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ABSTRACT 

A huge rise in network traffic data have brought challenges towards the security of data over 

network, servers and computers. This has been a challenge to the traditional intrusion detection 

system also, as the rapid change in technology there changes the intrusion style also. In recent 

years, new varieties of anomaly attacks have emerged rigorously which can’t be detected by 

out dated intrusion detection systems. In order to tackle those intrusions we propose a machine 

learning based approach which implements an autoencoder and a dense neural network. Both 

autoencoder and dense neural network are types of artificial neural network, but they differ in 

the processing. Therefore the feature extraction phase of our IDS model is designed on the 

basis of autoencoder technology and model creation is done on the basis of dense neural 

network.  

We also implement a convolutional neural network, another subclass of artificial neural 

network as intrusion detection system.  

The dataset used is Intrusion Detection Evaluation Dataset (CICIDS2017). This dataset is of 

new generation in terms of attacks it contains. The attacks present in the dataset are new types 

of attacks which are generally used by attackers in real network for the purpose of stealing data. 

The results obtained by two models are compared i.e. the accuracy in the detection rate is 

compared and thus after comparing the results the model implemented on dense neural network 

and autoencoder shows the better accuracy and lesser false alarm rate. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

1.1 INTRUSION DETECTION SYSTEM 

1.1.1 Introduction 

With the rapid development of internet nowadays, the network is getting more and more prone 

to the cyber-attacks, due to which the threat of losing the data and information increases. There 

are many ways in which a cyber-attack can be performed and also there are many different 

types of attacks for example Denial of Service (DoS), SQL injection, Man-in-the-middle attack, 

phishing, as stated in [20]. As we have discussed, there are a lot of ways in which an attacker 

can attack a network to steal the data; therefore in order to prevent the attack, different 

technologies are being used by the firms like firewall and access control. 

According to [10], In spite of the fact that there are so many technologies to prevent the 

intrusion, still the network is vulnerable to so many undetected attacks. Therefore in order to 

prevent such attacks Intrusion Detection Systems (IDS) are developed and still more are being 

developed day by day using different kind of technologies.  

As discussed in [11] [14] [21], IDS can be categorized as HIDS and NIDS i.e. host based 

intrusion detection system and network based intrusion detection system. HIDS operate on an 

individual system and possess the complete knowledge about the data and processing of that 

system. These are equipped with the servers and provide security to the mails, servers of a firm. 

HIDS provide high security as they have the complete knowledge of data and servers of a 

computer system. But here our concern is NIDS, NIDS operate on network. NIDS are deployed 

to handle the traffic over network. NIDS are used to restrict the malicious activities taking place 

over the internet, they does not replace the security implementations like firewall rather they 

add to them. The NIDS are used to detect those attacks which can’t be detected by the basic 

security parameters. There is one more class of IDS i.e. Hybrid IDS, which possesses the 

properties of both HIDS and NIDS. These IDS can be deployed on both host and network Now 

onwards we shall use the term IDS for NIDS. 
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Further IDS can be categorized into signature based and anomaly based IDS. Anomaly based 

IDS analyses the network traffic and if in the received data, there is any kind of deviation from 

the normal behavior then it raises a flag but False alarm rate (FAR) is high with anomaly based 

IDS which makes its implementation quite onerous, the reason for the same is that attacker 

attacks the network with the values close to the training values of IDS. Whereas on the other 

hand Signature based IDS has its own database of known intrusions and it detects those 

intrusions only. 

Intrusion detection can be stated as a classification problem, hence many Machine Learning 

techniques are used in order to build IDS like SVM, Random Forest, Swarm Optimization and 

Convolutional Neural Networks [17]. These IDS are first trained on the basis of nature of 

intrusions then they are tested with some sample data after that these systems are deployed in 

the networks.  

These IDS face some problems like the first problem is that nature of attack is variable, it 

changes vigorously and in order to cope with such changing attacks, it is important to make 

IDS which can detect such types of attacks. The second problem is of overfitting, the machine 

learning methods usually face the problem of overfitting. Therefore it is immensely important 

to distribute the dataset into training data and test data and also balance must be maintained 

among the features i.e. irrelevant features and redundant features must be taken care of. The 

third problem is labeling the dataset of intrusion. The dataset are so complex that labeling 

becomes a typical task. Efforts have been made to simplify the task of labeling the dataset. 

The problems faced are tackled by the IDS throughout its working phases. An IDS works in 

different phases and these phases are explained below. 

1.1.2 Data Preprocessing 

Raw dataset contains different types of data, redundant data and also some features which have 

non-numeric values. Therefore in order to handle these problems, data preprocessing is carried 

out. Data normalization is also the part of data preprocessing, min-max normalization is a 

generally used method for data normalization. Also important features which contribute in the 

implementation of IDS are extracted and labeled. Feature extraction can be carried out using 

different methods of machine learning like SVM, PCA [23].  

1.1.3 Model Generation 
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Specific machine learning tool is wielded to generate IDS model. Model building can be seen 

as the core of IDS because model detects the intrusion. The dataset is divided into training set, 

validation set and test set. Further on the basis of data, training and learning processes of IDS 

model are carried out. Training is validated using validation data. After validation, on the basis 

of test data the model is tested and this process is performed again and again in order to improve 

the accuracy of IDS. 

1.1.4 Evaluation 

The results of IDS are evaluated and on the basis of evaluation, modifications are made to the 

IDS. All the parameters are evaluated like accuracy, time taken to detect the attack. 

 

 

Fig.1.1 Intrusion Detection System 

1.1.5 Deployment in Real Network 

After all the analysis of system, the model is implemented in the real time network to work as 

intrusion detection system. 
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1.2 ARTIFICIAL NEURAL NETWORK 

1.2.1 Structure of ANN 

A computer system consists of a series of simple and highly interconnected processing 

elements that processes information in response to the dynamic state of external inputs. 

Basic Structure of ANNs 

The basic thought behind an ANN is to build an analogy with the working of the human brain. 

The human brain is composed of dendrites and neurons and in the same manner the ANN is 

built. So the idea is to emulate the working of human brain using wires and silicon as dendrites 

and silicon respectively. 

There are billions of nerve cells in the human brain and they are connected to other thousands 

of cells by axons. Dendrites accept the stimuli from the external environment via sensory 

organs, further these stimuli are converted to the electric impulse which travels through the 

neural network and then the neurons communicate with the other neurons in order to handle 

the issue. According to [25] a biological neuron can be seen as in figure 1.2. 

 

Fig.1.2 Nerve Cell 

In the similar way, ANNs are comprised of multiple nodes which work like neurons present in 

the human brain. The input data can be accepted by nodes for the purpose of simple data 

operations and the results of these operations are passed to other nodes. The output of every 

node is known as its activation or node value. The nodes are connected with the links and these 

links possess some weights. Just like human brains, ANNs also possess the ability to learn and 

the learning process is carried out by adjusting the weight values of the links. The simple 

example of an ANN is shown in the figure 1.3. 
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Fig.1.3 General Structure of ANN 

 

1.2.2 Types of Artificial neural network 

a) Feed Forward ANN 

b) Feedback ANN 

1.2.2.1 Feed Forward ANN 

In FFANN the information flow is unidirectional i.e. information flows from the input nodes 

to the hidden nodes and from hidden nodes to the output nodes. There is no loop in feed forward 

ANN. FFANN is generally used in pattern recognition, image classification. 

1.2.2.2 Feedback ANN 

In Feedback neural network, information flow is bidirectional which means information can 

flow from output payer to hidden layer and input layer. Feedback ANN is also known as 

recurrent neural network (RNN). On the basis of feedback, this network can adjust its weights 

and can reduce the error in the next iteration. Thus recurrent neural network can come in the 

state of equilibrium by traversing the information forward and backward. 



6 
 

1.2.3 CNN (Convolutional Neural Network) 

            A Convolution Neural Network can capture the Spatial and Temporal dependencies 

successfully in an image by application of various relevant filters. The architecture performs a 

better fitting to the image dataset due to the reduction in the number of parameters involved 

and reusability of weights. In other words, the network can be trained to understand the 

sophistication of the image better. 

 The main role of the CNN is reduction of times into something which is easier to process, 

without losing features which are used for prediction purpose. Its major applications are in the 

areas of Computer Vision, Image & Video recognition, Image Analysis & Classification, 

Media Recreation, Recommendation Systems and Natural Language Processing. In a CNN 

model each input image passes through a series of convolution layers with filters, Pooling, fully 

connected layers (FC) and apply Softmax function to classify an object with probabilistic 

values between 0 and 1. 

 Convolution layer:  

 It is the first layer which helps in extraction of features from an input image. Convolution 

preserves the relationship between pixels by learning image features using small squares of 

input data. Convolution of an image with different filters can perform operations such as edge 

detection, blur and sharpen by applying filters.  

 ReLU function:  

 ReLU stands for Rectified Linear Unit and is used for non-linear operations. Its equation is 

given as: 

  ƒ(x) = max(0,x) 

 

 ReLU function is used to introduce non linearity in our CNN. The real world data requires 

CNN to learn from non-negative linear values, hence we use ReLU. 

 

Pooling: 

Pooling layers are used to reduce the number of parameters in very large images. It is used to 

reduce dimensionality size. Spatial pooling also known as subsampling or down sampling are 

used to reduce the dimensionality of each map but retains the important information [19].  

Different types of spatial pooling are: 

1. Max Pooling: It takes the largest element from the rectified feature map 

2.    Average Pooling: It takes the average of all elements in the feature map 
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3.    Sum Pooling: It takes the sum of all the elements in the feature map 

 

1.2.4 Machine learning and ANN 

Machine Learning can be defined as making the machine learn on their own from the data, 

previous experience without explicitly programming them. There are broadly 2 types of 

machine learning: supervised learning and unsupervised learning [24]. 

1.2.4.1 Supervised learning 

In supervised learning we have a set of data which is labeled i.e. we have sample data from 

which the algorithm can learn. 

 

 

Fig.1.4 Supervised Learning 

As shown in Fig. we can see that training data is used to train the model to form the logic. After 

the model has been trained, it is used to make a prediction or decision when new data is given 

to it. 

Types of Supervised Learning 

 Classification: Classification problems deal with the prediction of a discrete value 

output zero or one. Here the output is divided into a certain number of classes and we 

try and classify data into these given classes. For example: We have a database of 

customer accounts and we would like to examine if the customer data has been 

compromised or not. This is an example of a classification problem where the 2 classes 

will be compromised data and non-compromised data. 

 Regression: Regression problems deal with prediction of a continuous valued output. 

Regression doesn’t have classes and the outputs are not discretely defined are are 

continuous. For example: There is a large inventory of identical items and we have to 

predict which items will sell in the next 3 months. This is a regression problem as we 

have thousands of items so we’ll treat it as a continuous value and the number of items 

to be sold will be a continuous value. 
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1.2.4.2 Unsupervised learning 

Unsupervised learning is called as learning with unlabeled data. In this, we do not have a set 

of labelled data to train our model. The computer tries to find patterns in data to find results. 

Unsupervised learning can be used for market segmentation, astronomical data analysis, and 

social network analysis. 

An example of unsupervised learning is clustering. Clustering is known as the technique in 

which a set of objects are grouped together such that objects in the same group are more similar 

to each other than they are to objects in the other group. 

 

 

Fig.1.5 K-means Clustering 

 

1.3 AUTOENCODERS 

1.3.1 Structure of Autoencoders 

Autoencoders are a specialized class of feedforward neural networks that are compressed into 

integrated code and then regenerated to produce the output same as input using machine 

learning. But the objective of an autoencoder is not just duplicating the input to the output. But 

the training an autoencoder in latent space makes it worth as an autoencoder acquires some 

properties during the training [22]. An autoencoder is composed of three parts. 

i. Encoder 

ii. Code 

iii. Decoder 

A simple example is shown in the figure 1.6. 

 

Fig.1.6 Block Diagram of Autoencoder 
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Encoder: 

The input data is encoded and compressed in this layer with the reduction in the dimensionality. 

This compressed image is also known as the distorted version of the image. The encoding 

function can be written as  

h = f(x) 

Code: 

This layer has the compressed input for the decoder part. It is also known as the bottleneck 

layer and this is the most important part of the network because the compression part is done 

by this layer. If the bottleneck layer is not there then the data will move as it is throughout the 

network.  Therefore in order to compress the data, the bottleneck layer is needed. It decides 

which features are to be kept and which should be removed from the input data. Only the 

relevant features are retained from the input space. 

Decoder: 

It decodes the compressed data and gives back the lossy original data i.e. the data obtained 

from the decoder does not have the complete information as it had in the input. The decoding 

function can be written as  

r = g(h) 

Therefore an autoencoder can be represented as  

g(f(x)) = r 

 

 

Fig.1.7 Structure of Autoencoder 
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If the bottleneck layer has lesser dimensions than the input layer, then autoencoder can extract 

the suitable features from the input and the process of imitating the input is justified. In this 

case the autoencoder is considered as undercomplete. But if the bottleneck layer has been 

assigned more dimensionality than the input layer, the autoencoder is called as overcomplete 

because in this case autoencoder is not extracting the useful features from the input domain, it 

is just performing the duplicating task as it is. This can also be achieved if the code layer has 

the same dimensionality as the input. But in these cases the encoder does not learn anything 

important about the dataset. An autoencoder, unlike the other compression and decompression 

algorithms learns from the data itself whereas the training of the algorithms like JPG and ZIP 

have different datasets. 

An autoencoder is used for the purpose of data denoising and the reduction in the data 

dimensionality with the help of compression method. Noise is the random variation in the data, 

autoencoder first generates the noise and then denoise the data in order to compress the data. 

The reduction in dimensionality in the bottleneck layer also helps to compress the data. 

1.3.2 Properties of an Autoencoder 

Data Specific: 

Autoencoders can compress the data which is similar to their training data, since the 

compression is dependent on the training data, therefore autoencoders are different from 

traditional compression algorithms. 

Lossy: 

The decoded outputs will not exactly be same as the inputs. There will be some degradation or 

loss of information in the output. Lossless compressions can’t be obtained using the 

autoencoders. 

Unsupervised: 

Autoencoders learn in unsupervised manner, moreover they are known as self-supervised 

neural networks as they don’t need any raw data to train on rather they generate the labels on 

their own.  
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1.3.3 Hyperparameters to Train an Autoencoder 

Bottleneck size: 

Number of nodes in the bottleneck layer depicts the degree of compression i.e. lesser the 

number of nodes in the layer, more will be the compression. Therefore in order to get higher 

compression the size of bottleneck layer is kept small. 

Number of layers: 

We can create as many layers as we want in an autoencoder i.e. an autoencoder can be as deep 

as we want. 

Number of nodes per layer: 

The structure of an autoencoder is a stacked structure where the number of nodes in the encoder 

part decreases with the number of layers and on the other hand, the number of nodes in the 

decoder part increases with number of layers. Structures of both encoder and decoder are 

identical, speaking in terms of layers. 

Loss Function: 

Loss function is used depending on the input, if the input is in the range [0, 1] then binary 

crossentropy is used as loss function otherwise mean squared error (mse) is used. 

1.3.4 Types of Autoencoders 

i. Sparse Autoencoders 

ii. Denoising Autoencoders 

iii. Variational Autoencoders 

iv. Contractive  Autoencoders 

1.3.4.1 Sparse Autoencoders 

According to [12], Sparse Autoencoders do not rely on reducing the number of nodes from the 

hidden layer rather they depend on the activation function. A fixed number of nodes are kept 

active in this type of autoencoder and others are kept inactive i.e. only a small number of 

neurons will have a non-zero value. Therefore input is given as combination of a few number 

of neurons and autoencoder is thus forced to discover the information from the data. Training 

and feature extraction also depend on the number of active nodes. 
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1.3.4.2 Denoising Autoencoders 

It is the type of a basic autoencoder, the input fed into the network is a noisy input. The idea is 

to force to the hidden layer to find some more features from the input so that the training and 

learning processes should not depend on the raw input. Autoencoder should be able to 

reconstruct the data from the noisy input and can generate the output similar to the input. 

              

Fig.1.8 (a) Denoising Autoencoder                                Fig.1.8 (b) Sparse Autoencoder 

                                                                                                                                                                                    

1.3.4.3 Variational Autoencoder 

Variational Autoencoders are no different than other autoencoders. The only difference is that, 

in encoder part of variational autoencoder, we know the distribution of features whereas in 

normal autoencoder we don’t know the distribution of features. It can use different types of 

distribution like Gaussian distribution and unit normal distribution [12]. Encoder can do 

sampling of data from features using the distribution and further when this data is fed into the 

decoder part, the decoder can generate the objects similar to the input. Apart from compression 

variational autoencoder can also generate the new objects with a minute difference from the 

original object. 
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Fig.1.9 Variational Autoencoder 

 

1.3.4.4 Contractive Autoencoder 

Contractive autoencoders are similar to denoising autoencoders because in both the types, 

manipulations are done with input in order to make the learning process of encoder part more 

effective. A penalty term is applied to feature extraction algorithm in the encoding part, so that 

it becomes less sensitive to a small manipulation. Therefore the output can be seen as the result 

of reduced sensitivity of encoder. Let’s understand with the help of an example, suppose we 

have the dataset of bikes and encoder learns about the left view and right view of a bike then 

contractive autoencoder is sensitive about both left and right view,  but it will be insensitive 

towards other views of the bike. This is how a contractive autoencoder works. 

 

Fig.1.10 Contractive Autoencoder 
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CHAPTER 2 

 

RELATED WORK 

 

 

 

In this chapter we have reviewed the work done in the field of intrusion detection system. We 

studied the techniques deployed so far and how they are efficient and up to date. 

Neural nets have always been the source of attraction for the researchers in the field of machine 

learning and intrusion detection. RNN is different from traditional ANN in terms of the data-

flow. The data flow in ANN is unidirectional that is the data flows from input layer to the 

hidden layer and from hidden layer to the output layer whereas in RNN the information 

processed at some point can be used further, as given in [16]. This purpose of remembering 

and forgetting is served by GRU (Gated Recurrent Units). A hypothesis function is used to 

estimate the probability in order to build a multi-classifier so that the diverse network attacks 

can be classified.   The data preprocessing is done by GRU module, the GRU layers present in 

the module extract and store the features, as discussed in [4]. The GRU output is mapped by 

MLP module and thus makes a non-linear classification decision. The GRU and MLP are both 

different types of neural networks. GRU has memory and complex structure whereas MLP is 

a simple structure and has easy calculations. The classification probability is normalized by 

Softmax layer and shown as the final result. 

As mentioned in [1], Convolutional neural network (CNN) is a method described in the context 

of deep learning. In other machine learning methods the training can be called as hand-based 

training whereas CNN is a self-trained method i.e. it learns itself on the basis of previous 

outputs and later correcting them by adjusting the weights attached to the nodes. Basically 

CNN is used in the field of artificial intelligence for the purpose of image classification. When 

implemented as an IDS, features dataset is a 1*m dataset, therefore in order to implement IDS 

as CNN the dataset is converted to n*n dataset. The method used for feature removal or feature 

selection is coefficient of variance, the features having the minimal CV should be removed All 

neurons can share the same convolution kernel and the number of kernels determines the 
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number of weights. The activation function used in this technique is rectified linear unit (ReLU) 

in order to generate the feature vector and the method used for the back propagation is gradient 

descent method for the purpose of training and reduced error rate. The method also faces the 

problem of imbalanced distribution of data and in order to solve the classification imbalance 

problem the cost function-based method is used. As different samples are present in different 

proportions therefore the weights of the cost functions are adjusted accordingly, if samples are 

high in proportion then weights they will have smaller weights and if they are small in number 

then those will have higher weights. 

As stated in [2], the particular method of intrusion detection the raw data is separated into 

training data and test data further the training data is divided into the reduced training set and 

the evaluation set. The purpose of the evaluation set is to validate the training set, but the test 

set is completely different from the training set. The non-numeric data or symbolic data is 

converted to the numerical data. The next step is to normalize the data, the process of 

normalization is done to so that the values can be kept in the range of optimal processing. In 

this method the normalization is done in two steps. First the logarithmic normalization is 

applied so that the data can be kept in an acceptable range and in the second step the values are 

linearly capped in order to keep them in a particular range. After the normalization process the 

process of feature extraction takes place. Feature Extraction algorithm is based on Information 

Gain, a threshold value is set for the information gain and the features having information gain 

more than the threshold are loaded in the algorithm.  

For the training purpose the following steps are followed  

(i) Forward Propagation 

(ii) Back-propagation of the computed error 

(iii) Updating the weights and biases. 

The neural network used in this technique is trained using back propagation supported by 

stochastic gradient descent for the weights update. The cost function calculates the difference 

between the target and the obtained output. 

The particle swarm optimization technique is developed on the basis of social behavior 

metaphor. It can be referred as exploration-exploitation tradeoff [18]. Exploration means to 

find an optimum solution globally i.e. assessing the various regions of the problem space and 

exploitation means to look for the solution in the neighborhood so that the optimum solution 
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can be found quickly. The dataset used in this technique is KDD Cup 99. The velocity and the 

position of a particle are formulated in order to find the optimal solution in the dataset, 

mentioned in [5]. PSO based optimized technique helps an artificial neural network to choose 

its weights and the problem of hidden neurons is solved by the activation function used. 

IDSGAN method emphasises on the attacks which can deceive the traditional IDSs and this 

misclassification is done desirably by using adversarial malicious traffic examples to train the 

model, as mentioned in [9]. 

The model is composed of two networks i.e. the generator network and the discriminator 

network. The weights of generator are set different so that the adversarial malicious traffic can 

be generated it can dodge the pre-implemented IDS. The generator has a five layered neural 

network. Training of Generator depends on the feedback of Discriminator. Weights of 

Generator are updated according to the outputs of the Discriminator. The Discriminator is used 

as IDS, it detects the both normal attacks and adversarial malicious attacks and send the 

feedback to the Generator. The Discriminator is a multi-layer neural network and its training 

data comprise of normal traffic and malicious traffic. For the training purpose of the 

Discriminator, the traditional IDS classifies the normal attack data and the adversarial attack 

data. Then these classified attacks are used to train the discriminator so that discriminator can 

work as a traditional IDS. In order to calculate the performance of IDSGAN the detection rate 

and the evasion increased rate are calculated comparatively. Hence the suggested method 

shows the compatibility with the modified features and works better with slight changes in the 

dataset whereas other traditionally implemented IDSs can’t perform expectedly. 

In KNN-Mars algorithm as the name suggests the method uses two algorithms i.e. KNN (k-

nearest neighbour) and MARS (multivariate adaptive regression splines). MARS is a non-

linear regression function, it works like a step function. Points where non-linearity arise are 

called knots. The knots or cut-points in a polynomial regression model are captured by MARS 

function. The knots are created by MARS according to the data and the polynomial distribution 

function. First the knots are generated and after that those knots which have minimal impact 

on the distribution are pruned in order to avoid overfitting. KNN is a clustering algorithm 

defined in machine learning aspect. Functioning of KNN depends on similarity in data units. 

Clusters of similar objects are formed. K is a natural number which depicts the number of 

clusters to be made. The algorithm works on the basis of distance calculation. It measures the 

distance from a query to other points in the dataset and thus the clusters are made accordingly 
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i.e. those nearer to a particular query point will be enclosed in the cluster of that point. The 

basic version of KNN-MARS method is slow. In order to fasten the technique, those 

neighbours which have negligible impact on the model are pruned. MARS algorithm also helps 

in speeding up the technique because the training data points lie close to the decision boundary 

and are used repeatedly. Therefore this method can be seen as an improvement to the basic NN 

classifier. If k is small then model behaves as KNN and if k is large then the model behaves as 

MARS, so the method KNN-MARS is best suited for the moderate values of k, as discussed in 

[6]. The method uses 10-fold cross validation i.e. dataset is divided into 10 sets and out of these 

10 sets, 9 are training sets and 1 is test set. Model is trained each time with a particular dataset 

and then it is tested on the test set, further on the basis of test results the model is evaluated and 

summarized. 

As discussed in [13], SVM stands for support vector machine, is a machine learning technique 

generally used for the purpose of classification. It’s a kind of supervised learning and thus need 

a labelled training data. The classifier generated by SVM is a hyperplane. Dimensions of 

hyperplane depend on the number of classes in which data needs to be classified. If we have n 

classes then hyperplane would be n-dimensional. SVM works better with the small samples of 

data in comparison to other algorithms. SVM also solves the problem of non-linear and high 

dimensional data but in case of big data, the training and the testing times are long. SVM also 

faces the problem of high error rates. Therefore in order to solve these problems SVM is 

implemented with GA i.e. genetic algorithms. Genetic algorithms work on the basis of mutation 

and crossover i.e. they follow biological genetics. In order to converge the algorithm, the 

crossover probability and mutation probability are adjusted according to the fitness function 

and the evolutionary algebra. The selection process in GA is designed so that the better 

individuals can be chosen and the diversity can be maintained. The process of feature selection 

in this technique is performed by GA. The feature chromosomes are created by process of 

mutation and their fitness function values are calculated. Features having the maximum fitness 

function values are selected and added to the features subset and further these features are used 

to detect the intrusion, mentioned in [7]. SVM classifier is trained on the basis of feature subsets 

generated by GA.  Both the training and testing of SVM are based on the features extracted by 

GA. Thus this method works with optimum accuracy with the combination of duet. 

In the method CNN with feature reduction, the first step in the method is same as used in other 

methods as well i.e. data pre-processing. At first the features having non-numeric values are 

converted to the numerical values and further the data is normalized, MIN-MAX formula is 
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used for the purpose of same. The 1-D dataset is converted to 2-D dataset in order to make it 

suitable for CNN. But in order to handle the data redundancy and increase the learning rate of 

the network, dimensionality of features is reduced. For the purpose of dimensionality reduction 

PCA (principal component analysis) and auto-encoder methods are used, as mentioned in [3]. 

Further this reduced dimensional data is converted to 2-D data and mapped into the input layer 

of CNN. In the next step, CNN learns the feature information, on the basis of which intrusion 

properties are derived. The output layer converts the result into 1-D array for the classification 

purpose. At last output is presented with softmax classifier and CNN and intrusion 

characteristics are shown. The method also uses batch normalization for the fast learning rate 

of the network. Batch normalization helps the learning process to cop up with change in 

distribution of input. Thus these different methods implemented with CNN make a better IDS. 

Naïve Bayes and Adaboost IDS is a combination of one weak and one strong classifier, as 

discussed in [8]. Naïve Bayes is considered as a weak classifier and AdaBoost is considered as 

a strong classifier. Naïve Bayes classifier works on the principle of Bayes theorem. According 

to [15], the equation of Bayes theorem can be given as 

 

𝑃(𝑐/𝑥) = 𝑃(𝑥/𝑐)𝑃(𝑐)/𝑃(𝑥) 

 

 P(c/x) is the posterior probability of class (target) given predictor (attribute)  

 P(c) is the prior probability of class  

 P(x/c) is the likelihood which is the probability of predictor given class  

 P(x) is the prior probability of predictor 

 

On the basis of probability Naïve Bayes classifies the data in to the different classes. 

Adaboost stands for adaptive boosting, the algorithm work to strengthen the weak classifiers. 

The output of Naïve Bayes is combined with Adaboost to give the final output. Adaboost is 

adaptive in nature as it can adjust with noisy data and outliers, also it is easy to implement. 
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For the implementation of IDS, the stepwise process takes place. At first the features are 

extracted and the method used is two-second time window. Adaboost is also used to label the 

data. Therefore combination of strong and weak classifier works well in terms of IDS. 

 

  



20 
 

CHAPTER 3 

 

EXPERIMENTAL APPROACH 

 

 

3.1 DATASET 

We get ours dataset online from [26]. The dataset consists of dataset contains benign and the 

most up-to-date common attacks, which resembles the true real-world data (PCAPs). It also 

includes the results of the network traffic analysis using CICFlowMeter with labelled flows 

based on the time stamp, source and destination IPs, source and destination ports, protocols 

and attack (CSV files). 

The datasets used so far are out of date and unreliable as the traffic diversity is deficient in 

them. Those dataset also do not cover the variety of different known attacks. But our dataset 

covers the common attacks which are similar to the real world attacks. A sample of dataset is 

shown in figure 3.1. 

 

Fig.3.1 Raw Dataset 
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Initially the dimensions of our dataset are [692703, 79] i.e. we have 692703 rows and 79 

columns in our dataset. Now from our dataset, we collect the set of attacks i.e. different types 

of attacks present in our dataset. 

 

 

Fig.3.2 Types of Attacks 

3.1.2 Types of Attacks in Dataset 

 Benign 

The normal behaviour of data is called Benign here, also the literal meaning of benign 

is unharmful in effect. 

 DoS GoldenEye 

Denial of service attack using Goldeneye tool, Goldeneye is a python implemented tool 

used for the purpose of attack. It persists socket connection via caching until it 

consumes all available sockets on the HTTP/S server. 

 DoS Hulk 

Hulk is a tool used to attack the web servers by creating unique and obscure traffic. It 

is also python implemented tool to generate denial of service attack. 

 DoS Slowhttptest 

Slowhttptest is used to generate the denial of service attack at application layer. It 

prolongs the HTTP connection. It is used to test the web server’s vulnerabilities towards 

DoS attack. 

 DoS slowloris 

Slowloris is a tool to stimulate the denial of service attack. It enables a single machine 

to take down the whole web server. It works on very low bandwidth and it is also simple 

in nature. The way of attack is by sending HTTP requests and keep them incomplete 
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always. If slowloris attacks go undected then they can last for a long period of time and 

can harm the server for a long. 

 

 Heartbleed 

A block of memory of server up to the size of 64 kb is retrieved by the attacker, this 

allows the attacker to send malicious information to the server during the connection 

and there is no limit on how much malicious data can be sent over there. It thus allows 

the attacker to steal the sensitive data from server’s memory. 

3.2 DATA PREPROCESSING 

Data preprocessing is the first step towards the designing of an IDS. The raw data can’t be used 

directly in the model for training and testing, first we need to preprocess the data. Most of the 

time, the real world data or the raw data is not complete, not consistent, or is full of so many 

errors. To transform the data into an understandable form, data pre-processing is done. Data 

pre-processing is the method to resolve the unwanted issues before applying algorithms. Some 

of the data pre-processing steps involves cleaning, integration, transformation, reduction, etc. 

Further from ‘Label’ column we take the count of different types of attacks, just to take the 

knowledge of dataset and attacks present in it. 

 

Fig.3.3 Number of Attacks 

 In order to take care of any infinite values in dataset, those values are replace by ‘Nan’ 

i.e. not a number and further null values are dropped from data. 

 Next step of data preproceesing is to convert the non-numeric values of features into 

the numeric values. This process is done so that the mathematical tools can be applied 

to the dataset. In our dataset, column describing the names of attacks is the only column 
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with non-numeric values. Therefore the attacks ‘Benign’, ‘DoS GoldenEye’, ‘DoS 

Hulk’, ‘DoS Slowhttptest, DoS slowloris’ and ‘Heartbleed’ are given values 0, 1, 2, 3, 

4, 5 respectively. This change in the dataset can be seen in the figure 3.4 

 

Fig.3.4 Data with all Numeric Values 

 The next step in our approach is to divide the dataset into training, validation and testing 

data. Training set trains the model about the detection of attacks, validation set is there 

to validate the training and next we have test set in order to check the accuracy of our 

IDS model. We have distributed our data in train, valid and test set as 80%, 10% and 

10% of the whole dataset respectively. 

 

Fig.3.5 Training Set 
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Fig.3.6 Validation Set 

 

 

Fig.3.7 Test Set 

After that we use normalization process in order to normalize the data, so that whole data can 

be made co-dimensional. As we have dataset in which the values are out of bound in 

comparison to other values. Therefore the data values of different range can be brought in 

optimal range by the normalization process so that processing can become easy. We stick to 

the commonly used min-max normalization method to normalize the data. The equation for 

min-max normalization can be given as  
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𝑋௦ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

By using this equation all the values in the dataset can be brought in an optimal range of 

computing and hence results will be more accurate. After normalizing and preprocessing the 

dataset we calculate the dimensions of training data, validation data and test data. 

 Training data have 553125 rows and 78 columns. 

 Validation data have 69141 rows and 78 columns. 

 Test data have 69140 rows and 78 columns. 

 

3.3 FEATURE EXTRACTION  

The next step for building an IDS is feature extraction from the dataset as dataset contains some 

irrelevant features that do not contribute in our concern or intrusion detection. In order to 

retrieve the important features from the dataset, we implement vanilla autoencoder. In our 

‘Introduction’ chapter, we have discussed in detail how autoencoders work to extract the 

important features from the dataset. 

3.3.1 Vanilla Autoencoder 

Vanilla autoencoder is a simple 3 layered neural network with 1 hidden layer and that hidden 

layer is the bottleneck in vanilla autoencoder. Vanilla autoencoder implements dense neural 

network. As we have discussed, a neural network needs activation function for the purpose of 

learning and also to have non-linearity in the output.  

 Activation function used for the encoding purpose is Relu function i.e. rectified linear 

unit activation function. Relu is a frequently used activation function. Relu function is 

half rectified function i.e. when input is negative the output will be 0. The equation of 

Relu can be given as  

𝑦 = 𝑚𝑎𝑥 (0, 𝑥) 

Relu function can be seen as in figure 3.8 



26 
 

 

Fig.3.8 ReLU Function  

After encoding for the decoding purpose also, we shall use Relu as our activation 

function. But at last while mapping the output of a hidden layer to the main output layer 

the activation function used is sigmoid function. We use sigmoid function so that after 

extraction of features the data values which were negative should not get affected. The 

equation of sigmoid function is given as follows 

∅(𝑧) =
1

1 + 𝑒ି௭
 

Sigmoid Function can be seen as in figure 3.9 

 

Fig.3.9 Sigmoid Function 

The autoencoder constructed had 78 features as input, then input is passed to the 

autoencoder and at first in the encoder part 64 features were drawn from the input with 

relu as activation function, relu will also be the activation in the subsequent layers of 

autoencoder till the second last layer. In the next layer there will be 32 features and in 

the bottleneck layer, there will be 16 features. At bottleneck layer important and 
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relevant features are extracted, then decoder starts mapping the output from bottleneck 

back to original dimensions first to 32, then 64. From here in order to map the features 

to the final output, the activation function used is sigmoid in order to take care of 

negative values in dataset. The summary of autoencoder can be seen in the figure 3.10. 

 

Fig.3.10 Autoencoder Summary 

It has a total of 15390 parameters and all parameters are trainable. 

 Loss function  

Loss function can be stated as the difference between the expected output and the 

original output. Loss is calculated so that learning process and back propagation can be 

carried out accordingly. We use Binary Cross-entropy as our loss function in the 

autoencoder. Binary cross-entropy is a log loss function. The equation of binary cross-

entropy loss function can be given as 

𝐻(𝑞) = −
1

𝑁
 𝑦 . 𝑙𝑜𝑔 (𝑝(𝑦) + (1 − 𝑦). 𝑙𝑜𝑔 (1 − 𝑝(𝑦))



ୀଵ
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Py is the probability of classifying in one class and 1-Py is the probability of classifying 

in other class. The log loss function is shown in figure 3.11. 

 

Fig.3.11 Binary Cross Entropy Function 

 Optimizer 

Optimizer is the function used to minimize the calculated error, the error is minimized 

by adjusting the weights and bias in a neural network. Weights are adjusted by back 

propagation and back propagation is controlled by optimizer function. The optimizer 

used by us is Adadelta. Adadelta means adaptive delta where delta means the difference 

between the current weight and the newly updated weight. Adadelta focuses on learning 

rate component. It is an update to Adagrad optimizer as it controls the rate of adagrad 

by using a window of size w. The equation of Adadelta is given as  

 

𝜃௧ାଵ = 𝜃௧ + ∆𝜃௧ 

∆𝜃 = −
𝑅𝑀𝑆[∆𝜃]௧ିଵ

𝑅𝑀𝑆[𝑔௧]
∙ 𝑔௧ 

The architecture of our autoencoder is shown in the figure 3.12 
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Fig.3.12 Architecture of Autoencoder 

3.4 MODEL GENERATION 

For the purpose of classification, we implement a dense neural network of 1 layer. Dense neural 

network will classify the attacks into their respective categories. A fully connected artificial 

neural network is known as dense neural network. All the nodes of a layer are connected to all 

the nodes of subsequent layer.  

The summary of dense neural network model is shown in the figure 3.13 

 

Fig.3.13 Summary of Dense Neural Network 

It has a total of 102 parameters and all are trainable. 
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 Activation Function 

Softmax function is used as activation function. Softmax function converts the numbers 

into the probabilities values ranging from 0 to 1. The equation of softmax function can 

be given as 

𝑆(𝑦) =
𝑒௬

∑ 𝑒௬
 

The values become in optimal range and thus makes the data co-dimensional. Softmax 

function can be shown in figure 3.14 

 

 

Fig.3.14 Softmax Function 

 Loss Function  

Loss function used is sparse categorical cross entropy function. This function does not 

require the whole vector as input rather it works with only the number or digits. This is 

also a log loss function. 

 Optimizer 

For the backpropagation and learning purpose, the optimizer used is RMSPROP. 

Rmsprop increases the learning rate of a neural network. The equation of Rmsprop can 

be given as 

𝑉௧ = 𝜌𝑣௧ିଵ + (1 − 𝜌) ∗ 𝑔௧
ଶ 
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∆𝑤௧ = −
𝜂

ඥ𝑣௧ + 𝜀
∗ 𝑔௧ 

𝑤௧ାଵ = 𝑤௧ + ∆𝑤௧ 

Thus with the implementation of dense neural network our IDS model is also ready and the 

model creation can be seen in the flowchart depicted in figure 3.15. 

 

 

Fig.3.15 Block Diagram of Model 

 

3.5 CNN MODEL 
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We also applied convolutional neural network for the classification purpose of attacks. We 

build a CNN model which can be used as IDS on our dataset. We have discussed about CNN 

model in our Artificial Neural Network. The working process of CNN model can be seen from 

there. The summary of CNN model can be seen in figure 3.16. 

 

 

Fig.3.16 Summary of CNN Model 

It has a total of 3094 parameters and all are trainable. 

 The activation function used is Softmax. 

 The optimizer used is Rmsprop. 

 The loss function used is Sparse Categorical Entropy. 

We have already discussed about these functions in autoencoder. 
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CHAPTER 4 

 

RESULTS 

 

 

 

The dataset has been applied to the models and we have calculated the results of both the 

models on the basis of following equations. 

Accuracy can be calculated by the given equation 

𝐴𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

Detection rate can be given by the equation: 

𝐷𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

False alarm rate can be given by: 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

We applied the DNN-Autoencoder and CNN models to predict the attack in the given dataset. 

The values of 3 parameters for both the models are given in table 1. 

Table1. Accuracy of DNN-Autoencoder and CNN 

 ACCURACY DETECTION 

RATE 

FALSE ALARM 

RATE 

DNN-

Autoencoder 

94.83% 94.83% 5.17% 

CNN 67.38% 71.05% 6.32% 

 

The accuracy shown by DNN-Autoencoder is higher than the normal Convolutional neural 
network. We can see the comparison of accuracies, detection rate and false alarm rate of both 
the methods in the charts in following figures. 
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Fig.4.1 Accuracy Comparison 

 

 

Fig.4.2 Detection Rate Comparison 

 

 

Fig.4.3 False Alarm Rate Comparison 
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From results it is clear that dense neural network with autoencoder gives better accuracy and 
detection rate. False alarm rate is low in case of dense neural network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

 

Intrusion detection system implemented in this work shows a great accuracy towards the 

detection of malicious data or attack data. It has high modelling ability towards intrusion 

detection. The model worked very well with the new dataset Intrusion Detection Evaluation 

Dataset (CICIDS2017). For the purpose of feature extraction we implement autoencoder which 

itself extracts the important features from the dataset. The experimental results shows that the 

model works better with new data which matches with the attacks of current generation. 

Different IDS shows different results. All have their own intrusion responses under different 

scenarios. Our model is quite comprehensive in terms of detection rate, false alarm rate and 

accuracy. 

The accuracy is good but still there is scope of improvement in accuracy, we shall try to 

improve the accuracy by improving our dense neural network model. We shall try to implement 

the different neural network models with autoencoders in order to check their accuracy. We 

shall also try to improve the existing model by using different activation function, loss function 

and optimizer. Detection time must also be taken care of, so that when implemented in real 

network the model should work in real time. CNN model can be improved further by using 

different features extraction techniques.  

Comparison of both the models show that our model is better in terms of all the aspects i.e. in 

terms of accuracy, detection rate and false alarm rate. CNN can also work better if feature 

extraction methods are improved i.e. better feature extraction can be implemented. 
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