
DYNAMIC DERIVATIVE BLOCK CHAIN TECHNIQUE

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE RQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

INFORMATION SYSTEMS

Submitted By:

Nishant Garg

 (2K17/ISY/12)

Under the supervision

Of

DR. KAPIL SHARMA (HOD)

DEPARTMENT OF INFORMATION TECHNOLOGY

Delhi Technological University

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042.

MAY - 2019

DECLARATION

I hereby certify that the work which is presented in the Thesis titled “Dynamic

Derivative Block chain Technique” in fulfillment of the requirement for the

award of the Degree of Master of Technology and submitted to the Department of

Information Technology, Delhi Technological University (Formerly Delhi College

of Engineering), New Delhi is an authentic record of my own work under the

supervision of Dr. Kapil Sharma (HOD, IT Department).

The matter presented in this report has not been submitted by me for the award of

any other degree of this or any other Institute/University.

Signature

 NISHANT GARG (2K17/ISY/12)

CERTIFICATE

This is to certify that Nishant Garg (2K17/ISY/12) has completed the project titled

“Dynamic Derivative Block Chain Technique” under my supervision in partial

fulfillment of the MASTER OF TECHNOLOGY degree in Information Systems at

DELHI TECHNOLOGICAL UNIVERSITY.

 Signature: _________________________

 Dr. Kapil Sharma

 HOD

IT Department

 DTU

ACKNOWLEDGEMENT

I am very thankful to Dr. Kapil Sharma (Professor, H.O.D Department of

Information Technology) and all the faculty members of the Department of

Information Technology of DTU. They all provided us with immense support and

guidance for the project.

I would also like to express my gratitude to the university for providing us with the

laboratories, infrastructure, testing facilities and environment which allowed us to

work without any obstructions.

I would also like to appreciate the support provided to us by our lab assistants,

seniors and our peer group who aided us with all the knowledge they had

regarding various topics.

Nishant Garg

 Roll No. 2K17/ISY/12

ABSTRACT

Currently block chain is being used as the distributed ledger for various purposes. In systems that

emphasize the requirement of authentication (esp. banking/crypto currencies) various techniques

are used to maintain the sanity of the system. The predominant ones are (i) proof of work and (ii)

proof of stake. Systems using proof of work tend to use increasingly large amounts of computing

power and in-turn resources like energy and processor time. Proof of stake on the other hand

uses the already present stake of miners* in the ledger.

While one can be controlled with more than half the computing power and the other can be

controlled with excessive stake in the ledger. Both seem to have their disadvantages. We shall try

to work on the proof of work technique to better it for application as a distributed ledger

authentication system.

Since the proof of work system is the first authentication system we have come up with a few

techniques to better the system. In order to work out the entire architecture of the new proposed

system we have discussed in brief the structures of the newly proposed blocks and how the new

methodologies will affect the block chain and the associated systems that rely on it. The

applications of the proposed systems are primarily in crypto-currency and implications to such

systems will be considered in detail.

TABLE OF CONTENTS

DECLARATION

CERTIFICATE

ACKNOWLEDGMENT

ABSTRACT

CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF SYMBOLS & ABBREVIATIONS

CHAPTER 1

INTRODUCTION 1

1.1 Basic Technology 1

CHAPTER 2

BACKGROUND WORK 6

CHAPTER 3

ARCHITECTURE AND ALGORITHM 11

3.1 Algorithm for Dynamic decision of N and T 11

3.2 Algorithm and Architecture of the new strategy 12

3.3 Flowchart for Proposed 15

3.4 Flowchart for the existing 16

3.5 Performance parameters 17

CHAPTER 4

CODE AND SNAPSHOTS 18

4.1 Block Structure 18

4.2 Proof of Work 18

4.2 Proof of Work 28

4.3 Interface 29

4.4 Analysis 29

4.5 Conclusion 30

4.6 Future work and limitations 31

CHAPTER 5

RESULTS 32

5.1 Energy consumption 32

5.2 Throughput 33

REFERENCES 34

LIST OF FIGURES

Fig. 1.1 Chaining 2

Fig. 1.2 Block 3

Fig. 1.3 Multiple blocks 3

Fig. 1.4 Blocks 4

Fig. 3.1 Flow 11

Fig. 3.1 Proposed Flowchart 15

Fig. 3.2 Existing Flowchart 16

Fig 4.1 code 28

Fig. 4.2 Interface 29

Fig. 5.1 Energy consumption 32

Fig. 5.2 Throughput 33

LIST OF SYMBOLS & ABBREVIATIONS

1. POW = Proof of work

2. POA = Proof of authority

3. POS = Proof of stake

4. PID controller = Proportional integral derivative

1

CHAPTER 1

INTRODUCTION

1.1 Basic Technology

A block chain is a digital concept to store data. This data comes in blocks, so imagine blocks of

digital data. These blocks are chained together, and this makes the data immutable. When a block

of data is chained to the other blocks, its data can never be changed again. It will be publicly

available to anyone who wants to see it ever again, in exactly the way it was once added to the

block chain. That is quite revolutionary, because it allows us to keep track records of pretty much

anything we can think of (to name some: property rights, identities, money balances, medical

records), without being at risk of someone tampering with those records. If I buy a house right

now and add a photo of the property rights to a block chain, I will always and forever be able to

prove that I owned those rights at that point. Nobody can change that information if it is put on

the block chain. So, it is a way to save data and make it immutable. That sounds great, but the

big question of course is: How does that work?

Step 1 — Transaction data

Alright, let’s start off with an example: the Bit coin block chain. The Bit coin block chain is the

oldest block chain in existence. The blocks on the Bit coin block chain are 1 MB of data each. At

the time of writing it counts about 525,000 blocks, meaning roughly a total of 525,000 MB has

been stored on this block chain. The data on the Bit coin block chain however, only exists out

of transaction data in regard to Bit coin transactions. It is a giant track record of all the Bit coin

transactions that have ever occurred, all the way back to the very first Bit coin transaction. This

article refers to a block chain that stores transaction data.

2

Step 2 — Chaining the blocks (with a hash)

Imagine a bunch of blocks of transaction data Issues with proof of work

Fig. 1.1 Chaining

Not really special yet, you can compare it to some stand-alone word documents. As described in

fig 1.1, Document 1 would then chronologically describe the first transactions that have occurred

up to 1 MB clearly demonstrated in the , where after the next transactions would be described in

document 2 up to another MB, and so on. These documents are the blocks of data. These blocks

are now being linked (aka chained) together. To do this, every block gets a unique (digital)

signature that corresponds to exactly the string of data in that block. If anything inside a block

changes, even just a single digit change, the block will get a new signature. This happens

through hashing and will be thoroughly explained in step 3.

Let’s say block 1 registers two transactions, transaction 1 and transaction 2. Imagine that these

transactions make up a total of 1 MB (in reality this would be much more transactions). This

block of data now gets a signature for this specific string of data. Let’s say the signature is ‘X32’.

Here is what this looks like:

3

Fig. 1.2 Block

The signatures link the blocks together as shown in figure 1.2, making them a chain of blocks.

Let’s picture adding another block to this chain of blocks; block 3. Here is what this looks like:

Fig. 1.3 Multiple blocks

Now imagine if the data in block 1 from fig 1.3 is altered.

4

Let’s say that the transaction between Damian and George is altered and Damian now

supposedly sent 500 Bit coin to George instead of 100 Bit coin. The string of data in block 1 is

now different, meaning the block also gets a new signature. The signature that corresponds with

this new set of data is no longer X32. Let’s say it is now ‘W10’ instead. Here is what happens

now:

Fig. 1.4 Blocks

The signature W10 does not match the signature that was previously added to block 2 anymore.

Block 1 and 2 are now no longer chained to each other as mentioned in fig 1.4. This indicates to

other users of this block chain that some data in block 1 has been altered, and because the block

chain should be immutable, they reject this change by shifting back to a previous record of the

block chain where all the blocks are still chained together. The only way that an alteration can

stay undetected, is if all the blocks stay chained together. This means for the alteration to go

undetected, the new signature of block 1 must replace the old one in the data of block 2. But if

the data of block 2 changes, this will cause block 2 to have a different signature as well. Let’s

5

say the signature of block 2 is now ‘PP4’ instead of 9BZ. Now block 2 and 3 are no longer

chained together!

1. 51% attack.

A proof of work system is vulnerable to attack if more than half the computing power is used to

develop an alternate chain. Networks like Bit coin are largely secure because they have a large

number of nodes and it is practically impossible to buy 51% of bit coin’s total computing power.

But networks which are relatively smaller in size can be attacked by this method.

“After Krypton, a Proof-of-work based network, was recently hacked, the Krypton development

team announced its transfer to a Proof-of-stake system.”

2. Energy requirements.

As an example of energy requirements consider Bit coin. Bit coin needs 20.03 TWh energy

every day. Each transaction takes on an average 221 Kwh of energy that is 221 units. The cost of

mining the currency and the amount of currency obtained as a reward is always locked in a race.

And this puts the value of currency in jeopardy. These heavy energy requirements are a major

issue facing the current proof of make it less feasible and such calculations seem impossible for

mobile equipment with limited memory and processing power.

3. Excessive Processing power requirement

The ledger can be called a completely distributed ledger only if every node can fairly participate

in the ledger. Currently with a lot of competition the target values of the proof of work is rising

so rapidly and essentially making certain nodes incapable of participating in the chain on their

own accord. These nodes are forced to join other nodes in groups / communities or not

participate.

6

Mining an entire block is increasingly difficult and the ledger hence tends to become centralized

with power concentrating with nodes that have excessive computational power. This essentially

leads to a race of purchasing computing power and cooling systems which in turn further

increases energy requirements.

4. No Liquidity in Computing Power

The original motto of proof of work was one IP one vote, but the recent paradigm shift of most

computing power resulting in the hard to get power to vote has reduced its distributed nature.

Since it is impossible to mine or get rewards with normal machinery for mining. It is

increasingly seen that such nodes have no say in the system. People have come up with methods

to mine the block chain by maintaining “mining farms” with mining machinery stacked up in

rows of machines which run in parallel. Innovative methods to cool the machine are being

deployed such as building the entire farms in places like Iceland!

If few of such nodes are hacked simultaneously, one can very simply generate an alternative

chain which can again cause double spending problem which would make a nuisance. “In reality

a 51% attack is feasible – especially with the rise of mining pools (groups of people mining

together as a single unit). However the potential damage one could cause is small – though

enough that it causes a panic that would seriously threaten bit coin’s use as a currency. At current

network mining difficulty levels, not even large-scale governments could easily mount a 51%

attack.”

7

CHAPTER 2

BACKGROUND WORK

The present alternatives to proof of work include proof-of-stake, proof of activity, proof

of capacity, proof of burn, proof of storage etc.

The most common alternative is proof of stake. The present stakeholders set aside some

amount of their stake (coins) to become a part of the mining pool and blocks are allotted

to the stakeholder from the pool. If the miner is found to tamper with the chain, then the

miner loses the stake which he froze for his chance to mine.

This alternative is excellent as it doesn’t require excess energy for mining. Nodes can

simply set aside their coins for the mining process. More complex calculations can be

avoided.

Most importantly it has a defense mechanism against the 51% attack. When a node tries

to purchase 51% of the stake in such a system then the price of the coins will rise rapidly

as a result of a jerk in demand.

Its major drawback is that nodes with greater stake in the ledger get to mine a greater

share of the chain. Hence all the power in the chain gets centralized. This defeats the idea

of a distributed network and leaves all the major decisions in the hands of people with the

greatest share.

All of the above clearly point out to a clear lack of alternative in the true sense for the

proof of work strategy. Since the major problem in the present strategy is just the race

problem making the targets escalate and increase energy requirements and hence pooling

8

of resources and mining farms, we must find ways to make the strategy more available to

all nodes. In order to maintain the security of the block chain we must allow for the

complex problems (facilitated mostly by harder targets), in order to make sure that no

node can catch up with an alternate chain.

To incorporate both the above we must take more than one proofs for one block. This

concept itself introduces numerous problems like the requirement of one node to collect

all the proofs of works. This means we may need one central authority which itself

defeats the entire block chain’s concept. We also need to have a node remove duplicate

records of proofs which have already been calculated.

The second issue which we faced was we now needed a method to obtain the dynamic

values of the values of “n” (number of proofs accepted) and “t” (target). Previously in the

white paper of Satoshi a simple p controller was used to make the value of target in order

to maintain a fixed rate. Now the value of n may change dynamically (to encourage a

faster rate we may need to reduce the number of miners to increase the rewards awarded).

Just changes in n may reduce the number of miners attempting at any time and hence

affect the rate or it may not, in which case we need to vary the target value.

Another issue which we ran into was the fact that we may need to reward different

number of miners which in many cases may make exceed the block size. Bumping the

transactions to the next block can be a possible solution but it essentially eats up an awful

lot of space inside a block and makes more frequent the ledger updates. Also the fact that

any given miner would be totally unaware of the other miners it is impossible for him/her

to add them all up.

9

A final issue that we came across was the fact that all the miner data had to be submitted

and hence also could be stolen so we needed a second timestamp for all the proofs for

each and every block.

Consequently our first attempt to make an algorithm was to keep a timestamp which tied

all the proofs to their respective pay-to addresses. This timestamp would take up all the

proofs which were valid and store them in a set, bind them with a timestamp and a pay-to

address. The timestamp would simply serve the purpose of finding which proof ended up

earlier. This method is efficient if we can guarantee a minimum distance of each node to

a timestamp/ collection server. This server would generate the block once it gets a

number of blocks that suffice.

A problem with such a setting is that we do not know for sure if certain number of proofs

even exists for any given problem. This problem could essentially bring the entire work

to a halt. Another server after a timestamp server for the entire chain and also the use of

Use Nets to find transactions introduces unwanted latency in the system.

Another alternative which we worked out was each block could be mined after the miner

address would be appended to it. This way we can be sure of the fact that we have

enough number of proofs for each unique string generated by the combination of a

different miner address. Also this can be done entirely without a collection server where

the miner can release the standalone proofs which are useless with a different pay-to

address. A final proof of work miner would definitely try to be the first to finish the

mining process and hence would take up all the available proofs in the system or

someone else would beat him to the race and finish himself.

10

This is the strategy of our choice and we shall be discussing the details of above in detail.

11

CHAPTER 3

 ARCHITECTURE AND ALGORITHM

3.1 Algorithm for Dynamic decision of N and T

Dynamic decision of n and t can be made based on the rate of production of the blocks. In the

original bit coin paper by Satoshi Nakamoto, a simple rate controller was used with only a term

proportional to the error in rate. The rate required is 2016 blocks in 2 weeks. This totally

amounts to a value of 6 blocks in an hour. The most general trend is to see an increase in the rate

which is reduced by increasing the target value. The algorithm we deploy for this application is a

PID controller.

“PID controllers are found in a wide range of applications for industrial process control.

Approximately 95% of the closed loop operations of industrial automation sector use PID

controllers. PID stands for Proportional-Integral-Derivative. These three controllers are

combined in such a way that it produces a control signal as described in figure 3.1.1.

Fig. 3.1 Flow

12

As a feedback controller, it delivers the control output at desired levels. Before microprocessors

were invented, PID control was implemented by the analog electronic components. But today all

PID controllers are processed by the micro-processors. Programmable logic controllers also have

the inbuilt PID controller instructions. Due to the flexibility and reliability of the PID controllers,

these are traditionally used in process control applications.”

In our implementation we did not use the I controller of the PID, since the integral value would

continue to grow on and our error should settle near zero irrespective of previous error.

So we fix up values of the Kp and Kd (the co-efficient of the proportional part and differential

part respectively) as values which would essentially not cause a lot of oscillations.

We obviously lack any definitive way to value out the value of rate as a random variable. We

also do not have any historic data of bit coin itself. So we picked out 3 variable functions to map

out the results of our PID algorithm. There is obviously no way to check the efficiency of this

algorithm but we can check out the mappings by the functions for various types of random

variable distributions.

3.2 Algorithm and Architecture of the new strategy

This algorithm essentially changed the entire structure of the block. Now each block holds its

current n (number of proofs accepted) and t (target value for each block) and followed by n

number of proofs separated by hashes (or preferably by some bit stuffed break sequence) etc. We

are elaborating on the algorithm where we append the pay-to address of the miner to the block

and then find a proof of work for the resulting string.

Each of the miners does the same with the one block in consideration. Since each miner wishes

to be included in the “n” miners who are rewarded in the process. We can be sure that if a certain

13

miner has made a correct calculation in time he/she is definitely rewarded. Clearly all the

subsequent miners would use all the available proofs and it would be clearly uneconomical to

hold a prejudice against one such fellow miner.

In order to support the above functionality we need a new list of proof of work block structure

and a possibly a new architecture for the system.

The architecture can be in two different types:

1. With a Collection server.

2. With a Contention phase.

When using a separate collection server.

A plausible issue which we must consider is the fact that the last few entries for the proof of

work may be under fire since the order of entries would be dependant of the amount of time it

takes to reach the timestamp server. This is also a problem in the actual bit coin and hence we

must have more than one such collection servers. The server will simply receive the proofs till it

has “n” number of proofs.

 Once it reaches a limit of n correct proofs it will quit the whole process and publish the block

with the respective proofs. Obviously the entire server can be used to lay restrictions on the

number of proofs of varying difficulties (we could easily have proof of works for different target

values). Also we could encourage a diverse geographic distribution of the proofs in some other

applications which may need to support such functionalities.

When using a contention phase in this architecture we are not introducing a lot of major changes

like a new server running between the timestamps of the chain but here again we are having a

14

different packet structure and some changes in the way it is mined. Now the blocks will enter

into a contention phase where the blocks will continually get proofs from various nodes.

Each node will try to append to the existing block by adding a proof of work. Now let us

consider that 3 miners A, B and C are mining the block and both of A and B publish their proofs

simultaneously. In this case the remaining number of proofs required for both of these is say k. If

the proof by B is ignored for new 10 times then B can publish its proof again at the end of the

new chain.

This time say C also simultaneously publishes both chain are of length k + 11 if C ignores the

old proof by B but if he/she doesn’t then we have C’s chain as k+12 and it already includes the

proof by B so both win. If not the possibility of B’s proof being ignored for n consecutive tries is

(1/2)**n which is quite clearly very slim.

This method requires the block to at least have all the proof and pay to address pairs separated by

some escape flags or escape characters which are stuffed when published as a block chain and

de-stuffed when being used by the miner.

This method doesn’t change the existing architecture by a lot but it reduces the amount of prize

received by a miner by a factor of n and hence highly discouraging the processor speed race

which makes it ridiculously tough for node with moderate computing powers to calculate.

15

3.3 Flowchart for Proposed

Fig. 3.1 Proposed Flowchart

In the Fig. 3.1 it is clear that the resources allocated to the first n miner. Because in the proposed approach

the success rate per miner is far better than the existing technique of the resources allocation.

Start

Setting up the central

controller and various

distributed clients

Generates the Hash

function for Generating

the Hash

Mine the Hash and pay

address the central

controller.

Increment the counter for

the Miner

Counter>

N

Allocate the Bit

coin value by sub

division by 5

End

16

3.4 Flowchart for the existing

Fig. 3.2 Existing Flowchart

Fig. 3.1 shows the existing technique for the bit coin mining. In the existing approach the first

ever miner will be allocate with all the resources. Whoever will be submitting the has on second

and third number will be neglected. So the effort per user will be reduced tremendously.

Setting up the central

controller and various

distributed clients

Generates the Hash

function for Generating

the Hash

Mine the Hash and pay

address the central

controller.

Counter>

1

Allocate the Bit

coin value by sub

division by 5

End

Start

17

3.5 Performance parameters

There are various performance parameters on the basis of which the performance of the existing

and proposed technique can be compared.

a. Throughput

b. Energy consumption.

18

CHAPTER 4

CODE AND SNAPSHOTS

4.1 Block Structure

function Hash = DataHash(Data, varargin)

if nargin == 0

 R = Version_L;

 if nargout == 0

 disp(R);

 else

 Hash = R;

 end

 return;

end

% Parse inputs: --

[Method, OutFormat, isFile, isBin, Data] = ParseInput(Data, varargin{:});

% Create the engine: ---

try

 Engine = java.security.MessageDigest.getInstance(Method);

catch ME % Handle errors during initializing the engine:

 if ~usejava('jvm')

 Error_L('needJava', 'DataHash needs Java.');

 end

 Error_L('BadInput2', 'Invalid hashing algorithm: [%s]. %s', ...

 Method, ME.message);

end

% Create the hash value: ---

if isFile

 [FID, Msg] = fopen(Data, 'r'); % Open the file

 if FID < 0

19

 Error_L('BadFile', ['Cannot open file: %s', char(10), '%s'], Data, Msg);

 end

 % Read file in chunks to save memory and Java heap space:

 Chunk = 1e6; % Fastest for 1e6 on Win7/64, HDD

 Count = Chunk; % Dummy value to satisfy WHILE condition

 while Count == Chunk

 [Data, Count] = fread(FID, Chunk, '*uint8');

 if Count ~= 0 % Avoid error for empty file

 Engine.update(Data);

 end

 end

 fclose(FID);

elseif isBin % Contents of an elementary array, type tested already:

 if ~isempty(Data) % Engine.update fails for empty input!

 if isnumeric(Data)

 if isreal(Data)

 Engine.update(typecast(Data(:), 'uint8'));

 else

 Engine.update(typecast(real(Data(:)), 'uint8'));

 Engine.update(typecast(imag(Data(:)), 'uint8'));

 end

 elseif islogical(Data) % TYPECAST cannot handle LOGICAL

 Engine.update(typecast(uint8(Data(:)), 'uint8'));

 elseif ischar(Data) % TYPECAST cannot handle CHAR

 Engine.update(typecast(uint16(Data(:)), 'uint8'));

 % Bugfix: Line removed

 elseif myIsString(Data)

 if isscalar(Data)

 Engine.update(typecast(uint16(Data{1}), 'uint8'));

 else

 Error_L('BadBinData', 'Bin type requires scalar string.');

 end

 else % This should have been caught above!

20

 Error_L('BadBinData', 'Data type not handled: %s', class(Data));

 end

 end

else % Array with type:

 Engine = CoreHash(Data, Engine);

end

% Calculate the hash: --

Hash = typecast(Engine.digest, 'uint8');

% Convert hash specific output format: ---

switch OutFormat

 case 'hex'

 Hash = sprintf('%.2x', double(Hash));

 case 'HEX'

 Hash = sprintf('%.2X', double(Hash));

 case 'double'

 Hash = double(reshape(Hash, 1, []));

 case 'uint8'

 Hash = reshape(Hash, 1, []);

 case 'short'

 Hash = fBase64_enc(double(Hash), 0);

 case 'base64'

 Hash = fBase64_enc(double(Hash), 1);

 otherwise

 Error_L('BadOutFormat', ...

 '[Opt.Format] must be: HEX, hex, uint8, double, base64.');

end

end

%

**

function Engine = CoreHash(Data, Engine)

21

% Consider the type and dimensions of the array to distinguish arrays with the

% same data, but different shape: [0 x 0] and [0 x 1], [1,2] and [1;2],

% DOUBLE(0) and SINGLE([0,0]):

% < v016: [class, size, data]. BUG! 0 and zeros(1,1,0) had the same hash!

% >= v016: [class, ndims, size, data]

Engine.update([uint8(class(Data)), ...

 typecast(uint64([ndims(Data), size(Data)]), 'uint8')]);

if issparse(Data) % Sparse arrays to struct:

 [S.Index1, S.Index2, S.Value] = find(Data);

 Engine = CoreHash(S, Engine);

elseif isstruct(Data) % Hash for all array elements and fields:

 F = sort(fieldnames(Data)); % Ignore order of fields

 for iField = 1:length(F) % Loop over fields

 aField = F{iField};

 Engine.update(uint8(aField));

 for iS = 1:numel(Data) % Loop over elements of struct array

 Engine = CoreHash(Data(iS).(aField), Engine);

 end

 end

elseif iscell(Data) % Get hash for all cell elements:

 for iS = 1:numel(Data)

 Engine = CoreHash(Data{iS}, Engine);

 end

elseif isempty(Data) % Nothing to do

elseif isnumeric(Data)

 if isreal(Data)

 Engine.update(typecast(Data(:), 'uint8'));

 else

 Engine.update(typecast(real(Data(:)), 'uint8'));

 Engine.update(typecast(imag(Data(:)), 'uint8'));

 end

elseif islogical(Data) % TYPECAST cannot handle LOGICAL

22

 Engine.update(typecast(uint8(Data(:)), 'uint8'));

elseif ischar(Data) % TYPECAST cannot handle CHAR

 Engine.update(typecast(uint16(Data(:)), 'uint8'));

elseif myIsString(Data) % [19-May-2018] String class in >= R2016b

 classUint8 = uint8([117, 105, 110, 116, 49, 54]); % 'uint16'

 for iS = 1:numel(Data)

 % Emulate without recursion: Engine = CoreHash(uint16(Data{iS}), Engine)

 aString = uint16(Data{iS});

 Engine.update([classUint8, ...

 typecast(uint64([ndims(aString), size(aString)]), 'uint8')]);

 if ~isempty(aString)

 Engine.update(typecast(uint16(aString), 'uint8'));

 end

 end

elseif isa(Data, 'function_handle')

 Engine = CoreHash(ConvertFuncHandle(Data), Engine);

elseif (isobject(Data) || isjava(Data)) && ismethod(class(Data), 'hashCode')

 Engine = CoreHash(char(Data.hashCode), Engine);

else % Most likely a user-defined object:

 try

 BasicData = ConvertObject(Data);

 catch ME

 error(['JSimon:', mfilename, ':BadDataType'], ...

 '%s: Cannot create elementary array for type: %s\n %s', ...

 mfilename, class(Data), ME.message);

 end

 try

 Engine = CoreHash(BasicData, Engine);

 catch ME

 if strcmpi(ME.identifier, 'MATLAB:recursionLimit')

 ME = MException(['JSimon:', mfilename, ':RecursiveType'], ...

 '%s: Cannot create hash for recursive data type: %s', ...

23

 mfilename, class(Data));

 end

 throw(ME);

 end

end

end

%

**

function [Method, OutFormat, isFile, isBin, Data] = ParseInput(Data, varargin)

% Default options: ---

Method = 'MD5';

OutFormat = 'hex';

isFile = false;

isBin = false;

% Check number and type of inputs: ---

nOpt = nargin - 1;

Opt = varargin;

if nOpt == 1 && isa(Opt{1}, 'struct') % Old style Options as struct:

 Opt = struct2cell(Opt{1});

 nOpt = numel(Opt);

end

% Loop over strings in the input: --

for iOpt = 1:nOpt

 aOpt = Opt{iOpt};

 if ~ischar(aOpt)

 Error_L('BadInputType', '[Opt] must be a struct or chars.');

 end

 switch lower(aOpt)

 case 'file' % Data contains the file name:

 isFile = true;

 case {'bin', 'binary'} % Just the contents of the data:

 if (isnumeric(Data) || ischar(Data) || islogical(Data) || ...

 myIsString(Data)) == 0 || issparse(Data)

 Error_L('BadDataType', ['[Bin] input needs data type: ', ...

 'numeric, CHAR, LOGICAL, STRING.']);

24

 end

 isBin = true;

 case 'array'

 isBin = false; % Is the default already

 case {'asc', 'ascii'} % 8-bit part of MATLAB CHAR or STRING:

 isBin = true;

 if ischar(Data)

 Data = uint8(Data);

 elseif myIsString(Data) && numel(Data) == 1

 Data = uint8(char(Data));

 else

 Error_L('BadDataType', ...

 'ASCII method: Data must be a CHAR or scalar STRING.');

 end

 case 'hex'

 if aOpt(1) == 'H'

 OutFormat = 'HEX';

 else

 OutFormat = 'hex';

 end

 case {'double', 'uint8', 'short', 'base64'}

 OutFormat = lower(aOpt);

 otherwise % Guess that this is the method:

 Method = upper(aOpt);

 end

end

end

%

**

function FuncKey = ConvertFuncHandle(FuncH)

% The subfunction ConvertFuncHandle converts function_handles to a struct

% using the Matlab function FUNCTIONS. The output of this function changes

% with the Matlab version, such that DataHash(@sin) replies different hashes

25

% under Matlab 6.5 and 2009a.

% An alternative is using the function name and name of the file for

% function_handles, but this is not unique for nested or anonymous functions.

% If the MATLABROOT is removed from the file's path, at least the hash of

% Matlab's toolbox functions is (usually!) not influenced by the version.

% Finally I'm in doubt if there is a unique method to hash function handles.

% Please adjust the subfunction ConvertFuncHandles to your needs.

% The Matlab version influences the conversion by FUNCTIONS:

% 1. The format of the struct replied FUNCTIONS is not fixed,

% 2. The full paths of toolbox function e.g. for @mean differ.

FuncKey = functions(FuncH);

% Include modification file time and file size. Suggested by Aslak Grinsted:

if ~isempty(FuncKey.file)

 d = dir(FuncKey.file);

 if ~isempty(d)

 FuncKey.filebytes = d.bytes;

 FuncKey.filedate = d.datenum;

 end

end

% ALTERNATIVE: Use name and path. The <matlabroot> part of the toolbox functions

% is replaced such that the hash for @mean does not depend on the Matlab

% version.

% Drawbacks: Anonymous functions, nested functions...

% funcStruct = functions(FuncH);

% funcfile = strrep(funcStruct.file, matlabroot, '<MATLAB>');

% FuncKey = uint8([funcStruct.function, ' ', funcfile]);

% Finally I'm afraid there is no unique method to get a hash for a function

% handle. Please adjust this conversion to your needs.

end

26

%

**

function DataBin = ConvertObject(DataObj)

% Convert a user-defined object to a binary stream. There cannot be a unique

% solution, so this part is left for the user...

try % Perhaps a direct conversion is implemented:

 DataBin = uint8(DataObj);

 % Matt Raum had this excellent idea - unfortunately this function is

 % undocumented and might not be supported in te future:

 % DataBin = getByteStreamFromArray(DataObj);

catch % Or perhaps this is better:

 WarnS = warning('off', 'MATLAB:structOnObject');

 DataBin = struct(DataObj);

 warning(WarnS);

end

end

%

**

function Out = fBase64_enc(In, doPad)

% Encode numeric vector of UINT8 values to base64 string.

B64 = org.apache.commons.codec.binary.Base64;

Out = char(B64.encode(In)).';

if ~doPad

 Out(Out == '=') = [];

end

% Matlab method:

% Pool = [65:90, 97:122, 48:57, 43, 47]; % [0:9, a:z, A:Z, +, /]

% v8 = [128; 64; 32; 16; 8; 4; 2; 1];

% v6 = [32, 16, 8, 4, 2, 1];

27

%

% In = reshape(In, 1, []);

% X = rem(floor(bsxfun(@rdivide, In, v8)), 2);

% d6 = rem(numel(X), 6);

% if d6 ~= 0

% X = [X(:); zeros(6 - d6, 1)];

% end

% Out = char(Pool(1 + v6 * reshape(X, 6, [])));

%

% p = 3 - rem(numel(Out) - 1, 4);

% if doPad && p ~= 0 % Standard base64 string with trailing padding:

% Out = [Out, repmat('=', 1, p)];

% end

end

%

**

function T = myIsString(S)

% isstring was introduced in R2016:

persistent hasString

if isempty(hasString)

 matlabVer = [100, 1] * sscanf(version, '%d.', 2);

 hasString = (matlabVer >= 901); % isstring existing since R2016b

end

T = hasString && isstring(S); % Short-circuting

end

%

**

function R = Version_L()

% The output differs between versions of this function. So give the user a

% chance to recognize the version:

% 1: 01-May-2011, Initial version

% 2: 15-Feb-2015, The number of dimensions is considered in addition.

% In version 1 these variables had the same hash:

% zeros(1,1) and zeros(1,1,0), complex(0) and zeros(1,1,0,0)

% 3: 29-Jun-2015, Struct arrays are processed field by field and not element

28

% by element, because this is much faster. In consequence the hash value

% differs, if the input contains a struct.

% 4: 28-Feb-2016 15:20, same output as GetMD5 for MD5 sums. Therefore the

% dimensions are casted to UINT64 at first.

% 19-May-2018 01:13, STRING type considered.

R.HashVersion = 4;

R.Date = [2018, 5, 19];

R.HashMethod = {};

try

 Provider = java.security.Security.getProviders;

 for iProvider = 1:numel(Provider)

 S = char(Provider(iProvider).getServices);

 Index = strfind(S, 'MessageDigest.');

 for iDigest = 1:length(Index)

 Digest = strtok(S(Index(iDigest):end));

 Digest = strrep(Digest, 'MessageDigest.', '');

 R.HashMethod = cat(2, R.HashMethod, {Digest});

 end

 end

catch ME

 fprintf(2, '%s\n', ME.message);

 R.HashMethod = 'error';

end

end

%

**

function Error_L(ID, varargin)

error(['JSimon:', mfilename, ':', ID], ['*** %s: ', varargin{1}], ...

 mfilename, varargin{2:nargin - 1});

end

4.2 Proof of Work

29

Fig. 4.1 Code

4.3 Interface

Fig. 4.2 Interface

 4.4 Analysis

Now with say n= 500 people calculating H hardness proofs with larger target t have to compute

500.H computations as compared to one miner mining 1000H worth of computations.

30

Also clearly the reward taken by any one wallet is significantly lowered down and so people

would be discouraged to get standalone machines which can mine extensively and would rather

use existing machines.

Clear achievement of this project is a new strategy which enhances the distributed feature of

entire block chain operation.

The chain is secure as if we consider the scenario of an attacker trying to generate an alternate

chain faster than the honest chain.

Now we consider the energy savings. These can be estimated to the follows:

Let the hardness of a certain problem be H with target t. The hardness of the zero knowledge

proofs increases exponentially with the target value for a target 0.1t is say 1000H (as are the

values from the multi proofs interaction: Shamir, Feige).Now with say n= 500 people calculating

H hardness proofs with larger target t have to compute 500.H computations as compared to one

miner mining 1000H worth of computations.

Also clearly the reward taken by any one wallet is significantly lowered down and so people

would be discouraged to get standalone machines which can mine extensively and would rather

use existing machines.

4.5 Conclusion

The proof of work strategy can be improved by the use of a multi miner approach per block. We

have achieved simultaneous existence of all proofs by using the pay to address as a

differentiating factor. The limitations which applied to previous proof of work strategy have been

removed or weakened.

31

• The 51% attack can is now weakened since each node can have a say in mining the

block chain and hence the chain will grow faster and with it being increasingly

harder to control 51% of the entire chain.

• Processing power and energy requirements will be reduced as discussed above since

both the reduction in the awarded values and also the easiness of the problems.

• The available processing power on the network has now been made into a more

liquid form clearly since to be able to mine the amount of processing power

requirement have been brought down significantly.

4.6 Future work and limitations

The length requirement for proofs in blocks has been increased and hence the scalability of

certain existing systems like legacy bit coin which have fixed size of blocks. Legacy systems will

need to change entire block structures because of the change and hence require what we call a

hard reset.

What we can do more is generate a working smart contract engine or a crypto currency but due

to the limited scope of the project we have stuck with a practical demonstration.

32

CHAPTER 5

RESULTS

The existing and proposed technique has been compared on two basic parameters. One is the

throughput and another is the energy consumptions. The energy consumption for the proposed

technique can be measured. Because the number of the users who will submit the hash with pay

key is fixed. All the persons with in the count will get the bit coins. But in the existing technique

only one person will be allocated with the bit coin who ever will submit the hash first. Everyone

else will be discarded irrespective of the position and correctness. This will waste large amount

of the effort of the people and also will reduces the interest of the people. For the understanding

point of the view the system correct at the number of the users who will get the reward will be

increased will distribute the energy amongst the people.

5.1 Energy consumption

Fig. 5.1 Energy consumption

33

In Fig. 5.1 the energy consumption for the proposed technique has been define. At the initial

instance the energy consumption is at the higher level. as the number of users get submitting the

hash the energy consumption will be reduced there on.

5.2 Throughput

This will measure the rewards against the energy. As the multiple persons get rewards against the

submission. This will increase the throughput for the overall system.

Fig. 5.2 Throughput

34

REFERENCES

[1] Bentov, I., Gabizon, A., and Mizrahi, A. Crypto currencies without proof of work. Paper

presented at the International Conference on Financial Cryptography and Data Security (pp. 142-

157). Springer, Berlin, Heidelberg, February 2016.

[2] Hajdarbegovic, N. Bit coin Miners Ditch Ghash.io Pool over Fears of 51% Attack.CoinDesk.

2014

[3] Don Tapscott and Alex Tapscott, Block chain Revolution: How the Technology Behind Bit

coin Is Changing Money, Business, and the World, 1st ed. New York, USA: Penguin Publishing

Group, 2016.

[4] Bentov, I., Lee, C., Mizrahi, A., and Rosenfeld, M. Proof of Activity: Extending Bit coin’s

Proof of Work via Proof of Stake [Extended Abstract] y. ACM SIGMETRICS Performance

Evaluation Review, 2014. 42(3), 34-37.

[5] Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multiparty

computations on bit coin. In: 2014 IEEE Symposium on Security and Privacy, SP 2014,

Berkeley, CA, USA, 18–21 May 2014.

[6] Nakamoto, S. Bit coin: A peer-to-peer electronic cash system 2008.

[7] King, S., and Nadal, S. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. Self-

published paper 2012.

[8] Bentov, I., Lee, C., Mizrahi, A., and Rosenfeld, M. Proof of Activity: Extending Bitcoin’s

Proof of Work via Proof of Stake [Extended Abstract] y. ACM SIGMETRICS Performance

Evaluation Review, 42(3), 34-37. 2014.

