
LAB AUTOMATION SYSTEM WITH PLATFORM SUPPORT

USING THE ASYNCHRONOUS MQTT PROTOCOL

DISSERTATION

SUBMITTED IN THE PARTIAL FULLFILMENT OF THE REQUIREEMNTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

POWER SYSTEM

Submitted by:

JAGRITI SURABHI

(2K17/PSY/07)

Under the supervision of

Dr. M. RIZWAN

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

2019

2

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi - 110042

 CANDIDTATE’S DECLARATION

I, JAGRITI SURABHI, Roll No. 2k17/PSY/07, student of M.Tech (Power System), hereby

declare that the project Dissertation titled “Lab Automation System with Platform Support

using Asynchronous MQTT Protocol” which is submitted by me to the Department of

Electrical Engineering, Delhi Technological University, Delhi in partial fulfillment of the

requirement for the award of the degree of Master of Technology is original and not copied from

any source without proper citation. This work has not previously formed the basis for the award

of any Degree, Diploma Associateship, Fellowship or other similar title or recognition.

Place: Delhi JAGRITI SURABHI

Date: 09.08.2019

3

Department of Electrical Engineering

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi – 110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Lab Automation System with Platform

Support using Asynchronous MQTT Protocol” which is submitted by JAGRITI SURABHI,

Roll no 2K17/PSY/07 [Department of Electrical Engineering], Delhi Technological University,

Delhi in partial fulfillment of the requirement for the award of the degree of Master of

Technology, is a record of the project work carried out by the student under my provision. To the

best of my knowledge this work has not been submitted in part or full for any Degree or Diploma

to this University or elsewhere.

Place: Delhi Dr. M. Rizwan

Date: 09.08.2019 SUPERVISOR

4

ABSTRACT

The objective of this project revolves around creating a Lab automation system with the main

focus being the usage of a Smart IoT Platform to integrate and control devices capable of

communicating over the internet. The system consists of daughter nodes using synchronous or

asynchronous protocols for communication, a mother hub hosting a smart platform, a server and

front end Web UI. The daughter nodes are microprocessors and smart peripherals like Lighting

loads and plug load controllers. Each microprocessor employed hosts an automation circuit that

can be controlled cumulatively at one interface, the smart platform.

This platform is hosted by the mother hub, mainly the Raspberry Pi used in this project for that

purpose. There is no commonly accepted open standard for interaction with smart devices. This

hinders many devices from interacting with each other. A hub is a unit that acts as a tool for all

the linked systems to communicate and handle. The R-Pi SoC flamboyant board that has been a

choice of enthusiasts for its form-factor, processing, open source integration and the number of

GPIO pins it offers for automation. It seeks to deliver local and remote tracking, interoperability,

scalibilty, plug and play, robustness, open protocol, all this being cost-effective.

The open source project Home Assistant, an automation platform running on Python3 is hosted

on the mother hub. It has stronger focus on end users with a good selection of software providers

and integration services as compared to other beta open source projects. The platform runs in a

virtual environment created for its Command line and Graphic user interface. The Internet of

Things (IoT) is a fast-growing theme of technical, social and financial importance. IoT’s open

nature leads to dominant settings being created in which its parts can be rearranged based on the

context. This has innovative consequences.

Because IoT is not a consolidated sector where a dominant design guides incremental innovation,

instead, innovation arises from connecting components together by concentrating on inter-

industry cooperation and user engagement. The further growth and implementation of IoT will

be simulated in the coming times.

5

ACKNOWLEDGEMENT

I would like to express my gratitude towards all the people who have contributed their precious

time and effort to help me with this project, without their support it would not have been possible

for me to implement this project to its completion.

I would like to thank Dr.M.Rizwan, Project Supervisor and Associate Professor, Department of

Electrical Engineering for his support, valuable feedbacks and guidance throughout the period of

this work.

I would also like to thank my fellow scholars Dr.Priyanka Chaudhary, Astitva Kumar, Tarun

Kumar Nirmal and Eklavya Dahiya who encouraged and helped me develop better ideas to keep

the challenge alive.

JAGRITI SURABHI

6

CONTENTS

Declaration i

Certificate ii

Abstract iii

Acknowledgement iv

Contents v

List of Tables x

List of Figures xi

Symbols, Abbreviation xiiii

CHAPTER 1: INTRODUCTION 1

1.1 : GENERAL 1

1.2 : MOTIVATION: THE INDIAN MARKET SCENARIO 2

1.2.1 : Consumer Applications 3

1.2.2 : Industrial Applications 3

1.2.3 : Public Sector Applications 4

1.3 : ARCHITECTURE 5

1.3.1 : Perception Layer 5

1.3.2 : Network Layer 6

1.3.3 : Processing layer 7

1.3.4 : Application Layer 8

1.3.5.1 : Message Queuing Telemetry Transport 9

1.3.5.2 : Constrained application Protocol (CoAP) 10

1.3.5.3 : Representational State Transfer (REST) 10

7

1.3.5 : Business Layer 11

CHAPTER 2: LITERATURE REVIEW 12

2.1 : Introduction 12

2.2 : Energy Conservation Schemes in India 13

2.2.1 : Electric Conservation Building Code (ECBC) 13

2.2.2 : Lighting 14

2.2.3 : Renewable Energy Resources 14

2.2.4 : Selection of Appliances 14

2.2.5 : Smart and Green building projects 15

2.3 : Smart Sensors 15

2.4 : IoT Security and Threats 17

2.5 : Smart Building Management System: BEMOSS 18

 CHAPTER 3: SENSORS and UI PLATFORM USING MQTT 20

3.1 : Introduction 20

3.2 : Test Circuit Model 20

3.2.1 : Test Circuit Components 20

3.2.2 : Test Circuit Design Models 22

3.3.1 : Cayenne Online Platform 23

3.3.2 : MQTT Protocol 24

3.3.3 : Temperature and Humidity Sensor 28

3.3.4 : Luminosity Sensor 29

3.3.5 : PIR Sensor 31

CHAPTER 4: MODELING OF THE CORE PLATFORM 32

4.1 : Introduction 32

4.2 : Embedded System Hosting 33

4.2.1 : Single Board Computers 33

4.2.2 : Raspberry Pi model 3B 34

8

4.3 : Performance Analysis 36

CHAPTER 5: HOME ASSISTANT: AN OPEN SOURCE DEVELOPMENT PLATFORM

5.1: Introduction 40

5.2: The Lovelace UI 42

5.2.1: Smart Light setup 43

5.3: The ESP Tool 44

5.3.1: Device Integration 46

CHAPTER 6: RESULTS AND DISCUSSIONS 49

6.1: Introduction 49

6.2: Results of Test circuit 1 49

6.3: Results of Test circuit 2 50

CHAPTER 7: CONCLUSION AND FUTURE SCOPE 54

7.1: Introduction 54

7.2: Conclusion 54

7.3: Future scope 55

APPENDICES 13

Appendix 1 13

Appendix 2 14

Appendix 3 15

Appendix 4 16

REFERENCES 21

9

LIST OF TABLES

Table No. Table Page No.

Table 1.1 Public sector-wise applications 4

Table 1.2 Comparison between network protocols 7

Table 2.1 Comparison of Lighting Fixtures 14

Table 2.2 A brief comparison of Threats and Challenges of IoT features 17

Table 3.1 MQTT vs HTTP in a constrained environment 27

Table 3.2 A comparison of DHT sensors 28

Table 4.1 Comparison in hardware of selected Single Board Computers 33

10

LIST OF FIGURES

Figure No. Figures Page No.

Figure 1.1 The Present IoT Trend 1

Figure 1.2 The IoT Market in India 2

Figure 1.3 Indian Consumer Expectation from the IoT Sector 3

Figure 1.4 Sensor to Actuator Flow Diagram 6

Figure 1.5 An Event based Middleware Flowchart 8

Figure 1.6 Working of Pub/Sub model in MQTT 9

Figure 1.7 Work-flow of the Client-Server Architecture in CoAPs 10

Figure 1.8: REST Work-flow Model 11

Figure 1.9: 5-layer Architecture adapted in IoT 11

Figure 2.1 Energy Consumption in the Residential Sector (Source: Planning Commission) 13

Figure 2.2 A CLPD Core-Enabled Hardware Design 16

Figure 2.3 BEMOSS Agents and Work-flow 19

Figure 3.1 ESP8266 NodeMCU Development Kit 21

Figure 3.2 Components Layout of the Test 22

Figure 3.3 PCB Layout of the Test Circuit 22

Figure 3.4 Schematic Diagram of the Test Circuit 23

Figure 3.5 Test Circuits Dashboard on the IoT Platform 24

Figure 3.6 QoS0 Level (at most one message delivery) 25

11

Figure 3.7 QoS1 Level (at least one message delivery) 26

Figure 3.8 QoS 2 Level (exactly one message delivery) 26

Figure 3.9 MQTT Connections over TCP/IP Protocol 27

Figure 3.10 Temperature Reading from a DHT11 measured every 2 Seconds 29

Figure 3.11 Humidity Readings from a DHT11 measured every 10 Minutes 29

Figure 3.12 Basic Structure and Symbol for LDR 30

Figure 3.13 Luminosity Readings from an LDR measured every 10 Minutes 30

Figure 3.14 Resistances vs. Illumination of an LDR 31

Figure 3.15 The PIR Sensor 31

Figure 4.1 Pin Diagram of Raspberry Pi (Host Embedded System) 35

Figure 4.2 Inserting a Cron Job in Python Script 37

Figure 4.3 Dashboard for Inspecting Health of Host System 37

Figure 4.4 Utilization of the CPU on the Pi 37

Figure 4.5 Network out in kB connected to Local Network 38

Figure 4.6 CPU Temperature of the Pi 38

Figure 4.7 Memory Utilization of the Pi 39

Figure 4.8 All Networks handled by the Pi 39

Figure 5.1 The CLI with Home Assistant running Live 40

Figure 5.2 Desktop and Web UI of successful HA Setup 42

Figure 5.3 TP-Link Smart Light Integration 43

Figure 5.4 ESPHome Setup Script on CLI 44

12

Figure 5.5 Successful Instant of HA API Integration with ESPHome 45

Figure 5.6 Device Model on Fritzing 46

Figure 5.7 ESPHome Dashboard 46

Figure 5.8 Configuration in ESPHome 47

Figure 5.8 Successful Device Integration 48

Figure 5.10 Web UI with Parameters from Test_Blink on the Dashboard 48

Figure 6.1 Test circuit 1 49

Figure 6.2 Setting Triggers Conditions 50

Figure 6.3 Trigger set and active condition 50

Figure 6.4 Test circuit 2 “test_blink” 50

Figure 6.5 Serial Monitor Output 51

Figure 6.6 Password Protection of HA for Security 51

Figure 6.7 Process manager Htop showing HA on Raspbian 52

Figure 6.8 MQTT Publish Test Result 52

Figure 6.9 MQTT Subscribe Test Result 52

Figure 6.10 Lovelace UI Logbook View 53

13

14

15

1

 CHAPTER 1

INTRODUCTION

1.1 GENERAL

The Internet of Things (IoT) is the physical world’s act of digitization. It is a

comprehensive term used to indicate a system where wireless and wired connections connect the

physical universe to the web. It is not a single technology, rather a tandem agglomeration of

different techniques. The Internet of Things industry in India will be worth $9 billion by 2020,

according to “IoT India Congress 2018”. In all main industries, including telecommunications,

health, agriculture, cars and home, the adoption of IoT technology is set to rise. Globally, the end

of 2019, Gartner estimates that 14.2 billion connected things will be in use which will touch 25

billion by 2021.

Figure 1.1: The present IoT trend

80

70

60

50

40

30

20

10

0

2015 2016 2017 2018 2019 2020

In years

2021 2022 2023 2024 2025

C
o
n
n
e
ct

e
d
 d

e
vi

ce
s

in
 B

il
li
o
n
s

2

1.2 : MOTIVATION: The Indian Market Scenario

The IoT is well-poised to bloom in the next technological revolution since the advent of the

Internet. It has been drawing more and more attention as the age turns increasingly digital

employing smart technologies. Although India began its journey into the IoT much later than

developed countries, its established hub of connected devices is expected to rise at a rate much

faster than them. In 2017, the World Bank pointed out the Indian government’s campaign –

“Digital India” as a prominent endeavor to making firms more ambitious by applying IoT

technologies and the growth henceforth can be seen in Figure 1.2

Figure 1.2: The IoT market in India (Source: Deloitte)

The adoption in India is expected to progress across all mainstream industries by the next

decade. The prominent sectors driving it currently are transportation, utilities, manufacturing,

logistics and automotive. Due to the above listed direct association with Smart city projects, they

are expected to see the highest adoption. Healthcare, Retail and Agriculture are the rising sectors

adopting smart technologies for solutions. Application across India can be enveloped under three

broad classifications- Consumer, Industrial and Public sector.

10

9

8

7

6

5

4

3

2

1

0

2014 2016

Investment through the years

2020

In
v
e
st

m
e
n
t

in
 b

il
li
o
n

 d
o
ll
a
rs

3

Indian consumer expectation from the IoT

Access to public

services

10%
Healthcare

Safety and

security

14%

31%

Reduced traffic

congestion

20%

Envionmental

impact and lower

pollution levels

25%

1.2.1 : Consumer Applications

The expectation of consumers is good living standards and better quality of life as the

perception of IoT is limited. Although the applications are not as wide as industrial in this sector,

they are opening utilitarian and intimate experiences like wearables, fitness trackers and smart

homes. Smartphone applications can now lock houses, set and reset thermostats and even

research is ongoing on ways of cooking and monitoring on the basis of ambient temperature.

Figure 1.3: Indian consumer expectation from the IoT (Source: Tata Communications)

1.2.2: Industrial applications

India as well as globally, the IIoT (Industrial Internet of Things) has far exceeded all

applications. The term Industry 4.0 accounts the onset of a new industrial revolution through

automation, connectivity and analysis. Some major applications are:

• Supply chain: Goods tracking, connected factories, robotics and improved process

automation

• Agriculture: Chemical and fertilizer testing, moisture and pH factor of soil

• Energy: Management and early fault detection

• Transportation: Vehicle tracking, Traffic management

4

1.2.3: Public Sector Applications:

The chart given in Table 1.1 lists the potential end use in various sectors of the IoT. This is

of significance in the coming years as the push for Smart cities is strong has enabled integration

of technologies across a wide area.

Table 1.1: Public sector-wise applications

Sector Sub-sector Examples

Transportation • Public Transportation GPS tracking and real time

monitoring of buses to give

information on wait time

• Traffic

Smarter control of traffic

lights to prevent congestion

• Public bikes

Tracking by requirement for

crowd control and reducing

automotives on road

Security • Drones Computer vision, tracking and

 mapping, surveillance

• Fire safety

Smoke detection and

 automated notification.

 Sensors in gas pipes can

 enable early detection

Health • Assistance

• Medication

Single-push button for

emergency alert

Automate medicine supply for

Diabetes or high blood

pressure and sensor based

5

 notification for medical

devices

Environment • Pollution Monitor pollution levels and

presence in quantity of

polluting particles

Economy • Industry Smart infrastructures

1.3 : ARCHITECTURE

The IoT has been defined as a paradigm, in which networking and computing capabilities

are embedded in a probable object to make it smart. Collaboratively, they can be made to

accomplish tasks that require high level of intelligence. For this purpose, IoT systems are fitted

with integrated sensors, processors, actuators and transceivers.

The five layer architecture to define the flow of process is given below:

1. Perception Layer

2. Network Layer

3. Processing Layer

4. Application Layer

5. Business Layer

1.3.1 PERCEPTION LAYER: SENSORS AND ACTUATORS

The Internet of Things cannot be considered without the topic towing towards the new data

economy and the information it holds. The devices, sensors and actuators are helpful in

interacting with the physical world. The merit of an IoT system is measured by what it can learn

from that data. Sensors are the primary source for this. A preferred term for a sensor is a

transducer which can be defined as a physical tool that converts one energy form into another,

like an electrical impulse which can be interpreted better for reading. To derive helpful

inferences, the information gathered by the sensors must be stored and processed intelligibly. A

6

mobile handset or even a refrigerator can count as a sensor as long as they provide inputs about

their present state i.e. internal state and the environment.

An actuator is a device that is used to bring about a change in the environment such as the

temperature and humidity controller of an air conditioner. It operates in the reverse direction of a

sensor by taking an electrical input and bringing about a physical action as an outcome. It is

possible to store and process information on the top of the network itself or on a remote server. If

any pre-processing of information is feasible, then either the sensor or any other device in the

vicinity is used. The nature of actions can be diverse. Context Awareness is one of them which

means change in the physical world is dependent on its state at that point of time. In standard IoT

systems, in reaction to a sensed input, a sensor can obtain data and route it to a control center or

remote server where decision-making takes place. A corresponding command is sent to an

actuator to respond towards the input as depicted in the block diagram in Figure 1.4

Figure 1.4: Sensor to Actuator flow diagram

1.3.2 : NETWORK LAYER:

The Network layer transfers sensor data across networks such as wireless, 3G, LAN, 4G,

NFC and Bluetooth from the Perception to the Processing layer. It is responsible for the

connection over servers and network enabled devices, both wired and wireless and a few

parameters for selected protocols are shown in Table 1.2

7

Table 1.2: Comparison between Network Protocols

Technology Data Rate Range Power Usage Cost Frequency

Bluetooth/

BLE

1,2,3

Mbps

~ 300 ft LOW LOW 2.4GHz

3G/4G 10-20 Mbps Several Miles HIGH HIGH Cellular

Wi-Fi 0.1-54 Mbps < 300 ft MEDIUM LOW subGHz,

2.4GHz

ZigBee 250 Kbps ~ 300 ft LOW MEDIUM 2.4 GHz

NFC 424 Kbps < 200 ft HIGH HIGH 2.4 GHz

1.3.3 : PROCESSING LAYER: MIDDLEWARE

Software technology is used as a middleware for management, growth and inclusion of

various devices and applications in an IoT setting. Here, storage, analysis and processing of huge

amount of data take place that comes from the network layer. It provides abstraction to

applications from the things and offers various services. Development of middleware in this field

is an active area of research and an event based model can be seen in Figure 1.5

The basic features and challenges of a middleware are as follows:

• Resource discovery without human intervention with every device declaring its presence

• Resource management without human intervention

• Data management starting with acquisition, filtering, aggregation and compression

• Event and source code management.

• Scalability

• Security and Privacy

• Ease of Deployment

• Context Awareness

• API for application development

8

• CLIENTS

• <Subscibe>

MIDDLEWARE

• Topic 1

• Topic 2

PHYSICAL LAYER

• BROKERS

• <Publish>

Figure 1.5: An Event based Middleware Flowchart

1.3.4: APPLICATION LAYER

It is the responsibility of this layer to provide users with application oriented services. It

defines various applications in which IoT can be deployed such as Smart Cities, Health and

Home. The application layer on the Internet is based on HTTP (Hyper Text Transfer Protocol)

which is deemed unsuitable in a resource constrained environment because of its verbose nature

and large overhead. Many alternate protocols have been developed to suit IoT environments such

as MQTT, CoAP, REST, AMQP etc. When selecting protocols to use in IoT, the following

factors must be accounted for:

• Data Latency

• Reliability

• Bandwidth Requirement

• Memory and Code Footprint

1.3.5 : APPLICATION LAYER PROTOCOLS

The commonly used protocols are HTTP, OPC UA, MQTT, CoAP, AMQP and many

more. We will focus on a few of them for constrained applications.

APPLICATION LAYER

9

1.3.5.1 : MQTT (Message Queue Telemetry Transport)

It is an M2M architecture developed to support publish/subscribe architecture over TCP

(Transmission Control Protocol) to enable lightweight connectivity. TCP brings in stream

simplicity and minimizes the risk of data loss. The publish/subscribe architecture is noteworthy

because it annuls the requirement of clients to request updates which minimizes computational

requirements, battery and bandwidth. It is suitable for home automation and mobile

communication as it lies on a star architecture where all devices connect to a central server which

is referred to as the Broker. The communication happens in the following three stages:

1. TCP connection established

2. MQTT connection established data published

3. TCP connection terminated

Figure 1.6: Working of Pub/Sub model in MQTT

10

1.2.5.2: CoAP (Constrained Application Protocol)

As the name suggests, it has been specifically developed for resource-constrained devices

as it uses minimal resources for low power applications. Unlike MQTT, this uses client-server

architecture over UDP (User Datagram Protocol) which is a document transfer protocol and

made use at Smart Energy grids and smart homes. This protocols supports four methods, namely

GET, POST, PUT and DELETE. This is a small HTTP protocol but supports encryption and

multicasting by enabling communication between multiple devices at one time. A demonstration

of using in hospitals for patient health monitoring and data storage can be seen in Figure 1.7

Figure 1.7: Work-flow of the client-server architecture in CoAP

1.2.5.3: REST (Representational State Transfer)

It enables synchronous request/response over HTTP but there is difficulty in implementation due

to large overhead and latency. It can be used in M2M, smart phones and tablets and works

around JSON and XML data formats.

11

Figure 1.8: REST work-flow model

1.2.6: BUSINESS LAYER

The business layer manages the whole IoT system, including applications, business, profit

models and users’ privacy based on data that has been received from the application layer. This

data is molded into a significant service and more of them are created from the current services.

The true relevance of the IoT technology is the product of a good business model. Analysis in

this layer helps develop strategies to use and automation. Figure 1.9 summarizes all the layers

with details.

Figure 1.9: 5-layer architecture adapted in IoT

12

CHAPTER 2

LITERATURE REVIEW

2.1 : INTRODUCTION

In this endeavor, a deep focus has been maintained on understanding the OSI model,

specifically middleware defined to build an IoT environment ranging from three to five layers.

Smart Buildings (SB) were originally known as Building Control Systems (BCS), Building

Automation Systems (BAS) and Building Management Systems (BMS) among others, but the

evolving intricacies of protocols and devices, sensors, actuators, controllers and interconnection

with other proficient systems and the internet called for a general term called Smart Buildings. It

provides mechanisms, hardware and software to monitor, automate and control not just indoor

but outdoor building related tasks as well. For instance:

• Climate control, with HVAC systems including cooling, humidification and air quality

• Visual ambience, with natural and artificial lighting

• Safety, with alarm systems like fire, gas or water leakage; Emergency lighting

• Surveillance and security, with audio and video

• Transportation, with elevators and escalators

• Supply and recycle, like waste management

• Demand response, with energy management

Last decade has seen a significant growth of smart devices, low power consuming chips

and SoC’s, networking technology and smart sensors. Building sector happens to be one of the

largest consumers of electricity in India with residential sector accounting for 22% and

commercial sector at 8% of the aggregate energy consumption, still rising at 8% annually in

these sectors (Dr Satish Kumar, USAID ECO-II Project, 2011).

As per the NMEEE (National Mission for Enhanced Energy Efficiency) document of 2009,

the annual consumption from residential and commercial buildings is expected to rise from

19200 KWh to approximately 89,823 KWh by 2030.

13

Figure 2.1: Energy Consumption in residential Sector (Source: Planning Commission)

The consumption of energy in buildings is dependent on certain factors like:

• Weather Conditions

• Daylight/Sunshine Hours

• Building Design

• Ambient Temperature

• Indigenous efficiency of equipments

• Efficiency of equipments

Hence, reliance on energy driven systems can be co-factored by using climate sensitive designs

where the building premises responds in favor of it.

2.2 : ENERGY CONSERVATION SCHEMES IN BUILDINGS

2.2.1 : ECBC (Energy Conservation Building Code)

Under this act, any building with a minimum energy demand of 120 kVA or a connected

load of 100kW or greater is covered. Hence, this act sets minimum standards for construction

 Fans

34%

Refrigeration

13%

Air conditioning

7%

Lighting

28%

Others

10%

Evaporative Cooler

4%

TV

4%

14

and design through building systems helping the government to enforce efficient energy use and

its conservation.

2.2.2 : LIGHTING

Three commonly used lighting types in India are Incandescent bulbs, CFL (Compact

Fluorescent Lighting) and LED. Conventional incandescent bulbs waste about 90% of their

energy emitting heat instead of light while CFL’s can be up to three times more efficient than by

using 75% less energy and lasting longer. LED is the fast-growing and widely accepted lighting

fixture at present. They make use of only a fourth of the energy provided and last 25 times longer

than conventional bulbs. In addition, they come with color variation and dimming features for

ambient lighting. Dimmers save electricity when employed to lower light levels as shown in

Table 2.1

Table 2.1: Comparison of Lighting Fixtures

Compact Watts

(W)

Fluorescent Lumens

(Lumens)

Standard Watts

(W)

Incandescent Lumens

(Lumens)

30 2400 150 2780

22 1900 100 1500

20 1200 75 1170

15 900 60 2780

2.2.3 : RENEWABLE ENERGY SOURCES

Among the many options available, Solar panels are the most preferred form of

renewable energy at this day. They find use in electricity and heat generation, along with outdoor

and indoor lighting. Small wind turbines for water pumping are also a viable option.

2.2.4 : SELECTION OF APPLIANCES

The BEE (Bureau of Energy Efficiency) has set an energy standard for electrical

appliances by giving them star ratings on saving. When we talk of buildings, a substantial

amount of energy is consumed by the appliances in it like air conditioners, refrigerators, Iron

15

boxes, microwaves etc. It is also important to places appliances strategically, for e.g. a

refrigerator near a heat source will pull more electricity than required to cool.

2.2.5 : SMART & GREEN BUILDING PROJECTS

The trend of going green and getting smart has popularized itself well over India, which

offers opportunities for building automation systems a.k.a smart buildings. The various strategies

for which they are adopted for are:

• Lighting management systems incorporated with motion sensor and dimmers

• Safety and security system

• Auxiliary power bank like diesel generator set or from PV cells

• Integration of HVAC

• Resource efficient and Environmentally responsible

• Reduce, Reuse and Recycle

2.3 : SMART SENSORS

The Physical layer as defined in the IoT architecture is the input layer which obtains

feedback and is used for measurement and control. The papers included here collaborate to

studies on how to make the input parameters more involved in sensing, It also takes in

consideration context awareness which studies the input as well as the present ambient state to

generate an output to be fed to the core controllers.

Chin-Chi Cheng et.al presented a smart air conditioner with a sleep timer optimized the

energy consumption by up to 49% with wearable devices as smart sensors. The model procured

could detect human temperature and activity during sleep which worked along controlling the air

conditioning. The paper also presented control with mobile phones with the intention of

improving air conditioner technology.

Dae-Man-Han et.al proposed a Home energy control system using IEEE 802.15.4 and

ZigBee to demonstrate its implementation using a real test bed. A new on-demand based routing

protocol called DMPR (Disjoint Multi Path Routing Protocol) was used in the setup to establish

a wireless network between smart nodes.

16

Yago Luiz dos Santos et.al proposed an Iot architecture, applied to a case study for reading

Ultra High Frequency Tags with an external UHF antenna for better results. They make use of

micro-services and cloud computing for management of the large data that the Radio Frequency

Identification Tags generate used in the process system. They made use of a development board

called Sparkfun Simultaneous RFID Reader with distance approximation ti increase the readimg

capability of the board. They made use of servies provided by AWS (Amazon Web Services) and

Docker to run an Iot environment. Emphasis was also on cost reduction in areas where reading

distance is a fundamental requirement. The results obtained from the test demonstrated judicial

use of the cloud services along with Microsoft Azure for the cloud management and data control

on the server side of working.

Quinping Chi et.al addressed problems related to sensor calibration like sampling rate and

refresh time by proposing a reconfigurable smart sensor design for industrial WSN (Wireless

Sensor Networks) in an IoT environment. The core controller is a Complex Programmable Logic

Device (CPLD) which can adopt connection and read data simultaneously in real time on

multiple sensors as shown in figure 2.2

Figure 2.2: A CLPD core-enabled hardware design

17

2.4 : IoT SECURITY AND THREATS

While IoT presents efficiency, convenience and accessibility, it has caused an insightful

threat to security and privacy in the recent years. There are research works being carried out

actively to address this cause of concern to maintain reliability in this upcoming sector.

Wei Zhou et.al presented a concise study on the developing trend on IoT security by

investigating the research works carried out from 2013 to 2017 as listed in table 2.2. The

majority of works gravitates towards insecure network or protocol problems or privacy

breach/disclosure. The lack of security awareness is the leading cause of a vulnerable cloud and

web services.

Table 2.2: A brief comparison of Threats and Challenges of IoT features

Feature Drawback Challenge Opportunity

Constrained Insecure

Systems

Lightweight defenses

and protocols

Combining biological

and physical

characteristics

Mobile Malware

Propagation

Cross-domain

identification

Dynamic

Configuration

Inter-dependence Bypassing static

defenses

Access control and

privilege/admin

management

Context-based

access

Unattended Remote

Attack

Remote

Verification

Lightweight Trusted

Execution

Diversity Insecure

Protocols

Fragmented Dynamic analysis

simulation platform

Majzoobi et.al proposed in their paper the validation and an algorithm for a safe access key

generation using a technique called PUF (Physical Unclonable Functions) which makes use of

the device structure for identification. This method saves key storage space and makes the key

generation algorithm relatively simpler. More work was done on gait and usage habits to collect

information for the algorithm.

18

Chen et.al presented a layout for extensive automated firmware dynamic study running on

a Linux-based system. The same study for an RTOS (Real Time Operating System) is still in

progress to make integration more open sourced.

Sullivan et.al presented their work on IDS (Intrusion Detection System) and IPS (Intrusion

prevention System) for device protection of their system. Research on heterogeneous devices is

still in progress as the system may not function properly when there is an anomaly in incoming

data traffic. Different devices integration is possible only by building a gateway for protocol

acceptance and conversion. The detection may not be successful if there are unidentified

parameters as inputs.

2.5 : SMART BUILDINGS MANAGEMENT SYSTEM: BEMOSS

BEMOSS (Building Energy Management Open System Software) , as it started, was a

proposed platform to allow sensing, measurement, processing, filtering and control of Lighting,

Plug load and HVAC. It is now a MAS (Multi Agent System) that is capable of integration of

multiple smart devices to facilitate grid-interactive and intelligent building operation. The entire

architecture comprises of four layers: 1) User Interface (UI); 2) Application; 3) Operating

System and Agents; 4) API Translator.

Each layer uses databases to store metadata which is useful for process management. The

UI consists of a mobile and Web browser interface with a role-based access control. Possible

applications in the application layer are:

• Demand Response

• Behavior pattern analysis

• Planning and Scheduling

• Fault detection and diagnostics

• Price-based management

• Load shape analysis

It supports different communication technologies like Ethernet (IEEE 802.3), Wi-Fi (IEEE

802.11), Zigbee (IEEE 802.15.4) and Serial (RS-232/485); and Data exchange protocols like

Modbus, Web, Smart Energy (SE), OpenADR, Zigbee API and BACnet, to name a few.

19

The third layer is built upon a distributed agent called VOLTTRONTM whose Information

exchange bus (IEB) enable communication among all agents such as Discovery agent, Control

agents, Monitoring agents and other Service agents, including the UI.

Every device has a unique API (Application Programming Interface) to which the fourth

layer connects BEMOSS to by using translators. They provide a medium of abstraction to obtain

readings and send control commands using simple functions like “getDeviceStatus” and

“setDeviceStatus”. A standard work-flow on the working and implementation of BEMOSS can

be see from figure 2.4. This has been used in several test beds successfully where price and

resources are not a constraint. However, we are in a developing nation with an economic

limitation. The scope of work beyond this is to provide the same features as the inspired works,

but at a lesser cost, adaptable in feature and easy to implement with cloud independent support.

Figure 2.3: BEMOSS Agents and work-flow

20

CHAPTER 3

SENSORS and UI PLATFORM USING MQTT

3.1 : INTRODUCTION

In electronics, it is essentially the application of sensors with/without computer programs

that play the most important role i.e. of input. They are being used extensively in consumer

electronics for monitoring, measuring, data logging and control. Common sensors are optical,

acoustic, radio frequency (RF), proximity, temperature, pressure, ultrasonic, flow and level.

Modern sensor technologies enable integration with portable devices, home appliances, smart

home automation, robotics, automotive and healthcare.

3.2 : TEST CIRCUIT MODELING

The test circuit used for sensing can measure light intensity, temperature and relative

humidity. The actuators in this case are two loads connected to the test circuit through an opto-

coupler 4 channel relay. The microcontroller used for this purpose is an Espressif development

board called NodeMCU V1.0 (ESP8266 ESP-12) which is an economic, IoT capable, responsive

circuit board written in C, LUA or micro-python. The circuit is powered by a 12V DC supply to

drive the relays. With 11 GPIO (General Purpose Input Output) pins and one ADC input pin, it

can be used to perform actuation tasks for both analog and digital input/output. Components

around the header pins are wired on a general-purpose PCB or on a designed layout.

3.2.1 : Test circuit components:

1. Board: ESP8266 NodeMCU development kit (ESP-12)

2. 4N33 opto-couplers

3. Sensor 1: DHT11

4. Sensor 2: LDR (5-mm)

5. Resistors (1 kilo-ohm)

6. Power supply (12 Volts)

7. Software: Arduino IDE, Cayenne IoT Platform, Fritzing, WireShark

21

The NodeMCU development kit provides access to the features of the board it hosts i.e

the ESP8266 processor. The GPIO pins can only be accessed through these, with the pin

numbering different from the internal numbering of the ESP8266 as shown in figure 3.1

Figure 3.1: ESP8266 NodeMCU development kit

The key features of this board are:’

• Programmable Open source Wi-Fi module

• LUA and C compatible

• 10 GPIO (D0 TO D10), PWM capable, IIC and SPI communication

• USB, TTL,ACM (Abstract control model)

• Arduino IDE supported

• Works both at 5V and 3.3V voltage levels

• Plug and Play with CH340G driver support

• Supports deep sleep to save power

• Can be used both as a Station or Access point

22

3.2.2 : Test circuit design models:

1.

Figure 3.2: Components layout of the Test

2.

Figure 3.3: PCB layout of the Test circuit

Load 2

Load 1

23

3.

Figure 3.4: Schematic diagram of the Test circuit

3.3.1 : CAYENNE ONLINE PLATFORM

It is an online IoT platform with a dashboard and a mobile application supporting its web

interface. For hardware-oriented programming, it makes easier for measure and control of

devices. Along with its drag and drop feature, building programs get easier by standardizing the

connection of devices such as motors and sensors by making use of their respective drivers. It

also supports the light-weight MQTT protocol for data logistics in lieu with the Pub/Sub

architecture. A dashboard featuring sensors of the test circuit can be seen in Figure 3.4

24

Figure 3.5: Test circuits dashboard on the IoT platform

3.3.2 : MQTT PROTOCOL

This is a quick emerging standard for IoT nowadays due to features like lightweight

overhead, less bandwidth, low latency, publish-subscribe model, small code footprint and bi-

directional capabilities on top of the TCP/IP model. They are preferred for networks like cellular

or satellite which are volatile and do not require high availability or bandwidth to initiate

connections. Data transmission is widely distributed which is beneficial for remote devices with

limited memory and processing power. Hardware manufacturers prefer this protocol for

scalability, security and efficiency. Some prominent features of this protocol are:

• Open source, easier to adopt and implement

• One to many distribution, Pub/Sub model

• Simple commands

• Small message headers

• Multiple QoS (Quality of Service) levels

The QoS are efficiency levels set for the transmission of information. It decides how each

message will be delivered by assigning a mandatory value for every single message unit. It

validates the guarantee of transmission between the sender and the receiver, being set on the

client side. The broker will send the message to the subscribers with the same QoS level set

originally.

25

There are three QoS levels, mainly 0, 1 and 2 as follows:

• QoS 0:

This is the simplest layer, with low overhead as client publishes a message but there is

no acknowledgement by the broker. A message in this format can be lost of either the

client disconnects or the server fails. There is no possibility of PUBACK duplicate

messages as message gets delivered only once. It still stands to be the fastest way to send

a message using MQTT as only PUBLISH command is used here to maintain the flow as

shown in figure 3.5. This can be applied where loss of message can be tolerated now and

again, such as in an IoT environment where a device is monitoring and sending

cumulative readings.

Figure 3.6: QoS0 level (at most one message delivery)

• QoS 1:

This level comes with a guarantee that the message will be attempted to be delivered

once, but may be eligible to be delivered more than once. Hence, there is a possibility of

duplicating and multiple attempts by acknowledgement PUBACK sent by the broker to

the sender. If this feedback is not received, sender can publish again with a duplicate bit

set called DUP. Hence, flow and affirmation is maintained, although the message may

reach the broker multiple times. When a PUBLISH occurs, message is stored in an

abstract layer like a disc, and removed when a PUBACK is confirmed as depicted in

figure 3.6. This format can be used when the IoT device in use can tolerate receiving a

message more than once; the way of doing around is by using a unique timestamp

attached to every publication.

Security comes at the cost of battery/processor utilization and communication overhead.

But, on application level, using Client ID, password and username as credentials, device

authentication can be done as in case of HTTP as shown in table 3.1

26

Figure 3.7: QoS1 level (at least one message delivery)

• QoS 2:

This is an additional layer to the QoS 1 layer, which ensures that the message gets

delivered only once and at once. There is a sequence of four messages between the client

and subscriber which is handshake to confirm that the original data has been sent and an

acknowledgement has been received. PUBLISH flow takes the message and stores in the

abstract layer which is responded by the broker with PUBREC (Publish Received). On

getting this, client sends PUBREL (Publish Reliance) which is acknowledged and main

data is sent to subscribers by PUBCOMP (Publish Completed). This does not

compromise on delivery but the cost of data transfer is relatively high.

Figure 3.8: QoS 2 level (exactly one message delivery)

27

Table 3.1: MQTT vs HTTP in a constrained environment

Characteristics MQTT HTTP

Design Data-focused Document-focused

Base Model Publish/Subscribe Request/Response

Complexity Simple use commands Complex

Message size Small headers

Binary format, up to 2 bytes

Large headers

Text format

Service Layers QoS 0

QoS 1

QoS 2

Uniform service level for all

messages

Distribution One to many One to One

Figure 3.9: MQTT connection over TCP/IP protocol

28

3.3.3 : Temperature & Humidity Sensor

These sensors are digital in nature that take input to read values of temperature and

humidity. Relative humidity accounts for both temperature and pressure, as the electrical

permittivity of the dielectric material changes with humidity. There are many variants available,

such DHT11, DHT22, DHT21 and RHT04 and table 3.2 is a study of two. The DHT11 is a low-

cost digital device made up of a capacitive humidity sensor and a thermistor to measure the

surrounding and produce a digital signal on the data pin of the microcontroller. It is capable of

generating data every 2 seconds as shown in figure 3.8 and 3.9

Capacitive RH (Relative Humidity) sensors are made of dielectrics whose dielectric constant

vary when subjected to humidity i.e amount of water present in the air. A DHT11 has a

hygroscopic polymer film as its dielectric with layers of electrodes on its either sides. The

advantages of using a capacitive RH sensor are:

• Linear output voltage

• Stable results

• Detects wide range of RH

• Used in HVAC, weather stations, automobiles

• Good accuracy

• Low cost and replaceable

Table 3.2: A comparison of DHT sensors

Specification DHT11 DHT22 DHT21 RHT04

Temperature

Range

[0] – [50]

degree Celsius

[-40] ~[125]

degree Celsius

[-40] ~ [80]

degree

Celsius

[-40] ~ [100]

Degree Celsius

RH Range 20 - 80%

(accuracy 5%)

0 - 100

(accuracy 2%)

0 - 100

(accuracy

3%)

0 - 100 (accuracy

2%)

Sampling rate 1 Hz 0.5 Hz 0.5 Hz 0.5 Hz

29

Figure 3.10: Temperature reading from a DHT11 measured every 2 seconds

Figure 3.11: Humidity readings from a DHT11 measured every 10 minutes

3.3.4 : Luminosity Sensor:

LDR (Light Dependent Resistor), also known as Photoresistor, is a component that has a

variable resistance which changes with the incoming light intensity and is therefore used in light

sensing circuits. It has a serpentine track which is a cadmium sulphide (CdS) film passing trough

the sides. The structure is enveloped in a resin case to allow unrestricted access to light. They

require small power and voltage for operation but are highly inaccurate with a response time of

about tens or hundreds of milliseconds. This optoelectronic device is preferably used in light

30

varying sensor circuit, and light and dark activated switching circuits. Some of its applications

include street lighting, fire alarm, night security light, light activated switch circuit etc.

Figure 3.12: Basic structure and symbol for LDR

Figure 3.13: Luminosity readings from an LDR measured every 10 minutes

LDR devices are light dependent whose resistance vary accordingly. It decreases when

light falls on them and increases in the dark. The separate terms for them are dark and light

resistance, te former being very high in value, around 1012 Ω. The resistance starts decreasing

when the device starts absorbing light. Photocells are non-linear devices, the sensitivity of which

are materila based as it has different spectral response to certain wavelenghts of light. It takes

abput 8-12 ms for the change in resistance to take place when light is incident on it, while more

seconds for resistance to recover back up to its initial value after the removal of light.

31

Figure 3.14: Resistance vs. Illumination of an LDR

3.3.5: Passive Infra-Red Sensor

The PIR sensor detects incoming infrared radiation from the human body are converts it

into an electrical charge. This charge is proportional to the detected level, and the signal is

further conditioned by an in-built FET. The output pins connect to an external circuitry for

further amplification. The linear range is up to 10 meters; however it depends on the sensitivity

of detection. There are two potentiometers that are designed to vary the sensitivity and alter time

settings. The time setting knob decides the interval for which the output pin should stay high to

an incoming radiation. Sensitivity decides the linear and angular range of the detection range

spread.

Figure 3.15: The PIR sensor

32

CHAPTER 4

MODELLING OF A CORE PLATFORM

4.1 : INTRODUCTION

An open source platform is a one step solution to help buildings save energy and operate

more efficiently. The aim of the platform is to first target the building sizes along with their uses

i.e. residential, industrial or commercial. In India, Small buildings take up to 5000 sq. ft and

Medium Buildings take up to 5000 – 50,000 sq. ft of space. These buildings constitute a majority

in this country and aren’t mostly equipped with building automation systems. The features for an

efficient platform are:

• Interoperability: Capable of communicating with multiple IoT devices, not necessarily

from the same manufacturer, using different communication technologies and data

exchange protocols

• Open Architecture: Seamless interfacing of hardware

• Open Source: Designed to let software developers contribute to the platform by

including additional functionalities, applications and add-ons

• Plug & Play: By making use of a dedicated Device discovery agent, the platform should

be able to automatically discover nearby compatible devices and integrate it smoothly

• Remote control & monitor: Making use of a built-in web server for remote access to the

front end UI in real time without being on the home/local network. Also enable remote

controlling form anywhere with optimized latency.

• Advanced control: Use of intelligent algorithms by machine learning and implementing

DR for reducing energy consumption. This can contribute to our carbon footprint and

offer comfort and control of our daily electricity usage.

The features listed demand a considerable computation prowess increasing the hardware

investment. The merits can only be enabled by keeping an excellent performance at a minimum

cost along with being adaptive to host machines.

33

4.2 : EMBEDDED SYSTEM HOSTING

An embedded system platform comprises of all the necessary building blocks to get a

microcontroller up and running in a short span of time. The idea behind this is that libraries,

frameworks, drivers, schedulers and source code with patches are already inbuilt so that focus

can be on the task in hand. The advantages to embedded platform development are:

• Firmware robustness

• Banking on existing software

• Potential to bring down the overall development task

• Faster time to launch/use

Although Cloud Computing has become immensely popular, it still isn’t economic enough. For

eg. Web services offered by AWS (Amazon Web Services) EC2, equivalent to 2GB memory and

a virtual CPU costs more than 13,000 INR annually. Thus, open-source platforms are specified

to run on embedded systems enabling a cost-effective BEMS solution. Many SBC’s (Single

Board Computers) are available for hosting depending on their performance and run time.

4.2.1 : SINGLE BOARD COMPUTERS

A single board computer is differentiated from a conventional development kit/evaluation

board because in single package it is a complete computing platform; having all the hardware

and software needed to operate properly. A basic comparative study is listed in Table 4 as shown

Table 4.1: Comparison in hardware of selected Single Board Computers

 RASPBERRY

Pi 3B

RASPBERRY

Pi 4

ODROID

C2

ODROID

XU4

Beagle

Board X15

Processor Broadcom 1.5 GHz Amlogic Samsung TI AM5728
 BCM 2837 Quad-core S905 (4x Exynos5422 2×1.5-GHz
 Based on ARM 64-bit RAM Cortex-53 @ (4x Cortex- ARM
 Cortex-A53 Cortex-A72 up to 1.5GHz) A15 at Cortex-A15
 CPU (3x 2.0GHz & 4x

 performance) Cortex-A7 at

 1.4GHz)

34

 RASPBERRY

Pi 3B

RASPBERRY

Pi 4

ODROID

C2

ODROID

XU4

Beagle

Board

X15

GPIO 40 40 40 40 157

On-Board

Storage

No No Ext Flash Ext Flash 4 GB 8-bit

eMMC flash

storage

RAM 1GB DDR2 4GB DDR4 2GB DDR3 2GB

LPDDR3

2GB DDR3

Power 2.5A, 5V 3A, 5V 2A, 5V 4A, 5V 210-460

mA, 5V

Pricing 2200

INR

2500

INR

9500

INR

11,700

INR

18,500

INR

4.2.2 : RASPBERRY PI- MODEL 3B

This is a system on chip being widely used in hosting many platforms mostly aimed at

home automation and security control. It is the safest and most economic bet to implement

projects consisting of dedicated functions and a scope of further expansion. In this platform

system, we are making use of the Pi to host our core Home Assistant. The features match our

demand from the IoT environment and do not require a considerable load on the processor.

Hence, available RAM (Random Access Memory) is enough to accommodate all the batch jobs

it has to perform in keeping the system running in the background and script jobs that it has to

perform in the HA virtual environment. The setup of the system, additionally requires:

• A display module, working as an output to access the Pi GUI (Graphical User Interface)

• A keyboard and mouse, as inputs

• Power supply to the board, micro USB supported, 2.5A

• HDMI connection to the display module

• Ethernet/Wi-Fi support

• SD card and Casing, for protection

35

Figure 4.1: Pin diagram of Raspberry Pi (Host Embedded System)

The host system software is called Raspbian which has been specifically dedicated to the Pi. It is

a free operating system based on Debian optimized for the Raspberry Pi hardware, all versions

included. Raspbian images are available in both 32 and 64 bits and can be flashed in a micro SD

card using Balena Etcher, a cross-platform tool for flashing OS images to the SD cards and USB

drives. It supports both .iso and .img files as well as zipped folders onto storage media to create

live drives. Since we are hosting HA, we will install HASSBIAN, a version to suit our

requirements of dedicated functions, preconfigured for Home Assistant.

36

4.3 : PERFORMANCE ANALYSIS

To test the working of our embedded board, a platform is hosted on it with smart

integrations working with both synchronous and asynchronous protocols. The testing is done to

review the processing power, energy consumption, performance as well as operating temperature

gradient to scale. The software used for this purpose is called Remote-IoT which uses a secure

AWS (Amazon Web Service) IoT cloud platform to connect to networked devices remotely,

from anywhere. The added feature is encryption by the SSH (Secure Shell Access) tunnel which

is a web hooking tool to access network ports securely. This same feature is also used by the

banking systems which provide 64 ~ 128 bits encryption to all passwords and vulnerable data.

This is also works on the TCP/IP stack on which the MQTT is based as well. Key features of this

tool are:

• Full device management

• Secure Remote access

• Software-dedicated solutions

• Web-management console

• No dedicated VPN (Virtual Private Network) or Firewall required

• Uses web tunnel

• Runs Cron-jobs

Cron is a Linux feature which arranges a command or script on the server to run automatically at

a specified date and time. A scheduled job that it performs to do so is called a Cron job. Scripts

executed as Cron jobs are mostly used to alter files or databases. The software tool Remote-IoT

is programmed to run a job on our host system to monitor it’s health and performance at all

times. The limitation to this, however, is the refresh rate. It allows a minimum gap of 15

minutes before the next update. It has three main components:

• Script

• Command

• Action/output

37

Figure 4.2: Inserting a Cron job in python script

Figure 4.3: Dashboard for inspecting health of host system

The results of the inspections are as shown in the following figures:

1.

Figure 4.4: Utilization of the CPU on the Pi

38

2.

Figure 4.5: Network out in kB connected to local network

3.

Figure 4.6: CPU Temperature of the Pi

39

4.

Figure 4.7: Memory utilization of the Pi

5.

Figure 4.8: All networks handled by the Pi

40

CHAPTER 5

HOME ASSISTANT

AN OPEN SOURCE DEVELOPMENT PLATFORM

5.1 : INTRODUCTION

Among the many development platforms available, our project has been designed on the

development of Home Assistant (HA) as a middleware for device management, control and

automation. A lot of IoT products send their data to the servers and are managed by cloud

computing. This does create a stream of well management but at a risk of data theft, privacy and

indeed, security. With Home Assistant, data can be stored and managed locally, with security

settings to allow only those users with access. Alongside, it supports a variety of features like

communication protocols, automation and trigger platforms, voice assistance and useful plug-ins.

The figure 5.1 shows HA active once the OS has been flashed on the Pi.

Figure 5.1: The CLI with Home Assistant running live

41

The commendable features for hosting this platform are:

• Community built being open-source in nature:

An off the market solution is ideal and easy for automation, but it creates dependencies.

The users of smart homes have to be dependent on the dedicated applications for their

smart devices. For example, If the user has an Apple homePod setup, it can only be

controlled by Apple and its updates or software patches to be compatible with other

devices. While they do offer support for a variety of devices, its rarely in favor of niche

devices like microcontrollers. Open source HA(Home Assistant) offers tons of support

for devices and the libraries are open to be updated regularly with new builds.

• Control over local data:

Today, every device linked to the Internet has cloud connectivity and stores their

information on the servers. This leads to records of present states of devices, history,

access timings, frequency of use, power consumption etc. While servers make tasks

easier to perform by independent control, one no longer has full control on their device.

Apart from that, a huge of security underlies with internet connectivity. Home Assistant

lets one configure its own setup and is a beneficial tool for learning.

• Work in progress:

This project is a work in progress, as it still is running on the beta versions. However, the

libraries of python such as pi-wheel, pip, tcpdump etc. are regularly updated being open

source. A lot of contributors add their libraries to help build this platform every day.

Hence, it is a learning curve to understand automation systems better.

• Customization:

While there are many open source platforms to develop such as OpenHAB, Pytomation,

OpenRemote, Calaos, OpenMotics, and Domoticz, this project resides around the HA

because of its familiar language support i.e. Python as well as easy to configure YAML

script. It is a human-readable-data-serialization language, generally used for

configuration only but can be extended to be used in applications where data is being

stored or transmitted. It trumps over other data formats like XML and JSON, because of

the ease of activity.

42

5.2 : The Lovelace UI

It is the name of the HA user interface, which is fast, customizable and a powerful way to

mange IoT environments, working both on mobile and desktop. Figure 5.2 show our web and

mobile interface.

Figure 5.2: Desktop and Web UI of successful HA setup

43

5.2.1: Smart Light setup:

Light bulbs have become exceptionally smarter in the previous years. There are a variety

of connected solutions available to replace the conventional bulbs, which can be directly

controlled just by a few taps from cellphones and desktops. Smart bulbs make use of LEDs and

various other technologies combined, hence they are expensive. But they also use less energy

and last much longer, adding to the savings.

Smart bulbs offer a degree of control over other bulbs such as scheduled timers and remote

control. They also make use of geofencing, which means working with the GPS of your smart

device to detect position and automate the bulbs when in the vicinity. The various smart bulbs

available in the Indian markets are Philips Hue, TP-Link smart bulb series, Wipro Garnet, Syska

LED, D-Link smart bulbs etc. For economic purpose and the ease of use, we have chosen TP-

Link LB110 smart light as one of our nodes with its successful integration as shown in figure

5.3. The key features are:

• No hub required for connection and protocol conversion

• Brightness control

• Scheduling possible

• Voice-control equipped

• Energy saving

• Bayonet holder provided

• Compatible with 2.4 GHz Wi-Fi band

Figure 5.3: TP-Link Smart Light integration

44

5.3 : THE ESP (Extra Sensory Perception) TOOL

The ESP8266 and ESP32 are one of the cheapest and yet efficient micro-controlling

devices out there. They are being used for countless home automation projects and have also

made their way in the Smart home concept. Even though they are niche devices, many purposes

of automation such as light and fan control, measurement of set parameters through sensors,

actuating a response through the output GPIO pins or output devices like switches and servo-

motors. Lead manufacturers like Sonoff make use of these chips because of their availability and

dirt cheap pricing.

Setting up microcontrollers has become an easy task over the years, with the Arduino library

readily available for programming in C language for ESP boards and the indigenous compiling

tool ESPlorer for programming in the LUA language. However, automation with customization

over communication protocols requires more than just flashing firmware onto the boards. This is

where the ESP tool comes in handy with its front-end ESPHome. It requires simple yet powerful

configuration files to fix the API between the HA hub and the microcontrollers to start the

handshake of information. To top that up, MQTT protocol can make communications easy by

offering its limited bandwidth for exchange of binary information between the daughters and the

mother hub. Since this is also an open source project, the tool only runs on Python2 for now.

Future updates may include the latest language updates.

The source code for installation of ESPHome is as shown in figure 5.4

Figure 5.4: ESPHome setup script on CLI

The dashboard interface is on the same server that is hosting Home Assistant but at a different

port number. This hosts itself on port 6052, the set port for all ESP boards micro-controlling

through the hub front-end. After connection is established, sensor readings and switches need to

be added as features to the source code- YAML configuration file.

45

Figure 5.5: Successful instant of HA API integration with ESPHome

The API integration shown in figure 5.5 is the successful integration of an ESP8266

microcontroller to the web front of the HA. The process takes roughly about 10 minutes which is

a latency this system affords. These issues arise mainly out of weak connectivity signal over the

Wi-Fi. Ethernet enabled hub has yielded faster results and hence low latency. It is a three step

process listed as:

• Type of API:

There are three types of API in use:

1. SOAP (Simple Object Access Protocol)

2. REST (Representational State Transfer)

3. RPC (Remote Procedural Call)

Home Assistant offers the “REST”ful API for device integration on the same IP address

as that of the web frontend.

• Data Payload: This is the format of data sent from the API process flow. HA offers and

accepts data only in the JSON format.

46

• Documentation: A robust documentation is needed for popular use of any platform.

5.3.1: DEVICE INTEGRATION INSTANT: “test_blink”

1. Device software model:

Figure 5.6: Device Model on Fritzing

2. ESPHome configuration:

The source code for ESP can be flashed on the board through the ArduinoIDE, any of choice.

For our test here, the code is that of an LED control with a web server to do so. The script is both

in C for back-end and HTML for front-end. The dashboard and simple yaml script used are

shown in figure 5.7 and 5.8 respectively.

Figure 5.7: ESPHome Dashboard

47

Figure 5.8: Configuration in ESPHome

3. Front-End device link:

Once the code is compiled and validated, the configuration is to be reflected for users to access

easily. Since customization is possible, the gpio pins of the board can be accessed directly from

the Lovelace UI as shown in figure 5.9. The pins can be programmed to be used as sensors,

actuators (output) or input/toggle pins. The states have to be defined.

48

Figure 5.9: Successful device integration

Figure 5.10: Web UI with parameters from test_blink on the dashboard

49

CHAPTER 6

RESULT AND DISCUSSIONS

6.1 : INTRODUCTION

The implementation of IoT devices with a platform support in an environment is discussed

in this chapter. We have first implemented a test circuit to work with sensors and automate

switches and devices with the help of a online platform called Cayenne. Then we have automated

by using triggers designed in the platform, such as time or sensor based scheduling. After that,

we have established connection using the MQTT protocol and analyzed it using a hardware tool

called WireShark. It provides information about data packets, loss in transmission, bit length

with overhead, QoS, protocol as well as the protocol commands being used. All these

information are handy for working around the study of various protocols.

6.2 : Results of the Test circuit 1

Figure 6.1: Test circuit 1

50

Figure 6.2:

Figure 6.3: Trigger set and active condition

6.3: Results of the circuit 2- “test_blink”

1. The test circuit is designed to sense motion, irradiance, temperature and humidity and control

devices such as lights and fans.

Figure 6.4: Test circuit 2 “test_blink”

51

Figure 6.5: Serial Monitor output

2.

Figure 6.6: Password protection of HA for security

52

Figure 6.7: Process manager htop showing HA on raspbian

Figure 6.8: MQTT Publish test result

Figure 6.9:

53

Figure 6.10: Lovelace UI logbook view

54

CHAPTER 7

CONCLUSION & FUTURE SCOPE

7.1 : INTRODUCTION

After discussing the various aspects of this project from conceptualization to design and results,

the next step is to draw repercussions from this research work. This chapter discusses the

conclusions arrived and outlines the scope for future work in this area.

7.2 : CONCLUSION

The objective of this project was to impart the knowledge pertaining to the various

communication protocols and the use of one in successful integration with physical devices

around us. The MQTT protocol works better than the REST (HTTP) in niche device integrations

as it publishes only the subscribed topics and works in limited bandwidth. There is no

background running process to cause weakness in connections and the response time is 13

seconds better than the latter by testing. The advantages of this have already been listed in earlier

chapters, but it has immense future use and scopes. MQTT is a secure protocol that requires user

authentication from both client and server sides. Both the subscription and publishing is

validated from both sides by a user protected password. Further modifications can be addition of

SSL to the protocol to make it more secure.

The secure shell access adds more security to the connection service. They can be easily made

use in smart projects of home automation and smart cities where connection failure has to be

actively avoided. However, since this is still a project under development, a few drawbacks do

exist that have to be addressed in the work to be done following this. The API of integration

between devices is not an easy task, depending upon the bandwidth of the internet connection

being used. The micro-controllers being used in the test beds are subjected to refresh frequently

due to API validation every 5 minutes. Once successful, the system does run smoothly, but the

process to get there is an ongoing integration fight.

Even though the hub works in a wireless environment, it is better to keep it connected to direct

cable Ethernet to avoid loss and latency in transmission. The sensors can be replaced with better

55

upgrades with a guarantee of accuracy, resolution and sensitivity. The readings obtained from the

binary sensors are promising but ambient sensors need care with the power supply and current

entering the input/output pins. They all work smoothly with the used protocol but have shown

latency with HTTP.

The Home Assistant interface makes automation easier once it has been equipped with a good

configuration.yaml file and integrations are done smoothly. Results have shown ease of use on

both the desktop dashboard and mobile UI.

7.3 : FUTURE SCOPE

The extension to the present work is possible in the following ways:

• Using MQTT protocol more extensively in small lab projects to generate awareness

• Smart cities projects can be implemented with/without cloud support on HA

• Hardware tools like WireShark can be used to study the transmission packets and

forecasting models vcan be developed.

• MATLAB integration of IoT projects for statistical analysis

56

APPENDIX 1

SCHEMATICS OF CIRCUIT BOARDS USED

Figure 7.1: NodeMCU v1.0 dev kit schematics

Figure 7.2: Schematics for Raspberry Pi 3 Model B

57

APPENDIX 2

LB110 SMART WI-FI LED BULB SPECIFICATION SHEET

Figure 7.3: LB110 specification sheet

58

APPENDIX 3

DHT11 TECHNICAL DATA SHEET

Figure 7.4: DHT11 Technical specifications

59

APPENDIX 4

CODE SNIPPETS

1. Test circuit code for Chapter 3 test model:

60

2. Test circuit “test_blink” code for Chapter 5 model

61

62

63

REFERENCES

[1] M. Pipattanasomporn, Murat Kuzlu, Warodom Khamphanchai and Avijit Saha

“BEMOSS: An agent platform to facilitate grid-interactive building operation with IoT

devices” IEEE Conference on Innovative Grid Technologies-Asia (ISGT ASIA)

2015.7387018

[2] Leonardo Albernaz Amaral, Everton de Matos, Ramão Tiago Tiburski, Fabiano Hessel,

Willian Tessaro Lunardi and Sabrina Marczak, Book on “Middleware Technology for

IoT Systems: Challenges and Perspectives Toward 5G”, Internet of things (IoT) in 5G

Mobile Technologies, pp 333-367, 2016

[3] Abhinav Prashant, Rohan Gupta, presentation on “Middleware for Internet of Things: A

Survey”

[4] Pandesswaran C, Surender S and Karthik KV “Remote Patient monitoring System based

Coap in wireless sensor networks” International Journal of Sensor Networks and Data

Communications 5:145 2016

[5] Catarinucci L, Donno DD, Palano L (2015) An IoT Aware Architecture for Smart

Healthcare Systems, IEEE journal 2: pp 515-526

[6] Mohammad Aazam and Imran Khan and Aymen Abdullah Alsaffar and Eui-nam Huh

“Cloud of Things: Integrating Internet of Things and cloud computing and the issues

involved” Proceedings of 2014 11th International Bhurban Conference on Applied

Sciences & Technology (IBCAST) Islamabad, Pakistan, 14th - 18th January, 2014, pp

414-419

[7] Nagaraju Kaja “A Review of Energy Consumption in Residential Sector in India;

Possibilities for energy conservation”, IJRHAL, Vol.6, Issue 6, Jun 2018, 375-384

[8] Energy Statistics 2018 (25th issue), Central Statistics Office, Ministry of Statistics and

Programme implementation, Government of India, New Delhi

[9] Zhou, W., Jia, Y., Peng, A., Zhang, Y., and Liu, P. (2018) “The Effect of IoT New

Features on Security and Privacy: New Threats, Existing Solutions, and Challenges Yet

to Be Solved” IEEE Internet of Things Journal, 1–1. doi:10.1109/jiot.2018.2847733

[10] Carlos M.S. Rodrigues, Bruno S.L.Castro “A Vision of Internet of Things in Industry

4.0 with ESP8266”, IJECET, Vol.9, Issue 1, Jan-Feb 2018, pp 1-12

64

[11] NodeMCU, “Lua based interactive firmware for mcu like esp8266”. [Online].

Available: https://github.com/nodemcu/nodemcu-firmware. Last access: 10/12/16

[12] Espressif, “Low-power, highly-integrated Wi-Fi solution”. [Online]. Available:

http://espressif.com/products/hardware/esp8266ex/overview/

[13] ESP8266 NodeMCU, “Comparison of ESP8266 NodeMCU development boards”.

[Online]. Available: http://frightanic.com/iot/comparison-of-esp8266-

nodemcudevelopment-boards/

[14] A. Varghese and D. Tandur, “Wireless requirements and challenges in industry 4.0,” in

Contemporary Computing and Informatics (IC3I), 2014 International Conference on.

IEEE, 2014, pp. 634–638.

[15] Manan Mehta, “ESP 8266: A Breakthrough In Wireless Sensor Networks And Internet

Of Things”, in International Journal of Electronics and Communication Engineering &

Technology (IJECET) Volume 6, Issue 8, Aug 2015.

[16] Wi-Fi Module, “ESP8266EX Datasheet”. [Online]. Available: http://www.adafruit.com

[17] Dong-Ying Li and Shun-dao Xie and Rong-jun Chen and Hong-Zhou Tan, “Design of

[18] Internet of Things System for Library Materials Management using UHF RFID” 2016

IEEE International Conference on RFID Technology and Applications (RFID-TA),2016,

pp. 44-48

[19] S. Shubhangi, N.Pooja, S. Shubhangi, S. Vrushali, J. Yogesh, “MQTT- Messge

Queuing

[20] Telemetry Transport protocol”, Internation Journal of Research , ICRRTET, Vol.3,

Issue 3, pp. 240-244

[21] Andy, Stephen Clark. "MQTT for Sensor Networks (MQTT-SN) Protocol

Specification Version 1.2" (PDF).

[22] https://www.raspberrypi.org/documentation/

[23] https://www.home-assistant.io/

[24] https://code.wireshark.org/review/gitweb?p=wireshark.git;a=tree

[25] https://www.arduino.cc/en/IoT/HomePage

[26] https://cayenne.mydevices.com/cayenne

http://espressif.com/products/hardware/esp8266ex/overview/
http://frightanic.com/iot/comparison-of-esp8266-nodemcudevelopment-boards/
http://frightanic.com/iot/comparison-of-esp8266-nodemcudevelopment-boards/
http://frightanic.com/iot/comparison-of-esp8266-nodemcudevelopment-boards/
http://www.adafruit.com/
https://www.raspberrypi.org/documentation/
https://www.home-assistant.io/
https://code.wireshark.org/review/gitweb?p=wireshark.git%3Ba%3Dtree
https://www.arduino.cc/en/IoT/HomePage

