

DROIDANALYZER: EFFICIENT FRAMEWORK FOR

ANDROID MALWARE DETECTION

MAJOR PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE AWARD OF DEGREE OF

Master of Technology

In

Information Systems

Submitted By:

PARVESH

MAMGAIN

(2K17/ISY/18)

Under the Guidance

Of

Mr Jasraj Meena

(Assistant Prof., Department of IT)

DEPARTMENT OF INFORMATION TECHNOLOGY

 DELHI TECHNOLOGICAL UNIVERSITY

(2017-2019)

ii

CANDIDATE’S DECLARATION

I Parvesh Mamgain, Roll No. 2K17/ISY/18 student of M.Tech Information Systems, hereby declare

that the project Dissertation titled “DROIDANALYZER: EFFICIENT FRAMEWORK FOR

ANDROID MALWARE DETECTION” which is submitted by me to the Department of

Information Technology, Delhi Technological University, Delhi in partial fulfilment of the

requirement for the award of the degree of Master of Technology, is original and not copied from

any source without proper citation. This work has not previously formed the basis for the award of

any degree, Diploma Associateship, Fellowship or other similar title or recognition

Place: Delhi Parvesh Mamgain

Date:

iii

CERTIFICATE

I hereby certify that the Project Dissertation “DROIDANALYZER: EFFICIENT FRAMEWORK

FOR ANDROID MALWARE DETECTION” which is submitted by Parvesh Mamgain, Roll No

2K17/ISY/18 under Department of Information Technology, Delhi Technological University, Delhi

in partial fulfilment of the requirement for the award of the degree of Master of Technology, is a

record of the project work carried out by the student under my supervision. To the best of my

knowledge this work has not been submitted in part or full for any Degree or Diploma to this

University or elsewhere.

Place: Delhi Mr. Jasraj Meena

Date: SUPERVISOR

iv

ACKNOWLEDGEMENT

I take the opportunity to express my sincere gratitude to my project mentor Mr Jasraj Meena,

Assistant Prof., Department of Information Technology, Delhi Technological University,

Delhi, for providing valuable guidance and constant encouragement throughout the project. It

is my pleasure to record my sincere thanks to him for his constructive criticism and insight

without which the project would not have shaped as it has.

It humbly extends my words of gratitude to other faculty members of this department for

providing their valuable help and time whenever it was required.

Parvesh Mamgain

Roll No. 2k17/ISY/18

M.Tech (Information Systems)

E-mail: mamgainparvesh@gmail.com

mailto:mamgainparvesh@gmail.com

v

ABSTRACT

Mobile Application Market has evolved and is continuously expanding with over millions of

applications. Many mobile operating systems are available, most popular among them is

Android. Due to its popularity and reach, malware developers are targeting android markets

for distributing malware. This has led to an increase in risk associated with Android devices.

The growth of mobile malware is so huge that traditional techniques for malware detection

are inefficient. Therefore, effective and robust malware detection techniques are required.

Many researchers have proposed static and dynamic approaches for effective Android

malware detection. In this research, we have proposed a fine-grained hybrid model for

efficient android malware detection using multi-modal learning. We have extracted static and

dynamic features from a set of 4000 applications. We have used multi-modal learning to

better classify the samples. We have compared our implementation with other techniques.

Our analysis suggest that multi-modal learning outperforms other state of the art techniques.

vi

Table of Contents

Title

Page No.

CANDIDATE’S DECLARATION ii

CERTIFICATE iii

ACKNOWLEDGEMENT iv

ABSTRACT v

FIGURES AND TABLES viii

1. INTRODUCTION 1

1.1 Motivation 2

1.2 Objective of Master Thesis 2

1.3 Organization of Dissertation 3

2. BACKGROUND 4

2.1 Android Malware 4

2.2 Overview of Android Stack 9

2.3 Android Malware Detection Techniques 12

2.4 Literature Review 15

3. RESEARCH METHODOLOGY 17

3.1 Dataset Creation 18

3.2 Feature Extraction 18

3.3 Feature Selection 20

3.4 Model Creation 21

4. PROPOSED WORK 26

4.1 Proposed Framework 26

4.2 Model Training and Prediction 27

5. EXPERIMENTAL RESULTS 29

5.1 Model Evaluation 29

5.2 Model Prediction 30

vii

6. CONCLUSION 33

REFERENCES

LIST OF PUBLICATIONS OF THE CANDIDATE’S WORK

viii

List of Tables

Table Title Page no.

Table 3.1 Dataset 18

Table 3.2 Feature Set Summary 20

Table 5.1 Multi-Modal Neural Network Analysis 31

Table 5.2 Comparative analysis 32

 ix

List of Figures

 Figure Title Page No.

Figure 1.1 Mobile Malicious Installation packages detected by Kaspersky Lab. 1

 Figure 2.1 Top 10 Android Malware 2018 6

Figure 2.2 Malware Attacking Environment 9

Figure 2.3 Android Stack 10

Figure 3.1 General Framework for malware detection 17

Figure 3.2 Sample Feature Vector 19

Figure 3.3 General Model of ANN 22

Figure 3.4 Deep Neural Network 23

Figure 3.5 Multi-Modal Deep Neural Network (DNN) 24

Figure 3.7 Proposed Architecture 26

- 1 -

Chapter 1

INTRODUCTION

Android is a popular mobile platform among other platforms like iOS and windows. As of

now, the majority of devices run on Android [1]. Users mostly perform business transactions,

Important task, etc. usually through their mobile devices. Therefore, Smartphones have

become a central point for sensitive information. Due to this, malware developers are

targeting Android devices. Malware refers to a variety of unwanted software that is used for

performing malicious activities. Few commonly used malware are viruses, spyware, Trojan

horses, rootkits, backdoors, etc. There are various ways by which malware gets distributed to

the end-user like downloading and installing repacked apps, downloading the apps from the

malicious website, third-party app store, play store, etc. Android allows installing apps from

other third-party app stores which further increase the risk of being infected by malware as

most of these sources are unverified. Google Play is the official service provided by Google

for downloading apps. However, it is found that it is also not secure. There is an enormous

growth in malware from 2014 to 2019 (up to quarter 1) as shown in Fig. 1.1 [2].

Fig. 1.1: Mobile Malicious Installation packages detected by Kaspersky Lab [2]

K

 2M

 4M

 6M

 8M

 10M

2014 2015 2016 2017 2018 2019

Malware

Quarter 1

Quarter 2

Quarter 3

Quarter 4

- 2 -

1.1 MOTIVATION

Android is a rich target environment for malware because of Larger Attack Surface, Open

Source and loose security in Google play store. These shortcomings have led to an increase in

the growth of Android malware. According to Quick Heal annual threat report 2019, there is a

huge increase in Android samples detection count from 2016 to 2019 [3]. Reports suggest there

is an increase in profit-driven malware like ransomware, adware, potentially unwanted

programs (PUP), premium SMS, etc. The report also suggests that malware infection rate is not

uniform across the world rather it varies on the basis of geological areas like mobile malware

infections in Iran, Bangladesh, China, India, and Nepal are 35.12%, 28.3%, 27.38%, 21.91%,

and 20.78% respectively. This data also suggests that there exist some countries that may

become a victim of malware attack due to poor security infrastructure.

Therefore, the malware is increasing with so rapid growth that the need for an effective and

efficient framework for malware detection is required. As a result, many heuristic-based states

of the art techniques are used for learning classifiers for effective android malware detection

which can cope up with the current growth of malware.

1.2 OBJECTIVE OF MASTERS THESIS

In this thesis, we have proposed an efficient technique for effective android malware detection

using a multi-modal deep neural network. We have compared our technique with other approaches

[4], [5]. We have also extended these approaches for dynamic and hybrid analysis. We have

performed the analysis by extracting static and dynamic features from a large dataset of 4000

applications. We have reduced the features by using Information Gain Attribute selection algorithm.

The analysis has been carried out on a large dataset of 4000 applications with 2000 benign and

2000 malware applications. The benign applications are collected from AndroZoo Repository [6]

and Malware applications are collected from VirusShare repository [7]. Our result shows that multi-

modal neural network is an effective alternative and can be used for android malware detection. Our

analysis also suggests that machine learning models yield a better result when features are provided

in the form of different modalities separately rather than combining all the features into one long

feature vector.

- 3 -

1.3 ORGANIZATION OF DISSERTATION

The dissertation is structured as follows: -

▪ Chapter two give you a brief overview of the topic. It discusses malware, its types and

different propagation techniques used by malware. It also discusses the android framework

and literature review.

▪ Chapter three discusses general framework for android malware detection.

▪ Chapter four presents the proposed work.

▪ Chapter fifth contains the results of our approaches on a dataset.

▪ Chapter sixth thesis is directed towards a conclusion and further ideas for future

work have been proposed.

- 4 -

 Chapter 2

BACKGROUND

Android Malware and its detection techniques are the key areas of focus for this section. This

chapter is organized as follows: -

In section 2.1, we have discussed an overview of Malware and its types.

In section 2.2, we have given a general brief of the android architecture.

In section 2.3, We have discussed techniques used for malware detection.

In section 2.4, We have discussed Literature overview.

2.1 ANDROID MALWARE

Malware is the malicious application that is used by hackers for committing unethical activities

like fraud, information leak, Stealing user private data, Identity Theft, etc. Malware applications

are used by hackers to steal user’s private information or to obtain unauthorized access to a

mobile device. Android has witnessed a lot of malware that has affected millions of devices

worldwide. In 2018, A new type of malware was detected by Trend Micro which was developed

using Kotlin (It is a new Programming language, officially confirmed by Google, specifically

designed for android application development) [8]. It can infect mobile devices with ads and

secretly subscribe them to premium SMS numbers. Other features of this malware include remote

code execution, SMS sending, URL forwarding, etc. Hummingbird is another Android malware

discovered by Checkpoint in 2016. This malware is responsible for installing numerous

fraudulent apps each day, displays millions of malicious advertisements, and generates a lot of

revenue from these ads and apps. Most of the malware is developed with some intent of profit or

gain. However, Malware development may or may not be profit-driven. Initially, the malware

was developed to showcase the proficiency of one’s technical ability. However, these days trends

have changed, the number of profit-driven malware has increased enormously. Antivirus vendors

have implemented many frameworks for detecting Malware applications. However, Malware

- 5 -

often uses different techniques for evading anti-malware scanners.

▪ Encryption – In this technique, the application is encrypted with a key so that static

scanners can't parse it directly. The application is decrypted only during execution at

runtime. Thus evading all the static scanners.

▪ Obfuscation – In this technique, malware behavior is hidden by using garbage

commands and jumps. Dead or irrelevant codes are used for evading the malware

detection. A condition is set on the malware like execute malware module during

night time only.

▪ Dynamic Loading – This technique can be used to deter static detection techniques.

In this technique, modules are loaded dynamically at runtime. However, this can be

detected by using a behavior-based detection technique.

Security firms are witnessing a drastic change in malware growth. Various security reports from

leading anti-malware products suggest the following trends and predictions –

• Development of more sophisticated ransomware.

• Distribution of malware through exploits.

• Security concern with IoT Industry.

• Android Vulnerabilities.

• Machine learning Based malware.

• The growth of Potentially unwanted programs.

• Growth in the payment system and banking malware.

Quick Heal Report 2019 suggest that adware and premium SMS service based infections have

dominated the year 2018 as shown in the fig. 2.1 [3]. The report indicates that the growth of

Banking Trojans and ransomware have increased. The report also mentions the security

vulnerability of the Android operating system like Code execution flaws, Information gain attacks,

etc.. According to Quick heal threat report 2019 trends and predictions, android vulnerability and

potentially unwanted programs are a major concern in the coming days. It also suggests that PUA’s

- 6 -

are increasing rapidly.

Fig. 2.1: Top 10 Android Malware 2018 [3]

 2.1.1 MALWARE CATEGORIES

On the basis of the behavior of the malware, most common mobile malware types are –

Expander, Worm, Trojan, and Spyware.

1. Expander

It is a type of mobile malware that targets mobile meter for additional billing by subscribing

the user to premium services. Most types of malware that fall under this category targets

services for profit. Ransomware is a popular malware which installs covertly on a victim’s

computer. It executes an encryption attack that encrypts the system with a key. The

computer is locked down until the decrypting key is used for decrypting the system back to

its original state. Once the victim is infected by this malware, he is demanded to pay a

ransom to the attackers to decrypt his system. WannaCry is popular ransomware that has

affected thousands of computers by encrypting their data and demanding ransom payments

in the form of Bitcoin cryptocurrency in exchange for decrypting their data back [9].

28%

25%10%

8%

8%

7%

5%

3% 3% 3%

Top 10 Android Malware 2018

Android.Agent.GEN14722

Android.Umpay.GEN14924

Android.MobileTrack.Gen7151

Android.Smreg.DA

Android.Agent.DC6fb8

Android.Airpush.J

Android.Gmobi.A

Android.HiddenApp.GEN19764

Android.Smsreg.EH

Android.Agent.A1a92

- 7 -

2. Worms

The worm is the type of malware that contains harmful instructions that do not require user

interaction for executing its malicious behavior. It uses a computer network as a medium to

spread itself across millions of devices. It relies on security failures of the target device to

access its resources. They always cause at least some damage to the network, even if only

by consuming bandwidth. The Morris worm (released in 1988) was the first publicly known

worm. It is a pay-load free worm. A Payload consists of the code that is designed to do some

malicious behavior rather than spreading the worm. The cost of removing the Morris worm

was in millions. It is reported that the Morris worm has affected a lot of UNIX machines.

Samsapo is another android worm that spread itself by sending an SMS message to all the

contacts that are listed in the device [10]. The message contains a malicious link to a

malicious APK package. Abilities of this worm include multiple malicious routines,

gathering and sending information from the mobile device to a remote server, registering the

phone number to a premium service, etc. Mitigation techniques that are used as a

countermeasure to reduce the effect of the worm are Packet Filtering, Security Patches, Null

route (A network route that goes nowhere), etc.

3. Trojans

A trojan is the type of mobile malware that disguises itself as a normal application,

However, executes malicious behavior in the background. They are the executables that

required user interaction, once activated they can cause serious damage to the victim device.

They behave to be legit but performs malicious action in the background. Trojans are

usually spread through social engineering techniques. Zeus is a Trojan horse malware

package that can be used to carry out many malicious tasks. Few features of this malware

include stealing financial information, keylogging, form grabbing, etc. It is widely spread by

downloads and phishing schemes. Detection of Zeus malware is somewhat difficult as it

uses advanced stealth techniques to avoid detection. In 2017, a new mobile Trojan was

found by Malwarebytes called Android/Trojan.AsiaHitGroup which masquerades as

multiple apps which we use in our day to day life like an alarm clock, QR scanner, compass,

photo editor, Internet speed test, and file explorer. In this malware, malicious payloads are

distributed over these apps [11].

- 8 -

4. Spyware

It is used for monitoring users personal and sensitive activities without the user’s consent.

Its main objective is to gather information about a person or organization without their

knowledge. Malware like Premium SMS, RATs, Financial Fraud, Botnets, and Cryptolocker

are mostly used by hackers for gaining profit. GO Keyboard virtual Android keyboard

android app is a malware application that transmits user’s personal information without

user’s consent [12]. This information includes the user's account details, location, network

details, Android version and build, and device's model and screen size. This malware

supports remote code execution attack. This app has affected millions of users worldwide. It

was detected in 2017 by security researchers from AdGuard.

2.1.2 MALWARE PROPAGATION

In this section, we will briefly discuss what are the possible ways through which malware attack

the victim device. We have discussed general approaches that are widely used for attacking the

victim device to gain unauthorized access or steal user information [13]. The attacking

environment can be summarized in figure 2.2. The hacker or attacker tries to distribute the

malware by sending a malicious link via SMS, Exploiting an existing vulnerability in the

Android architecture or through malware-hosting websites. The malware once installed into the

system executes its malicious behavior and gains unauthorized access to various system

resources. Some possible attacks after infecting the device with malware are accessing device

resources, Monitoring user activities, sending SMS to premium numbers, stealing user’s personal

information, etc. The malware is usually hidden from the user interface and hence it is utmost

important to install a good anti-malware software on your device in order to protect yourself

from harmful malware. The malware often uses stealth technology to avoid detection by anti-

malware. If malware is zero-day malware then this detection technique cannot detect this type of

malware. Therefore, heuristic-based detection is widely used for detecting such kind of malware

which are zero-day.

- 9 -

Fig. 2.2: Malware Attacking Environment.

2.2 OVERVIEW OF ANDROID STACK

Android is a popular mobile platform. It has a large market share of 86.1% as of 2017. Android

architecture can be described as a stack of components categorized into five layers as shown in

Fig. 2.3. The top layer consists of core applications that are included in the Android platform

along with other apps. Java API framework acts as an interface between systems apps and native

library and android runtime. It provides a framework for developing an android application.

Native libraries consist of core features and services that are written in C and C++. Android

runtime provides a runtime environment for executing dex files. HAL consists of several

interfaces that are used for interacting with the corresponding hardware component. The Linux

kernel forms the core of the Android platform which manages core functionalities. All

applications execute separately within their own Dalvik Virtual Machine instance in ART

(Android Runtime). However, After Android 5.0, this was changed to Ahead of Time compiler as

opposed to dalvik just in time compiler (JIT). User-defined applications are executed on the top

layer of Android architecture. They interact with each other through intents. The process is

known as Interprocess communication. Intents can be implicit or explicit. They are used by

- 10 -

various Android components for interacting with one another. Android application is packed into

a special compressed file known as APK File.

Fig. 2.3: Android Stack.

APK is the standard file format for the Android application. Android Package Kit (APK) is a type

of archive file with a *.apk extension. The content of the APK file is described below.

• META-INF – This folder contains the metadata about the java package. It contains the

manifest file, list of files along with SHA-1 digest and certificate.

• ASSETS – This folder contains the files or resources that can be used by the application.

AssetManager class provides access to these files or resources.

• AndroidManifest.xml – It is an important XML file that describes the name of the

packages, permissions, version, referenced library and application components that are

used in the application.

- 11 -

• Classes.dex – Android apps are written in Java which upon compilation produces

bytecode which is further converted into a dalvik executable file which is interpreted by

dalvik virtual machine. After lollipop update, this is changed to ART (Android Runtime)

which uses AOT Compiler instead of JIT Compiler as in Dalvik Virtual machine.

• Lib – This directory contains processor-specific compiled code.

• Res – It holds the raw files that are not compiled such as drawable, media, etc.

Among them, Classes.dex and androidmanifest.xml is widely used for extracting malware behavior.

We have also used these two files for feature extraction. Following features can be extracted from

these files –

▪ Permissions - In Android, access to a resource is granted by Android Permission System if

the permission is defined in the manifest file.

▪ Activities – It defines the UI and handles the user interaction.

▪ Services – It is used for background processing within an app.

▪ Broadcast Receivers - It handles communication between OS and app.

▪ Content Providers – It provides data related solutions in the application.

▪ Intents - It is a data structure that holds the information of the operation to be performed.

There are two types of intents –

o Explicit Intents - It is used to connect the internal application. Suppose if you want

to connect one activity to another activity, then explicit intents are used.

o Implicit Intents – In this, the target application is not defined. Implicit intents are

often used to activate components in other applications.

▪ API - A set of methods that helps in the development of applications by allowing access to

the resources, apps, or services.

In Android, access to a resource is granted by Android Permission System if the corresponding

permission is listed in the manifest file. Android permission system acts as a primary defense

against malware applications by preventing an application from gaining access to an unauthorized

resource. Permissions can be further categorized into the following categories based on the risk

associated with them.

- 12 -

1. Normal: A low-risk permission that is automatically granted to an application on request.

They provide access to features having minimal risk.

2. Dangerous: A high-risk permission that can grant access to user private data. It is granted

by the user during installation.

3. Signature: This permission is only granted by the system if and only if the application that

is requesting for the permission is signed.

4. Signatureorsystem: This permission is granted by the system only to those apps that either

belongs to Android system image or that are signed.

2.3 ANDROID MALWARE DETECTION TECHNIQUES

In this section, we will briefly discuss different malware detection techniques and issues

associated with these techniques [13]. Malware detection is the process of analyzing the

application with the intent of determining whether the application is benign or malware. These

are some issues which one should keep in mind while designing a malware detector. Mobile

devices have limited resources such as battery life and therefore on-device analysis is somewhat

difficult. Also, Android Permission System prevents antivirus applications to introspect other

application, which further limit the extent of the analysis. Therefore, most of the detection

techniques are cloud-based. Considering these issues, the following detection techniques are used

–

1. Signature Based Detection

Traditional techniques for malware detection use signatures for detecting malware

applications. In this technique, A signature is computed for an application by extracting

binary patterns or snippets from the code such that the signature is unique to the application.

The signature is then matched with the dataset consisting of malware signatures. If a match

occurs then the application is malware else benign. To further improve the detection

accuracy, cloud-based detection methods were developed in which dataset is maintained at

the server end and a signature is matched with the server-side dataset. The central repository

is regularly updated so that the accuracy of detection can be improved. This technique is

highly inefficient while considering the current pace of malware development. Limitations

- 13 -

of signature-based detection technique are summarized below –

• Ineffective for detecting the zero-day vulnerability.

• Obfuscation attacks go undetected.

• It cannot detect encrypted malware.

2. Static Analysis Based Detection

In this technique, the application is examined without executing the code [4], [5], [14]–[16].

AndroidManifest.xml and Classes.dex file is widely used for feature extraction. The manifest

file is decompiled and then features are extracted by developing a custom XML parser.

Classes.dex is a compiled binary which needs to be decompiled before using it. Various tools

are available for decompiling dex files like APK Tool [17] and Androguard [18]. The

following kinds of features can be extracted during the static analysis phase.

• Permissions – Android required applications to request permissions before

accessing some resources or features. Permissions are further categorized into

normal permissions, system permissions, signature permissions and dangerous

permissions.

• Intents – These are the objects that contain some information about an operation

that needs to be accomplished by an application component. Intents can be explicit

or implicit.

• Hardware Details – listed hardware components in the manifest.

• Dex File – It consists of classes, APIs, methods, structure sequences, program

dependency graph, inter process communication etc.

Static analysis-based detection is fast and yields a better result with good accuracy. However,

it has the following limitations-

• Vulnerable to obfuscation, reflection, and encryption.

• It cannot analyze dynamically loaded code

- 14 -

 Some of the static analysis tools that are widely used for analyzing applications are –

• Smali and Baksmali - Smali/baksmali is a reverse engineering tool that is used for

converting Apk binaries to a human-readable format.

• Androguard – Androguard is a python tool that is widely used for analyzing

APK’s. Its features are Disassembler, De-compiler, support dex, and odex file

format, etc. [18].

• ApkTool – It is a reverse engineering tool for Android. It is widely used for

decompiling APK into the human-readable format. [17].

3. Dynamic Analysis Based Detection

In dynamic analysis technique, Application is examined at runtime by executing the

application [19]–[22]. The runtime environment can be a virtual machine, Sandbox or a real

mobile device. This technique is not vulnerable to obfuscation and reflection attacks.

However, malware is becoming more sophisticated and can detect an emulated environment

and choose not to exhibit malicious behavior. Few limitations of this technique are -

• Limited coverage as the user has to interact with the application to execute

different modules. However, stimulation techniques can be used to improve

coverage

• Executing a lot of paths is a costly process.

• No guarantee that all execution paths are executed

• Smartphones accept a wide set of touch commands which further complicates the

analysis.

• Difficult to detect VM-Aware malware.

 Some of the dynamic analysis tools that are widely used for analyzing applications are –

• DroidBox – DroidBox is used for dynamic analysis of Android applications. It

provides a detailed analysis of Android applications. Few parameters detected by

- 15 -

DroidBox includes network streams, File streams, services, Information leaks via

the network, Android APIs, and SMS and phone call logs [23].

• CuckooDroid – CuckooDroid is also used for behavior analysis of Android

applications. It supports automatic analysis of applications. It is open-source

software.

4. Hybrid Analysis Based Detection

Static analysis is fast but is vulnerable to obfuscation and reflection attacks. Dynamic

analysis is robust to these attacks but is time-consuming. Therefore, a combination of these

two approaches is used for detecting malware [24]–[26]. Hybrid analysis has the advantage

of both techniques. Combination of Virtualization technique and real devices can also be

used for detecting advance sophisticated Virtual machine aware malware. Experiments show

that the combination of static and dynamic analysis yields a better result.

2.4 LITERATURE REVIEW

Traditional malware detection methods are signature-based. A unique signature is generated for

each malware found by extracting binary patterns or snippets from code. Its drawbacks are

Ineffective to detect a zero-day error, Distribution of newly generated malware is a costly process

and obfuscation attacks can bypass it. This leads to the development of heuristic-based detection

approaches. Machine learning-based detection methods provide reliable and robust malware

detection by extracting static and dynamic features. Static analysis-based approaches are widely

popular. Arp et al. proposed a static framework that uses permissions, activities, services, system

events, etc. as features for classifying malware [5]. The research was based on support vector

machine for model creation. Yuan et al. proposed a static framework using rotation forest model

to better classify the dataset [4]. However, static approaches are inefficient to determine the

obfuscated code. To detect obfuscated code, dynamic analysis approaches are used. Feng et al.

implemented a dynamic framework based on ensemble learning techniques [20]. They have used

system calls, network logs, API Calls, etc. as features to better classify malware. Many types of

research are carried out by using a combination of both techniques. It was found that the hybrid

approach yields the best result. Yuan et al. implemented a hybrid approach using both static and

dynamic features and was able to achieve good accuracy [25]. Deep learning is a relatively new

- 16 -

field that is becoming popular now a days. Many researchers have used DNN to solve the

problem of malware detection and achieved good results [27]–[29]. In comparison, our work is

motivated by some of the above techniques and approaches, but with a focus on multi-modal

learning using a deep neural network. We have used static and dynamic features extracted from a

large dataset of 4000 applications, collected from AndroZoo [6] and VirusShare repository [7].

Our result shows that recent advances in neural network approaches can be used as a better

classifier when compared with traditional approaches.

- 17 -

 Chapter 3

RESEARCH METHODOLOGY

In this chapter, we have discussed the general framework that is widely used by machine

learning-based approaches for effective malware detection. Most android analysis techniques

follow this general framework with minor modification. The general framework is shown in fig.

3.1. The research methodology can be broadly classified into four major steps which are as

follows –

1. Dataset Creation

2. Feature Extraction

3. Feature Selection

4. Model Creation

Fig. 3.1: General Framework for malware detection

- 18 -

3.1 DATASET CREATION

In the initial phase, malware dataset and benign dataset is created. Malware dataset can be

constructed by collecting samples manually by accessing malicious sources or from online malware

repositories like VirusShare [7]. We have used VirusShare repository for malware samples. The

benign set can be constructed by collecting samples from the PlayStore or third-party app stores.

We have used AndroZoo Repository for benign samples [6]. The Dataset is summarized in the

below table: -

3.2 FEATURE EXTRACTION

Once samples are collected, the feature extraction process is applied to the dataset which extracts

the relevant features from the dataset and produces a binary representation or a graph representation

of the features. We have used binary representation for generating a feature vector. Let us consider

a one-dimensional feature vector f(x) where X is a set of finite features defined as below.

𝑋 = < 𝑋1, 𝑋2,𝑋3 𝑋𝑛 | 𝑋𝑖 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 > (1)

Here a feature can be permission, a function call, system calls, hardware detail, System event or an

Intent. These features are extracted by using static or dynamic analysis techniques. Once features

are extracted, the feature vector is constructed. We can use frequency representation and binary

representation for constructing a feature vector. We have used binary representation in our research.

In binary representation, 1 denotes feature is present and 0 represent feature is not present as shown

in equation (2). In frequency representation, n denotes no of times that particular feature is present

in the application as shown in equation (3).

1
(x)

0

 feature present
f

 otherwise


= 


 (2)

TABLE 3.1: DATASET

Data Source QUANTITY

AndroZoo (Benign) 2000

VirusShare (Malware) 2000

- 19 -

 if (x) = n : count of feature i (3)

Features can be extracted statically or dynamically as discussed in the previous section. In static

analysis, we analyze the source code of the APK while in dynamic analysis, we execute the APK

and extract features by monitoring its behavior. A feature vector is generated for each application

denoting the behavior of the application. We have stored feature vector of each APK into a common

CSV file. The CSV file looks like the following as shown in fig. 3.2. Here, under the classification

attribute, we have used 1 as malware and 0 as benign.

Fig. 3.2: Sample Feature Vector

3.2.1 Extracting Static Features

For extracting static features, we have used the Androguard framework for reverse

engineering Android applications [18]. We have extracted API Calls, Permissions, System

events (Components, Intents, Broadcast Receivers, and Services) and Opcodes from a large

set of 4000 applications.

3.2.2 Extracting Dynamic Features

For extracting dynamic features, we have used DroidBox framework for behavior analysis

of android applications [23]. We have extracted Data leaks, File Accesses, Enforced

permissions, and crypto calls from a large set of 4000 applications.

- 20 -

In our research, we have extracted a total of 118333 features from the dataset each categorized into

eight broad categories. The features are summarized into the below table: -

TABLE 3.2: FEATURE SET SUMMARY

3.3 FEATURE SELECTION

Usually, the feature set is very large which results in a large number of computations and requires a

lot of resources. Therefore, feature selection techniques like Information Gain are used to minimize

the dimensionality of the vector. Feature selection technique ranks the features on the basis of their

contribution to malware detection. Best features are selected and rest features are removed thus

reducing the size of the feature vector. Reducing Feature vector size has various advantages which

are as follows –

▪ Reduces Overfitting of data

▪ Reduces the time required to build the model.

▪ Reduce training time.

▪ Avoids the curse of dimensionality.

We have used Information Gain as Attribute Selection algorithm to reduce the feature vector

dimensionality. We have reduced the size of the feature vector by considering top features based on

their score. We have filtered the top features that have Info Gain score of greater than 0.1.

CATEGORIES NO. OF FEATURES EXTRACTED

S1 - API Calls 30105

S2 - Crypto Calls 51

S3 - Data Leaks 3

S4 - Enforced Permissions 1000

S5 - System Events 63112

S6 - Files 22392

S7 - Opcode 226

S8 - Permissions 1444

- 21 -

Let A be the set of all attributes and E set of all training examples. V(x, a) be the value of specific

example x for attribute a. H defines Entropy. Values(a) represents a set of all values of a 𝜖 A.

Information gain is defined by the following relation –

𝐼𝐺(𝐸, 𝑎) = 𝐻(𝐸) − ∑ (
|{𝑥 𝜖 𝐸|𝑉(𝑥,𝑎)=𝑣 }|

|𝐸|
. 𝐻({𝑥𝜖𝐸|𝑉(𝑥, 𝑎) = 𝑣}))𝑣𝜖𝑣𝑎𝑙𝑢𝑒𝑠(𝑎) (4)

3.4 MODEL CREATION

In this Phase, machine learning techniques are applied to the reduced feature vector to learn a model

which is used for malware classification. Both supervised and unsupervised techniques can be used.

Many states of the art techniques that are widely used to detect malware are Naïve Bayes, SVM,

DT and RF.

Initially, the dataset consisting of malware and benign apps are split into two parts with 80%

samples for training and 20% for testing. There are many factors that are used for determining the

quality of the model like accuracy, F1, Recall, precision etc. These metrics help to justify the

performance of the algorithm being used for model creation.

Experimental Studies shows that static analysis is widely used for detecting mobile malware as it is

efficient and requires less computation. However, sophisticated malware can bypass static malware

detectors. On the other hand, the Dynamic analysis is computationally expensive and hence, the on-

device dynamic analysis is rarely used. Combination of both techniques is preferred and yields a

better result.

We have used TensorFlow and keras (python-based framework) for implementing a deep neural

network. We have implemented multi-model neural networks by varying number of neurons

present in hidden layer and number of hidden layers in the network. Our results show the promising

result with good detection accuracy. We have compared our approach with other state of the art

- 22 -

techniques. A brief overview of the techniques that have been used in this research has been given

in the next section.

3.3.1 Neural Network

Before understanding the DNN, we should first understand the difference between DNN and

shallow neural network. A neural network is a heuristic technique that aims to mimic the

human brain to solve the problem of regression or classification. It helps in solving the

problems faster than traditional systems and with good result. Here, we have covered the

basic concept and terminologies involved in the ANN. We have also discussed the

architecture of a simple perceptron as shown in figure 3.3. For the general model of the

ANN, the net input can be calculated as follows −

Yin = X1.W1 + X2.W2 + X3.W3………. + Xm.Wm (5)

Yin = ∑ 𝑋𝑖. 𝑊𝑖𝑚
𝑖 (6)

The output is computed by using the activation function on the input.

Y=F(Yin) (7)

Where Xi is input, Wi is weight, F is activation function.

Fig. 3.3: General Model of ANN [30]

- 23 -

3.3.2 Deep Neural Network

Deep Learning is a type heuristic approach that is based on ANN. It has been applied to

many areas like Computer Vision, Speech Recognition, Social Network Analysis, etc. A

DNN is a type of artificial neural network with more than two layers. A neural network is a

machine learning model to mimic the processing of the biological brain. It is inspired by the

distributed communication nodes as in a biological system. A DNN can also be defined as a

network that has at least one hidden layer between input and output layer. Each layer

performs some kind of processing in order to get the desired result in the end.

Fig 3.4: Deep Neural Network

3.3.3 Multi-Modal Neural Network

Multi-Modal learning is an approach to learning a good model by using the joint

representation of different modalities. Modality refers to the way in which something can

be experienced. A problem can be labeled as a multimodal problem when it includes

multiple such modalities. For example, consider a case of an image. An image is usually

associated with a description (A long text describing the image), tags and pixel intensities.

These all constitute the different modalities for the problem. Multi-Modal learning helps to

learn such models that can solve these problems efficiently and effectively. Multi-Modal

learning models are also capable of learning missing modalities given the observed ones. In

a multi-modal learning approach, multiple models are built based on different modalities.

- 24 -

All the models are then merged by using a merging layer and then final modal is used to

predict the result. The process is shown in figure 3.5 as shown below.

Fig 3.5: Multi-Modal Deep Neural Network (DNN)

3.3.5 Rotation Forest

Rotation Forest model is also an ensemble learning technique that is used to solve

classification and regression problems. Unlike Random forest, Rotation forest is used when

number of ensembles are small. Rotation forest model requires some parameters that are

defined by the user.

 Let t be the number of trees required to be built. We start the iteration from 1 to t. We

perform the following steps for each tree –

1. Split the attributes in the training set into K nonoverlapping subsets of equal size.

2. We have K datasets, each with K attributes. For each of the K datasets, we proceed

to do the following.

3. Bootstrap 75% of the data from each K dataset and use the bootstrapped sample for

further steps.

4. Run a principal component analysis on the ith subset in K. Retain all the principal

components. For every feature j in the Kth subset, we have a principal component, a.

Let’s denote it as aij, where it’s the principal component for the jth attribute in the ith

subset.

5. Store the principal components for the subset.

- 25 -

6. Create a rotation matrix of size, n X n, where n is the total number of attributes.

Arrange the principal component in the matrix such that the components match the

position of the feature in the original training dataset.

7. Project the training dataset on the rotation matrix using the matrix multiplication.

8. Build a decision tree with the projected data set.

9. Store the tree and rotation matrix.

- 26 -

Chapter 4

PROPOSED WORK

This chapter discusses the proposed architecture in depth. The proposed architecture is

illustrated in Fig. 4.1. The chapter is split into two sections –

Section 4.1 gives a brief overview of the proposed architecture

Section 4.2 discusses model training and prediction.

4.1 PROPOSED FRAMEWORK

Fig. 4.1: Proposed Architecture

In this research, we have implemented a hybrid modal based on multi-modal learning. Our

approach is categorized into four broad steps – dataset creation, feature extraction, feature

- 27 -

selection, and model creation. These steps in detail are summarized below –

1. In the first step, the dataset is downloaded from repositories. Malware apps are collected

from VirusShare repository [7] and benign apps are collected from AndroZoo repository

[6]. We have collected a total of 4000 applications.

2. In the next step, the features are extracted from the collected dataset. We have used two

approaches for feature extraction – static analysis and Dynamic analysis. We have used

AndroGuard for collecting static features and Droidbox for collecting dynamic features.

We have collected a total of 118333 features. All the data is persisted in a CSV file.

3. In the next step, we have used Info Gain feature selection algorithm to reduce the feature

vector dimensionality. Not only it helped in reducing the feature vector size but also

helped in improving the computational time and accuracy of the classifiers.

4. In the final step, we have implemented our proposed approach as shown in the fig. 4.1.

We have categorized the features into eight broad categories. We have built a classifier

for each feature category using a deep neural network. We then have used a Merge layer

to merge all the models. Finally, we have used a deep neural network to predict the

result.

4.2 MODEL TRAINING AND PREDICTIONS

A multi-modal neural network contains a number of models that together provides an end result.

It consists of an initial DNN and final DNN. The initial DNN consists of one input layer and

two hidden layers with each neuron having ReLU as the activation function. The number of

neurons is varied in the network in order to tune it for better predictions. The final DNN

consists of one merging layer, two hidden layers, and one final output layer. Each layer defined

in this network has used ReLU function to be used as activation function except the final output

layer. The final output layer has used Sigmoid as the activation function. We have used two

activation functions which are defined below.

- 28 -

4.2.1 Activation Function

Activation functions are very significant in a ANN. They help by introducing non-linear

properties to our network. Its main purpose is to convert an input signal of a node to an

output signal based on some computation. There are many types of activation function. In

this research, we have focused only on ReLU and Sigmoid function.

1. Sigmoid Activation Function – It is an activation function of the form as shown in

equation 8. It is an S-shaped curve with value range 0 to 1.

 𝐹(𝑥) = 1/(1 + 𝑒−𝑥) (8)

2. ReLU Activation Function – It stands for Rectified Linear units. It is defined by the

equation number 9. It is a very simple and efficient activation function. Its value

range is [0, inf].

𝐹(𝑥) = 𝑀𝐴𝑋(0, 𝑥) (9)

4.2.2 Performance Metrics

In this research, we have compared our technique with other state of the art techniques. We

have compared different approaches based on key performance metrics which are

considered as standard while comparing machine learning algorithms. The following metrics

are used to compare different algorithms –

1. Precision

2. Recall

3. Accuracy

4. F-Score

- 29 -

Chapter 5

EXPERIMENTAL RESULTS

In this section, we have briefly reported the performance of our implemented approach

and compared it with other state of the art approaches. Our main motive is to demonstrate that

multi-modal learning is an efficient and effective technique for detecting android malwares. We are

able to achieve the best result that is 97.25% accuracy using this technique. The following system

configuration has been used while conducting the experiments:

▪ Processor: Intel Core i5 2.7 Ghz

▪ Main Memory: 8 GB

▪ Software Used: Jupyter Notebook

The chapter is divided into following sections –

Section 5.1 discusses the evaluation method.

Sections 5.2 gives a brief about our analysis and result.

5.1 MODEL EVALUATION

We have used precision, F1, Recall, and accuracy as performance metrics. It is found that these

measurements are very effective to assess the quality of classification in case of Android

Malware detection.

i. Precision

It is defined as the probability that app is classified correctly as malware.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (10)

- 30 -

ii. Recall

It is defined as a fraction of total malware samples that are labelled as malware.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11)

iii. Accuracy

It is defined as the ratio of correctly classified samples by total number of samples.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (12)

iv. F-Score

It is also called the F1 score or F measure. It is defined by the below equation.

𝐹𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) (13)

5.2 MODEL PREDICTION

We have divided the large dataset of 4000 applications with 80% samples for training and rest

20% samples for testing. Training Dataset is used to train the classifier and the Testing dataset is

used to evaluate the model. We have split the dataset with 80% samples for training and 20%

samples for testing. We have analyzed a few approaches based on how they have constructed the

feature vector. In comparison, we have focused on and compared different models based on a set

of features used in the approach. All the feature set is broadly categorized into eight categories.

Let us consider S be the set of all features. The eight disjoint sets are defined below.

S1: Permissions

S2: API Calls

S3: Opcode

S4: System Events

S5: Enforced Permissions

S6: Data Leaks

S7: File

- 31 -

S8: Crypto Calls

In our approach, we have followed a notation to represent multi-modal architecture. The multi-

modal network consists of initial and final DNN. The initial DNN has one input layer and 2

hidden layers each having n number of neurons. The final DNN has one merging layer, 2 hidden

layers and 1 output layer with predefined neurons. Syntax to describe the multi-modal

architecture is defined in equation 14.

Representation: [[X1, X2, X3 …] [X1, X2, X3 …]] (14)

Here the first part represents the configuration of initial deep neural network and the second part

represents the configuration of a final deep neural network. The Xi represents the number of

neurons present in the hidden layer. The shape of the 1-D array represents the total number of

hidden layers. We have summarized our analysis in table 5.1.

TABLE 5.1: MULTI-MODAL NEURAL NETWORK ANALYSIS

MULTI-MODAL NETWORK CONFIGURATION ACCURACY PRECISION RECALL F-SCORE

[[5,5,5] [5,5,5]] 96.12% 99.23% 93.25% 96.14%

[[5,5] [5,5]] 96.5% 98.98% 94.21% 96.54%

[[5][5]] 96.87% 99.24% 94.69% 96.91%

[[10,10,10] [10,10,10]] 96.87% 98.75% 95.81% 96.93%

[[10,10] [10,10]] 97% 99.24% 94.93% 97.04%

[[10][10]] 96.87% 99.24% 94.69% 96.91%

[[20,20,20] [20,20,20]] 96.75% 98.74% 94.93% 96.80%

[[20,20] [20,20]] 97.25% 99.24% 95.42% 97.29%

[[20][20]] 96.75% 98.74% 94.93% 96.80%

[[30,30,30] [30,30,30]] 96.62% 98.98% 94.45% 96.67%

[[30,30] [30,30]] 97.12% 99.24% 95.18% 97.17%

[[30][30]] 96.87% 98.99% 94.93% 96.92%

Based on the above analysis, we found that the best result is achieved when we use two hidden

layers in both initial and final DNN with each hidden layer having 20 neurons. The best result

- 32 -

achieved is 97.25% accuracy. We have compared our approach with two other approaches.

Approach-1 is similar to DREBIN [5] and Approach-2 is similar to DroidDet [4]. Both these

techniques are based on static analysis only. We have extended both the techniques for dynamic and

hybrid analysis. We have provided a comparative analysis which is given in the below table 5.2.

TABLE 5.2: COMPARATIVE ANALYSIS

APPROACH MODEL FEATURE SET ACCURACY PRECISION RECALL F-SCORE

APPROACH-1 SVM STATIC 87.12% 88% 87% 87%

APPROACH-2

ROTATION

FOREST

MODEL

STATIC 87.37% 88% 87% 87%

EXTENDED

APPROACH-1

SVM DYNAMIC

HYBRID

72%

89.35%

68.74%

85.88%

53.25%

88.45%

65.53%

89.44%

EXTENDED

APPROACH-2

ROTATION

FOREST

MODEL

DYNAMIC

HYBRID

71.62%

91.5%

66.40%

87.79%

49.47%

88.59%

62.60%

90.76%

OUR

APPROACH

DEEP

NEURAL

NETWORK

STATIC

DYNAMIC

HYBRID

95.87%

72%

96.12%

98.64%

91.22%

94.61%

92.8%

50.48%

98.05%

95.67%

65%

96.30%

OUR

APPROACH

MULTI-

MODAL

NEURAL

NETWORK

HYBRID

97.25% 99.24% 95.42% 97.29%

- 33 -

Chapter 6

CONCLUSION

In this research, we have discussed malware, malware types and their source of distribution. We

have also discussed different malware detection techniques and highlighted the issues and

limitations of those techniques. Keeping those limitations in mind, we have implemented a

hybrid android malware detection technique using multi-modal learning to detect malwares in

android devices. This model helped to overcome the problems of both static and dynamic

analysis when used individually. We have also compared our approach with two other

approaches and found that multi-modal learning yields a better result. We have also extended the

approaches with dynamic and hybrid analysis. We have also implemented a deep neural network

and compared it with our approach. The result indicates that multi-modal learning is an effective

technique and yield a better result when compared with other techniques. Our analysis also

suggests that the model yields a better result when features are provided to it individually rather

than combining all features into one long feature vector. In this research, we have used both static

and dynamic feature extracted from a large dataset of 4000 applications. The applications were

collected from VirusShare and AndroZoo repository. We have achieved a good result with

97.25% accuracy.

- 34 -

REFERENCES

[1] Statista, “Mobile OS Market Share,” www.statista.com, 2018. [Online]. Available:

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-

operating-systems/.

[2] K. Labs, “Kaspersky_Securelist Threat Report,” 2019. [Online]. Available:

https://securelist.com/threat-category/mobile-threats/.

[3] Q. Heal, “Quick Heal Annual Threat Report,” 2019.

[4] H. J. Zhu, Z. H. You, Z. X. Zhu, W. L. Shi, X. Chen, and L. Cheng, “DroidDet: Effective

and robust detection of android malware using static analysis along with rotation forest

model,” Neurocomputing, vol. 272, pp. 638–646, 2018.

[5] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, “Drebin: Effective and

Explainable Detection of Android Malware in Your Pocket,” Proc. 2014 Netw. Distrib. Syst.

Secur. Symp., 2014.

[6] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo : Collecting Millions of

Android Apps for the Research Community,” pp. 468–471, 2016.

[7] “VirusShare,” 2019. [Online]. Available: https://virusshare.com/.

[8] “First Kotlin-Developed Malicious App Signs Users Up for Premium SMS Services -

TrendLabs Security Intelligence Blog.” [Online]. Available:

http://blog.trendmicro.com/trendlabs-security-intelligence/first-kotlin-developed-malicious-

app-signs-users-premium-sms-services/.

[9] Wikipedia, “WannaCry ransomware attack,” Wikipedia Foundation, 2017. [Online].

Available: https://en.wikipedia.org/wiki/WannaCry_ransomware_attack.

[10] “Android.Samsapo - Mobile Worm.” [Online]. Available:

https://www.symantec.com/security_response/writeup.jsp?docid=2014-050111-1908-99.

[11] “Android/Trojan.AsiaHitGroup - Malwarebytes Labs _ Malwarebytes Labs.” [Online].

Available: https://blog.malwarebytes.com/cybercrime/2017/11/new-trojan-malware-

discovered-google-play/.

[12] “Mobile Spyware- Go Keyboard app.” [Online]. Available:

https://www.bleepingcomputer.com/news/security/popular-android-keyboard-app-caught-

collecting-user-data-running-external-code/.

[13] R. Katarya and P. Mamgain, “A Survey on Android Malware Detection Techniques,” Int. J.

Comput. Eng. Appl., vol. XII, 2018.

[14] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant Permission Identification

for Machine Learning Based Android Malware Detection,” vol. 3203, no. c, 2018.

[15] A. Firdaus, N. B. Anuar, A. Karim, M. Faizal, and A. Razak, “Discovering optimal features

using static analysis and a genetic search based method for Android malware detection *,”

vol. 19, no. 6, pp. 712–736, 2018.

[16] E. Billah, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer : Automatic framework for

- 35 -

android malware detection using deep learning,” Digit. Investig., vol. 24, pp. S48–S59, 2018.

[17] C. Tumbleson and R. Wiśniewski, “Apktool - A tool for reverse engineering 3rd party,

closed, binary Android apps.” [Online]. Available: https://ibotpeaches.github.io/Apktool/.

[18] “Androguard - Reverse engineering Tool.” [Online]. Available:

https://github.com/androguard/androguard.

[19] S. Wang, Z. Chen, Q. Yan, B. Yang, L. Peng, and Z. Jia, “A mobile malware detection

method using behavior features in network traffic,” J. Netw. Comput. Appl., 2019.

[20] P. Feng, J. Ma, C. Sun, and Y. Ma, “A Novel Dynamic Android Malware Detection System

With Ensemble Learning,” IEEE Access, vol. 6, pp. 30996–31011, 2018.

[21] W. You, B. Liang, W. Shi, P. Wang, and X. Zhang, “TaintMan: an ART-Compatible

Dynamic Taint Analysis Framework on Unmodified and Non-Rooted Android Devices,”

IEEE Trans. Dependable Secur. Comput., vol. 5971, no. c, 2017.

[22] L. Wei, W. Luo, J. Weng, Y. Zhong, X. Zhang, and Z. Yan, “Machine Learning-based

Malicious Application Detection of Android,” IEEE Access, vol. PP, no. 99, p. 1, 2017.

[23] “GitHub - pjlantz_droidbox_ Dynamic analysis of Android apps.” [Online]. Available:

https://github.com/pjlantz/droidbox.

[24] S. Arshad et al., “SAMADroid : A Novel 3-Level Hybrid Malware Detection Model for

Android Operating System,” IEEE Access, vol. 6, pp. 4321–4339, 2018.

[25] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware characterization and detection

using deep learning,” Tsinghua Sci. Technol., vol. 21, no. 1, pp. 114–123, 2016.

[26] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang, “Monet: A User-Oriented Behavior-

Based Malware Variants Detection System for Android,” IEEE Trans. Inf. Forensics Secur.,

vol. 12, no. 5, pp. 1103–1112, 2017.

[27] X. Su, D. Zhang, W. Li, and K. Zhao, “A Deep Learning Approach to Android Malware

Feature Learning and Detection,” 2016 IEEE Trust., pp. 244–251, 2016.

[28] D. Li, Z. Wang, and Y. Xue, “Fine-grained Android Malware Detection based on Deep

Learning,” 2018 IEEE Conf. Commun. Netw. Secur., vol. 1, no. L, pp. 1–2, 2018.

[29] M. A. Akcayol, “Permission Based Android Malware Detection With Multilayer

Perceptron,” pp. 0–3, 2018.

[30] “Neural Network,” 2018. [Online]. Available:

https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_networks

.htm.

- 36 -

LIST OF PUBLICATIONS OF THE CANDIDATE’S WORK

[1] Published a research paper titled "A Survey on Android Malware Detection Techniques "

in International Journal of Computer Engineering and Applications, Volume XII, Special

Issue, August 18, www.ijcea.com ISSN 2321-3469. Presented the paper in IEEE

Conference ICRTCST-2018.

	My Thesis Front
	DROIDANALYZER: EFFICIENT FRAMEWORK FOR ANDROID MALWARE DETECTION
	CANDIDATE’S DECLARATION
	CERTIFICATE
	ACKNOWLEDGEMENT
	ABSTRACT

	My Thesis Back
	INTRODUCTION
	2.1 ANDROID MALWARE
	1. Signature Based Detection
	2. Static Analysis Based Detection
	3. Dynamic Analysis Based Detection
	4. Hybrid Analysis Based Detection

	REFERENCES

