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ABSTRACT

Single layer Feedforward Neural Network(FNN) is used many a time
as a last layer in models such as seq2seq or a simple RNN network. The
importance of such layer is to transform the output to our required di-
mensions. When it comes to weights and biases initialization, there is
no such specific technique that could speed up the learning process. We
could depend on deep network initialization techniques such as Xavier
or He initialization. But such initialization fails to show much improve-
ment in learning speed or accuracy. Zero Initialization (ZI) for weights
of a single layer network is proposed here. We first test this technique
with on a simple RNN network and compare the results against Xavier,
He and Identity initialization. As a final test we implement it on a
seq2seq network. It was found that ZI considerably reduces the number
of epochs used and improve the accuracy. Multi-objective swarm intel-
ligence is also utilized for weights and biases initialization for quicker
learning. The developed model has been applied for short-term load
forecasting using the load data of Australian Energy Market. The model
is able to forecast the day ahead price accurately with error of 0.94%.

il



CONTENTS

1 Introduction 1
1. Model . ... ... ... .. ... ..., 2
1.1.1  Gradient Descent Algorithm . . . ... ... .. 3

1.1.2  Multi-objective optimization . . . . . . .. . .. 4

2 Search for the best swarm initializer 7
2.1 Overfitted neural networks . . . . . ... ... ... .. 7
2.2 Dataset . . ... ... ... 8
2.3 Gaussian distribution for initialization . . . . . .. . .. 9
2.4 Cuckoo search for initialization . . . . . . ... ... .. 11
2.4.1 Mathematicalmodel . . . ... ... ...... 12

242 Algorithm . . . . ... ... ... .o 13

2.5 Bacterial Foraging Optimization . . . . .. .. ... .. 15
2.5.1 Description . . . ... ... ... .. ... .. 15

2.5.2 Mathematical model . . . ... ... ...... 15

253 Algorithm . . . . ... ... ... ........ 16

2.6 Gray Wolf Optimization . . . . ... ... ....... 17
2.6.1 Description . . . . . ... ... ..., 17

2.6.2 Mathematical model . . . ... ......... 18

263 Algorithm . . . ... ... ... ... 18

277 BatAlgorithm . . . . .. ... ... ........... 19
27.1 Description . . . . .. ... ... 19

2.7.2 Mathematical model . . .. ... ........ 19

2773 Algorithm . . . ... ... ... ... ... 19

2.8 Artificial Bee Algorithm . . . . .. ... .00 L. 20
2.8.1 Mathematicalmodel . . . ... ... ...... 21

282 Algorithm . . . . ... ... ... oL 21

2.9 Firefly Algorithm . . . . . . ... ... ... .. ... 22
2.9.1 Mathematicalmodel . . . ... ... ...... 22

v



2.10

2.11

2.12

2.13

2.14

2.15

292 Algorithm . . . . ... ... ... 23

Whale Swarm Algorithm . . . . . ... ... ... ... 24
2.10.1 Mathematical model . . .. .. ... ... ... 24
2.10.2 Algorithm . . . . . ... ... ... ... .... 24
Particle Swarm Optimization . . . . . . .. .. ... .. 25
2.11.1 Mathematical model . . .. ... ... .. ... 25
2.11.2 Algorithm . . . . .. ... ... ... 25
Chicken Swarm Optimization . . . . . . . ... .. ... 26
2.12.1 Mathematical model . . . .. ... ... .... 26
2122 Algorithm . . . . . ... ... . Lo 27
Social Spider Algorithm . . . . . ... ... ... ... 28
2.13.1 Mathematical model . . . . ... ... ... .. 28
2132 Algorithm . . . . . ... ... ... ... .. 29
Cat Algorithm (Cat Swarm Optimization) . . . . . . . . 30
2.14.1 Mathematical model . . .. .. ... ... ... 30
2.14.2 Algorithm . . . .. ... ... ... ... .. .. 31
Gravitational Search Algorithm . . . . . . .. ... ... 32
2.15.1 Mathematical model . . . .. ... ... .... 32
2152 Algorithm . . . . . ... ... ... 32

3 Zero Initialization of modified Gated Recurrent Encoder De-

coder Network 34

3.1 Experimentsetup . . ... ... ............. 36
3.1.1 Datasetused . ... ..... ... ....... 36

3.1.2 Data pre-processing and feature engineering . . . 36

3.1.3 PredictionModel 1 . . . ... ... ... .... 38

3.14 PredictionModel2 . . . . ... ... ... ... 40

3.1.5 Reducing model variance . . . . ... ... ... 43

3.1.6 Training and validation . . . . . . .. ... ... 44

4 Results and Conclusion 45
4.1 Simulationresults . . . . .. ... ... ... ...... 45

472 Conclusions . . . . . . . . .. 52



LIST OF TABLES

4.1
4.2
4.3
4.4
4.5
4.6

Model 2 with Xa norm initialization . . . .. ... . .. 47
Model 2 with He initialization . . . . .. ... ... .. 47
Model 2 with Identity initialization . . . . . . . .. . .. 47
Model 2 with ZI initialization . . . . . ... .. ... .. 47
Model 2 with Xa uniform initialization . . . . . . . . .. 47
Model 2 with all the initializations . . . . ... ... .. 48

vi



LIST OF FIGURES

1.1

2.1

3.1
3.2
3.3

3.4
3.5

3.6
3.7

4.1
4.2

4.3
4.4
4.5

The red line shows the Pareto frontier. Circles denote
the feasible choices. Smaller values are preferred for
the minimizing the objective function. . . . . . . . . ..

A set of four subfigures. . . . . .. ... ...

Quarter and annual feature selection for lagged_data

A setof four subfigures. . . . . .. ... ... ... ...
First model for electricity load forecasting with FC out-
putlayer . . . . . . .. ... L o
A setof four subfigures. . . . . ... ... ... ... ..
Second model for electricity load forecasting with FC
outputlayer . . . . . . ... ... o
A set of four subfigures. . . . . .. ... ...
Variance reduction applied to the weights of FC layer of
model 1 . . .. .. .. ..

A set of four subfigures. . . . . .. ... ...
Training steps from model 1 using various initialization
techniques . . . . . . ... ... ... ... ...
A set of four subfigures. . . . . .. ... ... L.
A setof four subfigures. . . . . ... ... ... ... ..
MAPE of model 2 (Fold 1) with all initialization tech-

DIQUES. « « v v v v e e e e e e e e e e e e e

vii

5



CHAPTER 1: INTRODUCTION

Forecsating is a very important part of business, whether it’s forecasting
of load or revenue of a company. With proper techniques, events can
be forecasted with an accuracy under 1%. Improving the accuracy of
the model helps in saving millions of dollar [1]. For example let’s sup-
pose for long term load forecasting a utility with 1 gigawatt annual peak
load, the risk of oversizing and undersizing would be 0.01 x 1,000MW =
10MW . Assuming the capital cost of $10,000/KW, the overnight cap-
ital cost would be $10,000/KW * I0MW = $10 million. The saving of
deferring $10 million in spending for 1 year with 5 % interest rate would
be $10million — $10million/(1 4 0.5) = $476,000 ~ $500,000. If the
utility uses forcasting for obtaining energy form day ahead market, they
might save around $300,000 per year by improving the accuracy of 1
%.

Many methods for time-series forecasting have been proposed till
now. One of the earliest and accurate method utilized a combination
of time-series and regressional approaches[2]. But these type of model
lakes memory, so they were not able to store useful information. One
of the earliest research in this area was the use of recurrent backpro-
pogation [3] but was time consuming. Later Long Short Term Memory
cells (LSTM) was introduced [3] which solved complex, artificial long
time lags tasks. A variant of LSTM which is widely used in time-series
forecasting is Gradient Recurrent Unit (GRU) [4] greatly reduced the
number of variables involved.

The problem of vanishing and exploding gradiants was still present
in deeper networks which was fixed by the utilization of relu and Xavier
initialization [5]. Another variant of Xavier is He [6] initialization. Iden-
tity Recurrent Neural Network (IRNN) [7] is also a variant of RNN
widely used in which an identity matrix is used for the initialization
purpose.



One of the problem with RNN is that the input length has to be equal
to the output length, so if there are n input features then there would be
n output features. But that might not be the requirement in all the use
cases. Sometimes the number of output might have to be in condensed
form. For that generally the output of RNN is connected to a Dense net-
work (a layer with its all element connected to the every input features)
but with identity activation and zero biasing (weighted summation). But
still the weight of that layer need to be learned. This added layer could
be also be used as an extra hidden layer with proper type of activation
and initialization. This paper proposes one such type of initialization
technique that could be used at this dense layer for faster convergence
speed in training. To prove this hypothesis, a simple Feed-forward Neu-
ral Network with 1 hidden layer having 10 units was trained. The results
shown by that

1.1 MODEL

By training the model, we try to approximate the output to the function
g(z) for every input z. The learning of weights and biases conventionally
deals with the minimizing of an objective/loss function through regres-
sion. It’s quantification can be done by defining a cost function as:

Lt = 5 L 16(2) o (L.
where, following notations are used:
1. w: weights
2. b : biases
3. N : training input
4. o : output vector
5. z: input vector

|| u || denotes the length of the vector u. L is the cost/loss function,
here, quadratic cost function, also referred as mean squared error (MSE).
Inspection of the cost function shows that L(w, b) is non-negative. Also,

2



as the output o for all the training input z is approximated by g(z), the
cost L(w,b) starts decreasing to zero, i.e., L(w,b) ~ 0. For minimizing
the cost function, a set of weights and biases were found using two al-
gorithms, namely gradient descent and chicken swarm algorithm. First
the training was done using only gradient descent next the training was
done using a combination of chicken swam and gradient descent.

The use case of the quadratic cost function might seem random. Choos-
ing a different cost function would have given different result of weights
and biases. The next section of this paper, a set of objective function are
introduced which would be then minimized collectively.

1.1.1 Gradient Descent Algorithm

If L is the function of n variables, uy,us,...,u,, then a small change in
Au= (Auy,...,Au,)" will lead to a change AL in L.

AL ~ VL-Au (1.2)
where, ;
JdL oL
VL = (8_ul”8_un> (1.3)

In equation 1.2, VL relates the changes in u to the changes in L. If Au
is chosen in the following way:

Au= —nVL (1.4)

where, 11 denotes a small positive learning rate. Then from equation
1.2 and 1.4 it can be written that AL ~ nVL-VL = —n || VL ||. Since,
| VL ||?>> 0iitis guaranteed that AL < 0. Following update rule is applied
repeatedly to minimize the cost function.

u—u =u—nVL (1.5)

Above procedure defines the gradient descent algorithm (GDA). The
GDA is used in neural network to minimize the cost function by finding
a appropriate set of weights and biases 1.1. The update rule given in
equation 1.5 is written for the weights and biases as follows:




JdL

Wk%Wk Wk_na—\/vk
b — by = oL e
R TS

Now, m number of small training inputs are randomly selected, Z;, 2, ..

referred as a mini-batch.
The average value of VLz; is approximated to the overall average of
VL, with the assumption that the size of mini-batch is large enough, i.e,

Z]mzl VLZJ' - ZZ VLZ
m T on
or re-writing the 1.7 as,

— VL (1.7)

1 m
~ — Z VLZj (1.8)

The equation 1.8 confirms that the overall gradient can be computed
by just calculating the gradient of a mini-batch. This defines the stochas-
tic gradient descent algorithm.

Applying stochastic gradient descent algorithm to neural network,
the equation 1.6 can be updated as follows:

JLyz,

Wkﬁwk—Wk——ZaWk
(1.9)

Lz,

by — b = by — "Zabl

the summation in the equation 1.9 is within the current mini-batch
over all the training examples Z;. One epoch is said to be completed
when all the training mini-batches have been picked.

1.1.2 Multi-objective optimization

An objective function(vector valued) is defined as follows:

g:Z—Rg(z)=(21(2),....q(2))" (1.10)




i
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Figure 1.1: The red line shows the Pareto frontier. Circles denote the feasible choices.
Smaller values are preferred for the minimizing the objective function.

A multi-objective optimization problem is formulated as,

min(g1(z),82(z2),---,8k(2)) (1.11)

For an element z* € Z called feasible solution, the output vector
v* := g(z") is called an objective vector. Typically, a feasible solution
which minimizes all the objective functions simultaneously does not ex-
ist. Hence, Pareto optimal solutions are found such that the solution of
any of the objective function can’t be improved without degrading other
objective function solutions (shown in figure 1.1). In the figure 1.1 point
C is not on the Pareto frontier because it is dominated by by both A and
B.

A feasible solution z' € Z dominates another solution z2 € Z, if

1. gi(z') < gi(z?) for all indices i € {1,2,...,k} and

2. gj(z!) < g;(z?) for at least one index j € {1,2,...,k}.




For forecasting neural network the multi-objective functions are de-
fined as follows:

1 N
0= N Z \Zi — zil (1.12)
i=1
1 N
0, = NZ(ZAi_Zi)Z (1.13)
i—1
1 Y Zi—Zi
O3 =— 1.14
3 N; Z (1.14)
1Y (zi—% 1 ¥ zi—3 ’
Op=,|— - — 1.15
4 N,':Zi Zi Ni:z‘i Zi ( )

where Z; 1s the forecasted value and z; 1s the observed value.

First a gnome was created with the combined size of weights matrix
and biases matrix of the ANN. For example if the ANN was chosen
with input size of 36, 10 hidden layers and output of 46. This will make
two weights matrix of combined size of 10 * 36 + 46 x 10 and biases
matrix of combined size of 10+ 46.So, the size of the gnome would be
10%36+46% 10+ 10 + 46.




CHAPTER 2: SEARCH FOR THE BEST SWARM INI-
TIALIZER

Short-term electricity forecasting is particularly critical for electric util-
ities [23]. Load forecasting is essentially incorporate in planning and
operations of power system. It is also used for income projection, rate
plan, energy trading, et cetera[10].

ANN models are an elective method for load forecasting, and, as
far as precision, contend straightforwardly with the models referred to
above. Forecasting using prediction intervals based neural network[16],
entropy-based feature selection in combination with soft computing tech-
niques [17] and others[18][19] are a portion of the ongoing work done
in the field of forecasting utilizing ANN.

The principle target was to test the new initialization technique and
compare it with other techniques commonly used rather than improving
the accuracy of forecasting.

2.1 OVERFITTED NEURAL NETWORKS

Physicist Enrico Fermi once commented “ I remember my friend Johnny
von Neumann used to say, with four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.” [21] . It make sense
since a model with an expansive number of free variables can portray an
extensive variety of phenomenons. Even though that model might show
good results for the given dataset it might fail to work for new datasets.
The problem with more free variables is that in most of the cases it fails
to generalize the phenomenon.

ANN has made a reputation of being overfitted [12] because of use
of a large number of parameters but its hard to comment whether an
ANN is over-parameterised or not[20]. One of the technique used to
avoid overfitting is early stopping but requires some judgmental to de-



cide when to stop. It requires to stop the training when we have reached
saturation in accuracy.

Another technique used to avoid overfitting is L/ regularization. This
penalizes the cost function when the weight is large. The cost function
would look like this

A
C_C0+;;\w| (2.1)

The update rule then looks like
A dCy

w=w-— n—sgn(w)

n M ow

where, sgn(w) is the sign of the weight and A is the regularization pa-

2.2)

rameter. There is also L2 regularization technique which penalizes cost
proportional to weight. While L1 regularization penalizes the weights
by a consistent sum towards zero. In this paper we have used L1 reg-
ularization because the ANN is first initialized using our optimization
algorithm, so it make sense that we might not be getting large weights
in our training. But still it was a matter of choice.

2.2 DATASET

Aggregated demand data was collected between 2015 and 2017. The
Australian states chosen for the datasets were Queensland (QLD), South
Australia (SA), New South Wales (NSW), Victoria (VIC) and Tasmania
(TAS). The electricity demand data were recorded for every half hour.
It was assumed that the forecast is issued after every 12 hours for a
forecasting horizon of 48 hours and a half hourly temporal resolution.
The preprocessing of data started with the normalization of the dataset.

Next step was to create validation sets. The validation sets were created
using two approaches. The first approach was to split the training and
validation data into sets of 84 consecutive hours (36 +48) and those sets
were used to define the 5-fold validation splitting. Fold 1 contained sets
I, 6, 11 and so on as validation set and the remaining as training set.
Fold 2, contained 2, 7, 12, ..., as validation, and analogous splitting
were done for folds 3, 4 and 5.




36 hours data (Starts 00:00)
48 hours data (Starts 12:00)

SET n

36 hours data (Starts 12:00)
SET n+1
48 hours data (Starts 00:00)

Another approach used was a variation on KFold. In the k¥ split,
it returns first k folds as train set and the (k4 1) fold as test set. An
example of splitting into 5 folds would look like as follows:

TRAIN: [0] TEST: [1]

TRAIN: [0 1] TEST: [2]
TRAIN: [0 1 2] TEST: [3]
TRAIN: [0 1 2 3] TEST: [4]
TRAIN: [0 1 2 3 4] TEST: [5]

2.3 GAUSSIAN DISTRIBUTION FOR INITIALIZATION

For making an ANN graph we have to introduce the weights and biases.
For the greater part of the cases we utilize random Gaussian variable
with unit standard deviation and zero mean. Let’s suppose that we have
got an ANN graph with 500 input neurons. The weight matrix connect-
ing the neurons of input layer to the hidden layer is instated utilizing
normalized Gaussian distribution. Now a input is applied with half of
them set to one and half of them set to zero. Then the weighted sum
of the first neuron of the hidden layer would be z =} ;wjx; +b. 250
of the terms in the weighted sum would vanish as half of the input is
set to zero. So, z 1s the weighted sum of 251 normalized Gaussian ran-
dom variables including 1 extra bias term. Thus z is disseminated with
zero mean and /251 ~ 15.84 standard deviation . Thus z has a very
broad Gaussian distribution. This implies that |z| would be expansive,
i.e.,, z>1orz < —1. Let’s suppose we have used sigmoid (o) as the
activation function of the ANN graph, since z is large the, 6(z) would
be either zero or one. Meaning the hidden neuron is saturated. In this
manner rolling out little improvements in the weight matrix would roll




out little improvements in the activation of the neuron and further those
little changes in the activation would scarcely influence other neurons of
the network and we will see little changes in the cost function. Thus our
graph would learn gradually with the use of gradient descent algorithm.
This can be understood well with the four equations of backpropagation:

st=v,coo' () (2.3)
51 — ((W1+1)T61+1) @G/(Zl) (24)

0C
— =4 (2.5)

l J
v’
dC -1 sl

- — by 2.6
8W§k ak ] ( )

Where the error 5}- of neuron j in layer [ is defined as the partial
derivative of cost w.r.t. input weighted sum (zé.) of neuron j of layer [:

)

a

[
o

2.7)

QU

~.

<

V,C is defined to be a vector whose components are the partial deriva-
tives of cost w.r.t. activation of last layer dC/ 8a§ and © is the Hadamard
product[3]. Similarly, (w/*1)7 is the transpose of the weight matrix for
the (I + 1) layer.

One way to overcome this problem would be to make the Guassian
distribution sharply peaked. Assume, for a neuron we have n;, weights
then we instate those weights as Gaussian random variables with zero
mean and 1/,/n;, standard deviation. Bias would still be initialized as a
Guassian with zero mean and unit standard deviation because it’s much
less likely that our neuron would saturate. We could likewise initialize
the biases to zero and let the gradient descent take in the appropriate
biases. Suppose we have 500 inputs to the graph with half of them as
zero and other half as one. Then the standard deviation of the weighted

10



sum of the neuron j of the hidden layer would we calculated as

500
var(zj) =var | ) wixi+b

i=1

500
= var Z wix; | +var(b)

i=1
500
=Y var(wix;) +var(b)
i=1
250
=Y var(w;) +var(b)
i=1
250

=—+1
5001L

_3

2

This demonstrates that z has the Gaussian distribution with zero mean
and standard deviation of 1/3/2 = 1.22 which is more pointedly crested
than previously.

24 CUCKOO SEARCH FOR INITIALIZATION

We started with minimizing the following multiobjective functions:

1 N
ob; =— Y |%i—xi (2.8)
N3
1 N
ob, = N;(fi—xi)z (2.9
1 & |xi— %
bz = — 2.10
ob3 N; . (2.10)
1 N xl'—)e,' 1 N xl-—fi ?
by = 4| — - — 2.11
B\ A 10

where X; 1s the forecasted value and x; is the observed value. This was
a multiobjective problem with finding min(oby,o0b,,0b3,0bs). Cuckoo
search algorithm was found to be better in finding the minimum of such

11



type of problems[4].

First a gnome was created with the size equal to the sum of size of
weights matrix and biases matrix of the ANN. For example if the ANN
was chosen with input size of 36, 10 hidden layers and output of 46.
This will make two weights matrix of combined size of 10 * 36 4- 46 x
10 and biases matrix of combined size of 10 + 46.So, the size of the
gnome would be 1036 +46 x 104 10+ 46. The size of the gnome
along with the multiobjective function min(oby,0b,,0b3,0bs) was given
to the cuckoo search algorithm.

2.4.1 Mathematical model

The aim of the CSO is to find the best solution in the form of eggs in a
nest. A new best solution replaces the less good solution [22]. Typically
a nest contains only a single egg. The algorithm is as follows:

1. Eggs are laid randomly in a nest
2. High quality eggs are passed to next generation

3. The probabilty of finding a egg by the nest owner is E, € (0, 1)
and removed from the nest. The CSO algorithm scheme could be
described in the following form:

4. Initialize the population S = {s;,i € [1 : |S|]} from |S| foreign nests
and a cuckoo, i.e. define the initial values of for vector components
X; = {x;ji € [: |S|]} and cuckoo’s initial position vector X¢;

5. Make a number of cuckoo’s random moves in the search space by
performing Levy flights and find the new cuckoo’s position X¢;

6. Randomly pick a newt s;,i € [1 : |S|] and if f(X¢) > f(X;) then
substitute an egg in this nest to the cuckoo’s egg, i.e. X; = X¢;

7. With the probability =, remove a number of the worst randomly
chosen nests (including probably s; nest) from population and cre-
ate the same number of new nests according to the 1st step rules;

8. Until the stop condition is not satisfied, proceed to the 2nd step.

12



2.4.2 Algorithm

BEGIN
Create beginning populace of n
nests xj, (j =1, 2, ... ,n)
REPEAT

Place cuckoo to point xi randomly

by performing Levy flights

Nest j is chosen among n nests randomly

IF Fj > Fi
X]j 1s replaced by new solution
END IF

Erase from the populace nests
found with pa probability and
construct a similar number of new

nests

SAVE best solution (nest)
UNTIL stop criteria

Postprocess results and visualization
END

The probability of cuckoo’s egg detection was chosen to be 0.25 and
number of nests were 100. The gnome passed by the above algorithm
was tested with every iteration against a pair of input and output vector
selected randomly from the dataset. After 500 iterations the gnome was
passed to the ANN for the initialization of weights and biases.

From the fig 2.1 it is clear that the CSO is dominating the results.
If we see the graph of state NSW in fig 2.1(a), it can be seen that with
CSO, the training is getting saturated at around 500 epochs. While with
the Gaussian distribution, the training is getting saturated at around 1100
epochs. With this huge difference in the number of epochs motivated us

13
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Figure 2.1: Graphs showing training convergence with both types of initialization for

(e)

states: (a) NSW; (b) QLD:; (c) SA; (d) TAS; and, (e) VIC.




to test other swarm intelligence for the initialization purpose.

2.5 BACTERIAL FORAGING OPTIMIZATION

2.5.1 Description

By observing the behaviour of Escherichia coli (next E.coli), Passino
proposed the Bacterial Foraging Optimization [24]. A set of tensile
flagella helps in locomotion during foraging. Tumbling and swimming
is achieved with the help of Flagella during foraging. During the rota-
tion of flagella (clockwise), each flagellum pulls on the cell which helps
in the motion of flagella. By moving the flagella in counter-clockwise,
the bacterium can swim much faster. During chemotaxis, the bacteria
likes to move towards a nutrient gradient and avoid noxious environ-
ment. Their length is increased after getting sufficient food. The bac-
teria also, undergo reproduction by splitting itself in the middle. The
chemotactic progress may be destroyed due to sudden occurrence of en-
vironmental change or attack which may lead to the motion of a group
of bacteria to some other places or other groups may be introduces in
the swarm. This may lead to a event of elimination-dispersal where all
the bacteria in a region are eliminated or a group is dispersed into a new
part of the environment.

Bacterial Foraging Optimization has three main steps:
1. Chemotaxis
2. Reproduction

3. Elimination and Dispersal

2.5.2 Mathematical model

Chemotaxis

The movement of an E.Coli bacteria is reproduced through swimming
and tumbling by means of flagella. There are two method for movement
of an E.Coli, one includes swimming for a timeframe toward a path
and different includes tumbling. Microscopic organisms shifts back and
forth between these two modes for the whole lifetime.
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Reproduction

Unhealthy microscopic organisms in the end die while the healthy mi-
croorganisms (having lower objective function value lives) recreate by
parting itself into two half. The reproduced bacteria stays in a similar
area which aides in keeping the swarm size steady.

Elimination and Dispersal

One of the environmental changes is temperature rise which may lead
to elimination of a group of bacteria in a region having a high nutrient
concentration. In a different case a group might disperse into a new
location. For the reproduction of this procedure a few microbes are
liquidated with a little likelihood. The new substitution are arbitrarily
introduced over the search space.

2.5.3 Algorithm

BEGIN
Initialize randomly the bacteria foraging
optimization population
Fitness value of each agent is calculated
Set global best agent to best agent
FOR number of iterations
FOR number of chemotactic steps
FOR each search agent
Move agent to the random direction
Calculate the fitness of the moved agent
FOR swimming length
IF current fitness 1is better than previous
Move agent to the same direction
ELSE
Move agent to the random direction
END
END
END

Fitness value is calculated
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END
Fitness value of all chemotactic loops (
health of agent) are computed and sorted
Half of the population 1is splitted according
to the health
IF NOT last iteration
FOR each search agent
With some probability replace agent with
new random generated
END
END
Best search agent is updated
Fitness value of each agent 1s calculated
END

2.6 GRAY WOLF OPTIMIZATION

2.6.1 Description

The Gray Wolf Optimization algorithm mimics the leadership hierarchy
and hunting mechanism of gray wolves in nature [25]. Wolves live in a
pack. The average pack consists of a family of 5—12 animals. wolves
have strict social hierarchy which is represented by the division of a pack
into four levels: alpha, beta, delta, and omega.

Alpha wolves are the leaders of their pack. They are responsible for
making decisions, but sometimes alphas can obey to other wolves of the
pack.

Beta wolves help alphas make decisions, every beta is a candidate to
become an alpha if an alpha has died or aged. A beta respects an alpha
and transfers commands to the pack, ensures discipline among inferior
wolves and provides a feedback from the pack to an alpha.

Delta wolves are submitted by alphas and betas, but dominates the
omega.

Finally, omega wolves have to obey all other wolves. Sometimes they
play a role of caretakers.

Gray wolf hunts its prey in three main phases:
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1. Tracking, chasing, and approaching
2. Pursuing, encircling, and harassing

3. Attacking

2.6.2 Mathematical model

The social hierarchy of the wolves is chosen by the fitness value. The
wolf having the fittest value is the alpha, in this way the second and
third fittest values are the beta and delta wolves. Rest are the omegas.
Hunting (here optimization) is lead by the alpha, beta and delta. Omega
follows alpha, beta and delta.

2.6.3 Algorithm

BEGIN
Initialize randomly the gray wolf population
Find 1st, 2nd and 3rd best agents alpha, beta
, delta
Set global best agent to the 1st best agent
Fitness value is calculated for each search
agents
WHILE count < number of iterations
FOR each search agent
Position of each search agent 1is updated
END
Update alpha, beta and delta
Fitness value of each search agent is
calculated
Update the best search agent, the 2nd best
search agent, and the 3rd best search
agent
ADD 1 to count
END WHILE
RETURN the best search agent
END
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2.7 BAT ALGORITHM

2.7.1 Description

The Bat Algorithm is based on the bats echolocation ability [26]. By
using echolocation bats can detect their food and preys and even distin-
guish between the different kinds of insects in the darkness. A bat emits
a loud sound and listens to the echo which is created from the sound
reflection from the surrounding objects. Sounds emitted by a bat are
vary in properties and can be used depending on the hunting strategy.
Each sound impulse lasts from 8 to 10 milliseconds and has constant
frequency between 25 and 150 KHz. A bat can emit from 10 to 20 of
supersonic impulses per second, an impulse lasts from 5 to 20 millisec-
onds. The number of signals emitted by a bat can be increased during a
hunt to 200.

2.7.2 Mathematical model

The Bat Algorithm uses the following principles:

1. A bat uses echolocation for distance estimation and "knows" the
difference between the food/prey and an obstacle

2. Bats search for their prey by flying randomly with a velocity of
v;, variable wavelength A, fixed frequency f,;;; and loudness Ay.
Depending on the proximity to the prey. bats adjust the wavelength
of the emitted impulse and its level of emission in r € [0, 1].

3. While the loudness can be changed by different means we assume
that the loudness vary from big positive value Ag to minimum con-
stant A,,;,. In addition to these simplified principles, lets use the
next approximations: frequency f from the segment [fmin, fmax]
corresponds to the wavelength segment [A,;i,, Anax]. For instance,
a frequency segment [20KHz,500KHz| corresponds to wavelength
segment [0.7mm, 1 7mml].

2.7.3 Algorithm
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BEGIN
f(x) is the objective function
Population of bat is initialized, xi (i =1, 2,
., n) and vi
Pulse frequency fi at xi 1is defined
The loudness and pulse rates (Ai, ri) are
intialized
WHILE count < number of iterations
New solutions are generated by adjusting
frequency, and by updating velocities
and locations/solutions
IF rand > ri
Among the best a solution is selected
A solution around the best is generated
END
By random flight new solution is generated
IF rand < Ai AND f(xi) < f(xx*)
Accept new solution
increase ri and reduce Ai
END
Rank bats and find current best xx*
END

Post process results and visualize it

2.8 ARTIFICIAL BEE ALGORITHM

The aim of a bee swarm is to find the area of a field with the highest
density of flowers [27]. Without any knowledge about a field bees begin
the search of flowers from random positions with random velocity vec-
tors. Each bee can remember positions where the maximal quantity of
flowers was found and know where other bees found the maximum den-
sity of flowers. When a bee chooses between the place where it found
the maximum quantity of flowers and the place which was reported by
others, the bee rushes in direction between these two points and decides
between personal memory and social reflex. On its way the bee can
find a place with more high concentration of flowers than were found
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previously. In the future this place can be marked as the one with the
highest concentration of flowers found by a swarm. After that the whole
swarm will rush in the direction of this place, remembering though their
own observations. Thus, bees research a field by flying to places with
the highest concentration of flowers. They also continuously compare
places they flew over with previously found ones in order to found the
absolute maxim concentration of flowers. In the end, a bee ends its flight
in the place with the maximum concentration of flowers. Soon the whole
swarm will locate in the neighborhood of that place.

2.8.1 Mathematical model

Employed bees, onlookers and scouts are the three groups of bees in
the colony. Scouts perform random search, employed bees collect pre-
viously found food and the dances of employed bees are watched by
onlookers. Onlookers also chooses the food sources depending on the
dances. Onlookers and scouts are called non-working bees. Communi-
cation between bees is based on dances. Before a bee starts to collect
food it watches dances of other bees. A dance is the way bees describe
where food is.

Working and non-working honey bees scan for rich nourishment sources
close to their hive. A working honey bee keeps the data about a nour-
ishment source and offer it with spectators. Working honey bees whose
solution can’t be improved after a positive number of endeavors become
scouts and their answers are not utilized after that. The quantity of suste-
nance sources speaks to the quantity of solutions in the populace. Con-
ceivable solution are spoken to by the situation of a nourishment source.
The nature of the solution is spoken to by the nectar measure of a suste-

nance source.

2.8.2 Algorithm

BEGIN
The population is initialized
For the initial interation current best agent

is found
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Calculate the no of scouts, onlookers and
employed bees
SET global best to current best
FOR iterator < iteration
fitness for each agent is evaluated
Fitness 1s sorted in ascending order and find
the best agent
Select agents (a to c¢) from a list of best
agents
Bees flying to the best solution are created
Current best agent is evaluated
IF fitness value of current best < fitness
value of global best
global best = current best
END
END
Global best is saved

2.9 FIREFLY ALGORITHM

Most species of fireflies are able to glow producing short flashes. It is
considered that the main function of flashes are to attract fireflies of the
opposite sex and potential preys. Besides, a signal flash can communi-
cate to a predator that a firefly has a bitter taste. [28]

2.9.1 Mathematical model

The Firefly Algorithm is based on two important things: the change in
light intensity and attractiveness. The brightness of a firefly (connected
with the objective function) defines its attractiveness. The algorithm
utilizes the following firefly behaviour model:

1. All fireflies are able to attract each other independently of their

gender;

2. A firefly attractiveness for other individuals is proportional to its

brightness.
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3. Less attractive fireflies move in the direction of the most attractive
one.

4. As the distance between two fireflies increases, the visible bright-
ness of the given firefly for the other decreases.

5. If a firefly finds no other firefly brighter, then its motion is random.

2.9.2 Algorithm

f(x) is the objective function
Initialize the population of fireflies xi(i =
1, 2, ... , n)
Define light absorption coefficient (gamma)
WHILE count < Generations
FOR i < no of fireflies
FOR j < 1
Light intensity (Ii) at xi is determined
by f(xi)
IF Ii > Ij
Move the firefly i1 towards j in all
dimensions d
ELSE
Move firefly 1 randomly
END
Change attractiveness with distance r
via exp[-gamma r2]
Determine new solution and revise the
light intensity
END
END
Rank the fireflies by their light intensity
and current best is found
END
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2.10 WHALE SWARM ALGORITHM

Whales live in groups. Whales produces sounds of a very wide range.
The sound produced is linked to their migration, feeding and matting
patterns. Moreover, a large part of sounds made by whales are ultra-
sound. They remains in touch with each other and finds food azimuth
by ultrasound. Upon finding the food, they generate sounds to notify
others about the quality and quantity of the food. That’s a lot of infor-
mation to process. Whales move to a proper location to find food. [29]

2.10.1 Mathematical model

The Whale Swarm Algorithm employees the following rules:

1. All the whales communicate with each other by ultrasound in the
search area;

2. Whales posses the ability to compute distance to other whales

3. The fitness value of each whale determines the food quality and
quantity

4. The whale having highest fitness value guide the nearby whales

2.10.2 Algorithm

BEGIN

Agents are initialized

Current best is found

global best = current best

FOR t < iterations

FOR each agent
Better and nearest are found
IF Exists
Current agents is shifted in direction
of its better and nearest

END

Current best is found
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IF current best better than global best
global best = current best
END
END
Global best is saved
END

2.11 PARTICLE SWARM OPTIMIZATION

A flock of birds is a good example of the collective behavior of animals.
Flying in a big groups, they almost never collide with each other. A flock
moves smoothly and is coordinated as if it is controlled by something
and it’s not about the leader of the flock. A flock of birds is a swarm
intelligence and birds in it act according to certain rules. [30] The rules
are the following:

1. Every bird tries to avoid collision with others;
2. Every bird moves in the close birds direction;
3. Birds try to move on the equal distance from each other;

4. A bird shares information with neighbours.

2.11.1 Mathematical model

In the PSO, agents are particles in the optimization task parameters
space. On each iteration particles have some position and a velocity vec-
tor. For each position of a particle the corresponding objective function
value is calculated and on the basis of that value a particle changes its
position and velocity according to certain rules. The pso is a stochastic
optimization method. It doesn’t update existing populations but works
with one static population which members steadily improve as they re-
ceive more information about the search space.

2.11.2 Algorithm
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BEGIN
Agents are initialized
Current best is found
Global best = current best

FOR 1 < iterations

Particle velocity 1is calculated
Particles velocity 1s changed
Particles positions 1is updated
New agent 1s selected according to the
selection strategy
IF current best better than global best
Global best = current best
END
END
Global best is saved
END

2.12 CHICKEN SWARM OPTIMIZATION

The chicken swarm consist of a rooster and many hens and chicks. In
different hierarchical order there exist competition among chickens. Dif-
ferent chicken follows different moving pattern. Domestic chickens like
to live in flocks. Chickens shares a lot of informations related to nest-
ing, food discovery, mating, danger etc through different sounds. Trial
and error 1s not the only source of learning they also learn from previ-
ous experiences and from others. It’s obvious that a preponderant one
would dominate the weak. The head roosters are surrounded by the more
dominant hens. Also, dominant hens surrounds more submissive hens.
The social order would disrupt by removing or adding chickens from an
existing group until a specific order is established.[31]

2.12.1 Mathematical model

In the CHSO algorithm the chickens’ behaviours are described by the
following rules:
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1. There are many groups, with each group consisting of a rooster
(dominating), couples of hens and chicks.

2. Fitness value of the chickens determine the division of chickens
into several groups and determination of the identity of the chick-
ens, here, it is rooster, hens and chicks. The head rooster of the
group is the one having best fitness value in many cases. Whereas,
the worst performing chicken would be considered as chick. Rest
would be considered as hens. Hens are randomly selected to live in
a group. Similarly, the mother to child relationship is determined
randomly.

3. Some constant relationship in a group would be their hierarchical
order, mother to child and dominance relationship. They would be
updated after many time steps.

4. For finding food chickens would follow their rooster. Chickens
would also have to protect their food being eaten by others. There
will also be a possibility of food stealing by other chickens. Whereas,
the chicks would restrict their search area around their mother. It’s
obvious that the dominant would be having advantage here.

2.12.2 Algorithm

BEGIN
N chickens are initialized with their
parameters
Calculate fitness function values
Find current best
Set global best = current best
FOR 1 = 0 : number of iterations
IF(i % G == 0)
Hierarchy 1s made according to the
fitness value of chickens
Relationship (chicks to hens) is
determined in a group after dividing

the swam into groups
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END IF
FOR j =1 : N
IF j == rooster
Solution and location are updated
END IF
IF j == hen
Solution and location are updated
END IF
IF 1 == chick
Solution and location are updated
END IF
Current best is evaluated
IF current best better than global best
SET global best to current best
END IF
END FOR
END

2.13 SOCIAL SPIDER ALGORITHM

The Social Spider Algorithm mimics the social spiders colony behaviour.
These spiders form colonies which allow them to remain together on a
communal network.

A social spider settlement comprises of two fundamental segments:
its communal network and its members. All individuals are separated
into two distinct groups: females and males. [32]

2.13.1 Mathematical model

This calculation depends on the presumption that the whole search space
is a common web. In this web all the social-spiders communicate to one
another. Every spiders position in the public web speak to an solution
inside the search space. Weights are determined to every spider as per
the fitness estimation of the solution. There two search agents here,
male and female. Every individual is led by a lot of various transforma-
tive administrators relying upon sexual orientation which copy distinc-
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tive helpful practices that are normally accepted inside the settlement.
Social-spiders have profoundly female-one-sided populaces. The calcu-
lation begins by characterizing the quantity of female and male spiders
that will be portrayed as people in the search space.

2.13.2 Algorithm

BEGIN
Create the population of spiders
Initialize target vibration for each spider
FOR i = 0 : number of iterations
FOR each spider in population
Evaluate the fitness values of a spider
Generate a vibration at the position of
the spider
END FOR
FOR each spider in population
Calculate the intensity of the vibrations
generated bu other spiders
Select the strongest vibration from all
vibrations
IF the intensity of the strongest
vibration 1is larger than target
vibration
target vibration = strongest vibration
END IF
Perform a random walk towards target
vibration
Generate a random number rn from [0,1)
IF rn < pj
Assign a random position to the spider
END IF
Attenuate the intensity of target
vibration
END FOR
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END FOR
Save the best solution
END

2.14 CAT ALGORITHM (CAT SWARM OPTIMIZATION)

Cat Algorithm mirrors the two parts of cat behaviour: seeking mode
and tracking mode. A cat can be in either seeking mode or tracing
mode, while comprising of M dimensional position, having speed of
each measurement and a fitness esteem. The last solution would be the
best position in one of the cats. [33]

2.14.1 Mathematical model

Seeking mode speak to the circumstance of the car which could be rest-
ing, glancing around or looking for the following position to move in.

In seeking mode, the four fundamental components are character-
zed:

1. Seeking Memory Pool (SMP)

2. Seeking Range of the selected Dimension (SRD)
3. Counts of Dimension to Change (CDC)

4. Self-Position Considering (SPC)

For the seeking mode the following algorithm is proposed:

FOR each cat-agent
Create j = SMP copies
IF SPC 1is true

j = SMP -1
Save copiles
END IF

END FOR

FOR each copy
Randomly add (or subtract) SRD

END FOR

FOR each copy
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Calculate fitness function value FSi
END FOR
IF all values of the fitness function are not
equal to each other
Calculate Pi
END IF
IF FSi are equal
Pi =1
END IF
FSb = FSmin
Replace cat-agent with 1its copy

Tracing mode is the second mode of a cat. In this mode the cat tracks
down and attacks its prey. In tracing mode the algorithm works as fol-
lows:

Calculate new velocity vector value for each
cat

Calculate new position of a cat

2.14.2 Algorithm

Initialize n cats in the domain D randomly (
Initially each cat has zero velocity vector)
Generate a flag for each cat
FOR number of iterations
Calculate Pbest
Move each cat considering its flag:
IF flag = O

Perform seeking mode

ELSE
Perform tracing mode
END IF
Redistribute the flags
END FOR
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2.15 GRAVITATIONAL SEARCH ALGORITHM

The Gravitational Search Algorithm is based on the laws of gravita-
tion and mass interaction. Basically, this algorithm is similar to Particle
Swarm Optimization (PSO), since they are both based on the develop-
ment of a multi-agent system. [?]

2.15.1 Mathematical model

GSA operates with two laws:

1. law of gravitation: every particle pulls in different particles and
force of gravity between two particles is directly proportional to
the product of their masses and inversely corresponding to the sep-
aration between them (one should pay attention to the fact that,
unlike the law of universal gravitation, we don’t use the square of
the distance, as it results in better results of the algorithm).

F] :FQZG*(ml *mz)*r_z

2. law of motion: the present speed of any particle is equivalent to
the total of the part of the speed at the past moment of time and to
the adjustment in speed which is equivalent to the force the frame-
work influences the particle with divided by the inertial mass of the
particle.

2.15.2 Algorithm

—

Generate the system randomly;

2. Determine the fitness of each particle;

w

Update the value of the gravitational
constant, masses and the best and the worst
particle values;

4. Calculate the resultant force in different

directions;

o

Calculate accelerations and velocities;

(®))

Update particles’ positions,;
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7.

Repeat steps 2 to 6 until the stop condition

is reached.
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CHAPTER 3: ZERO INITIALIZATION OF MODIFIED
GATED RECURRENT ENCODER DE-
CODER NETWORK

Recurrent Neural Network (RNN) are very powerful and is used for
timeseries forecasting in various ways. But the problem with such type
of network is that we always need a FNN as a last layer and no specific
technique for parameter initialization exist for such layer. When we
look at some of the works done in this field such as Xavier[35], He[36]
and 1dentity matrix [37], we see significant results with Rectified Linear
Unit (ReLu) or its variants on a deep neural network. Other recent work
include Layer-sequential unit-variance (LSUV)[38] initialization which
also works great with ReLLu family and deep network. All such type of
initialization were designed so that the input signal could traverse deep
in the network. But using these techniques on a single layer network
makes no sense. But we could still see these type of techniques being
used on a single FNN. Thus, we propose a ZI for single FNN and tested
it against various initialization techniques and implemented it on prize
winning models. Results shows that ZI is way much superior than any
other technique out there. We further investigate how a FNN does not
die with both weights and biases initialized to zero and why it improves
the accuracy.

Electricity market has changed significantly in last decade forming a
restructured market[50] where the prediction has become difficult due
to emerging technologies. Short term load forecasting is particularly
important for power system security and electricity cost. Mainly two
types of forecasting is done, one is point forecasting and other is prob-
ability forecasting. If forecasting is done inaccurately it would lead to
increased operating cost due to allocation of insufficient reserve capac-
ity and use of expensive peak load units. Also, when talking about spot
price and electrical energy trading in open market, electricity load fore-
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casting plays a major role to purchase the electricity at minimum cost.
Point forecasting has emerged as the dominating technique for predic-
tion of load with the major models being exponential smoothing[44] and
regression[45, 50] in the field of statistical models.

When talking about artificial neural network([51], models with variant
of neural network have shown significant results in this field such as
Improved Neural Network[43, 48], Support Vector Machine [46] and
Fuzzy System [47, 49]. There are two major problems associated with
artificial neural network, namely, “overfitting” in which the model fails
to train for the underlying relationship and the other is “dimentionality”
in which the models complexity increases exponentially as the number
of input dimension increases.

The focus of this paper is to use a GRU encoder-decoder model to
maximize the conditional probability of the target sequence given the
input sequence. This model is mainly used in Neural Machine Transla-
tion where the input sequence length is variable in nature along with the
output sequence length. In the decoder of the model, the fully connected
dense neural network was initialized with the defamed Zero Initializa-
tion technique. We further investigate how initialization of both weights
and biases to zero could be possible and why we didn’t end up with
dead neurons. It was shown that with only changing the initialization
technique of this output layer we could get high level of accuracy in
comparison to other initialization techniques.

For testing of our models we have used electricity load of New South
Wales (NSW). The timeseries is half hourly distributed and we have
taken 48 hours as our forecasting horizon. We have two models and
used various initialization techniques to compare our results. The results
show that convergence speed and variance shown when the model ini-
tialized with ZI were superior to when initialized with other techniques.
The mean absolute percentage error(MAPE) in load forecasting with ZI
was around 0.94% while with Xavier Uniform was around 1.06%. Other
techniques showed higher error and variance.
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3.1 EXPERIMENT SETUP

3.1.1 Dataset used

For our models we have used electricity load of New South Wales (NSW)[39]
of Australian Energy Market. The feature used from the dataset includes

only total demands and its time. We have used historical electricity load
data of year 2015,2016,2017.

3.1.2 Data pre-processing and feature engineering

Raw input values was transformed by log(l + x). We first try to find
any type of auto-correlation within the data. The auto-correlation plot
showed strong yearly and quarterly seasonality in data and we tried to
use that to increase the accuracy. First thing we did with the data was
to find the annual and quarter autocorrelation of the input dataset. But
due to unevenness of input interval due to leap years, monthly length
differences, autocorrelation was found considering neighbouring data
also to reduce noise as follows:

corr = 0.5« corr(lag) +0.25 x corr(lag — 1) +0.25 x corr(lag+ 1)

where, corr(lag) is the autocorrelation with lag. Two lags were used
here; one of 365 and other of 365.25/4. These two values is then used
as a feature. These were time independent features so it was necessary
to stretch it to the timeseries length, i.e., they were added to at the end
of each input batch. Next feature which we selected was day-of week.
Since it could not be directly feed to the network, it was normalized as
follows:

feature = {mon: 0, ..., sun:6}

for each feature_value in feature:
normed = feature_value / (7 / 2%pi)

dow = [cos(normed), sin(normed)]

dow from above was used as additional features. One of the important
feature used was the lagged_data. Since data showed string quarter and
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annual correlation we decided to lag the input load by 3,6,9, 12 months
and add them as additional features as follows:

timeseries_indices: time indices of
the electricity load data

offset: in months

for each time in timeseries_indices:
for each offset in {3, 6, 9, 12}:
date = time - offset
data(date)

lagged_data

Year ago Quarter ago | Predictions
o—O0—CO0—~0— 0 0—0—0—0—7 E’,")—O—CB—CB—T)—D

________________________________________________________

Features

Figure 3.1: Quarter and annual feature selection for lagged_data

Important features from the past are now explicitly included in the
features and hence our model need not to remember very old informa-
tions. Lagged datapoints helps in reducing the size of model and hence
helps in faster training and less loss of information. This technique being
simple helps in achieving high accuracy. Also, LSTM/GRU units tends
to forget oldest informations when the input sequence size increases.

training with y_labels
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Figure 3.2: Visualization of input features: (a) shows x input features used for training;
(b) shows y input features used for prediction.
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Figure 3.2 shows how features were combined as input pipeline for
being feed to the model. x_features were splitted into batches of size
training_window and similarly y_features were splitted into batches of
size predict_window. Year and quarter autocorrleation were tiled ac-
cording to the size of input features.

3.1.3 Prediction Model 1

We have done majority of the work to get the accuracy in the input
pipeline so we tried to keep our first model as simple as possible. With
this model we try to understand the concept of ZI and its significance. A
simple RNN was selected and we used GRU [40] cells instead of LSTM.
The output from the GRU layer is then connected to a fully connected
(FC) dense layer. This is the layer where we will apply our initilization
technique and compare the results with different initilization techniques.
Figure 3.3 shows the graphical depiction of our first model.

—_—D
o -
D E
|
S+ | --—-=-=- > @)
T =
o ® =1
"'-B —————— > c
5 —
a9
€2\ - >

—P

Fully connected
single dense layer

Figure 3.3: First model for electricity load forecasting with FC output layer

Analysis of ZI

Let us consider w?k to be the weight connecting k™ neuron in the (L —
1) layer to the j" neuron in the L™ layer. Here, L™ layer is our last FC
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layer and (L — 1) layer is the output layer of our GRU block. For sim-
plicity, first let us consider identity function to be our activation function.
The activation of the j® neuron of the last layer will be:

L _ L—1,_L—1 , ;L
We will consider quadratic cost function C as follows:

= %Zabs(y(x) g (x)? 3.1)

where n is the size of the training dataset. Also, x is the input and
y = y(x) is the desired output. The weights are updated by finding tbe
gradient of the cost function w.r.t. the weights as follows:

W = wh == (3.2)

where, 7 is the learining rate. From equation 3.2 it can be seen that
as long as the gradient is coming out to be non zero the weights would
be updated and our neuron would not die. Since, we have used qudratic
cost function it’s derivative by the backpropogation equation [41] can be
found easily as follows:

oC
5 = a—aﬁa’(zﬁ) (3.3)
dC
oL (a? —yj) (3.4)
J
dC _
—aka = aé 13]-L (3.5)
J

Since, our activation function was an identity, ¢’ (zf) = 1. So, our

updating gradient will be :
dC L—1,( L
7 =a; x(dj—yj)x1 (3.6)
adw it
Since, our gradient came out to be non zero our neuron will keep on

learning. Any activation function which have non zero derivative at zero
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will keep our neuron alive. Some of the alternative activation functions
which could have been used are:

a(z) =tanh(z) ; d'(z) =sech®(z)
a(z) = sigmoid(z) ; d'(z) =a(z)(1 —a(z))

v
{1 08
[A 06
AN Y
10 5 < { = 5 10 N T4
f « from —12 to 12} x from =2.6 to 2.6)
[
1

_4'[]_ — sech

(a) (b)

Figure 3.4: Plot of different activation function with their derivatives: (a) tanh(x) and
sech?(x); (b) sigmoid(x) and sigmoid (x)(1 — sigmoid(x)).

From figure 3.4 it’s clear that the derivative of the activation functions
are well defined at zero and are non-zero.

At the begining of the training all the weights and biases will be ini-
tialized to zero, so , a§ = 0. But aé_l # 0 since it is the output from
the GRU block.So, it can be assumed that each neuron output coming
from GRU will be different. With these assumptions the gradient at the
begining will be

% =ar 'k (~yj) (3.7)

Because of the different output coming from the GRU block, each
neuron in FC layer will learn different weights with each iterations.
Also, after training the weights are more tends towards zero, so it make
sense to initialize all the weight to zero.

3.1.4 Prediction Model 2

A sequence to sequence (seq2seq) learning model [42] was selected to
predict electricity load with high accuracy. This model was selected due
to following reasons:

1. Predictions is based upon conditional probability of previous val-
ues including our past predictions.
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2. This model is versatile with the type of features being injected into
it, like numerical, categorical, timeseries etc.

For a given input sequence (x1,x2,...,X,) a GRU computes the out-
put sequence (y1,y2,...,Vm) by deciding which information to store and
which information to drop. This is decided by using of a reset gate and
an update gate. When the reset gate is close to zero the hidden unit is
forced to drop previous hidden information and store the current input.
Through this any information that is not relevant is dropped. The update
gate controls how much information which be transferred from previous
hidden state to the new hidden state.

The reset gate of the jth hidden unit is computed as

rl =0 (W/x/ + U (t—1)) (3.8)

where, er and Urj are the weights to be learned. x/ is the inputs to
jth hidden state and //(t — 1) is the previous hidden state. ¢ being the
sigmoid function.

The update gate is computed as

2 =0 (WX + U (1 -1)) (3.9)

where, the notations being similar to the reset gate. The activation of
the hidden state is computed as

R (t) =2/h/(t — 1)+ (1 —2)/h/ (1)) (3.10)

where,

W)= ¢ (W;xf+ug(rf®hf(t— 1))) 3.11)
where, ¢ being the tanh activation function and © is element wise

product.
The output of GRU is then calculated as

y(t) = Wrh(r) (3.12)

With these GRU units the model 2 was constructed with the aim
to calculate the conditional probability p(yy,...,ym|x1,...,¥,) Where, x
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and y are the input and output sequences respectively. The length of
input and output sequences, n and m may or may not be equal. Since
the length of input and output sequences may be different an Encoder is
used in this model that reduces the input sequence into a fixed dimen-
sional vector c¢. The hidden state of this encoder 4 is than transferred
to the decoder along with the last input of the input sequence x. The
decoder utilizes the hidden state of the encoder and previous output to
estimate the conditional probability as

3

p((yla'"apm)l(xla"'7xn)) - Hp(yl“(hayla"'ayt—l)) (313)

t=1

Figure 3.5 depicts how the second model was constructed.
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N J {( ) J)

x feature vector y feature vector

Figure 3.5: Second model for electricity load forecasting with FC output layer

Losses and regularization

Smoothed Differential Symmetric Mean Absolute Percentage Error (SSMAPE)
was used as a loss function in our model which is a variant of SMAPE.

Mean Absolute Error (MAE) could have also been used on log(1 + x).

The reason for using these two was that their behaviour is well defined

when truth value was close to zero and predicted value moves around

zero. Figure 3.6(a) shows this problem graphically. The final predicted
values were rounded to their nearest integer value and negative values

were clipped to zero as can been seen in figure 3.6.
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2*|F —A(r))

SMAPE = 3.14
¥ LI A G

1 241F () AQ)
SSMAPE = 0 ) M an(FOL A A te051e O
MAE = ]lvzur(t) —AQ) (3.16)

where F () is the forecasted value and A(r) is the actual value. € is
the smoothness factor in SSMAPE.

Additional cost term for RNN were added to both encoder and de-
coder which adds squared magnitude of coefficient as penalty.

B
M_EZmN (3.17)

where, R(t) is the RNN output and f is the hyperparameter controlling
the amount of regularization.

(a) (b)
Figure 3.6: Plot of different loss functions: (a) when True value = 0; (b) when True
value = 1.

3.1.5 Reducing model variance

It was hard to know which training step would be best for predicting the
future, so early stopping[41] could not be used. So, it was necessary to
use some technique to reduce the variance. Averaging Stochastic Gradi-
ent Descent (ASGD) was used to reduce variance in both model 1 and 2.
With ASGD the moving average of the network weights are maintained
during training. These averaged weights are used during predictions in-
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stead of the original ones.It has to be noted that if ASGD was used from
the starting of training, the training would be very slow, so it was neces-
sary to apply ASGD after certain epochs have been passed. ASGD was
used only in FC layer for averaging of weights.

b

NO ASGD
— ASGD applied

(=9

&0 300 0 400 450 500

Figure 3.7: Variance reduction applied to the weights of FC layer of model 1

3.1.6 Training and validation

Five fold cross validation was used for the comparison purpose. The
training and validation dataset was repeated within each epochs so as to
reduce the number of epochs and improve the accuracy. The repetition
of dataset was achieved as follows:

data_train = data_train.repeat(n_repeat)

for epoch in epochs:

train(data_train)
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CHAPTER 4: RESULTS AND CONCLUSION

4.1 SIMULATION RESULTS

For swarm intelligence the simulation was done by splitting the dataset
into two types, namely timeseries split and 5 fold cross validation. Two
types of weight initialization were compared; one was using random
Gaussian variable with zero mean and 1/,/n;, standard deviation (from
now onwards calling it “default”) and the other was using swarm intel-
ligence algorithms. The following parameters were common in all the

simulation:
ANN Cost function Quadratic Cost
ANN Activation function tanh
Regularization L1
Lambda 2
Hidden neurons 10

Convergence of MAPE with epochs for each states and each types of
splitting and initialization is shown in figure 4.1.

The initialization started with Gaussian distribution and it was found
that the Cuckoo Search initialization was superior to it. Based on that re-
sults, the initialization was tested further with other swarm intelligence
algorithms. The results shown in figure 4.1 shows that the Chicken
Swarm Optimization (chso) and Bacterial Foraging Optimization (BFO)
gave comparable results to each other and were way much superior to
Gaussian distribution. If both figure 2.1 and 4.1 are compared to each
other it can be found that with the Gaussian initialization the solution
saturated at around 1100 epochs while with the swarm intelligence it
saturated at around 200 epochs. Same simulation when done with 5 fold
cross validation showed same result with a considerably reduction in
number of epochs.

For Z1, two variants of Xavier initialization were used in testing the
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Figure 4.1: Graphs showing convergence during training using swarm intelligence for
states: (a) NSW; (b) QLD; (¢) SA; (d) TAS; and, (e) VIC.
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Table 4.1: Model 2 with Xa norm initialization

Fold1 Fold2 Fold3 Fold4 Fold5 STDEV Mean
NSW 6.5929 5.9959 5.0434 5.5507 52175 0.6263 5.6801
QLD 4.5606 3.7321 3.2218 5.3963 39278 0.8376 4.1677
SA 8.6941 10.4973 9.1520 10.8591 10.5814 0.9667 9.9568
TAS 49395 4.8040 8.4487 5.8538 5.5170 1.4805 5.9126
VIC 7.3316 7.0493 5.6297 10.0888  6.0339 1.7469 7.2267

Table 4.2: Model 2 with He initialization

Foldl1 Fold2 ©Fold3 Fold4 Fold5 STDEV  Mean
NSW 4.6513 5.6656 5.0018 5.7170 4.5206 0.5582 5.1113
QLD 4.8662 3.8662 3.5139 5.8110 3.9960 0.9275 4.4106
SA 8.4525 10.8284 9.2735 11.3734 10.6170 1.2058 10.1090
TAS 5.0431 5.3278 9.8243 5.7468 49529 2.0611 6.1790
VIC 7.4215 6.7470 5.4655 10.0543 5.2911 1.9265 6.9959

Table 4.3: Model 2 with Identity initialization

Fold1 Fold2 ©Fold3 Fold4 Fold5 STDEV  Mean
NSW 53960 6.0436 5.2154 59269 52304 0.3946 5.5625
QLD 6.9085 3.8863 3.3958 5.3821 4.7401 1.3762  4.8626
SA 9.8609 11.7342 9.6232 11.2667 11.7405 1.0286 10.8451
TAS 5.5648 5.0953 9.7718 6.6790 53306 1.9334 6.4883
VIC 6.5635 7.5402 5.4254 8.7992  6.3995 1.2792  6.9455

Table 4.4: Model 2 with ZI initialization

Fold1 Fold2 Fold3 Fold4 Fold5 STDEV Mean
NSW 3.6601 4.1024 3.6046 42836 3.6129 0.3179 3.8527
QLD 3.8734 3.0213 3.5998 4.5921 3.5880 0.5708 3.7349
SA 7.2213 8.0867 6.9555 9.4038 7.8146 0.9561 7.8964
TAS 5.3289 4.2857 7.9611 6.3351 4.4796 1.5117 5.6781
VIC 6.2582 5.8454 47763 6.3946 4.6321 0.8274 5.5813

Table 4.5: Model 2 with Xa uniform initialization

Fold1l Fold2 Fold3 Fold4 Fold5 STDEV Mean
NSW 52228 5.3811 5.4969 5.6936 5.0978 0.2326 5.3785
QLD 6.2597 4.6270 3.0443 5.8337 4.0537 1.3098 4.7637
SA 8.7608 11.9020 9.4006 9.9402 9.3062 1.2147 9.8620
TAS 5.0635 5.0450 8.9477 5.9480 5.0639 1.6849 6.0136
VIC 7.1276 7.1873 5.2693 7.4563 6.0190 0.9306 6.6119
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Table 4.6: Model 2 with all the initializations
NSW QLD SA TAS VIC

Xa_norm 5.6801 4.1677 9.9568 5.9126 7.2267

He 5.1113 4.4106 10.1090 6.1790 6.9959
Identity 5.5625 4.8626 10.8451 6.4883 6.9455
Z1 3.8527 3.7349 7.8964 5.6781 5.5813

Xa_uniform 5.3785 4.7637 9.8620 6.0136 6.6119

models. The first one draws samples from normal distribution and the
second one draws from uniform distribution within the [—limit,limit].
Where, limit is defined for the normal distribution as,

2
limit = || —— 4.1)
in -+ out

and for uniform distribution as,

limit = A / L 4.2)
In+ out

where, in and out are the number of input and output units in the
weight vector [35]. Xavier uniform initializer is also called Glorot uni-
form initializer.

The second initializer called He, draws samples from a truncated nor-
mal distribution within [—/imit,limit] where limit is,

2
limit =/ — (4.3)
in

its variant draws samples from uniform distribution within [—limit, limit]

limit = g 4.4)
in

The Identity initializer used is a simple one which utilizes an identity
matrix for initialization.

All the initialization techniques where used for initialization of model
having single layer output network and the results are shown in table 4.1
to 4.5. From table 4.6 one can see that the best performance was given
by the model when the model was initialized with zero. From table 4.6
the average MAPE we got with ZI were around 3.8527, 3.7349, 7.8964,
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5.6781 and 5.5813 for the five states which were superior to any other
MAPE given by other initialization techniques.

Model 1

=
111
& &

Henitity
® 7
ll.‘.' Linear
‘.l
60
L
g
40
20

g0 &0 100 120 140 160 150 200

Figure 4.2: Training steps from model 1 using various initialization techniques

To see how well the convergence is taking place during training, the
plot during convergence was drawn in figure 4.2. Figure 4.2 was drawn
during training of first model. From there one could see that the model
is converging quite well with the ZI technique.

The plot of error in output of each 48 hour of testing dataset is shown
in figure 4.3. Figure 4.4 shows the output of the model 2 against the
actual output. From figure 4.3 and 4.4 one can see that ZI showed best
performance.
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Figure 4.3: Visualization of error on validation set of state NSW (Fold 1) : (a) shows
error with XaNorm initialization; (b) shows error with He initialization; (c¢) shows error
with Identity initialization ; (d) shows error with ZI initialization; and, (e) shows error
with XaUniform initialization ;

50



9000 10000 -
° ]
8000 9000 s
b -
[ 5
£ 5 a0 |
B 7000 5
g g
g g 7000
£0a0
6000
5000
000 7000  B000 9000 10000 11000 12000 6000 7000  BOD0 9000 10000 11000 12000
actual demand actual demand
(@) (b)
o on® 11000 1
10000 - o
.
® 10000 1 .
9000 -
h=] h=] ‘
2 od .o 5 sooo | . X
5 8000 L4 E °°
3 3 eooo - .
z z
E 7000 g H
7000
[ ]
[ )
€000 6000 * .’
000 7000  BOO0 9000 10000 11000 12000 6000 7000  BOD0 9000 10000 11000 12000
actual demand actual demand
(© d
10000 |
9000 -
2 .
[
£ s000 | ‘
5
T
=
2
E 7000
6000
000 7000 8000 9000 10000 11000 12000

actual demand

©)
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Figure 4.5: MAPE of model 2 (Fold 1) with all initialization techniques.

To see how well technique performed, MAPE from model 2 with all
initialization techniques were plotted in figure 4.5. From there it can be
seen that Model 2 used with ZI showed minimum MAPE in comparison
to other techniques.

4.2 CONCLUSIONS

It was found that dataset splitting using timeseries and 5 fold cross val-
1dation doesn’t make much of a difference in reducing the error. When
talking about the method of initialization, it was found that CSO initial-
ization was successful in reducing the number of epochs and hence helps
in faster convergence. Based on that conclusion best swarm intelligence
optimizer was searched and it was found that chicken swarm and bac-
terial foraging were way much faster in converging to the solution. It
should be noted that the number of hidden layers used in the simulation
was 10 which is less than used in other researches. The overall aim of
this simulation was to use less computing resources for faster conver-
gence of the solution. Hence, an ANN with one hidden layer with 10
neurons were used in the simulation.
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After searching for the best swarm intelligence, use of zero initial-
ization technique for single layer output of a complex network was in-
troduced. The proposed model was able to reduce the variance and also
increase the speed of training. This technique was evaluated with other
modern initialization techniques and model and it was shown that it was
superior to other techniques. The model used was a seq2seq network
since the output is based upon the conditional probability of previous
output and input. Also, seq2seq network could be extended for other
timeseries forecasting such as webpage views on a daily basis and stock
price predictions.

Before feeding the model with the input pipeline, some preprocessing
of data such as autocorrelation within the data was done. The dataset
showed strong annual and quarter correlations which was fed into the
input pipelines. It was also shown why some activation functions can’t
be used with ZI.
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