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EXECUTIVE SUMMARY 
 

The dissertation aims to investigate the efficiency and accuracy of various methods available for 

computation of Value at Risk (VaR) for equity investments in India. The quoting of Value-at-

Risk (VaR) has become a standard practice of measure of market risk adopted by banks, trading 

firms, mutual funds and others, including even the non-financial firms. But any risk measure is 

useful and reliable only insofar as it can be verified for its accuracy. 

Value at Risk (VaR) is defined as the maximum potential change in value of a portfolio of 

financial instruments with the given probability over a certain time horizon. VaR measures can 

have various applications, such as in risk management, to evaluate the performance of risk takers 

and for regulatory requirements. Hence it is very important to develop methodologies that 

provide accurate estimates. 

The main objective of this study is to evaluate the performance of the most popular VaR 

methodologies such as Historical Simulation, Exponentially Weighted Moving Average 

(EWMA) model and the Monte Carlo simulation using Geometric Brownian Motion (GBM) 

model, paying particular attention to their underlying assumptions and to their logical flaws. For 

this purpose, the historical data on 25 stocks listed on National Stock Exchange (NSE) and other 

popular Equity Indexes have been considered. The evaluated VaR value has been then back-

tested with the actual returns and the hypothesis been tested using Chi-Square Test to evaluate 

the accuracy of VaR model. Also limitations of the VaR models have been examined. 
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CHAPTER-1: INTRODUCTION 

1.1 Introduction of the Project 

1.1.1 Risk Management 

“The essence of risk management lies in maximizing the areas where we have some control over 

the outcome, while minimizing the areas where we have absolutely no control over the outcome 

and linkage between effect and cause is hidden from us.”
[1]

 

Sampling is an important element of risk taking technique and the samples of the present and of 

the past are consistently being taken to make estimates about the future. We all have to make 

decisions based on the limited data and therefore the question arises, how accurate is the sample 

data we refer to? 

Managing risk has always been at the center of every financial institution's activities as their 

ability to survive adverse economic cycles and phases of high volatility is highly correlated to 

both the quality of its risk selection and its capital endowment. 

In 1952, both Markowitz and Roy independently published different types of VaR measures that 

attempted to develop a method of portfolio selection which incorporated covariance between risk 

factors based on optimizing rewards for a given level of risk. Both measures proved to be 

remarkably similar from a mathematically point of view; however Markowitz used a variance of 

simple return metric while Roy used a metric of shortfall risk. 

Financial institutions are subject to many sources of risk. Risk can be broadly defined as the 

degree of uncertainty about future net returns. According to the fundamental sources, risk can be 

categorized broadly into following four types: 

 Credit Risk which relates to the potential loss due to the inability of a counterpart to 

meet its obligations. It has three basic components: credit exposure, probability of default 

and loss in the event of default. 

 Operational Risk takes into account the errors that can be made in instructing payments 

or settling transactions, and includes the risk of fraud and regulatory risks. 
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 Liquidity Risk is caused by an unexpected large and stressful negative cash flow over a 

short period. If a firm has highly illiquid assets and suddenly needs some liquidity, it may 

be compelled to sell some of its assets at a discount. 

 Market Risk estimates the uncertainty of future earnings, due to the price change of 

marketable assets such as stocks, bonds, foreign exchange, futures & options etc. 

 

1.1.2 Value at Risk (VaR) Measure 

The most prominent of the risks discussed above in trading of stocks is the Market Risk, since it 

reflects the potential economic loss caused by the decrease in the market value of a portfolio. 

Value at Risk (VaR) has become the standard measure that financial analysts use to quantify this 

risk. It was introduced by JP Morgan in the 1980s, is a methodology that attempts to summarize 

the risk of an investment portfolio or even an entire institution. It is defined as the maximum 

potential loss in value of a portfolio of financial instruments with a given probability (level of 

significance) over a certain time horizon and for a given portfolio or position of instruments, 

under normal market conditions, attributable to changes in the market prices of financial 

instruments. In simpler words, it is the amount that indicates how much an investment can lose 

with a significance level of “α” over a given time horizon. Mathematically, it can be expressed as 

(Hull, John C.): 

 P [abs (loss) > VaR] < α % 
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Fig. 1.1 - VaR at a particular significance level 

 

For example, if the VaR on an asset is ₹1000 at a one-week horizon and 95% confidence 

interval, there is a only a 5% chance that the value of the asset will drop more than ₹1000 over 

any given week. 

VaR measures can have many applications, and is used both for risk management and for 

regulatory purposes. In particular, the Basel Committee on Banking Supervision (1996) at the 

Bank for International Settlements imposes to financial institutions such as banks and investment 

firms to meet capital requirements based on VaR estimates. Providing accurate estimates is of 

crucial importance. If the underlying risk is not properly estimated, this may lead to a sub-

optimal capital allocation with consequences on the profitability or the financial stability of the 

institutions. 

 

1.1.3 Characteristics of VaR Measure 

The definition of VaR provides us with the following two important characteristics of this 

method of estimating market risk: 
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 VaR is a summary measure of risk that takes into account all possible sources of market 

risk in an integrated framework. This characteristic makes VaR particularly appealing 

and easy to communicate to senior management, non-financial executives, regulators and 

the public investors. 

 VaR requires that it is possible to express future profits & losses on a portfolio in 

stochastic terms so that each future expected profits & losses (or intervals of profits & 

losses) can be associated with its probability to occur. 

 

1.1.4 Parameters of VaR 

The two most important components of value-at-risk models are: 

 Length of time over which market risk is to be measured, i.e., Time Horizon. It is 

typically measured in days, weeks, months or year. 

 Confidence level (α) at which market risk is measured.  

The choice of these components by risk managers greatly affects the nature of the value-at-risk 

model. Bank regulators require banks to calculate VaR for market risk with a time horizon of 10 

days and confidence level of 99%. The one day VaR calculated using various methods is 

converted to N-day VaR using the formula (Hull, John C.): 

 

 

1.1.5 Approaches to calculate VaR  

There are three basic approaches that are used to compute Value at Risk, having numerous 

variations within each approach. The measure can be computed analytically by making 

assumptions about return distributions for market risks, and by using the variances in and 

covariances across these risks. It can also be estimated by running hypothetical portfolios 

through historical data or from Monte Carlo simulations. 

 

 

 

N-day VaR = 1-day VaR * √N 
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Variance-Covariance Approach 

Variance-Covariance method is also known as Linear VaR or Delta-Normal VaR. This approach 

is relatively simple and is widely used. This method includes parts of modern portfolio theory of 

Harry Markowitz, by taking account of correlation coefficients between assets. Historical data is 

used to calculate main parameters: mean, standard deviation, correlation. This method calculates 

VaR by assuming some theoretical distribution of asset returns. Usually normal distribution is 

used. This assumption allows volatility to be described in terms of standard deviations (SD). 

Another advantage of normal distribution is that it can be described by its first two moments: 

mean, and standard deviation. This distribution is symmetrical, so the skewness is zero and 

kurtosis is 3. If we want to find position of a random variable (X) in a normal distribution we use 

standard value of variable Z (Z-score). Every variable can be transformed to standard variable 

with formula: 

Z =
X − µ

𝜎
 

 

where, µ is the mean and σ is the standard deviation (SD) of the normal distribution. 

When measuring VaR only downward price changes are considered, or price changes that exceed 

some multiple of SD. For a given confidence level, the price varies between X-σ*Z and X+σ*Z. 

The value of Z can be calculated in Microsoft Excel using formula NORM.INV (1-Confidence 

Level, Mean, SD). For a confidence interval of 99%, the corresponding Z-value is -2.33 and for a 

confidence level of 95% is -1.65. 

VaR for an asset or portfolio can be calculated as VaR (⍺%) = Z * σ * P, where P is the position 

value in the asset or portfolio. 

In practice portfolio VaR can be calculated using the following matrix formula (Jorion, Phillippe): 

 

 

 

Where V is row vector of VaRs for each individual position in assets, C is the correlation matrix 

of assets; V
T
 is the transpose of matrix V. 

VaR = (V * C * V
T 

)
1/2
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Using the perfectly normal distribution for calculation of VaR also has a limitation. It can 

underestimate risk in tail of distribution at high levels of confidence. Returns don’t always 

follow normal distribution, especially in shocks and crises, and variance and covariance can vary 

extremely over times. 

 

Historical Simulation Approach 

Historical Simulation is a popular way of estimating VaR. It involves using past data as a guide 

to what might happen in future. This method is computationally more intensive than the 

parametric-normal methods. It is a non-parametric method because it makes no assumptions 

about the statistical distribution of returns. This approach involves three step simulation 

technique: - 

 Identify the market variables or risk factors affecting the portfolio. These will typically be 

exchange rates, equity prices, interest rates and so on. 

 Data is then collected on the movement in these market variables and the changes are 

observed over the specified time horizon (let 500 days). Then apply each of these 

changes to portfolio (through model defining relationship between the market factor 

changes and single asset prices) to determine the series of daily changes in portfolio value 

that would have been realized had the current portfolio been held unchanged throughout 

those 500 trading days. The daily change in equity prices are calculated as the 

continuously compounded return as: - 

𝒖𝒊 = 𝒍𝒏(
𝑷𝒊

𝑷𝒊−𝟏
) 

 where, 𝑃𝑖 is the closing price today and 𝑃𝑖−1 is the closing price a day before. 

 

 The last step is to sort the 500 changes in portfolio value in ascending order to arrive at 

an observed distribution of changes in portfolio value. Then the VaR number is read from 

this distribution. The VaR number will be equal to the percentile associated with the 

specified level of confidence. For a 95% level of confidence, the VaR number equals the 

5th percentile of the distribution of changes in portfolio value. In our case this number 

will be 25th worst value for 95% level of confidence and 5th worst for 99% level of 

confidence. 
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Since, Historical Simulation approach assumes that the changes in historical prices are going to 

repeat themselves and values the recent and older data equally, it can cause bad estimates if there 

are recent trends, like higher volatility. For this simulation, it is important to have sufficient data, 

and that is the problem when dealing with new assets and risks. Typical trade-off for historical 

simulation is that we would like to have more data in order to observe the rare events, and on the 

other hand, we do not want to build our current risk estimates on very old market data. 

The approach to historical simulation described above is simple one where all the volatilities 

(SD) over the specified time horizon are given equal weights. Another variation of historical 

simulation, where volatilities of the assets are estimated by assigning greater weights to the more 

recent observation than the previous one, can be used in estimation of a more accurate value of 

VaR. Two such models are Exponentially Weighted moving Average (EWMA) and Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH), where weights assigned to 

observations decrease exponentially as they become older. This study attempts to calculate VaR 

using HS-EWMA (Historical Simulation-EWMA) method and then estimate its accuracy against 

the simple historical simulation. 

Exponentially Weighted Moving Average to estimate volatility is given by the formula (Hull, 

John C.): 

𝝈𝒏
𝟐 = 𝝀𝝈𝒏−𝟏

𝟐 + (𝟏-λ) 𝒖𝒏−𝟏
𝟐  

where, 𝝈𝒏 is the volatility for the day ‘n’ which is calculated using the previous day’s volatility 

𝝈𝒏−𝟏 and the decaying most recent return, i.e., 𝒖𝒏−𝟏. Lambda (𝝀) is a constant between 0 and 1 

known as decay constant. The weights for the previous value of returns 𝒖𝒊 decline at the rate of 𝝀 

as we move forward through the time. Square root of the variance 𝝈𝒏
𝟐  gives the standard 

deviation for the asset. 

 

The EWMA approach has the attractive feature that relatively little data need to be stored. It is 

because at any given time the variance depends only on the current estimate of variance rate and 

the most recent observation on the market price. When a new observation of market price is 

obtained, a new daily percentage change is calculated and the above EWMA equation is updated 

with the new estimate of variance rate. The old value of the variance rate and the old value of the 
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market price can then be discarded. The EWMA approach is designed to track changes in the 

volatility. The value of 𝝀 governs how responsive the estimate of daily volatility is to the most 

recent daily percentage change. A low value of 𝝀 leads to a great deal of weight being given to 

the 𝒖𝒏−𝟏
𝟐  when 𝝈𝒏 is calculated. In this case, the estimates produced for the volatility on 

successive days are themselves highly volatile. A high value of 𝝀 (close to 1) produces estimates 

of the daily volatility that respond relatively slowly to new information provided by the daily 

percentage change. 

 

Monte Carlo Simulation Approach 

A Monte Carlo simulation is an attempt to predict the future many times over. It is based on the 

generation, or simulation, of large number of scenarios to represent possible future price changes 

that could affect the value of the portfolio. In each trial or scenario, an independent random 

number for each of the market factors is selected from a particular distribution. At the end of the 

simulation, thousands or millions of "random trials" produce a distribution of outcomes that can 

be analyzed. These random moves are constrained to reflect historical market volatility and 

correlation. The portfolio is then valued under each of these scenarios. The resulting changes in 

portfolio value are then analysed to arrive at a single VaR number. 

This method requires the following steps to calculate VaR number: -  

 Specify the Model for Simulation: This study uses the Geometric Brownian motion 

(GBM), which is technically a Markov process. This means that the stock price follows a 

random walk and is consistent with (at the very least) the weak form of the efficient 

market hypothesis (EMH), i.e., past price information is already incorporated and the 

next price movement is "conditionally independent" of past price movements. The formula 

for GBM is (Ross, Sheldon M.): 

∆𝑆

𝑆
= 𝜇. ∆𝑡 +  𝜎. 𝜀. √∆𝑡 

where, "S" is the stock price, " 𝜇 " is the expected return, " 𝜎 " (Greek sigma) is the 

standard deviation of returns, "t" is time, and " 𝜀 " is the random variable. 

 

http://www.investopedia.com/terms/r/randomwalktheory.asp
http://www.investopedia.com/terms/w/weakform.asp
http://www.investopedia.com/terms/e/efficientmarkethypothesis.asp
http://www.investopedia.com/terms/e/efficientmarkethypothesis.asp
http://www.investopedia.com/terms/e/expectedreturn.asp
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If we rearrange the formula to solve just for the change in stock price, we see that GBM 

says the change in stock price is the stock price "S" multiplied by the two terms: 

∆S = S(µ. ∆t +  σ. ε. √∆t) 

The first term is a "drift" and the second term is a "shock". For each time period, our 

model assumes the price will "drift" up by the expected return. But the drift will be 

shocked (added or subtracted) by a random shock. The random shock will be the standard 

deviation "𝜎" multiplied by a random number "𝜀". This is simply a way of scaling the 

standard deviation. 

 Generate Random Trials: A large number of random draws are simulated from the 

estimated statistical distribution of the market factor returns. This study uses 500 

numbers of random draws. 

 Process the Output: The simulation produces a distribution of hypothetical future 

outcomes. If we want to estimate VaR with 95% confidence, then we only need to locate 

the twenty-fifth worst outcome.  

The Monte-Carlo process permits analysis of the impact of events that were not infact 

observed over the historical period but that are just as likely to occur as events that were 

observed. 

 

1.1.6 Comparison of VaR Approaches 

Each approach/methodology of VaR calculation has its own strengths and weaknesses and is best 

adapted to a different environment. 

 The Variance-Covariance approach has its principal virtue speed in computation as one 

needs to estimate only 2 parameters: average / expected return and standard deviation of 

returns. However, the quality of VaR estimates degrades with the portfolios of non-linear 

instruments. Departures from normality in the portfolio return distribution also represent 

a problem for this approach. 

 Historical simulation is free from distributional assumptions, it is easy to implement and 

conceptually simple, which makes it easier to explain to senior management. But it is 

computationally intensive as it requires the portfolio be revalued once for every day in 
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the historical sample period. Another drawback is that only one sample path is used, 

which may not adequately represent future distributions. 

 Monte Carlo VaR is not limited by price changes observed in the sample period, because 

revaluations are based on sampling from an estimated distribution of price changes. 

Monte Carlo simulation usually involves many more re-pricings of the portfolio and 

allows its users to tailor ideas about future patterns that depart from historical patterns. 

But this method requires computer time and a good understanding of the stochastic 

process used is therefore, most expensive and time consuming approach. 

Thus, every method can be best chosen as per the type of portfolio and demands of the situation 

in terms of speed, simplicity, ease of implementation and reliability of results. 
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1.2 Objectives of the Study 

Primary Objective: 

The main objective of the study is to assess the accuracy of various Value at Risk models, i.e., 

Historical Simulation, EWMA model and Monte-Carlo Simulation, in calculating the market risk 

for equity investments, through statistical tests. The VaR values have been calculated using these 

models and then back-tested against the next series of historical data to ascertain its accuracy. 

 

Secondary Objectives: 

1. To know whether the asset returns and market returns follow normal distribution.  

2. To study the limitations of each of the tested VaR models.  
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CHAPTER-2: LITERATURE REVIEW 

Value at Risk was initially developed to measure financial risk exposure and communicate this 

data in a simplistic form to the stakeholders and was later upgraded to provide a common 

benchmark to control and compare total risk across risk taking units. Moving forward form its 

initial purpose, it has been used to calculate the optimal level of capital to be held in reserve by a 

financial institution. 

Thompson & McCarthy [2008] say that while VaR is being based on firm scientific foundations, 

it is very easily understood and has become widely used by corporate treasurers and fund 

managers as well as by financial institutions however there is no general consensus on how to 

actually calculate it. 

One of the early models employed in capturing volatility is the equally weighted moving average 

model. This framework assumes that the N-period historic estimate of variance is based on an 

equally weighted moving average of the N-past one-period squared returns. However, under this 

formulation all past squared returns that enter the moving average are equally weighted and this 

may lead to unrealistic estimates of volatility. In this respect the exponentially weighted moving 

average (EWMA) framework proposed by J.P Morgan’s “RiskMetrics” assigns geometrically 

declining weights on past observations with the highest weight been attributed to the latest (i.e. 

more resent) observation. By assigning the highest weight to the latest observations and the least 

to the oldest the model is able to capture the dynamic features of volatility. 

Varma, J.R. [2000] in a SEBI committee report titled ‘Value at Risk Models in the Indian Stock 

Market’ suggested National Stock Exchange (NSE) and Bombay Stock Exchange (BSE) to use 

EWMA method to report VaR for their market indices. Maximum likelihood estimation yielded 

an estimate for λ as 0.923 for the Nifty and 0.929 for the Sensex, which was not statistically 

significantly different from the value of 0.94 for λ used in J. P. Morgan’s RiskMetrics system for 

daily horizons. EWMA model was tested using historical data from July 1, 1990 to June 30, 

1998, on the Indian stock market indices - the NSE-50 Index (Nifty) and the BSE-30 Index 

(Sensex), using a λ of 0.94 to permit easier comparability and facilitate further extensions to the 

model. The number of VaR violations was found to be well within the allowable limits of 

sampling error, suggesting EWMA as an accurate model for Indian markets. 
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According to Perignon and Smith [2006] survey, 73% of banks among 60 US, Canadian and 

large international banks over 1996-2005 have reported that their VaR methodology used was 

historical simulation. The Monte Carlo (MC) simulation was the second most popular method. 

The strength of the Monte Carlo simulation approach is the flexibility it offers users to make 

different distributional assumptions and deal with various types of risk, but it can be painfully 

slow to run. Glasserman, Heidelberger and Shahabuddin [1997] used approximations from the 

variance-covariance approach to guide the sampling process in Monte Carlo simulations and 

report a substantial savings in time and resources, without any appreciable loss of precision. 

Engle, R.F. & Manganelli, Simone [2011] in their working paper titled ‘Value at Risk Models in 

Finance’ concluded that Monte Carlo simulations outperformed every other VaR approach at 

common confidence levels of 95% and 99%. 

The Basel Accord [1996] Amendment describes the form of back-tests that must be undertaken 

by firms wishing to use a VaR model for calculation of market risk capital rule (MRR). 

Regulators recommend using the last 250 days of profit & loss (P&L) data to back test the 1% 1-

day VaR that is predicted by and internal VaR model. The model should be back-tested against 

both the theoretical and actual P&L. Whether or not actual P&L gives rise to more exceptions 

during back-tests than theoretical P&L will depend on the nature of trading. If the main activity 

is hedging one should expect fewer exceptions, but if traders are undertaking more speculative 

trades that increase the P&L volatility, then the opposite will be observed. The Basel committee 

have chosen a confidence level of 99% and a 10 day time horizon to determine the minimum 

capital level for commercial banks and the resulting VaR must be multiplied by a factor of at 

least 3 to account for non-normality or model errors. 

Beder [1995] applies eight common VaR methodologies to three hypothetical portfolios. The 

results show the differences among these methods can be very large, with VaR estimates varying 

by more than 14 times for the same portfolio. Clearly, there is a need for a statistical approach to 

estimation and model selection. 

Bao, Lee & Saltoglu [2006] evaluated the predictive power of VaR models in emerging markets. 

Through their research, they applied traditional VaR models, conditional autoregressive VaR 
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models and also applied their models to extreme value theory. Their results showed that their 

benchmark, the RiskMetrics model developed by J.P. Morgan, produced good results in tranquil 

periods, whereas in crisis periods VaR approaches based on extreme value theory produced 

better results. The authors also discovered that while filtering can improve the predictive results 

using Extreme Value Theory, it can make the other models less useful. 

Kuesters, Mittnik & Paolella [2006] applied both a conditional and an unconditional VaR model 

to NASDAQ-composite data and concluded that most of the models were unable to produce 

accurate results due to a tendency to underestimate market risk. However, they did find that 

although the conditional VaR models do produce an increased level of volatility in their 

estimates, if heteroskedasticity is factored into the calculation, then the model will provide a 

satisfactory output. The author’s final conclusion was that mixed normal GARCH, extreme value 

theory and filtered historical stimulation models usually provide the most accurate forecasts. 

VaR has tail risk when it fails to summarise the relative choice between portfolios as a result of 

its underestimation of the risk of portfolios with fat-tailed properties and a high potential for 

large losses. The tail risk of VaR emerges since it measures only a single quartile of the 

profit/loss distributions and disregards any loss beyond the VaR level. In the world of portfolio 

management, the existence of fat tails can, in part, be linked to behavioural finance due to 

excessive optimism or pessimism from the investor, causing large market movements and 

ultimately leads to additional risk exposure. 

Mandelbrot (1963) and Fama (1965) found some empirical facts of financial markets as 

mentioned below:  

 Financial return distributions are leptokurtic, i.e., they have heavier tails and a higher 

peak than a normal distribution. 

 Equity returns are typically negatively skewed. 

 Squared returns have significant autocorrelation, i.e. volatilities of market factors tend to 

cluster. This is a very important characteristic of financial returns, since it allows the 

researcher to consider market volatilities as quasi-stable, changing in the long run, but 

stable in the short period. Most of the VaR models make use of this quasi-stability to 

evaluate market risk. 
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Tail risk is technically defined as a higher-than-expected risk of an investment moving more than 

three standard deviations (3σ) away from the portfolio's mean distribution. VaR models are 

usually based on normal asset returns and do not work under extreme price fluctuations. This 

point is emphasised through the financial market crisis of 2008. Concerning this crisis a large 

amount of occurrences was found to be in the tails of the distributions and as a result VaR 

models were useless for measuring and monitoring market risk. 

Yasuhiro Yamai and Toshinao Yoshiba [2002] in their study titled ‘Comparative analyses of 

Expected Shortfall and Value-at-Risk under Market Stress’ concluded that VaR and expected 

shortfall may underestimate the risk of securities with fat-tailed properties and a high potential 

for large losses. 
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CHAPTER-3: RESEARCH METHODOLOGY 

3.1 Data Collection Sources 

The study is done with special reference to the Indian equities market and it is secondary in 

nature. For calculating VaR of individual assets, daily closing prices (adjusted) of 25 securities 

trading on NSE Nifty-50 have been collected and converted into daily returns for a period of 500 

trading days spanning from 2
nd

 January 2012 to 15
th

 January, 2014. Also, daily adjusted closing 

prices of 4 major stock indices, i.e. BSE SENSEX, S&P CNX NIFTY, BSE 500 and NSE 500 

has been taken to evaluate VaR on well diversified portfolios. 

For evaluating the accuracy of VaR forecasts, returns on these assets have been observed (back-

tested) for next 500 days spanning from 16
th

 January, 2014 to 29
th 

January, 2016. 

The daily adjusted closing prices of the individual stocks and the market indices have been taken 

from the NSE website (www.nseindia.com), BSE website (www.bseindia.com) and 

Moneycontrol website (www. moneycontrol.com). 

 

3.2 Tools & Techniques Used 

Microsoft Excel 2010 and IBM SPSS (Statistical Package for Social Sciences) version 20 were 

used primarily as the tools for analysis of data collected for this study. The Data Analysis 

Toolpak Add-in in Excel 2010 for performing various statistical tests was also used. 

Log Returns for daily change in market prices have been calculated in Excel by using the 

following formula (Hull, John C.): 

𝑢𝑖 = 𝑙𝑛(
𝑃𝑖

𝑃𝑖−1
) 

where, 𝑃𝑖 represents the today’s closing price and 𝑃𝑖−1 represents the previous day closing price. 

Then the PERCENTILE () function was used to arrive at VaR number as percentage. 

http://www.nseindia.com/
http://www.bseindia.com/
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The Historical Simulation was performed in Excel while SPSS was used for the purpose of 

calculating volatility using Exponentially Weighted Moving Average (EWMA) technique. 

Monte Carlo simulation has been performed using the Geometric Brownian Motion (GBM) 

method using the formula (Ross, Sheldon M.): 

Δ𝑆 = 𝑆 (𝜇.Δ𝑡 + 𝜎.𝜀. √Δ𝑡) 

where, the first term represents 𝜇Δ𝑡 represents drift and the second term 𝜎𝜀√Δ𝑡 represents the 

shock. It assumes that for each period the price will drift up by expected return but the drift is 

shocked by the random shock.  

Random trials were generated through Excel using the function: 

= P*(1+ (NORM.INV (RAND (), Mean, STDEV)))  

Where  

 P - Initial price / previous day price, 

 Mean - Expected return of the stock, 

 STDEV – Standard Deviation of the return series, 

 RAND() – This function returns an evenly distributed random real number greater than or 

equal to 0 and less than 1, which is essentially the required probability term, and 

 NORM.INV() – This function returns the inverse of the normal cumulative distribution 

for the specified mean and standard deviation. 

For the purpose of this study, 100 random trials with daily steps for 500 days have been 

generated. The final prices arrived at are converted to daily returns. Then these returns have been 

sorted in ascending order to calculate the VaR number. 

VaR has been calculated with following parameters: 

 one day time horizon, and 

 95% and 99% confidence level. 

After VaR is calculated, back-testing has been performed to measure its accuracy by counting 

the number of losses exceeding VaR number. Back-testing systematically checks whether the 

frequency of losses exceeding VaR is in line with ‘p=1-c’, or alternatively, it checks whether the 
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frequency of losses below VaR is in line with ‘c’, i.e. the confidence level of the VaR measure. 

In its simplest form, the back-testing procedure consists of just calculating the percentage of 

times that the observed returns fall below the negative VaR estimate, and comparing that number 

to the confidence level used. 

 

3.3 Formulation of Hypothesis 

Accuracy of the calculated VaR estimates has been assessed through Hypothesis Testing, that 

our computed VaR estimates truly forecasts the returns observed on all the 25 NSE NIFTY 

securities as well as on 4 stock indices – S&P CNX Nifty, BSE Sensex, NSE 500 and BSE 500. 

Accuracy of VaR estimates will be established if the frequency of losses exceeding computed 

VaR for each of the 25 securities and for 4 indices is equal to 5% of the total number of days 

observed (500 days) for 95% VaR and 1% of the total number of days for 99% VaR. The 

Hypothesis has been formulated as: 

 
Null Hypothesis: The proportion of the losses as determined by the VaR method is not 

significant with the expected number of losses, i.e. 

H0 : P1 = P2 = P3 = ... = Pk 

where, 

 k is the number of securities or stock indices for which VaR is calculated and evaluated 

for accuracy, and  

 Pk is the proportion of losses exceeding VaR estimates for k
th

 stock. 

Alternate Hypothesis: Consequently the alternate hypothesis is that the proportion of the losses 

as determined by the VaR method is significant with the expected number of losses and the VaR 

model does not adequately estimates the actual value at risk. 

H1: P1 ≠ P2 ≠ P3 ≠  ... ≠  Pk. 

This hypothesis has been tested by using Chi-square tests used for testing the equality of several 

population proportions. Chi-square statistic (
) has been computed by using the following 

equation (Keller, Gerald):   
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= ∑
(𝑓𝑜𝑖−𝑓𝑒𝑖)2

𝑓𝑜𝑖

𝑘
𝑖=1  

where, 

𝑓𝑜𝑖 = observed frequency of losses beyond computed VaR for every i
th

 stock. 

𝑓𝑒𝑖 = expected frequency of losses beyond computed VaR for every i
th

 stock. 

For 95% VaR, 𝑓𝑒𝑖 is 5% of the observed number of days, i.e., 5% of 500 = 25, and for 99% VaR, 

𝑓𝑒𝑖 is 1% of the observed number of days, i.e., 1% of 500 = 5. 

The null hypothesis is tested by comparing the observed and expected frequencies of losses 

exceeding VaR forecasts to see if two are in agreement. It is obvious that observed frequencies 

cannot be exactly the same as the corresponding expected frequencies and discrepancies are 

bound to exist to some extend due to unexpected variations. These discrepancies are measured 

by computing the 


value, which gives the magnitude of the overall relative discrepancy. In 

testing the null hypothesis, H0 is expected to be true if the discrepancies between 𝑓𝑜𝑖 and 𝑓𝑒𝑖 as 

measured by computed 

 value can be explained as only being variation due to sampling error. 

At a particular significance level and the degrees of freedom the computed 

 value is compared 

with the tabulated 

 value known as critical value (c


). The decision rule is that we reject the 

Null Hypothesis, H0 at a level of significance when 
> c

, otherwise H0 is accepted. 

 

Fig. 2.1 - Chi-Square Distribution 
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CHAPTER-4: DATA ANALYSIS  

4.1 Value at Risk – Historical Simulation 

Individual Stocks 

Stocks Average 

Return 

Standard 

Deviation 

1-day  95% 

Absolute 

VaR 

95% VaR 

Violations 

1-day 99% 

Absolute 

VaR 

99% VaR 

Violations 

ACC Ltd. 0.05% 1.61% 2.37% 24 3.30% 5 

Asian Paints 0.11% 1.79% 2.77% 19 4.30% 1 

Axis Bank 0.14% 2.02% 3.13% 47 4.92% 5 

BHEL 0.03% 2.53% 3.71% 47 6.23% 10 

Bharti Airtel 0.01% 1.79% 2.73% 19 4.12% 4 

Bosch Ltd. 0.16% 1.92% 2.87% 33 4.12% 2 

Cipla 0.12% 1.75% 2.71% 80 4.03% 7 

Coal India 0.02% 2.02% 3.13% 33 4.85% 7 

DRREDDY 0.12% 1.60% 2.66% 52 4.19% 11 

GAIL -0.02% 1.97% 2.92% 24 4.64% 5 

HCL Tech 0.07% 1.99% 3.00% 47 4.47% 2 

HDFC Bank 0.11% 1.23% 1.67% 33 2.56% 7 

HINDALCO -0.08% 2.61% 4.22% 38 6.18% 8 

HUL 0.07% 1.51% 2.40% 56 3.64% 6 

ITC Ltd. 0.01% 1.53% 2.36% 33 5.11% 7 

ICICI Bank 0.05% 1.89% 2.73% 61 4.60% 13 

IDEA 

Cellular 

-0.04% 2.27% 4.03% 19 5.07% 4 

Infosys Ltd. 0.06% 1.69% 2.35% 33 5.06% 7 

L&T 0.06% 1.78% 2.66% 42 4.67% 5 

Lupin 0.17% 1.67% 2.59% 52 4.39% 11 

Maruti 0.21% 1.60% 1.94% 71 3.92% 15 

ONGC -0.03% 2.12% 3.28% 56 4.57% 8 

Reliance 

Ind. 

0.01% 1.62% 2.54% 47 3.75% 7 

SBI 0.07% 1.98% 2.86% 61 4.79% 13 

Tata Steel -0.12% 2.36% 3.82% 28 5.85% 6 

Table 4.1 - VaR values for 25 NIFTY stocks 
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Stock Indices 

Indices Average 

Return 

Standard 

Deviation 

1-day 95% 

Absolute VaR 

95% VaR 

Violations 

1-day 99% 

Absolute VaR 

99% VaR 

Violations 

S&P CNX 

NIFTY 

0.05% 0.93% 1.46% 26 2.12% 7 

SENSEX 0.05% 0.93% 1.44% 32 2.12% 9 

NIFTY 

500 

0.07% 0.95% 1.57% 23 2.15% 8 

BSE 500 0.07% 0.94% 1.55% 36 2.13% 7 

Table 4.2 - VaR values for Indices 

 

Interpreting the VaR numbers obtained in the Tables 4.1 and 4.2, it can be said that for any of 

these securities or stock indices, losses are expected to exceed the corresponding VaR number in 

only 25 times out of 500 times for 95% confidence level and 5 times out of 500 times for 99% 

confidence level. The number of VaR violations can be clearly seen exceeding the expected 

number of losses in most of the cases. It can be seen that the Historical Simulation approach 

overestimates the loss in case of 21 securities and 3 of the 4 stock indices for both the levels of 

significance. Only in case of 3 securities, i.e., Asian Paints, Bharti Airtel and Idea Cellular Ltd., 

that the numbers of losses observed are within the expected number of VaR violations. While in 

other cases losses are found to be equal to the expected number of losses. 

 

Hypothesis Testing – Chi-Square Statistic 

 

 Individual Stocks Indices 

 95% VaR 99% VaR 95% VaR 99% VaR 

Computed Chi-Square 

(2) 

180.64 81.82 7.37 6.67 

Degrees of freedom (df) 24 24 3 3 

Significance Level (⍺) .05 .01 .05 .01 

Critical Value (c
2
) 36.42 43 7.82 11.3 

p-Value 5.52E-26 3.11E-08 0.06 0.08 

Null Hypothesis Rejected Rejected Accepted Accepted 

Table 4.3 - Chi-Square Test Results for Historical Simulation 
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Chi-square test have been used for testing the hypothesis that VaR number, as calculated in 

tables 4.1 and 4.2 above, accurately forecasts the worst likely daily losses on 25 NSE securities 

with 95% and 99% confidence levels. Table 4.3 shows the calculated values of Chi-squares for 

both confidence levels and the corresponding degrees of freedom, critical value, p-value and 

whether the null hypothesis is accepted or not. 

It can be seen from this table that in case of individual securities, the p-values calculated for both 

the confidence levels are much less than their respective significance levels of 0.05 and 0.01. 

This is because of the fact that the computed chi-square values for individual securities are 

greater than respective critical values. Hence the null hypothesis that the proportion of the losses 

as determined by the Historical Simulation model is not significant with the expected number of 

losses is rejected. 

But in case of stock indices, the p-values calculated are greater than their respective significance 

levels and therefore the null hypothesis is accepted. Hence the proportion of losses found 

through Historical Simulation model in case of indices are not significant and the variation can 

be just due to sampling error. 
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4.2 Value at Risk - EWMA Model 

Individual Stocks 

Stocks Average 

Return 

EWMA 

Standard 

Deviation 

1-day 95 % 

Absolute VaR 

95% VaR 

Violations 

1-day 99% 

Absolute VaR 

99% VaR 

Violations 

ACC Ltd. 0.05% 1.08% 1.72% 29 2.46% 9 

Asian Paints 0.11% 1.79% 2.84% 18 4.06% 1 

Axis Bank 0.14% 2.60% 4.14% 21 5.91% 3 

BHEL 0.03% 2.34% 3.82% 49 5.41% 10 

Bharti 

Airtel 

0.01% 1.89% 3.09% 17 4.38% 3 

Bosch Ltd. 0.16% 1.74% 2.71% 19 3.89% 3 

Cipla 0.12% 1.41% 2.20% 49 3.16% 12 

Coal India 0.02% 1.87% 3.06% 34 4.33% 7 

DRREDDY 0.12% 1.69% 2.67% 45 3.82% 10 

GAIL -0.02% 2.08% 3.44% 26 4.86% 5 

HCL Tech 0.07% 2.39% 3.86% 11 5.49% 1 

HDFC Bank 0.11% 0.98% 1.50% 43 2.17% 9 

HINDALCO -0.08% 2.72% 4.55% 29 6.40% 6 

HUL 0.07% 1.19% 1.89% 24 2.70% 12 

ITC Ltd. 0.01% 1.72% 2.82% 21 3.99% 3 

ICICI Bank 0.05% 1.97% 3.19% 30 4.53% 7 

IDEA 

Cellular 

-0.04% 2.34% 3.89% 22 5.48% 4 

Infosys Ltd. 0.06% 1.53% 2.46% 31 3.51% 6 

L&T 0.06% 1.90% 3.06% 18 4.35% 3 

Lupin 0.17% 1.96% 3.06% 29 4.40% 6 

Maruti 0.21% 1.56% 2.35% 43 3.41% 10 

ONGC -0.03% 2.10% 3.49% 31 4.92% 7 

Reliance 

Ind. 

0.01% 1.70% 2.78% 28 3.93% 6 

SBI 0.07% 1.70% 2.74% 57 3.90% 14 

Tata Steel -0.12% 2.57% 4.35% 23 6.11% 4 

Table 4.4 - VaR Calculation for Stocks using EWMA 
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Stock Indices 

Indices Average 

Return 

EWMA 

Standard 

Deviation 

1-day 95 % 

Absolute 

VaR 

95% VaR 

Violations 

1-day 99% 

Absolute 

VaR 

99% VaR 

Violations 

S&P CNX 

NIFTY 

-0.04% 0.88% 1.48% 28 2.08% 7 

SENSEX -0.05% 0.91% 1.54% 23 2.15% 6 

NIFTY 500 -0.05% 0.85% 1.44% 31 2.01% 9 

BSE 500 -0.05% 0.84% 1.44% 36 2.01% 10 

Table 4.5 – VaR Calculation for Indices using EWMA 

 

Interpreting the VaR numbers obtained in the Tables 4.4 and 4.5, it can be said that for any of 

these securities or stock indices, losses are expected to exceed the corresponding VaR number in 

only 25 times out of 500 times for 95% confidence level and 5 times out of 500 times for 99% 

confidence level. The number of VaR violations can be clearly seen exceeding the expected 

number of losses in most of the cases. It can be observed that the EWMA model approach 

overestimates the loss in case of 16 securities and all of the 4 stock indices for both the levels of 

significance. While in case of 9 securities, the number of losses observed is within the expected 

number of VaR violations. Hence it can be interpreted that the EWMA model is efficiently 

predicting the VaR value than the Historical Simulation approach up to a certain extent.  

 

Hypothesis testing - Chi-Square Statistic 

 Individual Stocks Indices 

 95% VaR 99% VaR 95% VaR 99% VaR 

Computed Chi-

Square(2) 

164.21 71.92 7.16 9.29 

Degrees of freedom (df) 24 24 3 3 

Significance Level (⍺) .05 .01 .05 .01 

Critical Value (c
2) 36.42 43 7.82 11.3 

p-Value 5.53E-26 1.12E-06 0.07 0.08 

Null Hypothesis Rejected Rejected Accepted Accepted 

Table 4.6 - Chi-Square Test Results for EWMA model 
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Chi-square test have been used for testing the hypothesis that VaR number, as calculated in 

tables 4.4 and 4.5 above, accurately forecasts the worst likely daily losses on 25 NSE securities 

with 95% and 99% confidence levels. Table 4.6 shows the calculated values of Chi-squares for 

both the confidence levels and the corresponding degrees of freedom, critical value, p-value and 

whether the null hypothesis is accepted or not. 

It can be seen from this table that in case of individual securities, the p-values calculated for both 

the confidence levels are much less than their respective significance levels of 0.05 and 0.01. 

Although the EWMA model was determining VaR estimate better than the Historical Simulation 

approach but it is still not performing good. Hence the null hypothesis that the proportion of the 

losses as determined by the EWMA model is not significant with the expected number of losses, 

is rejected. 

But in case of stock indices, the p-values calculated are greater than their respective significance 

levels and therefore the null hypothesis is accepted. Hence the proportion of losses found 

through EWMA model in case of indices are not significant and the variation can be just due to 

sampling error. 
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4.3 Monte Carlo Simulation Approach 

The Monte Carlo simulation was done on the stock indices using the Geometric Brownian 

Motion model. It is a non-parametric test that is designed to examine whether the price changes 

are normally distributed. The mean and standard deviation of historical prices are taken to 

predict the future prices. The final prices arrived at are converted to daily returns. Then these 

returns have been sorted in ascending order to calculate the VaR number. 

 

Fig. 4.1 – Brownian Motion for S&P CNX NIFTY 

 

The VaR estimates calculated using Monte Carlo simulation is shown below:  
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Indices Average 

Return 

Standard 

Deviation 

1-day 95% 

Absolute VaR 

95% VaR 

Violations 

1-day 99% 

Absolute VaR 

99% VaR 

Violations 

S&P CNX 

NIFTY 

0.05% 0.98% 2.09% 27 3.02% 6 

SENSEX 0.08% 1.39% 1.64% 31 2.42% 8 

NIFTY 

500 

0.06% 1.09% 1.97% 24 2.96% 9 

BSE 500 0.08% 1.11% 1.95% 30 2.57% 7 

Table 4.7 - Monte Carlo VaR Estimates 

We can see from the above table that the observed number of VaR violations is very close to the 

expected number of violations, i.e., 25 for 95% confidence level and 5 for 99% confidence 

levels. 

The Chi-square statistic is as shown below: 

 

 95% VaR 99% VaR 

Computed Chi-Square(2) 2.78 6.06 

Degrees of freedom (df) 3 3 

Significance Level (⍺) .05 .01 

Critical Value (c
2) 7.82 11.3 

p-Value 0.43 0.11 

Null Hypothesis Accepted Accepted 

Table 4.8 – Chi-Square Test Results for Monte Carlo Simulation 

The Chi-Square test shows a high p-value for both confidence levels. It is 0.43 for 95% VaR 

estimate which very high than the significance value 0.05 and hence the null hypothesis is 

accepted. Also p-value for 99% VaR is 0.11 which is greater than 0.01 significance level. Hence 

null hypothesis is accepted that there is no significant difference between the observed and 

expected level of losses determined by Monte Carlo simulation method. 
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4.4 Findings & Recommendations 

The study investigates the accuracy of VaR Models used in equity markets in India. A sample of 

25 stocks trading on NSE and 4 other major indices were taken for this purpose. The findings 

and recommendations of the study are as follows: 

1. On the basis of results of our hypothesis testing, we reject the hypothesis that the 

proportion of losses exceeding VaR number for individual securities is equal to expected 

frequency, in case of Historical Simulation Model and EWMA model. In turn it implies 

that, our VaR estimate does not accurately measure the risk in equity investment in India. 

In this sense, the VaR forecasts appear to be quite conservative. But this does not mean 

that VaR as a risk measurement tool is not an accurate measure of risk. This may be 

because the sample size of our number of stocks is small. 

 

2. In case of VaR for 4 indices (representing the portfolio of securities), we have not found 

sufficient evidence to reject our hypothesis at 5% and 1% level of significance and thus, 

our hypothesis that our VaR estimate for stock indices accurately forecast the portfolio 

risk of equity investment in India is accepted. This is despite of the fact that the return on 

the stock indices have been observed over the same period as for 25 NSE securities and 

VaR has been calculated with same assumption of normally distributed returns. But still, 

our VaR estimates for stock indices is better assessing the portfolio risk of equity 

investment as compared to that of individual securities. 

 

3. EWMA Model and Monte Carlo Simulation provide far better estimates of VaR than the 

Historical Simulation Model. But still Historical Simulation is widely used owing to its 

simplicity. 

 

4. This study is also highlighting an important finding relating to a shortcoming of VaR as a 

risk measurement tool. One of the shortcomings of VaR is that it conveys nothing about 

the size of violations when they do occur, i.e. VaR figure provides no indication of the 

magnitude of losses that may result if prices move by an amount which is more adverse 

than the amount dictated by the chosen confidence level. Thus there is a need for some 
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complementary technique that can complement VaR in telling us the worst expected loss 

with some predefined probability as well as the magnitude of losses which are expected 

to be worse than VaR. 

 

5. An underlying assumption of VaR models is that returns are normally distributed. 

However, this assumption of normally distributed returns is not validated by the 

behaviour of returns on 25 NSE securities and 4 stock indices observed as shown by their 

Kurtosis and skewness values which are the measure of tailedness and asymmetry in 

distribution of returns. All the securities are showing excess kurtosis estimate indicating 

that returns are not normally distributed; rather returns are leptokurtic exhibiting higher 

peaks. Similarly, skewness estimates are showing negatively skewed returns for most of 

the securities, indicating that tail of the return distribution is longer to the left of the mean 

return. (The Kurtosis and Skewness values are given in the Annexure-I). 

 

6. In can be concluded that no form of risk measurement (including VAR) is a substitute for 

good management. Risk management as a process encompasses much more than just risk 

measurement and it is recommended that VaR models need to be supplemented with 

stringent back testing procedures in order to maintain a realistic level of confidence in the 

model. 
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4.4 Limitations and Scope for Further Research 

1. The study is limited to only three models for estimation of Value at Risk, i.e., Historical 

Simulation, EWMA model and Monte Carlo simulation, while there are numerous 

variations of these methods like GARCH and Maximum Likelihood techniques that 

attempt to evaluate better estimates for volatility. 

 

2. The only takes into account the securities and indices in Indian Market. Further research 

may be done with data from other world markets to better assess the accuracy of VaR 

models. 

 

3. This study does not takes into account Stress testing which involves examining how the 

portfolio would have performed under a scenario of more extreme market conditions, 

both positive and negative.  For further research stress testing of the portfolios may be 

undertaken which account for extreme events that do not occur from time to time but are 

virtually impossible according to the probability distributions assumed for market 

variables. A five standard deviation daily move may be one such extreme event. Also 

Principal Component Analysis may be undertaken to define a set of components or 

factors that explain the historical movements in prices. 

 

4. For further research it is recommended that the sample size can be increased to calculate 

VaR. The sample size is limited to 500 days for this study. 
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CHAPTER-6: ANNEXURES 

Annexure-I 

Stocks Skewness Kurtosis 

ACC Ltd. 0.4038 0.4234 

Asian Paints 0.0621 0.9534 

Axis Bank -0.0787 1.6190 

BHEL 0.2589 2.6175 

Bharti Airtel 0.2577 1.2337 

Bosch Ltd. 0.3006 1.6779 

Cipla -0.3424 3.1196 

Coal India 0.2383 4.3074 

DRREDDY -0.2651 1.4000 

GAIL -0.5068 4.8209 

HCL Tech -0.8372 6.0035 

HDFC Bank 0.4327 1.3397 

HINDALCO 0.1040 1.0066 

HUL 0.3668 2.7338 

ITC Ltd. -0.8012 3.8471 

ICICI Bank 0.0686 2.1559 

IDEA Cellular -0.1813 0.8894 

Infosys Ltd. -0.1891 6.5231 

L&T -0.1703 1.5445 

Lupin -0.2226 1.3265 

Maruti 0.0238 4.3191 

ONGC 0.1307 3.5383 

Reliance Ind. -0.1707 2.3945 

SBI 0.2085 2.0670 

Tata Steel -0.4592 2.5304 

 

Indices   

S&P CNX NIFTY -0.8152 4.2161 

SENSEX -0.7980 4.3050 

NIFTY 500 -1.1764 6.3557 

BSE 500 -1.1998 6.5153 

Table 6.1 - Skewness & Kurtosis for Securities and Indices 
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Annexure-II 

 

Fig. 6.1 – Histogram of Returns for S&P CNX NIFTY 

 

 

 

 

Fig. 6.2 – Histogram of Returns for BSE SENSEX 
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Fig. 6.3 – Histogram of returns for NIFTY 500 

 

 

 

 

Fig. 6.4 – Histogram of Return for BSE 500 
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