 6.56 5.28 6.53 5.28 6.50 6.53 3.86 6.56 

Copter 6.31 3.75 6.24 3.75 6.11 6.21 6.19 6.22 

Hands 3.99 3.20 3.91 3.20 3.60 3.96 3.97 3.98 

Mean 5.60 4.19 5.52 4.19 5.40 5.55 4.51 5.56 

 

Table 5.3 presents the entropy measures for all the techniques used in this work. 

MMSICHE produces highest or close to the highest entropy for all the five images thus 

becomes the best suitable approach for bringing out information contents of the images. 

Specifically for Tank, Field and Hands images the entropy values are almost equal to the 
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original image. The average of entropy produced by MMSICHE method for all images is 

5.56 that are very close to average entropy (5.60) for original images; however average 

entropy of other methods is very less in comparison with the original image. 

Table 5.4 MMSICHE: Background gray level (BGL) comparison 

 

Images 

 

Original 

 

WTHE 

[93] 

 

QDHE 

[101] 

 

RSWHE-M 

[92] 

 

SHMS 

[104] 

 

BHEPL 

[95] 

 

BHEPL-D 

[102] 

 

MMSICHE 

Tank 147 134 195 134 175 186 0 148 

U2 22 23 20 23 101 16 16 27 

Field 116 108 163 108 154 133 0 118 

Copter 234 221 226 221 185 238 239 228 

Hands 23 24 24 24 159 12 10 23 

Mean 108 102 125 102 154 117 53 108 

  

The entropy closer to the original image guarantees natural enhancement. Back Ground 

Gray Level results shown in Table 5.4 significantly outperform other techniques for all 

the images. The BGL values from MMSICHE method for most images are very close to 

the original image and ensure the natural enhancement. However, the MMSICHE 

method’s BGL average for all the images is exactly equal to the original image.  

5.1.4.2  Assessment of Visual Quality and Natural Appearance  

Qualitative assessment of contrast enhancement is necessary along with quantitative 

assessment based on IQM’s.  By Visual Quality inspection, the judgment of annoying 

artifacts, over enhancement and unnatural enhancement can be done. Wide varieties of 
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standard images ranging from low-contrast to high-contrast, dark-background to bright-

background are selected to show the effectiveness of the new algorithm.  

The analysis of visual results from Figure 5.2-5.6 shows that the MMSICHE 

method produces the best results for all the images in terms of control on over 

enhancement as well as natural appearance. QDHE, WTHE and SHMS methods have 

produced over enhanced images in Figure 5.2 of Field image. However, the BHEPL-D 

method has introduced noise and produced annoying artifacts. The acceptable and natural 

enhanced images are produced by the BHEPL, RSWHE and MMSICHE. Although the 

MMSICHE results in Figure 5.2 for Field image are visually comparable to other 

methods but it yields the highest entropy value almost equal to the original image.  

 

 

Figure 5.2  Enhancement results of different HE methods for Field image (a) Original, (b) QDHE, (c) 

SHMS, (d) WTHE, (e) RSWHE, (f) BHEPL, (g) BHEPL-D and (h) MMSICHE  

The Copter image results in Figure 5.3 can be analyzed by viewing the copter object. The 

object has been darkened by WTHE and SHMS method, and overall contrast has been 
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reduced by these methods. MMSICHE method has produced an image with similar 

results of other methods.  

 

 

Figure 5.3  Enhancement results of different HE methods for Copter image (a) Original, (b) QDHE, (c) 

SHMS, (d) WTHE, (e) RSWHE, (f) BHEPL, (g) BHEPL-D and (h) MMSICHE 

 

 

Figure 5.4 Enhancement results of different HE methods for Hands image (a) Original, (b) QDHE, (c) 

SHMS, (d) WTHE, (e) RSWHE, (f) BHEPL, (g) BHEPL-D and (h) MMSICHE 
 



Chapter 5:  Contrast Enhancement using Histogram Equalization 

 

68 

Similar to Copter image both WTHE and SHMS has deteriorated the Hands image in 

Figure 5.4 badly. RSWHE has produced over enhanced image, particularly on the finger 

and thumb portion. MMSICHE-ed Hands image is naturally enhanced image.  The 

effectiveness of proposed method in terms of contrast enhancement can be noticed in 

Figure 5.5 of Tank image.  

 

Figure 5.5 Enhancement results of different HE methods for Tank image (a) Original, (b) QDHE, (c) 

SHMS, (d) WTHE, (e) RSWHE, (f) BHEPL, (g) BHEPL-D and (h) MMSICHE 

 

The original image is a low contrast image and MMSICHE yields contrast enhanced 

image along with natural appearance. Over-enhancement and intensity saturation 

phenomena have been produced by RSWHE and WTHE. SHMS output does not provide 

a clear vision of object in case of Tank image and BHEPL-D has deteriorated the image. 

The results in Figure 5.6 of U2 image clearly show the superiority of MMSICHE method 

over other methods. It is clearly noticeable that the outputs of SHMS, WTHE, and QDHE 

have noise amplification. However the MMSICHE-ed image is free from noise as well as 

provides good contrast enhancement.  



Chapter 5:  Contrast Enhancement using Histogram Equalization 

 

69 

 

Figure 5.6 Enhancement results of different HE methods for U2 image (a) Original, (b) QDHE, (c) 

SHMS, (d) WTHE, (e) RSWHE, (f) BHEPL, (g) BHEPL-D and (h) MMSICHE 

 

5.2   Exposure based Sub-image Histogram Equalization 

Poor contrast images do not occupy complete dynamic range. Images having histogram 

bins concentrated towards lower part or the darker gray levels possess low-intensity 

exposure whereas images having histogram bins concentrated towards higher part or the 

brighter part possess high-intensity exposure. Images can be broadly classified as under 

exposed and over exposed based on the intensity exposure. Algorithm consists of three 

steps, namely Exposure thresholds calculation, Histogram Clipping and Histogram Sub 

division & Equalization. The description of each step is presented in the following 

subsections. 
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5.2.1   Exposure Threshold Calculation 

A parameter named exposure threshold (Hanmandlu et al., 2009) is defined which 

denotes the measure of intensity exposure of the image. This parameter is being used to 

divide the image in under exposed and over exposed sub-images .The normalized range 

of exposure value is [0-1]. If the value of exposure for a particular image is more than 0.5 

and tends towards 1, it means that the image has a majority of overexposed region and if 

this value is less than 0.5 and tending towards 0 then image is containing a majority of 

under exposed regions. In both cases, image contains poor contrast and need contrast 

enhancement. Image intensity exposure value can be calculated as Equation (5.25). 

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 =  
1

𝐿
 
∑ ℎ(𝑘)𝑘𝐿

𝑘=1

∑ ℎ(𝑘)𝐿
𝑘=1

          (5.25) 

where ℎ(𝑘) histogram of image and L is a total number of gray levels. 

Another parameter 𝑋𝑎 related to exposure is defined, which provides the value of 

gray level boundary that divides the image into under exposed and over exposed sub-

images. 

𝑋𝑎 = 𝐿(1 − 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒)                                     (5.26) 

This parameter attains a value of greater or lesser than L/2 (gray level) for exposure value 

lesser or greater than 0.5 respectively for an image having dynamic range 0 to L-1. 

5.2.2   Histogram Clipping 

Similar to MMSICHE method, histogram clipping is also applied in ESIHE method. The 

clipping threshold is calculated as an average number of gray level occurrences, unlike 

MMSICHE where clipping threshold is calculated as the median of occupied intensity. 
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The formula for clipping threshold 𝑇𝑐  is presented in (5.27) and (5.28) calculates the 

clipped histogram 

𝑇𝑐 =
1

𝐿
∑ ℎ(𝑘)𝐿

𝑘=1                             (5.27) 

ℎ𝑐(𝑘) = {
ℎ(𝑘), ℎ(𝑘) < 𝑇𝑐

𝑇𝑐, ℎ(𝑘) ≥ 𝑇𝑐
          (5.28) 

Where ℎ(𝑘) and ℎ𝑐(𝑘) are the original and clipped histogram respectively. This method 

of histogram clipping is computationally efficient and consumes lesser time. 

5.2.3   Histogram Sub Division and Equalization  

The original histogram is first bisected based on exposure threshold value 𝑋𝑎 . The 

Histogram Sub Division process results in two sub-images 𝐼𝐿 and 𝐼𝑈 ranging from gray 

level 0 to 𝑋𝑎 and 𝑋𝑎 + 1 to L-1 and can be termed as under exposed and over exposed 

sub-images (Figure 5.7). 

𝑷𝑳(𝒌) and 𝑷𝑼(𝒌) are PDF of 𝑰𝑳 and 𝑰𝑼 respectively  

𝑃𝐿(𝑘) =
ℎ𝑐(𝑘)

𝑁𝐿
⁄    𝑓𝑜𝑟 0 ≤ 𝑘 ≤  𝑋𝑎 − 1                 (5.29) 

𝑃𝑈(𝑘) =
ℎ𝑐(𝑘)

𝑁𝑈
⁄          𝑓𝑜𝑟 𝑋𝑎 ≤ 𝑘 ≤  𝐿 − 1             (5.30) 

Where 𝑵𝑳 and 𝑵𝑼 are a total number of pixels in sub-images 𝑰𝑳 and 𝑰𝑼 respectively. 

𝑪𝑳(𝒌) and 𝑪𝑼(𝒌) are CDF of  𝑰𝑳 and 𝑰𝑼 respectively. 

𝑪𝑳(𝒌) = ∑ 𝑷𝑳(𝒌)𝑿𝒂
𝒌=𝟎         (5.31) 

𝐶𝑈(𝑘) = ∑ 𝑃𝑈(𝑘)𝐿−1
𝑘=𝑋𝑎+1        (5.32) 
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The next step is histogram equalization of both sub-images individually applying the 

transfer functions 𝑭𝑳 and 𝑭𝑼  

𝐹𝐿 = 𝑋𝑎𝐶𝐿           (5.33) 

𝐹𝑈 = (𝑋𝑎 + 1) + (𝐿 − 𝑋𝑎 + 1)𝐶𝑈        (5.34) 

The final step involves the integration of both sub-images into one complete image. The 

ESIHE-ed output image is produced by the combination of both transfer functions for 

further visual quality inspection and performance evaluation. 

 

Figure 5.7  ESIHE: Process of Histogram Sub Division and Clipping 

 

Algorithm 5.1: ESIHE Algorithm 

Step 1: Compute the histogram h(k) of the image. 

Step 2: Compute the value of exposure and threshold parameter 𝑋𝑎. 

Step 3: Compute the clipping threshold 𝑇𝑐  and clip the histogram ℎ𝑐(𝑘). 

Step 4: Divide the clipped histogram into two sub-histograms using the threshold 

parameter 𝑋𝑎. 

0                            Xa L-1   

Tc
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Number of Pixels

Under Exposed Over Exposed 
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Step 5: Apply the histogram equalization on individual sub-histograms. 

Step 6: Combine the sub-images into one image for analysis. 

5.2.4   Simulation Results of ESIHE Method 

The simulation results of proposed ESIHE method are compared with existing histogram 

equalization methods i.e. BBHE [87], MMBEBHE [89], DSIHE [88], RMSHE [90] and 

RSIHE [91]. To analyze and compare the existing methods nine test images: Hands, Fish, 

Mosque, Tank, Cat, Butterfly, Aircraft, Couple, and Field are used. Visual quality 

comparison of four images i.e. Hands, Fish, Tank, and Cat is shown in Figure 5.8-5.11. 

To evaluate the performance of ESIHE, Average Information content is being used as 

image quality measure. An image with higher entropy value had richness in details and  

perceived to have better quality. 

5.2.4.1  Performance Assessment based on Average Information Content 

The discrete entropy computed for the methods used in this work for all 9 images are 

tabulated in Table 5.5. ESIHE produces the highest entropy for all the images thus 

becomes best suitable approach for bringing out information contents of the image. 

Specifically for Butterfly, aircraft, Mosque and fish image the entropy values are almost 

equal to the original image. However for HE and MMBEBHE the entropy value for all 

the images is very less then the corresponding original image. DSIHE method that 

claimed superior performance in terms of the average information content of the image is 

having entropy values lesser than the proposed method. The average of entropy produced 

by ESIHE method for all images is 5.39 that is very close to average entropy (5.43) for 

original images. However, average entropy of other methods is much smaller in 
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comparison with the original image. The entropy closer to original image guarantees 

bringing out maximum information content of the image. 

5.2.4.2  Assessment of Visual Quality 

Qualitative assessment of contrast enhancement is necessary along with quantitative 

assessment. The enhancement results can only be appreciated if the resultant image gives 

pleasing effect in appearance. By visual quality inspection, the judgment of annoying 

artifacts, over enhancement and unnatural enhancement can be done.The visual 

assessment results are effective quality measures to judge the performance of contrast 

enhancement algorithm. 

Table 5.5  ESIHE: Entropy Comparison of Different Methods 

Images Original HE 
BBHE 

[87] 

MMBEBHE 

[89] 

DSIHE 

[88] 

RSIHE 

[91] 

RMSHE 

[90] 
ESIHE 

Butterfly 4.89 4.70 4.83 4.78 4.83 4.81 4.86 4.89 

Aircraft 4.00 3.75 3.90 3.86 3.87 3.95 3.94 3.99 

Tank 5.49 4.97 5.42 5.31 5.38 5.45 5.46 5.47 

Field 6.56 5.96 6.46 6.41 6.46 6.52 6.49 6.52 

Fish 4.49 4.43 4.38 4.22 4.48 4.43 4.48 4.49 

Cat 6.01 4.85 5.62 5.64 5.69 5.85 5.68 5.88 

Hands 3.99 2.89 3.73 3.79 3.86 3.55 3.80 3.92 

Mosque 6.26 5.83 6.11 6.06 6.09 6.08 6.10 6.26 

Couple 7.20 5.96 7.01 7.01 7.01 7.06 7.04 7.12 

Mean 5.43 4.82 5.27 5.23 5.30 5.30 5.32 5.39 
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Wide varieties of a test set of images including under-exposed, over-exposed, 

low-contrast, high-contrast, dark-background, and bright-background  are chosen to judge 

the robustness and versatility of ESIHE method. The analysis of visual results from 

Figure 5.8-5.11 shows the supremacy of ESIHE for all test images not only in terms of 

contrast enhancement but also in terms of control on over-enhancement. The 

effectiveness of proposed method in terms of contrast enhancement can be noticed in 

Figure 5.8 of Hands image. 

 

Figure 5.8 Enhancement results of different HE methods for Hands image (a) Original, (b) HE, (c) 

BBHE, (d) MMBEBHE, (e) DSIHE, (f) RSIHE, (g) RMSHE and (h) ESIHE 

 

HE, DSIHE and RSIHE results of Hands image are over enhanced. However, ESIHE 

image controls over-enhancement that leads to natural enhancement results.The original 

Fish image in Figure 5.9 is low exposed image even though ESIHE has improved the 

quality of image in a big way. The objects in ESIHE-ed Fish image are clearly visible 
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however except HE, other methods are not able to enhance the image and object, as well 

as background, is not clearly visible in enhanced images. 

 

Figure 5.9  Enhancement results of different HE methods for Fish image:  (a) Original, (b) HE, (c) 

BBHE, (d) MMBEBHE, (e) DSIHE, (f) RSIHE, (g) RMSHE and (h)ESIHE 

 

 

Figure 5.10  Enhancement results of different HE methods for Tank image: (a) Original, (b) HE, (c) 

BBHE, (d) MMBEBHE, (e) DSIHE, (f) RSIHE, (g) RMSHE and (h)ESIHE 
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The Tank image in Figure 5.10 is a low contrast image and ESIHE yields contrast 

enhanced image along with natural appearance. The HE, BBHE, DSIHE and MMBEBHE 

outputs don’t provide clear vision of object in case of Tank image. From Figure 5.11 of 

Cat image it is clearly noticeable that the ESIHE-ed image enhances the low exposed part 

of image i.e. the left ear of the cat effectively.  

Although the ESIHE results in Figure 5.11 for Cat image and Figure 5.10 for 

Tank image are visually comparable to other methods but proposed method yields highest 

entropy value for these images. This shows that ESIHE method produces images with the 

richness of details. 

 

Figure 5.11  Enhancement results of different HE methods for Cat image:    (a) Original, (b) HE, (c) 

BBHE, (d) MMBEBHE, (e) DSIHE, (f) RSIHE, (g) RMSHE and (h)ESIHE 

5.3   Recursive Histogram Equalization for Low Exposure Images  

In the past various techniques are proposed to cater the problems of brightness 

preservation and over enhancement, but low exposure image enhancement is still a gray 

area. Two extensions of the ESIHE are proposed. First, a recursive method is proposed as 

the extension of the ESIHE, called Recursive Exposure based sub-image histogram 
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equalization (R-ESIHE). The proposed method iteratively performs ESIHE on the image 

until the difference of exposure values between subsequent iterations is less than a 

threshold value. The second method is Recursively separated Exposure based sub-image 

histogram equalization (RS-ESIHE). Unlike the R-ESIHE, the second algorithm first 

splits the histogram into two or more sub-histograms based on the individual exposure 

thresholds and then performs histogram equalization of all the sub-histograms. Clipping 

of histogram is added in both the proposed methods to avoid excessive enhancement. 

Both algorithms are described in the following sections. 

5.3.1   Recursive Exposure based Sub-Image Histogram Equalization 

The proposed RESIHE method is a recursive variant of ESIHE, which performs ESIHE 

recursively on the given histogram. The number of recursions is dependent on the 

exposure difference between successive iteration. The number of iterations is decided 

based on a threshold £ whose value is normally taken very less (here 0.01). 

Algorithm 5.2: RESIHE Algorithm 

Step 1: Calculate the histogram h(k). 

Step 2: Calculate the exposure threshold parameter Xa. 

Step 3: Calculate the clipping threshold Tc and clip the histogram hc(k). 

Step 4: Partition the histogram into two sub-histograms using the threshold parameter 

Xa. 

Step 5: Equalize each sub-histogram individually. 
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Step 6: Integrate the sub-images to yield enhanced image. 

Step 7: Repeat step 1-6 until the exposure difference between successive iterations is 

less than threshold £.  

5.3.2   Recursively Separated Exposure based Sub-Image Histogram Equalization  

Conceptually, RS-ESIHE performs recursive decomposition of the histogram. ESIHE 

decomposes the input histogram only once based on the exposure threshold while RS-

ESIHE decomposes it recursively based on exposure thresholds of individual sub-

histograms up to a recursion level r, generating 𝟐𝐫 sub-histograms. The decomposed sub-

histograms are then equalized individually. For simplicity recursion level, r is taken as 

two. The RS-ESIHE method comprises of Exposure Threshold calculations, Histogram 

Clipping, and Sub-histogram computation & Equalization. 

5.3.2.1  Exposure Threshold Calculations   

The exposure threshold 𝑿𝒂of complete histogram is calculated as per ESIHE method. 

Two more exposure thresholds (𝑿𝒂𝒍 and 𝑿𝒂𝒖) are calculated for two individual sub-

histogram divided based on 𝑿𝒂. 

𝑋𝑎𝑙 = 𝐿 [
𝑋𝑎

𝐿
−

∑ ℎ(𝑘)𝑘𝑋𝑎−1
0

𝐿 ∑ ℎ(𝑘)𝑋𝑎−1
0

]            (5.35) 

𝑋𝑎𝑢 = 𝐿 [1 +
𝑋𝑎

𝐿
−

∑ ℎ(𝑘)𝑘𝐿−1
𝑋𝑎

𝐿 ∑ ℎ(𝑘)𝐿−1
𝑋𝑎

]           (5.36) 
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5.3.2.2  Sub-histogram Computation and Equalization 

The histogram is first partitioned into two sub-images based on exposure threshold 

value 𝑋𝑎. These individual sub-histograms are further decomposed into two smaller sub-

histograms where the individual exposure threshold 𝑋𝑎𝑙 and 𝑋𝑎𝑢  acts as the separating 

point of sub-histograms. The sub-histogram computation process results in four sub-

imagesWLl, WLu , WUl and WUu ranging from gray level 0 to 𝑋𝑎𝑙 − 1, 𝑋𝑎𝑙 to 𝑋𝑎 − 1, 𝑋𝑎 to 

𝑋𝑎𝑢 − 1, 𝑋𝑎𝑢 to L-1. 𝑃𝐿𝑙(𝑘),𝑃𝐿𝑢(𝑘),𝑃𝑈𝑙(𝑘) and 𝑃𝑈𝑢(𝑘) are PDF of WLl, WLu , WUl and 

WUu respectively. 

𝑃𝐿𝑙(𝑘) =
ℎ𝑐(𝑘)

𝑁𝐿𝑙
⁄  𝑓𝑜𝑟 0 ≤ 𝑘 ≤ 𝑋𝑎𝑙 − 1                (5.37) 

𝑃𝐿𝑢(𝑘) =
ℎ𝑐(𝑘)

𝑁𝐿𝑢
⁄  𝑓𝑜𝑟 𝑋𝑎𝑙 ≤ 𝑘 ≤ 𝑋𝑎 − 1     (5.38) 

𝑃𝑈𝑙(𝑘) =
ℎ𝑐(𝑘)

𝑁𝑈𝑙
⁄  𝑓𝑜𝑟 𝑋𝑎 ≤ 𝑘 ≤ 𝑋𝑎𝑢 − 1     (5.39) 

𝑃𝑈𝑢(𝑘) =
ℎ𝑐(𝑘)

𝑁𝑈𝑢
⁄  𝑓𝑜𝑟 𝑋𝑎𝑢 ≤ 𝑘 ≤ 𝐿 − 1      (5.40) 

𝑵𝑳𝒍, 𝑵𝑳𝒖, 𝑵𝑼𝒍 and 𝑵𝑼𝒖 are the total number of pixels in sub-images 𝑾𝑳𝒍, 𝑾𝑳𝒖 , 𝑾𝑼𝒍 and 

𝑾𝑼𝒖 respectively. 𝑪𝑳𝒍(𝒌),𝑪𝑳𝒖(𝒌),𝑪𝑼𝒍(𝒌) and 𝑪𝑼𝒖(𝒌) are CDF of 𝑾𝑳𝒍, 𝑾𝑳𝒖 , 𝑾𝑼𝒍 and 

𝑾𝑼𝒖and  respectively as defined in (5.41-5.44) 

𝐶𝐿𝑙 = ∑ 𝑃𝐿𝑙(𝑘)𝑋𝑎𝑙−1
𝑘=0           (5.41) 

𝐶𝐿𝑢 = ∑ 𝑃𝐿𝑢(𝑘)𝑋𝑎−1
𝑘=𝑋𝑎𝑙

          (5.42) 

𝐶𝑈𝑙 = ∑ 𝑃𝑈𝑙(𝑘)𝑋𝑎𝑢−1
𝑘=𝑋𝑎

          (5.43) 
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𝐶𝑈𝑢 = ∑ 𝑃𝑈𝑢(𝑘)𝐿−1
𝑘=𝑋𝑎𝑢

          (5.44) 

The next step of RS-ESIHE is to perform histogram equalization of all the four sub-

histograms individually. The transfer functions 𝐹𝐿𝑙 , 𝐹𝐿𝑢, 𝐹𝑈𝑙  and 𝐹𝑈𝑢for sub-histogram 

equalization are defined as below 

 𝐹𝐿𝑙 = 𝑋𝑎𝑙𝐶𝐿𝑙            (5.45) 

𝐹𝐿𝑢 = (𝑋𝑎𝑙 + 1) + (𝑋𝑎 − 𝑋𝑎𝑙 + 1)𝐶𝐿𝑢        (5.46) 

𝐹𝑈𝑙 = (𝑋𝑎 + 1) + (𝑋𝑎𝑢 − 𝑋𝑎 + 1)𝐶𝑈𝑙        (5.47) 

𝐹𝑈𝑢 = (𝑋𝑎𝑢 + 1) + (𝐿 − 𝑋𝑎𝑢 + 1)𝐶𝑈𝑢        (5.48) 

The final step of RS-ESIHE to perform integration of all four transfer functions to yield 

resultant image. 

Algorithm 5.3: RS-ESIHE Algorithm 

Step 1: Calculate the histogram ℎ(𝑘). 

Step 2: Calculate the exposure threshold parameter 𝑋𝑎. 

Step 3: Calculate the clipping threshold 𝑇𝑐 and clip the histogram ℎ𝑐(𝑘). 

Step 4: Partition the histogram into two sub-histograms using the threshold parameter 

 𝑋𝑎 

Step 5: Calculate exposure thresholds 𝑋𝑎𝑙  and  𝑋𝑎𝑢 for lower and upper sub-histograms 

respectively and divide the sub-histograms into further sub-histograms using 𝑋𝑎𝑙  and  

𝑋𝑎𝑢 as decomposing threshold, resulting in total four sub-histograms. 
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Step 6: Equalize individual sub-histograms and integrate all the sub-images to yield 

enhanced image. 

 

 

 

Figure 5.12  Visual quality comparison of different HE methods for Mosque image (a) Original, (b) 

RSIHE, (c) RMSHE, (d) QDHE, (e) RSWHE, (f) BHEP-L, (g) ESIHE, (h) RESIHE and (i) RS-ESIHE 

5.3.3   Simulation Results of RESIHE and RS-ESIHE 

The performance of proposed methods is compared with other HE based methods i.e. 

RMSHE [90], RSIHE [91], QDHE [101], RSWHE [92], BHEPL [95] and ESIHE [112]. 

In order to appreciate the results, four low exposure test images: Fish1, Fish2 Mosque and 
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Couple are taken for analysis. Both fish images are underwater sequence while other two 

images are captured in low light conditions. 

5.3.3.1  Visual Quality Performance Comparison   

Images acquired in low light conditions including under water sequences are taken to test 

the robustness of the proposed method for low exposure imaging. From the inspection of 

visual results in Figure 5.12-5.15, it is evident that the proposed recursive methods are 

very effective especially in low light conditions.  

 

Figure 5.13  Visual quality comparison of different HE methods for Fish2 image (a) Original, (b) 

RSIHE, (c) RMSHE, (d) QDHE, (e) RSWHE, (f) BHEP-L, (g) ESIHE , (h) RESIHE and (i) RS-ESIHE 
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Contrast enhancement results can be clearly appreciated by observing the visual quality 

results in Figure 5.12 of Mosque image. RSIHE, RMSHE, RSWHE and BHEP-L 

methods are not able to increase the exposure. However, both RESIHE and RS-ESIHE 

has improved the contrast and the objects are clearly visible. In both the underwater 

images i.e. Fish1 and Fish2 in Figure 5.13 and Figure 5.15 respectively the original 

images are acquired in very dim light condition and the object is not clearly visible. 

 

Figure 5.14  Visual quality comparison of different HE methods for Couple image (a) Original, (b) 

RSIHE, (c) RMSHE, (d) QDHE, (e) RSWHE, (f) BHEP-L, (g) ESIHE , (h) RESIHE and (i) RS-ESIHE 
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The resultant Fish images of proposed methods have the objects clearly distinguishable. 

The proposed algorithms enhance the overall image quality of couple image as shown in 

Figure 5.15. Low-intensity regions in the background are properly exposed resulting clear 

vision. 

 

Figure 5.15  Visual quality comparison of different HE methods for Fish1 image (a) Original, (b) 

RSIHE, (c) RMSHE, (d) QDHE, (e) RSWHE, (f) BHEP-L, (g) ESIHE , (h) RESIHE and (i) RS-ESIHE 

5.3.3.2  Performance Comparison based on Entropy 

For assessment of the performance of the proposed algorithms, we have chosen entropy as 

the quality measure. Entropy measures the richness of information in an image. When an 

enhanced image has higher entropy value, then the details of the input image are said to be 

preserved in the output image. 
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The entropy results of various methods for all the four images taken for 

experimentation tabulated in Table 5.6. For optimum performance, the entropy should be 

as close as possible to the original image. The proposed new methods produce images 

with entropy very close to the original one thus becomes well suited for preserving details 

of the input image. 

Table 5.6  RESIHE, RS-ESIHE: Entropy Comparison of Different Methods 

Images Original 

QDHE 

[101] 

BHEP-L 

[95] 

RSWHE 

[92] 

ESIHE 

[112] 

RESIHE RS-ESIHE 

Fish1 5.050 5.043 5.042 3.323 5.046 5.048 5.047 

Fish2 4.490 4.477 4.479 3.127 4.480 4.487 4.483 

Couple 6.398 6.279 6.321 4.559 6.299 6.338 6.284 

Mosque 6.263 6.101 6.217 4.599 6.220 6.259 6.232 

Mean 5.550 5.479 5.517 3.902 5.521 5.533 5.524 

 

5.4   Significant Findings 

The proposed four HE based histogram equalization methods achieved the research 

objectives and the main contribution in this chapter can be summarized as below: 

(a) In ESIHE method, exposure based division of image and histogram equalization of 

sub-images proved very effective technique for enhancing under exposed images. 

The histogram clipping technique combined with histogram equalization provided 

control on over enhancement leading to natural enhancement. 
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(b) The visual quality of resultant images of exposure based recursive HE methods (R-

ESIHE & RS-ESIHE) shows the robustness of the method on low light images. 

(c) MMSICHE technique which achieves the multiple objectives of entropy 

maximization, brightness preservation, and control over enhancement, is a better 

approach to natural image enhancement. 

This chapter is based on the following work: 

1) Kuldeep Singh, Rajiv Kapoor, “Image enhancement using Exposure based Sub 

Image Histogram Equalization”, Pattern Recognition Letters(Elsevier , Impact 

factor-1.896) 36 (2014) 10 – 14 (DOI:10.1016/j.patrec.2013.08.024) [112] 

2) Kuldeep Singh, Rajiv Kapoor, “Image enhancement via Median-Mean Based Sub-

Image-Clipped Histogram Equalization”, Optik- Int. J. Light Electron Opt., (Elsevier 

Impact factor-0.670) 125 (2014) 4646-4651 (DOI: 10.1016/j.ijleo.2014.04.093) 

[111] 

3) Kuldeep Singh, Rajiv Kapoor, Sanjeev Kr. Sinha,“Enhancement of low Exposure 

Images via Recursive Histogram Equalization Algorithms”, Optik- Int. J. Light 

Electron Opt., (Elsevier, Impact factor-0.670) 126 (2015) 2619–2625 

(DOI:10.1016/j.ijleo.2015.06.060) [113] 

 

  



CHAPTER 6  

CONCLUSION AND FUTURE SCOPE OF WORK 

 

Image enhancement algorithms that include image denoising, superresolution, and 

contrast enhancement are indispensable to the field of image processing and computer 

vision. In this dissertation, these image quality improvement techniques have been 

discussed. In this chapter, the major contributions, achievements, and future scope of 

work of the thesis are summarized.   

6.1   Summary 

This thesis has investigated fingerprint image quality improvement through sparse 

representation based denoising and superresolution algorithms. The problem of low 

exposure imaging is addressed through histogram equalization. There were three main 

threads to this research: sparse representation based fingerprint denoising, sparse 

representation based fingerprint superresolution and contrast enhancement. Novel 

contributions made in this research are summarized as follow: 

 A novel algorithm is proposed for constructing ridge orientation based sparse sub-

dictionary that exploits the self-similarity among fingerprint patches. Instead of 

having a single dictionary, the proposed method clusters the training patches into 

groups based on ridge orientation of patch. Since every sub-group consists of 

geometrically similar patches, thus, the sub-dictionary trained from them can 
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work more effectively, and this will help in improving denoising and 

superresolution performance. Use of sub-dictionaries based on dominant 

orientation significantly improves the effectiveness of sparse modeling of 

information in a fingerprint image in the form local ridge patterns. 

 A novel denoising algorithm specific to fingerprint image is proposed using 

ridge orientation based clustered sub-dictionaries. Adaptive selection of suitable 

sub-dictionary while reconstruction based on minimum residue error criterion is 

embedded in the algorithm to enhance the performance of denoising algorithm.  

Experimental results demonstrate that the proposed approach can be very helpful 

in denoising of fingerprints and can provide aid to automatic fingerprint 

identification systems. 

 In this thesis, the area of fingerprint superresolution is explored. A novel sparse 

superresolution algorithm using ridge orientation based clustered coupled sub-

dictionaries is developed. Instead of having a single dictionary, the proposed 

method clusters the training patches into six groups based on ridge orientation of 

patch, including one group for flat patches to train six coupled sub-dictionaries. 

By jointly training coupled sub-dictionaries for the low and high-resolution 

image patches, the similarity of sparse representations between the low-

resolution and high-resolution image patch pair with respect to their own 

dictionaries can be enforced. Atoms from sub-dictionary with minimum residue 

error are used during reconstruction of patches. The iterative back projection 

method is also incorporated in the final step of the algorithm to eliminate 

discrepancy due to noise or inaccuracy in sparse representation. Experimental 
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results also prove that this approach of superresolution is far superior for 

fingerprint images than traditional superresolution methods in terms of 

fingerprint matching and is more robust when the scaling factor is large. 

 The problem of low exposure imaging is addressed using exposure based sub-

histogram equalization techniques. A novel method for sub division of image 

histogram into under-exposed and over-exposed based on the exposure related 

parameter is proposed. Exposure-based division of image and histogram 

equalization of sub-images proved very effective technique for enhancing under-

exposed images. The deciding factor for the division of image depends on 

exposure value, and it possess values greater then L/2 grey level for under 

exposed images (exposure value less than 0.5) and compensates for low 

exposure by introducing higher grey levels in sub-image so that after individual 

histogram equalization process the overall exposure value increases. The inverse 

is true for the over exposed images where the sub division of images is done on 

the grey level lesser than L/2 grey level. Over enhancement is controlled by 

histogram clipping approach by restricting the enhancement rate. The entropy 

measures of the proposed ESIHE method clearly show that it outperforms other 

HE based methods. The Visual quality of ESIHE-ed images shows the 

robustness of the method and supremacy on other methods for a wide variety of 

low exposure images. 

 Two recursive variants of exposure based sub-histogram equalization techniques 

are proposed here for enhancement of low exposure images. These methods can 

be very effective for contrast enhancement of images acquired in dim light 
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conditions i.e. under water or night vision images. Better results in terms of 

entropy make these methods more suitable in terms of richness in details. The 

visual quality of resultant images of recursive methods shows the robustness of 

the method on low light images. 

 Another variant of histogram equalization i.e. MMSICHE has been proposed for 

the preservation of brightness and entropy along with control over enhancement 

simultaneously. The bisection of histogram first based on median then based on 

mean plays the role of preservation of mean brightness and entropy 

simultaneously. In this method clipping of histogram provides control on over 

enhancement. Simulation results clearly show that MMSICHE outperforms other 

HE based methods in terms of image quality measures. Visual quality assessment 

results also prove the supremacy of MMSICHE over other methods in terms of 

natural enhancement.  

6.2   Future Scope of Work 

This thesis addressed several questions of image quality improvement. However, there 

are also other questions, which are being currently investigated and which have not been 

presented in this thesis. This research work gives rise to several possible improvements 

and future research directions.  

Sparse representation based fingerprint image quality improvement has shown 

promising results. However, the sparse coding is a time-consuming algorithm and need 

special attention of researchers. For practical implementation of sparse coding-based 

fingerprint quality improvement, there is a need of improvement in time complexity of 
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these algorithms. Nevertheless, the effectiveness and efficiency of sparse representation 

methods cannot perfectly meet the need for real-world applications. Enhancing the 

robustness of sparse representation can be considered as another indispensable problem 

when researchers design algorithms. 

Another interesting research problem is how to extend the current sparse 

representation based formulation for solving blind image deblurring problems. Applying 

geometrically clustered sub-dictionaries for other applications such as inpainting, 

demosaicing, denoising of video, and more, are all interesting directions that could and 

should be explored. 

In histogram equalization based contrast enhancement methods, the enhanced 

image often contains undesirable artifacts because an excessive number of pixels in the 

non-textured areas heavily bias the histogram. In the process of histogram equalization, 

the impact of the pixels in non-textured areas should be suppressed, and the texture 

features can be exploited for the computation of histogram. 
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