CERTIFICATE

I, **OBAIDUR RAHMAN**, Roll No. 2K17/PSY/10 student of M. Tech. in POWER SYSTEMS, hereby declare that the dissertation/project titled "**MODELING**, **DESIGN AND ANALYSIS OF LED LIGHTING SYSTEMS FOR APPLICATIONS IN ILLUMINATION CONTROL AND HORTICULTURE**" under the supervision of **Dr. PRIYA MAHAJAN** of Electrical Engineering Department, Delhi Technological University in partial fulfillment of the requirement for the award of the degree of Master of Technology has not been submitted elsewhere for the award of any Degree.

Place: Delhi

(OBAIDUR RAHMAN)

Date:

(**Dr. PRIYA MAHAJAN**) PROFESSOR

ACKNOWLEDGEMENT

First and foremost, my utmost gratitude to **Dr. Priya Mahajan** Mam. She has been a great mentor without whom this work would not have been possible at all. She motivated me at times when it was much needed and corrected my mistakes many times so as to bring out the best in me and my work. She has always been available, whenever I sought out for help and has shown keen interest in guiding my work.

I am very grateful to my M.Tech. Coordinator **Prof. Rachana Garg** Mam for providing me with an environment to complete my work successfully and tipping me up with some expert suggestions whenever my work got stuck.

I would like to thank all the faculty members of department of Electrical engineering, DTU, Delhi for their constant encouragement.

I would like to thank **Mr. Parveen Mahajan** for providing me with his invaluable support and precious time. I thank him for all the help he gave whenever some important data was required for the work progress.

I would like to thank all my M.Tech colleagues and PhD scholars, specially Shirish Sir, Pallavi Mam and Avdhesh Sir for their constant guidance and help.

Last but not the least, I would like to thank my mom who has always been my backbone. I can't imagine doing something as significant as this work successfully without her support, wisdom and love.

OBAIDUR RAHMAN 2K17/PSY/10 M.TECH (POWER SYSTEMS) DELHI TECHNOLOGICAL UNIVERSITY

ABSTRACT

LED is a light emitting semiconductor device which is nowadays, swiftly replacing conventional lighting system, owing to its high intensity and low energy consumption. In this work, LED lighting Systems have been used for controlling illumination level of a given closed space and another application of LED lighting systems for horticulture has also been carried out. In order to achieve the task, the modeling of LED is required. The very basic modeling of LED can be done by considering it as a resistor. But this has some serious limitations as the non linear I-V characteristics of the LED cannot be modeled using a resistor. To model the non linear IV characteristics of LED, some advanced modeling techniques viz. Piecewise Linear Approximation and Maclaurin series expansion based modeling have been taken up here.

For illumination control of given closed space, LED lights have been used as controlled light source and there is some illumination due to external light sources as well. To drive the LEDs, a driver is needed which provides a DC supply to it. In this work, AC supply has been used which is fed to a rectifier coupled with a buck converter to drive the LEDs with DC. Buck converter's switching is controlled using PWM technique. The microcontroller is given a set point which is compared to a feedback signal generated by LUX sensor. The error signal so generated is fed to a comparator unit to generate the PWM gate signal (amplified and isolated with the help of an optocoupler) which is then fed to the gate of the MOSFET switch of the buck converter. The hardware setup has been simulated first using MATLAB-Simulink and various important parameters such as THD have also been compared.

The application of LED lighting systems for Horticulture has unconventionally been approached by using RGB LEDs as opposed to the use of hyper red or deep blue LEDs. This has been done to take care of the micronutrient requirement of the crops. The data regarding the plant (S. Platenesis), that is, the wavelength or color of light required for the optimum growth has been known beforehand and using this, light of required color is produced by applying the method of color mixing using variable duty cycles for RGB lights.

CONTENTS

CERTIFICATE				ii	
ACKNOWLEDGEMENT					iii
ABSTRACT					iv
CONTENTS					v
LIST OF FIGURES					viii
LIST OF TABLES					x
	LIST OF ABBI	REVIA	ATIONS	AND SYMBOLS	xi
	CHAPTER 1	INT	RODU	CTION	1-4
	-	1.1	Genera		1
		1.2	Motiva	tion	2
		1.3	Proble	m Formulation	3
		1.4	Dissec	tion of Thesis	4
		1.5	Conclu	sion	4
	CHAPTER 2	LIT	ERATU	RE REVIEW	5-9
		2.1	Introdu	iction	5
		2.2	Modeli	ng of LED in MATLAB and Simulink	5
		2.3	Autom	ated control of illumination level using LEDs	6
		2.4	Applic	ation of LEDs in Horticulture	8
		2.5	Conclu	sion	9
	CHAPTER 3	MO	DELIN	G OF IV CHARACTERISTIC OF LED	10-19
		3.1	Introdu	iction	10
		3.2	Modeli	ng	12
			3.2.1	Modeling using Piecewise Linear	
				Approximation	12
			3.2.2	Modeling using Maclaurin Series Expansion	13
		3.3	Implen	nentation	15
			3.3.1	Calculation of parameters for PLA Model	15

		3.3.2	Calculation of parameters for Maclaurin	
			Series expansion based model	16
	3.4	Conclu	ision	18
CHAPTER 4	ILL	UMINA	TION CONTROL USING LED	
	LIG	HTING	SYSTEM	20-35
	4.1	Introdu	action	20
	4.2	Model	ing and Design of Automated Controlled LED	22
		Lightin	ng System	
		4.2.1	Block Diagram of the Model	22
		4.2.2	LED driver design	23
		4.2.3	Control Circuit Design	26
	4.3	Hardw	are Implementation	27
		4.3.1	AC to DC conversion circuit	29
		4.3.2	LED driver circuit design	30
		4.3.3	Gate Driver (Control Circuit)	32
		4.3.4	Sensing Circuit	34
		4.3.5	Software (Arduino IDE)	35
	4.4	Conclu	ision	35
CHAPTER 5	HO	RTICU	LTURE USING RGB LEDs	36-43
	5.1	Introdu	uction	36
	5.2	Develo	opment of Simulink Model	37
		5.2.1	Calculation of parameters	37
		5.2.2	RGB LED driver	39
		5.2.3	Color Mixing using Variable Dimming	
			Scheme	41
	5.3	Conclu	ision	43
CHAPTER 6	RES	SULTS A	AND DISCUSSIONS	44-55
	6.1	Introdu	action	44
	6.2	Model	ing of IV characteristics of LED	44

	6.3	Illumiı	nation control using LED lights	45
		6.3.1	Simulation Results	45
		6.3.2	Hardware Results	48
		6.3.3	Comparison of THD values obtained from	
			Circuit Simulation versus The Hardware	51
	6.4	Hortic	ulture using RGB LED Lights	53
	6.5	Conclu	ision	55
CHAPTER 7	CO	NCLUS	ION AND SCOPE OF FUTURE WORK	56-58
	7.1	Conclu	ision	56
	7.1 7.2		usion of Future Work	56 57
REFERENCE	7.2			
REFERENCE	7.2			57

LIST OF FIGURES

Figure 1.1	LED symbol and its 2 pin variant	1
Figure 1.2	Various applications of LEDs	2
Figure 3.1	LED symbol and its 2 pin variant	11
Figure 3.2	Approximate linear model.	11
Figure 3.3	Measured I-V curve of LED sample, LNL-190UW-4H	12
Figure 3.4	Generalized PLA model	13
Figure 3.5	Five branched PLA model.	13
Figure 3.6	Equivalent circuit for Maclaurin series based model.	15
Figure 3.7	I-V characteristics using PLA technique.	16
Figure 3.8	Section of LED I-V curve from datasheet locating key	
	points	17
Figure 3.9	I-V characteristics using Maclaurin series expansion based	
	modeling technique	18
Figure 4.1	Block Diagram of the model	22
Figure 4.2	Basic Buck converter scheme	25
Figure 4.3	Desired Illumination level to be achieved	26
Figure 4.4	Illumination level of room	26
Figure 4.5	LED intensity vs LED current	27
Figure 4.6	Complete circuit diagram of the proposed work	28
Figure 4.7	Rectifier circuit with dc voltage regulation	29
Figure 4.8	Internal circuit of IC A 6N137	33
Figure 4.9	Generation of PWM using Arduino UNO	33
Figure 4.10	Pin configuration of BH1750	34
Figure 5.1	Absorption Spectrum of various photosynthetic pigments	37
Figure 5.2	The connection scheme for each of the RGB LED array	39
Figure 5.3	Block diagram of the complete setup	41
Figure 5.4	The driving scheme for individual color arrays	41
Figure 5.5	The Color Mixing Chart	42
Figure 5.6	Chart depicting color, wavelength and the material of LED	
	substrate	43

Figure 6.1	Comparison of Measured curve with Piecewise and	
	Maclaurin model curve done in MATLAB 2016a.	45
Figure 6.2	Real time plot of LED current(amp) and LED voltage(volts)	46
Figure 6.3	Output from PI controller	46
Figure 6.4	Zoomed section of PWM signal generated by the PI	
	controller	47
Figure 6.5	Voltage at the input of Buck converter	47
Figure 6.6	Plot of Achieved result against Desired Result	48
Figure 6.7	The complete Setup	48
Figure 6.8	PWM wave generated by arduino	49
Figure 6.9	Inverted output from IC A6N137	49
Figure 6.10	PWM output from arduino v/s Inverted output from	
	A6N137	50
Figure 6.11	Serial monitor displaying the ambient light intensity readings	50
Figure 6.12	THDi values measured on FLUKE view 2 Scopemeter	52
Figure 6.13	Current requirement of hyper red LED per day	53
Figure 6.14	Current requirement of green LED per day	53
Figure 6.15	Current requirement of deep blue LED per day	53
Figure 6.16	Current vs Time curve for hyper red LED	54
Figure 6.17	Current vs Time curve for green LED	54
Figure 6.18	Current vs Time curve for deep blue LED	55

LIST OF TABLES

TABLE I	Various parameters of Shockley's Equation	14
TABLE II	Parameters For Piecewise Model	16
TABLE III	Parameters For Maclaurin Model	18
TABLE IV	Some Important Parameters	25
TABLE V	Data for Inductor Design	30
TABLE VI	I-V Data For RGB Lights	38
TABLE VII Comparison of THDi Values		52
TABLE VIII Color Requirement Chart (Assumed)		

LIST OF ABBREVIATIONS AND SYMBOLS

LED	Light emitting diode
IV	Current-Voltage
PLA	Piecewise Linear Approximation
RGB	Red Green Blue
PWM	Pulse Width Modulation
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
THD _v	Total Harmonic Distortion in voltage
THD _i	Total Harmonic Distortion in current
AC-DC	Alternating Current-Direct Current
CFL	Compact Fluorescent Lamps
RMS	Root Mean Square
VDS	Variable Dimming Scheme
$V_{\rm F}$	Voltage Drop across the LED
I _{LED}	Current passing through the LED
I _{SAT}	Saturation current of LED
η	Ideality factor
q	Magnitude of the Electronic Charge $(1.602 \times 10^{-19} \text{ C})$
k	Boltzmann's constant (1.38 x 10 ⁻²³ J/K)
Т	Absolute temperature $(273 + T_a)$ in Kelvin
V _{in}	Typical input voltage of Buck converter
V _{out}	Desired output voltage of Buck Converter
\mathbf{f}_{s}	Minimum switching frequency of the converter
ΔI_L	Estimated inductor ripple current
L _c	Critical value of Inductance
C _c	Criticalvalue of Capacitance
α	Duty Cycle