
i

Major Project on Agile Project Management

Submitted By

Yogita Malhotra

2K14/MBA/522

Under the Guidance of

Dr. P.K. Suri

DELHI SCHOOL OF MANAGEMENT

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI 110042

ii

January-May, 2016

DECLARATION

I, Yogita Malhotra student of MBA (Executive) 2014-2016 batch of Delhi School of

Management, Delhi Technological University, Bawana road, Delhi-42 declare that term project

“Agile Project Management” submitted in partial fulfilment of Executive MBA program is the

original work conducted by me.

The information and data given in the report is authentic to the best of my knowledge.

This Report is not being submitted to any other University for award of any other Degree, Award

and Fellowship.

Yogita Malhotra

Place: New Delhi

Date:

iii

ACKNOWLEDGEMENT

“It is not possible to prepare a project report without the assistance & encouragement of other

people. This one is certainly no exception.”

I, Yogita Malhotra, the student of MBA (Executive) 2014-2016 batch of Delhi School of

Management, Delhi Technological University, Bawana road, Delhi-42, would like to extend my

sincere and heartfelt obligation towards all the personages who have helped me in this endeavor.

Without their active guidance, help, cooperation and encouragement, I would not have made

headway in the project.

I am ineffably indebted to Dr. P.K. Suri for conscientious guidance and encouragement to

accomplish this assignment.

I extend my gratitude to Delhi School of Management-DTU for giving me this opportunity.

Yogita Malhotra

Place: New Delhi

Date:

iv

v

Contents

1. Introduction .. 1
2. Objectives ... 3
3. Methodology .. 5
4. Theoretical Background ... 6

4.1 Agile principles .. 6
4.2 SCRUM methodology .. 8

4.2.1. Characteristics of SCRUM ... 10
4.2.1 Management under SCRUM .. 10

4.3 SWOT Analysis.. 11
4.4 Agile Planning .. 15

4.4.1 Agile release planning .. 16
4.4.2 Velocity .. 20
4.4.3 Effort estimation ... 22
4.4.4 Release tracking .. 25
4.4.5 Multi­-team agile environment or Scaled Agile Framework 30

5. Case Study: Accenture’s T-Mobile project .. 36
5.1 Agile Software Development in Accenture ... 37

5.1.1 Release development under Scrum... 37
5.1.2 Scrum teams ... 38
5.1.3 Functional areas .. 40
5.1.4 Product Backlog ... 42

5.2 Release planning in T-Mobile software development.. 43
5.2.1 Milestone activities ... 44
5.2.2 Effort estimations ... 45
5.2.3 Velocity .. 47
5.2.4 Release planning methods .. 49

5.3 Analysis of current problems ... 50
5.3.1 Identified problems ... 50
5.3.2 Analysis methods .. 55
5.3.3 Analysis .. 56

5.4 Root causes of problems based on "5 Whys" ... 62
5.4.1. Teams do multitasking ... 63
5.4.1 Effort estimations are not managed sufficiently ... 65
5.4.2 Velocity calculations are incorrect ... 67
5.4.3 Management tools lack visibility of development progress 68

6. Improvement suggestions ... 69
6.1 Allocation of user stories.. 69
6.2 Team structure .. 71
6.3 Effort estimations ... 72
6.4 Velocity .. 72
6.5 Management tools .. 73
6.6 Other recommendations ... 75

7. Summary and conclusions .. 76
8. Bibliography ... 78

vi

List of Figures

Figure 1. Scrum cyclical process .. 8

Figure 2. Agile planning levels ... 16

Figure 3. Agile project hierarchy .. 17

Figure 4. Release scheduling .. 19

Figure 5. (a) Release Burn Down Chart and (b) Iteration Burn Down Chart 27

Figure 6. Effort development graph .. 28

Figure 7. Cumulative flow diagram .. 29

Figure 8. Scaled Agile Framework ... 30

Figure 9. Visual traceability matrix .. 32

Figure 10. Continuous release and sprint cycles ... 37

Figure 11. Epics and teams relation .. 40

Figure 12. Required effort of different teams within different functional areas 41

Figure 13. Team contribution in T-Mobile release development ... 42

Figure 14. Release and effort estimations ... 46

Figure 15. Inaccuracies in effort estimations .. 47

Figure 16. Most teams are not multifunctional within .. 57

Figure 17. Teams do multitasking .. 57

Figure 18. Different metrics are used in effort estimations .. 58

Figure 19. Common basis of effort estimations are missing .. 59

Figure 20. Most teams don't know their velocity .. 60

Figure 21. Velocity is affected by parallel activities .. 61

Figure 22. Root cause of the problem with user story allocation ... 63

Figure 23. Root cause of the problem with inaccurate effort estimations 65

Figure 24. Root cause of the problem with inaccurate velocity ... 67

Figure 25. Root cause of the problem with lack of visibility over the development 68

Figure 26. Proposed allocation of user stories .. 70

Figure 27. Proposed allocation of user stories across multiple teams within a functional area ... 70

Figure 28. Expertise levels within an ideal team .. 71

Figure 29. Initial effort estimations are documented on user story level 72

Figure 30. Tracking velocity for each team in each functional area ... 73

Figure 31. The proposed development structure ... 74

Figure 32. Tracking estimations on multiple levels .. 74

List of Tables

Table 1. SWOT Analysis .. 12

Table 2. Current Product Backlog structure ... 43

Table 3. Summary of milestone activities... 44

Table 4. Current methods to calculate sprint velocity. ... 48

Table 5. Open­text answers on effort estimation (Questionnaire results) 59

Table 6. Open­-text answers on velocity (Questionnaire results) ... 61

Agile%20Project%20Management_Yogita_1.doc#_Toc452104913
Agile%20Project%20Management_Yogita_1.doc#_Toc452104914
Agile%20Project%20Management_Yogita_1.doc#_Toc452104915
Agile%20Project%20Management_Yogita_1.doc#_Toc452104916
Agile%20Project%20Management_Yogita_1.doc#_Toc452104917

1

1. Introduction

With traditional approach like waterfall, software development projects companies facing

challenges, such as constantly changing requirements, pressure to deliver faster, and the need to

cut costs due to competition. In order to deal with these challenges new methods have evolved,

which became known as agile project management and agile software development. The agile

approach aims to produce high-quality software products in less time, creating more value and

satisfying customers' needs in better way. Many Studies have performed to prove that agile

methods improve productivity and project success in software development. The popularity of

agile methods has grown since then and having initially proved to fit software development in

smaller companies, currently many large organizations also started moving to agile approach.

While in the early 2000s most literature has related to small-scale agile software development

projects, only recently literature started shifting towards research of agile methods in complex

projects and large organizations. New agile methods in in complex projects and large

organizations is called Scaled Agile Methods.

Planning and tracking development processes in agile software development are

fundamental for successful projects, including efficient management of resources and continuous

monitoring of development progress using the agile metrics. Multi­team context and large

product size complicate planning and tracking processes in the agile environment. Failing to

identify and address additional factors makes planning unreliable and visibility of progress

ineffective, thus posing further risks on project success.

Therefore, applying agile methods in a complex environment requires a more organized

approach than in simple agile software development projects. Apart from assessing uncertainty

and risks, multiple additional factors need to be considered in agile release planning. These

factors include prioritizing and estimating size of requirements, planning resource availability, as

well as calculating velocities and tracking progress of different teams. Combining and managing

these factors in release planning is also called release planning optimization. This Agile Project

2

Management project focuses on the study of Scrum release planning methods and metrics in

large and complex software development projects.

3

2. Objectives

While some studies have been done related to challenges in agile release planning, the

existing models are designed based on theoretical assumptions and have not been validated in

real business case situations. This project will deal with the actual problem faced by a global

company in agile project management, where the main challenge is optimization of methods

given complex and large development structure. Analyzing the case and identifying the

parameters that effect the velocity and effort estimations in multi­-team agile projects, a model

will be created to perform release planning and tracking more accurately.

This project provides an empirical evidence­-driven study about challenges of Scrum

processes in a complex development environment. It will address problems of agile release

planning in a large organization's scenario through the study of velocity and effort estimations as

the key measures. Also, resulting from the findings and extensive studies of the case company's

agile development methods, this project sets the requirements needed in agile management tools

to support planning and tracking of development in similar software development environments.

The objectives of this project is to improve the reliability of agile release planning at

Accenture by:

 Determining what information is necessary in the product backlog to enable

reliable forecasting and monitoring

 Investigating the velocity and effort estimations parameters across the teams in

the company

 Analyzing historical reports to identify problems in earlier development under

Scrum

 Proposing recommendations to improve accuracy of release planning and

visibility of development progress

As a result, the aim of this project is to provide empirical results on how release planning

and tracking should be conducted when there are multiple development teams working on one

4

complex software product. In particular, the main project questions are related to the velocity and

effort estimations in a multi­-team development environment, including

 How to stabilize velocity in order to make release planning more reliable?

 How can effort estimations be improved and standardized across the distributed

teams?

 How to make planning and development of the T-Mobile application more

accurate and efficient?

Since this study was facilitated and verified in a real business environment, it can also

serve as a guide for companies on how to implement changes and to optimize Scrum methods to

larger and more complex software development projects.

5

3. Methodology

The methodology is the documentation of work done in Accenture on Agile release

planning optimization in T-Mobile software development. The project is divided in two parts

i) Theoretical background

This section is to give overview on agile release planning and other parameter used to estimate

velocity and plan project resources. This section is important to familiarize the reader with agile

practices and to set the baseline for the analysis.

ii) Analytical Part

This Section include practical work and detailed description about the scrum methods applied at

Accenture. Due to the complexity of the project following analysis method will be carried out:

 Regular discussions with the T-Mobile Project Management at Accenture.

 Data analysis of product backlog

 Questionnaire across all development teams

Based on the theoretical study and analysis result, this project aims to discuss main problems and

root cause in Accenture’s T-Mobile project, as well as to provide recommendations and

improvement actions.

6

4. Theoretical Background

The aim of this section is describe the principles of agile development and Scrum

methodology in particular based on the review of the existing literature. Firstly, the common

practices behind the agile development will be explained including the values and principles.

Further, within the scope of this project I will discuss agile planning methods in software

projects and the challenges that exist when applying these concepts in a multi­- team

environment. This section aims to familiarize a reader with agile release planning processes

through the literature review and serves as a basis for the case study and the empirical research.

4.1 Agile principles

For the past decade agile methods have gained a lot of attention and popularity in the

areas of project management and software development over the traditional methods, which have

had poor results. Agile methods were developed in attempt to perform better in the new market

environment, where businesses are becoming more complex, requirements are changing quickly,

and the pressure to cut costs and deliver results fast is growing.

The values and principles of the agile methodologies have been documented in the "Agile

Manifesto" in 2001. Below paragraph illustrates the main values behind agile methods as

explained in the purpose of Agile Manifesto.

"We are uncovering better ways of developing software by doing it and helping others do

it. Through this work we have come to value:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more"

Agile software development clearly differs from the traditional methods. Under

traditional methods, the whole project goes through the development process in one cycle known

7

as the waterfall model, which includes extensive planning of the entire project, followed by

design, development, testing, delivery and maintenance. The planning stage carries high

investment, and the main assumptions under the traditional method are a stable environment and

fixed requirements. Therefore, any changes will require returning to the planning stage and

abandoning the completed work. Furthermore, if the project is abandoned before completion,

there is no return on investment.

The main idea behind the agile method is that the whole project is split into parts called

iterations or sprints, each lasting from two to four weeks. Every sprint involves work through all

stages of the project including requirements analysis, planning, design etc. and delivers to the

customer a set of working features. The features are prioritized in such way that the most

valuable and profitable components of the product are delivered first while less important

components are postponed until later. Importantly, the evolving project requirements are

continuously re­-assessed based on the feedback from the product owner. Iterative development

mode allows a team to continuously re­evaluate and improve the methods used. In such way,

maximum value is delivered continuously throughout development, even when requirements

change.

Due to the adaptive nature of agile projects, the overall risk is minimized and the total

value is much higher. Under agile method the value is created continuously as the project

evolves, whereas with traditional model the value is generated only upon completion. Higher

value is also generated because the requirements are understood better and the parts of

functionality are delivered faster to the end user. Since agile method allows flexibility and

adaptability to changing requirements, the risk of project failure due to changing customer needs

is lower. Since this method provides first functional results early in the project, even if the

project was cancelled there would be some salvage of value.

Agile principles are a set of methodologies, which address different areas in the software

development. While the methods of how the development is approached differ, principles are

fairly similar. The most common agile methodologies are Scrum, Extreme Programming (XP)

and feature driven development. Due to the scope of this project, I will focus on and discuss the

Scrum methodology in the software development projects context.

8

4.2 SCRUM methodology

Scrum methodology is the most common practice used in agile software development

nowadays. Scrum focuses on situations where it is difficult to plan ahead and the process can

only be roughly described as an overall process. Since the activities in such settings are loose,

rigid rules are used to keep the development process under control and to tackle possible risks.

Scrum is a very flexible approach, where the overall project deliverables are partitioned into

prioritized fractions. Fractions have a clean interface and are developed by self­-organizing

teams iteratively in sprints. Using this approach one can test the feasibility and technology of the

software requirements already after initial cycles and continuously through sprints.

In Scrum, the duration of a sprint is from two to four weeks long. Each sprint includes

planning, design, development and review. The work is coordinated by the team members and

the team manager, also known as Scrum Master, who is in charge of maintaining processes,

assisting in solving problems and assuring that all tasks flow smoothly. Figure 1 below illustrates

the cyclical process of software development propagated by the Scrum methodology and each

step is discussed further.

Figure 1. Scrum cyclical process

Source: http://training-course-material.com/training/Agile_Project_Management_with_SCRUM

The Scrum development process begins with collecting all potentially relevant features

into a common list called the Product Backlog. Product backlog is updated when the

requirements change or need to be updated. Once the list is created, the team needs to identify

9

which of the features should be included in the next release from their importance and value to

the customer. Some unnecessary features may be excluded from the list if they are not feasible.

It is vital to identify the core features (also called unbreakable features), which must be included

in the release. Core features are the absolute minimum that has to be completed before the given

release can be delivered to the customer. These requirements are listed in the release backlog

together with other high priority supporting features. Release backlog is a subset of a product

backlog, which includes the requirements only for one specific release. The product backlog and

the release backlog are the most important elements used in planning and tracking the progress

on each level.

When the release backlog is created, the highest priority items are assigned to earliest

sprints. Each sprint should have a Sprint Backlog containing a set of requirements assigned.

During each sprint teams break down the requirements into smaller tasks and use cards

and task board to identify the type of task (e.g. coding, integrating etc.). Stick­-on notes on a

board are a common way to coordinate the sprint tasks. As work progresses the cards are moved

based on the status, i.e. from pending to being completed. Task board assists team members to

monitor tasks within the sprint. Daily Scrum meetings are brief stand­-up meetings meant for

checking up on project status and keeping it on track. In these meetings, the team members

report their work progress during the last 24 hours, what is going to be done next and possible

obstacles to reaching the goal.

On the sprint review meeting, sprint achievements and obstacles are discussed and shared

among the teams and managers. In the end of each sprint a set of tested and working items need

be completed, which could be potentially shippable to the customer. Also, uncompleted features

are moved to later sprints and the release backlog is updated. Each sprint is summarized on a

Retrospective meeting, where participants may suggest improvements based on lessons learnt

during the previous sprint. As customer needs change the requirements may be re­prioritized and

next top priority requirements will go through the development cycles in the following sprints.

After all sprints are completed, the working product can be delivered to the customer.

10

4.2.1. Characteristics of SCRUM

Under the Scrum methodology, the processes are defined during the release planning and

closure phases. On the other hand, during the development phase the project is highly responsive

to changing requirements and the final deliverable can be modified throughout the development.

Scrum has a high level of engagement with the user or product owner throughout all stages

including design, development, test and maintenance until the product is stable and useful.

Continuous collaboration with the customer and adaptive nature of development assure that the

final product will have the highest value.

In Scrum, the actual development takes place during the sprints. The team is given full

responsibility to perform tasks and follows certain rules, such as daily meetings, sprint duration.

Thus, the development process under Scrum takes place in a controlled black box. In order for a

project to be successful, team flexibility and creativity must be unlimited. Also, team members

should be skillful and cross­-functional, i.e. be able to perform various tasks across the project.

Due to the low level of documentation, close collaboration and communication among team

members is essential for the success of the project.

Team size also plays an important role and should be kept small to around 6 members,

but there may be multiple teams for bigger projects. Small and collaborative teams are better able

to share tacit knowledge about the development process across team members. Larger team size,

on the other hand, will decrease the productivity because team collaboration becomes too

unproductive.

Since a project evolves throughout the sprints, the final product scope, cost and

completion date become clearer during development. Therefore, while one of these parameters is

fixed in the planning stage and other are flexible.

4.2.1 Management under SCRUM

On the product level, the management defines the initial content and timing of the release

based on the metrics, which will be explained in more detail later in Section 2.4. Since the

requirements are changing, unpredictability and complexity need to be controlled by tracking

accurately project progress and changes of variables. Spreadsheets or agile project management

software are commonly used instruments for managing the requirements and monitoring project

11

progress with charts. Due to minimal documentation, also face-to-face meetings are essential

throughout the project to plan and track activities, and ultimately to control the project.

On the sprint level, the team is given the responsibility to manage the activities assigned

for the respective sprints. Scrum master is assigned to the team to assure that the team members

don't face obstacles and the project runs smoothly. During the sprint, lightweight management

methods are common, such as using post­-it notes and whiteboard for listing features and their

status. In larger projects, agile project management software is highly recommended because it

makes communication easier and enhances project progress visibility.

Due to the nature of agile practices, tracking the progress is extremely important for the

management. Since work progress can be tracked upon completion of the requirements, rigid

rules exist regarding the status of different activities. Thus, a user story will get a status of being

completed only if it meets all criteria pre­set in the Definition of Done (DOD), which includes

both development and testing activities. The duration of sprints is strictly set and uncompleted

items will be moved to a later sprint or possibly canceled. Therefore, even if an item has been

partly done during a sprint, it will not be counted in the actual work done for that sprint.

After every sprint, the teams reflect on the processes and suggest possible improvements,

which are then included in retrospectives. Retrospectives serve as a feedback tool for managers

to improve the processes and team spirit.

Therefore, communication and visibility of work performed by self­-managing teams are

the key aspects of management under Scrum development.

4.3 SWOT Analysis

Agile methods are a set of techniques used in current software development practices that

apply a human centered approach. These methods have proved to deliver products faster and

with better quality. However, no method is perfect and apart from strengths, these methods also

have threats and weaknesses. In the following section, I will cover the strengths, weaknesses,

opportunities and threats based on the literature review. The aim of this section is to highlight

problematic issues in agile processes, as well as the opportunities for managers and team

members how to tackle those problems.

12

Table 1. SWOT Analysis

Strengths

S1. Flexible and adaptive to changing

 requirements

S2. Higher stakeholder and user

 satisfaction

S3. Higher value and quality of the

 product

S4. Requirements prioritization

S5. Effective planning

S6. Project progress visibility

S7. Process and design simplicity

Weaknesses

W1. Lack of documentation

W2. Threat of inefficient communication

 methods

W3. Limitations in globally distributed

 development teams

W4. Heavy reliance on the development

 team

W5. Low level of planning and design

W6. Limitations in large and complex

 projects

W7. Reliability of testing

Opportunities

O1. Facilitating inter­-team and intra­-

 team communication

O2. Utilizing technology and tools in

 distributed development teams

O3. Looking for new opportunities

O4. Improving planning and forecasting

 accuracy

O5. Expert advice

Q6. Standardizing testing methods

Threats

T1. Lack of interest in agile

 methodologies

T2. Lack of will for improvement

 strategies

13

Strengths

The main strengths of the agile methods have been already addressed to some extent

earlier in this project. Most importantly, agile methods allow the project to be flexible and adapt

to changing requirements even in the later stages of the development process. This allows the

results of the project to be relevant even if the development takes several months. Stakeholders

and users are more satisfied with the results of agile projects compared to the traditional methods

because under agile development the products match customer needs better. Additionally agile

methods deliver higher value and more frequently, as well as the quality is higher since the

increments of the final product are continuously tested after every sprint. Due to improved

quality, flexibility, high level of communication and requirements prioritization, the overall

delivered value is higher.

Everybody involved can see precisely the project status. Further, simplicity of the

processes and design, as well as elimination of waste by doing only the required tasks ­- are

collectively considered to be the strengths of the agile methods.

Weaknesses

Surprisingly only few sources discuss the weaknesses of the agile methods. No doubt,

agile development is a major improvement over the traditional methods. However, like any other

process it has drawbacks.

Since agile development is a human centered approach, the lack of documentation and

inefficient communication may cause problems, including communication issues in globally

distributed development teams due to limited communication possibilities, as well as cultural and

organizational differences. It is not as easy to delegate progress across multiple teams in different

locations. While changes in the product backlog have to be delegated to all teams, there is a risk

that especially the time spent on meetings can grow out of proportion.

Secondly, the people­-oriented approach causes heavy reliance on the development team.

While it is assumed that all members in agile development teams are cross­- functional, in larger

projects it is not always the case. A crucial team member leaving in the middle of the project

may pose a serious risk on deadlines and the project in general. Also, as the team size increases,

agile mechanisms fail to act effectively. Thus, with multiple teams managing teamwork issues

14

and keeping track of the individual teams' progress becomes more complex. This makes many

agile projects difficult to control effectively.

Allowing frequent changes to the requirements is an agile principle. However, it

complicates the estimation of time and cost, making it difficult to forecast and plan resource

allocation. Lack of overall planning poses risk and bottlenecks, which may not be noticed

initially, but the project may fail to fulfill the requirements. Even though agile development is a

very useful technique, in developing large and complex software agile methods have limitations.

Some large and complex systems require a central architecture and detailed initial planning.

These estimations are usually very imprecise, especially as the requirements change.

Additionally, as requirements become more complex and increase the workload, tracing

dependencies between different items becomes difficult.

Lack of documentation and poor estimates cause limitations with contracts, where precise

requirement specifications are needed. Problems also arise where guidelines for testing and "the

definition of done" are insufficient or the guidelines are not strictly followed.

Opportunities

Having addressed the weaknesses of the agile processes, I will now aim to identify the

possible opportunities how teams and managers can strategically improve their agile processes.

Both, inter­-team and intra­-team communication should be valued by all members. In

distributed software development teams, teleconferencing and web­-based development

environments should be utilized to the maximum. Planning and forecasting are the core activities

in controlling the development of the project. Thus, adding more functional metrics and

measures may improve planning and forecasting reliability, even with constant change of

requirements.

Improved agile management tools can create an opportunity to better manage information

and to apply agile methods especially in more complex and large projects. In this way

organizational, people, process and technical aspects in agile projects can be further improved.

Thus the use of tools should be considered as an opportunity for future growth in large

companies who already use agile methods.

Finally, expert advice and knowledge should be utilized fully to adjust the agile

methodology to fit the product development at hand.

15

Threats

The major threat of agile methods is lack of interest in utilization of agile methodologies

in traditional organizations and failure to incorporate real changes to the processes. Companies

may be reluctant to dramatically changes in their processes, underestimating the benefits of

correctly implemented agile methods.

Companies that already utilize agile practices should continuously seek for possible

improvements in the operational processes. Since the processes in agile methods are more or less

based on trial and error, companies need to be innovative and try out new methods that might

better suit their product and culture.

 In large organizations the failure to adjust to changes, and to utilize new techniques and

tools may become an obstacle to success. Large companies may start implementing agile

methods in a small team, and after the initial success expand it quickly to the company level.

There is a threat that when scaling up agile development, there is a need to change the techniques

and adjust methods. Large companies may either not have the experience or time to switch to

new tools. Utilizing less productive and potentially impractical methods poses a threat to the

company.

4.4 Agile Planning

While agile methods are promoted by a lack of long-term planning, the truth is that the

process of planning is extremely important in all kinds of projects. The process of agile planning

is carried out in a different manner as compared to the traditional methods, and thus is often

misunderstood.

Estimating and planning are crucial to the success of any software development project.

These activities affect the investment decisions and give information, which helps tracking

project progress. Planning is difficult and many projects fail to meet the planned deadlines. It

should be carried out in right amounts because too little planning will not give the needed

information, while too much planning will cause plan updates after every change in

requirements. Progress tracking is strongly interrelated to planning because the actual progress is

evaluated based on the plans providing hints to the corrective actions and decreasing uncertainty.

16

The following section will cover planning and tracking processes in single team and

multi­-team agile software development environments. Due to the scope of my project, the main

focus will be on the release level.

4.4.1 Agile release planning

Agile software development consists of planning at multiple levels including strategy,

portfolio, product, release, iteration and daily levels. Different levels of agile planning are

illustrated in Figure 2.

Figure 2. Agile planning levels

Source: http://agilemaine.com/node/25

Strategy, portfolio and product levels are part of a company's long­-term goals, which should

provide a roadmap for product management i.e. an overview of product development in future

planned and upcoming releases. Long­-term plans are very abstract, and agile teams plan in the

short­-term on release, iteration and daily levels.

Figure 3 below shows the agile project hierarchy where the software project is the highest

level. The software project consists of a number of releases, from which some are minor updates

and others are major software improvements. Further, each release is divided into sprints. Each

level has a respective specified definition of requirements definition. On the program level, the

requirements belong to epics, which are used to define different categories within the product.

On the release level, the requirements are called features, which are part of epics. Further,

features are broken down into user stories and added to the list of requirements on development

level. In sprint planning, user stories are broken down into tasks. As we go down the hierarchy

http://agilemaine.com/node/25

17

the size and complexity of the requirements is decreased. However, attention should be paid to

tracking back the requirements up the hierarchy tree as well.

Figure 3. Agile project hierarchy

Source: https://zenexmachina.wordpress.com/author/magia3e/page/2/

Release planning deals with gathering and assigning the features to a deliverable package so

that the business, technical and resource constraints are met. Planning the next product release is

one of the most crucial success factors in agile software development projects. The aim of the

release planning process is to identify when a releasable version of a software product would be

made ready and what functionality it should include. The subject of release planning has been

addressed in the literature as a challenging process. Failing to optimize the required features with

the available resources commonly results in problems to meet deadlines. In agile release

planning, developers need to have deep understanding of the technical features required in a

release to be able to make accurate estimations and balance the resources with the desired

requirements.

Additionally, there is certain level of uncertainty in time and cost to develop the chosen

functionalities, as well as in the value of features. Especially those releases, which are under

contractual obligations, require accurate planning because failure to supply agreed functionality

or to meet deadlines can be very costly.

Release planning process

Release planning process begins with identifying the most relevant features from the product

backlog. Product backlog lists all potentially useful features for the future releases to succeed

and contains up-to-date information on stories status, sprint commitments, size, value, etc. When

all features for the next release are identified, they are broken down into user stories. A user

18

story is a definition of the required functionality and is expressed in a simple sentence such as

"As a <User Type>, I want <capability> so that <business value>".

The user stories are included in the release backlog, which is a list containing all the needed

functionality for the given release. When all candidate user stories have been identified, the

development team estimates size of each use story. Size estimation is normally expressed in

story points, which is an estimate of the amount of work needed to complete each user story

relative to one another. In other words, a story point is a measure for expressing sizes of

different tasks proportionately compared to one another e.g. a task with size of 2 user points

should be twice bigger compared to a task of 1 user point.

When user stories for the coming release were identified and their sizes estimated, the

product owner prioritizes the user stories according to their value and size, and identifies the

minimum marketable features which must be fulfilled before the release is ready to be delivered

to the customer. Resource and time constraints are taken into consideration to decide upon the

viability of features. Determining the business value is important because 80% of the project

value may be derived from 20% of features. Thus, in larger projects, multiple releases are often

planned simultaneously through the process called joint release planning. However, usually only

the topmost items are prioritized and developed within current release because the requirements

tend to change.

Based on the information gathered about the requirements, the product manager either

forecasts how long it will take to complete the required features or estimates the amount of user

stories that can be completed by a specified date. Scheduling a release requires estimating the

size and duration of the desired features, as shown in the Figure 4 below.

19

Figure 4. Release scheduling

Source: https://community.versionone.com/Help-Center/Release-Planning/Release_Scheduling

To estimate the duration, the product manager needs to know the velocity of the team or

teams carrying out the development task. Velocity is the speed or the amount of work a team

completes in one sprint. Velocity is the main parameter used in the planning process and will be

discussed in more detail separately in the next section (4.4.2.).

 The development process of the release can be started after the release parameters or

deadlines are agreed among the product owner, the line manager as well as the development

teams assigned for the release. The plan should include the scope, schedule and resources for the

given release.

Given the scope and velocity, the release is broken down into sprint cycles of a pre­specified

duration. The features are denoted to iterations based on their priority and each feature should fit

into one iteration. If a feature is too large for one sprint, it should be broken down into smaller

tasks. As stated earlier, a release consists of a set of requirements that must be completed before

the release can be delivered to the customer.

Release planning includes the following activities:

1. Determining the Scope (user stories that must be developed)

2. Estimating size of user stories

3. Composing the release features given the available resources

4. Estimating the release date

Since the release consists of a number of sprints, sprint planning and monitoring deliverables

is part of the release planning process. Sprint planning usually takes place on the development

20

team level where the team members commit to the tasks and confirm the size and scope of the

requirements. During the daily stand­up meetings team members plan activities for the day and

present the results from the previous day. The goal is for everybody to know the current state of

the project and what should be done next.

In agile planning, certain level of uncertainty is accepted. The uncertainty decreases as the

project progresses and the original estimates are improved. Estimations are very vague in the

beginning of the project and that estimations need to be redone on the regular basis. As the

project proceeds the estimations become more certain. This concept was known as the cone of

uncertainty. Also, the accuracy of estimates can only be done for a couple months ahead, long­-

term estimations are rough and the plan needs to be refined after every sprint. While it is

impossible to get accurate estimations, a good planning process reduces risk and uncertainty,

supports better decision making, and conveys information.

4.4.2 Velocity

Velocity is a measure of a team's rate of progress in a given sprint and is the main parameter

used in release planning. This measure shows the amount of story points a team can complete on

average in one sprint. Velocity is calculated based on the team's historical performance. For

example, if during one sprint a team completes 10 story points, its velocity for that sprint is 10.

Based on this information and all other factors constant, one can estimate, for example, that

during the next sprint the team will have the same velocity and will also complete 10 user

stories.

Given the overall list of user stories with the relative story point estimations, one can

calculate the expected total size of the release summing all user points. Further, the duration of a

release, i.e. number of sprints needed, can be calculated dividing the estimated total size by

expected team velocity. For example, if release size is 60 and team velocity is 10, it should take

6 iterations to complete the release. One should keep in mind that the estimations are not

accurate and need to be re­assessed after every sprint.

However, expected velocity may vary and thus should rather be considered as a range. There

are different options concerning how a velocity can be estimated. There can be three approaches

to estimating velocity: using historical data, running a sprint and making a forecast.

21

i) Using Historical data

Historical data of velocity may be extremely valuable in situations where little has changed

between the old and the new team and project. Considering whether technology, tools, teams,

product owner, working environment or people making estimates have changed before making

velocity estimates based on the historical data. Even if these factors don't change much between

releases, it is good to express velocity as a range. Further, if some factors have changed, the

range of uncertainty can be bigger or alternatively other approaches for estimating velocity can

be used.

ii) Running a sprint

The best approach to estimate the velocity is to run 1­-3 sprints and use the observed data to

estimate the velocity for the release. Since it takes certain time to plan the release and finalize

the requirements, it may be practical to make a team complete a few sprints right away and

based on the observed velocity plan the release date.

Running only one sprint is usually not reliable (especially for new projects) because the

teams may concurrently do preparations or learn to work together. Thus, if it is possible to hold

off giving the estimated release date for at least two sprints, the observed velocities together with

the range of uncertainty can provide a good estimate. Additionally, if a team can run three or

more sprints, the velocity can be forecasted, for example, using the average or median of the

observed values.

Running initial sprints makes more adequate forecasts regarding how quickly a team can

progress and allows addressing the potential risks.

iii) Making a forecast

In some occasions there is no appropriate historical data available or it is impossible to run

the initial sprints to observe the velocity, for example because the project is not starting soon, or

the contract has to be signed prior to the beginning of work. Thus, forecasting the velocity may

be the most feasible solution. Forecasting the velocity involves:

 Estimating the number of hours that each person will be available on each day,

22

 Determining the total number of hours that will be spent on the project during sprint

 Selecting user stories and expanding them into tasks to determine how many tasks

can fit into one sprint

 Converting the velocity into the range

Observed velocity is the best method and regardless of which method was initially used and

recommends switching to using actual values and its likely range of completion dates.

4.4.3 Effort estimation

Effort estimation is a measure of the amount of work needed to complete a user story.

Effort estimations show the relative size of different user stories and are measured in story

points. A story point is defined by a team and is translated into the amount of effort needed to

complete a story, for example, 1 story point equals 1 ideal day of work. Story points can be

estimated with any unit of measure, but have to be clear and consistent across different user

stories so that the estimated amount of effort needed for different user stories is proportionate.

For example, a task that is twice as big as another task should have twice more story points.

 In agile methodologies the experience of the team represents the basis for estimating the

effort needed from the high-level requirements. Since a user story comprises multiple technical

tasks carried out by different team members, the experience of all members should be considered

and required effort estimates should be done by the whole team.

Accuracy of estimation directly depends on team members' knowledge of the Technology

and past experience with similar tasks. Also, the amount of time spent on effort estimation

affects how accurate the estimate would be. Accuracy and time spent on estimating effort act

according to the law of diminishing returns, meaning that at a certain point estimation will not

become more accurate. Instead, spending just enough time for estimating effort and use

corrective actions to re­estimate in the process.

Literature suggests that higher priority items may need more accurate effort estimation than

lower priority items because lower priority items might change before being developed.

23

Importantly, expected effort of a user story done by the team carrying out the actual

development is the most relevant.

Generally, effort estimation is an important parameter in planning because it measures the

total size of a release. Inaccuracies in size estimations of user stories lead to time and cost

overruns.

Deriving an Estimate

Estimation can be done using a certain set of techniques such as expert opinion, analogy and

disaggregation. Expert opinion is based on the experience and is an opinion­-based approach.

Asking an expert may be helpful, but in agile projects developing functionality happens in a

team. Thus, teams who have the most experience in similar tasks would make the most accurate

intuitive estimates. The analogy technique is an alternative to expert opinion and assumes

comparing the story size being estimated with relative size of other stories, for example this

story is approximately twice bigger than the previous story. This method is useful because

estimating relative size is easier than estimating absolute size. It may be helpful, to estimate the

smallest and biggest user stories first in order to select the range. Disaggregation refers to

simplifying estimation by splitting a story into smaller tasks. It is difficult to make accurate

estimates for large figures, thus big user stories could be broken down into smaller tasks make

estimation easier.

The methods suggested can be used separately or be combined to maximize the accuracy of

effort estimated.

Planning poker

Planning poker is a technique of combining effort estimates introduced by Grenning in 2002.

All team members participate in planning poker. In case of multiple teams, each team will

estimate independently user stories assigned to them. The product owner participates in the

game but does not estimate. This is a relatively new lightweight technique with face-to-face

interaction and discussions. In the beginning a deck of cards is given to each team member.

The product owner reads a user story and then there is a discussion between the participants

clarifying the requirements. After that the developers write their own estimate on the paper, but

not discussing it with other participants. If there is an agreement, the estimate is recorded and the

24

discussion moves to the next story. However, if there is a disagreement, the discussion goes on

in an attempt to clarify the differences and come to a consensus. This technique has been

compared to the unstructured group estimation, when group members have a discussion about

user stores where decision is made at the end. The results showed that planning poker provided

more accurate estimates for familiar tasks while the opposite was found for unfamiliar tasks.

Further, results from unstructured group estimates were more realistic than individual estimates

mainly because of increased task awareness after discussion and identification of additional

activities.

Planning poker is a powerful estimation technique because it brings multiple experts together

to share their opinions and who will eventually contribute to those user stories. Justifying the

estimates decreases uncertainty and combining the individual estimations forms a good average

realistic figure. However, it should be kept in mind that more time and effort in estimation may

not necessarily increase the accuracy of the estimations. Thus, the actual benefit of planning

poker is difficult to measure. Additionally, in some occasions it may not be known who will

eventually carry out the task.

Re­estimating

Re­estimation is a common issue, which arises after the initial effort estimation.

Re­estimation is needed when the initial effort was poorly estimated. However, since the effort

measures the relative size of a user story, longer implementation does not necessarily mean that

the size has changed. Thus, re­-estimation is only needed when the size estimate of a user story

appeared to be relatively bigger than other user stories' sizes. In other words, re­-estimation of an

effort for one user story should not cause other stories to be re­- estimated as well. Also, re­-

estimation may be carried out for partially completed stories in cases when the story cannot be

completed in the next sprint. However, partial credit is not generally recommended and most

development teams count only if a user story is fully done.

Re­estimating is important only for obvious cases to correct the consistency of the estimates.

One should rather observe and learn from mistakes to improve estimates in the future.

25

Areas for improvements in effort estimation

Effort estimation may prove to be difficult and the benefits can be minor compared to the

invested resources. The following suggestions are useful to deal in situations where estimating

the effort was difficult.

Time spent on initial estimation can be decreased. Instead, more time can be allocated to the

feedback about the accuracy of the estimate and based on the feedback increasing the frequency

of estimating. For example, unfamiliar and low priority features' efforts can be estimated later as

the team goes on with the project. In case the requirements are unclear, teams might also

consider carrying out multiple estimates. The developers need to clarify all details about

unfamiliar features before doing the detailed estimations.

Estimates can be validated and standardized by comparing them with the estimates of similar

tasks and past experience, using simple rules and intuitive decision­-making. The agile

principles reply on self­-organizing teams as well as learning from feedback and review

sessions.

4.4.4 Release tracking

Scrum methodology emphasizes the importance to monitor the progress of the project.

Tracking is needed to see whether the project is proceeding according to the plan. The

progress is tracked and reported through gathering suitable data and visualized by graphs such as

release burn down charts, effort development charts, cumulative flow diagram etc.

Collecting the important data and information on the release status takes place in the end of

each sprint. There are many existing metrics, but with agile practices "just enough" approach is

recommended. Use only a limited number used for planning and tracking. This section will

cover the current methods used in tracking and visualization of the data.

Metrics

As discussed earlier, velocity is the most important metric used in agile release planning.

Planned velocity is tracked against actual velocity to see whether a release is progressing

according to the forecast. Other useful measures and data include.

• The number of story points completed

26

• Total story points in release

• Story point start and end sprints

• Size of each user story

• Value of each user story

The number of story points completed shows the updated amount of work done for a given

release. At the end of each sprint the number of story points completed shows the actual team

velocity for the given sprint and thus allows to track planned versus actual velocity. Further,

changes to velocity estimates should be tracked and updated. For either release or iteration plan,

there must be a specified milestone criteria which tells the conditions of satisfaction of the task,

i.e. defining the status "done". The criteria should be tolerated because a completed story should

potentially be ready for delivery and should not require any additional work effort.

The total number of story points in the release is needed because it allows tracking the actual

size of the release. As the requirements change constantly the total size of the release needs to be

tracked against the deadline. With fixed velocity, an increase in the total number of story points

will postpone the release date.

The size of each user story can be verified by the duration. For example, a user story lasting

2 sprints should be twice the size of a user story, which took one sprint to be completed. Because

in the product backlog the user stories are prioritized, the value of each user story needs to be

tracked to adapt and to deliver the highest value to the customer.

27

Visuals

Visualizing data and project status is helpful because it is more effective in interpreting data

than numbers. One of the most important graphs in agile projects is the burn down chart. The

burn down chart reports how much work is left and identifies at what stage the project currently

is and whether it has progressed at a constant rate, i.e. it represents the planned and actual

velocity. The burn­-down charts are illustrated in the Figure 5 below.

Figure 5. (a) Release Burn Down Chart and (b) Iteration Burn Down Chart

Source: https://www.scrumalliance.org/community/articles/2013/august/burn-down-chart-%E2%80%93-an-effective-planning-and-tracking

The release burn down chart is used to monitor and report the progress of the project. It has

two indicators: the overall rate of progress and the amount of work remaining. The rate of

progress allows forecasting the time of completion. The sprint (iteration) burn down chart is

derived from the task board information and shows the amount of hours versus days remaining

for the sprint, showing whether all of the work of the iteration could be completed on time with

the current pace. Both charts are updated as soon as new data is available, usually in the end of

each sprint.

28

Another useful visual is effort development. It is a histogram illustrating the project or the

release development status illustrated in Figure 6 below.

Figure 6. Effort development graph

Source: https://productmojo.com/

The purpose is this graph is to ensure that the planned amount of user stories matches the

actual amount completed to ensure that features are developed at a pace that allows an even flow

and right speed to meet the goals set in the plan. On the sprint level, visibility of planned versus

actual story point completion over sprints on different levels allows to identify feature

development progress on different levels and to identify current results. Such graphs may also be

combined with the burn­-down charts to support factual decision­-making. This is a good way to

see whether in a certain sprint plans were met on different stages of development.

29

Cumulative flow diagram illustrates the status of all user stories for the release over the time

of development, as illustrated in Figure 7 below.

Figure 7. Cumulative flow diagram

Source: http://edn.embarcadero.com/article/32410

The following graph is very useful to see how many user stories are "Done", "In Progress" or

"Not Started" and thus is a strong management tool for tracking the release development. Unlike

the burn down chart, the cumulative flow chart also graphically shows how much work is in

progress. This tool is especially powerful to track and correct situations when too many user

stories are "in progress". In some projects this can be a significant share, which would not have

been presented otherwise.

30

The release tracking tools, which were presented in this section, support managers to monitor

that the development proceeds according to the plan and when needed take corrective actions.

4.4.5 Multi­-team agile environment or Scaled Agile Framework

Figure 8. Scaled Agile Framework

Source: http://intland.com/scaled-agile-framework/

Agile methodology was initially designed for small teams with strict constraints regarding

team size, location, presence of customer, informal communication etc. However, some projects

are too big for a one small team. Therefore, while following the agile principles and keeping

31

team size small, multiple teams can be formed to work on the same product backlog instead.

Depending on the company and the type of software there can be additional roles such as a

software architect or a usability expert. They don't belong to any one specific team but have

highly specialized skills and may act on various tasks, e.g. architects may act as high­-level

technical experts and estimate the total effort of the project to assist management in investment

decisions. Multi­-team agile release planning and tracking have certain extraordinary challenges

and methods. In this section, I intend to cover these differences and provide advices how to

improve the reliability of planning and tracking processes under multi­-team environment.

Multi­-team agile planning

In a multi­-team agile environment planning becomes more challenging and needs certain

techniques to be incorporated. These techniques are establish a common basis for estimates,

adding detail to their user stories sooner, performing look­-ahead planning and incorporating

feeding buffers. I will cover each of these techniques below.

i) Establishing a common basis for estimates

Even though each user story needs to be estimated by only one team, the estimates need to be

equivalent and comparable across different teams. There are two ways how a common basis can

be established for different teams. In case the teams have worked together before, they can meet

and discuss the estimates of some user stories from the past and agree upon the estimates for

them. The teams need to identify stories with size of one story point and two story points. Once

these baseline stories have been identified, the teams would be able to estimate new stories

based on the analogy technique discussed earlier. Also, the teams should periodically verify the

common baseline by randomly checking upon some user story estimates.

ii) Adding detail to user stories sooner

Under multi­-team agile development, the user story requirements need more definition

before the start of the sprint as compared to a single team project. This includes clearly defining

the conditions of satisfaction for the user stories, i.e. "definition of done". The developers are

responsible for communicating user story requirements with members of the other development

teams instead of asking about them indirectly from the team's product owner. Additional details

32

about requirements are needed in order to coordinate work across teams better and to see

interdependences between different requirements.

iii) Visual traceability matrix

The overall progress should be tracked and communicated in such way that all participants

could see the dependencies of tasks. Traceability matrix is a visual planning board showing

interdependencies between user stories.

Figure 9. Visual traceability matrix

Source: http://www.bpmhandbook.com/volume-1/table-of-content/applying-agile-principles-to-bpm/figure-55/

The board shows estimated start and end points of user stories. When multiple teams work

on a release, they might face interdependencies. These interdependencies between user stories

need to be taken into account. Further, this visual can be very helpful in identifying the critical

path and later tracking the project according to it. The critical path shows the earliest possible

completion route illustrated as a line going through the features 1, 5, 6 and 3 in Figure 9.

iv) Look­ahead planning

With look­-ahead planning teams coordinate work in a span of a few sprints, where the

release plan serves as the basis for that span. In the beginning of every sprint, teams meet to

share information and commit to tasks they can complete. The development teams should also

33

make sure that any progress information is up to date and that their team's velocity for the

coming sprints have been calculated, taking into account any irregularities such as vacations or

other planned absences of team members.

v) Incorporating feeding buffers into the plan

Feeding buffers are also used not only in situations with interdependencies, but which are too

complex to use look­-ahead planning. If reducing interdependencies is not possible, a feeding

buffer needs to be inserted into the sprint to protect on­-time delivery. This can be done by

deliberately underestimating velocity for the developing team in the given sprint. However, one

should keep in mind that adding feeding buffers will naturally extend the expected duration of

the project in a reasonable manner.

Feeding buffers should be allocated only between the critical dependencies, so allocation of

user stories among teams and sprint is a necessary pre­-condition. Buffer feeding is not needed if

the other team is able to work on another valuable feature or with partial deliverable. In sizing

the buffer feeding, it is essential to follow incremental delivery, so it should not exceed from

50% to 100% of sprint length per one feed.

Teams can also deal with interdependences by prioritizing the user story development order.

For example, a less important story can be scheduled earlier than a more important story if

another team's very important feature has a dependency to the less important story.

Dependencies can be traced using the unique user story identifiers which need to be included in

the product backlog.

Multi­-team agile release tracking

Release tracking in a multi­-team environment follows the same principles as explained

previously for the single­-team release tracking. As discussed earlier, after the development

process is initiated, the progress will at some point deviate from the initial plan. Monitoring the

progress of the release in a multi­-team project requires more factors to be considered and the

status information must be kept updated after every sprint and the scope of the release updated

accordingly. The metrics, such as size and availability need to be aggregated from across the

teams. Different teams have their own velocities, thus when tracking the overall progress of the

release, each team's speed needs to be considered separately. Additionally, since there are a lot

34

more requirements per release, it is harder to track the development progress accurately causing

uncertainty of estimations in planning. More resources need to be spent on communicating the

release status and the organization of sprint meetings between the teams and the management,

especially if the teams are in different locations. In a multi­-team development environment

effort estimations need to have a common baseline and metrics across all teams.

Inter­dependencies between teams may cause bottlenecks and affect the schedule of the

whole release, so it is important to monitor activities of different teams and decrease the risk

with inserting the feeding buffers. Use traceability matrix discussed earlier to track and eliminate

potential bottlenecks. In more complicated projects with many interdependencies planning

activities may become extremely complicated and thus agile management tools are deployed to

support planning and tracking activities.

Challenges

Similar to a single team release planning, in a multi­team environment the idea is to gather

all development teams to perform the release planning together. However, multi­team release

planning becomes more challenging due to increased number of people, more complex user

stories and a network of dependencies between the requirements. This also affects the

implementation order of the requirements. As discussed in the SWOT analysis, globally

distributed development teams is a weakness in a multi­team agile environment because

communication between the management and development becomes more challenging. Release

planning and tracking require more complicated and rigid methods to be used. Since in large

development projects the complexity of the tasks grows with the increase in project size, teams

stop to be completely multifunctional and different teams and team members specialize in

certain tasks. Additionally, with human centric agile methods it may become a challenging task

to plan activities for teams who have, among other factors, different working culture, experience

in agile processes and technical expertise. This again complicates the planning of iterations and

scheduling. Team effort estimates need to have common basis across teams and the planned

activities are followed.

In addition to multiple teams, most often multitasking is almost unavoidable in larger

companies. In situations where teams develop multiple releases simultaneously, additional

metrics are needed in order to plan and monitor each release separately. It must be kept in mind

35

that the velocity for each release will be slower because the total velocity of each team will be

split. Also, when teams develop multiple releases it can be challenging to plan the distribution of

resources and task selection. Compared to a basic Scrum model, picking tasks from multiple

releases is more difficult. Thus, teams' actual proportion of effort spent on each separate release

may differ from the estimations significantly, making planning and tracking even more

challenging than it was already. Common basis for effort estimation, correct forecasts of teams'

velocities tagged to actual proportion of effort spent on each release within the sprint ­ become

the center tasks in multi­team multiple release planning and tracking. Also, prioritization and

distribution of effort should be balanced correctly for successful development of all releases.

Based on the literature review, planning and tracking in multi­-team agile release

development environment is more challenging compared to a single­-team agile release

development scenario, and requires taking additional factors into account. An in­-depth literature

review sets a solid base for further analysis of parameters needed in building a tool to optimally

plan releases.

36

5. Case Study: Accenture’s T-Mobile project

T-Mobile US, Inc. is the American operating entity of the German wireless network

operator T-Mobile International AG. Its headquarters are located in Bellevue, Washington. It

provides wireless voice, messaging, and data services in the United States, Puerto Rico and the

U.S. Virgin Islands under the brands T-Mobile, MetroPCS, and GoSmart Mobile. The

company operates the fourth largest wireless network in the U.S. market with 49.1 million

customers and annual revenues of $24.42 billion. Its nationwide network reaches 96 percent of

Americans, though its 3G/4G/LTE coverage is smaller.

Accenture helping T-Mobile Czech Republic deliver an open source portal solution that is

easier to maintain, can launch new products and services quickly and significantly reduces

ongoing maintenance costs. Accenture is moving all of their different applications from old java

platforms to single consistent standard new platform Angular JS with respect to look, feel and

functionality—strengthening both their brand messaging and the efficiency of their platforms on

desktop and devices (mobile and tablets).

T-Mobile software development taking place under the Scrum methodology. Accenture has

adopted agile methods in June, 2014 to mitigate high risks and business pressure, as well as to

make development more efficient. However, technical complexity of product characteristics

together with a globally distributed multi­-team development structure has caused difficulties in

planning and delivering agreed functionalities within the expected time frame.

This project work showed that there is a need for more structured agile release planning and

development methods. My main task was to analyze existing agile methods applied in T-mobile

project, to identify problematic issues and to provide recommendations on how to optimize

release planning with agile methodologies.

Through this project, I attempt to identify existing issues and to provide practical

recommendations on optimizing agile project management in large and complex software

development projects. The study provides empirical findings about challenges and methods of

scaling agile methods in large multi­-team agile projects.

In this section, Scrum methods applied to the project and discussed to the extent required for

understanding of existing problems and setting the grounds for further analysis. This section will

be concluded with improvement propositions to optimize agile project management methods and

37

will be further extended with practical part, where the results will be applied to suggest required

management tools for the organization.

5.1 Agile Software Development in Accenture

This section will cover Scrum methods applied in T-Mobile software development and will

identify the main challenges that the Accenture faced as a result of quickly growing size and

complexity of software development.

5.1.1 Release development under Scrum

Like most companies developing software under agile methods, Accenture also adopted

Scrum methodologies for the following common reasons.

 High risks from the technology and requirement complexity point of views

 High business pressure to get early results out of the development process.

 Combining knowledge of engineers with different backgrounds

In Accenture, Scrum follows general principles and values of agile development processes

with the emphasis on the importance of common practices. Software development takes place in

continuous release cycles in respond to changes in the customer market through delivery of the

new functionality. The content on each subsequent release includes components from the

previous release, together with new and updated features. Feature development further takes

place in an iterative mode over continuous sprint cycles, as illustrated in Figure 10 below.

Figure 10. Continuous release and sprint cycles

Source: https://www.quickscrum.com/Article/articledetails/2031/3/What-Is-Agile-Software-Development-Life-Cycle/

38

Release planning and an overview of release features is done several months prior to the

main development period of a release. Since the content of each release is limited, only the most

important features are developed in the upcoming release. New profitable features are identified

through preliminary evaluation of effort, market value and price, and may replace old

functionality or form new areas. Requirements are managed in a common list called a product

backlog. When new requirements are identified and approved, release content and delivery date

are fixed prior to the main development period.

The development follows agile methods and takes place in cycles, known as sprints. In

T-mobile software development, sprint dates are synchronized across all development and the

sprint duration equals to 3 weeks (21 calendar days). During every sprint, daily Scrum meetings

take place within each team, where members briefly share their achievements and plans. In the

end of every sprint, there are regular sprint review, sprint planning and retrospective meetings to

exchange information on the things that went well or need improvements based on the previous

sprints. Meetings last approximately 2 hours, where each team delegates their achievements and

goals to the management.

In sprint planning, teams meet in workshops and break user stories into smaller

fragments called tasks. Fragmentation into tasks takes place on the technical level and the

development takes place with a black box approach. Team members manage tasks and upon

completion tasks are combined back into the user story. A user story is completed when it meets

all requirements of the "Definition of Done", including implementation, customer

documentation, testing and review. A release is completed when all required user stories are

developed and approved with successful testing and documentation.

All deliverables are stored in one place and several practices are deployed to enable frequent and

systematic communication. Technology is successfully utilized to communicate and share data

across different sites, basically eliminating the need for physical presence.

5.1.2 Scrum teams

While teams are located in multiple sites, most experienced development teams and

management are located in the same site. This form of distribution makes the main site

39

responsible for most complex and interdependent activities, whereas other sites carry a

supportive role in development. Therefore, while distributed development structure naturally

poses challenges in knowledge sharing, as well as cultural and organizational differences, it does

not affect development significantly.

Further, due to the nature of the product, in addition to traditional agile Feature

Development teams, also other team categories exist performing distinct activities, including

feature testing, verification, architectural and release activities. Each team category performs

unique activities in a specific order. Feature Development teams take a major part in developing

new features in the form of user stories. When features are completed, they are passed to

Regression Testing (REG) and Performance Testing (PET) teams, who consequently test end-to-

end application and performance of the completed features.

Architecture teams are responsible for integrating features into the program and

finalizing the release package. Different team categories exist due to the complex nature of the

product, and while activities of feature development teams follow routine Scrum development

methods, activities of the other teams are quite unique and result from feature teams' work.

While interdependencies across teams are not significant, the main challenges result in planning

activities of feature development.

Since the development progress mainly depends on the work of the feature teams, the

focus of this project in on improving the release­-planning activities in the following team

category. The results, however, should also be beneficial in improving the performance of other

team categories given their development practices also follow Scrum methodologies. Rapid

growth in the T-mobile software development environment between 2014 and 2016 caused

significant changes in the team structure. Apart from distributed multi­-team development

environment, various software components belong to technically different and complex

functional areas. Initially, the product has been smaller and few cross­-functional teams

developed requirements across different functional areas. However, as the size and complexity

of the software increased, input of each team became more limited. Also, development in each

area currently requires distinct set of skills and expertise. Thus, the overall development

currently results from the collective contribution of different teams working on small limited

parts of the release. Next, I will explain the structure of the T-Mobile software consisting of

separate functional areas.

40

5.1.3 Functional areas

T-Mobile requirements belong to diverse functional areas called epics. Epics are based

on different complex codes and the development of software components within each area

requires specialized knowledge. Some areas are generally larger than others. Additionally, due to

rapid innovations in the telecommunications industry, also new areas may emerge and old ones

may become obsolete. Since epics have quite different technical characteristics, each area

requires specific knowledge and experience. Given the size and complexity of the program,

having fully cross­-functional teams proved to be unfeasible. Therefore, teams are assigned to

certain areas based on their skills.

Figure 11. Epics and teams relation

Source: https://www.quickscrum.com/Article/articledetails/2031/3/What-Is-Agile-Software-Development-Life-Cycle/

As one can see from Figure 11, team knowledge is limited to certain areas. While knowledge of

some teams may overlap in some areas, the expertise level of each team differs.

41

As a result, currently the total effort in each area is distributed unevenly across teams and

functional areas, as illustrated in Figure 12 below.

Figure 12. Required effort of different teams within different functional areas

Source: http://www.ambysoft.com/essays/agileRoles.html

Initially the structure of the development processes has been simpler, a few cross

functional teams were located in one site and user stories were re­factored to fit into one sprint.

Epics were not considered important in release planning and development, and the aim was to

develop team expertise across functional areas gradually. However, the rapid growth of the

development structure offset the initial setting, in which all teams could develop functionality

across all areas, resulting in new issues and challenges. The complexity of requirements in

different areas required higher expertise levels from new teams and longer time to develop. As a

result, user stories were allocated to teams based on expectations about requirements complexity

level and team expertise in the area.

42

Figure 13. Team contribution in T-Mobile release development

Source: http://www.ambysoft.com/essays/agileRoles.html

Further, raising the overall level of expertise of teams across multiple functional areas efficiently

proved to be challenging and most teams were assigned to have a core functional area as their

prior responsibility, but would also have limited expertise in few other functional areas to have

the supportive role and to allow certain level of flexibility. As stated earlier, in T-Mobile there is

common list of requirements, which is managed in the Product Backlog.

5.1.4 Product Backlog

In Scrum, the product backlog is the most important artifact, which is used extensively

for managing requirements, planning and tracking development. The product backlog contains a

comprehensive list of completed, ongoing or planned user stories, which would be developed in

the feasible future. In general, the structure of the product backlog should be simple and contain

all data needed for planning and tracking of releases. Too little information in the product

backlog may limit the usability of the data and thus affect the accuracy of release planning.

The content of the existing product backlog of T-Mobile was found to be quite

comprehensive and it has been extensively monitored throughout the development. The

summary and structure of the current product backlog content is presented in Table 2.

43

The data included complete information about each user story including starting and ending

sprints, epic, story description, team assigned and effort estimation. In T-Mobile project, agile

release planning and tracking was mostly based on the product backlog data. In addition to the

product backlog, a Web 2.0 portal has been used for storing and sharing more detailed

information related to user stories and release development. Data included a comprehensive

description of user story content, technical documentation, as well as retrospectives and other

useful information updated by teams and management.

5.2 Release planning in T-Mobile software development

In T-mobile project, prior to the main development period, release lifecycle includes various

preparatory activities, including planning, documenting and scheduling. Scrum methods are

applied during the main feature development period, lasting approximately 3 months. The aim of

this section is to discuss current release planning and tracking methods, as well as to identify

main problems in applying Scrum due to rapid up­-scaling of the development environment.

Table 2. Current Product Backlog structure

44

5.2.1 Milestone activities

In T-Mobile, the main planning activities take place before the actual development begins based

on pre­defined milestone criteria. Each milestone is accompanied with a set of activities, which

need to be completed before a milestone is declared as completed. Since the focus of my project

is on planning activities of feature development, the main activities related to planning need to

be clarified to the reader. While release lifecycle begins with initiated need for new features,

actual preparations for development begin during an M1 milestone. The key activities related to

detailed planning and scheduling of development include:

 Estimating initial effort of features (size)

 Re­-factoring features into user stories

 Assigning user stories to teams

 Implementing key parts of architecture

 Filling Product Backlog with user stories

Table 3 below summarizes the activities, which are in the zone of interest for this study.

The content has been modified and irrelevant data removed for confidential purposes.

Table 3. Summary of milestone activities

45

The M1 milestone is achieved after commitment to the release date and content are

agreed, and deadlines for milestones are set up until milestone M4 when the release should be

ready for delivery. The main feature development period begins right after M1 and lasts until all

required features have been developed and tested successfully by M2. Further, the feature

development period partially overlaps with Regression testing, Performance Testing and

Network Verification activities. Since the latter activities depend on readiness of feature

development teams, the main testing period begins when substantial amount of the user stories

have been completed and lasts until the deadline for milestone M3. After the new content has

been verified with a pilot customer, the release is finalized and prepared for delivery on M4. The

delivery date and release content are fixed already at M1, prior to the main development period,

due to high pressure from the market and the need for rapid development. Therefore,

inaccuracies in planning put threat on delays and may result in bottlenecks during the remaining

release development lifecycle.

In agile methodologies, planning is based on effort estimations and team velocities.

Therefore, current practices of estimating effort and calculating velocity in T-Mobile project

need to be discussed in more detail.

5.2.2 Effort estimations

In Scrum, effort estimations provide information about the relative size of the requirements.

Given that the requirements and the development environment are similar to the past, an

expected duration to complete a new release can be calculated from the estimated size of the

requirements and the average velocity of the team from the past.

Under the current organizational structure, effort estimations are done on two levels:

feature level and user story level. Effort estimations are done on a high feature level prior to the

main development period due to the product and the environment specificities:

 Feasibility of a release content needs to be evaluated before the main development

 Commitment to deadlines has to be done early in the release development cycle

46

Figure 14. Release and effort estimations

Source: http://www.mpug.com/articles/how-to-estimate-your-project-effort/

In order to make initial effort estimations, the expert architectural team explores the

content of high­-level features. Despite strong expertise of the team, the accuracy of initial effort

estimations depends on the complexity and uniqueness of the requirements, as well as quality of

the feasibility studies. In Scrum, initial estimations are not required to be precise and these

natural inaccuracies should be considered normal.

More accurate size estimation of requirements is possible during the actual development.

Therefore, as features are re­-factored into user­-stories, development teams make effort

estimations after brainstorming user stories and requirements more thoroughly. It was assumed

that if feature requirements changed during the main development period or if initial estimations

were incorrect, development teams' effort estimations on user story level would correct

inaccuracies in initial estimations.

However, even though requirements did not change, effort estimations done by

development teams were found to be inconsistent. It was seen that methods to manage and

control effort estimations on two levels were insufficient and inaccuracies in estimations could

not be separated from changing requirements. An example is illustrated in Figure 15 below.

47

Figure 15. Inaccuracies in effort estimations

Source: http://www.mpug.com/articles/how-to-estimate-your-project-effort/

To keep initial estimations of release content and schedule under control, during

development size estimations of user stories within each feature were not allowed to exceed

initial feature estimations. While keeping user story effort estimations within limits, inaccuracies

in initially under­-estimated content (especially complex and unfamiliar features), as well as

changes in requirements and team assignments, caused complications in planning and tracking

release progress. Complexities also threatened testing and piloting deadlines, thus putting

pressure on in­-time delivery of releases.

Problems with the accuracy of effort estimates turned out to be only partial problem.

While critical path of feature development could be estimated based on the major features of a

release and teams assigned, additional problems arose from inaccuracies in planning of the

overall development progress. Since in Scrum the effort estimations provide information about

the relative size of requirements, planning is based on the accuracy of past effort estimations and

the accuracy of velocity calculations.

5.2.3 Velocity

In Scrum, velocity is a measure, which tells the average amount of story points

developed per sprint. Velocity calculations are based on the historical data, i.e. story points

completed in the past. Since effort estimations are the main component of velocity, inaccuracies

in the prior naturally cause problems with the latter. However, apart from effort estimations, the

48

methods applied to calculate velocity are also important. Having discussed effort estimations,

the aim of this section is to discuss the assumptions and methods currently used in T-mobile

project to calculate velocity.

Until now, calculations in T-Mobile project have been based on the total amount of story

points completed by all feature development teams over each sprint. Since most user stories last

multiple sprints, only some teams complete user stories in a given sprint, as is illustrated in

Table 4 below.

While duration varies across teams depending on the estimated size and complexity of

user stories, it has been assumed that, on average, the differences across teams and user stories

would cancel out. As a result, completed story points in each sprint were added to calculate

overall sprint velocity for feature teams. Further, moving average velocity and control limits

were calculated and applied in planning given high uncertainty and were supported by rational

judgment.

Additionally, some team­-specific data was calculated separately, including

 Average duration of user story completion, showing how many sprints it

took on average for each team to complete user stories.

 Remaining number of story points in each release showing the total

amount of release specific story points either ongoing or not started.

These metrics were used to assist specialists with decision­-making together with

knowledge about team general performance, release components on technical level and

information gathered during sprint meetings.

Generally, in software release development under Scrum, re­-planning needs to be done

Table 4. Current methods to calculate sprint velocity.

49

after every sprint based on new information about velocity and burn­-down of story points as

compared to initial plans. Visuals and tools should facilitate factual decision making, especially

when the development environment is large and complex.

5.2.4 Release planning methods

Components of T-Mobile software require expertise knowledge across different

functional areas. In addition to complexity, product size is large and requires multiple teams to

work on development simultaneously. Teams specialize in specific functional areas and overall

development is based on compound effort from multiple teams having different areas of

expertise. Requirements within each functional area vary in complexity and more complex user

stories take longer time to develop and require higher expertise in the areas. Planning new

features is less accurate prone to unfamiliar content. Additionally, during development certain

tasks affect velocity and duration, e.g. maintenance work and possible changes in requirements.

While complexity of T-Mobile development environment and high pressure from the

market put limitations on the accuracy of planning, problems also resulted from insufficient

Scrum methods and practices of release planning.

Due to inaccuracies in effort estimations and velocity calculations, decisions related to

release planning and development are strongly based on the expertise knowledge of key

specialists the content of critical features and earlier performance and skills set of experienced

teams. While based on the knowledge, realistic duration of critical path features is estimated,

decisions are hard to support by facts and figures.

Having estimated the duration of the critical path separately, development of the

remaining features is planned based on the total effort required and average velocity of feature

development teams, i.e. burn­-down of release is based on historical data about average total size

completed per sprint.

Inaccurate effort estimations and velocity expectations put pressure on planning future

releases. Also, treating different teams and functional areas as one caused lack of visibility on

release development progress. Based on the discussions with the key personnel involved in

release planning and development, the general opinion has been that "existing velocity was too

optimistic, especially in the Feature Development" (interviews).

50

Software planning and development under Scrum in small projects is relatively simple.

However, agile planning and development require a different approach in large and complex

development environments. While agile practices favor the lack of detailed planning, the

methods how planning should be carried out are commonly misunderstood. In Scrum, planning

and tracking development progress go hand­in­hand. As the development environment becomes

more complex, the methods to plan and track development also become more challenging.

5.3 Analysis of current problems

Due to rapid growth of the T-Mobile development structure, Accenture faced challenges

with maintaining accuracy of release planning based on established agile planning methods. In

this section, identified problems related to accuracy of release planning will be discussed.

Further, data analysis will be carried out to recognize root causes of problems. "5 Whys" method

will be used to support proposed improvement actions to identified root causes of problems in T-

Mobile release planning.

5.3.1 Identified problems

In general, Scrum is more suitable and efficient method to support the development of

technically complex software, especially compared to the waterfall model because it provides

flexibility to changing requirements and facilitates faster feature development. Agile planning

and tracking methods, however, need to be scaled when the development structure expands. In

T-Mobile, growth of development environment caused multiple complexities and problems in

planning and development efficiency. This section will discuss identified issues affecting

accuracy of planning and tracking, as well as efficiency of development.

i) Allocation of user stories

 In Scrum, planning is based on velocity of development teams and relative size of user

stories. However, current allocation of user stories across teams complicates velocity

calculations and decreases efficiency of development.

T-Mobile software is based on combination of different functional areas, which varying

51

in complexity and required skills. Features are quite unique and requirements belong to one or

more functional area. After features are re­-factored into user stories, each story belongs to a

certain functional area. Therefore, release content consists of a set of requirements in different

functional areas. Some areas are larger and have more features than others.

Since release content is based on the total content of different functional areas, the

critical path of a release should come from the duration to complete all requirements in each

area. Since functional areas vary, different number of teams and velocity is needed in each area,

depending on complexity of requirements and expertise level of teams. Currently, user stories

within each functional area are assigned to multiple teams and each team is assigned stories from

multiple areas.

Apart from developing within the core expertise area, teams also hold supportive role in

other areas. The main idea behind current method of user story allocation has been focused on

gradual increase of team competence across multiple functional areas. However, since each

functional area requires different set of skills and team expertise varies in each area, such

allocation of user stories complicates planning. With the existing allocation of user stories,

combined average velocity of a team in a release depends on the effort assigned across multiple

areas. As a result, estimating overall velocity to complete each area becomes challenging and

inaccurate.

Since velocity depends on task complexity and expertise level of the team, more complex

user stories will be developed slower. Further, because the expertise of the teams varies in each

area, the complexity of tasks assigned across teams is not the same. Therefore, velocities of

different teams cannot be compared or combined to estimate overall duration required to

complete the total content of each functional area.

Also, current allocation of user stories poses additional challenges in planning and

estimating the actual critical path. Release duration depends on complexity of tasks and load of

different teams. While the critical path will depend on the total size and complexity of user

stories assigned to the most loaded team, developing across multiple functional areas makes

planning based on velocity more challenging.

Further, since teams generally develop across multiple functional areas, overall growth of

expertise and efficiency is lower. While many teams can develop easy user stories in supportive

areas, they are not competent enough to develop more complex requirements. Additionally,

52

building the same level of expertise is not feasible across multiple areas due to overall program

size and complexity. As a result, more complex requirements are assigned to the core team and

narrow overall knowledge in a certain areas may cause bottlenecks.

In order to identify the current development structure and processes in more detail,

differences across functional areas and teams need to be analyzed. Also, as outlined in earlier

discussion about development structure, releases vary in content, i.e. each release contains a set

of features belonging to different areas. This implies that the velocity in each functional area will

vary depending on the release content, as well as other activities outside the main release. In

order to identify the, release­-specific content will be analyzed and compared with the overall

development during the selected period.

Thus, the following propositions were formulated and are to be verified through more

detailed analysis.

Proposition 1.1: Functional areas vary and are developed by multiple teams

Proposition 1.2: Teams develop across multiple areas in different quantities

Proposition 1.3: Teams differ in structure and expertise

Proposition 1.4: Release content differs from overall development

ii) Effort estimations

In Scrum, effort estimations are the main metric used for calculating velocity. Therefore,

accuracy of the prior naturally effects the latter. Accuracy of effort estimations depends on the

size and complexity of the requirements, team expertise level in the area and earlier experience

with similar features. In the case company, problems with methods to manage effort estimations

across multiple teams were identified.

As discussed earlier, while effort estimations are done on two levels, the consistency

between initial and second­-level estimations has been missing during the development. Lack of

common agreement about effort estimations across teams resulted in safeguarding the initial

estimations. Since initial effort estimations are done prior to the actual development, such

estimations are inaccurate due to the size and complexity of estimated features. On the other

hand, during development smaller user stories are work­-shopped more thoroughly and thus

secondary estimations should correct possible inaccuracies in initial estimations, given that

53

teams have common baseline for estimations and agree with the requirements.

Even though feasibility studies have been carried out sufficiently to understand the

requirements of features and to perform initial estimations, the content of some features could

change during development for multiple reasons. Firstly, certain requirements could be missing

from initial estimations, which were later identified by development teams. Secondly, some

requirements could be added or excluded thus changing the planned release content.

Additionally, the complexity of requirements could have been initially under­estimated. As a

result, during development such requirements would be either be re­-assigned to a more

experienced team, or will have lower velocity than initially planned. While the actual size of

release could differ from initial estimations, with existing methods changes in content were not

visible due to lack of direct link between initial and final estimations during development.

In agile methods, re­planning after every sprint is essential to track changes in initial

estimations and schedule. Re­allocation of stories to another team will affect the initial burn­-

down and may compromise the critical path. Thus, failing track changes in effort estimations on

two levels could be compared to driving a car while looking in the rear mirror.

Based on investigation, the main problems with effort estimations were identified,

including inconsistency of methods, as well as failure to distinguish changes in content and load

of individual teams during the main development. Wrong expectations from the previous release

also effected accuracy of estimations and planning of future releases.

Since it was identified that initial effort estimations were not tracked after features were

re­-factored, changes in content could not be compared. Questionnaire results will aim to

identify issues related to metrics and methods of doing effort estimations across teams.

Proposition 2.1: Effort estimations are misunderstood across teams

iii) Velocity calculations

In Scrum, velocity is the main metric used for planning duration of release development.

Velocity measures the average amount of story points that a team can develop in one sprint

based on previous sprints. Existing methods to calculate velocity were identified to be wrong for

multiple reasons.

Firstly, as discussed earlier, functional areas and teams differ. Thus, team velocity

54

depends on the complexity and size of requirements in different functional areas. Since teams

also differ, the velocity also needs to be calculated separately for each team in each functional

area individually.

Secondly, it was identified that most user stories don't fit into one sprint. For the reason

that velocity measures the amount of completed story points per sprint, calculations should also

include user story duration in sprints. In other words, if user stories last more than one sprint,

completed size needs to be divided by the amount of sprints it lasted.

Developing multiple user stories with varying duration significantly affects the accuracy

of team velocity. Thus, the duration of individual user stories needs to be considered within each

team and the actual sprint velocity is more accurate when none of user stories are ongoing in

parallel. Since the content of releases changes and multiple releases may overlap, keeping track

of a single velocity figure for the overall development causes additional inaccuracies in planning

specific features and future releases.

Proposition 3.1: Team velocity varies across functional areas

Proposition 3.2: Total velocity differs across functional areas

Proposition 3.3: Teams do not know their velocity

Proposition 3.4: Release velocity differs from velocity in the overall development

iv) Tracking release progress during development

In Scrum, release planning and tracking go hand­-in­-hand with velocity, effort

estimations and visibility of release progress against planned on the burn­-down. Given

complexities of the development environment and problems with current release planning

methods and metrics, so far decisions have been mostly based on expert knowledge of specialists

involved in planning. It was identified that current methods to track release progress lack

sufficient visibility to support factual decision­-making.

Firstly, while planning is based on initial estimations and tracking development progress

is based on user story estimations done by the teams, existing tools don't support tracking

changes to initial content.

Also, functional areas and expertise level of teams vary. However, the existing tools lack

burn­down charts for individual teams and separate functional areas thus limiting the visibility of

55

development progress. Since agile methods value flexibility and adaptability, changes in

requirements and feature content during development result in the need for re­- planning. Thus,

in order to be able to carry out re­planning, it is important to see changes in initial and final

content based on new information about effort estimations and velocity during development.

Based on the identified problems with methods and metrics, current tools need to be

adjusted to support current development processes. Having identified and set Proposition for

further analysis of the development processes, the aim is to identify root causes of problems and

to provide recommendations on improvement actions.

5.3.2 Analysis methods

In Scrum, effort estimations and velocity are the main components of release planning.

Therefore, the main focus of my analysis will be related to factors, which affect these metrics. In

addition to regular discussions with Accenture management and expert personnel, my analysis

will be solidly based on Questionnaire across all development teams.

Questionnaire

Apart from Product Backlog analysis, a questionnaire research across all teams located in

different sites was carried out. The results were collected using a web­based survey tool and the

link was distributed by email to all Scrum Masters and leads in the team. Full questionnaire is

attached in the end.

The goal of the questionnaire was to gather direct feedback from teams regarding:

 General sprint activities, team structure and expertise

 Effort estimations

 Velocity

The questionnaire included a set of multiple­-choice and opinion­-based questions. In

multiple­-choice questions, respondents had to choose one or more options from the given

alternatives. In opinion­-based questions, participants had to provide a response based on a 5­-

point Likert scale ranging from Strongly Agree to Strongly Disagree. Additionally, the

questionnaire included open text answer fields for any additional comments related to each of

56

the areas stated above.

The response period to the questionnaire was one month. Responses were treated

anonymously across teams and the amount of responses received (N, x %) was considered to be

reliable.

5.3.3 Analysis

Analyzing and confirming/rejecting the hypotheses should help identify root causes of

problems in current development structure and support suggested improvement actions. In this

section, I will discuss findings and results from each method. Data and figures are modified

for confidentiality reasons.

Questionnaire results

The questionnaire validated that teams have been multifunctioning and expertise within

teams varied. Also, the questionnaire results showed the challenges related to effort estimations

across the development teams.

According to the majority of the respondents, all team members could not develop every

user story assigned to the team (22/31 strongly disagree or disagree; 8/31 agree or strongly agree

that all team members can perform all tasks).

57

Due to varying expertise and multitasking within teams, team velocity would depend on

the combination of the assigned tasks (Figure 16).

Figure 16. Most teams are not multifunctional within

All respondents reported that a team performed multiple tasks simultaneously either

always (18/31) or sometimes (13/31), meaning that within a single team parallel activities were

carried out by different individuals. Consequently, the output of a single team resulted in

development of different requirements in parallel (Figure 17).

Figure 17. Teams do multitasking

Apart from discussions with the Accenture’s management and developers for T-Mobile

project, the aim of the questionnaire was to provide solid information on current issues related to

58

effort estimations. As expected, the questionnaire showed lack of common metrics and

references, as well as lack of general understanding about the importance and the use of effort

estimations.

As shown in Figure 18 below, from the responses it appears that teams use different

metrics for estimating the user story size. In Scrum, effort estimations are done in story points to

measure the relative size of different requirements. From the respondents, only half (16/31) have

been using reference user stores with an effort range, 8 respondents estimate in approximate

hours and 6 respondents use other metrics, such as guessing based on "experience and gut

feeling", "referring to previous user stories developed by the team" and "initial effort estimations

of expert team".

Figure 18. Different metrics are used in effort estimations

Further, the questionnaire showed lack of clear basis and guidelines for effort

estimations. Based on discussions with key stakeholders, the guideline had been not to exceed

initial estimates. Further, according to the questionnaire, 18 out of 31 respondents did not agree

on clear basis of effort estimations of user stories (Figure 19).

59

So, inaccurate and incomparable effort estimations result from unclear basis of initial

effort estimations and insufficient guidelines on how effort estimations should be done.

Figure 19. Common basis of effort estimations are missing

Additionally, open­-text answers provided additional information to support the

ambiguousness in effort estimations (Table 5).

Open­-text answers identified lack of understanding about the implications and

Table 5. Open text answers on effort estimation (Questionnaire results)

60

importance of effort estimations. It appeared that initial effort estimations inside feasibility

studies were not clear and references varied in every team and location. Also, some teams made

estimations in hours and converted the size into story points. This method contradicts with

theory since effort estimations should tell relative size of requirements, i.e. estimations of effort

or size compared to other user stories in the same functional area.

As discussed, the accuracy of effort estimations is related to past experience in similar

user stories. Therefore, unbalanced experience in different functional areas causes additional

inaccuracies in effort estimations and velocity. User story effort estimations will vary across

teams depending on velocity and expertise level of the assigned team.

While velocity is the main metric to plan and track release progress, Scrum teams are

self-managing and responsible for planning sprint activities. The questionnaire also revealed

issues related to team velocity.

In the questionnaire, only 9 out of 31 respondents reported to know the velocity of their

team. During sprint planning, teams break down user stories into tasks and effort estimations on

task level are carried out. Further, teams plan activities based on estimated effort of tasks.

Without planned team velocity, teams cannot track whether the development progressed

according to plans.

Figure 20. Most teams don't know their velocity

Questionnaire results revealed that currently there are many distracting activities that

61

slow down velocity (21 respondents either agree or strongly agree; 3 disagree).

Figure 21. Velocity is affected by parallel activities

Based on open­-text answers, in respondents' opinion the main factors that slow down

velocity are newly raised requirements, maintenance tasks or other parallel activities as well as

hardware unavailability. The following factors indeed affect how many story points are

developed in a sprint, however the amount of these activities is more or less stable over sprints.

Additionally, respondents provided valuable information regarding velocity in open text

questions. Below are some of the responses:

Table 6. Open­-text answers on velocity (Questionnaire results)

62

Open­-text questions revealed some reasons why teams did not know or track their

velocity. In order for velocity to be meaningful, a steady path is needed, which in some teams'

opinion was not the case. Apart from distracting activities, instability in team velocity was

caused down by development across different functional areas.

Another issue resulted from the complexity of requirements. While many user stories

were too large to fit into one sprint, teams considered artificial splitting of user stories as a waste

of time. As a result, teams took too many story points into a sprint content and lost track of

sprints velocity.

To sum up, since velocity is based on effort estimations, absence of common methods

and metrics in effort estimations resulted in a lack of understanding regarding the velocity. Also,

developing requirements across many functional areas caused instability in the development

environment, causing further problems with accuracy of effort estimations and velocity.

Resulting from current problems, most teams could not track or improve velocity.

5.4 Root causes of problems based on "5 Whys"

Results questionnaire support inaccuracies and challenges in current release planning.

Having separated and recognized existing issues, root­-causes of problems need to be identified.

Further, "5­-Whys" analysis technique will be carried out. "5­-Whys" analysis method is a Six

Sigma tool, which helps analyze the symptoms of problems by asking question "why" to the

main identified problem and each of the succeeding issues until true root cause of a problem is

understood.

63

5.4.1. Teams do multitasking

Figure 22. Root cause of the problem with user story allocation

Analyses identified that total effort of functional areas differs and the average velocity

needed to complete the content of each area varies. The effort assigned to each team is limited

compared to the overall content and expertise of teams varies across different areas. Since teams

develop in multiple functional areas, planning based on velocity within individual functionality

is more complex. Given that teams have higher expertise and thus higher in the core competence

areas, overall velocity in each functional area is decreased by supportive teams.

Two­-dimensional analysis showed that teams developed multiple user stories across

different areas concurrently. This implies that individual team members were responsible for

main and supportive functional areas. Therefore, carrying out development by individual

members of teams in parallel areas splits expertise within those teams. Also, the velocity of such

team in the core area decreases and is formed from combined multiple velocities across different

areas. Since the velocity within each area will depend on size and complexity of multiple user

stories across different areas, planning is more complicated.

Additionally, current allocation of user stories makes development less efficient, because

teams highly capable to develop faster in their core area of competence are assigned to

supportive functional areas, whereas the requirements of the core area are also assigned to less

experienced teams. As a result, the overall average velocity decreases and puts a team

64

responsible for multiple functional areas. Further, since team expertise varies, more complex

user stories may further be re­-assigned during development to a more competent team. As a

result, load on teams who are in the critical path may be increased even more and extend the

duration.

Also, analysis proved that team velocity within a release differs from the total team

velocity due to multitasking. Therefore, even if team overall velocity was higher, the content has

been burning down slower. Managing multiple releases within each team complicates planning

individual releases because velocity of each release will depend on parallel activities outside the

release.

Therefore, the root cause of the problem is the allocation of user stories. Teams are

assigned to multiple functional areas and development takes place across multiple releases in

parallel, which complicates planning and decreases overall efficiency.

65

5.4.1 Effort estimations are not managed sufficiently

Figure 23. Root cause of the problem with inaccurate effort estimations

While initial planning is based on effort estimations of features, which are done prior to

main development process, during development feature requirements (breakable content) and

development plans (velocity and content re­-assigned between teams) may change. Since such

changes affect development progress and velocity of individual teams, re­-planning should be

carried out as new and more accurate information is available after every sprint.

Lack of common understanding about effort estimations resulted in teams giving

different estimations about the same content. While in T-Mobile project the effort estimations

are done on two levels, problems in managing the accuracy of effort estimations across levels

resulted in effort estimations of development teams being fixed to initial estimations. From the

analysis, it was identified that metrics were misunderstood across teams.

While feasibility studies of features contained a list of requirements and effort

estimations of features, existing references to user stories did not provide clear basis for initial

effort estimations of requirements to establish common understanding across teams.

Therefore, if requirements changed, it was challenging to track back changes in effort

estimations. Further, it is more complex to estimate the size of new and complex features. Such

requirements become more clear and accurate during development as user stories are studied in

more detail. Therefore, content of some features may change during development, which will

facilitate a need to correct initial estimations during the main development period. However,

66

since these changes would take place on user story level, whereas initial estimations and

requirements would be defined on feature level, existing methods to link two levels were

insufficient.

Thus, the root cause of inaccurate effort estimations is that initial effort estimations

actually disappear after re­-factoring, which makes it impossible to track possible changes in

content after re­-factoring.

67

5.4.2 Velocity calculations are incorrect

Figure 24. Root cause of the problem with inaccurate velocity

Velocity is the main metric used in release planning and it is measured in the amount of

story points that a team develops during each sprint. However, analysis showed that velocity of

the teams is not known neither by management nor by the teams themselves.

Since functional areas vary, velocities cannot be compared across functional areas. Also,

because teams vary in expertise and develop across multiple areas, velocities of the teams within

same functional area cannot be compared either.

Further, duration of user stories varies depending on user story complexity and currently

most user stories currently don't fit into one sprint. Further, teams develop multiple user stories

simultaneously, and while the multiple stories may be completed on the same sprint, the duration

of each story was actually different. In order to estimate average sprint velocity, duration of each

completed user story needs to be included in calculations.

Thus, the two main root causes of incorrect velocity are missing velocity calculations for

individual teams and functional areas, as well as neglected user story duration in the

calculations.

68

5.4.3 Management tools lack visibility of development progress

Figure 25. Root cause of the problem with lack of visibility over the development

Given the size and complexity of the T-mobile program, release planning requires more

advanced tools to support decisions by more accurate metrics and better visibility of

development processes.

Since teams are multifunctional, velocity will depend on complexity of features within

different functional areas and expertise of individual teams. Therefore, while functional areas

and teams vary, existing tools did not individualize the differences between different areas and

metrics. Failure to distinguish the differences also affected velocity calculations and allocation

of user stories. Consequently, key stakeholders made decisions regarding release progress based

on professional judgment and assessment of Product Backlog.

While changes in requirements and re­-allocation of user stories across teams should be

normal activities in Scrum software projects, current tools lacked visibility to support adaptation

to these changes during release development.

Hence, root causes for insufficient management tools are insufficient tracking of initial

effort estimations, as well as poor visibility on development progress across individual teams

and functional areas.

69

6. Improvement suggestions

 In this section, improvement actions will be proposed to optimize release planning in T-

Mobile feature development. Facing the challenge of the program design, Epics should be

utilized for mapping teams with their skills set and experience in core areas for more accurate

and organized release planning and development.

Effort estimations across teams can be improved with references between initial and

development estimations for individual user stories. This will provide clear guidelines about the

estimated size through references of requirements.

Velocity should to be calculated for individual teams, because teams have different areas

of expertise and load. Additionally, user story duration needs to be included to calculate velocity

in a single sprint more accurately.

As an outcome, organizing development processes based on functional areas would

facilitate more accurate scheduling and provide better visibility to track progress. Additionally,

this would provide more efficient methods to re­-plan development when requirements change

in order to anticipate possible bottlenecks. Next, I will discuss the proposed improvement

actions in more detail.

6.1 Allocation of user stories

To optimize and improve release planning, velocity needs to be stabilized. Stable

velocity implies that development takes place within one functional area at a time. Then it will

be possible to track and predict team velocity within each area more accurately. If functional

areas are too small, teams can develop across multiple areas, however it is vital that user stories

are developed in one area at a time. This way, a team would have multiple separate velocities,

which will not depend on overlapping activities across different areas.

70

An example of how user stories should be allocated and developed by some teams is

illustrated in Figure 26 below.

Figure 26. Proposed allocation of user stories

Since expertise level affects velocity, team should develop in team's core (strongest)

functional area to maximize velocity and effort input in development. Work on the core area

with maximum velocity should provide faster development time for that area. Size of user stories

(in story points) needs to be equally allocated across teams who share same areas of expertise.

Balanced allocation of user stories across teams will provide stable and targeted growth of

expertise in teams and functional areas.

The resources and expertise across different functional areas should be balanced. Further,

the right amount of teams should be assigned to each functional area depending on team

velocities, total size and overall complexity of requirements. In this way, burn­down of user

stories in each area will be based on multiple teams.

Figure 27. Proposed allocation of user stories across multiple teams within a functional

area

As demonstrated in Figure 27, if the total estimated content of Functional area 1 would

be 236 story points, total content of Functional area 1 can be allocated and monitored for

individual teams based on individual team velocities.

71

6.2 Team structure

Since in current release development teams vary in expertise release planning and

development efficiency could potentially be further improved by team re­-structuring.

Due to complexity of program requirements, the ability to gain sufficient level of

expertise and efficiency in each functional area requires time. Existing teams have been focused

on multiple areas, thus expertise within different teams varies. If restructuring is possible, skills

in different areas could be gathered from across teams and combined as illustrated in Figure 28

below.

Figure 28. Expertise levels within an ideal team

Source: http://www.ambysoft.com/essays/agileRoles.html

Re­-organizing teams to combine different levels of expertise within same areas could

create more efficient teams. The complexity of tasks is not always known beforehand and having

such team structure would facilitate learning within teams and make each team capable to

develop tasks of varying complexity.

Secondly, multi­-skilled teams with different areas of expertise cause inaccuracies in

estimation of velocity. Team velocity will depend on the combination of tasks assigned.

Focusing teams on an individual area, on the other hand, creates a more stable development

environment within teams, therefore improving the accuracy of velocity calculations and reduce

complexities in release planning based on functional areas.

Due to technical complexity of the product, improving organizational processes is a

complex process and needs to be taken gradually. Current organizational issues, in my opinion,

72

cause major issues with the accuracy of planning and efficiency under Scrum.

6.3 Effort estimations

In order to improve accuracy of effort estimations, common methods need to be

established between expert team and development teams. Also, changes to estimations during

development need to be visible during development. In order to clarify and agree upon metrics,

expert team needs to have clear and well­-defined common baseline for estimations. Further,

initial estimations should be allocated to re­-factored user­-stories and references, and initial size

estimation needs to be referenced. Since planning is based on initial effort estimations on feature

level, planned estimations should be tracked separately from development estimations on user

story level, in order to monitor the actual changes in release size.

Figure 29. Initial effort estimations are documented on user story level

A reference link to initial estimations for each user story would be a good solution for

keeping a clear baseline. Provided references of each user story, teams would understand how

the size of the requirements was estimated for individual user stories. If teams disagree regarding

the size of initial estimations, they need to update estimations and update requirements list on

the user story page to explain the basis for changes.

6.4 Velocity

Velocity calculations should be done for each team and functional area individually

because teams work on different functional areas and each area varies. An example is illustrated

in Figure 28 below:

73

Figure 30. Tracking velocity for each team in each functional area

Team velocity is different in different functional areas, and will depend on task

complexity. In order to have more accurate velocity estimations in each area, teams should avoid

development different user stories in parallel. Since velocity will be based on the duration in

sprints the complexity of tasks, to have more accurate velocity teams need to focus on one user

story at a time. While it reality it might not be the case, the practical recommendation would be

to avoid developing very different user stories in parallel.

Therefore, sprint velocity in each functional area should be calculated based on realized

velocities of completed user stories and average overall velocity in each functional area equals to

the average of realized sprint velocities.

6.5 Management tools

Especially in complex agile software development environments, visibility of

development progress is important to support better decision­-making and re­-planning

throughout the development period. Visibility depends on the accuracy and compatibility of

tools and charts, which utilize data in the Product Backlog. In Accenture’s T-Mobile Project

case study, it was identified that Product Backlog is missing essential data (effort estimations on

two levels) to track development based on initial plans. Also, it was concluded that current tools

could not provide visibility on the sufficient level.

To improve visibility and to support decision­-making based on facts and figures,

progress should be tracked relative to the initial plans. Thus, release planning tools should track

progress based on planned and realized progress, as well as to make forecast based on new data

available after every sprint.

74

The T-Mobile development structure requires tracking development on multiple levels,

where the release is on the top level. Also, additional visibility is needed over each functional

area and on team level. Team estimates will exceed initial estimates if changes to initial

feasibility studies are needed.

Figure 31. The proposed development structure

Source: https://dzone.com/articles/big-teams-and-agility

While the initial plans area based on the expected velocity and initial size estimations of

features, the actual realized velocity and size of each feature is currently not known, and

mistakes are not corrected in planning of future releases. When effort estimations are done on

two levels, tracking should also be done on both levels to give visibility over changes in content

and release plan.

Figure 32. Tracking estimations on multiple levels

By keeping track of changes in estimations, new information can be aligned and

compared to initial estimations after every sprint throughout the release. Additionally, additional

75

visibility of the amount of "completed", "ongoing" and "not started" story points in each

functional area would provide more visibility over team and release status. This will allow

management to make factual decisions and control progress of the release after every sprint.

6.6 Other recommendations

T-mobile software complexity causes natural inaccuracies in initial estimations, and the

success of release is based on adaptability of the development environment to occurring

changes.

In Scrum, release planning highly relies on historical data. While effort estimations and

velocity can be estimated more accurately for familiar functional areas and features,

requirements of new complex features may be unclear and have risk to be under­- estimated.

Further, in completely new functional areas, velocity required and complexity are initially not

known. Given complex and new content, it is recommended to include certain flexibility either

to content or deadline until requirements and velocity are sufficiently clear. Alternatively, such

features can be addressed through feature prioritization. To eliminate uncertainties from the

beginning, new complex features may be developed first. Further, to grow expertise across

teams, especially in areas where existing expertise level is low, pair­-programming may be

facilitated within sites. Teams working on same areas should preferably be located in the same

location to facilitate communication and sharing of knowledge.

Finally, since the T-Mobile product with new platform is relatively new, the amount of

maintenance work is yet quite unpredictable. As confirmed by the questionnaire results,

maintenance work and other activities affect velocity. Therefore, it is recommended to distribute

maintenance work reasonably across teams within same functional areas and keeping track of

average amount of maintenance work and its effect on velocity over time. Alternatively,

dedicated sprints can be planned for the teams to carry out the maintenance work.

76

7. Summary and Conclusions

Keeping the theoretical framework in mind, the following research showed that while

Scrum methods are also applicable in large software development projects, planning and

tracking methods are more complex and require different approach than in simple environments.

The original goal was to study velocity and effort estimations in an attempt to improve the

accuracy and optimize release planning. This project has identified and addressed the research

questions defined in the introduction, including more accurate methods to calculate velocity, to

standardize effort estimations across the distributed teams, as well as to improve the accuracy of

planning and tracking methods in the case company. By continuously addressing the specificities

of the T-Mobile software product and development environment throughout the case study, the

empirical findings related to agile planning and tracking methods were proposed, which have not

been previously discussed in the literature on the Scrum methodologies. The findings discussed

in this project are particularly valuable because the study was carried out in a real business

situation.

One of the main findings from the case study at Accenture was that agile project

management in large­-scale setting requires a specific structure and a more detailed approach

Since larger and more complex products, such as T-Mobile, are combined of technically

different areas, a different approach to planning may be needed. On the other hand, this project

offers another approach to manage large agile projects, which was not earlier discussed in the

literature. The results of this project suggest that teams may not be fully multifunctional.

While the Scrum emphasizes cross­-functional teams, the case study identified that in

complex software projects team knowledge is limited to specific areas of the overall product.

This project provided practical methods to manage the distributed knowledge along with the

theoretical framework of Scrum methodologies. Due to the existence of different functional

areas of the software, which have been developed by different teams, it was concluded that

complex Scrum projects consist of multiple parallel projects. Thus, to manage and address such

complexity in a more structured way, different areas within a product can be structured as

separate smaller projects. Since team expertise in different functional areas varies, velocity also

needs to be calculated for different functional areas separately.

77

Moreover, empirical recommendations were provided on how to manage the resources

including the allocation and development of user stories, planning and tracking development

progress and calculating velocity. Findings suggest that lack of visibility in the development

progress decrease accuracy and complicates planning and tracking throughout product

development life cycle. This project contributes through methods how the resources can be

optimally managed in a complex environment, including planning and tracking development on

multiple levels.

The research showed that in large and complex agile projects maintaining accuracy of

effort estimations is especially challenging. In T-Mobile, initial planning is necessary prior to the

actual development in order to estimate the scope of the project and the release date before

investing resources in development and assigning requirements to development teams. In the

initial planning, effort estimations serve as the roadmap for the actual development, whereas

actual release content and velocity are known when the requirements are actually developed by

the teams.

This project also identified that in a complex setting effort estimations need to be

properly managed during development to provide visibility about actual progress based on new

lessons learnt after every sprint. Methods on how to maintain the same baseline for effort

estimations across different teams and on different levels of requirement hierarchy were

identified and provided.

Supported by the case study, the project offers empirical methods to manage velocity and

output of the Scrum teams provided varying knowledge areas and user story duration. In existing

literature about Scrum, a lot of emphasis was put on fitting user stories in one sprint. While it is

a sold theory, in practice this may be either impractical or unfeasible. It was identified that while

the overall development follows agile principles, individual teams may work on requirements,

which may take more than one sprint to develop. Further, duration of user stories is not only

effected by actual size, but also by complexity and team expertise. With user stories varying in

duration and developed in parallel, it was identified that duration of individual user stories needs

to be included in velocity calculations.

Due to the specificities of the development environment, from its value to Accenture the

tools may compete with agile management software currently existing in the market.

78

8. Bibliography

https://en.wikipedia.org/wiki/Agile_management

https://www.thoughtworks.com/agile-project-management

https://www.mindtools.com/pages/article/agile-project-management.htm

http://searchcio.techtarget.com/definition/Agile-project-management

https://www.cmu.edu/computing/ppmo/pm-standards-procedures/agile-project-management.html

https://www.jetbrains.com/youtrack/features/agile_project_management.html

https://www.jetbrains.com/youtrack/features/agile_project_management.html

www.agilemanifesto.org

http://www.pmforum.org/library/tips/2007/PDFs/Hass­-5­-07.pdf

http://training-course-material.com/training/Agile_Project_Management_with_SCRUM

http://www.claimvantage.com/2014/10/08/implementing-core-claim-system-using-scrum-

methodology/

https://methodology.accenture.com/dist_agile/#meth.dist_agile/guidances/guidelines/Agile%20P

ackaged%20Estimation%20Guidelines_C23BA921.html

https://help.rallydev.com/setting-projects

https://community.versionone.com/Help-Center/Release-Planning/Release_Scheduling

http://training-course-material.com/training/Agile_Project_Management_with_SCRUM

http://agilemaine.com/node/25

https://zenexmachina.wordpress.com/author/magia3e/page/2/

https://community.versionone.com/Help-Center/Release-Planning/Release_Scheduling

https://www.scrumalliance.org/community/articles/2013/august/burn-down-chart-%E2%80%93-

an-effective-planning-and-tracking

https://productmojo.com/

http://edn.embarcadero.com/article/32410

http://intland.com/scaled-agile-framework/

http://www.bpmhandbook.com/volume-1/table-of-content/applying-agile-principles-to-

bpm/figure-55/

https://www.quickscrum.com/Article/articledetails/2031/3/What-Is-Agile-Software-

Development-Life-Cycle/

https://en.wikipedia.org/wiki/Agile_management
https://www.thoughtworks.com/agile-project-management
https://www.mindtools.com/pages/article/agile-project-management.htm
http://searchcio.techtarget.com/definition/Agile-project-management
https://www.cmu.edu/computing/ppmo/pm-standards-procedures/agile-project-management.html
https://www.jetbrains.com/youtrack/features/agile_project_management.html
http://www.agilemanifesto.org/
http://www.pmforum.org/library/tips/2007/PDFs/Hass­-5­-07.pdf
https://methodology.accenture.com/dist_agile/#meth.dist_agile/guidances/guidelines/Agile%20Packaged%20Estimation%20Guidelines_C23BA921.html
https://methodology.accenture.com/dist_agile/#meth.dist_agile/guidances/guidelines/Agile%20Packaged%20Estimation%20Guidelines_C23BA921.html
https://help.rallydev.com/setting-projects
https://community.versionone.com/Help-Center/Release-Planning/Release_Scheduling

79

http://www.ambysoft.com/essays/agileRoles.html

http://www.mpug.com/articles/how-to-estimate-your-project-effort/

https://dzone.com/articles/big-teams-and-agility

80

81

