LAB AUTOMATION SYSTEM WITH PLATFORM SUPPORT
USING THE ASYNCHRONOUS MQTT PROTOCOL

DISSERTATION

SUBMITTED IN THE PARTIAL FULLFILMENT OF THE REQUIREEMNTS
FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

POWER SYSTEM
Submitted by:

JAGRITI SURABHI
(2K17/PSY/07)

Under the supervision of

Dr. M. RIZWAN

DEPARTMENT OF ELECTRICAL ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042
2019

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi - 110042

CANDIDTATE’S DECLARATION

I, JAGRITI SURABHI, Roll No. 2k17/PSY/07, student of M.Tech (Power System), hereby
declare that the project Dissertation titled “Lab Automation System with Platform Support
using Asynchronous MQTT Protocol” which is submitted by me to the Department of
Electrical Engineering, Delhi Technological University, Delhi in partial fulfillment of the
requirement for the award of the degree of Master of Technology is original and not copied from
any source without proper citation. This work has not previously formed the basis for the award

of any Degree, Diploma Associateship, Fellowship or other similar title or recognition.

Place: Delhi JAGRITI SURABHI

Date: 09.08.2019

Department of Electrical Engineering
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi — 110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Lab Automation System with Platform
Support using Asynchronous MQTT Protocol” which is submitted by JAGRITI SURABHI,
Roll no 2K17/PSY/07 [Department of Electrical Engineering], Delhi Technological University,
Delhi in partial fulfillment of the requirement for the award of the degree of Master of
Technology, is a record of the project work carried out by the student under my provision. To the
best of my knowledge this work has not been submitted in part or full for any Degree or Diploma

to this University or elsewhere.

Place: Delhi Dr. M. Rizwan

Date: 09.08.2019 SUPERVISOR

ABSTRACT

The objective of this project revolves around creating a Lab automation system with the main
focus being the usage of a Smart IoT Platform to integrate and control devices capable of
communicating over the internet. The system consists of daughter nodes using synchronous or
asynchronous protocols for communication, a mother hub hosting a smart platform, a server and
front end Web Ul. The daughter nodes are microprocessors and smart peripherals like Lighting
loads and plug load controllers. Each microprocessor employed hosts an automation circuit that

can be controlled cumulatively at one interface, the smart platform.

This platform is hosted by the mother hub, mainly the Raspberry Pi used in this project for that
purpose. There is no commonly accepted open standard for interaction with smart devices. This
hinders many devices from interacting with each other. A hub is a unit that acts as a tool for all
the linked systems to communicate and handle. The R-Pi SoC flamboyant board that has been a
choice of enthusiasts for its form-factor, processing, open source integration and the number of
GPIO pins it offers for automation. It seeks to deliver local and remote tracking, interoperability,

scalibilty, plug and play, robustness, open protocol, all this being cost-effective.

The open source project Home Assistant, an automation platform running on Python3 is hosted
on the mother hub. It has stronger focus on end users with a good selection of software providers
and integration services as compared to other beta open source projects. The platform runs in a
virtual environment created for its Command line and Graphic user interface. The Internet of
Things (I0T) is a fast-growing theme of technical, social and financial importance. [oT’s open
nature leads to dominant settings being created in which its parts can be rearranged based on the

context. This has innovative consequences.

Because 10T is not a consolidated sector where a dominant design guides incremental innovation,
instead, innovation arises from connecting components together by concentrating on inter-
industry cooperation and user engagement. The further growth and implementation of 10T will

be simulated in the coming times.

ACKNOWLEDGEMENT

I would like to express my gratitude towards all the people who have contributed their precious
time and effort to help me with this project, without their support it would not have been possible

for me to implement this project to its completion.

I would like to thank Dr.M.Rizwan, Project Supervisor and Associate Professor, Department of
Electrical Engineering for his support, valuable feedbacks and guidance throughout the period of

this work.

I would also like to thank my fellow scholars Dr.Priyanka Chaudhary, Astitva Kumar, Tarun
Kumar Nirmal and Eklavya Dahiya who encouraged and helped me develop better ideas to keep

the challenge alive.

JAGRITI SURABHI

CONTENTS

Declaration

Certificate

Abstract
Acknowledgement
Contents

List of Tables

List of Figures
Symbols, Abbreviation

CHAPTER 1: INTRODUCTION
1.1: GENERAL
1.2: MOTIVATION: THE INDIAN MARKET SCENARIO
1.2.1: Consumer Applications
1.2.2 : Industrial Applications
1.2.3: Public Sector Applications
1.3: ARCHITECTURE
1.3.1: Perception Layer
1.3.2 : Network Layer
1.3.3: Processing layer
1.3.4: Application Layer
1.35.1 : Message Queuing Telemetry Transport
1.3.5.2 : Constrained application Protocol (CoAP)

1.3.5.3 : Representational State Transfer (REST)

Xi

Xiiii

© 0 N o g o A W W N R e

[
o o

1.3.5: Business Layer

CHAPTER 2: LITERATURE REVIEW

2.1: Introduction

2.2: Energy Conservation Schemes in India
2.2.1: Electric Conservation Building Code (ECBC)
2.2.2: Lighting
2.2.3 . Renewable Energy Resources
2.2.4: Selection of Appliances
2.2.5: Smart and Green building projects

2.3: Smart Sensors

2.4: 10T Security and Threats

2.5: Smart Building Management System: BEMOSS

CHAPTER 3: SENSORS and Ul PLATFORM USING MQTT

3.1: Introduction
3.2: Test Circuit Model
3.2.1 : Test Circuit Components
3.2.2 : Test Circuit Design Models
3.3.1 : Cayenne Online Platform
3.3.2: MQTT Protocol
3.3.3 : Temperature and Humidity Sensor
3.3.4 : Luminosity Sensor

3.3.5 : PIR Sensor

CHAPTER 4: MODELING OF THE CORE PLATFORM

4.1: Introduction

4.2 : Embedded System Hosting
4.2.1 : Single Board Computers
4.2.2 : Raspberry Pi model 3B

11

12
12
13
13
14
14
14
15
15
17
18
20
20
20
20
22
23
24
28
29
31
32
32
33
33
34

4.3 : Performance Analysis

36

CHAPTER 5: HOME ASSISTANT: AN OPEN SOURCE DEVELOPMENT PLATFORM

5.1: Introduction
5.2: The Lovelace Ul
5.2.1: Smart Light setup
5.3: The ESP Tool
5.3.1: Device Integration
CHAPTER 6: RESULTS AND DISCUSSIONS
6.1: Introduction
6.2: Results of Test circuit 1
6.3: Results of Test circuit 2
CHAPTER 7: CONCLUSION AND FUTURE SCOPE
7.1: Introduction
7.2: Conclusion
7.3: Future scope
APPENDICES
Appendix 1
Appendix 2
Appendix 3
Appendix 4
REFERENCES

40
42
43
44
46
49
49
49
50
54
54
54
55
13
13
14
15
16
21

Table No.

Table 1.1

Table 1.2

Table 2.1

Table 2.2

Table 3.1

Table 3.2

Table 4.1

LIST OF TABLES

Table

Public sector-wise applications

Comparison between network protocols

Comparison of Lighting Fixtures

A brief comparison of Threats and Challenges of 10T features
MQTT vs HTTP in a constrained environment

A comparison of DHT sensors

Comparison in hardware of selected Single Board Computers

Page No.

14
17
27
28

33

Figure No.
Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8:
Figure 1.9:
Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6

LIST OF FIGURES

Figures

The Present 10T Trend

The 10T Market in India

Indian Consumer Expectation from the loT Sector
Sensor to Actuator Flow Diagram

An Event based Middleware Flowchart

Working of Pub/Sub model in MQTT

Work-flow of the Client-Server Architecture in CoAPs
REST Work-flow Model

5-layer Architecture adapted in loT

Page No.

10
11

11

Energy Consumption in the Residential Sector (Source: Planning Commission) 13

A CLPD Core-Enabled Hardware Design
BEMOSS Agents and Work-flow

ESP8266 NodeMCU Development Kit
Components Layout of the Test

PCB Layout of the Test Circuit

Schematic Diagram of the Test Circuit

Test Circuits Dashboard on the IoT Platform

QoS0 Level (at most one message delivery)

10

16

19

21

22

22

23

24

25

Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 5.1
Figure 5.2
Figure 5.3

Figure 5.4

QoS1 Level (at least one message delivery)

QoS 2 Level (exactly one message delivery)

MQTT Connections over TCP/IP Protocol

Temperature Reading from a DHT11 measured every 2 Seconds
Humidity Readings from a DHT11 measured every 10 Minutes
Basic Structure and Symbol for LDR

Luminosity Readings from an LDR measured every 10 Minutes
Resistances vs. lllumination of an LDR

The PIR Sensor

Pin Diagram of Raspberry Pi (Host Embedded System)
Inserting a Cron Job in Python Script

Dashboard for Inspecting Health of Host System

Utilization of the CPU on the Pi

Network out in kB connected to Local Network

CPU Temperature of the Pi

Memory Utilization of the Pi

All Networks handled by the Pi

The CLI with Home Assistant running Live

Desktop and Web Ul of successful HA Setup

TP-Link Smart Light Integration

ESPHome Setup Script on CLI

11

26

26

27

29

29

30

30

31

31

35

37

37

37

38

38

39

39

40

42

43

44

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.8
Figure 5.10
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9

Figure 6.10

Successful Instant of HA API Integration with ESPHome
Device Model on Fritzing

ESPHome Dashboard

Configuration in ESPHome

Successful Device Integration

Web Ul with Parameters from Test_Blink on the Dashboard
Test circuit 1

Setting Triggers Conditions

Trigger set and active condition

Test circuit 2 “test blink”

Serial Monitor Output

Password Protection of HA for Security

Process manager Htop showing HA on Raspbian

MQTT Publish Test Result

MQTT Subscribe Test Result

Lovelace Ul Logbook View

12

45

46

46

47

48

48

49

50

50

50

51

51

52

52

52

53

13

14

15

CHAPTER 1
INTRODUCTION

1.1 GENERAL

The Internet of Things (IoT) is the physical world’s act of digitization. It is a
comprehensive term used to indicate a system where wireless and wired connections connect the
physical universe to the web. It is not a single technology, rather a tandem agglomeration of
different techniques. The Internet of Things industry in India will be worth $9 billion by 2020,
according to “IoT India Congress 2018”. In all main industries, including telecommunications,
health, agriculture, cars and home, the adoption of 10T technology is set to rise. Globally, the end
of 2019, Gartner estimates that 14.2 billion connected things will be in use which will touch 25
billion by 2021.

80

70

60

50

40

30

Connected devices in Billions

20

) I I

0

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
In years

Figure 1.1: The present loT trend

1.2: MOTIVATION: The Indian Market Scenario

The 10T is well-poised to bloom in the next technological revolution since the advent of the
Internet. It has been drawing more and more attention as the age turns increasingly digital
employing smart technologies. Although India began its journey into the 10T much later than
developed countries, its established hub of connected devices is expected to rise at a rate much
faster than them. In 2017, the World Bank pointed out the Indian government’s campaign —
“Digital India” as a prominent endeavor to making firms more ambitious by applying IoT

technologies and the growth henceforth can be seen in Figure 1.2

10 -
9 .
8 -
e 7
-]
36
s
E 5
=z
£ 4 -
2l
. R
2014 2016 2020
Investment through theyears

Figure 1.2: The 10T market in India (Source: Deloitte)

The adoption in India is expected to progress across all mainstream industries by the next
decade. The prominent sectors driving it currently are transportation, utilities, manufacturing,
logistics and automotive. Due to the above listed direct association with Smart city projects, they
are expected to see the highest adoption. Healthcare, Retail and Agriculture are the rising sectors
adopting smart technologies for solutions. Application across India can be enveloped under three

broad classifications- Consumer, Industrial and Public sector.

1.2.1 : Consumer Applications

The expectation of consumers is good living standards and better quality of life as the
perception of 10T is limited. Although the applications are not as wide as industrial in this sector,
they are opening utilitarian and intimate experiences like wearables, fitness trackers and smart
homes. Smartphone applications can now lock houses, set and reset thermostats and even

research is ongoing on ways of cooking and monitoring on the basis of ambient temperature.

Indian consumer expectation from the loT

Access to public
services
10%

Healthcare

Safety and 31%

security
14%

Reduced traffic
congestion
20%

Envionmental
impactandlower
pollution levels

25%

Figure 1.3: Indian consumer expectation from the 10T (Source: Tata Communications)
1.2.2: Industrial applications

India as well as globally, the 1loT (Industrial Internet of Things) has far exceeded all
applications. The term Industry 4.0 accounts the onset of a new industrial revolution through

automation, connectivity and analysis. Some major applications are:

e Supply chain: Goods tracking, connected factories, robotics and improved process
automation

e Agriculture: Chemical and fertilizer testing, moisture and pH factor of soil
e Energy: Management and early fault detection

e Transportation: Vehicle tracking, Traffic management

1.2.3: Public Sector Applications:

The chart given in Table 1.1 lists the potential end use in various sectors of the 10T. This is

of significance in the coming years as the push for Smart cities is strong has enabled integration

of technologies across a wide area.

Table 1.1: Public sector-wise applications

Sector

Sub-sector

Examples

Transportation

Public Transportation

GPS tracking and real time
monitoring of buses to give

information on wait time

e Traffic Smarter control of traffic
lights to prevent congestion
e Public bikes Tracking by requirement for
crowd control and reducing
automotives on road
Security e Drones Computer vision, tracking and
mapping, surveillance
e Fire safety Smoke detection and
automated notification.
Sensors in gas pipes can
enable early detection
Health e Assistance Single-push button for
emergency alert
e Medication Automate medicine supply for

Diabetes or high blood

pressure and sensor based

notification for medical

devices

Environment e Pollution Monitor pollution levels and
presence in quantity of

polluting particles

Economy e Industry Smart infrastructures

1.3: ARCHITECTURE

The 10T has been defined as a paradigm, in which networking and computing capabilities
are embedded in a probable object to make it smart. Collaboratively, they can be made to
accomplish tasks that require high level of intelligence. For this purpose, I0T systems are fitted

with integrated sensors, processors, actuators and transceivers.
The five layer architecture to define the flow of process is given below:

Perception Layer
Network Layer
Processing Layer

Application Layer

o M L D

Business Layer

131 PERCEPTION LAYER: SENSORS AND ACTUATORS

The Internet of Things cannot be considered without the topic towing towards the new data
economy and the information it holds. The devices, sensors and actuators are helpful in
interacting with the physical world. The merit of an I0T system is measured by what it can learn
from that data. Sensors are the primary source for this. A preferred term for a sensor is a
transducer which can be defined as a physical tool that converts one energy form into another,
like an electrical impulse which can be interpreted better for reading. To derive helpful
inferences, the information gathered by the sensors must be stored and processed intelligibly. A

mobile handset or even a refrigerator can count as a sensor as long as they provide inputs about

their present state i.e. internal state and the environment.

An actuator is a device that is used to bring about a change in the environment such as the
temperature and humidity controller of an air conditioner. It operates in the reverse direction of a
sensor by taking an electrical input and bringing about a physical action as an outcome. It is
possible to store and process information on the top of the network itself or on a remote server. If
any pre-processing of information is feasible, then either the sensor or any other device in the
vicinity is used. The nature of actions can be diverse. Context Awareness is one of them which
means change in the physical world is dependent on its state at that point of time. In standard IoT
systems, in reaction to a sensed input, a sensor can obtain data and route it to a control center or
remote server where decision-making takes place. A corresponding command is sent to an

actuator to respond towards the input as depicted in the block diagram in Figure 1.4

CONTROL

—Condition __ Data—s»
ity SENSOR sy -\ 161

Figure 1.4: Sensor to Actuator flow diagram

1.3.2: NETWORK LAYER:

The Network layer transfers sensor data across networks such as wireless, 3G, LAN, 4G,
NFC and Bluetooth from the Perception to the Processing layer. It is responsible for the
connection over servers and network enabled devices, both wired and wireless and a few
parameters for selected protocols are shown in Table 1.2

Table 1.2: Comparison between Network Protocols

Technology Data Rate Range Power Usage Cost Frequency

Bluetooth/ 1,2,3 ~ 300 ft LOW LOW 2.4GHz
BLE Mbps

3G/4G 10-20 Mbps | Several Miles HIGH HIGH Cellular

Wi-Fi 0.1-54 Mbps < 300 ft MEDIUM LOW subGHz,

2.4GHz

ZigBee 250 Kbps ~ 300 ft LOW MEDIUM 2.4 GHz

NFC 424 Kbps <200 ft HIGH HIGH 2.4 GHz

1.3.3: PROCESSING LAYER: MIDDLEWARE

Software technology is used as a middleware for management, growth and inclusion of

various devices and applications in an 10T setting. Here, storage, analysis and processing of huge

amount of data take place that comes from the network layer. It provides abstraction to

applications from the things and offers various services. Development of middleware in this field

is an active area of research and an event based model can be seen in Figure 1.5

The basic features and challenges of a middleware are as follows:

e Resource discovery without human intervention with every device declaring its presence

e Resource management without human intervention

e Data management starting with acquisition, filtering, aggregation and compression

e Event and source code management.

e Scalability

e Security and Privacy

e Ease of Deployment

e Context Awareness

e API for application development

APPLICATION LAYER

« CLIENTS
« <Subscibe>

MIDDLEWARE

*» Topic 1
* Topic 2

PHYSICAL LAYER

« BROKERS
« <Publish>

Figure 1.5: An Event based Middleware Flowchart

1.3.4: APPLICATION LAYER

It is the responsibility of this layer to provide users with application oriented services. It
defines various applications in which 10T can be deployed such as Smart Cities, Health and
Home. The application layer on the Internet is based on HTTP (Hyper Text Transfer Protocol)
which is deemed unsuitable in a resource constrained environment because of its verbose nature
and large overhead. Many alternate protocols have been developed to suit 10T environments such
as MQTT, CoAP, REST, AMQP etc. When selecting protocols to use in 10T, the following

factors must be accounted for:

e Data Latency
e Reliability
e Bandwidth Requirement

e Memory and Code Footprint
135 : APPLICATION LAYER PROTOCOLS

The commonly used protocols are HTTP, OPC UA, MQTT, CoAP, AMQP and many

more. We will focus on a few of them for constrained applications.

1351 : MQTT (Message Queue Telemetry Transport)

It is an M2M architecture developed to support publish/subscribe architecture over TCP
(Transmission Control Protocol) to enable lightweight connectivity. TCP brings in stream
simplicity and minimizes the risk of data loss. The publish/subscribe architecture is noteworthy
because it annuls the requirement of clients to request updates which minimizes computational
requirements, battery and bandwidth. It is suitable for home automation and mobile
communication as it lies on a star architecture where all devices connect to a central server which

is referred to as the Broker. The communication happens in the following three stages:

1. TCP connection established
2. MQTT connection established data published

3. TCP connection terminated

Publisher Broker
(Client) (Server)
. SYN
Sl
-U <5}
o|E [SYN, ACK] .
=4 &5 > ACK
> Connect Command
[= ACK -
Sls n
[=1 =
2= ;
= = Connect ACK =l
(am)
g 5 > Publish Message
> Disconnect Request
[BlAck >
s |
=1 =1
p=1 k=]
1= kS [FIN, ACK] .
c = _
S|E -
=
= > ACK

Figure 1.6: Working of Pub/Sub model in MQTT

1.2.5.2: CoAP (Constrained Application Protocol)

As the name suggests, it has been specifically developed for resource-constrained devices

as it uses minimal resources for low power applications. Unlike MQTT, this uses client-server

architecture over UDP (User Datagram Protocol) which is a document transfer protocol and

made use at Smart Energy grids and smart homes. This protocols supports four methods, namely

GET, POST, PUT and DELETE. This is a small HTTP protocol but supports encryption and

multicasting by enabling communication between multiple devices at one time. A demonstration

of using in hospitals for patient health monitoring and data storage can be seen in Figure 1.7

STORAGE SERVER OF

SENSOR DATA FROM
t .‘ ’ | PATIENTS FOR
2=, il i FUTURE REFERENCE
|
W
MEASURING
PARAMETERS
USING SENSORS

CLIENT
REQUESTS

CoAP PROTOCOL

CONNECTING SENSOR
VALUES TO BROWSER USING
CoAPPROTOCOL

Figure 1.7: Work-flow of the client-server architecture in CoAP

1.2.5.3: REST (Representational State Transfer)

It enables synchronous request/response over HTTP but there is difficulty in implementation due

to large overhead and latency. It can be used in M2M, smart phones and tablets and works

around JSON and XML data formats.

10

GET
| I POST
PUT

DELETE

- -

Client sends a request HTTP methods Server sends a request

Figure 1.8: REST work-flow model
1.2.6: BUSINESS LAYER

The business layer manages the whole 10T system, including applications, business, profit
models and users’ privacy based on data that has been received from the application layer. This
data is molded into a significant service and more of them are created from the current services.
The true relevance of the 10T technology is the product of a good business model. Analysis in
this layer helps develop strategies to use and automation. Figure 1.9 summarizes all the layers

with details.

Business Layer

System Management

Application Layer

Middleware Layer Ubiquitous Computing

nlormabor
Service Management

Perception Layer

Figure 1.9: 5-layer architecture adapted in 10T

11

CHAPTER 2

LITERATURE REVIEW
2.1: INTRODUCTION

In this endeavor, a deep focus has been maintained on understanding the OSI model,
specifically middleware defined to build an IoT environment ranging from three to five layers.
Smart Buildings (SB) were originally known as Building Control Systems (BCS), Building
Automation Systems (BAS) and Building Management Systems (BMS) among others, but the
evolving intricacies of protocols and devices, sensors, actuators, controllers and interconnection
with other proficient systems and the internet called for a general term called Smart Buildings. It
provides mechanisms, hardware and software to monitor, automate and control not just indoor

but outdoor building related tasks as well. For instance:

e Climate control, with HVAC systems including cooling, humidification and air quality
e Visual ambience, with natural and artificial lighting

e Safety, with alarm systems like fire, gas or water leakage; Emergency lighting

e Surveillance and security, with audio and video

e Transportation, with elevators and escalators

e Supply and recycle, like waste management

e Demand response, with energy management

Last decade has seen a significant growth of smart devices, low power consuming chips
and SoC’s, networking technology and smart sensors. Building sector happens to be one of the
largest consumers of electricity in India with residential sector accounting for 22% and
commercial sector at 8% of the aggregate energy consumption, still rising at 8% annually in
these sectors (Dr Satish Kumar, USAID ECO-I1I Project, 2011).

As per the NMEEE (National Mission for Enhanced Energy Efficiency) document of 2009,
the annual consumption from residential and commercial buildings is expected to rise from
19200 KWh to approximately 89,823 KWh by 2030.

12

Evaporative Cooler
4%

v

4% Lighting

28%
Air conditioning
7%

Refrigeration
13%

34%

Figure 2.1: Energy Consumption in residential Sector (Source: Planning Commission)
The consumption of energy in buildings is dependent on certain factors like:

e Weather Conditions

e Daylight/Sunshine Hours

e Building Design

e Ambient Temperature

e Indigenous efficiency of equipments

e Efficiency of equipments

Hence, reliance on energy driven systems can be co-factored by using climate sensitive designs
where the building premises responds in favor of it.

2.2: ENERGY CONSERVATION SCHEMES IN BUILDINGS
2.2.1 : ECBC (Energy Conservation Building Code)

Under this act, any building with a minimum energy demand of 120 kVVA or a connected
load of 100kW or greater is covered. Hence, this act sets minimum standards for construction

13

and design through building systems helping the government to enforce efficient energy use and

its conservation.

222 LIGHTING

Three commonly used lighting types in India are Incandescent bulbs, CFL (Compact
Fluorescent Lighting) and LED. Conventional incandescent bulbs waste about 90% of their
energy emitting heat instead of light while CFL’s can be up to three times more efficient than by
using 75% less energy and lasting longer. LED is the fast-growing and widely accepted lighting
fixture at present. They make use of only a fourth of the energy provided and last 25 times longer
than conventional bulbs. In addition, they come with color variation and dimming features for
ambient lighting. Dimmers save electricity when employed to lower light levels as shown in
Table 2.1

Table 2.1: Comparison of Lighting Fixtures

Compact Watts Fluorescent Lumens Standard Watts Incandescent Lumens
(W) (Lumens) (W) (Lumens)
30 2400 150 2780
22 1900 100 1500
20 1200 75 1170
15 900 60 2780

2.2.3 : RENEWABLE ENERGY SOURCES

Among the many options available, Solar panels are the most preferred form of
renewable energy at this day. They find use in electricity and heat generation, along with outdoor

and indoor lighting. Small wind turbines for water pumping are also a viable option.
2.2.4 : SELECTION OF APPLIANCES

The BEE (Bureau of Energy Efficiency) has set an energy standard for electrical
appliances by giving them star ratings on saving. When we talk of buildings, a substantial

amount of energy is consumed by the appliances in it like air conditioners, refrigerators, Iron

14

boxes, microwaves etc. It is also important to places appliances strategically, for e.g. a

refrigerator near a heat source will pull more electricity than required to cool.
2.25: SMART & GREEN BUILDING PROJECTS

The trend of going green and getting smart has popularized itself well over India, which
offers opportunities for building automation systems a.k.a smart buildings. The various strategies

for which they are adopted for are:

e Lighting management systems incorporated with motion sensor and dimmers
e Safety and security system

e Auxiliary power bank like diesel generator set or from PV cells

e Integration of HVAC

e Resource efficient and Environmentally responsible

e Reduce, Reuse and Recycle

2.3: SMART SENSORS

The Physical layer as defined in the loT architecture is the input layer which obtains
feedback and is used for measurement and control. The papers included here collaborate to
studies on how to make the input parameters more involved in sensing, It also takes in
consideration context awareness which studies the input as well as the present ambient state to

generate an output to be fed to the core controllers.

Chin-Chi Cheng et.al presented a smart air conditioner with a sleep timer optimized the
energy consumption by up to 49% with wearable devices as smart sensors. The model procured
could detect human temperature and activity during sleep which worked along controlling the air
conditioning. The paper also presented control with mobile phones with the intention of

improving air conditioner technology.

Dae-Man-Han et.al proposed a Home energy control system using IEEE 802.15.4 and
ZigBee to demonstrate its implementation using a real test bed. A new on-demand based routing
protocol called DMPR (Disjoint Multi Path Routing Protocol) was used in the setup to establish

a wireless network between smart nodes.

15

Yago Luiz dos Santos et.al proposed an lot architecture, applied to a case study for reading
Ultra High Frequency Tags with an external UHF antenna for better results. They make use of
micro-services and cloud computing for management of the large data that the Radio Frequency
Identification Tags generate used in the process system. They made use of a development board
called Sparkfun Simultaneous RFID Reader with distance approximation ti increase the readimg
capability of the board. They made use of servies provided by AWS (Amazon Web Services) and
Docker to run an lot environment. Emphasis was also on cost reduction in areas where reading
distance is a fundamental requirement. The results obtained from the test demonstrated judicial
use of the cloud services along with Microsoft Azure for the cloud management and data control

on the server side of working.

Quinping Chi et.al addressed problems related to sensor calibration like sampling rate and
refresh time by proposing a reconfigurable smart sensor design for industrial WSN (Wireless
Sensor Networks) in an 10T environment. The core controller is a Complex Programmable Logic
Device (CPLD) which can adopt connection and read data simultaneously in real time on

multiple sensors as shown in figure 2.2

USB +—» USB serial | |

¢ : Power
interface —— port module | -

Zigbee wircless ' >
communication | |
module ["" High-speed
. . . —- RAM
CPLD controller |
STRT |
ADST7870 :
High-speed
conversion chip
Analog Digital Digital | Digital
quantity quantity quantity quantity
extended extension extension cxtension
interface interface interface interface

Figure 2.2: A CLPD core-enabled hardware design

16

24: 10T SECURITY AND THREATS

While 10T presents efficiency, convenience and accessibility, it has caused an insightful
threat to security and privacy in the recent years. There are research works being carried out

actively to address this cause of concern to maintain reliability in this upcoming sector.

Wei Zhou et.al presented a concise study on the developing trend on loT security by
investigating the research works carried out from 2013 to 2017 as listed in table 2.2. The
majority of works gravitates towards insecure network or protocol problems or privacy
breach/disclosure. The lack of security awareness is the leading cause of a vulnerable cloud and

web services.

Table 2.2: A brief comparison of Threats and Challenges of 10T features

Feature Drawback Challenge Opportunity
Constrained Insecure Lightweight defenses | Combining biological
Systems and protocols and physical
characteristics
Mobile Malware Cross-domain Dynamic

Propagation

identification

Configuration

Inter-dependence

Bypassing static

Access control and

Context-based

defenses privilege/admin access
management
Unattended Remote Remote Lightweight Trusted
Attack Verification Execution
Diversity Insecure Fragmented Dynamic analysis
Protocols simulation platform

Majzoobi et.al proposed in their paper the validation and an algorithm for a safe access key
generation using a technique called PUF (Physical Unclonable Functions) which makes use of
the device structure for identification. This method saves key storage space and makes the key
generation algorithm relatively simpler. More work was done on gait and usage habits to collect

information for the algorithm.

17

Chen et.al presented a layout for extensive automated firmware dynamic study running on
a Linux-based system. The same study for an RTOS (Real Time Operating System) is still in
progress to make integration more open sourced.

Sullivan et.al presented their work on IDS (Intrusion Detection System) and IPS (Intrusion
prevention System) for device protection of their system. Research on heterogeneous devices is
still in progress as the system may not function properly when there is an anomaly in incoming
data traffic. Different devices integration is possible only by building a gateway for protocol
acceptance and conversion. The detection may not be successful if there are unidentified

parameters as inputs.
2.5: SMART BUILDINGS MANAGEMENT SYSTEM: BEMOSS

BEMOSS (Building Energy Management Open System Software) , as it started, was a
proposed platform to allow sensing, measurement, processing, filtering and control of Lighting,
Plug load and HVAC. It is now a MAS (Multi Agent System) that is capable of integration of
multiple smart devices to facilitate grid-interactive and intelligent building operation. The entire
architecture comprises of four layers: 1) User Interface (Ul); 2) Application; 3) Operating
System and Agents; 4) API Translator.

Each layer uses databases to store metadata which is useful for process management. The
Ul consists of a mobile and Web browser interface with a role-based access control. Possible

applications in the application layer are:

Demand Response

e Behavior pattern analysis

e Planning and Scheduling

e Fault detection and diagnostics
e Price-based management

e Load shape analysis

It supports different communication technologies like Ethernet (IEEE 802.3), Wi-Fi (IEEE
802.11), Zigbee (IEEE 802.15.4) and Serial (RS-232/485); and Data exchange protocols like
Modbus, Web, Smart Energy (SE), OpenADR, Zigbee APl and BACnet, to name a few.

18

The third layer is built upon a distributed agent called VOLTTRON™ whose Information

exchange bus (IEB) enable communication among all agents such as Discovery agent, Control

agents, Monitoring agents and other Service agents, including the UlI.

Every device has a unique API (Application Programming Interface) to which the fourth

layer connects BEMOSS to by using translators. They provide a medium of abstraction to obtain

readings and send control commands using simple functions like “getDeviceStatus” and

“setDeviceStatus”. A standard work-flow on the working and implementation of BEMOSS can

be see from figure 2.4. This has been used in several test beds successfully where price and

resources are not a constraint. However, we are in a developing nation with an economic

limitation. The scope of work beyond this is to provide the same features as the inspired works,

but at a lesser cost, adaptable in feature and easy to implement with cloud independent support.

Il SMAP I
v

- e G
P - .

OpenADR _

i Adopted from Volttron
\ -z
BEMOSS Discovery Demand OpenADR
Database Agent Agent Response Agent Agent

v $

Information Exchange Bus

30 | crs0 | BACnet | Nest Philips | Light | Smart XBee
Thermostat | Thermostat Hue .~ Ballast

Agent Agent

Driver Driver Driver Driver Driver Driver Driver

Thermostats Light controllers
(WiFi/ZigBee/BACnet) (WiFi/ZigBee) Plugload Sensors
controllers (ZigBee)
(ZigBee)

Figure 2.3: BEMOSS Agents and work-flow

19

CHAPTER 3

SENSORS and Ul PLATFORM USING MQTT

3.1: INTRODUCTION

In electronics, it is essentially the application of sensors with/without computer programs
that play the most important role i.e. of input. They are being used extensively in consumer
electronics for monitoring, measuring, data logging and control. Common sensors are optical,
acoustic, radio frequency (RF), proximity, temperature, pressure, ultrasonic, flow and level.
Modern sensor technologies enable integration with portable devices, home appliances, smart

home automation, robotics, automotive and healthcare.
3.2: TEST CIRCUIT MODELING

The test circuit used for sensing can measure light intensity, temperature and relative
humidity. The actuators in this case are two loads connected to the test circuit through an opto-
coupler 4 channel relay. The microcontroller used for this purpose is an Espressif development
board called NodeMCU V1.0 (ESP8266 ESP-12) which is an economic, 10T capable, responsive
circuit board written in C, LUA or micro-python. The circuit is powered by a 12V DC supply to
drive the relays. With 11 GPIO (General Purpose Input Output) pins and one ADC input pin, it
can be used to perform actuation tasks for both analog and digital input/output. Components

around the header pins are wired on a general-purpose PCB or on a designed layout.
3.2.1 : Test circuit components:

Board: ESP8266 NodeMCU development kit (ESP-12)
4N33 opto-couplers

Sensor 1: DHT11

Sensor 2: LDR (5-mm)

Resistors (1 kilo-ohm)

Power supply (12 Volts)

N o ok~ 0D

Software: Arduino IDE, Cayenne loT Platform, Fritzing, WireShark

20

The NodeMCU development kit provides access to the features of the board it hosts i.e
the ESP8266 processor. The GPIO pins can only be accessed through these, with the pin

numbering different from the internal numbering of the ESP8266 as shown in figure 3.1

® A0
®RsV
@RSV
GPIOS K X7
® sD1
@CMD

® spo E B S EEE
®CLK

oppopoopgan

Figure 3.1: ESP8266 NodeMCU development kit
The key features of this board are:’

e Programmable Open source Wi-Fi module

e LUA and C compatible

e 10 GPIO (DO TO D10), PWM capable, 1IC and SPI communication
e USB, TTL,ACM (Abstract control model)

e Arduino IDE supported

e Works both at 5V and 3.3V voltage levels

e Plug and Play with CH340G driver support

e Supports deep sleep to save power

e Can be used both as a Station or Access point

21

3.2.2 : Test circuit design models:

Load 1

Load 2

fritzing

00000000
00000000

o]
0
-0
o
0
D - |
o

Figure 3.3: PCB layout of the Test circuit

22

p |
p—_}

UL L T

A P fy

—ﬂ_—_

Glzwits VAR Wety B5P-1 2@
2

2200

" "IV"/ '-‘\'

R1

1A PORs Aning 1o 10 S

WeMos D1 Mni Reday Stoeld Y2

Figure 3.4: Schematic diagram of the Test circuit

3.3.1: CAYENNE ONLINE PLATFORM

It is an online 10T platform with a dashboard and a mobile application supporting its web
interface. For hardware-oriented programming, it makes easier for measure and control of
devices. Along with its drag and drop feature, building programs get easier by standardizing the
connection of devices such as motors and sensors by making use of their respective drivers. It

also supports the light-weight MQTT protocol for data logistics in lieu with the Pub/Sub

architecture. A dashboard featuring sensors of the test circuit can be seen in Figure 3.4

23

LUMINOSITY TEMPERATURE LIGHT FAN

LIGHT_TEMP_HUM
@ AN
i 2.00 ® o
® LcH
LUMINOSITY

TEMPERATURE
EMPERATURE Celsius HUMIDITY

40.00

Figure 3.5: Test circuits dashboard on the 10T platform

332 : MQTT PROTOCOL

This is a quick emerging standard for 10T nowadays due to features like lightweight
overhead, less bandwidth, low latency, publish-subscribe model, small code footprint and bi-
directional capabilities on top of the TCP/IP model. They are preferred for networks like cellular
or satellite which are volatile and do not require high availability or bandwidth to initiate
connections. Data transmission is widely distributed which is beneficial for remote devices with
limited memory and processing power. Hardware manufacturers prefer this protocol for

scalability, security and efficiency. Some prominent features of this protocol are:

e Open source, easier to adopt and implement
e One to many distribution, Pub/Sub model

e Simple commands

e Small message headers

e Multiple QoS (Quality of Service) levels

The QoS are efficiency levels set for the transmission of information. It decides how each
message will be delivered by assigning a mandatory value for every single message unit. It
validates the guarantee of transmission between the sender and the receiver, being set on the
client side. The broker will send the message to the subscribers with the same QoS level set

originally.

24

There are three QoS levels, mainly 0, 1 and 2 as follows:

QoS 0:

This is the simplest layer, with low overhead as client publishes a message but there is
no acknowledgement by the broker. A message in this format can be lost of either the
client disconnects or the server fails. There is no possibility of PUBACK duplicate
messages as message gets delivered only once. It still stands to be the fastest way to send
a message using MQTT as only PUBLISH command is used here to maintain the flow as
shown in figure 3.5. This can be applied where loss of message can be tolerated now and
again, such as in an loT environment where a device is monitoring and sending

cumulative readings.

MQTT CLIENT PUBLISH MQTT BROKER

Figure 3.6: QoS0 level (at most one message delivery)

QoS 1:

This level comes with a guarantee that the message will be attempted to be delivered
once, but may be eligible to be delivered more than once. Hence, there is a possibility of
duplicating and multiple attempts by acknowledgement PUBACK sent by the broker to
the sender. If this feedback is not received, sender can publish again with a duplicate bit
set called DUP. Hence, flow and affirmation is maintained, although the message may
reach the broker multiple times. When a PUBLISH occurs, message is stored in an
abstract layer like a disc, and removed when a PUBACK is confirmed as depicted in
figure 3.6. This format can be used when the 10T device in use can tolerate receiving a
message more than once; the way of doing around is by using a unigue timestamp
attached to every publication.

Security comes at the cost of battery/processor utilization and communication overhead.
But, on application level, using Client ID, password and username as credentials, device

authentication can be done as in case of HTTP as shown in table 3.1

25

PUBLISH
MQTT CLIENT MQTT BROKER

PUBACK

Figure 3.7: QoS1 level (at least one message delivery)

QoS 2:

This is an additional layer to the QoS 1 layer, which ensures that the message gets
delivered only once and at once. There is a sequence of four messages between the client
and subscriber which is handshake to confirm that the original data has been sent and an
acknowledgement has been received. PUBLISH flow takes the message and stores in the
abstract layer which is responded by the broker with PUBREC (Publish Received). On
getting this, client sends PUBREL (Publish Reliance) which is acknowledged and main
data is sent to subscribers by PUBCOMP (Publish Completed). This does not

compromise on delivery but the cost of data transfer is relatively high.

PUBLISH

PUBREC
MQTT CLIENT MQTT BROKER

PUBREL

PUBCOMP

Figure 3.8: QoS 2 level (exactly one message delivery)

26

Table 3.1: MQTT vs HTTP in a constrained environment

Characteristics MQTT HTTP

Design Data-focused Document-focused
Base Model Publish/Subscribe Request/Response
Complexity Simple use commands Complex

Message size Small headers Large headers

Binary format, up to 2 bytes Text format

Service Layers QoS0 Uniform service level for all

QoS 2

QoS1 messages

Distribution One to many One to One

|'U|:l.addr eg 127.0.0.1 and ip.addr eq 127.0.0.1) and (tcp.port eq 43705 and tcp. port eq 49706)

0. Time Source Destination Protocol Length Info
49 18.392789 127.6.6.1 127.6.6.1 TCP 55 49786 -+ 49785 [PSH,
58 18.392835 127.8.8.1 127.8.8.1 TCP 54 49785 » 49706 [ACK]
51 18.393183 127.8.0.1 127.8.0.1 TCP 55 49786 » 49785 [PSH,
52 18.393138 127.8.8.1 127.8.8.1 TCP 54 43785 + 49786 [ACK]
54 18.769539 127.68.8.1 127.8.8.1 TCP 55 49785 = 49785 [PSH,
55 16.769577 127.6.8.1 127.6.6.1 TCP 54 49785 -+ 49786 [ACK]
56 18.772821 127.8.8.1 127.8.8.1 TCP 55 49786 » 49785 [PSH,
57 18.772847 127.8.0.1 127.8.0.1 TCP 54 49785 » 49786 [ACK]
59 18.97351@ 127.8.8.1 127.8.8.1 TCP 55 49786 + 49785 [PSH,
6@ 18.973546 127.68.8.1 127.8.8.1 TCP 54 49785 + 49786 [ACK]
64 11.138327 127.6.8.1 127.6.6.1 TCP 55 49786 + 49785 [PSH,
65 11.138368 127.8.8.1 127.8.8.1 TCP 54 49785 » 49706 [ACK]
66 11.1368763 127.8.0.1 127.8.0.1 TCP 55 49786 » 49785 [PSH,
67 11.13@8792 127.8.8.1 127.8.8.1 TCP 54 43785 + 49786 [ACK]
89 16.879678@ 127.68.8.1 127.8.8.1 TCP 55 49786 + 49785 [PSH,

= 96 16.879716 127.6.6.1 127.6.6.1 TCP 54 49785 -+ 49786 [ACK]

ACK] Seq=3 Ack=1 Win=2853 Len=1
Seg=1 Ack=4 Win=2848 Len=0
ACK] Seq=4 Ack=1 Win=2853 Len=1
Seq=1 Ack=5 Win=2848 Len=@
ACK] Seq=5 Ack=1 Win=2853 Len=1
Seq=1 Ack=6 Win=2843 Len=0
ACK] Seq=6 Ack=1 Win=2853 Len=1
Seg=1 Ack=7 Win=2848 Len=0
ACK] Seq=7 Ack=1 Win=2853 Len=1
Seq=1 Ack=8 Win=2848 Len=0@
ACK] Seq=8 Ack=1 Win=2853 Len=1
Seg=1 Ack=9 Win=2848 Len=0
ACK] Seq=9 Ack=1 Win=2853 Len=1
Seq=1 Ack=18 Win=2843 Len=@
ACK] Seq=1@ Ack=1 Win=2853 Len=1
Seq=1 Ack=11 Win=2848 Len=0

Frame 98: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface @

Ethernet II, Src: 90:00:00 _00:00:00 (00:00:00:00:00:00), Dst: 00:00:00 9O:00:00 (00:00:00:00:00:
Internet Protocol Version 4, Src: 127.8.0.1, Dst: 127.8.0.1

Transmission Control Protocol, Src Port: 49705, Dst Port: 49786, Seq: 1, Ack: 11, Len: @

0@)

@0 B2 62 0@ 0@ 02 02 92 00 DO 00 @D B3 20 45 08 E
@88 28 31 3c 4@ 60 80 86 B0 B0 7T @0 68 81 7f a8 (1-@
@@ @1 c2 29 c2 2a c4 @a 64 59 ba 6d a9 57 5@ 1@) R dY -m- WP
@3 @2 99 54 8@ a8 T

Figure 3.9: MQTT connection over TCP/IP protocol

27

3.3.3 : Temperature & Humidity Sensor

These sensors are digital in nature that take input to read values of temperature and
humidity. Relative humidity accounts for both temperature and pressure, as the electrical
permittivity of the dielectric material changes with humidity. There are many variants available,
such DHT11, DHT22, DHT21 and RHTO04 and table 3.2 is a study of two. The DHT11 is a low-
cost digital device made up of a capacitive humidity sensor and a thermistor to measure the
surrounding and produce a digital signal on the data pin of the microcontroller. It is capable of

generating data every 2 seconds as shown in figure 3.8 and 3.9

Capacitive RH (Relative Humidity) sensors are made of dielectrics whose dielectric constant
vary when subjected to humidity i.e amount of water present in the air. A DHT11 has a
hygroscopic polymer film as its dielectric with layers of electrodes on its either sides. The

advantages of using a capacitive RH sensor are:

e Linear output voltage

e Stable results

e Detects wide range of RH

e Used in HVAC, weather stations, automobiles
e Good accuracy

e Low cost and replaceable

Table 3.2: A comparison of DHT sensors

Specification DHT11 DHT?22 DHT21 RHTO04
Temperature [0] - [50] [-40] ~[125] [-40] ~ [80] [-40] ~ [100]
Range degree Celsius | degree Celsius | degree Degree Celsius
Celsius
RH Range 20 - 80% 0-100 0-100 0 - 100 (accuracy
(accuracy 5%) | (accuracy 2%) | (accuracy 2%)
3%)
Sampling rate 1 Hz 0.5Hz 0.5Hz 0.5Hz

28

—— Calsius

278
2 276
i1
0 ,L_l'."."l
272
Jul 16 1:53 pm Jul 16 1:55 pm Jul 16 1.57 pm Jul 16 1:59 pm
Jul 16 1:54 pm Jul 16 1:56 pm Jul 16 1:58 pm Jul 16 2:00 pm
Figure 3.10: Temperature reading from a DHT11 measured every 2 seconds
~ Percent (%)
600
: ala
o
8 =0
1]
i -
AL
Jul 11 6:20 pm Jul118:30pm Jul 11 6:40 pm Jul 116:50 pm Jul117:00pm

Figure 3.11: Humidity readings from a DHT11 measured every 10 minutes

3.3.4 : Luminosity Sensor:

variable resistance which changes with the incoming light intensity and is therefore used in light
sensing circuits. It has a serpentine track which is a cadmium sulphide (CdS) film passing trough
the sides. The structure is enveloped in a resin case to allow unrestricted access to light. They
require small power and voltage for operation but are highly inaccurate with a response time of

LDR (Light Dependent Resistor), also known as Photoresistor, is a component that has a

about tens or hundreds of milliseconds. This optoelectronic device is preferably used in light

29

varying sensor circuit, and light and dark activated switching circuits. Some of its applications

include street lighting, fire alarm, night security light, light activated switch circuit etc.

ME TAL FILM 0
, CONTACT

CADMIUM
SULPHIDE
TRACK
METAL FiLM iL
CONTACT

Figure 3.12: Basic structure and symbol for LDR

—— LUMINQSITY

102.0

1015

fitte

101.0
100.5

Jul 11 6:34 pm Jul 11 68:36 pm Jul 11 6:38pm Jul 11 &:40 pm

Figure 3.13: Luminosity readings from an LDR measured every 10 minutes

LDR devices are light dependent whose resistance vary accordingly. It decreases when
light falls on them and increases in the dark. The separate terms for them are dark and light
resistance, te former being very high in value, around 102 Q. The resistance starts decreasing
when the device starts absorbing light. Photocells are non-linear devices, the sensitivity of which
are materila based as it has different spectral response to certain wavelenghts of light. It takes
abput 8-12 ms for the change in resistance to take place when light is incident on it, while more

seconds for resistance to recover back up to its initial value after the removal of light.

30

Dark Daylight Sunlight
0 e s
A e
Resistance LN ! !
) N e
10 f 5 |
0.1 ILLUMINATION 1000
(LUX)

Figure 3.14: Resistance vs. lllumination of an LDR
3.3.5: Passive Infra-Red Sensor

The PIR sensor detects incoming infrared radiation from the human body are converts it
into an electrical charge. This charge is proportional to the detected level, and the signal is
further conditioned by an in-built FET. The output pins connect to an external circuitry for
further amplification. The linear range is up to 10 meters; however it depends on the sensitivity
of detection. There are two potentiometers that are designed to vary the sensitivity and alter time
settings. The time setting knob decides the interval for which the output pin should stay high to
an incoming radiation. Sensitivity decides the linear and angular range of the detection range

spread.

Power protection IC

VCC (+5V)

OUTPUT HIGH / LOW. \ Stabilivolt IC

N

(GND)GROUND ——>
Signal processing IC
BISS0001

Time Delay Adjust
CW to increase,

CCW to decrease
Jumper

I I

Repeat trigger
= [S

Cannot repeat trigger

Sensitivity Adjust
CW to HIGH
CCW to LOW

Figure 3.15: The PIR sensor

31

CHAPTER 4
MODELLING OF A CORE PLATFORM

4.1: INTRODUCTION

An open source platform is a one step solution to help buildings save energy and operate
more efficiently. The aim of the platform is to first target the building sizes along with their uses
ie. residential, industrial or commercial. In India, Small buildings take up to 5000 sq. ft and
Medium Buildings take up to 5000 — 50,000 sq. ft of space. These buildings constitute a majority
in this country and aren’t mostly equipped with building automation systems. The features for an

efficient platform are:

e Interoperability: Capable of communicating with multiple 1oT devices, not necessarily
from the same manufacturer, using different communication technologies and data
exchange protocols

e Open Architecture: Seamless interfacing of hardware

e Open Source: Designed to let software developers contribute to the platform by
including additional functionalities, applications and add-ons

e Plug & Play: By making use of a dedicated Device discovery agent, the platform should
be able to automatically discover nearby compatible devices and integrate it smoothly

e Remote control & monitor: Making use of a built-in web server for remote access to the
front end Ul in real time without being on the home/local network. Also enable remote
controlling form anywhere with optimized latency.

e Advanced control: Use of intelligent algorithms by machine learning and implementing
DR for reducing energy consumption. This can contribute to our carbon footprint and

offer comfort and control of our daily electricity usage.

The features listed demand a considerable computation prowess increasing the hardware
investment. The merits can only be enabled by keeping an excellent performance at a minimum

cost along with being adaptive to host machines.

32

4.2: EMBEDDED SYSTEM HOSTING

An embedded system platform comprises of all the necessary building blocks to get a
microcontroller up and running in a short span of time. The idea behind this is that libraries,
frameworks, drivers, schedulers and source code with patches are already inbuilt so that focus
can be on the task in hand. The advantages to embedded platform development are:

e Firmware robustness
e Banking on existing software
e Potential to bring down the overall development task

e Faster time to launch/use

Although Cloud Computing has become immensely popular, it still isn’t economic enough. For
eg. Web services offered by AWS (Amazon Web Services) EC2, equivalent to 2GB memory and
a virtual CPU costs more than 13,000 INR annually. Thus, open-source platforms are specified
to run on embedded systems enabling a cost-effective BEMS solution. Many SBC’s (Single
Board Computers) are available for hosting depending on their performance and run time.

42.1:SINGLE BOARD COMPUTERS

A single board computer is differentiated from a conventional development kit/evaluation
board because in single package it is a complete computing platform; having all the hardware

and software needed to operate properly. A basic comparative study is listed in Table 4 as shown

Table 4.1: Comparison in hardware of selected Single Board Computers

RASPBERRY | RASPBERRY | ODROID ODROID Beagle
Pi 3B Pi4d C2 XU4 Board X15
Processor | Broadcom 1.5 GHz Amlogic Samsung TI AM5728

BCM 2837 Quad-core S905 (4x Exynos5422 | 2x1.5-GHz
Based on ARM | 64-bit RAM Cortex-53 @ | (4x Cortex- ARM
Cortex-A53 Cortex-A72 up to 1.5GHz) | Al5 at Cortex-Al5

CPU (3x 2.0GHz & 4x

performance) Cortex-A7 at

1.4GHz)

33

RASPBERRY | RASPBERRY | ODROID ODROID Beagle
Pi 3B Pi4 C2 XU4 Board
X15
GPIO 40 40 40 40 157
On-Board | No No Ext Flash Ext Flash 4 GB 8-hit
Storage eMMC flash
storage
RAM 1GB DDR2 4GB DDR4 2GB DDR3 2GB 2GB DDR3
LPDDR3
Power 2.5A, 5V 3A, 5V 2A, 5V 4A, 5V 210-460
mA, 5V
Pricing 2200 2500 9500 11,700 18,500
INR INR INR INR INR

42.2 : RASPBERRY PI- MODEL 3B

This is a system on chip being widely used in hosting many platforms mostly aimed at

home automation and security control. It is the safest and most economic bet to implement

projects consisting of dedicated functions and a scope of further expansion. In this platform

system, we are making use of the Pi to host our core Home Assistant. The features match our

demand from the 10T environment and do not require a considerable load on the processor.

Hence, available RAM (Random Access Memory) is enough to accommodate all the batch jobs

it has to perform in keeping the system running in the background and script jobs that it has to

perform in the HA virtual environment. The setup of the system, additionally requires:

e A display module, working as an output to access the Pi GUI (Graphical User Interface)

e A keyboard and mouse, as inputs

e Power supply to the board, micro USB supported, 2.5A

e HDMI connection to the display module

e Ethernet/Wi-Fi support

e SD card and Casing, for protection

34

+33v MM -5V
(SDA) GPIO 2 o (3l +5V
(SCL) GPIO 3 (s (s)8 GND
(GPCLKO)GPIO4 IN7 B's B GPIO 14 (TXD)
GND (s J 10} GPIO 15 (RXD)
GPIO 17 (1131208 GPIO 18
Grio27 a8 GND
GPIO 22 (1501] GPIO 23
+33v W7 s GPIO 24
(MOSI) GPIO 10 @ (20)8 GND
(MISO) GPIO 9 (2132208 GPIO 25
(SCLK) GPIO 11 (2332438 GPIO 8 (CE0)
GND (253263 GPIO 7 (CE1)
iID_SD 27 25l 1D_SC
GPIO 5 @ (30)8 GND
GPI0 6 133208 GPIO 12
GPI013 [Pz JN GND
GPIO 19 (35)3c 38 GPIO 16
GPI026 73 GPIO 20
GND (35 40J 8 GPIO 21

Figure 4.1: Pin diagram of Raspberry Pi (Host Embedded System)

The host system software is called Raspbian which has been specifically dedicated to the Pi. It is
a free operating system based on Debian optimized for the Raspberry Pi hardware, all versions
included. Raspbian images are available in both 32 and 64 bits and can be flashed in a micro SD
card using Balena Etcher, a cross-platform tool for flashing OS images to the SD cards and USB
drives. It supports both .iso and .img files as well as zipped folders onto storage media to create
live drives. Since we are hosting HA, we will install HASSBIAN, a version to suit our
requirements of dedicated functions, preconfigured for Home Assistant.

35

4.3: PERFORMANCE ANALYSIS

To test the working of our embedded board, a platform is hosted on it with smart
integrations working with both synchronous and asynchronous protocols. The testing is done to
review the processing power, energy consumption, performance as well as operating temperature
gradient to scale. The software used for this purpose is called Remote-l1oT which uses a secure
AWS (Amazon Web Service) 10T cloud platform to connect to networked devices remotely,
from anywhere. The added feature is encryption by the SSH (Secure Shell Access) tunnel which
is @ web hooking tool to access network ports securely. This same feature is also used by the
banking systems which provide 64 ~ 128 bits encryption to all passwords and vulnerable data.
This is also works on the TCP/IP stack on which the MQTT is based as well. Key features of this

tool are:

e Full device management

e Secure Remote access

e Software-dedicated solutions

e \Web-management console

e No dedicated VPN (Virtual Private Network) or Firewall required
e Uses web tunnel

e Runs Cron-jobs

Cron is a Linux feature which arranges a command or script on the server to run automatically at
a specified date and time. A scheduled job that it performs to do so is called a Cron job. Scripts
executed as Cron jobs are mostly used to alter files or databases. The software tool Remote-loT
is programmed to run a job on our host system to monitor it’s health and performance at all
times. The limitation to this, however, is the refresh rate. It allows a minimum gap of 15

minutes before the next update. It has three main components:

e Script
e Command

e Action/output

36

curl -s -L https://remote-iot.com/install/remote-iot-install.sh | sudo -s bash
sudo fetc/remote-iot/services/setup.sh "your_login_email® ‘your password' "device_name® ‘device_note’

echo "@ 2 * * * cyrl -s -L https://remote-iot.com/install/upgrade.sh | sudo -s bash” | crontab -

Figure 4.2: Inserting a Cron job in python script

Status Device Name Device Id Note Group Connect URL Internal IP External IP

© raspberrypi 5D153B6CC61ES5F4 Hosting Home_Assistant 172.16.40.116 14.139.251.100

Monitoring Execute Script

Execute New Script

Job Name Script Status Submit Time Schedule Time Execute Time “ Execute User

Figure 4.3: Dashboard for inspecting health of host system

The results of the inspections are as shown in the following figures:

0
10:57 11:22 11:47 12:12

Figure 4.4: Utilization of the CPU on the Pi

37

1500

1000

500

0
10:57 11:22 11:47 12:12

Figure 4.5: Network out in kB connected to local network

60

40

20

0
10:57 11:22 11:47 12:12

Figure 4.6: CPU Temperature of the Pi

38

80

&0 e —
40

20

0
10:57 11:22 11:47 12:12

Figure 4.7: Memory utilization of the Pi

400

300

200

100

0
10:57 11:22 11:47 12:12

Figure 4.8: All networks handled by the Pi

39

CHAPTER S
HOME ASSISTANT

AN OPEN SOURCE DEVELOPMENT PLATFORM

5.1: INTRODUCTION

Among the many development platforms available, our project has been designed on the
development of Home Assistant (HA) as a middleware for device management, control and
automation. A lot of 10T products send their data to the servers and are managed by cloud
computing. This does create a stream of well management but at a risk of data theft, privacy and
indeed, security. With Home Assistant, data can be stored and managed locally, with security
settings to allow only those users with access. Alongside, it supports a variety of features like
communication protocols, automation and trigger platforms, voice assistance and useful plug-ins.

The figure 5.1 shows HA active once the OS has been flashed on the Pi.

Figure 5.1: The CLI with Home Assistant running live

40

The commendable features for hosting this platform are:

Community built being open-source in nature:

An off the market solution is ideal and easy for automation, but it creates dependencies.
The users of smart homes have to be dependent on the dedicated applications for their
smart devices. For example, If the user has an Apple homePod setup, it can only be
controlled by Apple and its updates or software patches to be compatible with other
devices. While they do offer support for a variety of devices, its rarely in favor of niche
devices like microcontrollers. Open source HA(Home Assistant) offers tons of support
for devices and the libraries are open to be updated regularly with new builds.

Control over local data:

Today, every device linked to the Internet has cloud connectivity and stores their
information on the servers. This leads to records of present states of devices, history,
access timings, frequency of use, power consumption etc. While servers make tasks
easier to perform by independent control, one no longer has full control on their device.
Apart from that, a huge of security underlies with internet connectivity. Home Assistant
lets one configure its own setup and is a beneficial tool for learning.

Work in progress:

This project is a work in progress, as it still is running on the beta versions. However, the
libraries of python such as pi-wheel, pip, tcpdump etc. are regularly updated being open
source. A lot of contributors add their libraries to help build this platform every day.
Hence, it is a learning curve to understand automation systems better.

Customization:

While there are many open source platforms to develop such as OpenHAB, Pytomation,
OpenRemote, Calaos, OpenMotics, and Domoticz, this project resides around the HA
because of its familiar language support i.e. Python as well as easy to configure YAML
script. It is a human-readable-data-serialization language, generally used for
configuration only but can be extended to be used in applications where data is being
stored or transmitted. It trumps over other data formats like XML and JSON, because of

the ease of activity.

41

5.2: The Lovelace Ul

It is the name of the HA user interface, which is fast, customizable and a powerful way to
mange loT environments, working both on mobile and desktop. Figure 5.2 show our web and

mobile interface.

Automation &

= New Automation

Light

Smart_Light

Rainy a8

oC Air pressure: 992.5 hPa
6 3 3 5 Humidity: 60 %
o

Wind speed: 7.2 km/h (SE)

Sat Sun Mon Tue Wed
12PM 12 PM 12PM 12PM 12PM
% e & 2 a8

30.9°C 34.4°C

Figure 5.2: Desktop and Web Ul of successful HA setup

42

5.2.1: Smart Light setup:

Light bulbs have become exceptionally smarter in the previous years. There are a variety
of connected solutions available to replace the conventional bulbs, which can be directly
controlled just by a few taps from cellphones and desktops. Smart bulbs make use of LEDs and
various other technologies combined, hence they are expensive. But they also use less energy

and last much longer, adding to the savings.

Smart bulbs offer a degree of control over other bulbs such as scheduled timers and remote
control. They also make use of geofencing, which means working with the GPS of your smart
device to detect position and automate the bulbs when in the vicinity. The various smart bulbs
available in the Indian markets are Philips Hue, TP-Link smart bulb series, Wipro Garnet, Syska
LED, D-Link smart bulbs etc. For economic purpose and the ease of use, we have chosen TP-
Link LB110 smart light as one of our nodes with its successful integration as shown in figure

5.3. The key features are:

e No hub required for connection and protocol conversion
e Brightness control

e Scheduling possible

e Voice-control equipped

e Energy saving

e Bayonet holder provided

e Compatible with 2.4 GHz Wi-Fi band

RemoteUl JAGRTI Sun
Automation) Rainy UeeLAB
= New Automation) ('B
= New Automation1) 6 C
Wed Thu Fri sat sun
12PM 12PM 12PM 12PM 12PM
. & & @ @ &
Light B 318°C 30.4°C
® smart_Light]

Figure 5.3: TP-Link Smart Light integration

43

5.3: THE ESP (Extra Sensory Perception) TOOL

The ESP8266 and ESP32 are one of the cheapest and yet efficient micro-controlling
devices out there. They are being used for countless home automation projects and have also
made their way in the Smart home concept. Even though they are niche devices, many purposes
of automation such as light and fan control, measurement of set parameters through sensors,
actuating a response through the output GPIO pins or output devices like switches and servo-
motors. Lead manufacturers like Sonoff make use of these chips because of their availability and

dirt cheap pricing.

Setting up microcontrollers has become an easy task over the years, with the Arduino library
readily available for programming in C language for ESP boards and the indigenous compiling
tool ESPlorer for programming in the LUA language. However, automation with customization
over communication protocols requires more than just flashing firmware onto the boards. This is
where the ESP tool comes in handy with its front-end ESPHome. It requires simple yet powerful
configuration files to fix the API between the HA hub and the microcontrollers to start the
handshake of information. To top that up, MQTT protocol can make communications easy by
offering its limited bandwidth for exchange of binary information between the daughters and the
mother hub. Since this is also an open source project, the tool only runs on Python2 for now.
Future updates may include the latest language updates.

The source code for installation of ESPHome is as shown in figure 5.4

Figure 5.4: ESPHome setup script on CLI

The dashboard interface is on the same server that is hosting Home Assistant but at a different
port number. This hosts itself on port 6052, the set port for all ESP boards micro-controlling
through the hub front-end. After connection is established, sensor readings and switches need to
be added as features to the source code- YAML configuration file.

44

[18:43:16][I][applicatic
[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16]

[18:43:16][1]
[18:43:16][1][z ion:141 irst i ed
[18:44:01][D][api:531]: (192.168.1.219)"' connected successfully!

Figure 5.5: Successful instant of HA API integration with ESPHome

The API integration shown in figure 5.5 is the successful integration of an ESP8266
microcontroller to the web front of the HA. The process takes roughly about 10 minutes which is
a latency this system affords. These issues arise mainly out of weak connectivity signal over the
Wi-Fi. Ethernet enabled hub has yielded faster results and hence low latency. It is a three step

process listed as:

e Type of API:
There are three types of API in use:
1. SOAP (Simple Object Access Protocol)
2. REST (Representational State Transfer)
3. RPC (Remote Procedural Call)

Home Assistant offers the “REST”’ful API for device integration on the same IP address

as that of the web frontend.

e Data Payload: This is the format of data sent from the API process flow. HA offers and
accepts data only in the JSON format.

45

e Documentation: A robust documentation is needed for popular use of any platform.

5.3.1: DEVICE INTEGRATION INSTANT: “test_blink”

1. Device software model:

Figure 5.6: Device Model on Fritzing

2. ESPHome configuration:

The source code for ESP can be flashed on the board through the ArduinolDE, any of choice.
For our test here, the code is that of an LED control with a web server to do so. The script is both
in C for back-end and HTML for front-end. The dashboard and simple yaml script used are
shown in figure 5.7 and 5.8 respectively.

test _blink

Online. Full path: config/Test blink.yaml

Figure 5.7: ESPHome Dashboard

46

esphomeyaml:
name: test_blink
platform: ESPB266
board: nodemcuv2
wifi:
ssid: !
manual_ip:
static_ip: 192.168.1.
gateway: 192.168.1.1
subnet: 255.255.255.8
switch:
- platform: gpio
pin: GPID4
name: switchl

- plattorm: gpio
pin: GPIO5
name: switch2
sensor:
- platform: adc
pin: A@
name: Brightness
unit_of _measurement: lux
filters:
- lambda:
return (x / 18860.8) * 2000000.0;
- platform: dht
pin: GPIO13
temperature:

name: Lab Temp
humidity:
name: Lab Hum
update_interwval: 28s
binary_sensor:
- platform: gpio
pin: D5
name: Motion
device_class: motion
api:

password: 'Ejfj;;;;%::]
ota: password: ' !

Figure 5.8: Configuration in ESPHome
3. Front-End device link:

Once the code is compiled and validated, the configuration is to be reflected for users to access
easily. Since customization is possible, the gpio pins of the board can be accessed directly from
the Lovelace Ul as shown in figure 5.9. The pins can be programmed to be used as sensors,
actuators (output) or input/toggle pins. The states have to be defined.

47

Home Assistant J &< test_blink

Overview
test_blink o)
B3 map
PLATFORMIO_NODEMCUVZ
by espressif
I= Logbook
= 09500 Firmware: 1.10.1 (Jul 17 2019, 18:37:34)
History test

¥

switch.test

¢ B

Configuration

Figure 5.9: Successful device integration

00.00 lu

Sensor_c

ﬂ' Maotion Clear

switch1 .
switch2 .

Sun Above horizon

’ Brightness 200.00 lux

Figure 5.10: Web Ul with parameters from test_blink on the dashboard

48

CHAPTER 6
RESULT AND DISCUSSIONS

6.1: INTRODUCTION

The implementation of loT devices with a platform support in an environment is discussed
in this chapter. We have first implemented a test circuit to work with sensors and automate
switches and devices with the help of a online platform called Cayenne. Then we have automated
by using triggers designed in the platform, such as time or sensor based scheduling. After that,
we have established connection using the MQTT protocol and analyzed it using a hardware tool
called WireShark. It provides information about data packets, loss in transmission, bit length
with overhead, QoS, protocol as well as the protocol commands being used. All these

information are handy for working around the study of various protocols.

6.2 : Results of the Test circuit 1

126A
S (A)

SUPERRED
V 0

DC12
CHA9212p

Figure 6.1: Test circuit 1

49

it (9 LIGHT_TEMP_HUM then () LIGHT_TEMP_HUM
TEMPERATURE v LIGHT v
28 # On(1)
.| 0 Off (0)
-E 1 ' 2 5(.Ee.lsius A d
¥ Sensor above
O Sensor below

Figure 6.2:

if (LUGHT_TEMP_HUM then (& LIGHT _TEMP_HUM

riti - TEMPERATURE

FAN Last ran 7/18/19 4:53 PM
o Han 138 times

Figure 6.3: Trigger set and active condition

6.3: Results of the circuit 2- “test_blink”

1. The test circuit is designed to sense motion, irradiance, temperature and humidity and control

devices such as lights and fans.

Figure 6.4: Test circuit 2 “test_blink”

50

07:41:08.061 -> WiF1 connected

07:41:08.061 -> IP address:

07:41:08.061 -> 192.168.1.208

07:41:08.061 -> Ready

07:41:08,061 -> IPess: 192.168.1.208

07:41:08,061 -> Attempting MQTT connection...connected

07:41:08.061 -> Setting LEDs:

07:41:08,061 => rs 0, g2 0, bs 0

07:41:08.061 -> {"state":"OFF", "color":("r":255,"g":255, "b" 255}, "brightness":255, "humidicy":"0,00", "motion"s"", "1dr":"0", "temperature":"0.00", "heatIndex": "-10,30"}
07:41:08.096 -> ("state":"OFF", "color":("r":255,"g":255, "b":255}, "brightness":255, "humidity":"0.00", "motion": "standby”, "1dz":"0", "temperature”:"0,00", "heatIndex": "-10,30"}
{"state":"OFF", "colox": {"t":255,"g":255, "b" 1255}, "brightness": 255, "humidity": "0.00", "motion": "standby", "1dr":"1024", "temperature”:"0,00", "heatIndex": "-10.30"}
{"state":"OFF", "color": {"r":255,"g":255, "b" 1255}, "brightness": 255, "humidity":"0.00", "notion": "motion detected"”,"ldr":"1024", "temperature”:"0.00", "heatIndex":"-10.30"}
{"state":"OFF", "color": {"r":255,"g":255, "b" 1255}, "brightness": 255, "humidity": "0,00", "motion": "standby”, "1dr":"1024", "temperature”:"0.00", "heatIndex": "-10.30"}
{"state":"OFF", "color": {"t":255, "g" 255, "b" 1255}, "brightness" 259, "humidity":"0,00", "motion": "notion detected","ldr":"1024", "temperature":"0.00", "heatIndex":"-10,30"}
{"state":"OFF", "color": ("r":255,"g" 255, "b" 255}, "brightness": 255, "humidity":"0,00", "motion": "standby”, "1dr":"1024", "temperature”:"0,00", "heatIndex":"-10.30"}
{"state":"OFF", "colox": {"t":255, "g" 1255, "b" 1255}, "brightness" 255, "numidity": "0,00", "motion": "motion detected","ldr":"1024", "temperature":"0.00", "heatIndex":"-10,30"}
{"state":"OFF", "colox": ("t":255,"g" 255, "b" 255}, "brightness": 255, "humidity": "0,00", "motion": "motion detected”,"ldr":"1024", "temperature”:"84.02", "heatIndex":"79.42"}
07:42:06.845 -> ("state":"OFF", "color":("r":255,"g"+255, "b": 255}, "brightness": 255, "humidicy":"72.00", "motion": "motion detected","ldr":"1024", "temperature”:"84.02", "heatIndex": "91.18"}
{"state":"OFF", "colox": {"r":255,"g":255, "b" 1255}, "brightness" 255, "humidity": "72.00", "motion": "standby”, "1dr": "1024", "temperature": "84.02", "heatIndex": "91.18"}
{"state":"OFF", "colox": {"r":255, "g" 255, "b" 1255}, "hrightness" 255, "numidity": "72,00", "notion": "standby", "1dr": "1024", "temperature": "83.30", "heatIndex": "89.58"}
{"state":"OFF", "color": {"r":255, "g":255, "b":255}, "brightness": 255, "humidity": "72.00", "notion": "standby”, "1dr": "1024", "temperature": "93.84", "heatIndex": "90.77"}
{"state":"OFF", "color": {"t":255, "g" 1255, "b" 1255}, "brightness" 255, "humidity":"72,00", "notion": "standby", "1dr": "1024", "temperature":"84,20", "heatIndex": "91.59"}

{"state": "OFF", "color™: {

{"state":"OFF", "color":{

1"1255,"g"1255, "b"1 255}, "brightness": 255, "humidity": "72.00", "motion": "standby”, "1dr":"1024", "temperature”;"84.,56", "heatIndex":"92.42")
1":1255,"9"1255, "b": 255}, "brightness": 255, "humidity": "72.00", "motion"; "standby”, "1dr":"1024", "temperature”; "84.20", "heatIndex": "91.59"}

" "
" "

Figure 6.5: Serial Monitor output

Enter Password

Please enter the password you set in your configuration for test_blink.

L0

SUBMIT

Figure 6.6: Password protection of HA for security

51

0:00.48 htop

moSquitto p

T44
T44
| 744

Figure 6.9:

52

4 4 4 2 4 4 4 4 yr Symbol

Unavailable

12:00 AM

2:00 AM

400 AM

Unavailable

6:00 AM 8:00 AM

10:00 AM

Unavailable

Unavailable Motion

12:00 PM

2:00 PM

|| | | cloud subscription ¢

I | | config entry discove]

4:00 PM

test

htip login

l switch2

l switch1

Figure 6.10: Lovelace Ul logbook view

53

CHAPTER 7

CONCLUSION & FUTURE SCOPE
7.1: INTRODUCTION

After discussing the various aspects of this project from conceptualization to design and results,
the next step is to draw repercussions from this research work. This chapter discusses the

conclusions arrived and outlines the scope for future work in this area.
7.2: CONCLUSION

The objective of this project was to impart the knowledge pertaining to the various
communication protocols and the use of one in successful integration with physical devices
around us. The MQTT protocol works better than the REST (HTTP) in niche device integrations
as it publishes only the subscribed topics and works in limited bandwidth. There is no
background running process to cause weakness in connections and the response time is 13
seconds better than the latter by testing. The advantages of this have already been listed in earlier
chapters, but it has immense future use and scopes. MQTT is a secure protocol that requires user
authentication from both client and server sides. Both the subscription and publishing is
validated from both sides by a user protected password. Further modifications can be addition of

SSL to the protocol to make it more secure.

The secure shell access adds more security to the connection service. They can be easily made
use in smart projects of home automation and smart cities where connection failure has to be
actively avoided. However, since this is still a project under development, a few drawbacks do
exist that have to be addressed in the work to be done following this. The API of integration
between devices is not an easy task, depending upon the bandwidth of the internet connection
being used. The micro-controllers being used in the test beds are subjected to refresh frequently
due to API validation every 5 minutes. Once successful, the system does run smoothly, but the

process to get there is an ongoing integration fight.

Even though the hub works in a wireless environment, it is better to keep it connected to direct
cable Ethernet to avoid loss and latency in transmission. The sensors can be replaced with better

54

upgrades with a guarantee of accuracy, resolution and sensitivity. The readings obtained from the
binary sensors are promising but ambient sensors need care with the power supply and current
entering the input/output pins. They all work smoothly with the used protocol but have shown
latency with HTTP.

The Home Assistant interface makes automation easier once it has been equipped with a good
configuration.yaml file and integrations are done smoothly. Results have shown ease of use on
both the desktop dashboard and mobile UlI.

7.3: FUTURE SCOPE
The extension to the present work is possible in the following ways:

e Using MQTT protocol more extensively in small lab projects to generate awareness
e Smart cities projects can be implemented with/without cloud support on HA

e Hardware tools like WireShark can be used to study the transmission packets and

forecasting models vcan be developed.

e MATLAB integration of 10T projects for statistical analysis

55

APPENDIX 1

SCHEMATICS OF CIRCUIT BOARDS USED

NODE MCU ESP12

ul

VDD3V3 =
ADC/TOUT
EN
GPIOI6WAKE
DI GRIOIATISPICLK
MTCK PIOI2/HSPIQ

=

GND

GPIOIS

0pF

VDD

On every bootreset/wal

J;ﬂ ESP_12
Iwm.l TAJBIOTMOOGRNS MATTERS NEEDING ATTENTION

GPIOI3/HSPID/CTSORXD2

GPIOV/SPICSI/TXDO ++
GPIO/RXDO -+

cup,

GPIO15 MUST keep LOW, GPIO2 MUST keep HIGH.
FLA!

GPIOO HIGH ->RUN MODE, LOW
‘you need to use the sleep mode.

GND When

716 and RST should be connected,

RI This LED SHOULD BLUE or WHITE to make sure
enough voltage drop

GPIOO

R
ja70

F;
I KEY_FLASH

ESP- 1 2 CORE and GPIO16 will output LOW to resct the system at the time of wakeup. KEY GND GND
Auto program circuit VDSV “
DTR RTS RST GPIOO I8
1 1 5
] 2
IN4007M7(DO-214AC)
. ! VDDUSB U3 -
‘I%' b_ = oYX MG 3 [220K(1%)
2l OIGID 4 v wyp —L
I»» 2 RI2~— 470 RXIX Imo..r USB_Micto_55_8 100K(1%)
GND GND GNE GND
USB TO UART ADC
VDDSV Waorking Output: 3.3V S00mA VDD3V3 VD%D" #
Supply Voltage Limit: 20V o
Current Limit: 800mA sy 3 b10
j— e o7 0.9 | 201172014
4 (BN Sveans = HSPICLK GPIOI4 o = =
- = lm cu) VoS ORGANIZATION
T 4 70pF T 10uF = 6]
l I ’"I - & D4 NODE MCU TEAM
- = . — £ D2
o oo o G T PN GHoT—i P4 D! WEBSITE
POWER IO THT Male P_Ix15 THT Male P_Ix15 WWW.NODEMCU.COM
Figure 7.1: NodeMCU v1.0 dev kit schematics
W3 5V
Cé4d css
100n 100n
I 1005 1005
= d =
S . 5 S
GPIO2 3 gg 4
GPIO3 5 oo -8
GPIO4 7 oo - GPI014
GPIO15
GPIO17 1 - 00 g GPIO g
GPI027 1 gg 14
GPI022 1 oo 16 GPIO23
pr— :; oo (5 GPo24 ID_SD and ID_SC PINS:
L. v -
GPIO9 1 88 22 GPI025 These p for BAT ID
GPIO11 23 oo 24 GPIo8
ID_SD ? gg 2 B-se
GPIOS 29 oo 730
GPIOB 31 32 GPID12
GPIOT3 3 gg 3
GPIO18 35} oo £ GPIO18
GPIO26 37 oo 38 GFI020 DO NOT USE these pins for anything other
39 40 GPIOZ1 than attaching an I2C ID EEPROM. Leave
=100 unconnected if ID EEPROM nct regquired.
40W 0.1° PIN HDR
) "

Figure 7.2: Schematics for Raspberry Pi 3 Model B

56

APPENDIX 2

LB110 SMART WI-FI LED BULB SPECIFICATION SHEET

Specifications

Working Status

- Typical Lumen Output: 800im

« Input Power (Actual power draw in Watts): 10W typical
- Stand-by (Light off) Power: 0.5W Max

« Color Temperature: 2700K

- Rated Input Voltage: 220-240VAC 50/60Hz

« Beam Angle: 180 Degree typical

- Dimmable: Yes (via app and cloud only)

>

General

« Package Contents: Smart Wi-Fi LED Bulb LB110, Quick Installation Guide
« Bulb Lifetime (to 50% brightness level) : 25000 Hrs min @Ta=25C

« Lamp Base : £E27

* Certifications: RoHS, CE

« Operating Temperature: -15°C to + 40°C (5°F ~ 104°F)

+ Operating Humidity: 10%-90%RH

+ Weight: 170g

Network

» Protocol: IEEE 802.11b/g/n
« Wireless Type: 2.4GHz, 1TIR
« System Requirements: Android 4.4 or higher, i0S 10 or higher

Figure 7.3: LB110 specification sheet

57

APPENDIX 3

DHT11 TECHNICAL DATA SHEET

Parameters | Conditions Minimum | Typical Maximum
Humidity
Resolution 1%RH 1%RH 1%RH
8 Bit

Repeatability +1%RH
Accuracy 25T + AMRH

0-507T + 5%RH
Interchangeability | Fully Interchangeable
Measurement oC 30%RH 00%RH
Range 25T 20%RH S0%RH

50T 20%:RH B0%RH
Response Time 1/e(63%)257C, 65 105 155
(Seconds) 1m/s Air
Hysteresis T 1%RH
Long-Term Typical + 1%RH/yvear
Stability
Temperature
Resolution 17T 1T 1C

B Bit B Bit B Bit

Repeatability +17C
Accuracy +11C T
Measurement o s0C
Range
Response Time 1/e(63%) 65 05
(Seconds)

Figure 7.4: DHT11 Technical specifications

58

APPENDIX 4

CODE SNIPPETS

1. Test circuit code for Chapter 3 test model:

#deftine CAYENMNE_DEBUG

#define CAYENME_PRINT Serdial
#include <CayenneMQTTESP8266.h>
#include <DHT.h>

char ssid[] = "#&==",
char wifiPassword[] = "#®®ss&".

char username|]
char password|]
char clientID[]

= "d222bcBB8-1d7d-11e5-889d-8f8Tedc3B267";
"9a2bdd42d97+90733e3cdbb8bdd6110bed8d7dE";
"B8ecd8d98-a3di-11e9-9636-F9984F7/b364b";

DHT dht(14, DHT11);

vold setup() {
delay(1666);
int D3=8;
int D4=2;
int DbE=12;
int D7=13;
pinMode (D3, OUTPUT);
pinMode (D4, OUTPUT);
pinMode (D5, OUTPUT);
pinMode (DY, INPUT);
Serial.begin{115208);

Cayenne.begin(username, password, clientID, ssid, wifiPassword);

}

void loop() {
Cayenne. loop();
Cayenne.virtuallirite(®, analogRead(AB)/18);

float temp = dht.readTemperature();
float hum = dht.readHumidity();

if (isnan(temp) || isnan(hum)) {
Serial.println("Failed to read from DHT sensor!™);
h

Cayenne.virtuallrite(1l, temp, TYPE_TEMPERATURE, UMIT_CELSIUS);
Cayenne.virtualWrite(2, hum, TYPE_RELATIVE_HUMIDITY, UNIT_PERCENT);
if(digitalRead(D3)==B) Cayenne.virtuallirite(3,0);

else Cayenne.virtualWrite(3,1);
if(digitalRead(D4)==8) Cayenne.virtuallirite(4,0);

else Cayenne.virtualWrite(4,1);

h

CAYENNE_IN(3)

digitallirite(D3, getValue.asInt()); //'asInt® for either 'B' or '1' value }

I

59

2. Test circuit “test_blink” code for Chapter 5 model

float ldrValue;

int LDR; #include <ESP8266WiFi.h>
float calclDR; #include <DHT.h>

float diffLDR = 25; #include <PubSubClient.h>
#include <ESP8266mDNS.h>
#include <WiFilUdp.h>
#include <ArduincOTA.h>
float diffHUM = 1; #include <ArduinoJson.h>
Ffloat humVValue;

float diffTEMP = ©.2;
float tempValue;

#define IsFahrenheit true

int pirValue; #define wifi_ssid "==®=n
1nt_p1r15ta‘!:u5; #define wifi_password "***="
String motionStatus; #define mgtt_server "192.168.1.%%="
char message_buff[l@a]; #define mgtt_user "wss=n

int calibrationTime = @; -

#define mgtt_password "x=="

t int BUFFER_SIZE
censt 4n — #define mgtt_port 1883

308;

#define MQTT_MAX_PACKET_SIZE 512
#define light_state_topic "bruh/sensornodel”

byte red = 255; #define light_set_topic "bruh/sensornodel/set”
byte green = 255;

byte blue = 255; const char®* on_cmd = "ON";

byte brightness = 255; const char® off_cmd = "OFF";

byte realRed = @
byte realGreen = @
byte realBlue = @;

#define SENSORNAME "sensornodel™
#define OTApassword "automate”
int OTAport = 8266;

bool statelOn = false;))

ool startFade = false; const int redPin = D1;
unsigned long lastloop = 8; const int greenPin = D2;
int transitionTime = 8; const int bluePin = D3;
bool inFade = false; #define PIRPIN D5
int loopCount = 8; #define DHTPIN D7
int stepR, stepG, stepB; #define DHTTYPE DHT11
int redVal, grnVWal, bluWal; #define LDRPIN A8

bool tlash = talse;

Serial.println(""); bool startFlash = false;

Serial.println("WiFi connected"); int flashlength = 8;
Serial.println("IP address: "); unsigned long flashStartTime = @;
Serial.println({WiFi.localIP()); byte flashRed = red;

1 byte flashGreen = green;

byte flashBlue = blue;

void callback(char® topic, byte® payload, unsigned int length) { byte flashBrightness = brightness;
Serial.print("Message arrived [");
Serial.print(topic); WiFiClient espClient;
Serial.print("] "); PubSubClient client(espClient);

DHT dht(DHTRIN, DHTTYPE);
char message[length + 1];
for (int 1 = @; i < length; i++) { void setup() {
message[i] = (char)payload[i];
Serial.begin(115200);

message[length] = "\0'; pinMode(PIRPIN, INPUT);
Serial.println(message); pinMode(DHTPIN, INPUT);
i pinMode (LDRPIN, INPUT);
if (!processJson(message)) { Serial.begin(115208);
, return; delay(18);
ArduinoQTA. setPort(0TAport);

ArduinoQTA. setHostname (SENSORNAME) ;

ArduinoOTA. setPassword((const char *)0TApassword);
Serial.print("calibrating sensor ");

for (int i = @; 1 < calibrationTime; i++) {

if (stateOn) {
// Update lights
realRed = map(red, 8, 255, @, brightness);
realGreen = map(green, 8, 255, @, brightness);

realBlue = map(blue, 8, 255, 8, brightness); Serial.print(".");
delay(1000);
else {
realRed - 0; Serial.println("Starting Node named " + String(SENSORNAME));
realGreen = 8; setup_wifi();
realBlue = 8; client.setServer(mqtt_server, mgtt_port);
T client.setCallback(callback);
ArduinoQTA.onStart{[]() {
startFade = true; Serial.println("Starting”);
inFade = false; // Kill the current fade 1;
ArduinoOTA.onEnd([]() {
sendState(); Serial.println("\nEnd");

60

Serial.println(H bool processlson(char* message) {
Serial.println("WiFi connected"); StaticJsonBuffer<BUFFER_SIZE> jsonBuffer;

Serial.println("IP address: ");
} Serial.println(WiFi.locallP()); JsonDbject& root = jsonBuffer.parseObject(message);
if (!root.success()) {
void callback(char* topic, byte* payload, unsigned int length) { Serial.println(“parseObject() failed");
Serial.print("Message arrived ["); return false;
Serial.print(topic); }
Serial.print("] ");
if (root.containsKey("state™)) {
char message[length + 1]; if (strecmp(root["state"], on_cmd) == 8) {
for (int i = 8; i < length; i++) { stateOn = true;
message[i] = (char)payload[i];
else if (strcmp(root["state"], off_cmd) == 8) {
message[length] = "\B"; stateOn = false;
Serial.println(message);
if (!processlson(message)) { ;
return; /4 If "flash™ is included, treat RGB and brightness differently
} if (root.containsKey("flash™)) {
flashLength = (int)root["flash”] * 1008;
if (stateOn) {
// Update lights if (root.containsKey("brightness”)) {
realRed = map(red, @, 255, @, brightness); flashBrightness = root["brightness"]
realGreen = map{green, 8, 255, B, brightness);
realBlue = map(blue, @8, 255, B8, brightness); else {
H flashBrightness = brightness;
else {
realRed =
realGreen if (root.containsKey("color™)) {
realBlue flashRed = root["color"]["r"];
} flashGreen = root["color™]["g"]
flashBlue = root["color"]["b"];
startFade = true; H
inFade = false; // Kill the current fade else {
flashRed = red;
| sendState(); | flashGreen = green;
flashBlue = blue; void sendState() {
¥ Static)sonBuffer<BUFFER_SIZE> jsonBuffer;
‘ JsonObject& root = jsonBuffer.createObject();
flashRed = map(flashRed, @, 255, @, flashBrightness); root["state"] = (stateOn) ? on_cnd : off cud;
flashGreen = map(flashGreen, @, 255, @, flashBrightness); JsonObjectd color = root.createllestedObject("color");
flashBlue = map(flashBlue, @, 255, 8, flashBrightness); color["r"] = red;
color["g"] = green;
flash = true; color["b"] = blue;
startFlash = true; root["brightness”] = brightness;
¥ root["humidity"] = (String)humValue;
else { // Not flashing root["motion"] = (String)motionStatus;
flash = false; root["1dr"] = (String)LDR;
root|"temperature”] = (String)tempValue;
if (root.containsKey("color”)) { root["heatIndex"] = (String)dht.computeHeatIndex(tempValue, hunValue, IsFahrenheit);
red = root["color”]["r"]; char buffer[root.measurelength() + 1];
green = root["color”]["g"]; root.printTo(buffer, sizeof(buffer));
blue = root["color”]["b"]; Serial.println(buffer);
¥ client.publish(light_state_topic, buffer, true);
if (Toot.contalnskeyﬁ bt'lghmesﬁ ?) { void setColor(int inR, int inG, int inB) {
brightness = root["brightness”]; analoghirite(redPin, ink);
} analoghirite(greenPin, inG);
if (root.containsKey("transition")) { analoglirite(bluePin, inf);
transitionTime = root["transition"]; Sertal.printIn("Setting LEDs:");
lee ¢ Serial.print("r: ");
P Serial.print(ink);
transitionTime = 8; . o .
} Serial.print(”, g: ");
} Serial.print(inG);
Serial.print(”, b: ");
return true; } Serial.println(inB);
¥

61

else if (pirValue == HIGH && pirStatus != 2) {
motionStatus = "motion detected”;
sendState();
pirStatus = 2;

void reconnect() {
/7 Loop until we're reconnected
while (!client.connected()) {
Serial.print("Attempting MQTT connection...”);
// Attempt to connect
if (client.connect(SENSORNAME, mgtt_user, mgtt_password)) {
Serial.println("connected”);
client.subscribe(light_set_topic);

¥

delay(le@);

if (checkBoundSensor(newTempValue, tempValue, diffTEMP)) {
tempValue = newTempValue;

setColor(@, @, 8); sendState();
sendState(); }
} else { if (checkBoundSensor(newHumValue, humValue, diffHUM)) {
Serial.print("failed, rc="); humValue = newHumValue;
Serial.print(client.state()); sendState();

Serial.println(" try again in 5 seconds");
// Wait 5 seconds before retrying
delay(500@);

¥

int newLDR = analogRead(LDRPIN);

if (checkBoundSensor(newlDR, LDR, diffLDR)) {
LDR = newlDR;
+ sendState();

¥

¥
if (flash) {
if (startFlash) {
startFlash = false;
flashStartTime = millis();

bool checkBoundSensor(float newValue, float prevWalue, float maxDiff) {
return newValue < prewWalue - maxDiff || newValue > prevValue + maxDiff;

¥
void loop() {
ArduinoOTA. handle();

if (!client.connected()) {
// reconnect();
software_Reset();

¥
if ((millis() - flashStartTime) <= flashlLength) {
if ((millis() - flashStartTime) % 1000 <= 580) {
setColor(flashRed, flashGreen, flashBlue);

¥
client.loop(); else {
if (linFade) { setColor(@, @, B);‘
float newTempValue = dht.readTemperature(IsFahrenheit); }
float newHumValue = dht.readHumidity(); ¥
pirValue = digitalRead(PIRPIN); //read state of the else {
| if (pirValue == LOW &8 pirStatus != 1) { flash = false;
motionStatus = "standby™; setColor(realRed, realGreen, realBlue);
sendState(); T
pirStatus = 1; ¥

if (startFade) {
if (transitionTime == @) {
setColor(realRed, realGreen, realBlue);
redVal = realRed;
grnVal = realGreen;
bluVal = realBlue; }
startFade = false;

int calculateStep(int prewalue, int endValue) {
int step = endValue - prewalue;
if (step) {
step = 1020 / step;

return step;

else { 1
loopCount = 8; int calculateVal(int step, int val, int i) {
stepR = calculateStep(redVal, realRed); if ((step) 8& i % step == @) {
stepG = calculateStep(grnVal, realGreen); if (step > 8) {
stepB = calculateStep(bluVal, realBlue);

inFade = true; val += 1;
) i
} else if (step < @) {
if (inFade) { val = 1;
startFade = false; }

unsigned long now = millis();
if (now - lastloop » transitionTime) {

}
if (loopCount <= 1828) { if (val » 255) {

lastloop = now; val = 255;
redVal = calculateVal(stepR, redVal, loopCount);)
grnVal = calculateVal(stepG, grnVal, loopCount); . o
bluVal = calculateVal(stepB, bluVal, loopCount); else if (val < 0) {
setColor(redval, graVal, bluVal); // Write current values to LED pins val = 8;
Serial.print("Loop count: "); }
Serial.println(loopCount);
loopCount++; return val;

else {) L))
inFade - false; }umd software_Reset() // Restarts program from beginning but does not reset the peripherals and registers

3 {

) Serial.print("resetting");
H ESP.reset();

! }

62

REFERENCES

[1] M. Pipattanasomporn, Murat Kuzlu, Warodom Khamphanchai and Avijit Saha
“BEMOSS: An agent platform to facilitate grid-interactive building operation with 10T
devices” IEEE Conference on Innovative Grid Technologies-Asia (ISGT ASIA)
2015.7387018

[2] Leonardo Albernaz Amaral, Everton de Matos, Raméao Tiago Tiburski, Fabiano Hessel,
Willian Tessaro Lunardi and Sabrina Marczak, Book on “Middleware Technology for
IoT Systems: Challenges and Perspectives Toward 5G”, Internet of things (IoT) in 5G
Mobile Technologies, pp 333-367, 2016

[3] Abhinav Prashant, Rohan Gupta, presentation on “Middleware for Internet of Things: A
Survey”

[4] Pandesswaran C, Surender S and Karthik KV “Remote Patient monitoring System based
Coap in wireless sensor networks” International Journal of Sensor Networks and Data
Communications 5:145 2016

[5] Catarinucci L, Donno DD, Palano L (2015) An IoT Aware Architecture for Smart
Healthcare Systems, IEEE journal 2: pp 515-526

[6] Mohammad Aazam and Imran Khan and Aymen Abdullah Alsaffar and Eui-nam Huh
“Cloud of Things: Integrating Internet of Things and cloud computing and the issues
involved” Proceedings of 2014 11th International Bhurban Conference on Applied
Sciences & Technology (IBCAST) Islamabad, Pakistan, 14th - 18th January, 2014, pp
414-419

[7] Nagaraju Kaja “A Review of Energy Consumption in Residential Sector in India;
Possibilities for energy conservation”, [IRHAL, Vol.6, Issue 6, Jun 2018, 375-384

[8] Energy Statistics 2018 (25" issue), Central Statistics Office, Ministry of Statistics and
Programme implementation, Government of India, New Delhi

[9] Zhou, W., Jia, Y., Peng, A., Zhang, Y., and Liu, P. (2018) “The Effect of IoT New
Features on Security and Privacy: New Threats, Existing Solutions, and Challenges Yet
to Be Solved” IEEE Internet of Things Journal, 1-1. doi:10.1109/jiot.2018.2847733

[10] Carlos M.S. Rodrigues, Bruno S.L.Castro “A Vision of Internet of Things in Industry
4.0 with ESP8266”, IJECET, Vol.9, Issue 1, Jan-Feb 2018, pp 1-12

63

[11] NodeMCU, “Lua based interactive firmware for mcu like esp8266”. [Online].
Available: https://github.com/nodemcu/nodemcu-firmware. Last access: 10/12/16

[12] Espressif, “Low-power, highly-integrated Wi-Fi solution”. [Online]. Available:
http://espressif.com/products/hardware/esp8266ex/overview/

[13] ESP8266 NodeMCU, “Comparison of ESP8266 NodeMCU development boards”.
[Online]. Available: http://frightanic.com/iot/comparison-of-esp8266-
nodemcudevelopment-boards/

[14] A. Varghese and D. Tandur, “Wireless requirements and challenges in industry 4.0,” in
Contemporary Computing and Informatics (IC3l), 2014 International Conference on.
IEEE, 2014, pp. 634-638.

[15] Manan Mehta, “ESP 8266: A Breakthrough In Wireless Sensor Networks And Internet
Of Things”, in International Journal of Electronics and Communication Engineering &
Technology (IJECET) Volume 6, Issue 8, Aug 2015.

[16] Wi-Fi Module, “ESP8266EX Datasheet”. [Online]. Available: http://www.adafruit.com

[17] Dong-Ying Liand Shun-dao Xie and Rong-jun Chen and Hong-Zhou Tan, “Design of

[18] Internet of Things System for Library Materials Management using UHF RFID” 2016
IEEE International Conference on RFID Technology and Applications (RFID-TA),2016,
pp. 44-48

[19] S. Shubhangi, N.Pooja, S. Shubhangi, S. Vrushali, J. Yogesh, “MQTT- Messge
Queuing

[20] Telemetry Transport protocol”, Internation Journal of Research , ICRRTET, Vol.3,
Issue 3, pp. 240-244

[21] Andy, Stephen Clark. "MQTT for Sensor Networks (MQTT-SN) Protocol
Specification Version 1.2" (PDF).

[22] https://www.raspberrypi.org/documentation/

[23] https://lwww.home-assistant.io/

[24] https://code.wireshark.org/review/gitweb?p=wireshark.git;a=tree

[25] https://www.arduino.cc/en/loT/HomePage

[26] https://cayenne.mydevices.com/cayenne

64

http://espressif.com/products/hardware/esp8266ex/overview/
http://frightanic.com/iot/comparison-of-esp8266-nodemcudevelopment-boards/
http://frightanic.com/iot/comparison-of-esp8266-nodemcudevelopment-boards/
http://frightanic.com/iot/comparison-of-esp8266-nodemcudevelopment-boards/
http://www.adafruit.com/
https://www.raspberrypi.org/documentation/
https://www.home-assistant.io/
https://code.wireshark.org/review/gitweb?p=wireshark.git%3Ba%3Dtree
https://www.arduino.cc/en/IoT/HomePage

