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ABSTRACT 

Fractional calculus, i.e., fractional-order differentiation or integration, is a part of 

mathematics dealing with derivatives of arbitrary order. The fractional calculus is 

more than 300 years old topic and gaining research interest in recent past. It has 

become a powerful and widely used tool to demonstrate the characteristics of 

many systems in the real world.  

The fractional order dynamic system offers extra degree of freedom to control the 

phenomena of system. Fractional approach has been used in modeling of various 

physical processes such as anomalous diffusion, flow of fluid in porous media, 

heat conduction in a semi infinite slab, voltage-current relation in a semi-infinite 

transmission line, the charging and discharging of lossy capacitors etc.  

The fractional-order circuits and systems incorporate fractional calculus concepts 

and have immense potential in the field of signal processing, control systems, 

biomedical instrumentation, and many more. Thus the aim of this thesis is to 

generalize the narrow integer-order circuits to more general fractional-order 

counterparts. In this work design of current mode circuits has been investigated 

from fractional-order perspective and is briefly presented below.  

The capacitance scaling in integer and fractional order capacitors is addressed 

first and a novel Current Feedback Operational Amplifier based capacitance 

multiplier is proposed. It provides high multiplication factor with low component 

spread. This circuit is generalized in fractional domain along with three other 
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capacitance multipliers. An application based on parallel RLC resonator is 

included to show its usefulness.  

The concept of Operational Transconductance Amplifier based impedance 

inverted is used to present a novel Inverted Impedance Multiplier Circuit which is 

further generalized to fractional domain. The proposal is illustrated through 

implementation of fractional higher order filter.  

Further two topologies for electronically tunable fractional order filters based on 

Operational Transconductance Amplifier are presented. The first is multi input 

single output structure which provides all pass and low pass responses. The 

second topology provides low pass and band pass responses simultaneously.  

The next objective of this work is proposition of higher fractional order filters 

which are realized by cascading filters of order (1+α) with higher integer order 

filters. The proposed filters are designed by approximating the fractional 

Laplacian operator by an appropriate integer order transfer function. 

Subsequently, functional block diagram approach is used for Current Feedback 

Operational Amplifier based realization of low and high filters of order (1+α). 

The concept is illustrated through Current Feedback Operational Amplifier based 

low pass filter of order (5+α) as obtained by cascading low pass filter of order 

(1+α) with proposed leapfrog realization of 4
th

 order low pass filter. The work is 

extended to Current Feedback Operational Amplifier based high pass filter of 

order (5+α). 



xix 
 

The functionality of all the propositions is verified through SPICE simulations. 

The Current Feedback Operational Amplifier based circuits are simulated using 

its macro model whereas 0.18 μm TSMC CMOS process parameters are used for 

Operational Transconductance Amplifier based circuits. Some of the circuits are 

also verified experimentally. Mathematical formulation for sensitivity of filters is 

included and examined through MATLAB simulations. The stability of proposed 

structures is also investigated. 
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INTRODUCTION 
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1.1Background  

The processes in nature and real objects can be modeled more precisely by using 

fractional calculus than classical integer order methods [1-3]. The voltage-current 

relation in a semi-infinite transmission line [1], flow of fluid in a porous media 

and conduction of heat in a semi-infinite slab [2] are some of the illustrations 

where the governing equations can be modeled more accurately by fractional 

order differential or integral operators. Similarly the charging and discharging of 

lossy capacitors inherently follow fractional order dynamics [4].  

The classical integer order models have primarily been used due to the 

absence of solution methods for fractional differential equations. Currently, a 

number of approximations for fractional differential and integral calculus are 

available in the literature and are being applied to control systems [3, 5-7], 

biomedical instrumentation [8, 9], circuit theory and signal processing [4, 10] 

applications. The emphasis is also being given on generalizing fundamentals of 

conventional circuit theory and stability techniques into the FO-domain for their 

analysis [11, 12]. It is shown that the higher order integer order circuits can be 

replaced by lower order FO-circuits [13]. 

A fractional order Laplacian operator is used to represent FO circuit and 

systems. The Laplace transformation method of fractional order operator can 

easily be simplified into integer approximation form where it is made physically 

realizable with fractional order element (FOE) whose impedance can be 

represented as  Z(s) =as
α
 [14] (α- fractional order of FOE). The FOE with positive 
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fraction represents fractional inductor (FI) while those with negative fraction 

correspond to fractional capacitor (FC). Research on hardware realization of FOE 

[15 – 25] is still in nascent stage and variety of approximations [24, 26-28] are 

available in literature to emulate the behavior of FOE which differ in the 

frequency range of operation and relative percentage errors when compared with 

ideal one [21].   

Over the last few decades current mode (CM) processing has emerged as 

an alternative design technique for signal processing [29, 30]. The CM circuits are 

low impedance node networks; hence result in low time constant. This improves 

system performance in terms of speed and slew rate. Current- mode signal 

processing has resulted in emergence of numerous analog building blocks (ABB) 

as mentioned in [29] and references cited therein which are used for realization of 

various signal processing and generation circuits. The development of CM FO 

circuits and systems has recently gained momentum due to inherent advantageous 

features namely wider bandwidth, higher slew rate, lower power consumption and 

simpler circuitry. A variety of applications such as active and passive filters [15, 

16, 18, 20, 31 - 71], analog controllers [3, 5-7, 21, 72 - 82], oscillators [83 - 90], 

multivibrators [91] etc., have emerged as a natural outcome of this momentum. 

 

1.2 Literature Survey 

Though the fractional calculus is more than 300 years old topic [3], the circuit 

design in fractional domain has recently gained significant research interest. 

There is a vast scope in designing of fractional order circuits and the candidate 



4 
 

has focused on FOE and fraction order filter. The available literature in these two 

areas has been reviewed and is described below. 

Fractional order elements (FOE)  

Fractional order element [6, 14, 16, 17, 19, 21, 92 - 113], also known as constant 

phase element (CPE) is a fundamental component for designing the fractional 

order analog circuits. Attempts have been made to develop off-shelf fractional 

capacitor (FC) and make it available in market just like normal capacitor with 

reliable performance and specified tolerances both for the order and value of the 

FC. The fabrication of packaged half-order FC by using photolithographic fractal 

structures on silicon is presented in [16] and by coating a copper plated epoxy 

glass with a porous film of poly-methyl-methacrylate (PMMA) is given in [17, 

92]. Besides this, Liquid electrode [93 - 97], CMOS emulator [98, 99], graphene-

percolated polymer composite [100], dielectric of poly (vinylidene fluoride) 

[101], and CNT-polymer nanocomposite [102] are also used. However, these 

implementations are bulky and non-reconfigurable. In literature, various rational 

approximations are available to implement FOE. Some of these approximations 

are: Oustaloup Recursive approximation [26], Carlson approximation [26], 

Matsuda approximation [26], Chareff approximation [26] and Continued Fraction 

Expansion (CFE) [26], Modified Oustaloup [27] and El-Khazali reduced order 

approximation [28]. It is found in literature that CFE approximation is widely 

used for FOE realization. The impedance function obtained through FOE 

approximation can be realized using various RC networks such as RC tree [14, 

21, 24], cross RC ladder [6], domino ladder [6] etc. The computation of 
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component values of RC tree network depends on the magnitude and order of the 

FOE.  To introduce flexibility, researchers have also explored FOE 

implementations by using MOS transistors [104, 105], current mirrors [106, 107] 

and operational transconductance amplifier (OTA) [19, 98, 99, 110 - 114].  The 

MOS based emulators use active inductor [104] and low/ high pass filter sections 

[105]. MOS capacitors are employed in current mirror based integrators/ 

differentiators [106, 107, 114] emulators. Operational transconductance amplifier 

(OTA) based emulators are reported in [19, 98, 99, 109-114] which use either 

functional block diagram approach [19, 98, 99,110]/ bilinear immittances [112, 

113] to realize approximated function or replace resistor by OTA in RC ladder 

network. The order of FOE may be adjusted by appropriate selection of bias 

currents in OTA based circuits. The magnitude scaling is achieved by adjusting 

bias currents of all OTAs [16, 98, 99, 110 - 114] or connecting FOE in series, 

parallel or series parallel combination [19]. 

The concept of the mutual inductance in the fractional-order domain is 

generalized thereby fractional mutual inductance (FMI) is realized with the help 

of differential voltage current-controlled conveyor transconductance amplifiers 

(DVCCCTA) based Fractional order Mutual Coupled Circuit (FMCC) based on 

fractional order inductor [115]. Two applications of FMCC namely double-tuned 

filter and impedance matching circuits are also presented. Apart from these 

immittance simulators are also proposed using GIC [15, 31 - 33], FDNR [31] and 

mutator [116] which are subsequently used for FOF realizations. 
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It is clear from above discussion that limited literature is available on 

magnitude scaling of FOE. Further, the order of FOE (α < 1) is manipulated by 

varying bias current but the work on order of FOEs higher than two is not 

available in open literature. Keeping these points in view, scheme for magnitude 

scaling and FOE order alteration may be investigated. 

 

Fractional order filters (FOF)  

A wide range of fractional order analog filters [15, 16, 18, 20, 31 - 71, 117] are 

developed using various ABBs such as Op-Amp [15, 16, 18, 31 - 36, 38 - 40, 43, 

49, 54 - 56], Operational Transconductance Amplifier (OTA) with Current 

Feedback Operational Amplifier (CFOA) [20],   Second generation Current 

Conveyor (CCII) [37, 41, 42, 44, 53, 116], DVCC and voltage buffers [45], 

Current Differencing Buffered Amplifier [46], OTA [50, 117], Multi-Output 

Transconductance Amplifier (MOTA) with Adjustable Current Amplifier (ACA) 

[51], Operational Transconductance Amplifier (OTA) with ACA [52], OTA with  

ACA and Current Follower (CF) [56 - 59]; Universal Voltage Conveyor (UVC) 

[60]; Differential Difference Current Conveyor (DDCC) [61]; CFOA [62]; ACA 

with CF [63 – 65]; OTA with ACA [66]; Balanced-Output Transconductance 

Amplifier (BOTA) with ACA and CF [67]. In fractional domain, low pass, high 

pass, band pass, band stop and all pass filters responses are abbreviated as FLPF, 

FHPF, FBPF, FBSF and FAPF. Two design approaches are primarily used to 

develop FOFs and are discussed below: 
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The first approach uses approximated function of integer order m to 

emulate the behaviour of fractional order element (FOE). Larger is the value of m 

better would be the matching between ideal and approximated responses. Any one 

of Least–squares method [26], Chareff [26], Oustaloup [21, 26, 118], Matsuda 

[21, 26], Carlson [21, 26], Continued Fraction Expansion (CFE) [21, 26], Valsa 

[119] or Laguerre [120] based approximations may be used for this purpose. The 

FOE structure so obtained is then substituted in place of integer order element in 

existing circuits [16, 34 – 46] to obtain fractional order response. Some of the 

popular second order filters circuits investigated are Sallen-Key [38 - 40], 

Kerwin-Huelsman-Newcomb (KHN) biquad [18, 37 - 43], Tow-Thomas (TT) 

biquad [16, 34, 35, 41] and RLβCα [12, 32, 33, 48] filters. This approach has also 

been used to derive FOFs from first [45, 47, 50, 53] and third order [46] filters. 

The FOFs with Chebyshev, Inverse Chebyshev and Butterworth characteristics 

are reported in [35], [36] and [34, 39, 48, 54 - 67] respectively. Apart from these 

immittance simulators are also proposed using GIC [15, 31 - 33], FDNR [31, 44] 

and mutator [116] which are subsequently used for FOF realizations. The filters 

based on this approach are implemented using various ABBs [15, 16, 18, 20, 31 - 

46, 49 - 53] and are summarized in Table 1.1.  It may be noted that limited 

literature is available on electronically tunable FOFs and there is scope of 

developing FOFs inheriting electronic tunability. 
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Table 1.1: Summary of active FOFs using first approach 
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C
α  

[15] Op-Amp FBPF, FBSF 

 Parallel RLC Resonator 

using GIC based inductor 

simulation 

(1+α +β) 2 6 1 2 
PMMA coated 

FC 
No 

[16] Op-Amp FLPF, FBPF Tow-Thomas Biquad  (1+α) 3 6 1 1 
Domino ladder 

RC network 
No 

[18] Op-Amp FLPF, FBPF KHN Biquad  (α+β) 3 6 0 2 
PMMA coated 

FC 
No 

[20] 
OTA, 

CFOA 
FLPF 

Multiple Loop Feedback 

Topology 
(1+α) 1, 1 2 1 1 

Net-grid type 

s
0.5

 order FOE 
Yes 

[33] Op-Amp FBPF 

Multiple Amplifier 

Biquad (MAB) using 

FDNR 

2α 2, 4 
4-5,    

6/ 8 
3  2/ 3 

Domino ladder 

RC network 
No 

[34] Op-Amp 
FLPF, FHPF, 

FBPF, FBSF 

Series RLC using GIC 

based inductor simulation  
(α+β) 2 5 0 2 

Domino ladder 

RC network 
No 

[35] Op-Amp FBPF 
Series RLC using GIC 

based inductor simulation 
(α+β) 2 5 0 2 

PMMA coated 

FC 
No 

[36] Op-Amp 

FO  

Butterworth 

LP Filter  

Multifeedback, Tow 

Thomas 
(1+α) 2, 3 3. 6 1,1 1,1 

Domino ladder 

RC network 
No 

[37] Op-Amp 

FO  

Chebyshev LP 

Filter  

Tow Thomas (1+α) 3 6 1 1 
Domino ladder 

RC network 
No 

[38] Op-Amp 

FO-Inverse 

Chebyshev LP 

Filter  

Multiple Input Biquad (1+α) 3 8 1 1 
Domino ladder 

RC network 
No 

[39]  CCII 
FLPF, FHPF, 

FBPF 
KHN Biquad (α+β) 5 6 0 2 

Domino RC 

ladder network 
No 

[40] Op-Amp 
FLPF,FHPF, 

FBPF  

KHN and Sallen-Key 

Biquads 
2α 3, 1 6, 4-5 0 2 

Self similar RC 

tree 
No 



9 
 

[41] 

 
Op-Amp 

FLPF 

 

 

KHN and Sallen-Key 

Biquads 
(α+β) 3, 1 6, 4 0 2 

Self similar RC 

tree 
No 

[42] Op-Amp FLPF 
KHN and Sallen-Key 

Biquads 
(α+β) 3, 1 6, 4 0 2, 2 

Self similar RC 

tree 
No 

[43] CCII FLPF 
KHN, Tow Thomas 

Biquads 
(α+β) 5, 3 6, 4 0 2 

Self similar RC 

tree 
No 

[44] CCII 
FLPF, FHPF, 

FBPF 
KHN Biquad (α+β) 5 7 0 2 

Self similar RC 

tree 
No 

[45] Op-Amp FLPF KHN Biquad (α+β) 3 6 0 2 
Self similar RC 

tree 
No 

[46] CCII FLPF FDNR 2α 1 2 0 2 
PMMA coated 

FC 
No 

[47] 

DVCC, 

voltage 

buffer 

FAPF APF 
α 

 
1, 2 1 0 1 

Foster II RC 

network 
No 

[48] CDBA 
FLPF, FHPF, 

FBPF 

Third order 

multifunctionalFilter 

(α+β 

+ϒ) 
1 5 0 5 

Domino ladder 

RC network 
No 

[51] Op-Amp 

FO Inverse 

Filters: FLPF, 

FHPF, FBPF 

Second order Inverse 

Filter 
2α 1 3, 2, 3 0 

2, 3, 

2 

Domino ladder 

RC network 
No 

[52] OTA FAPF First Order Filter α 2 0 0 1 
Domino ladder 

RC network 
Yes 

[53] 
MOTA, 

ACA 
 FLPF, FBPF 

Fully Differential Second 

order Filter 
(1+α) 2, 1 0 1 1 

Domino ladder 

RC network 
Yes 

[54] 
OTA, 

ACA 

FLPF, FHPF, 

FBPF, FBSF 
Multifunctional FOF (1+α) 2, 4 0 1 1 

Domino ladder 

RC network 
Yes 

[55] CCII 
FLPF, FHPF, 

FBPF, FAPF 

Generalized Two Port 

Network 
α , (α+β) 1-2 1-6 0 1-2 

RC ladder 

network 
No 

[116] CCII FLPF Mutator (α+β) 3 4 0 2 
Self similar RC 

tree 
No 
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In second approach, an integer (m) order approximation for fractional order 

Laplacian operator (0<α<1) is used which modifies FOF of order (1+α) to integer 

order function of (m + 1) order [54 - 70]. The transfer function (TF) of (1+α) 

order modifies to third order integer order TF. Cascading of first and second order 

filter sections are used to realize this TF in [54, 70]; and functional block diagram 

(FBD) of follow the leader feedback (FLF) and inverse follow the leader 

feedback (IFLF) topologies are used in [56, 59, 60, 62 - 66, 69] and [57, 58, 61] 

respectively. The realizations based on ABBs, MOS transistors, and Field 

Programmable Analog Arrays (FPAAs) are available in [56, 60, 61 - 67], [69] 

and [70] respectively. A summary of previously reported ABB based FOFs using 

second approach is given in Table 1.2. It is clear from Table 1.2 that higher order 

FOFs (n+α order) are realized by FBD approach. These may be realized either by 

cascading of FBD based (1+α) order filter with integer order filter of (n-1) order 

or through FBD of (n+α) order FOF. There is a lean presence of higher order 

FOFs in literature. Therefore, design of higher order FOFs may be explored using 

existing methods of realizing higher integer order filters. 

1.3 Objectives and Contribution 

Based on literature survey and research gaps following objectives are set: 

1. To develop capacitance scaling scheme for FC. 

2. To explore FOE order alteration scheme. 

3. To develop electronically tunable FOF.  

4. To realize higher order FOFs.  

The candidates’ contribution towards these objectives is as follows: 

- A capacitance multiplier is developed and is generalized in fractional domain 

- Inverted impedance multiplier circuit is developed followed by its 

generalization 
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- Design of two electronically tunable filters 

- Higher order FOF realization by cascading of (1+α) order filter with integer 

order filter of (n-1) order based of leapfrog method. 

Table 1.2: Summary of active FOFs using second approach 
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[54] Op-amp FLPF 

Cascade of 

first and 

second order 

filter sections 

2 10 3 Yes No Yes 

[55] Op-amp FLPF GSA 7 17 3 Yes No No 

[56] 
OTA, DO-

CF, ACA 
FHPF FLF 6 0 3 No Yes No 

[57] 

OTA, 

MO/FD-

CF, ACA 

SE-FLPF,     

FD-FLPF 
IFLF 6 0 3, 6 No Yes No 

[58] 

OTA, 

ACA, MO-

CF 

FLPF IFLF 6 0 3 No Yes Yes 

[59] 
OTA, 

ACA, CF 

FLPF, 

FHPF 
FLF 7 0 3 No Yes Yes 

[60] UVC FLPF, FHPF FLF 4, 4-5 

10, 

11- 

12 

3 No No Yes 

[61] DDCC FLPF IFLF 5 7 3 Yes No Yes 

[62] CFOA FLPF FLF 4 10 3 No  No Yes 

[63] 
ACA,   

MO-CF  
FLPF FLF 3/ 8 3 3 No Yes No 

[64] 
ACA,    

FD-CF 

SE-FLPF, 

FD-FLPF 
FLF 8 6 6 No Yes No 

[65] 
DO/ MO-

CF, ACA 
FLPF FLF 3/ 8 3 3 No Yes Yes 

[66] OTA, ACA FLPF FLF 6 0 3 No Yes No 

[67] 

BOTA, 

ACA,    

FD-CF 

FD-FLPF,  

FD-FHPF,  

FD-FBPF,  

FD-FBSF 

IFLF 3, 4, 2 0 6 No Yes No 
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1.4 Thesis Layout 

Based on the work on each objective the thesis work can be presented as 

mentioned below: 

Chapter 1  

This chapter describes the background and motivation of the work carried out in 

the thesis. Literature review of available analog FO circuits is put forward 

followed by identification of research gaps and the objectives set for the work. 

The thesis organization is briefly described. 

Chapter 2  

This chapter gives a brief description of FOE realization using CFE 

approximation and stability of fractional order circuit. It also includes 

characterization of active blocks (CFOA and OTA) used to develop different 

circuits in the thesis.  

Chapter 3  

This chapter first presents a new capacitance multiplier (C-multiplier) circuit 

based on CFOA. The performance of the proposed circuit is examined for non-

ideal effects of CFOA and a compensation scheme is suggested.  The 

functionality is verified through simulations and experimentation where the FC is 

modeled using domino RC ladder network. The proposed circuit along with three 

other CFOA C-multiplier circuits is generalized in fractional domain. The 

behavior of the proposed circuits is examined using MATLAB simulations and 

SPICE simulations. The circuit applications of proposed C-multiplier circuits are 

also included in this chapter.  



13 
 

Chapter 4  

A higher order fractional element using the concept of impedance inverter circuit 

based on OTA is put forward in this chapter. Firstly, the concept of OTA 

impedance inverter is generalized in fractional domain which is followed by 

presentation of novel OTA based IIMC and its generalization. Effect of OTA 

parasites on performance of proposed IIMC is also presented. The usefulness of 

the proposal is illustrated through implementation of FOF of higher order using 

IIMC. Stability and non-ideal effects of higher order filter are also examined. The 

functional verification of all proposed circuits is done through SPICE simulations 

and hardware prototyping using LM 13600N dual OTAs IC.  

Chapter 5 

This chapter is devoted to electronically tunable filters based on OTA. Two OTA 

based topologies are generalized in fractional domain. The first topology is 

multiple input single output FOF and provides FAPF and FLPF responses. The 

second topology provides FLPF and FBPF responses simultaneously and is a 

single input multiple output FOF. The critical frequencies, sensitivity and 

stability conditions are mathematically formulated. SPICE simulation results are 

included for functional verification and to show electronic tunability of filter 

parameters.  

Chapter 6  

This chapter puts forward a new proposal for Current Feedback Operational 

Amplifier (CFOA) based Low pass (LP) and High Pass (HP) FOFs. The proposed 

filters are designed by approximating the fractional Laplacian operator by second 

integer order transfer function. Subsequently, FBD approach is used for CFOA 
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based realization of LP and HP FOFs of order (1+α). Higher order FOFs are 

realized by cascading FOF of order (1+α) with higher integer order filters. To 

illustrate this, CFOA based LP (HP) FOFs of order (5+α) are obtained by 

cascading LP (HP) FOFs of order (1+α) with proposed leapfrog realization of 4
th

 

order LP (HP) filter. The proposal is verified through SPICE simulations and 

experimentation. Stability, sensitivity and non-ideal analyses are also included. 

Chapter 7  

This chapter summarizes the work presented in the thesis and identifies the future 

scope. 
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CHAPTER 2   

BASIC CONCEPTS OF 

FRACTIONAL ORDER CIRCUITS 
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2.1 Introduction 

Factional order circuit design has gained significant research attention due to 

extra degree of freedom provided by fractional order elements in recent past. This 

has created huge opportunity to investigate design flexibility which is not 

possible in narrow and finite subset of conventional integer order circuits.   

As discussed in Chapter 1, FO circuits use FOE(s) which are realized 

through physical implementation [92 - 97, 100 - 102] or hardware emulators 

based on various structures [19, 98, 99, 104-113] such as passive resistor-

capacitor (RC) elements arranged in the form of RC tree [14, 21], cross RC ladder 

[6], domino ladder [6] etc. The passive RC networks are obtained on the basis of 

different approximations such as Oustaloup Recursive approximation [26], 

Carlson approximation [26], Matsuda approximation [26], Chareff approximation 

[26], Continued Fraction Expansion (CFE) [26], Modified Oustaloup [27] and El-

Khazali reduced order approximations [28]. Another FOE realization scheme is 

based on obtaining a suitable integer order transfer function first for the system to 

be realized and its active realization is then carried out using FBD approach.  

The CFE approximation method is used widely to develop FO circuits in 

the literature and has been adopted in this work too, to develop various FO 

circuits. The CFE approximation and its use for emulating FC are detailed in this 

chapter for making this thesis more comprehensive. A brief description of 

stability is given next which is followed by the characterization of active blocks 

CFOA and OTA which are used to verify proposed circuits. The FBD approach 

has been detailed in chapter 6. 
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2.2 FOE based on CFE method 

In this section the CFE approximation method for emulating the behavior of FOE 

is described briefly. The CFE method uses series expansion of (1+x)
α
 [26] as 

given by (2.1) 

    

       
 

  

  

  

      

  

      

  

      

  

      

   
 

     

Or, 

 

  
  

  
      

  
      

  
      

  
 

      

 

(2.1) 

On the substitution of x = s-1, integer order approximation form with infinite 

terms for fractional order Laplacian operator s
α 

is obtained. Depending upon the 

accuracy requirement we may retain finite number of terms for representing s
α
. 

The order of CFE approximation of s
α
 depends upon the power of s in the integer 

order approximation forms. If terms up to s
n
 are retained it is termed as n

th
 order 

approximation. Using this method 1
st
, 2

nd
, 3

rd
 and 4

th
 order transfer functions [26] 

are presented by (2.2) – (2.5) respectively for the ease of comprehension. 

       
            

            
 

    (2.2) 

 

                               

                               
 

    (2.3) 
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 (2.4) 

    

                                                   

                                             

                      
                                                   

                                             
                      

 

                  (2.5) 

 

In general any n
th

 order CFE approximation function represents an impedance 

function and may be physically implemented with RC ladder network using 

partial fraction method. Thus CFE approximated FC can be obtained by using 

reciprocal of respective n
th

 order function. The realization of a 4
th

 order CFE 

approximated form for FC is explained below. 

The impedance function of FC is obtained by reciprocal of (2.5) and can be 

approximated by domino RC ladder network of Fig. 2.1. The impedance function 

of Fig. 2.1 is given by (2.6). 

   
    

    

  
 

    

 
    

  
 

    

 
    

  
 

    

 
    

  
 

    

 

  (2.6) 

 

Fig. 2.1: A 4
th

 order domino RC ladder circuit [32] 
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The values of components used in (2.6) may be obtained by carrying out partial 

fraction of (2.5) which may be expressed as [24]. 

        
  

    

   

   

 

  (2.7) 

where k and ri are constant terms. The pi are poles of the impedance; The values 

of components may be found by 

    ,  

       ,               

       ,                        

       ,                         

       ,                          

(2.8) 

 

The desired value of FC having scaled frequency ωc can be determined with the 

help of magnitude (km) and frequency (kf) scaling factors giving the following 

relationships between unscaled and scaled component values 

    

          
and 

   
 

    
 

     (2.9) 

where (R, C) and (Rs, Cs) are unscaled and scaled component values respectively. 

The scaling factors km and kf  are given by (2.10)  

   
 

    
                  

(2.10) 

Using (2.10), the desired scaling impedance function can be written as 
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      (2.11) 

Comparing (2.6) and (2.11), the scaled components are expressed as  

        ,  

        ,              

        ,              

        ,              

        ,             

   (2.12)  

 

 The magnitude and phase of FC impedance function are 1/(ω
α
Cα) and –απ/2 

respectively. Therefore, the magnitude response of FC of order α would show a 

negative slope of              while its phase remains constant. SPICE 

simulations have been carried out for examining behavior of FCs of order 0.1, 0.5 

and 0.9 with a center frequency of 1 kHz using the component settings of Table 

2.1. The corresponding theoretical and simulated magnitude and phase responses 

are shown in Fig. 2.2. A deviation of ±1.5 dB is observed between simulated and 

theoretical magnitude responses of FCs of orders 0.1, 0.5 and 0.9 in the frequency 

ranges of (2.7 Hz - 365 kHz), (9 Hz - 105 kHz) and (4 Hz - 230 kHz) 

respectively. The simulated phase deviates from theoretical phase by ±0.30° for 

FCs of orders 0.1, 0.5 and 0.9 in the frequency ranges of (170 Hz - 6.8 kHz), (180 

Hz - 5.5 kHz) and (150 Hz - 7.5 kHz) respectively. 
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Table 2.1: Component setting of FC 

Order   (Ω)   (Ω)   (Ω)   (Ω)    (Ω)   (nF)   (μF)   (μF)   (μF) 

0.1 274.7k 81.9k 56.1k 66.3k 154.1k 0.165 0.0015 0.0052  0.015 

0.5 1.402k 3.17k 4.78k 11.2k 92.9k 6.64 0.023 0.043 0.055  

0.9 2.6 16.5 49.9 255.9 55789.8 1846 2.97 2.69 0.544 

 

 

 
(a) 

 

(b) 

Fig. 2.2: Frequency responses for FC (a) magnitude and (b) phase 
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2.3 Stability Analysis  

The section describes the stability analysis of fractional order circuits. It is well 

known that for a linear time invariant (LTI) system to be stable, all the roots of 

the characteristic equation should be on the left half of complex plane. However, 

this constraint is relaxed in FO systems and roots may exist on the right half of 

complex plane. The stability analysis of FO domain is well explained in [11] and 

has been adapted in the present work. The stability of fractional-order linear time 

invariant (FLTI) systems can be examined by converting s-plane to F-plane 

which is defined as F = s
α
. The physical s-plane is transformed from ± π to ±απ 

for F-plane. The unstable region is defined up to ± π/2 in s-plane and is 

transformed to region up to ±απ/2 in F-plane. 

 

(a)       (b) 

Fig. 2.3: Stability Region in Complex (a) s-plane and (b) F-plane 

In another method the s-plane is transformed into a W-plane defined as W = s
1/m

 

and is applicable only if α can be represented as a ratio of two positive integers 

such that α= n/m. The transformation from s plane into W plane remains 

independent of n. 
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In this work, stability analysis is carried out using root locus technique for FO 

linear system. The location of poles is determined from the characteristic equation 

of FLTI system. The stability of FLTI system is verified by checking whether the 

roots fall in stable region or not. 

 

2.4   Active Blocks Used in this work 
 

In this work, the FO circuits based on active blocks CFOA and OTA are 

proposed. This section briefly describes these active blocks.  

 

2.4.1 CFOA: Port Relation and Their Characterization 

The circuit symbol of CFOA is given in Fig. 2.4 (a) and corresponding port 

relationships is given by (2.13). 

 

Fig. 2.4: (a) CFOA symbol and (b) its equivalent circuit with non-idealities 

      

  
  

  
  

   

    
    
    
    

  

  

  
  

  

     (2.13) 

In practice, the port relation may deviate from (2.13). Figure 2.4 (b) shows 

equivalent circuit with CFOA non-idealities. The (RY, CY) and (RZ, CZ) 



24 
 

correspond to parasitic resistor and capacitor at Y and Z terminals while RX 

represent parasitic resistor at X terminal. There are two voltage buffers between 

Y and X-terminals; and O and Z-terminals; and one current follower between Z 

and X-terminals where   represents current transfer gain; and  ,   correspond to 

voltage transfer gains due to tracking errors of CFOA. Considering the non-

idealities outlined above, (2.13) modifies to (2.14).  

    

  
  

  
  

   

    
    
    
    

  

  

  
  

  

      (2.14) 

Ideally these values are                                   

and         . 

The functionality of CFOA is verified using macro model of CFOA IC [121] 

(AD844AN) using through SPICE simulations with corresponding supply 

voltages of ±10 V. The DC responses of CFOA are shown in Fig. 2.5. The 

variation of VX with respect to VY is shown in Fig. 2.5 (a). It is observed that VX 

closely follows VY in voltage range ± 6.69 V with tracking error of 0.2 V. The IZ 

variation with IX is depicted in Fig. 2.5 (b) whereas Fig. 2.5 (c) shows variation of 

VO with VZ. It may be seen from the characteristics that IX follows IZ closely in 

current range ±3.38 mA with tracking error of 0.2 mA and similarly VO follows 

VZ in the voltage range ± 7.1V with tracking error of 0.06 V. From DC 

simulations values of current and voltage transfer ratios due to tracking errors are 

obtained as: α = 0.9997, β = 0.9756,   = 0.9999. 
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(a) 

 
(b) 

 
 (c) 

Fig. 2.5: DC response for (a) VX vs. VY, (b) IZ vs IX and (c) VO vs VZ 

The frequency responses for voltage and current transfers are depicted in Fig 2.6. 

The voltage transfers at X and O terminals are shown in Figs 2.6 (a) and (b) 

respectively with their corresponding 3 dB frequencies are 419 MHz and 12.56 
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MHz. The frequency response of current transfer at Z terminal is presented in Fig. 

2.6 (c) and 3 dB frequency is recorded as 10.28 MHz.  The CFOA parasitics are 

obtained through simulations are given as RX = 50 Ω, RY = 2 MΩ, CY = 2 pF, RZ = 

3 MΩ, CZ = 4.5 pF.  

 
(a) 

 
(b) 

 
(c) 

Fig. 2.6: Frequency responses of (a) VY/VX (b) VO / VZ (c) IZ / IX  
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2.4.2 OTA: Port Relations and Their Characterization 

The OTA processes differential voltage and provides output current. Its circuit 

symbol of OTA and CMOS schematic are given in Fig. 2.7. The port relationship 

of OTS is given by (2.15).   

   VVgI mO
                                  

      (2.15) 

 

(a) 

 

(b) 

Fig. 2.7: OTA (a) Circuit Symbol and its (b) CMOS realization [122] 

 

Here the transconductance gain (gm) of OTA and it is related to bias current (Ib) 

through (2.16).  









 boxnm I

L

W
Cg                                    

       (2.16) 
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The symbols n , oxC and W/L respectively represent electron mobility, gate 

oxide capacitance per unit area and aspect ratio of differential pair (M3, M4) 

respectively. The dependence of mg   on bias current  bI  may be used to add 

electronic tunability of the circuit parameters.  

 

2.4.3 Simulation Results of OTA 

The OTA of Fig. 2.7 was simulated using 0.18 μm CMOS process parameter and 

the supply voltage of ±1.8 V is taken. The aspect ratios of the transistors M3–4, 

M1–2, 5–6, 9–10 and M7–8, 11–12 are taken as (5.76 μm/0.72 μm), (2.16 μm/0.72 μm) 

and (1.44 μm/0.72 μm) respectively. The DC response plotted for a bias current 

of 15 μA is shown in Fig. 2.8 (a) and the transconductance gain is obtained as 150 

μA/V. The electronic tunability of transconductance gain is depicted in Fig. 2.8 

(b) and the maximum transconductance gain of 564 μA/V is obtained at a bias 

current of 300 μA. The frequency response for same simulation settings is 

presented in Fig. 2.8 (c). The 3 dB frequency of OTA is measures to be 201 MHz. 

Furthermore, the simulated value of the parasitic capacitance at output terminal is 

observed to be 5.39 pF.  

 
(a) 
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 (b) 

 
(c) 

Fig. 2.8: (a) DC response, (b) transconductance variation with Ib (c) AC 

responses of OTA 

 

2.5 Conclusion 

In this chapter, a brief review of CFE approximation method for realizing FOE is 

given. The circuit realization of 4
th

 order CFE approximation form is discussed 

thereafter. A method for checking stability of fractional order circuits and systems 

is also presented. Preliminary discussion on active blocks CFOA and OTA is also 

given as these blocks are used for verifying various propositions. SPICE 

simulations are included to comprehend the presentation.  
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CHAPTER 3 

INTEGER AND FRACTIONAL 

ORDER CAPACITANCE 

MULTIPLIER CIRCUITS  

The contents and results of the following papers have been reported in this 

chapter:  

[1] R. Verma, N. Pandey, R. Pandey, “Novel CFOA based capacitance 

multiplier and its application”, AEU- International Journal of Electronics 

and Communications, vol. 107, pp. 192-198, 2019. (Elsevier) Indexing: 

SCI, SCIE, SCOPUS; IF: 2.115 

[2] R. Verma, N. Pandey, R. Pandey, “Capacitance characteristics behavior 

of 0.5 order FC USING CFOA BASED FC MULTIPLIER", Advances in 

Electrical and Electronic Engineering (Communicated) 
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3.1 Introduction 

Monolithic integration of circuits and systems has witnessed a tremendous boost 

due to continuous downsizing of device dimensions. Low frequency applications 

such as sensing and subsequent processing of biomedical signals and integration 

of loop filter used in PLL could not be benefited from this as these require large 

value capacitors. Researchers, therefore, look forward for alternate schemes for 

placing a small capacitor on-chip and use a multiplier circuit. The schemes of 

impedance transformation such as gyrator, generalized impedance converter 

(GIC) and negative impedance converter (NIC) etc. have been reported in the 

literature that offer tuning of capacitance multiplier (C-multiplier) circuit. Such 

C-multiplier circuits have been deployed for appropriate tuning of filters [123 - 

135], oscillators [136], phase-locked loops (PLLs) [137] and series resonators 

[138]. Commercially available active elements such as operational 

transconductance amplifier (OTA) [139 - 141], Op-amp [123, 137] and AD 844 

(CFOA) [142 - 145] based C-multiplier circuits are reported in the literature.  

This chapter first presents a new C-multiplier circuit based on CFOA. 

Four CFOA based C-multiplier circuits are generalized in fractional domain. The 

performance of the proposed circuits is examined for nonideal effects of CFOA 

and a compensation scheme is suggested.  The functionality of the realized 

multipliers is verified using SPICE simulations where the FC is modeled using 

domino RC ladder network.  The circuit applications of proposed C-multiplier 

circuits are also included in this chapter. 
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3.2 Proposed CFOA based capacitance multiplier 

The study of CFOA based C-multiplier circuit [142 - 148] shows that the 

multiplication factor (K) of capacitance (C) can be expressed in the form of       

(i) 1+P [143, 145], (ii) 1-P [145] and (iii) 1/(1+P) [143, 145] where P represents 

resistor ratio. The structures of type (ii) may be used to realize a C-multiplier 

circuit presenting a negative capacitance value if P is greater than unity and a 

positive value for P less than unity. The C-multiplier circuit may be obtained by 

adaptation of CFOA based gyrator [149 - 151]/ GIC [152] which provide 

multiplication factor of P/ P
2
. Other characteristics are summarized below: 

  [143, 146] provide lossy capacitance whereas lossless capacitance 

is obtained in [142, 144 -  152] 

  [142, 145, 146, 148 - 151] realize grounded capacitance while 

floating grounded capacitance realization are found in [143, 144, 

147, 152] 

  [143, 145, 150, 151] can emulate both positive and negative C-

multiplier circuit while positive C occurs in [142, 143, 145, 149, 

152] and negative C in [143, 145, 148] 

 The multiplication factor of C-multiplier circuits of type (iii) and 

type (ii) with P >1 is less than unity. So, the effective value of 

capacitor decreases which may be used multiplication factor 

capacitor which is not available otherwise.  

 Larger component spread (resistance ratio) is needed to achieve 

higher multiplication factor [143, 145, 149 - 152].  
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A new type of C-multiplier circuit with multiplication factor of K=1/(1-P) is 

presented here. This type of circuit can provide very high multiplication factor by 

selecting P close to unity. The closer is P to unity, higher would be the 

multiplication factor resulting in smaller component spread.  

The schematic of proposed C-multiplier circuit is shown in Fig. 3.1. It uses two 

CFOAs, two resistors and a capacitor (for non-compensating circuit).  The 

proposed circuit uses floating capacitor which may be realized using 

Metal‐insulator‐metal (MIM) or metal‐oxide‐metal (MOM) double poly 

(poly1‐poly2) capacitor processes [153]. 

 

Fig. 3.1: Proposed CFOA based C-multiplier circuit 

Considering port relation of CFOA, the input impedance of the proposed circuit is 

computed as  

       
 

     
 

 

     
 

       

  
 

          (3.1) 

where               It is clear from (3.1) that the smaller is the 

component spread larger will be the multiplication factor (K) e. g. R2 = 0.9 R1 
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gives K = 10. The sensitivity of the (K) with respect to       is       
  

     

       
 

. Therefore, the advantage comes at the cost of higher sensitivity of K.  

3.2.1 Non-Ideal Analysis  

To analyze the proposed circuit’s behavior in presence of CFOA non-idealities, 

the input impedance is recomputed as  

        

 
 

            
        

                                           

 

          (3.2) 

 

where    ,    ,    ,    ,    ; and    ,    ,     are parasitics of CFOA1; and 

CFOA2 respectively. 

Considering          operating frequency 

      
 

          
 

 

      
 

 

      
  , (3.2) reduces to   

         
 

   
        

                    

 

          (3.3) 

which gives multiplication factor as 

     
    

                    
 

          (3.4) 
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3.2.2 The Proposed Compensation Method 

It may be observed from (3.4) that multiplication factor (    drastically decreases 

for        . To compensate this, a grounded resistor    at X-terminal of 

CFOA1 may be placed (as shown in Fig. 3.1) which modifies (3.2) to  

   
      

 
 

            
        

                                       
  

      

 

          

  (3.5) 

 

 

Considering         , operating frequency       
 

      
 

 

      
   and 

neglecting parasitic effect at Y-terminal, (3.5) reduces to 

   
       

 

   
        

                          
  

      

 

          (3.6) 

 

To find the value of R’, (3.1) may be rewritten as   

       
 

   
  

      

 

          (3.7) 

 

The relation between R1 and R’ is obtained by comparing (3.6) and (3.7) as  

   
 

   
   

          (3.8) 
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where 

    
                     

    
 

  

  
    

          (3.9) 

 

3.2.3 Simulation Results 

The behavior of proposed C-multiplier circuit is examined under (i) ideal, (ii) 

non-ideal and (iii) compensated conditions. The simulation responses are 

depicted in Fig. 3.2 for factor K=100 where R1= 20.02 kΩ R2= 20 kΩ,   = 

32.16Ω C = 1nF. It may be noted that the impedance of the proposed 

compensated C-multiplier circuit closely follows the ideal one.   

 

Fig. 3.2: Simulated magnitude responses of proposed CFOA based C-multiplier 

circuit 

 

The functionality of the proposed capacitance multiplier is also examined using 

the following simulations conditions:  

(i) K is fixed and varying C;  

(ii) C is fixed and varying K; and 
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which are designated as case 1 and case 2 respectively; and detailed simulation 

settings are placed in Table 3.1. Simulated and theoretical frequency responses 

are plotted in Figs. 3.3(a) and 3.3(b) respectively for cases 1 and 2. The effective 

value of capacitance and frequency range is also listed in Table 3.1.  

 

 

(a) 

 

(b) 

Fig. 3.3: Simulation (solid lines) and ideal (dashed lines) magnitude (in black) 

and phase (in green) responses of the proposed circuit for (a) case 1(b) case 2 
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Table 3.1: Detailed simulation settings and summary of observations 

Case 

Components tuning 

Realized 

Ceff 

(F) 

Frequency response 

C  

(nF) 

K tuning 
Magnitude 

response 

within 7% 

error 

Phase 

response 

within 6
0
 

phase 

error 

K 
R1  

(kΩ) 

R2  

(kΩ) 

    

(kΩ) 

1 

0.1 

100 20.202 20 4.4 

10n 
upto  

390 kHz 

upto  

67.6 kHz 

10 1µ 
upto  

43.6 kHz 

upto  

20.5 kHz 

100 10µ 
upto  

25.1 kHz 

upto  

2.89 kHz 

2 1 

50 20.408 20 9.1 50n 
upto  

141 kHz 

upto  

75.8 kHz 

100 20.202 20 4.4 100n 
upto 

144.5 kHz 

upto  

55 kHz 

200 20.1 20 2.23 200n 
upto  

190 kHz 

upto  

40.7 kHz 

 

3.2.4 Experimental Results 

The functionality of the proposed circuit is examined using CFOA IC AD844AN. 

The capacitance C is taken as 1 nF and the proposed circuit is bread-boarded for 

K = 5 by choosing R1 = 25 kΩ and R2 = 20 kΩ. Power supplies of ±10 V are 

taken. An input sinusoid of Vpeak-peak = 2 V is applied and the magnitude of 

proposed C-multiplier is measured. Figure 3.4 shows the ideal, simulated and 

experimental magnitude responses for proposed circuit. The experimental 
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magnitude response of proposed multiplier follows the ideal response in the 

frequency range of 20 Hz- 2.8 kHz with 10% deviations.  

It is emphasized here that high multiplication factor requires passive components 

with great precision. Therefore, it is difficult to achieve very high multiplication 

factor. In integrated circuit realization, such precision may be achieved by using 

electronically tunable resistors.   

 

Fig. 3.4: Ideal, simulated and experimental magnitude responses for proposed 

circuit 

 

3.2.5 Application of the proposed C Multiplier 

In this section, the proposed circuit is employed for reconfiguration of a parallel 

resonator block (PRB) given in Fig. 3.5 (a) where            and      represent 

effective values of resistor, inductor and capacitor respectively. Figure 3.1 is used 

to realize     . The parallel RL combination is replaced by CFOA based 

implementation shown in Fig. 3.5 (b) [154]. The values of      and      are 

given by   
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(3.10)        

where     
  is obtained from circuit of Fig. 3.1. 

 

 

(a)                                                                       (b) 

Fig. 3.5: (a) Reconfiguration of PRB (b) CFOA based active simulation of 

parallel RL combination 

 

The impedance function of the reconfigured PRB is given as   

    
 

   
 

 

 
    

 
 

     
      

 

           (3.11) 

 

and its performance parameters resonant frequency (  ), quality-factor (Q) and 

peak impedance at resonant frequency (        
) are evaluated as 
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(3.12) 

 

Assuming K1 and K2 as multiplication factors for       and     
  i. e.         , and  

    
       the performance parameters of (3.12) can be rearranged as  

    
 

      
   

  
 

   
  

  
   

   
 

  
    

   
   

    
 

       
 

  
   

 

  
    

  

 
                                                              (3.13) 

 

 

The performance parameters of the reconfigured resonator can be tuned by 

controlling the effective values of components (     ,     ,      ) of the 

reconfigured resonator. 

 

3.2.5.1 Simulation Results  

The performance of proposed circuit is examined under following test cases:  

Case 1: Tuning   
        

  while maintaining   
     

  and keeping           

constant 

Case 2: Tuning    and    while maintaining        

Case 3: Tuning    and    while retaining their product (     ) constant 
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Case 1 affects the performance parameters ω0 and        
and is thus useful when 

these parameters need be changed for the fixed value of Q-factor. Case 2 is useful 

for changing ω0 while retaining the Q-factor and        
 constant. Case 3 is 

appropriate for varying Q-factor and keeping ω0 and        
 constant. Simulations 

for all the three cases are carried out with test conditions listed in Table 3.2 and 

the input impedance under the test conditions are plotted in Fig. 3.6. The 

performance parameters are also listed in Table 3.2. 

 
(a) 

 
(b) 
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Fig. 3.6: Simulation outputs for input impedance of reconfigured PRB (Fig. 3.5) 

for (a) Case 1, (b) Case 2 and (c) Case 3 

 

Table 3.2: Component setting and performance parameters of reconfigured PRB  

Case 

  

Case  

Test  

no. 

               
ω0  

(krad/s) 
Q 

       
   

(kΩ) 

  
 

   
  

(kΩ) 

      

(kΩ) 
   

   

(nF) 

      

(nF) 
   

    

(nF) 

      

(H) 
   

1 

S1 0.5 0.25 

100 1 100 100 1 

0.025 20 

0.5 

0.25 

S2 1 0.5 0.1 10 0.5 

S3 2 1 0.4 5 1 

2 

S4 

0.5 0.25 

200 

1 

200 200 

1 

0.05 10 

0.5 0.25 S5 100 100 100 0.025 20 

S6 50 50 50 0.0125 40 

3 

S7 

0.5 0.25 

50 

2 

100 200 

2 

0.1 

10 

0.25 

0.25 S8 100 200 100 0.05 0.5 

S9 200 400 50 0.025 1 
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A close observation of Table 3.2 suggests following:   

 Case1: different desirable impedance peaks (= 0.25 kΩ, 0.5 kΩ, 1 kΩ) and 

fixed Q (= 0.5) at different ω0 (= 20 krad/s, 10 krad/s, 5 krad/s) 

 Case2: ω0 tuning (= 10 krad/s, 20 krad/s, 40 krad/s) with constant 

impedance peaks (= 0.25 kΩ) and Q (=0.5) 

 Case3: Q tuning (= 0.25, 0.5, 1) with constant impedance peaks (= 0.25 

kΩ) and ω0 (= 10 krad/s). 

 

3.3 CFOA based FC Multiplier Circuit 

In this section capacitance scaling of FC using CFOA based C multiplier circuits 

is presented. Figure 3.7 shows proposed CFOA based FC multiplier circuits. The 

topologies of Fig. 3.7 (a) – (c) are realized by generalizing C multipliers reported 

in [145] while topology of Fig. 3.7 (d) is obtained using topology reported in 

section 3.2. Routine analysis of the circuits of Figs. 3.7 (a), (b), (c) and (d) yields 

in the following impedance functions  

     
    

 

             
 

(3.14) 

     
    

         

    
 

(3.15) 

     
    

 

             
 

(3.16) 

     
    

         

    
 

(3.17) 
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Equations (3.14) – (3.17) show that FC is scaled by factors Ki (i = 1,..,4) where  

             ,               ,              , and    

              

CFOA

Zinα1

FCα 

R1

R2

Y

X

O
Z

Vin

Iin

CFOA

FCα 

R1

R2

Y

X

O
Z

Vin

Iin

Zinα2

 
(a)      (b) 

R1

Y

X

O
Z

Vin

Iin

CFOA2

R2

Y

X

O
Z

Zinα3

CFOA1

FCα 

(c)

CFOA1

FCα 

R1

Y

X

O
Z

Vin

Iin

CFOA2

R2

Y

X

O
Z

Zinα4

(d) 

Fig. 3.7: CFOA based FC multiplier circuits 
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3.3.1 Impedance Characteristics  

It may be observed that the impedance functions of realized multipliers are 

majorly influenced by two factors (i) α, and (ii) R2/ R1. To achieve higher 

multiplier factor, larger resistor ratio (R2/R1) is needed for topologies of Figs. 

3.7(a) and 3.7(c) whereas similar results may be obtained by selecting R2/R1 

closer to unity for topology of Fig. 3.7 (d). Further, all the topologies show an 

increasing trend in impedance for decreasing α (α < 1) for fixed resistor ratio.  

 

To examine the effect of combined variation of α and R2/ R1, MATLAB 

simulations for change in impedance magnitude with respect to α and R2/ R1 for 

circuits of Figs. 3.7 (a) – (d) are plotted in Figs. 3.8 (a) – (d). The simulation 

results corroborate with the theoretical results. It may be noted that smaller α 

values have larger impact on impedance magnitude for a resistor ratio (R2 / R1) 

close to unity for Fig. 3.8(a)/ much larger than unity for Fig. 3.7(b)/ negligible for 

Figs. 3.7 (c) - (d).    

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Fig. 3.8: Percent change in impedance magnitude with respect to α and R2/ R1 



48 
 

3.3.2   Non-Ideal Analysis  

To analyze the behavior of proposed circuits in presence of CFOA non-idealities, 

the input impedance functions of topologies of Fig. 3.7 are recomputed as  

     
      

 

          
    

              
 
 

(3.18) 

     
      

 

          
      

                   
 
  

   (3.19) 

     
      

 

           
         

                          
 
 

(3.20) 

     
      

 

           
            

                                    
 
  

(3.21) 

 

where subscript n corresponds to nonideal; and subscripts 1 and 2 with current 

transfer  gain      , voltage transfer gains (  ,   ); and parasitics,   ,   ,     

correspond to CFOA1 and CFOA2. 

It may be noted from Figs. 3.7 (a-d) that Y-terminal of CFOA/ CFOAs is either 

connected to input or to ground, therefore the performance remains unaltered due 

to parasitic associated with this terminal.  The parasitic at X terminal of CFOA 
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may be accommodated by adjusting the value of external resistor connected to it. 

The overall impact of CFOA parasitics on FC multiplier behavior may be ignored 

by considering the frequency of operation much below than parasitic pole 

(1/(RZCZ)) associated with Z terminal.  In view of above facts, the multiplier 

factors (  , i =1, 2, 3, 4) for topologies of Figs. 3.7(a)-(d) modify to  

           

  

  
 

(3.22) 

 

     
                    

           
 

(3.23) 

 

                

  

  
 

(3.24) 

 

     
                               

                
 

(3.25) 

 

respectively.   

 

3.3.3 Simulation Results  

The functionality of the realized multipliers is verified using SPICE simulations 

using CFOA model [155].  The FC is implemented using infinite order domino 

RC ladder network truncated to 12 numbers of blocks [25] as shown in Fig. 3.9. 

The component values of FC model having α=0.5 and Cα=3.75µF are R0 = 

330kΩ, R1 = 82kΩ, R2 = 33kΩ, R3=12kΩ, R4 = 4.7kΩ, R5 = 2kΩ, R6 = 736Ω, R7 = 

270 Ω, R8 = 120Ω, R9 = 47Ω, R10 = 8.2 Ω, R11 = 18.2 Ω, C0 = 4.7 µF, C1 = 3.1 µF, 
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C2 = 1 µF, C3 = 470nF, C4 = 168nF, C5 = 68nF, C6 = 27nF, C7 = 10nF, C8 = 4.7nF, 

C9 = 1nF, C10 = 2.2nF. 

 

Fig. 3.9: Truncated RC domino ladder network realizing FC [25] 

 

Simulations are performed for different scaling factors for topologies of Fig. 3.7 

for examining impedance magnitude and phase response and corresponding 

results are placed as Fig. 3.10. Table 3.3 enlists simulation setting for capacitance 

scaling factors and component settings used therein; and performance of circuits. 

In the view of non-ideal effects of CFOA on the realized circuits, it may be 

observed that Fig. 3.7 (b) and (c) have more linearity than Fig. 3.7 (a) and (d). In 

Fig. 3.7 (a), (d); it increases the range of operation for lesser value of R2 / R1.  
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Table 3.3: The components values and performance of FC multipliers 

Components Setting 

and Performance 

Evaluation 

Fig. 3.7 (a) Fig. 3.7 (b) Fig. 3.7 (c) Fig. 3.7 (d) 

Multiplication Factor 0.02 0.1 0.5 0.02 0.1 0.5 2 10 50 2 10 50 

R1 (kΩ) 1  1 1 1 1 1 1 1 1 1 1 1 

R2 (kΩ) 0.98 0.9 0.5 49 9 1 1 9 49 0.5 0.9 0.98 

(Cα)eff F(Ʊ/s
α
)  75n 0.375µ 1.875µ 75n 0.375µ 1.875µ 7.5µ 37.5µ 187.5µ 7.5µ 37.5µ 187.5µ 

Frequency range of 

magnitude response 

(Hz) (within 1.5dB 

deviation) 

0.05-

50.1k 

0.04-

330k 

0.042-

588k 

0.046-

392k 

0.042-

1Meg 

0.042-

935k 

0.04-

625k 

0.04-

676k 

0.04-

741k 

0.042-

970k 

0.052-

218k 

1.4-

14.8k 

Frequency range of 

phase response (Hz) 

(within 2.5° deviation) 

13.3-

6k 

0.44-

53k 

0.43-

426k 

0.57-

44k 

0.45-

107k 

0.42-

525k 

0.4-

202k 

0.4-

154k 

0.4-

120k 

0.44-

28k 

4.6-

14.5k 

19.5-

3k 
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(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 3.10: Simulated impedance magnitude (a) - (d) and phase (e) – (h) responses 

for circuits of Figs. 3.7 (a) - (d) 
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3.3.4 Application 

To illustrate the use of proposed multiplier, CFOA based lossy/ lossless integrator 

circuit is constructed as shown in Fig. 3.11. The notation (FCα)eff  indicates the 

effective capacitance value of FC (that is Cαeff = Ki.Cα). The transfer functions of 

lossy and lossless fractional integrators can be expressed as follows 

         
  

     

      
  

  

  
 

 

           
       

            
  

     

      
  

 

         
 

(3.26) 

CFOA

(FCα )eff

R2

Vout

X

Y

O
Z

Vin

R1

 

Fig. 3.11: CFOA based fractional lossy/ lossless integrator 

The simulated magnitude and phase responses of fractional order lossy/ lossless 

integrators using 0.5 order FC multiplier with multiplier factors of (2, 10, 50) are 

depicted in Figs. 3.12(a) - (b) and 3.12(c) - (d) respectively. It may be observed 

that the simulated magnitude responses for lossy and lossless integrators follow 

theoretical values with deviations of (0.45 dB, 0.7 dB, 1.5 dB) and (0.6 dB, 0.8 

dB, 1.5 dB) up to frequencies (380 kHz, 457 kHz, 1.7 MHz) and (410 kHz,  483 
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kHz, 1.7 MHz)  respectively.  Further, phase deviations are well within 2.5°  for 

frequencies up to (370 kHz, 280 kHz, 215 kHz) for lossy integrator and that for 

lossless integrator in the frequency range of (5.6 Hz-343 kHz, 3.3 Hz-278 kHz, 

0.43 Hz-214 kHz).  

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 3.12: Magnitude (a, b) and phase (c, d) responses of fractional lossy and 

lossless integrator 

 

3.4 Conclusion 

In this chapter, a CFOA based capacitance multiplier is presented. It requires 

lower component spread in order to achieve larger multiplication factor. The 

effect of non-idealities of CFOA on proposed multipliers is investigated and a 

compensation scheme is suggested. The operation of proposed circuit is verified 

through both SPICE simulations and experimentation. The usefulness of the 

multiplier is illustrated through PRB. 

 

Alongside, four fractional capacitance multiplier topologies are also put forward. 

These topologies are obtained through generalization of CFOA based capacitance 

multipliers. The effect of non-idealities of CFOA on proposed multipliers is 

investigated. Functionality of these multipliers is tested through MATLAB and 

SPICE simulations for various multiplier factors. The application of proposed 

multiplier is illustrated through fractional order lossy/ lossless integrators. 
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CHAPTER 4 

REALIZATION OF A HIGHER 

ORDER FOE AND ITS 

APPLICATION  
 

The contents and results of the following paper have been reported in this 

chapter: 

[1]  R. Verma, N. Pandey, R. Pandey, “Realization of a Higher Fractional 

Order Element based on Novel OTA based IIMC and Its Application in 

Filter. Analog Integrated Circuits and Signal Processing, vol. 97, no. 1, pp. 

177–191, 2018. https://doi.org/10.1007/s10470-018-1315-1. (Springer) 

Indexing: SCI, SCIE, SCOPUS; IF: 0.8 

 

  

https://doi.org/10.1007/s10470-018-1315-1
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4.1 Introduction 

It is well known that behavior of dynamic systems can be modeled more 

accurately using fractional order system (FOS) [1-3] than their integer order 

counterparts. The system accuracy increases with increasing the order of the FOS. 

The fractional order circuits are an example of FOS which can be designed using 

FOE with lower fractional order (0 < α < 1) or higher order FOEs (α > 1; where α 

is a compound value). 

The realization method of FOE with order α (0 < α < 1) has already been 

discussed in Chapter 2. This chapter is devoted to realization of FOE with order 

(α >1) which has also been referred as order alteration in literature. 

In open literature, two techniques are available for order alteration namely 

(i) generalized impedance converter (GIC) [15, 19, 25, 32, 33, 39, 40, 44, 156] 

and (ii) fractional stepping [54, 56, 61, 62, 69, 99, 157, 158]. The former approach 

is detailed in [25] in general form where the type/ order of FOE is varied by 

selecting appropriate passive components and it can provide FO variation in range 

0 < α ≤ 2. The structures reported in [15, 19, 32, 33, 39, 40, 44, 156] may be 

viewed as specific cases of design procedure of [25]. The later approach is based 

on developing functional block diagram (FBD) of FOE’s transfer function for 

given fractional order using follow the leader feedback (FLF)/ inverse follow the 

leader feedback (IFLF) topology.  
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This chapter presents OTA based inverted impedance multiplier circuit 

(IIMC) and its generalization in fractional domain for deigning higher order FOE. 

This is followed by the design of a higher order FOF realized through IIMC based 

higher order FOE.  

4.2 OTA Based Impedance Inverter Multiplier 

This section begins with generalization of OTA based impedance inverter circuit 

(IIC) in fractional domain. The OTA based IIMC, which is designed using IIC 

and its generalization in fractional domain, is presented next. This fractional order 

IIMC is used for order alteration of FC and FI.  

 

4.2.1 Generalization of OTA Based Impedance Inverter 

An impedance inverter circuit (IIC) gives input impedance which is inversely 

proportional to the impedance connected at its other end. It is primarily used for 

simulating inductors for IC applications via inverting capacitive reactance and 

impedance matching circuit. The schematic of OTA based IIC [159] is shown in 

Fig. 4.1(a). The input impedance of the circuit is given as  

 

    
 

        
 

(4.1) 

where gm1 and gm2 correspond to transconductances of OTA1 and OTA2 

respectively. 
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(a) 

 

(b) 

Fig. 4.1: OTA based (a) impedance inverter circuit [159] (b) generalization in 

fractional domain 

 

The circuit of Fig. 4.1 (a) can be generalized to fractional domain by replacing Z1 

by Z1α where Z1α represents FO impedance of order α. Fig. 4.1(b) shows the 

resulting circuit and its input impedance is expressed as    
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(4.2) 

 

An FI of order α may be obtained from (4.2) if Z1α corresponds to an FC of order 

α. The impedance of the resulting FI can be expressed as 

 

     
    

      
 

              (4.3) 

 

 

 

 

4.2.2 Proposed Impedance Inverter Multiplier  

The OTA based IIMC is shown in Fig.4.2. It uses (n+1) OTAs and n impedances. 

The input impedance of IIMC is given by    

         
 

                          
 

           (4.4) 

 

Fig. 4.2: Proposed OTA based IIMC 
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For Zi = 1/sCi (i=1, 2, … ,n), the input impedance of (4.4) becomes  

    

         
          

                
 

          (4.5) 

 

The IIMC can be generalized in fractional domain by replacing Z1 by FC of order 

α while other capacitances remain the same and the input impedance of (4.5) 

modifies to      

                
 

               

                
 

          (4.6) 

Equation (4.6) represents input impedance of an FI of order (n-1+α) and its 

pictorial representation is given in Fig. 4.3. To realize fractional capacitor of same 

order the circuit of Fig. 4.1(b) is used where Z1α will be replaced by an inductor 

having impedance as represented by (4.6).  

 

Fig. 4.3: Generalization of IIMC in fractional domain 
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4.2.3 Performance Evaluation 

In this section FI and FC of order (1+α) are designed for validation of the 

proposed scheme. The FI and FC of order (1+α) are shown in Fig. 4.4 (a) and (b) 

respectively. The corresponding equivalent values of FI and FC are given as  

     
     

         
 

             (4.7)  

 

     
           

         
 

          (4.8) 

 

 
(a) 

 
(b) 

Fig. 4.4: Proposed IIMC based (a) FI (b) FC of order (1+α)  
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4.2.3.1 Simulation Results 

The functionality of (1+α) order FI and FC is verified through simulation results 

in this section. The CMOS OTA of Fig. 2.7 with supply voltages ±1.8 V and 0.18 

µm TSMC process parameters is used for simulation. The transconductance gain 

of OTA (gm) is set as 100 µA/V.  

Two instances of FI (order (1+α) = 1.2 and 1.5) are simulated by selecting 

Z1α to be impedances of two different FCs of value Cα = 25 µƱ/s
α
, order 0.2 and 

Cα=3.75 µƱ/s
α
, order 0.5 respectively in Fig. 4.4(a). The integer order 

capacitances of 50 nF and 10 nF are used respectively for the two instances. The 

FC is emulated using infinite order domino RC ladder network truncated to 12 

numbers of blocks [25] as shown in Fig. 3.9 which is reproduced as Fig. 4.5 for 

ready reference. 

 

Fig. 4.5: Truncated RC domino ladder network realizing FC [25] 

 

The values for Fig. 4.5 FC having (i) α=0.2 and Cα=25µF are R0 = 16kΩ, 

R1 = 9.1kΩ, R2 = 6.6kΩ, R3=4.7kΩ, R4 = 3.3kΩ, R5 = 2.4kΩ, R6 = 1.8Ω, R7 = 1.5 

Ω, R8 = 1kΩ, R9 = 680Ω, R10 = 470 Ω, R11 = 180 Ω, R12=1.1kΩ, C0 = 51.7 µF, C1 

= 20 µF, C2 = 4.7 µF, C3 = 1.33 µF, C4 = 330nF, C5 = 100nF, C6 = 27nF, C7 = 

8.2nF, C8 = 2.2nF, C9 = 560pF, C10 = 150pF, C11=82pF  (ii) α=0.5 and Cα=3.75µF 

are R0 = 330kΩ, R1 = 82kΩ, R2 = 33kΩ, R3=12kΩ, R4 = 4.7kΩ, R5 = 2kΩ, R6 = 
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736Ω, R7 = 270 Ω, R8 = 120Ω, R9 = 47Ω, R10 = 8.2 Ω, R11 = 18.2 Ω, C0 = 4.7 µF, 

C1 = 3.1 µF, C2 = 1 µF, C3 = 470nF, C4 = 168nF, C5 = 68nF, C6 = 27nF, C7 = 

10nF, C8 = 4.7nF, C9 = 1nF, C10 = 2.2nF. The resulting impedance of 1.2 and 1.5 

orders FIs are represented as ZL1.2 = 1.25 Ω/s
1.2

, ZL1.5 = 37.5 mΩ/s
1.5 

respectively.  

For simulation of higher order FCs ((1+α) = 1.2 and 1.5), the ZL(1+α) in Fig. 

4.4 (b) is replaced by ZL(1.2) and ZL(1.5) respectively. The integer order capacitors 

are chosen to be 10 nF and 1 nF respectively. The impedance of 1.2 and 1.5 

orders FCs are computed to be ZC1.2 = 2.5 nΩ/s
1.2

 and ZC1.5 = 0.0375 mΩ/s
1.5

.  

The theoretical and simulated frequency responses for impedance of 1.2 

and 1.5 orders FIs ( L1.2 = 1.25 Ω/s
1.2

, L1.5 = 37.5 mΩ/s
1.5

) and FCs ( C1.2 = 2.5 

nƱ/s
1.2

, C1.5 = 0.0375 nƱ/s
1.5 

are shown in Figs. 4.6 and 4.7 respectively. The 

frequency range of operation for different FIs and FCs are summarized in Table 

4.1 with ±5dB and ±5
0
 maximum possible deviation for impedance magnitude 

and phase responses respectively.  

 
(a) 
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(b) 

 
(c) 

 
(d) 

Fig. 4.6: Impedance responses of (a),(b) 1.2 order; and (c),(d) 1.5 order FIs  
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(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 4.7: Impedance responses (a), (b) 1.2 order; and (c), (d) 1.5 order FCs 
 

Table 4.1: Frequency range for different FIs and FCs 

Impedance 

Response 

Frequency range of operation 

Order of FI Order of FC 

1.2 1.5 1.2 1.5 

Magnitude 1.48Hz-30.5kHz 7.4Hz-32.3kHz 8.7Hz-47.9kHz 92Hz-53.7kHz 

Phase 33.8Hz-14.2kHz 51.2Hz-5.4kHz 48.9Hz-9.77kHz 194Hz-16kHz 

 

4.2.3.2 Experimental Results  

The experimental setup for FI of order α = 0.5 is shown in Fig. 4.8 (a) where dual 

output OTAs ICs LM 13600N is used with supply voltage of ±10V. The 

transconductance gains of OTAs are set at gm1=gm2= 0.393mA/V. The FC is 

realized using domino RC ladder circuit with component values same as taken for 

simulations. The response of the circuit is shown in Fig. 4.8 (b) for sinusoidal 

input signal (100 mVpp) and its corresponding Lissajous pattern is depicted in Fig. 

4.8(c). 
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Further experimental verification of FI of order 1+α is carried out using normal 

capacitor of 0.47 μF and  gm1=gm2= 0.393mA/V, gm3=0.732mA/V. The 

experimental setup is shown in Fig. 4.9 (a).  The response of the circuit is shown 

in Fig. 4.9 (b) for sinusoidal input signal (100 mVpp) and its corresponding 

Lissajous pattern is depicted in Fig. 4.9 (c). It may be noted that FI having 1+α 

order is 90
0
 in advance than α order. 

 

Experimental impedance phase response is shown in Fig. 4.10 along with 

theoretical result for 1.5 order FI. It may be noted that experimental impedance 

response follows theoretical curve in frequency range of 50 Hz – 4 kHz within 

±5
0
 phase error band.  

 

Fig. 4.8: (a) Hardware setup (b) experimental results (c) Lissajous pattern of 

OTA based α order FI 
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Fig. 4.9: (a) Hardware setup (b) experimental results (c) Lissajous pattern of 

OTA based FI having 1+α order 

 

The measurements are taken at supply voltage of ±10V. The transconductance 

gains of OTAs for FIs’ order α and (1+α) are set at gm1=gm2= 0.393mA/V; and 

gm1=gm2= 0.393mA/V, gm3=0.732mA/V respectively. In the designing of α and 

(1+ α) order FIs, the normal capacitor of 0.47 µF is used. The responses obtained 

across the output capacitor of impedance inverter circuit (IIC) (Fig. 4.1 (b)) and 

proposed IIMC configuration realizing FI of (1+α) order (Fig. 4.4 (a)) for 

sinusoidal input signal (100mVpp) are shown in Figs. 4.8 and 4.9 respectively. The 

Lissajous patterns also verify that FI having 1+α order is 90
0
 in advance than α 

order. Experimental impedance phase responses of FI having 1+ α (α = 0.5) order 

is shown in Fig. 4.10 along with theoretical result. It may be noted that 

experimental impedance response of proposed FI of order 1.5 follows theoretical 

curve in frequency range of 50 Hz – 4 kHz within ±5
0
 phase error band.  
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Fig. 4.10: Impedance phase response of FI of 1+α (α = 0.5) order 

 

4.2.4 Comparison  

Comparison of the presented scheme with the available ones yields in the 

following points: 

- The FOE reported in [25] uses GIC structure and realizes fractional 

elements of order less than 2 only. Thus this method gives limited order 

alteration in higher domain. The proposed scheme realizes 1+ α order 

FOE. Any further integer increment may be obtained by placing OTA and 

integer order capacitor in the loop thus leading to a modular structure.  

- In [25], the magnitude of FOE is varied by changing the value of one of 

the resistances employed in GIC. Therefore, electronic tuning of FOE’s 

magnitude can be accomplished by electronic implementation of that 

resistance. In the proposed structure, magnitude variation is attained 

through bias current variation. 
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4.3 Proposed higher order FOF  

Higher order filters are useful to achieve faster roll off rate. A higher order FOF 

may be designed replacing integer order fundamental elements by higher order 

FOEs. This section presents higher order FOF using higher order FOE proposed 

in section 4.2.2.  

The proposed higher order current mode FOF (Fig. 4.11) is based on parallel 

resonator block (PRB) wherein the inductor and capacitor of conventional PRB 

are replaced by FI and FC of order (n + α) respectively. The OTA based 

realization of Fig. 4.11(a) is depicted in Fig. 4.11 (b). 

 
(a) 

 
(b) 

Fig. 4.11: (a) Higher order fractional parallel RL(n+α)C(n+α) circuit and (b) its 

realization using OTA 
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The circuit analysis of Fig. 4.11 (a) yields following filter transfer functions: 

i. Transfer function (TF) of FLPF    

        
      

 
        

      
 

 
        

        
      

     
 

 
        

 

          (4.9) 

ii. TF of FBPF    

        
      

 
        

      
 

      

     

        
      

     
 

 
        

 

         (4.10) 

iii. TF of FO high pass filter (FHPF)    

        
      

 
        

      
 

       

        
      

     
 

 
        

 

         (4.11) 

 It may be observed from (4.9) to (4.11) that a 2(n+α) order FOF is obtained by 

using (n+α) order FC and FI in PRB. The corresponding responses for proposed 

OTA based higher order FOF are computed as: 

i. TF of FLPF   

        
      

 
        

      
 

 
        

                

    
 

 
        

 

              (4.12) 

ii. TF of FBPF      

        
      

 
        

      
 

        

    

                

    
 

 
        

 

                (4.13) 



74 
 

iii. TF of FHPF          

        
      

 
        

      
 

       

                

    
 

 
        

 

                                 (4.14) 

The magnitude and phase responses for proposed higher order FOF are computed 

as:    
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and 

         
                 

  

    
                 

                 
  

    
                  

 
        

  

            (4.18) 

 

In general, three critical frequencies [41] are used to characterize FOF which are 

defined below: 

ωm: the  maximum/minimum frequency point at which |T(jω)| is 

maximum/minimum 

ωh: the half power frequency   

ωrp: the right phase frequency corresponding to angle = ± π/2 

 

These critical frequencies can be obtained by solving the equation                      

                 
  ,            

= (1/√2)|T(jω)| in pass-band and             

             
 =±π/2 respectively.  

 

4.3.1 Stability Analysis 

This section first presents a brief about stability analysis of a generic FOF, 

explained in detail in [38], and is followed by assessment of stability of proposed 

designs. The stability of a FOF is examined using its characteristic equation 

which is used to identify the locations of poles, in fractional domain s-plane, and 

their quality factor. These calculated locations are then traced and illustrated for 
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further studies by transformation of s-plane into fractional domain i.e F- or W-

plane. The general transfer function of higher order FOF can be expressed as   

   

     
    

                  
 

 (4.19) 

 

where numerator N(s) will take different values according to the function type. 

The characteristic equation of (4.19) gives the pole locations at     

    2=  ±   in F-domain complex plane where  =cos 1   / ) (assuming 

all coefficients are positive and      or         ). The stability analysis 

of proposed higher order FOF is carried out by using transformation of F-plane 

into s-plane and comparing with a classical second order system whose poles are 

located at                           
    where            

2 . This comparison results in  0= 1/2( + ) ,    12cos /( + ) (both 

must be positive) and stability condition as               for higher order 

FOF. 

The stability analysis of proposed higher order FOF is also carried out 

using method outlined above. The stability condition, root location in F-domain 

(transformation of s-domain into fractional domain i.e. s
n+α

) complex plane, pole 

frequency ω0 and quality factor Q are given in Table 4.2. It is noteworthy that all 

denominator coefficients in (4.12), (4.13) and (4.14) are positive. 
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Table 4.2: Stability constraints for proposed higher order FOF 

 
 

 
 

 
 

 

 
 

 
 
 

  
 

Stability 

condition 

Root location in F-

domain complex plane 
ω0 Q 

k ≤ 1 (n+α)<2 

  
  

 
 

 
 

  
 

 
 

 
 

  
 

  
 

 
 
  

 
 

 
 

 
 

 
 
 

 
 

 
 

 

 
 

 
  
 

  
 

      
        

 

  

           
 

k > 1  

(n
+

α
) 

<
 2

δ
/π

, 
 

 
  

  
 
 

  
  

 
  

 

          

    

  
 

        
     

  
 

        
 

        

 

 

  

           
 

 

 



78 
 

4.3.2. Simulation Results 

The operation of proposed higher order FOF using FI and FC of order (1+α) = 1.2 

and 1.5 is examined through SPICE simulation. The simulation settings for 

impedances of FI and FC 1.2 and 1.5 orders FIs ( L1.2 = 0.25 Ω/s
1.2

, L1.5 = 37.5 

mΩ/s
1.5

) and FCs ( C1.2 = 2.5 Ʊ/s
1.2

, C1.5 = 3.75 n Ʊ/s
1.5

) The resistive branch of 

PRB is implemented using OTA and  the resistance is chosen as R=1/gm =20 kΩ. 

The simulated and theoretical responses of proposed FOF are shown in Fig. 4.12 

and various performances are summarized in Table 4.3 for FLPF, FHPF and 

FBPF. The simulation results for FLPF, FHPF and FBPF are found to be in close 

agreement with theoretical results.  

 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Fig. 4.12: Simulation frequency response of proposed FOF employing FOE of (a 

-b) 1.2 order and (c-d) 1.5 order 
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Table 4.3: Performance parameters for FLPF, FHPF and FBPF for order of 

2(n+α) 

Filter 
Parameters 

Measured 

2(n+α)=2(1.2) 2(n+α)=2(1.5) 

Simulation 

Results 

Theoretical 

Results 

Simulation 

Results 

Theoretical 

Results 

FLPF 

|T(jω| in pass-

band 
0.992 1 0.998 1 

ωh (Hz) 812.775 832.7 828 800 

ωm (Hz) 254 261.72 550.28 523.3 

ωrp (Hz) 900 840 1.35k 1.32k 

           
 1.05 1.07 1.3 1.27 

FHPF 

|T(jω| in pass-

band 
0.98 1 0.994 1 

ωh (Hz) 1.65k 1.423k 549 543.47 

ωm (Hz) 4.7k 4.28k 831 831.764 

ωrp (Hz) 1.4k 1.411k 331 329.62 

           
 1.05 1.07 1.28 1.27 

FBPF 

ωh1 (Hz) 519 484.72 494.735 478.14 

ωh2 (Hz) 2.597k 2.445k 917.438 909.5 

ωm (Hz) 1.14k 1.09k 676 659.37 

ωrp (Hz) 
192.75, 

6.166k 

192.959, 

6.136k 
None None 

           
 1.29 1.32 0.557 0.55 

 

Simulations are also performed to examine the stability of proposed FOF. The 

root-location in F-domain complex plane, pole frequency and quality factor of 

proposed higher order FOF are enlisted in Table 4.4. 
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Table 4.4: Stability Analysis 
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0
 1.2 < 2 Stable 0.577 
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659.375 255.52
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0
 

1.5 

<2.839 
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The root locus technique provides stability analysis of fractional order system 

[160] and its graphical representation can be illustrated through W-plane 

transformation. The root locus of realized FLPF and FBPF having order       

      = 2(1.2) and 2(1.5) respectively are plotted in Fig. 4.13 using forlocus 

function in MATLAB program. The plot of the Riemann surface has 5 and 2 

Riemann sheets for order 2       =2(1.2) and 2(1.5) respectively. The 

boundaries of unstable region (shown by dashed dotted lines in Fig. 4.14) 

{                          } and   
 

 
                 

 

 
  for FOFs 

of order 2(1.2) and 2(1.5) respectively thus confirming the stability of the said 

FOFs. 

 
(a) 
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(b) 

Fig. 4.13: Root-locus plots of the proposed FOFs having order 2(1+α) = 2(1.2) 

and 2(1.5) in (a) and (b) respectively with dashed line is the unstable region 

 

4.4 Conclusion 

An approach for designing higher order fractional element has been presented in 

this chapter. This approach is based on the concept of OTA IIC of integer domain 

which is first generalized in fractional domain by replacing the integer order 

capacitor by α order FC. The resulting fractional order impedance inverter is 

further used to propose fractional order IIMC of order (n + α). A higher order 

FOF is then developed as an application of the proposed IIMC. All proposed 

circuits are functionally verified through SPICE simulations using 0.18 µm 

TSMC CMOS technology parameter. The fractional capacitors (FCs) (with α = 

0.2 and 0.5), are realized using truncated infinite order domino RC ladder network 

and are considered for all simulations in this work. The proposed IIMC is 

experimentally verified through hardware prototyping using LM 13600N dual 

OTAs IC. The simulation and experimental results are observed to be in close 

resemblance with theoretical prepositions. 
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CHAPTER 5 

ELECTRONICALLY TUNABLE 
FOFs  

 

The contents and results of the following papers have been reported in this 

chapter:  

[1]  R. Verma, N. Pandey, R. Pandey, “Electronically Tunable Fractional Order 

All Pass Filter”, IOP: Materials Science and Engineering, vol. 225: 

012229, 2017. (SCOPUS). https://doi:10.1088/1757-899X/225/1/012229 

[2] R. Verma, N. Pandey, R. Pandey, “Electronically Tunable Fractional Order 

Filter”, Arabian Journal for Science and Engineering, vol.  42, no. 8, pp 

3409–22, 2017.  https://doi.org/10.1007/s13369-017-2500-8. (Springer) 

Indexing: SCIE, SCOPUS; IF: 1.092 

 

  

https://doi:10.1088/1757-899X/225/1/012229
https://doi.org/10.1007/s13369-017-2500-8
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5.1 Introduction 

Active filters are widely used in applications pertaining to data acquisition, noise 

reduction, equalizing delay etc. Traditionally, op-amp is used for active filter 

design; its usage is limited due to finite gain bandwidth product. Further, the filter 

parameters of op-amp filters can be changed only by changing resistors and 

capacitors used therein. To add electronic tunability in opamp based filters, the 

resistors are replaced by MOSFETs working in triode region with appropriate 

differential connections for cancellation of associated signal nonlinearities. The 

OTA based filters, on the other hand, add electronic tunability through 

transconductance which can be adjusted via bias current. 

In this chapter, generalization of OTA based filters in fractional domain is 

presented and two topologies one each from first [159] and second order [161] are 

derived. These topologies are termed as topology I and topology II in the context 

of this chapter. Topology I is derived from first order all pass filter whereas a 

second order filter providing low pass and band pass responses is considered for 

Topology II.  

 

5.2 Topology I 

This section presents generalization of first order filter in fractional domain and 

present various filter parameters. A generic OTA based structure, providing LP 

and AP responses, is presented next and is followed by its generalization. 
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 5.2.1 Generalization of first order FOF 

The general transfer function of first order filter is given by  

 

     
    

   
 

(5.1) 

and its generalization in fractional domain results in α order FOF. Its transfer 

function is given by   

      
  

     

    
 

  (5.2) 

where  ,   and   are the constant terms and appropriate selection of these results 

in different FOF responses which are summarized in Table 5.1 

Table 5.1: Condition for α order FOFs responses 

Condition  Response 

b = 0 FLPF  

d = 0 FHPF 

d = -a FAPF  

 

 The magnitude and phase responses of (5.2) are given as below: 

       
     

                     

                  
 

    (5.3) 
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    (5.4) 

 

5.2.2 Proposed Topology I 

The proposed topology I is depicted in Fig. 5.1. Routine analysis of the 

circuit gives the output as:  

     
                  

        
 

   (5.5) 

Where    represents transconductance gain of OTA.  

Substituting Vin1 = Vin2 = Vin in (5.5) results in the transfer function of FAPF and 

is given by  

        
  

        

        
 

   (5.6) 

Transfer function of FLPF, as given by (5.7), is obtained by substituting Vin1 = 0 

and Vin2 = Vin in (5.5).  

        
   

     

        
 

   (5.7) 
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Fig. 5.1: Proposed Topology I 

 

The magnitudes and phase of functions for (5.6) are computed respectively, as  

          
    

    
  

 

  
    

  

  
          

    
  

 

  
    

  

  
          

 

   

 

   (5.8) 

 

          
        

         

               
 

       
         

               
  

   (5.9) 

The magnitudes and phase of functions for (5.7) are computed respectively, as 

          
   

  

  

     
  

 

  
    

  

  
           

   
 

   (5.10) 
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   (5.11) 

 

The magnitude and phase for FAPF and FLPF at dc,             

                    and      are listed in Tables 5.2 and 5.3 respectively. 

Table 5.2:  Magnitude and phase for FAPF 

            
             

  

0 1   

                          

  1 0 

 

Table 5.3:  Magnitude and phase for FLPF 

            
             

  

0 1 0 

    
  

  
 

 
 

 

 

     
  
 

 
   

 
 

  0 
  

 
 

 

The critical frequencies of FAPF and FLPF are computed and are given as  

                            

                        
  

 
        

  

 
    

 
 

 

(5.12) 
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and     

                      
  

 
 

 
 

                     
 

   
  
 

 

 
 

 

                         
  

 
    

  

 
 

 
 

 

(5.13) 

 

The magnitude of FAPF at       has a minima if α < 1, maxima if α > 1and 

flat if α = 1 [47].  

 

5.2.2.1 Stability Analysis 

In this subsection, stability condition of proposed α order FOF is investigated for 

different values of α. The stability of FOF depends on its characteristic equation 

which is used to identify the pole-location. The stability of the FOF can be 

commented on by transformation of s-plane into fractional domain F- plane. It is 

well known that stability and physical regions for conventional s-plane are given 

as  +π/2 < θS < -π/2 and +π > θ > -π respectively.  The mapping from s-plane into 

F- plane defined as F = s
α
, transforms the stability region by +απ/2 < θS < -απ/2 

and physical region by +απ > θF > -απ. Thus, for 0 < α < 1 regions of unstable and 

physical in F-plane is smaller than s-plane whereas α > 1, the unstable region in 

F-plane is larger than s-plane. The stability criterion of (5.2) maps on to 
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conditions of positive value of coefficient ‘a’ and order       α < 2 as for a positive 

value of  ‘a’ and  α = 2 the system will lead to oscillation [47].  

 From the characteristic equation of the proposed circuit given by (5.5) the pole 

location is obtained as          . It is clear that α order FOF is stable for α < 

2 since the location of pole          lies within the stable region in F-plane.  

 

5.2.2.2 Sensitivity Analysis 

The significance of sensitivity analysis of FOFs is to indicate the relative change 

in filters responses with respect to the circuit parameters used. In this subsection, 

the mathematical formulation of sensitivities of transfer functions of the proposed 

filters has been derived. 

The sensitivity relations of FAPF with respect to α, FC value and gm are presented 

in (5.14) - (5.16).  

 

  
     

   

  
        

     
  

 

  
  

 

   (5.14) 

 

   

     

   

  
  

     
  

 

  
  

 

   (5.15) 

   
      

  
 

  
 

     
  

 

  
  

 

   (5.16) 
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The sensitivity of (5.7) with respect to α, FC value and gm are computed as 

  
     

        

    
  

  
 

 

   (5.17) 

 

   

     
  

    
  

  
 

 

   (5.18) 

 

   
     

   

    
  

  
 

 

   (5.19) 

 

 

It may be observed that transfer function sensitivities depend on α, FC value and 

gm of OTA. To further illustrate the effect of various parameters MATLAB 

simulations are carried out and are included in simulation section. 

5.2.2.3 Simulation results 

The functionality of the proposed FOFs is examined through SPICE simulations 

using CMOS schematic of Fig. 2.7 (b) of OTA [122]. Further the FAPF is 

designed for different ω0 and the corresponding simulation settings are listed in 

Table 5.4. The simulated and theoretical responses of proposed FAPF designed 

using FC of order 0.5 with a center frequency of 1 kHz are shown in Fig. 5.2. 

Results for FC of order 0.9 are depicted in Fig.5.3 
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. Table 5.4: Simulation settings for proposed FAPF 

Order (α)    (µƱ/s
α
)    (µA)    (    )   (rad/s) 

0.5 
1 

4.035 50 2.5 k 

9 100 10 k 

15.016 150 22.5 k 

22.34 200 40 k 

0.9 1 

35.175 268.58 500 

70.16 386.861 750 

140.78 501.187 1 k 

303.3 612.659 1.25 k 

 
(a) 

 
(b) 

Fig. 5.2: Simulated (a) magnitude and (b) phase responses for proposed FAPF 

with α = 0.5   
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(a) 

 
(b) 

Fig. 5.3: Simulated (a) magnitude and (b) phase responses for proposed FAPF 

with α = 0.9   

The time domain response of proposed FAPF circuit is also examined by setting 

ωrp as (i) 10 krad/s for order 0.5 and (ii) 500 rad/s for order 0.9. The requisite 

simulation settings are given in Table 5.4. Simulated responses to a 100 mV input 

sinusoid are shown in Fig. 5.4 and corresponding Lissajous patterns are depicted 

in Fig. 5.5 and 90
0
 phase shift between input and output is observed.   
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(a) 

 
(b) 

Fig. 5.4: Time domain response of proposed FAPF having (a) α = 0.5 and (b) α = 

0.9  

 

(a) 
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(b) 

Fig. 5.5: Lissajous patterns for proposed FAPF having (a) α = 0.5 and (b) α = 

0.9 

 

The functionality of proposed FLPF is tested for α = 0.5 and 0.9 at different ωh 

with the simulation settings given in Table 5.5. The simulated and theoretical 

responses of proposed FLPF with FC of order 0.5 and 0.9 are shown in Figs. 5.6 

and 5.7 respectively. It may be noted that there is close matching between 

theoretical and simulated values in the range of few tens to thousand hertz 

frequency range.  

Table 5.5: Simulation settings for proposed FLPF 

Order (α)    (µƱ/s
α
)    (µA)    (    )   (rad/s) 

0.5 

1 

4.035 50 0.67 k 

9 100 2.68 k 

22.34 200 10.7 k 

0.9 

4.035 50 65 

9 100 140 

22.34 200 303 
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(a) 

 
(b) 

Fig. 5.6: Simulated (a) magnitude and (b) phase responses for proposed FLPF 

with α = 0.5  
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(a) 

 

(b) 

Fig. 5.7: Simulated (a) magnitude and (b) phase responses for proposed FLPF 

with α = 0.9   

 

The sensitivities of proposed FAPF and FLPF are examined through MATLAB 

simulations at a frequency of 1 kHz. The sensitivity relations of FAPF given by 

(5.14) - (5.16) are plotted in Fig 5.8.Three data sets are used to examine 

sensitivities of FAPF with respect to α. The values of    are taken as 25 μA/V, 

50 μA/V and 100 μA/V under data set 1, data set 2 and data set 3 respectively 
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whereas    is taken as 1 µƱ/s
α
 for all cases. The resulting sensitivity plots are 

depicted in Fig. 5.8 (a). To plot sensitivity with respect to Cα, α is considered to 

be 0.5 and    is set as 100 μA/V. The simulated plot is shown in Fig. 5.8(b). 

Sensitivity variation curve of FAPF against    while α is chosen as 0.5 and    as 

1 µƱ/s
α
 is presented in Fig.5.8(c). The corresponding curves for FLPF represented 

by (5.17) - (5.19) for similar simulation settings are plotted in Fig 5.9. From Figs. 

5.8 and 5.9 it is observed that sensitivity variations of FAPF against α and    are 

found to be within unity whereas for FLPF it is within unity for all the three plots.  

 

 
(a) 

 
(b) 
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(c) 

Fig. 5.8: The sensitivity magnitudes of proposed FAPF with respect to (a) α, (b) 

   and (c)     

 
(a) 

 
(b) 
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(c) 

Fig. 5.9: The sensitivity magnitudes of proposed FLPF with respect to (a) α, (b) 

   and (c)    

5.3 Topology II 

In this section generalization of second order filter in fractional domain is briefed 

first followed by description of new single input multi output OTA based FOF 

providing LP and BP responses.  

 

5.3.1 Generalization of second order FOF 

The general transfer function of second order filter is given by  

     
   

        

         
 

           (5.20) 

where coefficients b0, b1, b2, a0, a1 are the constant terms.  

The generalization of (5.20) in fractional domain using two FCs of different 

orders α and β results in (α + β) order FOF. Its transfer function is given by   
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           (5.21) 

It may be noted that various FO responses may be obtained by appropriate 

selection of bi’s (i = 0, 1, 2). The FLPF is obtained for (b2 = 0, b1 = 0), FHPF can 

be designed by setting (b1 = 0, b0 = 0), FBPF is deduced by selecting (b2 = 0, b0 = 

0) and FBSF response can be derived for b1 = 0. The general transfer function 

represents FAPF for coefficient setting of b2=1, b1 =(- a1) and b0= a0. 

Considering α = β, (5.21) modifies to  

      
   

   
      

    

           
 

   (5.22) 

Representing denominator of (5.22) as D(s), the magnitude of the characteristic 

equation of (5.22) [41] can be obtained as  

                
             

              

       
           

      

(5.23) 

 

5.3.2 Proposed OTA based FLPF and FBPF 

In this subsection, OTA-based filter topology [161] is adapted for FO domain. 

The capacitors are replaced by FCs of same order α and the resulting topology is 

depicted in Fig. 5.10. It provides electronically tunable FLPF and FBPF responses 
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simultaneously. The routine analysis results in the following filter transfer 

functions:   

        
   

             

    
 

      (5.24)  

 

        
   

         

    
 

     (5.25) 

where                                              

        (5.26) 

and    ,     and     correspond to    of OTA1, OTA2 and OTA3 

respectively. 

 

Fig. 5.10: OTA-based current mode circuit configuration  

In order to determine the critical frequencies of the proposed FLPF and FBPF the 

magnitudes of         
   and         

   are computed respectively, as  
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(5.27) 

          
   

 

   

   
  

 
 
 
      

   

   
      

  
   

   
 

   
   

      

      
           

      

      

   

   
     

  
 

  
      

      
 

 

 
 
 
 
   

 

(5.28) 

 

The frequencies ωm(FLPF) and ωm(FBPF) are determined by differentiating 

magnitudes of          
   and          

   by (5.27) and (5.28) with respect to ω
α
 

and equating it to zero. Applying this to (5.27) and (5.28) results, respectively, in 

        
    

   

    
        

             
   

    
 

 

 
      

      
              

 

 
   

    

      

      
          

(5.29) 

 

         
   

      

      
          

            
    

    
   

  

 
 

      

      
    

     (5.30) 
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The numerical values of          and         can be determined by solving 

(5.29) and (5.30) respectively. In case of FBPF, one of the         value is 

given by ωm(FBPF)=  
      

      
 

    

and its corresponding peak magnitude is 

computed as 

               

   

    

 
   

    
  

      

      
        

 

(5.31) 

The half power frequency                      may be determined by equating 

magnitude of (5.27) to 1/√2. The corresponding expression is computed as 

        
    

   

    
        

         

    
   

    
 

 

  
      

      
              

  

  
   

    

      

      
        

          
      

      
 

 

   

          (5.32) 

 

Similarly, the expression for computing half power frequency 

                     is given by  
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 (5.33) 

 

The numerical values of         and         can be determined by solving (5.32) and 

(5.33) respectively.  

The right phase frequency (corresponding to phase angle = ± π/2) for FLPF and FBPF are 

expressed by (5.34) and (5.35) respectively. 

          

 

 
 

   

    
   

  
 

   
   

    
 

 

      
 

 
      

      
     

     

 

 

   

 

(5.34) 

          

 

 
 

   

    
   

   

    
 

 

 
      

      
      

 

   
  
 

 

 

   

 

(5.35) 

The critical frequencies of FLPF and FBPF responses depend upon 

transconductance (gm) of OTAs which can be tuned electronically through bias 

current variation. Therefore, various critical frequencies of OTA-based FOF can 

be electronically tuned. 
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5.3.2.1 Stability Analysis 

The stability of presented FOF depends on coefficients of     (i = 1, 0) in (5.26). 

As all coefficients of (5.26) are positive, the conditions for different parameters 

[38] are mentioned in Table 5.6.  It may be noted from Table 5.6 that FOF is 

stable for δ > απ/2 for α ranging between 0 and 1.  

 

Table 5.6: Stability constraints with ω0 and Q of D(s)  

 

P
a
ra

m
et

er
 

 
 

 
  

 
 
 

 
 
  

 
 

 
  

 

Stability 

condition 
Root location 

Pole frequency 

ω0 
Q 

k ≤ 1 α<2 

    

 

                         
      

      
 

 

      
   

    
     

 

  

       
 

k > 1 

α < 2δ/π, 

δ=         

  )>π/2 
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5.3.2.2 Sensitivity analysis 

In this subsection, sensitivities of both the FOF transfer functions have been 

computed to enumerate the effect of α, FC value and gmi’s ( i= 1, 2, 3) and are 

expressed, respectively, as 

  
      

                     

                           
 

       (5.36) 

 

    

      
   

                            
     

     

(5.37)      

     

    

      
             

                           
      

          
     

    (5.38) 

 

    
      

         

                           
 

       (5.39) 

 

  
     

                            

                           
 

       (5.40) 

 

    

     
             

                           
     

         
     

     (5.41) 

 

    
     

                 

                           
 

       (5.42) 
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Equations (5.36)–(5.42) show that the transfer functions’ sensitivity depends on α, 

FC value and gm of OTA. Therefore, graphs need be plotted to observe the exact 

effect of various parameters. 

5.3.2.3 Simulation results 

Workability of proposed OTA based FOF is verified through SPICE simulations 

for α = 0.5 and 0.9 with a center frequency of 1 kHz. The FC emulator of Fig. 2.1 

is used for simulation.  The frequency responses of FLPF and FBPF with FC of 

order 0.5 and 0.9 are shown in Figs. 5.11 and 5.12 respectively using the 

simulation settings of Table 5.7.  It may be noted from Table 5.7 that since k > 1 

and α < 2δ/π therefore the stability criteria given in Table 5.6 is satisfied. 

 

(a) 
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(b) 

Fig. 5.11: Simulated frequency response (a) magnitude and (b) phase for 

proposed FLPF 

 
(a) 

 
(b) 

Fig.5.12: Simulated frequency response (a) magnitude and (b) phase for proposed 

FBPF  
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Table 5.7: Simulation setting for proposed FOF 

Order 

(α) 

    

 1 = 

2  

(µƱ/s
α
) 

Ib1 = 

Ib3 

(µA) 

Ib2 

(µA) 

gm1 = 

gm3 

(    ) 

   gm2 

(    ) 
      k 2δ/π 

0.5 1 17.4 2.47                               43.894 1.096 

0.9 0.382 98 57.73 165 134.7 186569.572 352.618 6 1.268 

 

 

It is observed from Figs. 5.11(b) and 5.12(b) that right phase frequency exists 

only for FLPF of order 0.9 which is in sync with (5.24) and (5.25) respectively. 

Performance parameters for proposed FLPF and FBPF are listed in Tables 5.9 and 

5.10 respectively. There is a close match between theoretical and simulated 

values. It is also found that the critical frequencies increase with decrease in order 

α.  

Table 5.8: Performance parameters for FLPF for α = 0.5 and 0.9 

Parameters 

Measured  

Cα =1µƱ/s
α
, α= 0.5 Cα =0.382µƱ/s

α
, α= 0.9 

Simulation 

Results  

Theoretical 

Results  

Simulation 

Results  

Theoretical 

Results  

          
    in 

pass-band 
0.95 1  0.95 1  

          (Hz)  681  628  156.33  163.9 46 

          (Hz) none none  79.228  80.58  

 

 

 



112 
 

Table 5.9: Performance parameters for FBPF for α = 0.5 and 0.9  

Parameters 

Measured  

Cα =1µƱ/s
α
, α= 0.5 Cα =0.382µƱ/s

α
, α= 0.9 

Simulation 

Results  

Theoretical 

Results  

Simulation 

Results  

Theoretical 

Results  

          (Hz) 211  224  76.77 75.37  

          (Hz)  4.7k  4.47k  245  242  

         (Hz)  1.08k  1.001k  136  135  

              at 

          
-15.169dB -15dB 0.705 0.723 

 

The FLPF (α = 0.5 and 0.9) is tested for electronic tunability of half power 

frequency by varying Ib2 while keeping the other settings same as listed in Table 

5.7.  The results are plotted in Fig. 5.13. The right phase frequency variation with 

respect to Ib2 for proposed FLPF with α = 0.9 is plotted in Fig. 5.14. It may be 

observed that half power frequencies show downward trend with increasing bias 

current whereas the right phase frequency increases slightly with increasing bias 

current. 

 
(a) 
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(b) 

Fig. 5.13: Electronic tunability of half power frequency of proposed FLPF having 

α= (a) 0.5, (b) 0.9 

 

Fig. 5.14: Electronic tunability of right-phase frequency of proposed FLPF having 

α = 0.9 

 

Equations (5.36)–(5.42) are plotted in Fig.5.15 to investigate the effect of α, FC 

value and gm of OTA on the transfer functions’ sensitivity, wherein data are 

acquired at 1 kHz. The value of gm2 is taken as 25 μA/V (data 1), 50μA/V (data 2) 

and 80μA/V (data 3) for all plots except those given in Fig. 5.15e, i. The values of 

gm1 and gm3 are kept equal at 25μA/V (data 1), 50μA/V (data 2) and 80μA/V 
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(data3) while observing sensitivity variation with respect to gm2 (Fig.5.15e, i). 

Sensitivities with respect to α, C1α and C2α are plotted while keeping gm1 and gm3 

equal to 25μA/V and gm2 at 25μA/V. The values of α, C1α and C2α are kept at 0.5, 

1 and 1 µƱ/s
α

  respectively, in all the plots for the cases where these parameter are 

not varied for observation. The transfer functions’ sensitivity with respect to FC 

value and gm of OTA remain well within unity while both FLPF and FBPF are 

sensitive to α variation. 
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Fig. 5.15: Sensitivity: (a)    
      versus α; (b)      

      versus C1α and      

      

versus C1α; (c)      

      versus C2α; (d)          
      versus gm1=gm3; (e) 

     
     versus gm2; (f)    

      versus α; (g)      

      versus C2α; (h)          
      

versus gm1 = gm3; (i)      
      versus gm2 
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5.4 Conclusion 

In this chapter, two electronically tunable FOFs using OTAs are presented. These 

filters are obtained through generalization of first and second order filters. The 

realization of proposed FAPF and FLPF circuits are achieved from first order 

filter. Proposed FLPF and FBPF circuits are adaption of second order 

configuration in fractional domain. Mathematical formulations are outlined for 

various critical frequencies and transfer function sensitivities. Electronic 

tunability of filter parameters is achieved through bias current variation of OTA. 

The functionality of the proposed FOFs is verified through SPICE simulations by 

considering FC of orders 0.5 and 0.9. The FCs used in each configuration is 

designed around a centre frequency of 1 kHz. From various responses it is 

observed that the simulation and theoretical results are quite close for a wide 

range of frequencies. Electronic tunability of half power frequency and right-

phase frequency is demonstrated by changing the bias currents of OTAs. The 

sensitivity of transfer functions with respect to various circuit parameters is also 

examined through simulations, and it is found that the values remain well within 

unity for most of the circuit parameters.  
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CHAPTER 6 

REALIZATION OF CFOA BASED 
HIGHER ORDER FOFs  

 

The contents and results of the following paper have been reported in this 

chapter:  

[1]  R. Verma, N. Pandey, R. Pandey, “CFOA based Low Pass and High Pass 

Fractional Step Filter Realizations”, AEU- International Journal of 

Electronics and Communications, vol. 99, pp. 161-76, 2019. 

https://doi.org/10.1016/j.aeue.2018.11.032. (Elsevier) Indexing: SCI, 

SCIE, SCOPUS; IF: 2.115 

 

  

https://doi.org/10.1016/j.aeue.2018.11.032
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6.1 Introduction 

The essential use of a higher order filter is to provide a greater roll off/ attenuation 

rate in transition band. The attenuation rate in conventional n
th

 order integer filter 

is 20n dB/decade which puts a constraint on fine tuning of attenuation rate. By 

adopting the design methodology of a higher order filter in fractional domain the 

attenuation rate in transition band can be fine tuned as (n+α) order FOF provides 

an  attenuation rate of 20(n+α) dB/decade. 

In literature two different methods are available to design a higher order 

FOFs- the first employs FOE in the integer order filter while the second relies on 

the substitution of Laplacian operator s
α
 by equivalent integer order 

approximation form. Chapters 4 and 5 described FOFs obtained using first 

method. This chapter is devoted to design of higher order i.e. (n+α) order FOFs 

using second method.  

The designs based on second method follow a two step procedure: First a 

(1+α) order filter is designed based on the integer order rational approximations 

of fractional order operator using FBD approach. Next by cascading this (1+α) 

order FOF with an (n-1) integer order filter an (n+α) order FOF can be obtained. 

To illustrate this, and two filter configurations namely CFOA based (5+α) order 

Butterworth FLPF and FHPF are presented. 

 

 

 

 



119 
 

6.2 Design scheme  

In this section, the design scheme (1+α) order FOF with Butterworth magnitude 

response is presented first followed by higher order FOFs realization scheme. 

 

6.2.1 FLPF of (1+α) order 

The general form of FLPF TF [34, 163] may be expressed as  

        
      

  

               
 

          (6.1) 

which represents a variety of transfer functions of fractional order filter. 

Considering    and    as (i)               (ii)           

(     ) and (iii)           (     ); the generalized TF of (6.1) 

leads to     ) order TFs of (6.2) – (6.4) which are classified as Type 1, Type 2 

and Type 3 respectively.  

Type 1: 

        
     

  

           

 

          (6.2) 

Type 2:  

        
    

  

            
 

          (6.3) 

Type 3:  
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  (6.4) 

 

A detailed analysis of three types of TFs with Butterworth magnitude responses is 

presented in [34, 162] wherein MATLAB optimization tool is used to determined 

coefficients (        ). It is shown that the magnitude responses of TFs differ 

in terms of least squares error (LSE), stability and 3dB frequency. Magnitude 

response of Type 2 TF is closest to Butterworth response over widest 3 dB 

frequency ranges and is suitable over others for higher order FLPF realization 

[34]. 

Considering Type 2 TF of (1+α) order FLPF to approximate Butterworth response 

with scaling frequency of        , (6.3) may be written as [61] 

        
    

  

                  
 

               (6.5) 

 

The coefficients ki’s may be obtained by optimization method [34], numerical 

search method [70], Gravitational Search Algorithm (GSA) approach [55], 

Laguerre based approach [120], numerical least squares optimization method 

[162], Real coded Genetic Algorithm (RGA) [163] and Particle Swarm 

Optimization (PSO) [164]. This work considers the coefficients given in [70] 

which are reproduced in (6.6) for ready reference.  
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                                 (6.6) 

 

The CFE approximation is one of the methods used to express       [26]. The 

order of approximation affects frequency response. A comparison study shows 

that 4
th

 order approximation has a wider frequency range than 2
nd

 order; however, 

the number of elements used for realization of       is more [54]. Here, 2
nd

 order 

approximation of       as given in (6.7) is considered.  

      
                                    

                                    
 

          

 (6.7) 

 

Combining (6.7) and (6.5) gives 

        
    

   
        

              
 

          (6.8) 

 

where   
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 (6.9) 

 

The TF of (6.8) can be realized using FBD approach. The derived FLF topology is 

shown in Fig. 6.1 which uses one lossy integrator and two lossless integrators. 

The TF of Fig. 6.1 is computed as  

        
    

  

  
   

  

    
  

  

      

   
 
  

   
 

    
  

 
      

 

          

 (6.10) 

 

 

Fig. 6.1: FBD of integer (3
rd

) order FLF for (1+α) order FLPF 

Equating the TFs of (6.8) and (6.10), the coefficients used in (6.10) are 

determined as 
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       ,                ,              

        ,             ,                

 (6.11) 

 

6.2.2 Fractional order high-pass filter (FHPF) of (1+α) order 

The TF of FHPF may be obtained by applying frequency transformation i.e. 

            to (6.5). The resultant TF is given by (6.12). 

        
    

      
   

                  
 

          (6.12) 

 

Using the CFE approximation of       as given in (6.7) the (6.12) modifies to  

        
    

   
     

     

              
 

          (6.13) 

 

The FBD approach based FLF realization of (6.13) is shown in Fig. 6.2 and the 

corresponding TF is expressed as 

        
    

   
  

     

  
   

  

    
 

   
 
  

   
 

    
  

 
      

 

          (6.14) 

 

It may be observed from Fig. 6.2 that the FHPF topology is also realized using 

one lossy and two lossless integrators 



124 
 

` 

 

 

 

Fig. 6.2: FBD of integer (3
rd

) order FLF for (1+α) order FHPF 

 

Solving (6.12), (6.13) and (6.14), the relations between various coefficients are 

found as 

      
    

       

                       
 

   
     

  
 

 

 

         

                       
 

   
  

    
 

 

  

    
       

                       
 

   
 

  
 

 

 

                        

                       
 

   
 

    
 

 

  

    
                           

                       
 

   
 

      
 

 

  

         

                       
 

(6.15) 
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6.2.3 Sensitivity Analysis 

The sensitivity analysis of proposed FOFs is presented in this section. 

 

6.2.3.1 Sensitivity analysis of FLPF 

The sensitivity expressions for the TF of (1+α) order FLPF in (6.8) with respect to 

coefficients   ,   ,   ,   ,   ,    are computed as: 

   

        
   

 
   

 

     
             

        
   

 
   

     
             

        
   

 
  

     
 

   

   

        
   

  
   

 

     
             

        
   

  
   

     
             

        
   

  
  

     
 

          

 (6.16) 

where       and       correspond to numerator and denominator of (6.8) 

respectively. 

 

Using (6.8) and (6.10) the coefficients       ,   ,   ,   ,    may be expressed in 

terms of gains and time constants     and              ) as  
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and the sensitivities of aj’s and bj’s (j = 0,1,2) are computed respectively as  

    

            

            

         

     

   

      

      

     

    

         

           

      

(6.18) 

 

               

               

            

     

   

         

            

      

(6.19) 

Thus, the sensitivities of coefficients           (j= 0, 1, 2) with respect to gains 

and time constants are within unity and may be considered low.  

 

6.2.3.2 Sensitivity analysis of FHPF 

The sensitivities of          
    with respect to its coefficients are computed as: 
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(6.20) 

where       and       represent numerator and denominator of (6.13).  
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Using (6.13) and (6.14) the coefficients            (j= 0, 1, 2) may be expressed 

in terms of gains and time constants     and             ) as   

               
     

  
          

  

    
          

 

  
          

 

    
         

 

      
     

  (6.21) 

 

Various sensitivities of aj’s (j = 0, 1, 2) are computed as 
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(6.22) 

and the sensitivities of     (j= 0, 1, 2) remain same as those in case of FLPF 

(6.19). 

Thus, the sensitivities of coefficients           (j= 0, 1, 2) with respect to gains 

and time constants always remain within unity and may be considered to be low. 

 

6.3 Higher Order fractional order filters  

From the stability point of view, the design of higher order FOF (order = n+α > 2) 

requires Butterworth approach for maximally flat response. Higher order (n+α > 

2) FOF with maximally flat response may be obtained by cascading (1+α) order 

FLPF (FHPF) of Section 6.2.1 (6.2.2) with Butterworth LP (HP) filter of integer 



128 
 

order i.e. (n-1). Therefore, the Butterworth response of (n+α) order FOF can be 

defined [61] as follows  

        
    

        
   

       
    

          (6.23) 

        
    

        
   

       
    

          (6.24) 

 

where        
   ,        

    are (n-1) order Butterworth polynomials for LP and HP 

filters, respectively. 

 

 

6.4 Proposed Designs 

In this section CFOA based realizations of design schemes discussed in section 

6.2 are presented. The (1+α) order FLPF and FHPF implementations are 

presented first followed by CFOA based realizations of 4
th

 order Butterworth LP 

and HP filters designed using leapfrog structure. Subsequently, realization of 

CFOA based (5+α) order FOF may be obtained by cascading of (1+α) order FOF 

with 4
th

 order filters. 
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6.4.1 Fractional order filters using CFOA 

The proposed CFOA based realization of FBD of Fig. 6.1, representing (1+α) 

order FLPF, is depicted in Fig. 6.3. The CFOA1 performs the addition and lossy 

integration operations. The input and feedback with positive transfers are 

connected to X terminal through resistors and feedback with negative transfer is 

connected to Z terminal through resistor. The inverting integrators are realized by 

CFOA2 and CFOA3 by placing a resistor and capacitor to their corresponding X 

and Z terminals. Finally, CFOA4 combines the feedforward transfers where the 

positive (negative) gains are obtained via resistors placed between specific node 

and Z(X) terminal.  
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Fig. 6.3: Proposed CFOA based realization of (1+α) order FLPF 
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The routine analysis of the circuit of Fig. 6.3 provides (assuming      ) 

 
  

   

 

 
    

 
    

         
   

 
        

 
  

     
  

 
            

 
    

         

   
 

    
   

 
        

  
 

            

 

          

 (6.25) 

 

The comparison of (6.25) with general topology expressed in (6.10) gives 

                    

   
    

         
     

  

     
       

    

         
 

                                      (6.26) 

A close observation of FBDs of Figs. 6.1 and 6.2 reveals that these two differ in 

feedforward connections only. The former uses connection after lossy integrator 

while the later relies on connection from a node prior to lossy integration 

operation. This requirement translates into simply placing an additional CFOA 

and few resistors in Fig. 6.3 which leads to increase in overall active blocks count. 

The same operation may also be obtained by simply placing a parallel resistor - 

capacitor combination between lossy integrator output and X terminal of CFOA4. 

The CFOA implementation, of FBD of (1+α) order FHPF (Fig. 6.2), so obtained 

is placed as Fig. 6.4. 
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The circuit analysis of Fig. 6.4 yields following TF 

     

    

         
   

 
    

 
    

         
  

 
        

 
  

     
 

   
 

    
   

 
        

  
 

            

 

          

 (6.27) 

 

Comparing (6.10) and (6.27) gives the following relation between coefficients 

                        

   
    

         
          

    

         
       

  

     
 

                                           

 (6.28) 
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Fig. 6.4: Proposed CFOA based realization of (1+α) order FHPF 
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6.4.2 Realization of 4th order LP and HP Butterworth filters using 

CFOA 

To realize CFOA based 4
th

 order LP Butterworth filter, normalized ladder of Fig. 

6.5 (a) is considered. Adopting the method outlined in [165], the leapfrog 

structure of Fig. 6.5 (b) is obtained which uses two lossy and two lossless 

integrators. Proposed CFOA based realization of Fig. 6.5 (b) is shown in Fig. 6.5 

(c) which employs 4 CFOAs, 9 resistors and 4 capacitors. Applying frequency 

transformation (i.e.        ) to normalized 4
th

 order LP Butterworth filter a 

normalized 4
th

 order HP Butterworth filter may be obtained. The corresponding 

CFOA based realization is given in Fig. 6.5 (d). It is worth mentioning that CFOA 

based 3
rd

 and 4
th

 order LP/HP filters are available in literature [166]. These filters 

are designed using multiple loop feedback (MLF) such as FLF and IFLF 

configurations.  The FLF approach employs more ABBs than those used in 

leapfrog method [167]. Moreover, the leapfrog configuration enjoys minimum 

sensitivity compared to others MLFs [168].  

1 0.7654

Rs L1

C1

L2

C2 RL

1.8478

0.7654
1

1.8478

(a) 
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 (b) 
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 (d) 

Fig. 6.5: The 4
th 

order Butterworth LP filter (a) Normalized configuration (b) 

leapfrog configuration (c) Proposed CFOA based realization (R1= R2, R3= R4, 

R6= R7, τ1=R1C1, τ2=R3C2, τ3=2.(R5C3), τ4=R6C4) and its (d) Frequency 

transformed HP  
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6.4.3 Stability analysis 

In this section stability analysis of (n + α) order FOFs is carried out using the 

root-locus technique for FO linear system. The transformation of s-plane defined 

for integer order linear system into fractional domain s
α
 plane changes the region 

of stability from ± π/2 to ± απ/2 and non-physical region from ± π to ± απ [11, 

12]. The stability of proposed FOFs can be examined by considering the 

characteristic equation of (6.5) defining TF of (1 + α) order FLPF/ FHPF along 

with left half poles of Butterworth polynomial of normalized 4
th

 order LP/ HP. 

 

6.5 Functional Verification 

 

In this section, the functionality of proposed FOFs is examined through both 

simulation and experimentation.  

 

6.5.1 Simulation Results  

The workability of proposed higher order FOFs is examined through SPICE 

simulation using macro model of CFOA IC (AD844AN). The supply voltage used 

is ± 10V. The performance of proposed circuits is examined at 1 kHz half power 

frequency. The components value for proposed ((1+α); (α = 0.25, 0.5 and 0.75)) 

order FLPF and FHPF are computed and listed in Table 6.1.  
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Table 6.1: Circuit components values of proposed FLPFs and FHPFs of (1+α) 

order filters 

C
ircu

it 

Filter 

Order  

R1= R4 

(kΩ) 

R2 

(kΩ) 

C1 

(nF) 

C2 

(nF) 

R3 

(kΩ) 

C3 

(nF) 
R5 (kΩ) R6 (kΩ) 

R7 

(kΩ) 

R8 

(kΩ) 

F
L

P
F

 (F
ig

. 6
.3

) 

1.25 56 56 0.788 2.63 100 6.26 100.033 18.015 12.824 46 

1.5 56 56 0.97 2.47 100 5.243 255.692 29.89 17.823 46 

1.75  56 56 1.12 2.49 100 4.615 914.83 47.462 23.38 46 

F
H

P
F

 (F
ig

. 6
.4

) 

1.25  4.502 18.22 8.987 9.439 45 12.754 6.324 35.116 None 5.22 

1.5  4.829 18.22 10 10.04 45 10.08 7.955 69.209 None 5.22 

1.75 5.091 18.22 10.78 9.97 45 8.994 10.335 199.208 None 5.22 

 

Simulated frequency responses for FLPF and FHPF with component setting of 

Table 6.1 are shown in Figs. 6.6 and 6.7 respectively. The FLPF responses from 

(6.5) and (6.8) are also plotted in Fig. 6.6 and are designated as ideal and 

approximated respectively. Same notation is adopted for FHPF responses depicted 

in Fig. 6.7. The stop-band attenuation slopes of simulated, approximated and ideal 

FLPF having order 1.25, 1.5 and 1.75 are (-24.03 dB/decade, -24.867 dB/decade, 

-25 dB/decade), (-29.66 dB/decade, -30.745 dB/decade, -30 dB/decade) and (-

34.11 dB/decade, -34.85 dB/decade, -35 dB/decade) respectively.  Stop-band 

attenuation rates of simulated, approximated and ideal FHPF having order 1.25, 



136 
 

1.5 and 1.75 are (24.06 dB/decade, 24.2 dB/decade, 25 dB/decade), (29.09 

dB/decade, 30.5 dB/decade, 30 dB/decade) and (34.05 dB/decade, 35.03 

dB/decade, 35 dB/decade) respectively.  It may be noted that simulated, 

approximated and ideal stop band attenuations for FLPF and FHPF are in close 

agreement within 3 decades of frequency band. The deviation beyond this 

frequency band may be attributed to limitation of validity range of 2
nd

 order 

approximation form for (sτ)
α
 is restricted to about 3 to 4 decades of operating 

frequency [21].  

 
(a) 

 
(b) 

Fig. 6.6: Frequency response of proposed 1.25, 1.5 and 1.75 order FLPF (a) 

Magnitude (b) Phase responses  



137 
 

 

(a) 

 

(b) 

Fig. 6.7: Frequency response of proposed 1.25, 1.5 and 1.75 order FHPF (a) 

Magnitude (b) Phase responses 

 

The component values for proposed 4
th

 order LP and HP Butterworth filters of 

Fig. 6.5 are computed for half power frequency of 1 kHz as given in Table 6.2. 

Simulated frequency responses for proposed 4
th

 order LP, HP Butterworth filters 

and corresponding theoretical counterparts are shown in Figs. 6.8 and 6.9. The 

simulated stop-band attenuation slopes of 4
th

 order LP and HP are observed to be 
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-78.3 dB/decade and 78.67 dB/decade respectively against the theoretical values 

are -80 dB/decade and 80 dB/decade.  

Table 6.2: Circuit components values of proposed 4
th

 order LP and HP  

Filter 

Type 

R1 (kΩ) R2 (kΩ) R3 (kΩ) R4 (kΩ) R5 (kΩ) R6 (kΩ) R7 (kΩ) C1 = C2 = C3 

= C4 (nF) 

LP 1.2184 1.2184 2.9417 2.9417 1.4709 1.2184 1.2184 100 

HP 20.7975 None 8.6148 None 17.229 20.7985 None 10 

 
(a) 

 
(b) 

Fig. 6.8: Frequency response of proposed 4
th

 order LP Butterworth filter (a) Magnitude (b) 

Phase responses 
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(a) 

 
(b) 

Fig. 6.9: Frequency response of proposed 4
th

 order HP Butterworth filter (a) Magnitude 

(b) Phase responses 

The proposed FOFs of order (1+α) and 4
th

 order Butterworth filters are cascaded 

to achieve the functionality of (5+α) order FOF. The resulting FLPF and FHPF 

are simulated for test case orders of 5.25, 5.5 and 5.75; and corresponding 

simulated and theoretical results are depicted in Figs. 6.10 and 6.11. Simulated 

stop-band attenuation slopes for 5.25, 5.5 and 5.75 order FLPFs are found to be -

103.84 dB/decade, -108.71 dB/decade, -113.78 dB/decade respectively against 

theoretical values of -105 dB/decade, -110 dB/decade and -115 dB/decade. 

Simulated stop-band attenuation slopes for 5.25, 5.5 and 5.75 order FHPFs are 
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obtained as 103.21 dB/decade, 107.73 dB/decade and 113.1 dB/decade 

respectively while the corresponding theoretical values are as 105 dB/decade, 110 

dB/decade and 115 dB/decade.  

 

(a) 

 

(b) 

Fig. 6.10: Frequency response of proposed 5.25, 5.5 and 5.75 order FLPF (a) Magnitude 

(b) Phase responses 
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(a) 

 

(b) 

Fig. 6.11: Frequency response of proposed 5.25, 5.5 and 5.75 order FHPF (a) Magnitude 

(b) Phase responses 

 

To examine the stability of proposed FLFPs, root-locus plots for (1 + α) and (5 + 

α) order FLPFs (assuming pass-band half power frequency ω0 = 1 rad/s; α = 0.25, 

0.5, 0.75) are obtained through forlocus function of MATLAB [169] and are 

shown in Figs. 6.12 and 6.13 respectively. For characteristic equation of (1 + α) 

(= 1.25, 1.5, 1.75) order FLPFs, the lowest common divisor λ is obtained as (= 4, 

2, 4) which results in number of roots R (= 5, 3, 7). Similarly, λ = 4, 2, 4 in (5+α) 
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= 5.25, 5.5, 5.75 order FLPF respectively gives 21, 11, 23 number of roots 

respectively. The boundaries of unstable and stable regions are separated by phase 

angle ±π/2λ as sketched in solid lines. For order 1.25/ 1.75/ 5.25/ 5.75 (λ = 4) and 

1.5/ 5.5 order (λ = 2), the unstable regions θs are - π/8 < θs < π/8 and - π/4 < θs < 

π/4 respectively. It may be noted from Figs. 6.12 and 6.13 that all roots lie in 

stable region. Similar plots are also obtained for proposed FHPFs and are omitted 

for the sake of brevity. 

 
(a) 

 
(b) 
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(c) 

Fig. 6.12: Root-locus plot of (a) 1.25 (b) 1.5 and (c) 1.75 order FLPFs  

 
(a) 

 
(b) 
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(c) 

Fig. 6.13: Root-locus plot of (a) 5.25 (b) 5.5 and (c) 5.75 order FLPFs 

 

The effect of passive component variations on proposed (1+α) and (5+α) order 

filters behavior is examined through Monte Carlo analysis by taking 150 samples 

and uniform Gaussian distribution. Figs. 6.14 and 6.15 show simulated magnitude 

and phase responses due to 5% of resistance and capacitance tolerances for 

proposed FLPF and FHPFs of 1.25, 1.5, 1.75, 5.25, 5.5, 5.75 order respectively. 

The maximum spread in passband (stopband) magnitude and phase for (1+α = 

1.25, 1.5, 1.75) order FLPFs is observed to be within 1.8 dB (2.188 dB) and 

10.03° (10.678°) respectively. Corresponding spread for (5+α = 5.25, 5.5, 5.75) 

order FLPFs are found to be 2.07 dB (3.71 dB) and 11.593° (11.78°).  
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Fig. 6.14: Magnitude and phase responses under Monte Carlo analysis for 

proposed FLPFs  

 

Similar observations for 1+α (= 1.25, 1.5, 1.75) order FHPFs are made and it is 

found the maximum magnitude and phase variations in passband  (stopband) 

remain within  1.968 dB (2.97 dB) and 11° (10.887°) respectively. Corresponding 

spread for 5+α (= 5.25, 5.5, 5.75) order FHPFs are 2.8 dB (3.718 dB) and 12.71° 

(11.341°). It may be noted that the spread in the magnitude and phase responses 

of proposed (5+α) order FOFs varies slightly from (1+α) order FOFs which may 

be attributed to smaller component sensitivity of proposed 4
th

 order leapfrog 

structure.  
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Fig. 6.15: Magnitude and phase responses under Monte Carlo analysis for 

proposed FHPFs  

 

The effect of parasitics is on FOFs is also studied via simulations using parasitic 

values. The simulation results for FLPF and FHPF of 1.5 and 5.5 orders are 

shown in Fig. 6.16 and the observations are enlisted in Table 6.3.  
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Table 6.3: Effect of parasitics on proposed FOFs 

Parasitic 

Effects 

1.5 order 

FLPF 

1.5 order FHPF 5.5 order FLPF 5.5 order FHPF 

RY (2MΩ) No effect No effect Negligible deviation in 

frequency response 

Max deviation of 

0.007 dB in magnitude 

and 0.017° in phase at 

ωh 

Negligible deviation 

in frequency 

response 

Max deviation of 

0.004 dB in 

magnitude and 

0.017° in phase at ωh 

CY (2pF) No effect No effect Negligible magnitude 

deviation  

Slight increase of 

phase in stop band 

(0.11° at 100 kHz) 

Negligible 

magnitude deviation 

Slight increase of 

phase in stop band 

(0.07° at 100 kHz) 

RX (50Ω) Magnitude 

deviates by 1.2 

dB around 1.5 

kHz  and then 

decreases at 

the rate of 1 

dB/decade in 

stop-band  

Phase 

deviation – 

maximum of 

2.2° at 250 Hz 

Small magnitude 

deviation of 0.5 dB 

in passband, an 

additional shift of 2 

dB/ decade beyond 

15 kHz in passband  

A maximum of 

1.22° phase 

deviation is 

observed around 400 

Hz in stop band. In 

pass band, phase 

Constant magnitude 

deviation in passband 

(0.32 dB) which 

decreases at the rate of 

0.5 dB/decade in 

transition band  

Max phase shift of 

1.5° is observed at ωh 

Magnitude deviation 

of 2dB at 55 kHz is 

observed. 

Maximum phase 

deviation of 2.6° is 

observed in the 

frequency range 

below 500 Hz.  

Phase deviation of 

5.5° is observed 

beyond 18 kHz.  
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(pass-band), 

decreases in 

transition band 

up to 0.02° at 

2.4 kHz, 

increases at 

the rate of 6 

°/decade 

afterwards 

changes at a rate of 

2.2 °/ decade   

 

RZ (3MΩ) 

 

Very small 

deviation (0.02 

dB) is 

observed at ωh 

Very small 

change in 

phase 

(max=0.02° at 

2.4 kHz) 

Magnitude deviation 

of 0.01 dB/decade 

and phase deviation 

of 1.4°/decade are 

prevalent in 

transition band. 

 

 Maximum magnitude 

deviation is 0.3 dB at 

ωh  

Phase deviation of 

0.3°/decade exists in 

transition band  

Magnitude deviation 

is  higher in 

stopband (1.5 dB at 

10 Hz) than 

passband deviation 

(0.009 dB at 10 kHz) 

Phase deviation is 

large in stopband 

e.g. 6.8° at 10 Hz 

CZ 

(4.5pF) 

Very small 

magnitude 

deviation i.e. 

max 0.016 dB 

at 1.4 kHz  

Phase 

deviation 

slightly 

increases at 

the rate of 0.06 

Negligible 

magnitude deviation 

of 0.001dB exists 

below 300 kHz 

Max phase deviation 

of 0.1° below 20 

kHz 

Very small magnitude 

deviation i.e. 0.08 dB 

below 100 kHz 

 Phase deviation 

increases at the rate of 

0.4 °/decade during 

transition of bands and 

1.8 °/decade below 70 

kHz in the stopband 

(phase deviation is 

Below 15 kHz 

magnitude deviation 

is negligible 

Phase deviation 

slightly increases at 

the rate of 0.12 

°/decade in HF 

passband and found 

0.4° below 80 kHz 
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°/decade 

during 

transition from 

passband to 

stopband 

(0.09° at ωh)  

0.17°
 
at ωh) 

Overall 

parasitic 

effects  

Magnitude 

response 

slightly differs 

in the 

transition band 

(0.3 dB at ωh).  

Slightly shifts 

(around 0.25°) 

in passband 

(below 250 

Hz) and 

transition band 

at the rate of 

0.2 °/decade 

but major 

influence is 

due to 

approximation 

form of (sτ)
α
 

Considerable 

amount of 

magnitude  is 

present in very LF 

and HF band (1.18 

dB at 5 Hz and 200 

kHz) 

Phase deviation is 

large in passband 

e.g. 4.8° at 30 kHz 

Small deviation in 

magnitude response 

(0.63 dB in frequency 

band of 10 Hz-100 

kHz) 

Phase deviation  

increases in passband 

(around 4° upto 100 

kHz frequency band) 

Maximum 

magnitude deviation 

of 0.37 dB exist in 

stopband and 0.28 

dB in passband 

Maximum phase 

deviation of 5.4° 

exists in both stop  

and pass bands 
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(a) 

 
(b) 

Fig. 6.16: Simulation results of FLPF and FHPF with parasitics (a) 1.5 order and 

(b) 5.5 order 
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6.5.2 Experimental Results 

 The operation of proposed filters is also examined experimentally using 

commercially available CFOA IC (AD844AN). The theoretical component values 

used for proposed filters and those used for experimental verification are placed in 

Table 6.4. The transient responses of proposed LP filters are studied by applying 

100 Hz sinusoidal input having peak to peak voltage of 2V. The transient 

responses for LP filters of 1.5, 4
 
and 5.5

 
order are shown in Figs. 6.17 (a), (b) and 

(c) respectively. Fig. 6.17 (d) shows transient response of 1.5 order FHPF for 2.5 

kHz sinusoidal input. The measured values of output amplitude (in volts) and 

phase for LP filters of 1.5, 4, 5.5
 
order and 1.5 order FHPF are found to be (1.02, 

0.5, 0.55, 1.022) and (-7°, -12°, -23°, 28°) respectively which are in close 

agreement with corresponding theoretical values of (1, 0.5, 0.5, 1) and (-10°, -15°, 

-25°, 26°).  
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Table 6.4: Component values for different filters 

Filter Components 
R1 

(kΩ) 

R2 

(kΩ) 

R3 

(kΩ) 

R4 

(kΩ) 
R5 (kΩ) 

R6 

(kΩ) 

R7 

(kΩ) 

R8 

(kΩ) 

C1 

(nF) 

C2 

(nF) 

C3 

(nF) 

C4 

(nF) 

1.5 

order 

FLPF 

Theory 56 56 100 56 255.692 29.89 17.823 46 0.97 2.473 5.243 None 

Experiment 56 56 100 56 255.68 30 17.8 46 0.94 2.4 5.2 None 

1.5 

order 

FHPF 

Theory 4.829 18.22 45 4.829 7.955 69.209 None 5.22 10 10.04 10.08 None 

Experiment 4.82 18.2 45 4.82 8 69.2 None 5.22 10 10 10 None 

4
th

  

order 

LP 

Theory 1.2184 1.2184 2.9417 2.9417 1.4709 1.2184 1.2184 None 100 100 100 100 

Experiment 1.2 1.2 2.88 2.88 1.47 1.2 1.2 None 100 100 100 100 
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(a)      (b) 

 

(c)      (d) 

Fig. 6.17: Input (Channel 1) and Output (Channel 2) waveforms of LP filters of 

order (a) 1.5 (b) 4 (c) 5.5; and  (d) 1.5 order FHPF 

 

Figs. 6.18 (a) - (c) show comparison of experimental/ simulation (using AD844 

SPICE model)/ theoretical magnitude frequency responses for FLPFs of order 1.5 

and 5.5; and 1.5 order FHPF respectively. The half power frequencies for 1.5 and 

5.5
 
order FLPFs; and 1.5

 
order FHPF are observed respectively as 1.19 kHz, 1.1 

kHz, and 1.2 kHz. The corresponding slopes of stop band attenuation are -10.5 

dB/octave (or -35 dB/decade), -32 dB/octave (or -106.67 dB/decade), and 9.9 
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dB/octave (or 33 dB/decade). The theoretical frequencies for 90°
 
phase shifts

 
for 

1.5 and 5.5
 
order FLPFs; and 1.5

 
order FHPF are computed respectively as 1.73 

kHz, 450 Hz and 612 Hz. Experimentally the frequency of input signal is varied 

and Lissajous patterns are observed. Figures Figs. 6.18 (d) - (f) shows Lissajous 

patterns for phase shift ±90° for 1.5 and 5.5
 
order FLPFs; and 1.5 order FHPF and 

their respective frequencies are 1.8 kHz, 510 Hz and 600 Hz. The order of the 

filters is computed from experimental response and the values are 1.67 and 5.33 

for corresponding 1.5 and 5.5 order FLPFs; and 1.45 for 1.5 order FHPF.  
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Fig. 6.18: Magnitude responses (a)-(c) for 1.5 order FLPF, 5.5 order FLPFs, and 

1.5 order FHPF; (d)-(f) corresponding Lissajous patterns  
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6.6 Comparison  

This section first compares the proposed CFOA based FLPF design with the 

available CFOA based FLPF [62] followed by comparison with other available 

structures.  

Following are the key points of comparison with CFOA based FLPF [62]: 

- Though both use FBD approach for (1+α) order FLPF implementation, 

FLF topology of [62] uses three lossless integrators whereas proposal 

employs two lossless and one lossy integrator which reduces feedback 

connections by one, therefore one passive component is less. 

- Both employ FLF topology and suggest use of cascading of (1+α) order 

FLPF with (n-1) integer order filter for realization of higher order FLPF. 

However, the difference lies in integer order filter realization. The FLF 

method is used in [62] while proposal employs leapfrog topology. 

- To compare performance of proposal with [62], 1.5 and 5.5 order FLPFs 

given in [62] are realized. Simulation results for Monte Carlo analysis of 

1.5 order FLPF topology [62] by taking 5% resistance and capacitance 

tolerances with 150 samples is shown in Figs. 6.19(a) – 6.19(b). 

Maximum spread in pass band (stop band) magnitude and phase are 2.8 

dB (3.718 dB) and 12.71° (11.341°) in comparison to 1.79 dB (2.188 dB) 

and 10.03° (10.678°) for the proposed FLPFs. Therefore, proposal 

performs better than [62] in presence of component variation. Further, the 

frequency response of 5.5 order FLPF [62] is plotted in Figs. 6.19(c) – 
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6.19(d) which includes theoretical and proposed 5.5 order FLPF responses 

also. It is observed that magnitude lies within 1.4 dB magnitude error for 

frequency ranges of 7.21 kHz and 17.5 kHz for topology of [62] and the 

proposed one respectively. Corresponding phase responses show 

frequency ranges of 2.6 kHz and 8.35 kHz that lie within 4° phase errors. 

Thus, the proposed method demonstrates superior performance in terms of 

accuracy and sensitivity as compared to structure of [62]. 

 

Additionally, the performance of proposed design is also compared with other 

reported implementations and following observations are made- 

- Like [54 - 55, 60 - 62], the proposed designs perform voltage mode (VM) 

FOF operation while [56 - 59, 63 - 66] are current mode (CM) FOFs. The 

CM FOFs also provide electronic tuning feature but at the cost of more 

active elements. The proposed designs lack in electronic tuning feature for 

order and frequency adjustment. 

- For higher order FOF, the proposal recommends use of (1+α) order FLF 

topology followed by leapfrog topology of (n-1) order which reduces the 

component sensitivity in comparison to higher order filters realized 

through fully FBD based approach [61, 62]. 
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(a)      (b) 

 

(c)     (d) 

Fig. 6.19: Monte Carlo simulation results for 1.5 order FLPF [62] (a) Magnitude 

(b) phase; 5.5
 
order FLPF frequency response (c) Magnitude (d) Phase 

 

6.7 Conclusion 

 

New realizations of CFOA based (1+α) order FOFs (FLPF/FHPF), based on 2
nd

 

order CFE approximation form of the FO Laplacian operator, are presented in this 

chapter. These filters are cascaded with (n-1) integer order filters is used to realize 

higher order (n+α) FOFs. To illustrate this, CFOA based LP (HP) FOFs of order 

(5+α) are obtained by cascading LP (HP) FOFs of order (1+α) with proposed 

leapfrog realization of 4
th

 order LP (HP) filter. The functionality of the proposed 
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filters is verified through realization of 5.25, 5.5 and 5.75 order FSFs by 

cascading 

1.25, 1.5 and 1.75 order FSFs with 4th order leapfrog filter topology. The 

proposed work is verified through SPICE simulations and experimentation. The 

CFOA IC (AD844AN) and its macro model are used for experiment and SPICE 

simulation works. These results are found in close agreement with theoretical 

values. The performance of proposed circuits is examined at 1 kHz half power 

frequency 

 

 

 

 

 

  



160 
 

 

 

 

CHAPTER 7   

CONCLUSION 
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The processes in nature and real objects can be modeled more precisely by using 

fractional calculus as fractional order dynamics offer extra degree of freedom to 

express the control mechanism of the physical phenomena. Fractional approach 

has been used in modeling of various physical processes and systems. In this 

thesis various fractional order current mode signal processing circuits, using 

integer order design equations generalized in fractional domain, are presented. In 

this chapter a summary of major work done as reported in various chapters of the 

thesis is presented. 

7.1 Summary of Work Presented in this Thesis 

The introduction chapter presents literature review on fractional order elements 

and analog signal processing circuits realized using fractional order dynamics. 

Literature review helped in identifying the significant research gaps and hence 

forming objectives. The organization of thesis is also presented in this chapter. 

The fundamental concepts of fractional order circuits are presented in 

chapter 2. The chapter reviews the CFE approximation method for realizing FOE. 

The 4
th

 order CFE approximation is then used to realize an FC using 4
th

 order RC 

domino ladder network. The behavior of three FCs (i) Cα = 1 μƱ/s
α
, α = 0.1, (ii) 

Cα = 1 μƱ/s
α
, α = 0.5 and (iii) Cα = 1 μƱ/s

α
, α = 0.9; scaled to 1 kHz frequency is 

demonstrated using SPICE simulation. The simulation results are found in close 

agreement with theoretical results in the frequency range of few tens of Hz to 

hundreds kHz for magnitude responses whereas constant phase behavior is 
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observed within few tens Hz to few kHz. The stability analysis of fractional order 

circuits and systems may be investigated from the transformation of s plane into 

fractional domain F or W plane with mapping of pole locations. The circuits 

proposed in this thesis are designed using either CFOA or OTA therefore in this 

chapter CFOA and OTA are characterized using SPICE simulations. The AC and 

DC responses are shown and important observations about their functional 

limitations are presented. 

CFOA based integer and fractional order capacitance scaling circuits are 

presented in chapter 3. First a new integer order capacitance scaling circuit with 

smaller component spread having multiplication factor K=1/(1-P) is proposed. 

This type of circuit can provide very high multiplication factor by selecting P 

close to unity. The impedance of proposed configuration gets affected due to non-

idealities of CFOA. Thus a compensation technique is also proposed. Further, 

four fractional order capacitance scaling circuits are presented out of which one is 

generalization of proposed integer order capacitance multiplier and the rest are 

generalization of existing integer order C-multipliers. The functionality of all the 

propositions is verified through SPICE simulations and MATLAB simulations are 

also presented for FC multipliers to study effect of variation of FO and resistor 

ratios simultaneously. Close match between theoretical and simulation results is 

observed. Further, the integer order C-multiplier is verified experimentally as well 

using CFOA IC AD844AN IC and results corroborate with theory. 

The chapter 4 is devoted to realization of FOE with order α >1. The 

proposed structure is based on the concept of impedance inverter designed using 
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OTA. A new structure, termed as IIMC, using n OTAs based modular structures 

is proposed first which provides an input impedance of the form 
    

 

  
   . The 

proposed IIMC is then generalized in fractional domain to obtain a fractional 

inductor and capacitors of (n-1+α) order. Thus by increasing the number of OTA 

based modules the order of FOE can be enhanced. The proposed theory is verified 

through SPICE simulations by designing 1+α order (where α =0.2, 0.5) FI and FC 

for illustration. The experimental results are obtained for order 1+α = 1.5 ing ICs 

LM 13600N (dual OTAs). For simulation and experimental purpose the FCs (α 

=0.2, 0.5)) are realized with 12
th

 order parallel RC domino ladder network. The 

frequency range of such FCs is observed to be around few Hz to few MHz. The 

realized (1+α) order FC and FI are used in a current driven parallel resonator to 

design a current mode 2(1+α) order filter providing FLPF, FHPF and FBPF 

responses simultaneously. This filter structure is further verified through SPICE 

simulation for two different fractional orders to verify the propositions. The 

stability of the proposed FOF for different orders is examined and root locations 

are also plotted. 

Chapter 5 deals with realization of electronically tunable fractional order 

filters (FOFs) using OTAs. These FOFs are obtained through (i) generalization of 

first order multi input single output structure leading to Topology I (ii) 

generalization of second order single input multi output filter resulting in 

Topology II. In topology I, one FC of order α is used for realization of CM 

electronically tunable FOFs of order α and provides FAPF and FLPF responses 

through appropriate input selection. Topology II uses two identical FCs of order α 
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to obtain CM electronically tunable FLPF and FBPF responses simultaneously of 

order 2α. Mathematical formulations for critical frequencies of theses FOFs such 

as maximum/minimum, half power and right phase frequencies are presented. 

Furthermore sensitivities analysis of these FOFs with respect to order α, value of 

Cα and gm of OTA are formulated and plots for the same are obtained through 

MATLAB simulations. Further, magnitude and phase responses are obtained 

through SPICE simulation and various critical frequency points are measured. 

These results are found in close agreement with theoretically computed values. 

Electronic tuning of critical frequencies is shown through variations on 

transconductance gains of OTAs. In these works, The time domain responses 

along with Lissajous patterns for FAPF are also demonstrated for ±90° phase shift 

between input and output signals. Their stability conditions for both the structures 

are also derived. 

  Chapter 6 puts forward a new proposal for CFOA based Low pass (LP) 

and High Pass (HP) FOFs. The proposed filters are designed by approximating 

the fractional Laplacian operator by an appropriate integer order transfer function. 

Subsequently, FBD approach is used for CFOA based realization of LP and HP 

FOFs of order (1+α). Higher order FOFs are realized by cascading FOF of order 

(1+α) with higher integer order filters. To illustrate this, CFOA based FLPF and 

FHPF structures of order (5+α) are obtained by cascading respective FOFs of 

order (1+α) with proposed leapfrog realization of 4
th

 order integer order LP and 

HP filters respectively. The proposal is verified through SPICE simulations and 

experimentation (using AD844AN IC). These results are compared with 
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approximated and ideal values. The performance of proposed circuits is examined 

at 1 kHz cut off frequency. The proposed (1+α) FOF  is  tested for orders (1.25, 

1.5 and 1.75) leading to (n+ α) order as  5.25, 5.5 and 5.75 respectively. Stability, 

sensitivity and non-ideal analyses are also included. The root-locus technique for 

FO linear system is used to plot the location of roots for characteristic equation of 

(1+α) and (5+α) order FOFs.  

7.2 Future Scope 

 The fractional domain is primarily interdisciplinary in nature and has unlimited 

research opportunities that can be investigated. During the course of thesis 

candidate has explored scaling and order alterations of FOE; electronically 

tunable fractional order filters using OTA and CFOA based higher order filters. 

There are possibilities to extend the work in several directions. Some of the 

aspects which may be addressed are 

1. As the FOEs are integral part of fractional order circuits, alternate FOE 

emulations may be investigated which improve their performance in terms 

of extended frequency range of operation.  

2. CFE approximation based emulation of FC is used to validate the concepts 

proposed in this work. The effect of other approximation methods on the 

designing FO circuits may be explored. 

3. Most of the research effort has been verified through emulated FOEs in 

literature. To develop real time applications it is essential to have 
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miniaturized FOEs. Thus FOE fabrication is another area which may be 

investigated. 

4. In integrated circuit environment, electronically tunable filters are useful 

for adjusting performance parameters. Two circuit realizations are 

presented here. This work may be extended to new circuit realizations for 

electronically tunable FOFs.  

5. The FOEs presented in this work may be used to design different 

applications. 
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