COMPARATIVE GEOSTATISTICAL AMBIENT AIR QUALITY ANALYSIS OF DELHI

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT FOR THE AWARD OF DEGREE OF

MASTER OF TECHNOLOGY IN ENVIRONMENTAL ENGINEERING

SUBMITTED BY:

SAURABH SINGH (2K17/ENE/14)

UNDER THE SUPERVISION OF Mr ANUNAY A GOUR

DEPARTMENT OF ENVIRONMENTAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY

OCTOBER, 2019

DELHI TECHNOLOGICAL UNIVERSITY DEPARTMENT OF ENVIRONMENTAL ENGINEERING

CERTIFICATE

This is to certify that the project report entitled "COMPARATIVE GEOSTATISTICAL AMBIENT AIR QUALITY ANALYSIS OF DELHI" is a report of the major project done in the partial fulfilment of the requirement for the award of the degree of Master of Technology in Environmental Engineering from Delhi Technological University during the year 2019.

Date: Place: Mr ANUNAY A GOUR

CANDIDATE'S DECLARATION

I Saurabh Singh, 2K17/ENE/14 student of M.Tech, Environmental Engineering, hereby declare that the project dissertation entitled **"COMPARATIVE GEOSTATISTICAL AMBIENT AIR QUALITY ANALYSIS OF DELHI**" which is submitted by me to the Department of Environmental Engineering, Delhi Technological University, Delhi in partial fulfilment if the requirement for the award of degree of Master of technology, is original not copied from any source without proper acknowledgement. The work has not been submitted in part or full for the award of degree for diploma in this or any other institute.

Date: Place: SAURABH SINGH (2K17/ENE/14)

ACKNOWLEDGEMENT

The dissertation is an important part of degree of Master of Technology in Environmental Engineering. No research can be accomplished without the guidance of research supervisor cooperation of faculty members and team. I would like to thank all those who helped me directly or indirectly in getting this task done. It gives me immense pleasure to take this opportunity to thank my guide Mr Anunay A Gour for his enthusiasm, support, and guidance that helped me to pursue this research work entitled "COMPARATIVE GEOSTASTISTICAL AMBIENT AIR QUALITY ANALYSIS OF DELHI".I specially thanks Vinay Prabhakar (Scientist B) CPCB whose guidance helped me to get through .I also thanks my friends Medha Sharma (Scientist B) CPCB, Anamika ,Priyanka and cousins Anubhav Singh ,Gunjan Singh for their keen support. Lastly, I would like to thank and salute my parents and almighty God for continuously showering blessings that makes me to reach up to this level in career.

SAURABH SINGH

TABLE OF CONTENTS

CERTIFICATE	i
CANDIDATES DECLARATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
CONTENTS	V
LIST OF FIGURES	vi
LIST OF TABLES	vii
1. INTRODUCTION	1
2. LITERATURE REVIEW	5
2.1 Research Gap	7
2.2 Objective of Research	8
3. METHODOLOGY	9
3.1 Monitoring locations	10
3.2 Principle used	10
3.3 Steps of interpolation	11
3.4 Air quality Index	17
4. RESULTS AND DISCUSSION	20
4.1 SULPHUR DIOXIDES	23
4.2 NITROGEN DI OXIDES	26
4.3 PARTICULATE MATTER 10	29
4.4 PARTICULATE MATTER 2,5	32
4.5 CARBON MONOXIDE	35
4.6 AIR QUALITY INDEX	36
5. CONCLUSION	38
REFERENCES	
APPENDIX 1,2,3	

ABSTRACT

India being the 2nd most populated country of the world and Delhi called the most polluted capital city of the world as per the study by Greenpeace and Swiss-based IQ Air Visual in 2018.Delhi City accommodates 170 lakhs of population. Air pollution has become such a big issue that people here are more prone to respiratory problems. Main pollutants which contribute to air pollution are PM10, PM2.5, NO2, O2, CO, SO2, NH3, Pb etc. where, PM2.5 is most dangerous of all as it reaches much deeper in our respiratory tract. Annual data of five pollutants that is PM10, PM2.5, NO2, SO2, CO of different stations is taken and then obtained average annual data, which is further committed to obtain sub-indices corresponding to air quality index w.r.t that pollutant.

Arc GIS was used to obtain interpolation results. Using Inverse Distance Weighing, raster analysis from areas are obtained where Air quality index has increased and decreased and prediction of air quality of areas was done where monitoring is not done. Area under the influence of PM 2.5 in 2018 has reduced as compared to 2016.With respect to SO2 ambient air quality has is in good category in year 2016,2017 and 2018.But overall air quality of Delhi in 2016, 2017, 2018 remained in poor, very poor category.

LIST OF TABLES

		0
Table 1	Breaking points for AQI	17
Table 2	Sub index with respect to sulphur dioxide in 2016,2017,2018	19
Table 3	Sub index with respect to nitrogen dioxide in 2016,2017,2018	22
Table 7	Sub index with respect to PM 10 in 2016,2017,2018	25
Table 9	Sub index with respect to PM2.5 in 2016,2017,2018	28
Table 11	Sub index with respect to carbon monoxide in 2016,2017,2018	32
Table 13	National Ambient Air Quality Standards	41

LIST OF FIGURES

Figure 1	Monitoring Locations of Delhi	9
Figure 2	Arc map data frame	11
Figure 3	Delhi outline map on map layer,insert x y data from	12
	table	
Figure 4	Add data from excel sheet	12
Figure 5	Select latitude and longitude	13
Figure 6	Select layer to export data	13
Figure 7	Select location	14
Figure 8	Export data	14
Figure 9	Export data to map layer	15
Figure 10	Sub index selection in inverse distance weighing	16
Figure 11	Environment settings	16
Figure 12	Setting limits and obtain final results	16
Figure 13	Sulphur dioxide values in 2016,2017,2018, source	19
	CPCB	
Figure 14	Study area for sulpur dioxide	20
Figure 15	Ambient air quality with respect to SO2	21
Figure 16	Nitrogen Dioxide values in 2016,2017,2018, source	22
	CPCB	
Figure 17	Study area for nitrogen dioxide	23
Figure 18	Ambient air quality with respect to NO2	24
Figure 19	PM 10 in 2016,2017,2018, source CPCB	25
Figure 20	Study area for PM 10	26
Figure 21	Ambient air quality with respect to PM 10	27
Figure 22	PM 2.5 values in 2016,2017,2018 , source CPCB	28
Figure 23	Study area for PM 2.5	29
Figure 24	Ambient air quality with respect to PM 2.5	30
Figure 25	Carbon monoxide values in 2016,2017,2018, source	31
	СРСВ	
Figure 26	Study area for carbon monoxide	33
Figure 27	Ambient air quality with respect to carbon monoxide	34

Figure 28	AQI values in 2016,2017,2018, source CPCB	35
Figure 29	Study area for ambient air quality	36
Figure 30	Air Quality Index	37