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Abstract

In 1973, a significant breakthrough came in the history of pricing options when

Fischer Black and Myron Scholes proposed a valuation formula for the pricing

of European call options based on the geometric Brownian motion model of the

stock price dynamics. This option pricing model was further developed by Robert

C. Merton in the same year, and was named as the “Black-Scholes option pricing

model”. Despite its landmark success in the option pricing theory, the model has

certain biases like the assumptions of constant volatility and Gaussian distribution

of asset log-returns. In practice, the volatility is not constant and the asset log-

return distributions are non-Gaussian in nature characterized by heavy tails and

high peaks. A wide range of research has been done to revise and upgrade

classical Black-Scholes model. The relaxation of constant volatility assumption

led to the modeling of dynamic volatility. A natural extension is to regard the

volatility as a continuous time stochastic process which gave rise to the stochastic

volatility modeling. Stochastic volatility models allow the volatility to fluctuate

randomly and are able to incorporate many empirical characteristics of volatility

namely volatility smile, mean-reversion and leverage to name a few. These models

are further extended to consider either multiple factors of volatility or to include the

jumps in the stock price or volatility process.

Volatility is a standard measure of risk, which is a statistical tool to measure

the dispersion of asset returns from their mean over a given time period. An

alternate measure of risk can be entropy, since it also measures the randomness.

Shannon(1948) in his mathematical theory of communication, used entropy as a

measure of information which laid the foundation of the field of information theory.

Entropy has broad applications in finance too especially in the portfolio selection,

asset pricing and time series analysis. The principle of maximum entropy has

extensively been used in finance. Furthermore, the concept of entropy is of great

help in analysing the stock market since it captures the uncertainty and disorder

xiii



of the time series without imposing any constraints on the theoretical probability

distribution.

The thesis entitled “Mathematical Study of Risk in Financial Markets” is devoted

to the execution of stochastic volatility modeling and entropy approach for the

option pricing and the analysis of asset log-return series. We have proposed

a multifactor stochastic volatility model with a fast and a slow mean-reverting

factors of volatility, where the slow volatility factor is approximated with a quadratic

arc. Using this model, the pricing formulae and the implied volatility smiles are

obtained for the European and Asian options. The accuracy of these option

pricing formulae is also established. We have also shown that the multifactor

stochastic volatility models outperform the stochastic volatility jump diffusion

models, by comparing the two extensions of Heston stochastic volatility model.

In addition, the option pricing and analysis of asset log-return series is

conducted using entropy measures. The concept of approximation of slow

volatility factor is infused with the entropy maximization. For this, we have

proposed to calibrate the risk-neutral density function of the future asset price by

maximizing a two-parameter entropy with an additional variance constraint, where

the quadratic arc expression of volatility is considered. The calibrated density

function is used to price the European call options for different strikes. We have

also proposed a two-parameter permutation entropy and its extensions viz. two-

parameter multiscale permutation entropy and two-parameter weighted multiscale

permutation entropy to analyse the asset log-return series.
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Chapter 1

Introduction and Literature Survey

In this thesis, we have worked on the stochastic volatility models in the continuous

time scenario where the stock price and the volatility dynamics is given by the

stochastic differential equations (SDEs). The chapter begins with the basic

introduction to stochastic (or random) processes and stochastic calculus. The

stochastic volatility models are used to price options and to calibrate the volatility

surface so next we have defined the option and volatility. Starting from the Black-

Scholes model to price the European options, we have discussed its development

up to the multifactor stochastic volatility models. A brief literature on Asian option

pricing is also given. Along with the stochastic volatility modeling, we have also

worked on asset pricing and time series analysis of asset log-return series using

entropy measures, therefore, some important entropy measures and the principle

of maximum entropy is given along with the relevant literature on these topics. At

the end, the outline of the work reported in this thesis is given.

1
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The field of financial mathematics is concerned with the development and analysis

of mathematical models that can be used for the valuation of investments in

the financial assets. There are mainly two types of assets which are traded

in a financial market namely risky and risk free. Risky assets include a stock,

stock index, foreign currency, gold, a commodity or any asset whose future value

is unknown today. Risk free assets include bank deposit or bond issued by

government, a financial institute or a company. An investor invests in the financial

market to get the maximum return on his investment. For the more potential return

on an investment, an investor has to take more risk because risk and return are

related to each other. So, for making large and quick gain a person speculates and

trades in the risky financial assets which attract a huge amount of risk because

of their random dynamics. A good understanding of asset dynamics is essential

to make a significant financial decision. Along with this, one should have a sound

knowledge of the measures of risk and the ways to manage or hedge this risk.

The standard measure of risk is volatility which is a statistical tool to measure

the dispersion of asset returns from their mean over a given time period. An

alternate measure of risk can be entropy, since it also measures the randomness.

This work is devoted to the study of these two aspects for the option pricing and

time series analysis of asset log-return series. Here, we present the necessary

material required for the understanding of the work carried out in the upcoming

chapters of this thesis.

In Section 1.1, stochastic processes and their basic properties have been

discussed. In Section 1.2, we have given a review of some basic topics of

stochastic calculus such as SDEs, stochastic integral and Ito lemma. In Section

1.3, the concept of option and volatility has been explained. The well renowned

Black-Scholes model and the extensions of this model for the pricing of European

options have also been discussed in this section by giving the suitable literature

review. In Section 1.4, a review on Asian option pricing has been given. In Section

1.5, entropy as a measure of risk has been discussed and its applications in

financial asset pricing and time series analysis are reviewed. The outline of the

research work reported in the thesis has been given in Section 1.6.
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1.1 Stochastic Processes

To depict the random movements of the asset (say stock) prices mathematically,

the concept of stochastic processes plays an important role.

By Lefebvre [76], p.47: “Suppose that with each element s of a sample space S

of some random experiment E, we associate a function X(t,s), where t belongs to

T ⊂ R. The set {X(t,s) : t ∈ T} is called a stochastic (or random) process”. With

a fixed s and varying t, this stochastic process is a sample path and with a fixed t

and varying s, this is a random variable. Alternatively, a stochastic process is also

denoted as {X(t) : t ∈ T} or {Xt : t ∈ T} without explicitly mentioning s.

By Ross [103], p.41: “A stochastic process X = {X(t), t ∈ T} is a collection of

random variables. That is, for each t in the index set T , X(t) is a random variable”.

Here, the parameter t, which varies over the index set (or parameter space) T ,

is usually interpreted as time. The range (or collection of all possible values) of

random variable Xt where t ∈ T is interpreted as the state space of stochastic

process.

• A stochastic process {Xt : t ∈ T} is categorized as a discrete-time or a

continuous-time stochastic process depending on whether its parameter

space T is discrete or continuous. Similarly, based on the state space,

which can be discrete or continuous, a stochastic process is categorized

as a discrete-state or a continuous-state stochastic process.

1.1.1 Some Properties of Stochastic Processes

• A stochastic process {Xt : t ∈ T} has the independent increments if for

all non negative integers n and for all h0 < h1 < ... < hn ∈ T , the random

variables Xh1−Xh0, Xh2−Xh1, ...,Xhn−Xhn−1 are independent.

It has the stationary increments if for 0 ≤ h < t, the distribution of Xt−Xh

is same as that of X(t−h)−X0.

• The given stochastic process {Xt : t ∈ T} will be a Markov process if

P{a1 < Xt ≤ b1 | Xh0 = x0, Xh1 = x1, ..., Xhn = xn}= P{a1 < Xt ≤ b1 | Xhn = xn}

(1.1.1)

where h0 < h1 < ... < hn < t. This represents that the probability of future
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state, when the current state is given, is not affected by any supplementary

knowledge of the previous information. In finance and economics,

a continuous-state Markov process under certain conditions becomes a

Diffusion process.

• The stochastic process {Xt : t ∈ T} will be a martingale if its expected value,

E(Xt) exists for all t and for any h0 < h1 < ... < hn ∈ T ,

E(Xhn | Xh0 = x0, Xh1 = x1, ...,Xhn−1 = xn−1) = xn−1 (1.1.2)

• Martingales are like fair games. If Xt represents the fortune of a player at

time t, then the martingale property ensures that his average fortune at the

next play given the current fortune is independent of the past fortunes.

The history of modeling stock prices with stochastic processes started in 1900

when Louis Bachelier [5] proposed the very basic model for the stock price

dynamics. He defined Brownian motion mathematically and used the one

dimensional version of Brownian motion to model stock price dynamics.

1.1.2 Brownian Motion

An English botanist Robert Brown in 1827 observed the highly irregular

movements of the grains of the pollen suspended in the liquid or gas, which is now

known as the Brownian motion (BM). Mathematically, BM is a continuous-time

and continuous-state stochastic process {Bt : t ≥ 0}, satisfying certain properties

given below:

(i) B0 = 0 ;

(ii) The increments of Bt are independent and stationary ;

(iii) The increments Bt+s−Bs has the normal distribution N (0,σ2t).

The sample path Bt is always continuous for t > 0. This mathematical description

of BM was given by the great mathematician Norbort Wiener in his series of work

beginning from 1918. Here, σ2 is the variance parameter of the process.

• The stochastic process Wt =
Bt
σ

is the standard Brownian motion or Wiener

process. Its distribution is N (0, t).
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• The stochastic process Xt = µt +σWt is called the BM with drift (or mean) µ

and variance σ2. Here −∞ < µ < ∞ and σ > 0 are constants.

• BM is a diffusion process. Also, the standard Brownian motion Wt is a

martingale but the BM Xt with drift µ is not a martingale.

BM, being normally distributed, can take negative values with positive probabilities.

As the stock prices cannot be negative so the geometric Brownian motion was

suggested by Samuelson [106] as a refinement of BM to represent the stock price

dynamics.

1.1.3 Geometric Brownian Motion

A stochastic process {Yt : t ≥ 0}, defined as Yt = eXt , is the geometric Brownian

motion (GBM) where Xt is the BM with drift coefficient µ and diffusion coefficient

σ . It is sometimes given in the generalized form as Yt = Y0eXt .

• Geometric Brownian motion is not Gaussian, instead it has lognormal

distribution. It is always non negative, thus it provides a realistic model to

depict the dynamics of stock prices.

• The quantity Xt = ln(Yt
Y0
) is referred as the logarithmic growth of stock price.

It has the normal distribution N (µt + ln(Y0),σ
2t).

• Geometric Brownian motion is helpful in modeling the percentage changes

instead of the absolute changes in the price.

To model the price fluctuations (or movements), among all the stochastic

processes, BM is the most widely used stochastic process. As BM has the

continuous sample paths so it retains the continuous behaviour throughout the

stock price dynamics. However, empirically, prices do not move continuously and

rather have jumps in their movements. This discontinuous behaviour is more

prominent at time scales ranging between several days and several months. For

details, one may refer to Cont and Tankov [23] and Gatheral [48]. To accommodate

the discontinuous patterns in the stock price dynamics, Poisson process is the

basic process. So next we define Poisson and Compound Poisson Process, which

are the stochastic processes with the discontinuous paths.
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1.1.4 Poisson and Compound Poisson Process

A Poisson process is a continuous-time and discrete-state stochastic process.

Let {Nt , t ≥ 0} specifies the number of events which has occurred upto time t (i.e.

a counting process). By Ross [103], p.59, 87: “The counting process {N(t), t ≥ 0}

is said to be a Poisson process having rate λ , λ > 0, if:

(i) N(0) = 0.

(ii) The process has independent increments.

(iii) The number of events in any interval of length t is Poisson distributed with

mean λ t.

and, a stochastic process {X(t), t ≥ 0} is said to be a compound Poisson process

if it can be represented, for t ≥ 0, by

X(t) =
N(t)

∑
i=1

Xi

where {N(t), t ≥ 0} is a Poisson process, and {Xi, i = 1,2, ...} is a family of

independent and identically distributed random variables that is independent of

the process {N(t) : t ≥ 0}”.

Along with these stochastic processes, few other stochastic processes which

have been used in the succeeding chapters to capture the volatility movements

are the Ornstein-Uhlenbeck (OU) process and a square bessel process named as

the Cox-Ingersoll-Ross (CIR) process. The SDEs governed by these processes

are discussed in the next subsection. For detailed study of these processes one

may refer to Lefebvre [76].

1.2 Stochastic Calculus

As already mentioned, the Brownian motion (BM) is the most accepted model

to capture random movements in the stock price dynamics. Although, the BM

has continuous sample paths, but these paths are no where differentiable and

are of unbounded variation. The classical calculus could not be applied to such

functions so this gave rise to a new calculus known as the stochastic calculus.

Stochastic calculus can be thought of as the calculus of stochastic processes.
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By Shreve [70], p.128: “Stochastic calculus grew out of the need to assign

meaning to ordinary differential equations involving continuous stochastic

processes”. Here, we give a brief review of certain topics of stochastic calculus.

For more insights to these topics one may refer to [29,34,70,84,93].

1.2.1 Stochastic Differential Equations

In the continuous time modeling, the dynamics of stock price is described by

a stochastic differential equation (SDE). By Øksendal [93], p.2 : “ ... equation

we obtain by allowing randomness in the coefficients of a differential equation is

called a stochastic differential equation”. It is explained as below.

Consider a stochastic process Xt , and a partition 0 = h0 < h1 < ... < hn = t of the

time interval [0, t]. Then, the difference equation

Xhi+1−Xhi = µ(hi,Xhi)(hi+1−hi)+σ(hi,Xhi)(Whi+1−Whi); i = 0,1, ...,n−1, (1.2.1)

as the increments hi+1−hi→ 0, is transformed to

dXt = µ(t,Xt)dt +σ(t,Xt)dWt (1.2.2)

This is the general form of a SDE where the first term on the right side is

deterministic with drift µ and the second term is a random term with diffusion

σ . Wt represents the standard Brownian motion. It must be noted that as BM

is no where differentiable so dWt just represents the increment Wt+dt −Wt on the

interval [t, t +dt], and (dWt)
2 = (Wt+dt−Wt)

2 = dt is the quadratic variation of Wt .

Also,

dWtdt = 0, (dt)2 = 0 (1.2.3)

For proof one may refer to Mikosch [84]. The method to find the solution of SDEs

will be discussed in Subsection 1.2.3.

Eq.(1.2.2) can be expressed as an integral

Xt = X0 +
∫ t

0
µ(h,Xh)dh+

∫ t

0
σ(h,Xh)dWh (1.2.4)

here
∫ t

0 σ(h,Xh)dWh is the integral with respect to the standard Brownian motion Wt

and is known as the stochastic integral. The stochastic integral and its existence

is discussed in the next subsection.
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1.2.2 Stochastic Integral

Definition of stochastic integral requires the understanding of certain terms which

are firstly defined here.

Definition 1.1. σ−algebra: By Øksendal [93], p.7: “If Ω is a given set, then a σ−algebra

F on Ω is a family F of subsets of Ω with the following properties:

(i) φ ∈F

(ii) F ∈F ⇒ FC ∈F , where FC = Ω\F is the complement of F in Ω

(iii) A1, A2, ... ∈F ⇒ A := ∪∞
i=1Ai ∈F”.

A “σ−algebra generated by a stochastic process Xt” is denoted by σ(Xt) and is

the smallest σ−algebra containing all the information about the structure of Xt .

Definition 1.2. Filtration: For the continuous time parameter t ∈ [0,T ], the collection

{Ft} of σ−algebras is said to be a filtration if Fs ⊂Ft , ∀ 0≤ s < t.

Filtration is used to track the information flow over time. For a stochastic process

Xt , the filtration Ft = σ(Xs,s ≤ t) is the smallest filtration containing the past

information of this process till time t and is called the natural filtration of Xt .

Definition 1.3. Adapted Process: If for any stochastic process Xt and a filtration Ft ,

σ(Xt) ⊂ Ft , then the stochastic process Xt is an adapted process with respect to this

filtration.

The natural filtration of a stochastic process is the smallest filtration to which

it is adapted. Also if a stochastic process Xt is an adapted process with respect

to some filtration Ft , then Xt is called Ft−measurable. For the existence of the

stochastic integral of a process Xt with respect to the standard Brownian motion

Wt , Xt must belong to L2 class of functions which is defined below.

Definition 1.4. A stochastic process {Xt : 0 ≤ t ≤ T} belongs to L2[0,T ] class of

functions if:

(i) Xt is Ft−measurable where Ft is the natural filtration of Wt;

(ii) E
(∫ T

0 X2
t dt
)

< ∞.
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Now we define the stochastic integral.

Definition 1.5. Stochastic Integral: Let Xt ∈ L2[0,T ] and 0 = h0 < h1 < ... < hn = T . For

hi ≤ h∗ ≤ hi+1; 0≤ i≤ n−1, let Xh∗ = Xhi (i.e. its value at left end point of the interval

[hi,hi+1]). Then the limit limn→∞ ∑
n−1
i=0 Xhi[Whi+1−Whi] is denoted by

∫ T
0 XtdWt , and is the

stochastic integral of the process Xt with respect to standard Brownian motion Wt .

This stochastic integral is also called the Ito integral and it was introduced

by Ito [65, 66]. There is also one another type of stochastic integral called the

Stratonovich integral, but we have confined ourselves only to the Ito integrals

throughout this work.

Next, we discuss the Ito lemma which can be thought of as the chain rule of the

stochastic calculus. Ito lemma is required for solving stochastic integral and the

SDEs.

1.2.3 Ito Lemma

Let g(x) be a real valued function having continuous second order derivative, then

for the standard Brownian motion {Wt : t ≥ 0}, the formula

g(Wt)−g(Ws) =
∫ t

s
g
′
(Wu)dWu +

1
2

∫ t

s
g
′′
(Wu)(dWu)

2, 0≤ s < t (1.2.5)

is called the Ito lemma or Ito formula. By the quadratic variation of Brownian

motion Wt , the squared differential (dWu)
2 becomes dt. The integral

∫ t
s g
′
(Wu)dWu

is the Ito’s stochastic integral of g
′
(Wu).

Intuitively, in terms of SDEs, Eq.(1.2.5) can be written as

dg(Wt) = g
′
(Wt)dWt +

1
2

g
′′
(Wt)dt (1.2.6)

Ito lemma can also be extended to a function g(t,x) having the continuous second

order partial derivatives as

g(t,Wt)−g(s,Ws)=
∫ t

s
gt(u,Wu)dt+

∫ t

s
gx(u,Wu)dWu+

1
2

∫ t

s
gxx(u,Wu)(dWu)

2, 0≤ s< t

(1.2.7)

As (dWu)
2 = dt, Eq.(1.2.7) becomes

g(t,Wt)−g(s,Ws) =
∫ t

s

(
gt(u,Wu)+

1
2

gxx(u,Wu)

)
dt +

∫ t

s
gx(u,Wu)dWu 0≤ s < t

(1.2.8)
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and equivalently

dg(t,Wt) =

(
gt(t,Wt)+

1
2

gxx(t,Wt)

)
dt +gx(t,Wt)dWt (1.2.9)

Further, let a stochastic process Xt has the dynamics given by

dXt = a1(t,x)dt +a2(t,x)dWt (1.2.10)

and Yt be another stochastic process such that Yt = f (t,Xt). Then by Ito lemma,

the SDE of Yt will be

dYt = d f (t,Xt) = ftdt + fxdXt +
1
2

fxx(dXt)
2 (1.2.11)

Using Eqs.(1.2.3) and (1.2.10) in (1.2.11), we get

d f (t,Xt) =

(
ft +a1 fx +

1
2

a2
2 fxx

)
dt +a2 fxdWt (1.2.12)

1.2.4 Some Important Stochastic Differential Equations

• Geometric Brownian Motion (GBM): Consider a SDE

dXt = µXtdt +σXtdW x
t (1.2.13)

here −∞ < µ < ∞ and σ > 0 are the constants. It is to be noticed that

the superscript x in the standard Brownian motion W x
t corresponds to the

process Xt . This convention is useful to avoid the confusion when more

than one SDEs are given in the model.

The SDE (1.2.13) is explicitly solvable by Ito lemma. Its solution is Xt =

X0e(µ−
σ2
2 )t+σW x

t , which is the GBM with initial value X0. So, Eq.(1.2.13)

represents the SDE of the GBM and is used to model the stock price

evolution. It is also called the lognormal model for the stock price dynamics.

In the stochastic volatility models (which will be discussed in Subsection

1.3.4), the volatility dynamics is given by a stochastic process and the most

commonly used stochastic processes are the OU and CIR process.
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The SDEs governed by these processes are given next.

• Ornstein-Uhlenbeck (OU) Process: OU Process is a diffusion process

with SDE

dYt = k(m−Yt)dt +bdW y
t (1.2.14)

This SDE can also be solved explicitly using Ito’s lemma. Its solution is

Yt = m+(Y0−m)e−kt +b
∫ t

0
e−k(t−s)dW y

s (1.2.15)

here Y0 is the initial value of process at t = 0. k, m and b are the positive

constants. OU process is one of the simplest mean-reverting process. In

simple words, a process is mean-reverting if it moves about some average

value over time. Eq.(1.2.14) has k as the mean-reversion rate with m as

the long-run or invariant mean. OU process has the normal distribution

N (m+(Y0−m)e−kt , b2

2k(1−e−2kt)). Its long-run distribution is N (m, b2

2k), which

is obtained when t→ ∞.

• Cox-Ingersoll-Ross (CIR) Process: CIR process is also a diffusion process.

Its SDE is given as

dYt = k(m−Yt)dt +b
√

YtdW y
t (1.2.16)

This process is also mean-reverting with m as the long-run mean and mean-

reversion rate k. It is different from OU process with
√

Yt term in the diffusion

coefficient. Condition b2 ≤ 2km ensures that if the process has started with

a positive value it will remain positive throughout. The long-run distribution

of CIR process is the gamma distribution.

Lognormal process is not mean-reverting but OU and CIR processes are mean-

reverting. These processes are used to model volatility dynamics in the stochastic

volatility models as discussed in the next section.

1.3 Option Pricing and Volatility

After discussing the stock price dynamics governed by the stochastic processes

and their corresponding SDEs, we review the literature on option pricing and

volatility dynamics in this section.
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1.3.1 Volatility

Volatility dynamics is an important topic of research within the domain of

financial mathematics because it is closely linked with the stock price dynamics.

In Eq.(1.2.13), we have seen that the volatility (σ ) appears in the SDE governing

the stock prices. This volatility is called actual or instantaneous volatility. Basically,

volatility is the standard measure of risk. In the financial markets, it is a statistical

tool to measure the dispersion of asset returns from their mean over a given time

period.

By Hull and Basu [63], p.353: “The volatility, σ , of a stock is a measure of

our uncertainty about the returns provided by the stock”. Alternatively, volatility

indicates the magnitude of the asset price fluctuations. Commonly, higher the

volatility, riskier the particular security. There are two types of volatility used in the

securities analysis: historical and implied volatility.

• Historical volatility refers to the price fluctuations exhibited by the security

(e.g. stock) over time. It is thus a standard deviation (S.D.) calculated from

the past data defined as follows:

Consider the stock price data, S0,S1, ...,Sn with ∆t = ti− ti−1; i = 1,2, ...,n

as the length of the sampling interval. The estimated volatility σ , from

this historical stock price data, is the standard deviation of the logarithmic

returns per unit time given as

σ̂ =

√
V√
∆t

where V = 1
n−1 ∑

n
i=1(Xi−X̄)2 is the variance of logarithmic returns Xi = log( Si

Si−1
)

from the mean X̄ = 1
n ∑

n
i=1 Xi.

• Implied volatility refers to the future volatility of a stock. It is calculated

from an option pricing model. Gatheral [48] defined “Implied volatility is the

volatility input to the Black-Scholes formula that generates the market price”.

For the better understanding of implied volatility and empirical characteristics

of volatility, we next define option and give the Black-Scholes model for pricing

European options.
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1.3.2 Option

Option is a financial security (contract) whose value is derived from (or depends

on) an underlying security (stock, stock index, foreign currency etc.). It is a

contract giving the option buyer (or holder) a right to buy or sell a specified

underlying asset in future by a fixed date and at a fixed price which is decided

when the contract is initiated. This fixed price is known as the “strike price or

exercise price” and the fixed date is known as the “maturity or expiration date”.

Since an option gives its holder a right without any obligation, the holder needs

to pay some amount in the beginning of the contract to the option seller (or writer)

to get this right. This amount is called the ‘premium or price of the option’.

Options are the most traded financial securities and can be used to manage

risk. For e.g. If an investor buys a risky asset (say a stock), its future is not

known today. Its price can fall in the future and the investor may have to born

the loss. Instead of buying a stock if a person buys a call option on that stock,

he gets the right to wait and buy this asset in future (without any obligation) if its

price increases the strike price. If the price does not reach the agreed price, he

can exit the contract without exercising his right. In this case, his loss will be the

premium amount only which was paid at the beginning of the contract.

Any option can be categorized as a “call option” or a “put option” depending

upon, whether the holder gets the right to buy or the right to sell respectively

without any obligation. An option can be either exercised only at maturity

(European option) or at any time up to maturity (American option). These options

are also called the vanilla options. Vanilla options are the path-independent

options because these options are independent of the historical prices of the

underlying assets.

The options which depend on the price history of the underlying assets are

called the path-dependent options, viz; binary or digital option, lookback option,

barrier option, compound option or Asian option etc. Path-dependent options are

also called the exotic options. The exotic options may either have the European or

American type expiration. In this thesis, we have considered the path-independent

European options and in the path-dependent options we have considered only

Asian options with European type expiration.

Here, we consider the European call options only. Asian options will be covered

in the Section 1.4.
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For a European call option, the payoff (or the value of option at maturity T ) is

given as:

h(XT ) = (XT −K)+ = max(XT −K,0) (1.3.1)

where XT is stock price at maturity and K is the strike price.

The European call option is said to be “in-the-money” (ITM) if XT > K, “at-the-

money” (ATM) if XT = K and “out-the-money” (OTM) if XT < K. The buyer of a

call option exercises his right only if he gets some benefit, which is possible when

XT > K, otherwise he’ll not exercise his right. This results in the payoff given in

Eq.(1.3.1).

The most interesting question is ‘To get this right without obligation, How much

one should pay for an option contract?’. Every option pricing model tries to find

out the fair price of an option.

Before 1970s, there was not any standard way to price the options. Most of

the previous work on the valuation of options include Sprenkle [111], Ayrus [4],

Boness [15], Samuelson [105], Baumol et al. [10] and Chen [18], but none were

widely accepted until the significant breakthrough by Fischer Black, Myron

Scholes and Robert Merton during 1970s.

1.3.3 The Black-Scholes Model for Option Pricing

In 1973, there came a revolution in the field of options trading when Fischer

Black and Myron Scholes [14] and Robert C. Merton [82] published their work

on ‘Pricing options’. Black and Scholes [14] gave an option pricing formula for the

European options which was further developed by Merton [82] in the same year.

Black-Scholes model became a milestone in the field of modern finance and for

their contribution Myron Scholes and Robert C. Merton received the “Nobel prize

in Economics” in 1997. Due to his sudden demise in 1995, Fischer Black could not

share this prize.

The Black-Scholes model assumes that the market is complete, stock pays no

dividend and follows a GBM. Volatility and risk free rate of interest are constant

through out the option period. The model gives the formula for the pricing of

European call options. This model is explained as follows:

Let Xt be the price of the underlying asset at time t, whose dynamics is governed
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by the geometric Brownian motion given as

dXt = µXtdt +σXtdW x
t (1.3.2)

where W x
t is the standard Brownian motion, −∞ < µ < ∞ is the growth term (drift)

and σ > 0 is the volatility. Let Bt be the bond price at time t and r be the risk free

interest rate, then the dynamics of Bt is given as:

dBt = rBtdt

Let the price of the European call option at time t be C(x, t), where x = Xt . This

price satisfies the partial differential equation (PDE)

∂C
∂ t

+ rx
∂C
∂x

+
1
2

σ
2x2 ∂ 2C

∂x2 − rC = 0 (1.3.3)

with the terminal condition

h(XT ) = (XT −K)+ (1.3.4)

This PDE is called the Black-Scholes PDE or Black-Scholes equation. For its

derivation one may refer Luenberger [79], p.353. This equation can also be written

as

LBSC = 0

where

LBS =
∂

∂ t
+

1
2

σ
2x2 ∂ 2

∂x2 + r(x
∂

∂x
− .) (1.3.5)

is Black-Scholes operator for the European options. The solution of this equation

gives the Black-Scholes formula for pricing options, mentioned next.

Black-Scholes Formula: The European call option price, at time t, is obtained in

the closed form as

C(Xt , t,T,r,σ ,K) = XtN(w1)−Ke−r(T−t)N(w2) (1.3.6)

here

w1 =
log(Xt

K )+(r+ 1
2σ2)(T − t)

σ
√

T − t

w2 = w1−σ
√

T − t (1.3.7)
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with the strike price K, maturity T and the current time t. N(.) represents the

cumulative distribution function (CDF) of the standard normal random variable.

The European call and put option prices on an underlying asset Xt , with same

strike price K and expiration time T are related with “Put-Call parity formula”

given as

Ct−Pt = Xt−Ke−r(T−t) (1.3.8)

here, Ct and Pt represents the prices of call and put option respectively at time

t with risk free interest rate r. Black-Scholes formula had a major impact on the

market as the investors began to feel more comfortable in trading options.

Along with the Black-Scholes PDE approach to obtain the Black-Scholes

formula, there is another approach to obtain the Black-Scholes option pricing

formula which is given below.

Risk-Neutral Pricing: We here discuss an alternate approach to derive the

Black-Scholes formula which was introduced by Harrison and Pliska [56]. This

is the pricing under a risk- neutral probability measure. A risk-neutral probability

is a probability under which the expected return on a risky investment is equal

to the return on a risk free investment. It is different from the actual probability

because in the real world the future price of a risky security is a random quantity.

The risk-neutral probability measure is also called the equivalent martingale

measure.

Risk-neutral probability measure is important because it helps to find the fair

price of an option. The existence of the equivalent martingale measure ensures

that the market is arbitrage free (i.e. without an initial investment there can not

be a guaranteed risk free profit) and vice versa (by first fundamental theorem

of finance). According to second fundamental theorem of finance, “an arbitrage

free market is complete iff there exists a unique equivalent martingale measure”.

The risk-neutral probability measure can be obtained using “Randon-Nikodym

Theorem” and “Girsanov’s Theorem”. For these theorems one can refer to

Karatzas and Shreve [70] and Mikosch [84].

A stochastic process is a martingale if its SDE has no drift term. Next, it

is shown that the discounted stock price becomes a martingale under the risk-

neutral probability measure.

Let the stock price Xt follows the geometric Brownian motion given by Eq.(1.3.2).
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The SDE of X̃t = e−rtXt , which is the discounted stock price process, is obtained

using Ito’s formula and is given as

dX̃t =−re−rtXtdt + e−rt(µXtdt +σXtdW x
t )

= X̃t((µ− r)dt +σdW x
t ) (1.3.9)

here the drift term µ−r does not vanish under the real probability measure P(say).

But, on letting φ = µ−r
σ

, there exists a risk-neutral probability measure P∗ (by

Girsanov’s theorem) under which W ∗t =W x
t +

∫ t
0 φds is a standard Brownian motion.

Thus

dX̃t = σ X̃tdW ∗t (1.3.10)

and X̃t becomes a martingale under this risk-neutral probability measure P∗. Under

P∗, the drift term in the dynamics of stock price Xt given in Eq.(1.3.2) will be r.

In the Black-Scholes framework, a replicating portfolio in stock and bond is

considered for the call prices. So, let there be a self-financing portfolio (at ,bt)

with value Vt = atXt +btBt at time t. Its value at maturity will be VT = h(XT ) which

is the payoff of the call option contract. Then

dVt = atdXt +btdBt , (1.3.11)

because the portfolio is self-financing. The discounted portfolio process Ṽt = e−rtVt

will become a martingale under the risk-neutral probability measure P∗ giving

Ṽt = E∗[ṼT |Ft ]

this gives

Ṽt = E∗[e−rTVT |Ft ]

also as VT = h(XT ), thus

Ṽt = E∗[e−rT h(XT )|Ft ]

which gives that

Vt = E∗[e−r(T−t)h(XT )|Ft ] (1.3.12)

where Ft = σ(W x
s ,s ≤ t) and E∗ is risk-neutral expectation under the probability
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measure P∗. Thus, the value of European call option at any time t is given by

C(Xt , t) = E∗[e−r(T−t)h(XT )|Ft ] (1.3.13)

which upon solving gives the Black- Scholes formula (1.3.6).

Eq.(1.3.13) can be written as

C(Xt , t) = E∗[e−r(T−t)h(XT )|Xt ] (1.3.14)

The Feynmann-Kac Formula: This formula establishes a link between the two

approaches discussed above. Let the dynamics of stock price Xt be given by

Eq.(1.3.2). By Feynmann-Kac formula, the solution of PDE (1.3.3) subject to the

boundary condition (1.3.4) is given by Eq.(1.3.14) and vice versa.

The generalized form of Feynmann-Kac formula is also available and is applied

to the case when the model has more than one SDEs, as in the stochastic volatility

models. Its extended version is given in Subsection 1.3.4 for the multifactor

stochastic volatility models.

Next, we return to the implied volatility. If CBS(Xt , t,T,r,σ ,K) is the Black-Scholes

call option price given by Eq.(1.3.6) and Cmkt is the actual call price quoted in the

market, then the implied volatility I is the volatility input to CBS, such that

CBS(Xt , t,T,r, I,K) =Cmkt (1.3.15)

By changing K and T , the implied volatility also changes. The implied volatility

plot with respect to strike price for a fixed expiration time is called volatility smile.

Similarly, the variation of the implied volatility with respect to maturity time for

a fixed strike is called the term structure of volatility. The variation of implied

volatility with both strike price K and maturity T is known as implied volatility

surface. The variation of volatility violates the Black-Scholes assumption

of constant volatility. Implied volatility surface is better expressed in terms of

log moneyness to time to maturity ratio (LMMR). Moneyness is generally

reperesented as K
Xt

and time to maturity is given as τ = T − t. For a better insight

to this topic, one may refer to Gatheral [48] and Hafner [55].

Despite its landmark success in option pricing, Black-Scholes formula has

significant biases. The model assumes volatility to be constant and asset log-
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return distribution as Gaussian. In practice, the log-return distributions are non-

Gaussian in nature characterised by heavy tails and high peaks and volatility

tends to vary in terms of the strike price and expiry. Enormous work has been

done to revise and upgrade the classical Black-Scholes model. The relaxation

of constant volatility assumption consequently led to the modeling of evolution of

dynamic volatility.

1.3.4 Evolution of Dynamic Volatility Modeling

Volatility is not constant and has many empirical characteristics like volatility smile

and skew, mean-reversion, leverage, volatility clustering, variation on different

time scales etc.(refer to [48,55,85]). There has been a logical progress in the field

of volatility modeling by the development of new models as an improvement of the

existing ones. Time dependent volatility models (σ = f (t)) (Merton [82]) were able

to capture the variation of option prices with maturity dates. The local volatility

models (σ = f (t,Xt)) (Cox and Ross [25], Derman and Kani [28], Dupire [30])

also addressed volatility smiles and leverage effect (correlation of stock price and

volatility), whereas stochastic volatility models (σ = f (Yt)) were able to assimilate

all the features of local volatility models and some other empirical volatility

characteristics like mean-reversion and volatility clustering (autocorrelation of

volatility). In this thesis, we have worked on the stochastic volatility models and

their extensions. So we start with the general representation of the stochastic

volatility models.

Stochastic Volatility Model (One Factor): The general representation of the

single factor stochastic volatility model is given below. The dynamics of stock

price process Xt is given by

dXt

Xt
= µdt +σdW x

t

where, σ = f (Yt) and Yt is the stochastic volatility factor whose dynamics is given

by

dYt = a(Yt)dt +b(Yt)dW y
t (1.3.16)

here, a(Yt) and b(Yt) are some functions of Yt . The standard Brownain motions

W x
t and W y

t have the correlation structure E[dW x
t .dW y

t ] = ρdt where, ρ represents
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a correlation between them.

Some of the most notable single factor stochastic volatility models are given

in Ball and Roma [7], Heston [59], Hull and white [64], Scott [107] and Stein and

Stein [112]. Hull and White [64] considered the volatility dynamics (1.3.16) to follow

lognormal process (1.2.13), Scott [107] and Stein and Stein [112] considered the

volatility dynamics to follow OU process (1.2.14), whereas, Ball and Roma [7]

and Heston [59] considered volatility dynamics to follow CIR process (1.2.16). As

stated by Gatheral [48], “in these single factor stochastic volatility models, Heston

model [59] is the most popular because of the existence of a fast and easily

implemented quasi closed form solution of the European options”, the Heston

stochastic volatility model is given below.

Heston Stochastic Volatility Model: Let P∗ be the risk-neutral probability

measure, r be the risk free rate of interest. Under P∗, the dynamics of stock price

Xt is as follows:

dXt = rXtdt +σXtdW x
t

where σ =
√

Yt such that

dYt = α(m−Yt)dt +β
√

YtdW y
t (1.3.17)

and E[dW x
t .dW y

t ] = ρdt. This is the required Heston stochastic volatility model.

Clearly, the dynamics of Yt is given by the CIR process (1.2.16). Yt represents the

stochastic variance of the stock. The positive constants α, m and β satisfy 2αm≥

β 2 to ensure that Yt remains positive for all t. This model is solved using Fourier

transform technique to give the semi analytic pricing formula for the European

options. Using this model, the pricing formula of the European call option at time

t is given as:

C(Xt ,Yt , t) = XtP1−Ke−r(T−t)P2 (1.3.18)

where K is the strike price and T is the maturity time. Also, for j = 1,2 and with

x = Xt , y = Yt and s = ln(x),

Pj(s,y, t,T,K) =
1
2
+

1
π

∫
∞

0
Re
[

e−iφ lnK f j(s,y, t,T,φ)
iφ

]
dφ , (1.3.19)
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The characteristic function f j of Pj is

f j(s,y, t,φ , t + τ) = eD(τ,φ)+E(τ,φ)y+iφs (1.3.20)

where τ = T − t. The other terms are

D(τ,φ) = rφ iτ +
αm
β 2

[
(b j−ρβφ i+d j)τ−2ln

(
1−g jed jτ

1−g j

)]
; (1.3.21)

E(τ,φ) =
b j−ρβφ i+d j

β 2

(
1− ed jτ

1−g jed jτ

)
; (1.3.22)

with

g j =
b j−ρβφ i+d j

b j−ρβφ i−d j
;

d j =
√
(ρβφ i−b j)2−β 2(2u jφ i−φ 2);

and

u1 =
1
2
, u2 =

−1
2
, b1 = α−ρβ , b2 = α. (1.3.23)

Stochastic volatility models (one factor) are unable to completely capture the

dynamics of volatility. These models can generate the volatility smile but its time-

varying nature remains unexplained by these models (refer to [22, 41]). Also,

the one factor stochastic volatility models like Heston stochastic volatility model

does not fit the short term implied volatility surface. So there arose a necessity to

carry out more profound work in this direction. In the literature, the shortcomings

of these models have been addressed by the addition of jumps to the stock

price process (e.g. stochastic volatility jump diffusion models [9, 80, 95, 108]).

These models are important to explain the distributional characteristics of return

and implied volatility smile/skew of options. Jumps are added to the stochastic

volatility model which improves its pricing performance for the short-term options

[6]. The stochastic volatility jump diffusion model of Bates [9] is given below.

Stochastic Volatility Jump Diffusion Model: Bates [9] introduced the stochastic

volatility jump diffusion (SVJ) model by including proportional lognormal jumps in

the SDE governing the stock prices, in the Heston model.
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The stock price dynamics, under the risk-neutral probability measure P∗ was

considered as

dXt = (r−λk)Xtdt +σXtdW x
t +dZt

where σ =
√

Yt , such that

dYt = α(m−Yt)dt +β
√

YtdW y
t (1.3.24)

and E[dW x
t .dW y

t ] = ρdt. The jump size k was assumed to have the lognormal

distribution with expected value k. Zt was a compound Poisson process with

rate λ . An alternate and relatively recent approach in the context of option

pricing is the consideration of multifactor stochastic volatility models to address

the shortcomings of one factor stochastic volatility models. These models can be

contemplated as a natural extension of one factor stochastic volatility models.

In these models, volatility has several factors varying at different time scales

(e.g. [35,38,39,87]).

Alizadeh et al. [1] found the evidence of two factors in volatility, out of which

one was highly persistent and another was quickly mean-reverting. Extending

this idea, Fouque et al. [39] proposed a multifactor stochastic volatility model with

two factors of volatility, out of which one was a fast scale mean-reverting factor

and another was a slow scale factor of volatility. Christoffersen et al. [22] had

empirically shown that the two-factor models improve one factor models both in

term structure and moneyness dimension. A general representation of a two-

factor stochastic volatility model is given below.

Stochastic Volatility Model (Two Factors): Under P∗, let the dynamics of stock

price Xt be

dXt = rXtdt +σtXtdW x
t

where σt = f (Yt ,Zt) with

dYt = a1(Yt)dt +b1(Yt)dW y
t

dZt = a2(Zt)dt +b2(Zt)dW z
t (1.3.25)

here Yt is the fast scale volatility factor and Zt is the slow scale volatility factor.

a1(Yt) and b1(Yt) are some functions of Yt . a2(Zt) and b2(Zt) are some functions
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of Zt . The three standard Brownian motions, W x
t , W y

t and W z
t have the correlation

structure as:

E[dW x
t .dW y

t ] = ρxydt, E[dW x
t .dW z

t ] = ρxzdt, E[dW y
t .dW z

t ] = ρyzdt

Using this model, the price of the European call option at time t, with payoff h(XT )

is given as

C(Xt ,Yt ,Zt , t) = E∗[e−r(T−t)h(XT )|Xt ,Yt ,Zt ]

By the Feynmann-Kac formula, C(Xt ,Yt ,Zt , t) will satisfy the PDE

∂C
∂ t

+LC− rC = 0 (1.3.26)

with the boundary condition

C(XT ,YT ,ZT ,T ) = h(XT )

here

L = rx
∂

∂x
+a1

∂

∂y
+a2

∂

∂ z
+

1
2

σ
2
t x2 ∂ 2

∂x2 +
1
2

b2
1

∂ 2

∂y2 +
1
2

b2
2

∂ 2

∂ z2

+ρxy(σx)(b1)
∂ 2

∂x∂y
+ρxz(σx)(b2)

∂ 2

∂x∂ z
+ρyz(b1)(b2)

∂ 2

∂y∂ z
(1.3.27)

Because of the stochastic volatility consideration, this PDE does not give the

closed form solution and can be solved either by using numerical methods or the

analytic methods (perturbation techniques).

In particular, the multifactor stochastic volatility model of Fouque et al. [39] is

given here, which considers the two factors of volatility.

“The dynamics of stock price process Xt and of the volatility factors Yt and Zt is

dXt = µXtdt +σtXtdW x
t

where, σt = f (Yt ,Zt) and

dYt =
1
ε
(m−Yt)dt +

ν
√

2√
ε

dW y
t

dZt = δc(Zt)dt +
√

δg(Zt)dW z
t
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Yt follows OU process with rate of mean-reversion 1
ε
, long run mean m and volatility

of volatility ν
√

2√
ε

”. W x
t , W y

t and W z
t have the correlation structure as given above.

They considered the diffusion of slow volatility factor Zt resulting from a simple

time change where c(Zt) and g(Zt) are smooth functions of Zt . They used the

singular and regular perturbations to derive the option pricing formula for the

European options. The approxiate option price thus obtained is perturbed around

the Black-Scholes price. The option pricing formula obtained by them is

independent of fast volatility factor but depends on the slow volatility factor. Thus

the dynamics of slow factor of volatility can not be ignored. The approximation of

this slow volatility factor is the base of Chapters 2 and 3 where we have used the

perturbation methods of Fouque et al. [41] to solve the pricing PDE and to prove

the accuracy of our results.

Along with this, to analyze the pursuance of stochastic volatility jump diffusion

(SVJ) models versus multifactor stochastic volatility (MSV) models, in the pricing

of European options and in the market implied volatility fit, a comparative study is

done in Chapter 6.

1.4 A Brief on Asian Options

Asian options, first introduced in 1987, (also known as average-price or average-

rate options) are the path-dependent options such that their payoff depends upon

the average of the underlying asset price over the option period. Asian options are

much attractive because these are generally less volatile and provide a cheaper

way of hedging than their path-independent counterparts. These options are

commonly traded in the currency and the commodity markets.

Asian options are mainly of two types: “fixed strike” and “floating strike” with

payoffs max (AT −K,0) and max (XT −AT ,0) respectively. Here, AT is the mean

of the underlying asset price over the time period [0,T ]. Mostly, the averaging of

the underlying asset price in these options can either be arithmetic or geometric.

The geometric Asian options (GAOs) are more attractive than the arithmetic

one because their closed form solutions similar to the Black-Scholes formula are

available.



25

• The continuous arithmetic average is given as:

AT =
1
T

∫ T

0
Xtdt

• The continuous geometric average is given as:

AT = exp
(

1
T

∫ T

0
lnXtdt

)

1.4.1 The Black-Scholes Formula for Geometric Asian Options

GBM follows lognormal distribution. The sum of lognormally distributed random

variables does not have any formal representation but their product remains

lognormal. So the pricing formula for the Asian options with geometric average

can be analytically derived in the Black-Scholes framework.

Let the underlying stock price has the dynamics

dXt = µXtdt +σtXtdW x
t

and G[0,t] be the geometric average of asset prices in the time interval [0, t] such

that

G[0,t] = exp
(

1
t

∫ t

0
lnXτdτ

)
(1.4.1)

The Black-Scholes PDE for the GAOs using Feynmann-Kac formula is given as

∂B
∂ t

+
1
2

σ
2x2 ∂ 2B

∂x2 + rx
∂B
∂x

+
G
t

ln(
x
G
)

∂B
∂G
− rB = 0 (1.4.2)

On solving, this equation gives the Black-Scholes price (B) for GAOs. Kwok [75]

used the risk-neutral valuation approach to deduce the pricing formula for the

fixed strike geometric Asian call options and PDE approach to obtain the pricing

formula for floating strike GAOs. We here simply give the pricing formulae derived

by Kwok [75].

Let B f l(t,x,G) be the price of the floating strike GAO call, where x = Xt . The

transformation s = lnx and u = t ln G
x is used to get

B f l(t,x,G) = es
[

N(d1)− e
u
T−QN(d2)

]
(1.4.3)
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where N(.) is the CDF of the standard normal variate,

d1 =
−u+(r+ σ

2

2 )T 2−t2

2

σ

√
T 3−t3

3

,

d2 = d1−
σ

T

√
T 3− t3

3
,

and

Q = (r+
σ

2

2
)
T 2− t2

2T
− σ

2

6T 2 (T
3− t3), (1.4.4)

with payoff function

h(ST ,UT ) = eST max(1− e
UT
T ,0). (1.4.5)

Similarly, for the fixed strike GAO call

B f ix
0 = es+ u

T−QN(d̂1)−Ke−r(T−t)N(d̂2) (1.4.6)

where N(.) is the CDF of the standard normal variate. Q is given by Eq.(1.4.4) and

d̂2 =
u
T + s− lnK +(r− σ

2

2 ) (T−t)2

2T

σ

T

√
(T−t)3

3

,

d̂1 = d̂2 +
σ

T

√
(T − t)3

3
, (1.4.7)

with payoff function

h(ST ,UT ,K) = max(eST+
UT
T −K,0). (1.4.8)

Asian options have extensively been studied in literature. For the arithmetic

Asian options pricing, numerical approximations are given by Turnbull and

Wakeman [116], Laplace transform formulae are derived by Geman and Yor [49],

bounds are given by Rogers and Shi [102], Monte carlo and Laplace inversion

formula is compared by Fu et al. [44] and a one-dimensional PDE is derived by

Vecer [118]. The dimension reduction technique by Vecer [119] is generalized by

Fouque and Han [36] by considering random volatility. The spectral expansions

are discussed by Linetsky [78]. The pricing based on Fourier-Cosine expansion

is given by Huang et al. [60] etc.

For the GAOs, explicit expressions of price are derived by Angus [2], Kemna

and Vorst [71] and Zhang [126] under the Black-Scholes framework, by Kim and
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Wee [72] under the Heston stochastic volatility model, by Peng [96] using constant

elasticity of variance model, by Wong and Cheung [120] using the perturbation

techniques in a single factor stochastic model and by Hubalek and Sgarra [62]

using Barndorff-Nielsen and Shephard model under a stochastic volatility jump

model framework etc.

Next, we give a review on the entropy measures and some concepts of

information theory which have been used in Chapters 4 and 5 of this thesis.

1.5 Entropy: A Measure of Risk

Shannon [109], in his mathematical theory of communication, used entropy as a

measure of information which laid the foundation of the field of information theory.

Entropy has been used widely in a number of fields like communication, coding

theory, physics, economics etc. It has broad applications in finance too specially

in portfolio selection [13,61,77,91,98], asset pricing [3,42,94,104,114] and time

series analysis [86, 92, 101, 122]. “The principle of maximum entropy” given by

Jaynes [68], “The principle of minimum cross entropy” given by Kullback and

Leibler [74], and the “Entropy pricing theory” given by Gulko [52–54], are some of

the significant concepts of information theory which have extensively been used

in finance.

Entropy has been used as a tool to capture the irregularities in a time series. For

a given financial time series, high values of Shannon entropy depicts that there is

a high uncertainty and thus the behaviour of time series is highly unpredictable,

whereas the low entropy value depicts that there is less uncertainty and hence

high predictability of the time series [11]. Volatility gives one way to measure the

risk in a financial investment. Another way can be the use of entropy which is

also a measure of uncertainty. Entropy can be a good tool to analyse the financial

market data because it measures the uncertainty of a given time series without

depending on the theoretical probability measure. Entropy has been explored

as a measure of risk in many studies [12, 21, 43, 50, 67, 97]. The review of the

applications of entropy in finance is given in Zhou [129].

In this thesis, we have explored the asset pricing and analysis of asset log-

return series using entropy measures, in Chapters 4 and 5 respectively.
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The basic entropy measures and the principle of maximum entropy used in this

work are given in the next subsections.

1.5.1 Some Entropy Measures

Some of the entropy measures used in this thesis are:

Shannon Entropy: If X = (x1,x2, ...,xn) are the outcomes of a random experiment

with probability distribution P = (p1, p2, ..., pn) satisfying 0 ≤ pi ≤ 1 and ∑
n
i=1 pi = 1,

then the average amount of uncertainty associated with the outcomes of random

experiment X , denoted by H(P), is given as:

H(P) =−
n

∑
i=1

pi log pi (1.5.1)

where 0log0 = 0 and logarithm is considered with base 2. This is called the

Shannon entropy associated with the random experiment X .

For a continuous random variable (r.v.) X , with p.d.f. p(x), it is defined as:

H(p) =−
∫

∞

0
p(x) log p(x)dx (1.5.2)

Some of the most notable extensions of Shannon entropy are given below.

Rényi Entropy: The Rényi entropy [100], for the continuous r.v. X with the p.d.f.

p(x) is defined as

Hα(p) =
1

1−α
log
(∫

∞

0
pα(x)dx

)
(1.5.3)

It has the order α, where α ≥ 0 and α 6= 1. As α→ 1, the expression of Shannon

entropy given in Eq.(1.5.2) is obtained.

Tsallis Entropy: Tsallis entropy [115] of order α, where α(6= 1) is a positive real

number, for a continuous r.v. X with the p.d.f. p(x) is defined as

Hα(p) =
1

α−1

(
1−

∫
∞

0
pα(x)dx

)
(1.5.4)

as α → 1, the Shannon entropy (1.5.2) is obtained. Havrda and Charvát entropy

[57] is also similar to the Tsallis entropy.
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Varma Entropy: Varma [117] generalized the Rényi’s entropy (1.5.3) to a two-

parameter entropy named as Varma entropy with order α and type β . This two-

parameter entropy is given by

Hα,β (p) =
1

β −α
log
∫

∞

0
pα+β−1(x)dx (1.5.5)

with β ≥ 1, β − 1 < α < β and α + β 6= 2. Clearly, α + β > 1. For β = 1, Rényi

entropy (1.5.3) is obtained. So Rényi entropy becomes a particular case of Varma

entropy.

Along with these entropies some other entropies which have been used in this

thesis are discussed below.

Permutation Entropy: Bandt and Pompe [8] introduced an entropy measure to

analyse the complexity of an arbitrary time series based on the comparison of

neighbouring values and named it as the permutation entropy. It is explained as

follows:

Consider a time series {xi}N
i=1 with length N. From this series, a vector Xk(m,τ)=

(xk,xk+τ , ...,xk+(m−1)τ),k = 1,2, ...,N−(m−1)τ is taken, with embedding dimension

m and time delay τ. As m different numbers can be ordered in m! ways, so each

vector is assigned a pattern out of the m! possible ordinal patterns {πl}m!
l=1. The

permutation entropy of this series is defined as

H(m,τ,P) =−
m!

∑
l=1

p(πl) log p(πl) (1.5.6)

where, the relative frequencies p(πl) are given by

p(πl) =
||{k : k ≤ N− (m−1)τ, (xk,xk+τ , ...,xk+(m−1)τ) has the ordinal pattern πl}||

N− (m−1)τ
(1.5.7)

||.|| represents the number of elements in the set. This entropy is called the

permutation entropy.

Permutation entropy is a simple, fast and robust measure to capture complexity

of a system and it is easily applicable on any regular, chaotic, noisy or reality

based time series. For the permutation entropy analysis of the financial time

series, one may refer to [58,69,127,130].
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Multiscale Entropy: Most of the time series have inherited multiple time scales.

The financial time series also fluctuates on the multiple time scales. As already

discussed in Section1.3, in the recent years, multiple time scales in volatility

dynamics have been found and studied. To capture the multiple time scales

inherent in healthy physiological dynamics, Costa et al. [24] gave the concept

of multiscale entropy which is given below.

Let {xi}N
i=1 be a discrete time series having length N. The multiple time scales

are included by constructing a coarse grained series {ys
r} with scale factor s, given

as

ys
r =

1
s

rs

∑
i=(r−1)s+1

xi, 1≤ r ≤
[

N
s

]
(1.5.8)

This series is obtained from the original time series {xi}N
i=1 by taking average

over the non-overlapping windows of length s. For the scale factor s = 1, the time

series (1.5.8) becomes the original time series {xi}N
i=1. The length of each new

series {ys
r}, obtained after coarse graining, is equal to the greatest integer less

than or equal to N
s . For each such coarse grained series, obtained at different

values of s, Costa et al. [24] calculated the sample entropy (SampEn) [101] and

named the procedure as the multiscale entropy. Multiscale entropy has been an

efficient tool for the analysis of the complex time series. For its applications in the

analysis of the financial time series, one may refer to [81,92,99,121–123,128] etc.

Weighted Permutation Entropy: Despite of the fact that the permutation entropy

(see Eq.(1.5.6)) is an efficient tool to study the complexity of any non-linear time

series, it has certain limitations. Permutation entropy only retains the order

structure of a pattern and is unable to capture its amplitude information. To

capture this amplitude information, Fadlallah et al. [32] extended the permutation

entropy procedure to the weighted permutation entropy by introducing a weighting

scheme based on the variance of each neighbouring vectors.

For defining weighted permutation entropy, we rewrite relative frequencies given

in Eq.(1.5.7) as

p(πl) =
∑k≤N−(m−1)τ IAl(Xk(m,τ))

∑k≤N−(m−1)τ IB(Xk(m,τ))
(1.5.9)

where IY (Z) denotes the indicator function such that IY (z) = 1 if z ∈ Y otherwise

IY (z) = 0, for each element z of Z. Al is the set of all those vectors which have the

ordinal pattern πl. B is the set of all those vectors which have ordinal patterns in
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the set {πl}m!
l=1.

Fadlallah et al. [32], assigned weights to each neighbouring vector and defined

the weighted relative frequencies as

pv(πl) =
∑k≤N−(m−1)τ IAl(Xk(m,τ))vk

∑k≤N−(m−1)τ IB(Xk(m,τ))vk
(1.5.10)

where,

vk =
1
m

m

∑
h=1

(xk+(h−1)τ −Xk(m,τ))2

and Xk(m,τ) is the mean (arithmetic) of the vector Xk(m,τ). Thus, the weighted

permutation entropy is defined as

H(m,τ,P) =−
m!

∑
l=1

pv(πl) log pv(πl) (1.5.11)

The concept of permutation entropy is extended to a two-parameter permutation

entropy for the asset log-return time series analysis in Chapter 5. The two-

parameter permutation entropy is also extended to include the multiscales and

weights in that chapter.

Next, the principle of maximum entropy is given.

1.5.2 Principle of Maximum Entropy

Jaynes [68] gave the “Principle of maximum entropy”. This principle is briefly

explained here. The objective of this principle is to obtain an unknown probability

density function p(x) that maximizes the given entropy H(p), under some

constraints such as: ∫
∞

0
p(x)dx = 1, (1.5.12)

and some more constraints of the type

∫
∞

0
G(x)p(x)dx = M, (1.5.13)

where M is the expected value of G(x), which is any continuous function of X . The

Lagrange method is used to solve this problem.

Cozzolino and Zahner [26] used the the principle of maximum entropy to provide

a probability distribution of the future stock price with known mean and variance.
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They derived variance assuming the stationary and independent increments for

the stock price process. Buchen and Kelly [17] applied the MEP for the

maximization of Shannon entropy to construct the “risk-neutral density function of

the future asset price” using prices of the path-independent options. Alternatively,

Neri and Schneider [88] obtained the localization of the maximum entropy

distribution for an asset from the call and digital option prices by applying the

results of Csiszar [27] and compared their results to Buchen and Kelly [17]. Neri

and Schneider [89] obtained that “in the family of the entropy maximizing densities,

the Buchen-Kelly density is the unique continuous density with the greatest

entropy”. All these studies considered the maximization of the Shannon entropy.

Also, Brody et al. [16] maximized the one-parameter Rényi entropy considering

only mean constraint neglecting the effect of volatility on the price distribution.

We have proposed the maximization of two-parameter Varma entropy with the

inclusion of volatility constraint in Chapter 4.

1.6 Outline of the Work Done

Motivated by the above discussion, in this thesis, we have proposed a multifactor

stochastic volatility model by approximating the slow volatility factor. Using this

model the pricing formulae and the implied volatility smiles are obtained for the

European and Asian options. We have done a comparative study between a

multifactor stochastic volatility model and a stochastic volatility jump model for the

pricing and capturing implied volatility of European options. We have also applied

the entropy measures in the option pricing and time series analysis of asset log-

return series. The principle of maximum entropy is used to calibrate the risk-

neutral probability density function by maximizing two-parameter (Varma) entropy

and this maximum entropy density function is used to price European options.

The two-parameter permutation entropy is proposed and is used to analyse the

financial time series of asset log-returns.

This thesis comprises of six chapters including the current chapter on

introduction and literature survey. The work reported in the subsequent chapters

is as follows.

In Chapter 2, we have proposed a new multifactor stochastic volatility model
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where the slow volatility factor, which is the persistent factor of volatility,

is approximated by a quadratic arc. Using this model, the pricing formula for the

European call options is obtained and implied volatility surface is also calibrated.

The perturbation technique is used to obtain the approximate expression for the

European option price. The notion of a modified Black-Scholes price is

introduced. The approximated price is perturbed around the modified Black-

Scholes price. An expression of the modified price is also obtained in terms of

the Black-Scholes price. The effect of this modification on pricing is explained.

The accuracy of the approximate option pricing formula is established, and its

computational cost is also discussed. The pricing formula obtained by our model

is very simple and contains only one unknown parameter which is estimated from

the calibrated market implied volatilities, using the linear relationship of implied

volatilities with log moneyness to maturity ratio. For the estimation of model

parameter, data of S&P 500 index European options over the period of 6 months

is used with different maturities and strike prices.

The work reported in this chapter has been published in a research article

“Quadratic Approximation of the Slow Factor of Volatility in a Multifactor

Stochastic Volatility Model, Journal of Futures Markets, 38, 607-624 (2018)”.

In Chapter 3, we have extended the model proposed in Chapter 2, for the pricing

of geometric Asian options. In this case, the model contains an additional random

term arising due to the consideration of geometric average of the asset prices.

Using this model, the pricing formulae for the continuous geometric Asian options

(GAOs) (both floating and fixed strike) are obtained. For this, the asymptotic

expansion of the price function is considered and the first order price

approximation is derived using the perturbation techniques for both floating and

fixed strike GAOs. The zeroth order term in the price approximation is named as

the modified Black-Scholes price for the GAOs. The expression of the modified

price is also given in respect of the Black-Scholes price for the Asian options.

The accuracy of the approximate option pricing formulae is also established.

The unknown parameters in the pricing formulae are estimated by capturing the

European and Asian volatility smiles together. For the numerical illustration, the

S&P 500 index data of geometric Asian call options with the floating strike is

considered for the period of 6 months. The approximated price is compared with
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the price of the floating strike GAOs obtained in the Black-Scholes framework.

The work reported in this chapter has been communicated under the

title “Pricing of the Geometric Asian Options Under a Multifactor Stochastic

Volatility Model". A part of this work has been presented in ‘FIM&ISME 2017’

conference held at Kitakyushu International Conference Center, Kitakyushu,

Japan, August 25-28, 2017.

In Chapter 4, we applied the quadratic arc approximation of the slow volatility

factor proposed in Chapter 2, as a constraint in the entropy maximization

procedure. For this, two-parameter Varma entropy is maximized using the principle

of maximum entropy with the available options data, to calibrate the risk-neutral

density function of the future asset prices. Entropy maximization is subjected

to the expectation and the variance constraints. For the second order moment

(variance) constraint, the volatility is assumed to be mean-reverting and following

a quadratic path. The desired power law distribution is verified for the density

function obtained, which contains both the entropy parameters. Presence of

two parameters provide additional degrees of freedom. The calibrated density

function is used to price the European call options for different strikes. The

results thus obtained are also discussed for the one parameter Rényi and Tsallis

entropies. The density function is calibrated using the data of European options

on S&P 500 and FTSE 100 index with two different maturities and the

corresponding strike prices. MATLAB2012b is used for the numerical analysis.

The maximization of Varma entropy with additional volatility constraint gives the

improved market fit in comparison to the Rényi and Shannon entropy.

The work reported in this chapter has been published in a research article

“Calibration of the Risk-Neutral Density Function by Maximization of a Two-

Parameter Entropy, Physica A, 513, 45-54 (2019)".

In Chapter 5, a two-parameter permutation entropy is proposed and is used to

obtain a two-parameter multiscale permutation entropy and a two-parameter

weighted multiscale permutation entropy. The multiscale procedure captures the

complexity of a financial time series on the multiple time scales, with the additional

amplitude information obtained by including weights. In the multiscale analysis,

we have introduced a new procedure for the averaging. Also, for calculating the
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weights of the neighbouring vectors, a new weighting scheme is proposed. An

empirical analysis is conducted on S&P 500 index data by comparing the two

parametric entropies at different values of embedding dimensions, scales and

entropy parameters. The consideration of two parameters give additional degrees

of freedom to the system and improve the result. The effect of change of entropy

parameters is also discussed.

The work reported in this chapter has been communicated in two research

papers titled “Two-Parameter Multiscale Permutation Entropy of a Financial

Time Series" and “Analysis of Financial Time Series Using a Two-Parameter

Weighted Multiscale Permutation Entropy".

In Chapter 6, we study and compare two models, one stochastic volatility jump

model and another multifactor stochastic volatility model proposed in the literature,

on the basis of their pricing performance and implied volatility fit to the market

data. For this we consider “stochastic volatility jump model of Yan and Hanson”

[124] and a “multifactor stochastic volatility model of Fouque and Lorig” [37]. Both

the models are the extensions of Heston model, one by adding jumps in the stock

price dynamics where jump amplitudes have log-uniform distribution, and other by

considering a mean-reverting fast factor of volatility in addition to the CIR process.

The parameters of Heston model, stochastic volatility jump model and multifactor

stochastic volatility model are calibrated by non-linear least squares optimization.

The S&P 500 index European call options data is used for the empirical analysis.

The implied volatility fit of all the three models are compared at different time

to maturity and for different log moneyness. The pricing performance of these

models is compared by comparing their mean relative error with respect to the

market data.

This work has been communicated under the title “Comparative Study of

a Stochastic Volatility Jump Model and a Multifactor Stochastic Volatility

Model"

Finally, the work reported in this thesis is concluded. The further scope of this

work is given, followed by bibliography and a list of papers, published in journals

and presented at various national and international conferences.





Chapter 2

Quadratic Approximation of the

Persistent Volatility Factor

In this chapter1, a new multifactor stochastic volatility model is proposed by

approximating the slow volatility factor with a quadratic arc. The perturbation

technique is used to obtain the approximate expression for the European option

price. The notion of a modified Black-Scholes price is introduced. A simplified

expression for the European option price, perturbed around the modified Black-

Scholes price, is obtained. An expression of modified price is also obtained in

terms of the Black-Scholes price. The effect of this modification on pricing is

explained. The accuracy of the approximate option pricing formula is established,

and its computational cost is also discussed.

1The work reported in this chapter has been published in a research article “Quadratic Approximation
of the Slow Factor of Volatility in a Multifactor Stochastic Volatility Model, Journal of Futures
Markets, 38, 607-624, (2018)”.

37
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2.1 Introduction

As discussed in detail in the previous chapter, the stochastic volatility modeling is

a robust improvement of the classical Black-Scholes model. Multifactor stochastic

volatility models are efficient to explain the time varying nature of volatility which

the single factor stochastic volatility models are unable to capture. Multifactor

stochastic volatility models have been ratified and studied in many papers [1, 22,

39,41].

Fouque et al. [39] proposed a multifactor model with one fast mean-reverting

stochastic volatility factor and the other slowly varying stochastic volatility factor.

They have shown that the slow varying volatility factor is essential for the options

with longer maturity and used the perturbation analysis in the context of pricing

options.

The persistence of volatility should be given importance and must be

incorporated in any volatility model [31]. Also, the multifactor stochastic volatility

models give better results for the options with medium to longer maturity [33].

Therefore, the slow factor of volatility, which is highly persistent, is important and

its dynamics cannot be ignored.

In the perturbation analysis given by Fouque et al. [39], the approximate option

price depends upon the slow factor of volatility but is independent of the fast factor.

They considered that the slow volatility factor follows a diffusion process resulting

from a simple time change, as mentioned in Subsection 1.3.4 of the previous

chapter.

In the present chapter, a new multifactor stochastic volatility model is proposed

to give importance to the slow factor of volatility by taking it mean-reverting and

approximating it by a quadratic arc. Also, using this model, a much simplified

formula for the pricing of European call option is derived. The notion of a modified

Black-Scholes operator is introduced. The modification factor is the real essence

of this work improving the price of the European options. The accuracy and the

computational cost of the approximate option pricing formula is explained. The

implied volatility surface is also calibrated.

The rest of the chapter is organized as follows: The multifactor stochastic

volatility (MSV) model has been introduced in Section 2.2. The PDE governing

option price and the asymptotic expansion of price has been discussed in Sections
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2.3 and 2.4 respectively. Section 2.5 gives the approximate price of the European

call option. The accuracy of the approximate option price has been given in

Section 2.6. In Section 2.7, the calibration of the implied volatility has been given.

The computational cost of using price approximation formulae has also been

explained in this section. The conclusion has been given in Section 2.8.

2.2 Model Under Consideration

Let Xt be the price of an underlying asset (non-dividend paying), P∗ be the risk-

neutral probability measure, and r be the risk-free rate of interest. Under P∗, the

dynamics of Xt is given as

dXt = rXtdt +σXtdW x
t (2.2.1)

where

σ = f (Yt ,Zt) (2.2.2)

is the stochastic volatility which is assumed to be bounded and driven by two

factors Yt and Zt which are respectively the fast scale and the slow scale factors

of volatility. W x
t is a standard Brownian motion. The dynamics of the fast volatility

factor Yt is considered as

dYt =
1
ε
(m−Yt)dt +

ν
√

2√
ε

dW y
t (2.2.3)

which is an Ornstein-Uhlenbeck (OU) process with the long-run distribution

N (m,ν2) and is reverting on the short time scale ε around its long-run mean

value m with 1/ε as its rate of mean-reversion. Its volatility of volatility (vol-vol)

parameter is ν
√

2√
ε

. W y
t is also a standard Brownian motion. W x

t and W y
t have the

correlation structure:

E[dW x
t .dW y

t ] = ρxydt

where ρxy represents a correlation between the two standard Brownian motions.

The volatility being mean-reverting, keeps on fluctuating randomly around its long-

run mean value. During the slow reverting mode, the volatility takes a longer time

to come back to its long-run mean, moving randomly.

For instance, the S&P 500 index historical volatility data of period one year,
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Figure 2.1: Mean-reverting historic volatility of S&P 500 index from September 8,2015
to September 6,2016.

which is mean- reverting around 20% (say) is given in Fig.2.1. A parabola is fitted

to smooth out the random movement of the slow factor of volatility for one period

of mean-reversion. So a quadratic arc approximation is considered to capture the

slow volatility factor, given as

Zt = A t2 +Bt +C +αt (2.2.4)

where A ,B and C are the unknown constants with A 6= 0; αt is the error term in

the approximation of Zt . This choice of quadratic approximation is justified by the

fact that any diffusion process may be reduced to Eq.(2.2.4).

For example, if Zt is an Ornstein-Uhlenbeck (OU) process given as

dZt = k(m
′
−Zt)dt +ηdW z

t (2.2.5)

W z
t is also a standard Brownian motion. It has the correlation with W x

t and W y
t as

E[dW x
t .dW z

t ] = ρxzdt

E[dW y
t .dW z

t ] = ρyzdt
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and the correlation coefficients ρxy, ρxz and ρyz are such that ρ2
xy < 1,ρ2

xz < 1,ρ2
yz < 1

and 1+2ρxyρxzρyz−ρ2
xy−ρ2

xz−ρ2
yz > 0 for the positive definiteness of the covariance

matrix of the three Brownian motions. Zt has the long-run distribution N (m
′
, η2

2k )

and is reverting on a long time scale 1/k around its long-run mean value m
′
. The

rate of mean-reversion for Zt is k and its vol-vol parameter is η .

On solving Eq.(2.2.5) using Ito lemma, Zt can be written explicitly in terms of its

initial value Z0 as

Zt = m
′
+(Z0−m

′
)e−kt +η

∫ t

0
e−k(t−s)dW z

s

On expanding e−kt term

Zt = m
′
+(Z0−m

′
)(1− kt +

k2t2

2!
+ ...)+η

∫ t

0
e−k(t−s)dW z

s

After rearranging the terms, we get

Zt =

[
(Z0−m

′
)

2
k2
]

t2 +[−k(Z0−m
′
)]t +Z0 +δt +βt (2.2.6)

Comparing it with Eq.(2.2.4), we obtain

A =
(Z0−m

′
)

2
k2,

B =−(Z0−m
′
)k,

C = Z0,

and

αt = δt +βt

δt is the truncation error, and the term βt involving η is the randomness in the

value of the slow factor of volatility Zt . To assure that A 6= 0, it is assumed that

Z0 6=m
′
. Also, it is assumed that the error term αt is negligible, since the truncation

error δt can be neglected because of the small value of k. The expected value of

the random term βt which involves η is zero, so it can also be neglected.

The approximated value of Zt is a function of t. So

∂

∂ z
=

(
1

2A t +B+ζt

)
∂

∂ t
(2.2.7)
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and
∂ 2

∂ z2 =
1

(2A t +B+ζt)2

[
∂ 2

∂ t2 −
(

2A +ζ
′
t

2A t +B+ζt

)
∂

∂ t

]
(2.2.8)

where

ζt =
∂αt

∂ t

These expressions will be needed for pricing in the proceeding sections. So our

multifactor stochastic volatility model under the risk-neutral probability measure

P∗, which is already chosen by the market is

dXt = rXtdt +σXtdW x
t

dYt =
1
ε
(m−Yt)dt +

ν
√

2√
ε

dW y
t

Zt = A t2 +Bt +C +αt

where

A =
(Z0−m

′
)

2
k2,

B =−(Z0−m
′
)k,

C = Z0 (2.2.9)

here Zt has been obtained by considering the diffusion process

dZt = k(m
′
−Zt)dt +ηdW z

t

Next, the pricing equation for the European options is obtained.

2.3 Pricing Equation

The price of the European call option, under the risk-neutral probability measure

P∗, is the conditional expectation of the discounted payoff h(XT ), which is given

as:

Pε(t,x,y,z) = E∗{e−r(T−t)h(XT )|Xt = x,Yt = y,Zt = z}, (2.3.1)
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Using the Feynman-Kac formula, given in Eq.(1.3.27) of previous chapter, Pε(t,x,y,z)

satisfies the following parabolic PDE:

L εPε(t,x,y,z) = 0 (2.3.2)

with the boundary condition

Pε(T,XT ,YT ,ZT ) = h(XT )

where L ε is given by:

L ε =
1
ε
L0 +

1√
ε
L1 +L2 (2.3.3)

with

L0 = (m− y)
∂

∂y
+ν

2 ∂ 2

∂y2 (2.3.4)

L1 = ρxyν
√

2 f (y,z)x
∂ 2

∂x∂y
+ρyzν

√
2η

∂ 2

∂y∂ z
(2.3.5)

and

L2 =
∂

∂ t
+

1
2

f 2(y,z)x2 ∂ 2

∂x2 + r(x
∂

∂x
− .)+ρxzη f (y,z)x

∂ 2

∂x∂ z
+

1
2

η
2 ∂ 2

∂ z2 + k(m
′
− z)

∂

∂ z
(2.3.6)

Substituting for ∂

∂ z and ∂ 2

∂ z2 from Eqs.(2.2.7) and (2.2.8) in Eqs.(2.3.5) and (2.3.6)

and solving, we get

L1 = ν
√

2
[

ρxy f (y,z)x
∂ 2

∂x∂y
+

ρyz

2A t +B+ζt
η

∂ 2

∂y∂ t

]
(2.3.7)

and

L2 =

[
1+

k(m
′− z)

2A t +B+ζt
− 1

2
η

2 2A +ζ
′
t

(2A t +B+ζt)3

]
∂

∂ t
+

1
2

f 2(y,z)x2 ∂ 2

∂x2 + r(x
∂

∂x
− .)

+

(
ρxzη f (y,z)x

2A t +B+ζt

)
∂ 2

∂x∂ t
+

1
2

η
2 1
(2A t +B+ζt)2

∂ 2

∂ t2 (2.3.8)

where z = Zt is given by Eq.(2.2.6).

From Eqs.(2.3.2) and (2.3.3) we have,

(
1
ε
L0 +

1√
ε
L1 +L2)Pε(t,x,y,z) = 0 (2.3.9)

This is the required pricing equation with solution Pε .
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2.4 Asymptotic Expansion

The asymptotic expansion of Pε in powers of
√

ε is

Pε = P0 +
√

εP1 + εP2 + ... (2.4.1)

Using it in Eq.(2.3.9) gives

(
1
ε
L0 +

1√
ε
L1 +L2)(P0 +

√
εP1 + εP2 + ...) = 0 (2.4.2)

A similar expansion is considered in Fouque et al. [40] for the one factor and in

Fouque et al. [39] for the two factors of volatility. The expansion, only in the powers

of
√

ε, is considered here because the slow factor of volatility is approximated.

Terms of order 1
ε
:

L0P0 = 0

here L0 is given in Eq.(2.3.4) and it contains the partial derivatives with respect to

y. This implies that

P0 = P0(t,x,z) (2.4.3)

which is independent of y, but depending on z, the slow factor of volatility.

Terms of order 1√
ε
:

L1P0 +L0P1 = 0

as P0 is independent of y, and L1 given in Eq.(2.3.7) contains partial derivatives

with respect to y in each term, thus L1P0 = 0. This results in to

L0P1 = 0

which gives

P1 = P1(t,x,z) (2.4.4)

which is again independent of y, but depending on z, the slow factor of volatility.

Terms of order 1:

L2P0 +L1P1 +L0P2 = 0
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since P1 is independent of y thus L1P1 = 0, this gives

L0P2 +L2P0 = 0 (2.4.5)

It is a “Poisson equation” in P2 with respect to y with the Fredholm solvability

condition

Ey[L2P0] = 0

as P0 is independent of y, therefore, it can be written as

Ey[L2]P0 = 0 (2.4.6)

where Ey[L2] is the average of L2 with respect to the invariant (or long run)

distribution of process Yt , which is N (m,ν2). For simplification, the error term

involving truncation and randomness is neglected in Eq.(2.2.6) assuming δt → 0

and the vol-vol parameter of Zt ,η ≈ 0. Therefore, Eqs.(2.3.7) and (2.3.8) are

reduced to

L1 = ν
√

2
[

ρxy f (y,z)x
∂ 2

∂x∂y

]
(2.4.7)

and

L2 =

[
1+

1− kt + k2t2

2
1− kt

]
∂

∂ t
+

1
2

f 2(y,z)x2 ∂ 2

∂x2 + r(x
∂

∂x
− .)

On taking
1− kt + k2t2

2
1− kt

= γ

with kt 6= 1 and γ 6= 0 gives

L2 = [1+ γ]
∂

∂ t
+

1
2

f 2(y,z)x2 ∂ 2

∂x2 + r(x
∂

∂x
− .) (2.4.8)

and

Ey[L2] = [1+ γ]
∂

∂ t
+

1
2

σ
2(z)x2 ∂ 2

∂x2 + r(x
∂

∂x
− .) (2.4.9)

where

σ(z) = Ey[ f (y,z)]

which is a function of the slow factor of volatility.

The operator Ey[L2] differs from the Black-Scholes operator given in Eq.(1.3.5) in

the coefficient of ∂

∂ t , so Ey[L2] is named as a γ−modified Black-Scholes operator

with volatility σ(z). Therefore, in Eq.(2.4.6), P0 is a modified Black-Scholes price.
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To obtain the expression of P0, Eq.(2.4.6) is solved. We write operator Ey[L2] as

Ey[L2] = LBS(σ(z))+ γ
∂

∂ t

where LBS(σ(z)) is the Black-Scholes operator given in Eq.(1.3.5) with volatility

σ(z).

Let P0(t,x,z) = b(t)Q0(t,x,σ(z)), where Q0(t,x,σ(z)) is the Black-Scholes price

satisfying LBSQ0 = 0. So Eq.(2.4.6) gives[
LBS + γ

∂

∂ t

]
(b(t)Q0) = 0, (2.4.10)

that is,

b(t)LBSQ0 +Q0LBS(b(t))+ γb(t)
∂Q0

∂ t
+ γQ0

∂b(t)
∂ t

= 0 (2.4.11)

as LBSQ0 = 0 and LBS(b(t)) =
∂b(t)

∂ t , the above equation reduces to

Q0
∂b(t)

∂ t
+ γb(t)

∂Q0

∂ t
+ γQ0

∂b(t)
∂ t

= 0 (2.4.12)

that is,

(1+ γ)Q0
∂b(t)

∂ t
+ γb(t)

∂Q0

∂ t
= 0 (2.4.13)

this implies, (
1+ γ

γ

)(
1

b(t)

)
∂b(t)

∂ t
+

1
Q0

∂Q0

∂ t
= 0 (2.4.14)

After solving this equation, the expression of P0 in terms of the Black-Scholes

price Q0 is obtained as

P0(t,x,z) =
|kt−2| a−2r

k e
2r−a

k(|kt−2|)

e
(2r−a)t

2

Q0(t,x,σ(z)) (2.4.15)

where kt 6= 2 for 0≤ t ≤ T and a is the constant satisfying

a = 2r−
γ

∂Q0
∂ t

(1+ γ)Q0[
k2t2−2kt+2

2(kt−2)2 ]
(2.4.16)
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∂Q0
∂ t is the Black-Scholes theta (one of the Greeks) and a 6= 2r for 0≤ t < T .

Equality holds at maturity to satisfy the boundary condition

P0(T,XT ,ZT ) = h(XT )

Also, from Eqs.(2.4.5) and (2.4.6)

L0P2 =−[L2P0−Ey[L2]P0]

giving

P2 =−L −1
0 [L2−Ey[L2]]P0 (2.4.17)

Terms of order
√

ε:

L0P3 +L2P1 +L1P2 = 0

which is a “Poisson equation” in P3 with respect to y, with the Fredholm solvability

condition:

Ey[L2P1 +L1P2] = 0

that is

Ey[L2]P1 +Ey[L1P2] = 0

thus

Ey[L2]P1 =−Ey[L1P2]

Considering the expression of P2 from Eq.(2.4.17), we get

Ey[L2]P1 = G P0 (2.4.18)

where

G = Ey[L1L
−1

0 [L2−Ey[L2]]]

This expression is further simplified by considering the value of L0, L1, L2 and

Ey[L2] from Eqs.(2.3.4), (2.4.7), (2.4.8) and (2.4.9) respectively. Firstly, we get that

L2−Ey[L2] =
1
2
( f 2(y,z)−σ

2(z))x2 ∂ 2

∂x2 (2.4.19)
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On taking φ as the solution of

L0φy,z = f 2(y,z)−σ
2(z) (2.4.20)

we obtain that

L −1
0 [L2−Ey[L2]] =

1
2

φy,zx2 ∂ 2

∂x2

thus

L1L
−1

0 [L2−Ey[L2]] =
νρxy√

2
f

∂φ

∂y
x

∂

∂x
x2 ∂ 2

∂x2 (2.4.21)

this gives

G =
νρxy√

2
Ey[ f

∂φ

∂y
]x

∂

∂x
x2 ∂ 2

∂x2 (2.4.22)

For the first order price approximation, the expression for P1 is also needed

along with that of P0. The following theorem is developed to obtain the expression

of P1.

Theorem 2.1. Let A(t,x,z) be a function which satisfies

Ey[L2]A(t,x,z) = D(t,x,z) (2.4.23)

with A(T,x,z) = 0 and D(t,x,z) be a function which satisfies Ey[L2]D(t,x,z) = 0. Then

the solution of Eq.(2.4.23) is

A(t,x,z) =−
(∫ T

t

dτ

1+ γ

)
D(t,x,z)

where, 1+ γ = (2−kt)2

2(1−kt) .

Proof. Let

A(t,x,z) =−
(∫ T

t

dτ

1+ γ

)
D(t,x,z)

Clearly

A(T,x,z) = 0
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Also, as

(1+ γ)
∂A
∂ t

= D(t,x,z)−
(∫ T

t

dτ

1+ γ

)
(1+ γ)

∂D(t,x,z)
∂ t

and[
1
2

σ
2(z)x2 ∂ 2

∂x2 +r(x
∂

∂x
−.)
]

A(t,x,z)=−
(∫ T

t

dτ

1+ γ

)[
1
2

σ
2(z)x2 ∂ 2

∂x2 +r(x
∂

∂x
−.)
]

D(t,x,z)

therefore

Ey[L2]A(t,x,z) = D(t,x,z)−
(∫ T

t

dτ

1+ γ

)
Ey[L2]D(t,x,z)

As Ey[L2]D(t,x,z) = 0, thus

Ey[L2]A(t,x,z) = D(t,x,z)

This completes the proof of the Theorem 2.1.

Now, as P1 satisfies Eq.(2.4.18) and P1(T,x,z) = 0. Also, Ey[L2] and G commute

with each other, giving

Ey[L2](G P0) = G Ey[L2](P0) = 0

therefore, by the Theorem 2.1

P1 =−
(∫ T

t

dτ

1+ γ

)
(G P0)

On substituting the value of 1+ γ

P1 = 2
(∫ T

t

kτ−1
(kτ−2)2 dτ

)
G P0

It can be easily solved to give

P1(t,x,z) = 2
[

1
k

log
∣∣∣∣kT −2

kt−2

∣∣∣∣+ T − t
(kT −2)(kt−2)

]
G P0 (2.4.24)

which is a unique solution of Eq.(2.4.18) with the boundary condition

P1(T,XT ,ZT ) = 0



50

2.5 Approximate Option Price

From the above calculation, a first-order approximated option price is obtained

and is given as

Pε ≈ P̂ε = P0 +
√

εP1

that is

Pε ≈ P̂ε = P0 +
√

ε

(
2
[

1
k

log
∣∣∣∣kT −2

kt−2

∣∣∣∣+ T − t
(kT −2)(kt−2)

]
G

)
P0 (2.5.1)

where P0 is given by Eq.(2.4.15).

Now, Eq.(2.5.1) can be written as

Pε ≈ (1+g)
[

Q0 +
√

ε

(
2
[

1
k

log
∣∣∣∣kT −2

kt−2

∣∣∣∣+ T − t
(kT −2)(kt−2)

]
V D1D2

)
Q0

]
(2.5.2)

here

V =
νρxy√

2
Ey[ f

∂φ

∂y
]

D1 = x
∂

∂x

D2 = x2 ∂ 2

∂x2 (2.5.3)

Eq.(2.5.2) gives the required approximated price, where

1+g = b(t) =
|kt−2| a−2r

k e
2r−a

k(|kt−2|)

e
(2r−a)t

2

(2.5.4)

such that g converges to zero at maturity. (1+ g) is named as a modification

factor. This modification factor significantly improves the pricing in comparison to

the Black-Scholes price.

2.6 Accuracy of the Approximate Option Pricing

Formula

We have considered the case of non-smooth payoff function for the European

option. We observed that the case of smooth payoff is straightforward. In Fouque
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et al. [39,40], the error in the price approximation of the European call option has

an upper bound c(ε + ε| logε|), where c is some constant. For the model under

consideration, we have proved our results on the same lines.

Suppose that Pε,δ be the slightly smoothed (or regularized) price with smoothing

parameter δ , and s = lnx be the log stock price. For this smoothed option, the

payoff function is

Hδ (s) = P0(T −δ ,s,K,T,σ(z))

= (1+g)Q0(T −δ ,s,K,T,σ(z))

where the Black-Scholes price Q0 is obtained at volatility σ(z), which is a function

of the slow volatility factor z. (1 + g) represents a modification factor given in

Eq.(2.5.4).

If P̂ε,δ is the first order approximation to Pε,δ then

Pε,δ ≈ P̂ε,δ = Pδ
0 +
√

εPδ
1

where

Pδ
0 = (1+g)Q0(t−δ ,s,K,T,σ(z)) (2.6.1)

and

Pδ
1 = 2

[
1
k

log
∣∣∣∣kT −2

kt−2

∣∣∣∣+ T − t
(kT −2)(kt−2)

]
G Pδ

0 (2.6.2)

The accuracy of the price approximation is established by the theorem given

below.

Theorem 2.2. If f (y,z) is positive and bounded, then at a fixed t < T,s,y,z ∈ R, the

approximated option price P̂ε satisfies

|Pε(t,s,y,z)− P̂ε(t,s,z)| ≤ c
[(

ε + ε
1
2

)(
1+ ε

1
4

)
+ ε| log(ε)|

]
for some constant c.

The proof of the theorem depends on the three results which are given below

as lemmas.
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Lemma 2.1. For a fix point (t,s,y,z) with t < T , there exist constants ε1 > 0, δ1 > 0 and

c1 > 0 so that

|Pε(t,s,y,z)−Pε,δ (t,s,y,z)| ≤ c1δ

for all 0 < δ < δ1 and 0 < ε < ε1.

Proof. This lemma shows that for a small δ , the difference of the regularized and the un-

regularized price is small.

Consider a new stochastic process S̃t given by

dS̃t =

(
r− 1

2
f̃ (t,y,z)2

)
dt + f̃ (t,y,z)(ρdW y

t +
√

1−ρ2dŴ s
t )

here ρ represents ρsy. ρsz and ρyz are taken as zero for simplification. W y
t and Ŵ s

t are the

Brownian motions independent of each other, and

f̃ (t,y,z) =

 f (y,z), if t < T

σ(z), if t ≥ T .

Therefore, we write

Pε,δ (t,s,y,z) = E∗t,s,y,z[e
−r(T+δ−t)H(S̃T+δ )]

and

Pε(t,s,y,z) = E∗t,s,y,z[e
−r(T−t)H(S̃T )]

this implies that

Pε(t,s,y,z)−Pε,δ (t,s,y,z)

= E∗t,s,y,z[e
−r(T−t)H(S̃T )]−E∗t,s,y,z[e

−r(T+δ−t)H(S̃T+δ )]

= E∗t,s,y,z[E
∗
t,s,y,z{e−r(T−t)H(S̃T )− e−r(T+δ−t)H(S̃T+δ )}|(W y

u )t≤u≤T ]

= E∗t,s,y,z[E
∗
t,s,y,z{e−r(T−t)H(S̃T )|(W y

u )t≤u≤T}−E∗t,s,y,z{e−r(T+δ−t)H(S̃T+δ )|(W y
u )t≤u≤T}]

(2.6.3)

The distribution of S̃T conditional on the path of (W y
u )t≤u≤T is N (µs,σ

2
ρ,s(T − t)),

where

µs = S̃t + r(T − t)+ρ

∫ T

t
f̃ (u,y,z)dW y

u −
1
2

∫ T

t
f̃ 2(u,y,z)du
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and

σ
2
ρ,s(T − t) = (1−ρ

2)
∫ T

t
f̃ 2(u,y,z)du

It is rearranged as

−1
2

∫ T

t
f̃ 2(u,y,z)du =−

σ
2
ρ,s(T − t)

2
− ρ2

2

∫ T

t
f̃ 2(u,y,z)du

This gives

µs = S̃t +

(
r−

σ
2
ρ,s

2

)
(T − t)+ξt,T

where

ξt,T = ρ

∫ T

t
f̃ (u,y,z)dW y

u −
ρ2

2

∫ T

t
f̃ 2(u,y,z)du

therefore

E∗t,s,y,z{e−r(T−t)H(S̃T )|(W y
u )t≤u≤T}= P0(t, S̃t +ξt,T ,K,T,σρ,s)

= (1+g)Q0(t, S̃t +ξt,T ,K,T,σρ,s) (2.6.4)

Similarly, the conditional distribution of S̃T+δ given the path of (W y
u )t≤u≤T is

N (µs,δ ,σ
2
ρ,s,δ (T − t)), where

µs,δ = S̃t + rδ +

(
r−

σ
2
ρ,s,δ

2

)
(T − t)+ξt,T

and

σ
2
ρ,s,δ (T − t) = σ

2
ρ,s(T − t)+σ

2
δ

therefore

E∗t,s,y,z{e−r(T−t)H(S̃T+δ )|(W y
u )t≤u≤T}= P0(t, S̃t +ξt,T + rδ ,K,T,σρ,s,δ )

= (1+g)Q0(t, S̃t +ξt,T + rδ ,K,T,σρ,s,δ ) (2.6.5)

Using Eqs.(2.6.4) and (2.6.5) in Eq.(2.6.3), we get

Pε(t,s,y,z)−Pε,δ (t,s,y,z)

= E∗t,s,y,z[(1+g)Q0(t, S̃t +ξt,T ,K,T,σρ,s)− (1+g)Q0(t, S̃t +ξt,T + rδ ,K,T,σρ,s,δ )]

= (1+g)E∗t,s,y,z[Q0(t, S̃t +ξt,T ,K,T,σρ,s)−Q0(t, S̃t +ξt,T + rδ ,K,T,σρ,s,δ )] (2.6.6)
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Given the assumption that kt 6= 2, (1+g) will always be finite for a finite t. Also, under

the assumption of bounded f (y,z) and using the explicit expression of the Black-Scholes

formula for the European options, we have easily obtained that

|Pε(t,s,y,z)−Pε,δ (t,s,y,z)| ≤ c1δ

with some constant c1 and some small δ .

Lemma 2.2. For a fix point (t,s,y,z) with t < T , there exist constants ε2 > 0, δ2 > 0 and

c2 > 0 so that

|P̂ε,δ (t,s,z)− P̂ε(t,s,z)| ≤ c2δ

for all 0 < δ < δ2 and 0 < ε < ε2.

Proof. This lemma shows that for a small δ , the difference of the regularized and the

un-regularized first-order price approximation is small. Consider

P̂ε,δ (t,s,z)− P̂ε(t,s,z)

=

[
1+2

(
1
k

log
∣∣∣∣kT −2

kt−2

∣∣∣∣+ T − t
(kT −2)(kt−2)

)√
εV D1D2

]
(Pδ

0 −P0)

= (1+g)
[

1+2
(

1
k

log
∣∣∣∣kT −2

kt−2

∣∣∣∣+ T − t
(kT −2)(kt−2)

)√
εV D1D2

]
(Qδ

0 −Q0)

D1 and D2 in terms of log stock price s will be

D1 =
∂

∂ s

D2 =
∂ 2

∂ s2 −
∂

∂ s
(2.6.7)

The expression of V is given in Eq.(2.5.3). From Eq.(2.4.20), which is a Poisson

equation in φy,z with bounded expression on right side, we used the bounds on the solution

of the Poisson equation to get that

|V ε | ≤ d1
√

ε

for some d1. Here, V ε =
√

εV

also,

Pδ
0 (t,s,z) = P0(t−δ ,s,z) = (1+g)Q0(t−δ ,s,z)

For any t < T , Q0 and the derivatives of Q0 with respect to s, are differentiable in t.
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(1+g) is also differentiable in t under the assumption kt 6= 2. So for any fixed (t,s,y,z),

where t < T

|P̂ε,δ (t,s,z)− P̂ε(t,s,z)| ≤ c2δ

for some given c2 and small δ .

Lemma 2.3. For a fix point (t,s,y,z) with t < T , there exist constants ε3 > 0, δ3 > 0 and

c3 > 0 such that

|Pε,δ (t,s,y,z)− P̂ε,δ (t,s,z)| ≤ c3

[(
ε +

ε

δ

)(
1+
√

ε

δ

)
+ ε| log(δ )|

]
for all 0 < δ < δ3 and 0 < ε < ε3.

Proof. This lemma shows that for a small δ , the difference of the regularized price and

its corresponding regularized first-order price approximation is small.

Let Pε,δ = Pδ
0 +
√

εPδ
1 + εPδ

2 + ε
3
2 Pδ

3 −Rε,δ

where Rε,δ is the error or the residual in the approximation of the regularized problem.

Considering the operator L ε from Eq.(2.3.3)

L εRε,δ =

(
1
ε
L0 +

1√
ε
L1 +L2

)
(Pδ

0 +
√

εPδ
1 + εPδ

2 + ε
3
2 Pδ

3 −Pε,δ )

=
1
ε
L0Pδ

0 +
1√
ε
(L1Pδ

0 +L0Pδ
1 )+(L2Pδ

0 +L1Pδ
1 +L0Pδ

2 )

+
√

ε(L2Pδ
1 +L1Pδ

2 +L0Pδ
3 )+ ε(L2Pδ

2 +L1Pδ
3 )+ ε

3
2 (L2Pδ

3 )−L εPε,δ

Terms of order 1
ε
, 1√

ε
,1 and

√
ε becomes zero as already shown in Section 2.4. Also,

L εPε,δ = 0 by Eq.(2.3.2), therefore

L εRε,δ = ε(L2Pδ
2 +L1Pδ

3 )+ ε
3
2 (L2Pδ

3 ) = Mε,δ (2.6.8)

As terms of order 1 are zero, therefore, we easily obtain that

Pδ
2 =−

φy,z

2
D2Pδ

0

φy,z and D2 are given by Eqs.(2.4.20) and (2.6.7) respectively. Also, term of order
√

ε is

zero, thus

Pδ
3 =

νρsy√
2

ψy,zD1D2Pδ
0 −

φy,z

2
D2Pδ

1
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here ψy,z is the solution of

L0ψy,z = f (y,z)φ
′
y,z−Ey[ f φ

′
]

therefore

L2Pδ
2 =−1

4
( f 2(y,z)−σ

2(z))φy,zD2D2Pδ
0

L1Pδ
3 = ν

2
ρ

2
sy f (y,z)ψ

′
y,zD1D1D2Pδ

0 −
ν√
2

ρsy f (y,z)φ
′
y,zD1D2Pδ

1

and

L2Pδ
3 =

1
2
( f 2(y,z)−σ

2(z))
[

ν√
2

ρsyψy,zD2D1D2Pδ
0 −

1
2

φy,zD2D2Pδ
1

]
Using these in Eq.(2.6.8) and after further simplification we get

Mε,δ = (1+g)
[

ε

( 4

∑
i=1

g(1)i (y,z)
∂ i

∂ si Q
δ
0 +

6

∑
i=1

g(2)i (y,z)
∂ i

∂ si Q
δ
0

+(T − t)
6

∑
i=1

g(3)i (y,z)
∂ i

∂ si Q
δ
0

)
+ ε

3
2

( 5

∑
i=1

g(4)i (y,z)
∂ i

∂ si Q
δ
0

+
7

∑
i=1

g(5)i (y,z)
∂ i

∂ si Q
δ
0 +(T − t)

7

∑
i=1

g(6)i (y,z)
∂ i

∂ si Q
δ
0

)]

Now, at time T

Rε,δ (T ) = εPδ
2 (T,s,y,z)+

√
εPδ

3 (T,s,y,z)

= Hε,δ (s,y,z)

Using the expression of Pδ
2 and Pδ

3 , the above terminal condition is further simplified

to get

Hε,δ (s,y,z) = (1+g)
[

ε

( 2

∑
i=1

h(1)i (y,z)
∂ i

∂ si Q
δ
0 (T,s,z)

)
+ ε

3
2

( 3

∑
i=1

h(2)i (y,z)
∂ i

∂ si Q
δ
0 (T,s,z)

)]

The probabilistic representation of L εRε,δ = Mε,δ with the payoff Hε,δ (s,y,z) is

Rε,δ = E∗t,s,y,z

[
e−r(T−t)Hε,δ (ST ,YT ,ZT )−

∫ T

t
e−r(u−t)Mε,δ (u,Su,Yu,Zu)du

]
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Using the expression of Mε,δ given above,∣∣∣∣E∗t,s,y,z[∫ T

t
e−r(u−t)Mε,δ (u,Su,Yu,Zu)du

]∣∣∣∣≤ d2

[(
ε +

ε

δ

)(
1+
√

ε

δ

)
+ ε| log(δ )|

]
and ∣∣∣∣E∗t,s,y,z[e−r(T−t)Hε,δ (ST ,YT ,ZT )

]∣∣∣∣≤ d2

[
ε

(
1+
√

ε

δ

)]
for some constant d2. Therefore, for a fixed t < T

|Pε,δ (t,s,y,z)− P̂ε,δ (t,s,z)|= |εPδ
2 + ε

3
2 Pδ

3 −Rε,δ |

≤ c3

[(
ε +

ε

δ

)(
1+
√

ε

δ

)
+ ε| log(δ )|

]

where Pδ
2 and Pδ

3 can also be shown to be bounded for t < T .

Next, Theorem 2.2 is proved using these lemmas.

Taking δ̂ = min (δ1,δ2,δ3) and ε̂ = min (ε1,ε2,ε3). For a fixed (t,s,y), and for

0 < δ < δ̂ and 0 < ε < ε̂

|Pε − P̂ε | ≤ |Pε −Pε,δ |+ |Pε,δ − P̂ε,δ |+ |P̂ε,δ − P̂ε |

≤ 2c4δ + c3

[(
ε +

ε

δ

)(
1+
√

ε

δ

)
+ ε| log(δ )|

]
(2.6.9)

where c4 = max (c1,c2).

On taking δ = ε
1
2 ,

|Pε − P̂ε | ≤ c
[(

ε + ε
1
2

)(
1+ ε

1
4

)
+ ε| log(ε)|

]
(2.6.10)

This proves the required accuracy of the approximate option pricing formula.

2.7 Calibration of the Implied Volatility

From the approximate option pricing formula (2.5.2), the only parameter which is to

be estimated is V . Its value is obtained employing the calibration of the European

smiles.

Assume the asymptotic expansion for the market implied volatility function I as

I = I0 +
√

εI1 + εI2 + ... (2.7.1)
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For convenience, I is attained by equating the modified Black-Scholes price with

our market price Pε . i.e.

P0(t,x, I) = Pε(t,x,z,σ(z))

here

P0(t,x, I) = (1+g)Q0(t,x, I)

where Q0 is the classical Black-Scholes price.

Considering the Taylor series expansion of P0(t,x, I) about I0 and the asymptotic

expansion of Pε to get

P0(I0)+
∂P0(I0)

∂σ

√
εI1 + ...= P0(σ(z))+

√
εP1(σ(z))+ ... (2.7.2)

Comparing the coefficients of ε0 on both sides, we get

P0(I0) = P0(σ(z))

this gives

I0 = σ(z) (2.7.3)

where σ(z) depends upon the slow volatility factor z.

Also, on using the relation x2 ∂ 2P0
∂x2 = 1

σ(T−t)
∂P0
∂σ

, terms of order
√

ε gives

∂P0(I0)

∂σ
I1 = P1(σ(z))

=
2

(T − t)σ

[
1
k

log
∣∣∣∣kT −2

kt−2

∣∣∣∣+ T − t
(kT −2)(kt−2)

]
V D1

∂P0(I0)

∂σ
(2.7.4)

As P0 = (1+g)Q0 , therefore the above equation will be reduced to

∂Q0(I0)

∂σ
I1 =

2
(T − t)σ

[
1
k

log
∣∣∣∣kT −2

kt−2

∣∣∣∣+ T − t
(kT −2)(kt−2)

]
V D1

∂Q0(I0)

∂σ
(2.7.5)

For the Black-Scholes price Q0, the direct computation gives

D1
∂Q0

∂σ
=
(
1− d1

σ
√

T − t

)∂Q0

∂σ

and

d1 =
log( x

K )+(r+ σ
2

2 )(T − t)
σ
√

T − t
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so that

1− d1

σ
√

T − t
=

log(K
x )− (r− σ

2

2 )(T − t)

σ
2(T − t)

therefore, Eq.(2.7.5) gives

I1 =
2

(T − t)

[
1
k

log
∣∣∣∣kT −2

kt−2

∣∣∣∣+ T − t
(kT −2)(kt−2)

]
V
σ

3

[
log(K

x )

(T − t)
−
(

r− σ
2

2

)]
(2.7.6)

It can be written in the linear form as

I1 = p
[

log(K
x )

(T − t)

]
+q

more precisely
√

εI1 = Iε
1 = pε

[
log(K

x )

(T − t)

]
+qε (2.7.7)

where

pε =
2

(T − t)

[
1
k

log
∣∣∣∣kT −2

kt−2

∣∣∣∣+ T − t
(kT −2)(kt−2)

]√
εV

σ
3 (2.7.8)

and

qε =− 2
(T − t)

[
1
k

log
∣∣∣∣kT −2

kt−2

∣∣∣∣+ T − t
(kT −2)(kt−2)

]√
εV

σ
3

(
r− σ

2

2

)
=−pε

(
r− σ

2

2

)
(2.7.9)

So the approximated value of the implied volatility I is given as

I ≈ I0 + Iε
1 = pε

[
log(K

x )

(T − t)

]
+qε +σ(z) (2.7.10)

which is a function of “log moneyness to maturity ratio (LMMR)”. V ε can be written

in terms of pε as

V ε =
pεσ

3

2
(T−t) [

1
k log |kT−2

kt−2 |+
T−t

(kT−2)(kt−2) ]
. (2.7.11)

pε and qε are estimated by calibrating the implied volatility surface and using

the linear relation of I with LMMR given in Eq.(2.7.10).

The implied volatility data of S&P 500 index on January 4, 2016 for the options

with maturities lying between 18 days to 158 days (both the days inclusive) and
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moneyness ranging from 80% to 120% has been considered for the estimation of

the values of pε and qε , refer to Fig.2.2.
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Figure 2.2: S&P 500 index implied volatilities as a function of LMMR.

The line pε (LMMR) + qε +σ gives the estimated value of parameters pε and

qε +σ . So with the linear regression, it is found that pε = −0.0573 and qε +σ =

0.1897. Consequently, V ε = 0.0008.

Now, as V ε is obtained, inputting it with all the other parameters in Eq.(2.5.2),

the approximate option price of the European option is obtained.

For instance, setting the parameters

x = 100,K = 80,T − t = 1,r = 0.0264,σ = 0.1892,k = 1

we get, (1+g) = 1.0561 and the approximated option price as 24.2647. Its relative

error with the Black-Scholes price is found to be 0.0633.

The computational cost of these formulae is explained in terms of run-time

efficiency. The multifactor stochastic volatility models though represent a realistic

scenario of the actual market, yet face the difficulty of implementation and

execution because of a large number of parameters involved as compared

to the corresponding single-factor models. In the proposed model, as the slow

factor of volatility is approximated, so the pricing formula gets simplified in a
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multifactor scenario, reducing the unknown number of parameters to one. This

parameter is estimated from the implied volatility surface. MATLAB2012b is used

to obtain the desired results. The computation time with this model is of the order

10−4 seconds, which is quite fast. So the computational complexity is almost

negligible and hence the computational cost. This makes the proposed model

and the derived option pricing formula computationally more efficient.

2.8 Conclusion

Using the quadratic approximation of the slow factor of volatility in a multifactor

stochastic volatility model, a first order approximated price of the European option

is obtained which is perturbed around a modified Black-Scholes

price. The accuracy of the approximate option pricing formula is established,

and the computational cost of using this formula is also discussed. With this

approximation, the calculations get simplified and the results obtained are easy

to implement in a multifactor stochastic volatility scenario. The consideration of

the slow factor of volatility as only time-dependent, has produced a result which

is significant to the literature since it provides a different and simplified setup for

the multifactor stochastic volatility models. This multifactor model is extended

to price the geometric Asian options in the next chapter.





Chapter 3

Pricing of the Geometric Asian Options

In this chapter1, the pricing formulae for the continuous geometric Asian options

(GAOs) are obtained using the multifactor stochastic volatility model framework

proposed in the previous chapter. The asymptotic expansion of the price function

is considered and the first order price approximation is derived using the

perturbation techniques for both floating and fixed strike GAOs. The zeroth order

term in the price approximation is the modified Black-Scholes price for the GAOs.

This modified price is expressed in respect of the Black-Scholes price for the

Asian options. The accuracy of the approximate option pricing formulae is also

established.

1The work reported in this chapter has been communicated under the title “Pricing of the Geometric
Asian Options Under a Multifactor Stochastic Volatility Model”. Some of this work is presented in
UGC sponsored ‘NSRDMS-2017’ held at MDU Rohtak from March 07− 08,2017 and in ‘FIM & ISME
2017’ held at Kitakyushu International Conference Center, Kitakyushu, Japan from August 25−28,2017.
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3.1 Introduction

In the previous chapter, the quadratic approximation of the slow volatility factor

was proposed which gave a much simplified multifactor stochastic volatility model.

The approximate pricing formula for the European option (path-independent) was

derived using this multifactor stochastic volatility model. In the present chapter,

we extend that model to obtain the approximate pricing formulae for the Asian

options with European type expiration which are more complicated in comparison

to the path-independent European options.

As explained in Section 1.4 of Chapter 1, Asian options are the path-dependent

options such that their payoff depends upon the average of the underlying asset

price over the option period. The averaging of the underlying asset price in

Asian options is usually arithmetic or geometric. The Black-Scholes formulae

for the pricing of fixed and floating strike GAOs are given in Eqs.(1.4.3) to (1.4.8).

GAOs have also been used to approximate the arithmetic Asian option prices (for

instance, see Turnbull and Wakeman [116]). In general, the trading of the Asian

options is in a discrete way but to consider the continuous sampling, it can be

approximated through the daily sampling [126]. Here the continuously sampled

GAOs are considered.

We have already elucidated in Chapters 1 and 2 that the constant volatility

assumption of the Black-Scholes framework does not hold good in the actual

market scenario. This consequently provided a path for the development of the

dynamic volatility modeling which has been progressed in a logical way addressing

the shortcomings of the previous models. For the GAOs, the pricing formulae

has also been obtained in the framework of stochastic volatility models (refer to

Kim and Wee [72] and Wong and Cheung [120]). The literature on the arithmetic

and geometric Asian option pricing is given in Section 1.4 of Chapter 1.

For the pricing of the GAOs, Wong and Cheung [120] considered a stochastic

volatility model with only fast mean-reverting factor of volatility, and using

asymptotic expansions they derived the approximate pricing formulae for the

continuous GAOs. We here intend to consider the pricing of GAOs in a multifactor

stochastic volatility framework by approximating the slow factor of volatility using

a quadratic (parabolic) arc. The pricing formulae for the floating and fixed strike

continuous GAOs are derived using this model. The accuracy of these formulae
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is also established.

This chapter is organized as follows: The multifactor stochastic volatility model

to be considered for pricing has been discussed in Section 3.2. Pricing

equation and the asymptotic expansion of continuous GAOs have been derived

in Sections 3.3 and 3.4 respectively. In Section 3.5, the first order approximated

option pricing formulae have been given. Accuracy of the approximated formulae

has been discussed in Section 3.6. The model parameter has been estimated

from the market by capturing the European and the Asian volatility smiles together

in Section 3.7. The conclusion has been given in Section 3.8.

3.2 Model Specification

The approximated price of the floating and fixed strike GAOs is obtained by

extending the multifactor stochastic volatility model proposed in the previous

chapter. The Asian options are the path-dependent options such that the

geometric average of the underlying asset prices over the option period is required

additionally for the pricing under the GAO setup.

Let the price of an asset (non-dividend paying) at time t be Xt . The geometric

average of these prices, considered in the interval [0, t], is denoted by G[0,t] and is

expressed as a stochastic process, given below.

G[0,t] = exp
(

1
t

∫ t

0
Sτdτ

)
(3.2.1)

where St = lnXt .

Let P∗ be the risk-neutral probability measure. Under P∗ the dynamics of asset

price Xt is

dXt = rXtdt + f (Yt ,Zt)XtdW x
t (3.2.2)

where Yt and Zt are respectively the fast and the slow mean-reverting factors of

stochastic volatility f (Yt ,Zt) with their dynamics given by

dYt =
1
ε
(m−Yt)dt +

ν
√

2√
ε

dW y
t (3.2.3)

and

Zt = A t2 +Bt +C +αt (3.2.4)
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here

A = (Z0−m
′
)

2 k2

B =−(Z0−m
′
)k

C = Z0 (3.2.5)

which is obtained by considering the following OU diffusion for the slow volatility

factor Zt

dZt = k(m
′
−Zt)dt +ηdW z

t (3.2.6)

The standard Brownian motions W x
t ,W

y
t and W z

t have the correlation structure:

E[dW x
t .dW y

t ] = ρxydt

E[dW x
t .dW z

t ] = ρxzdt

E[dW y
t .dW z

t ] = ρyzdt

where ρxy, ρxz and ρyz are such that ρ2
xy < 1,ρ2

xz < 1,ρ2
yz < 1 and 1+ 2ρxyρxzρyz−

ρ2
xy−ρ2

xz−ρ2
yz > 0 for the positive definiteness of the covariance matrix of the three

Brownian motions.

So the above system of equations from Eq.(3.2.1) to Eq.(3.2.4) specify the

multifactor stochastic volatility model to be considered for the pricing of GAOs.

Here an additional source of randomness is present to represent the geometric

averaging of the underlying asset price, thus this model extends the model

introduced in the previous chapter. The pricing equation is given in the next

section.

3.3 PDE for the Pricing of Geometric Asian Options

Let Cε(t,x,y,z,G) be the price of a continuous GAO call with payoff h(XT ,G[0,T ])

(Notation Cε
f l and Cε

f ix is used for floating and fixed strike GAOs respectively).

Using the Feynmann-Kac formula given in Eq.(1.3.27) of Chapter 1, the PDE
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for the price comes out to be(
∂

∂ t +
1
2 f 2(y,z)x2 ∂ 2

∂x2 + r(x ∂

∂x − .)+ρxzη f (y,z)x ∂ 2

∂x∂ z +
1
2η2 ∂ 2

∂ z2

+k(m
′− z) ∂

∂ z +
G
t ln( x

G)
∂

∂G + 1
ε
[(m− y) ∂

∂y +ν2 ∂ 2

∂y2 ]

+ 1√
ε
[ρxyν

√
2 f (y,z)x ∂ 2

∂x∂y +ρyzν
√

2η
∂ 2

∂y∂ z ]

)
Cε = 0 (3.3.1)

with the boundary conditions

Cε
f l(T,XT ,YT ,ZT ,G[0,T ]) = h(XT ,G[0,T ]),

Cε
f ix(T,XT ,YT ,ZT ,G[0,T ],K) = h(K,G[0,T ]) (3.3.2)

for the floating and fixed strike GAOs respectively. K is the strike price. Using the

transformation s = lnx and u = t ln G
x in Eq.(3.3.1) and after solving, we get

[
∂

∂ t +
1
2 f 2(y,z)

(
∂

∂ s − t ∂

∂u

)2

+

(
r− 1

2 f 2(y,z)
)(

∂

∂ s − t ∂

∂u

)
− r

+ρszη f (y,z)
(

∂

∂ s − t ∂

∂u

)
∂

∂ z +
1
2η2 ∂ 2

∂ z2 + k(m
′− z) ∂

∂ z +
1
ε
[(m− y) ∂

∂y +ν2 ∂ 2

∂y2 ]

+ 1√
ε
[ρsyν

√
2 f (y,z)

(
∂

∂ s − t ∂

∂u

)
∂

∂y +ρyzν
√

2η
∂ 2

∂y∂ z ]

]
Cε(t,s,y,z,u) = 0

It can be written as

L ε
a Cε(t,s,y,z,u) = 0 (3.3.3)

where subscript ‘a’ specifies the Asian options with

L ε
a =

1
ε
L a

0 +
1√
ε
L a

1 +L a
2

This operator is different from the operator L ε given in Eq.(2.3.3) for the

European options such that

L a
0 = (m− y)

∂

∂y
+ν

2 ∂ 2

∂y2 (3.3.4)

L a
1 = ν

√
2
[

ρsy f (y,z)
(

∂

∂ s
− t

∂

∂u

)
∂

∂y
+ρyzη

∂ 2

∂y∂ z

]
(3.3.5)
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and

L a
2 = ∂

∂ t +
1
2 f 2(y,z)

(
∂

∂ s − t ∂

∂u

)2

+

(
r− 1

2 f 2(y,z)
)(

∂

∂ s − t ∂

∂u

)
− r

+ρszη f (y,z)
(

∂

∂ s − t ∂

∂u

)
∂

∂ z +
1
2η2 ∂ 2

∂ z2 + k(m
′− z) ∂

∂ z (3.3.6)

Since the slow factor of volatility Zt is approximated by a quadratic arc given in

Eq.(3.2.4), therefore, as specified in Eqs.(2.2.7) and (2.2.8)

∂

∂ z
=

(
1

2A t +B+ζt

)
∂

∂ t

and
∂ 2

∂ z2 =
1

(2A t +B+ζt)2

[
∂ 2

∂ t2 −
(

2A +ζ
′
t

2A t +B+ζt

)
∂

∂ t

]
where

ζt =
∂αt

∂ t

On substituting for ∂

∂ z and ∂ 2

∂ z2 in Eqs.(3.3.5) and (3.3.6), we get

L a
1 = ν

√
2
[

ρsy f (y,z)
(

∂

∂ s
− t

∂

∂u

)
∂

∂y
+

ρyz

2A t +B+ζt
η

∂ 2

∂y∂ t

]
(3.3.7)

and

L a
2 =

(
1+ k(m

′−z)
2A t+B+ζt

− 1
2η2 2A +ζ

′
t

(2A t+B+ζt)3

)
∂

∂ t +
1
2 f 2(y,z)

(
∂

∂ s − t ∂

∂u

)2

+

(
r− 1

2 f 2(y,z)
)(

∂

∂ s − t ∂

∂u

)
− r+ ρszη f (y,z)

2A t+B+ζt

(
∂

∂ s − t ∂

∂u

)
∂

∂ t

+1
2η2 1

(2A t+B+ζt)2
∂ 2

∂ t2 (3.3.8)

So the required pricing equation is (3.3.3) where L a
0 ,L

a
1 and L a

2 are given by

Eqs.(3.3.4), (3.3.7) and (3.3.8) respectively.

3.4 Asymptotic Price Approximation

We consider the asymptotic expansion of the Asian call option price Cε in the

powers of
√

ε as

Cε =C0 +
√

εC1 + εC2 + ... (3.4.1)
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(for i = 0,1,2,..., the notation C f l
i and C f ix

i is used for the floating and fixed strike

continuous GAOs respectively). Putting this in the pricing equation (3.3.3) to get

L ε
a (C0 +

√
εC1 + εC2 + ...) = 0

this gives

(
1
ε
L a

0 +
1√
ε
L a

1 +L a
2 )(C0 +

√
εC1 + εC2 + ...) = 0 (3.4.2)

Equating the terms of various orders equal to zero to get

Terms of order 1
ε
:

L a
0 C0 = 0 (3.4.3)

Terms of order 1√
ε
:

L a
0 C1 +L a

1 C0 = 0 (3.4.4)

Terms of order 1:

L a
0 C2 +L a

1 C1 +L a
2 C0 = 0 (3.4.5)

Terms of order
√

ε:

L a
0 C3 +L a

1 C2 +L a
2 C1 = 0 (3.4.6)

and so on. Eq.(3.4.3), using the expression of L a
0 given in Eq.(3.3.4), implies that

the zeroth order term C0 is independent of the fast volatility factor y but depends

on z, the slow factor of volatility. Thus,

C0 =C0(t,s,z,u) (3.4.7)

In Eq.(3.4.4), L a
1 C0 = 0 because C0 is independent of y. Therefore, we get that

L a
0 C1 = 0

which gives that the first order term C1 in the price approximation is independent

of y but depends on z. That is,

C1 =C1(t,s,z,u) (3.4.8)

For the first order price approximation, the expressions of C0 and C1 are required.

Firstly, the expression of C0 is obtained.
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Since C1 is independent of y, hence L a
1 C1 = 0 and Eq.(3.4.5) reduces to

L a
0 C2 +L a

2 C0 = 0 (3.4.9)

As discussed in previous chapter, it is a “Poisson equation” in C2 with respect to

y and admits a solution only if the centering condition holds:

Ey[L
a

2 C0] = 0

now, as C0 is independent of y, this gives that

Ey[L
a

2 ]C0 = 0 (3.4.10)

here Ey[L a
2 ] is the average of operator L a

2 considering the invariant distribution

of y. The expression of L a
2 in Eq.(3.3.8) is bit complicated. Therefore, for

simplification, we neglect the error term in the approximation of the slow volatility

factor assuming negligible truncation error and η almost zero as considered in

Section 2.4 of the previous chapter. So Eq.(3.3.8) is reduced to the simplified

form:

L a
2 =

(
1+ 1−kt+ k2t2

2
1−kt

)
∂

∂ t +
1
2 f 2(y,z)

(
∂

∂ s − t ∂

∂u

)2

+

(
r− 1

2 f 2(y,z)
)(

∂

∂ s − t ∂

∂u

)
− r

As defined in the previous chapter,

1− kt + k2t2

2
1− kt

= γ (3.4.11)

with kt 6= 1 and γ 6= 0. This gives

L a
2 = (1+ γ)

∂

∂ t
+

1
2

f 2(y,z)
(

∂

∂ s
− t

∂

∂u

)2

+

(
r− 1

2
f 2(y,z)

)(
∂

∂ s
− t

∂

∂u

)
− r (3.4.12)

It is worth noticing that

L a
2 = LBSA + γ

∂

∂ t

where LBSA is the “Black-Scholes operator for the Asian options”. L a
2 is named

as a γ−modified Black-Scholes operator for the GAOs. Thus,

Ey[L
a

2 ] = (1+γ)
∂

∂ t
+

1
2

σ
2(z)
(

∂

∂ s
− t

∂

∂u

)2

+

(
r− 1

2
σ

2(z)
)(

∂

∂ s
− t

∂

∂u

)
−r (3.4.13)
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is the γ−modified Black-Scholes operator for the GAOs with the effective volatility

σ(z). The solution of Eq.(3.4.10) gives the zeroth order term C0 of the price

approximation and is named as the modified Black-Scholes price for the Asian

options.

We proceed on the lines of method given in the Eqs.(2.4.10) to (2.4.14) of the

previous chapter to obtain the expression of the modified Black-Scholes price C0

for the geometric Asian call options in terms of the Black-Scholes price B0 for the

GAO call.

Let for the floating strike options

C f l
0 (t,s,z,u) = β

f l(t)B f l
0 (t,s,σ(z),u)

and for the fixed strike options

C f ix
0 (t,s,z,u) = β

f ix(t)B f ix
0 (t,s,σ(z),u)

It can be expressed (collectively for floating and fixed strike GAOs) as

C f l, f ix
0 (t,s,z,u) = β

f l, f ix(t)B f l, f ix
0 (t,s,σ(z),u)

or simply

C0(t,s,z,u) = β (t)B0(t,s,σ(z),u) (3.4.14)

where after simplification

β (t) =
[(

2− kT
2− kt

) 2
k

e(T−t) (2−kt)(2−kT )+2
(2−kt)(2−KT )

]M

(3.4.15)

with kt 6= 2 for 0 < t ≤ T and

M =

(
1

B0

)
∂B0

∂ t
(3.4.16)

here ∂B0
∂ t is the Black-Scholes theta for the GAOs. It has the different expressions

for floating and fixed strike GAOs. β (t) = 1 at maturity to satisfy the boundary

condition

C f l
0 (T,ST ,ZT ,UT ) = h(ST ,UT )

or

C f ix
0 (T,ST ,ZT ,UT ,K) = h(K,ST ,UT )
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After obtaining the expression for C0 we intend to find C1. For this, consider

Eq.(3.4.6), which is a “Poisson equation” in C3 with respect to y and admits a

solution only if the following centering condition holds

Ey[L
a

2 C1 +L a
1 C2] = 0

this implies that

Ey[L
a

2 ]C1 +Ey[L
a

1 C2] = 0 (3.4.17)

From Eq.(3.4.9), L a
0 C2 =−L a

2 C0. It can be expressed as

L a
0 C2 =−(L a

2 C0−Ey[L
a

2 ]C0)

thus

C2 =−(L a
0 )
−1(L a

2 −Ey[L
a

2 ])C0

Putting it in Eq.(3.4.17) and after solving on the lines of Eqs.(2.4.19) to (2.4.21) of

previous chapter, we get that

Ey[L
a

2 ]C1 = GaC0

where

Ga =V
[(

∂

∂ s
− t

∂

∂u

)3

−
(

∂

∂ s
− t

∂

∂u

)2]
(3.4.18)

and

V =
ρsyν√

2
Ey

[
f (y,z)

∂φ(y,z)
∂y

]
(3.4.19)

φ(y,z) is the solution of

L a
0 φ(y,z) = f 2(y,z)−σ

2(z) (3.4.20)

Now, for the floating strike GAO call, the differentials of the zeroth order term

C f l
0 satisfies

∂ i+ jC f l
0

∂ui∂ s j =
∂ iC f l

0
∂ui (3.4.21)

where i, j = 0,1,2, ... . This is obtained using the Black-Scholes formula for the

floating strike geometric Asian call options given in Section 1.4 of Chapter 1.
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For the floating strike GAO call, Eq.(3.4.14) is

C f l
0 = β

f l(t)B f l
0

which gives

C f l
0 = β

f l(t)es
[

N(d1)− e
u
T−QN(d2)

]
(3.4.22)

where

d1 =
−u+(r+ σ

2

2 )T 2−t2

2

σ

√
T 3−t3

3

,

d2 = d1−
σ

T

√
T 3− t3

3

and

Q = (r+
σ

2

2
)
T 2− t2

2T
− σ

2

6T 2 (T
3− t3) (3.4.23)

with payoff function

h(ST ,UT ) = eST max(1− e
UT
T ,0) (3.4.24)

β f l(t) is given in Eq.(3.4.15). It is clear from Eq.(3.4.22) that ∂C f l
0

∂ s = C f l
0 thus

∂ jC f l
0

∂ s j = C f l
0 for every j = 0,1,2, ... . This results in Eq.(3.4.21). Therefore for the

floating strike GAO, Eq.(3.4.18) is reduced to

G f l
a =−V

[
t

∂

∂u
−2t2 ∂ 2

∂u2 + t3 ∂ 3

∂u3

]
Similarly for the fixed strike GAO, Eq.(3.4.14) becomes

C f ix
0 = β

f ix(t)B f ix
0

Using the Black-Scholes formula for the pricing of fixed strike GAO call, given in

Section 1.4 of Chapter 1,

C f ix
0 = β

f ix(t)
[

es+ u
T−QN(d̂1)−Ke−r(T−t)N(d̂2)

]
(3.4.25)

where, β f ix(t) is given in Eq.(3.4.15) and Q is given in Eq.(3.4.23). Also,

d̂2 =
u
T + s− lnK +(r− σ

2

2 ) (T−t)2

2T

σ

T

√
(T−t)3

3
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and

d̂1 = d̂2 +
σ

T

√
(T − t)3

3
(3.4.26)

with the payoff function

h(ST ,UT ) = max(eST+
UT
T −K,0) (3.4.27)

For the fixed strike GAOs

∂C f ix
0

∂ s
=

∂

∂ s
(β f ix(t)B f ix

0 ) = β
f ix(t)

∂B f ix
0

∂ s
+B f ix

0
∂β f ix(t)

∂ s

= T
(

β
f ix(t)

∂B f ix
0

∂u
+B f ix

0
∂β f ix(t)

∂u

)
= T

∂C f ix
0

∂u

thus ∂ jC f ix
0

∂ s j = T j ∂ jC f ix
0

∂u j . This results in

∂ i+ jC f ix
0

∂ui∂ s j = T j ∂ i+ jC f ix
0

∂ui+ j (3.4.28)

where i, j = 0,1,2, ... . The corresponding G f ix
a will be

G f ix
a =V

[
(T − t)3 ∂ 3

∂u3 − (T − t)2 ∂ 2

∂u2

]

Having the expressions of G f l
a and G f ix

a , C1 is obtained for the floating and fixed

strike GAO using Theorem 3.1 given below.

Theorem 3.1. If function A(t,s,z,u) satisfies

Ey[L
a

2 ]A(t,s,z,u) =
n

∑
v=1

fv(t)Dv(t,s,z,u)

with

A(T,ST ,ZT ,UT ) = 0

and Dv(t,s,z,u) satisfies the PDE Ey[L a
2 ]D(t,s,z,u) = 0 for every v = 1,2, ...,n, then

A(t,s,z,u) will be of the form

A(t,s,z,u) =−
n

∑
v=1

(∫ T

t

fv(τ)

1+ γ
dτ

)
Dv(t,s,z,u)

where 1+ γ = (2−kt)2

2(1−kt) considering γ from equation (3.4.11).
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Proof. The theorem is proved here for the modified Black-Scholes operator Ey[L a
2 ] which

satisfies

Ey[L
a

2 ] = [1+ γ]
∂

∂ t
+

1
2

σ
2(z)
(

∂

∂ s
− t

∂

∂u

)2

+

(
r− 1

2
f 2(y,z)

)(
∂

∂ s
− t

∂

∂u

)
− r

Here the case n = 1 is considered only and the proof will be parallel for any other value

of n. Consider

A(t,s,z,u) =−
(∫ T

t

f (τ)
1+ γ

dτ

)
D(t,s,z,u)

Clearly

A(T,s,z,u) = 0.

Also as

(1+ γ)
∂A
∂ t

= f (t)D(t,s,z,u)−
(∫ T

t

f (τ)
1+ γ

dτ

)
(1+ γ)

∂D
∂ t

and (
∂

∂ s
− t

∂

∂u

)i

A =−
(∫ T

t

f (τ)
1+ γ

dτ

)(
∂

∂ s
− t

∂

∂u

)i

D, ∀i

Therefore

Ey[L a
2 ]A(t,s,z,u) = f (t)D(t,s,z,u)−

(∫ T
t

f (τ)
1+γ

dτ

)
Ey[L a

2 ]D(t,s,z,u)

= f (t)D(t,s,z,u)

because Ey[L a
2 ]D(t,s,z,u) = 0. This completes the proof of Theorem 3.1.

Now, Ey[L a
2 ]C1 = GaC0 gives

Ey[L
a

2 ]C
f l
1 =−V

[
t

∂

∂u
−2t2 ∂ 2

∂u2 + t3 ∂ 3

∂u3

]
C f l

0

and

Ey[L
a

2 ]C
f ix
1 =V

[
(T − t)3 ∂ 3

∂u3 − (T − t)2 ∂ 2

∂u2

]
C f ix

0

and the u-differentials of C0 are interchangeable with the modified Black-Scholes

operator Ey[L a
2 ], so it is clear that the u-differentials of C f l

0 and C f ix
0 will satisfy

Ey[L a
2 ]D(t,s,z,u) = 0 . Thus by above theorem,

C f l
1 =V

[(∫ T

t

τ

1+ γ
dτ

)
∂

∂u
−2
(∫ T

t

τ2

1+ γ
dτ

)
∂ 2

∂u2 +

(∫ T

t

τ3

1+ γ
dτ

)
∂ 3

∂u3

]
C f l

0

(3.4.29)
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and

C f ix
1 =V

[(∫ T

t

(T − τ)2

1+ γ
dτ

)
∂ 2

∂u2 −
(∫ T

t

(T − τ)3

1+ γ
dτ

)
∂ 3

∂u3

]
C f ix

0 (3.4.30)

These expressions are simplified to give

C f l
1 =V

[
I1

∂

∂u
−2I2

∂ 2

∂u2 + I3
∂ 3

∂u3

]
C f l

0 (3.4.31)

and

C f ix
1 =V

[
I4

∂ 2

∂u2 − I5
∂ 3

∂u3

]
C f ix

0 (3.4.32)

where

I0 =
−2
k

[
k(T − t)( 1

(2−kT )(2−kt))+ ln 2−kT
2−kt

]
I1 =

−2
k2

[
k(T − t)(1+ 2

(2−kT )(2−kt))+3ln 2−kT
2−kt

]
I2 =

−2
k3

[
k2

2 (T
2− t2)+ k(T − t)(3+ 4

(2−kT )(2−kt))+8ln 2−kT
2−kt

]
I3 =

−2
k4

[
k3

3 (T
3− t3)+ 3k2

2 (T 2− t2)+8k(T − t)(1+ 1
(2−kT )(2−kt))+20ln 2−kT

2−kt

]
I4 = I2−2T I1 +T 2I0

I5 =−I3 +3T I2−3T 2I1 +T 3I0 (3.4.33)

Clearly, C f l
1 and C f ix

1 satisfy the boundary condition

C1(T,ST ,ZT ,UT ) = 0

Collectively for floating and fixed strike GAO

C f l, f ix
1 =U f l, f ixC f l, f ix

0

The expression of U is given in Eqs.(3.4.31) and (3.4.32) for the floating and fixed

strike GAOs respectively.

3.5 First Order Approximated Price

The first order approximation to the asymptotic expansion of the GAO call price

Cε
f l, f ix (combined for floating and fixed strike options) denoted as Ĉε

f l, f ix, is given
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as

Cε
f l, f ix ≈ Ĉε

f l, f ix =C f l, f ix
0 +

√
εC f l, f ix

1 (3.5.1)

where C f l, f ix
0 is given by Eq.(3.4.14) and C f l, f ix

1 is given by Eqs.(3.4.31) and (3.4.32)

for floating and fixed strike options respectively. Unlike Wong and Cheung [120],

where the approximate price was perturbed around the Black-Scholes price for

the GAOs, here the first order approximated price is perturbed around the modified

Black-Scholes price C f l, f ix
0 for both floating and fixed strike options. The price

is modified by a modification factor β (t) given in Eq.(3.4.15). The prices are

calculated at the effective volatility σ(z) which is estimated by the quadratic arc.

3.6 Accuracy of the Price Approximation

The accuracy of the first order price approximation formula (3.5.1) is discussed

in this section for the non-smooth pay-off of floating and fixed strike geometric

Asian options. The method employed here is on the lines of the method used in

Section 2.6 of the preceding chapter where the accuracy of the first order pricing

formula is given for the European options. The non-smooth payoff h is regularized

by replacing it with modified Black-Scholes formula for the GAOs with time to

maturity ∆ > 0 and volatility σ(z) given as

h∆(s,z,u) =CMA(∆,s,u,σ(z))

= β (∆)BA(∆,s,u,σ(z)) (3.6.1)

where CMA is the modified Black-Scholes price and BA is the Black-Scholes price

for GAOs obtained at volatility σ(z). β (∆) is the modification factor. Corresponding

to the regularized pay-off h∆, the regularized option price Cε,∆ satisfies

L ε
a Cε,∆ = 0

where

Cε,∆(T,s,y,z,u) = h∆(s,z,u)

and its first order price approximation Ĉε,∆ is

Ĉε,∆ =C∆
0 +
√

εC∆
1
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with

C∆
0 (t,s,z,u) =C0(t−∆,s,z,u) =CMA(T − t +∆,s,u,σ(z))

and

C∆
1 (t,s,z,u) =U∆C∆

0 (t,s,z,u)

The accuracy of the first order approximated price is established by the theorem

given below.

Theorem 3.2. Let the volatility function f (y,z) is measurable and bounded away from

zero. Then for a fixed t(< T ),s,y,z,u ∈ R, the accuracy of first order approximated price

for the GAO is given as

|Cε(t,s,y,z,u)−Ĉε(t,s,z,u)| ≤ b(ε
1+c

2 )

for c < 1 and some constant b.

The proof of this theorem is a direct implication of three lemmas given below.

Lemma 3.1. Fix the point (t,s,y,z,u) where t < T , there exist constants ∆1 > 0,ε1 > 0

and b1 > 0 so that

|Cε(t,s,y,z,u)−Cε,∆(t,s,y,z,u)| ≤ b1∆

for all 0 < ε ≤ ε1 and 0 < ∆≤ ∆1.

Proof. This lemma gives that the difference in actual price Cε and the regularized price

Cε,∆ is small. Proof of this lemma is on the lines of Lemma 2.1 of Chapter 2. As the payoff

functions (3.4.24) and (3.4.27) involve both ST and UT , therefore, the joint distribution of

ST and UT is required for the risk valuation argument. To reduce the complexity, instead of

considering the joint distribution of ST and UT , we have considered the joint distribution

of lnXT and lnG[0,T ]. For the simplification, it is considered that ρsy = ρ , ρyz = 0 and

ρsz = 0. The proof involves the consideration of the dynamics of a new stochastic process

lnX t which is analogous to the process lnXt such that

d lnX t =

(
r− 1

2
f (t,y,z)2

)
dt + f (t,y,z)(ρdW y

t +
√

1−ρ2dW̃ x
t )

W y
t and W̃ x

t are the Brownian motions independent of each other and

f (t,y,z) =

 f (y,z), if t < T

σ(z), if t ≥ T .
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Using the risk-neutral valuation under the expectation E∗,

Cε(t,x,y,z,G)−Cε,∆(t,x,y,z,G)

= E∗t,x,y,z,G[e
−r(T−t)h(XT ,G[0,T ])]−E∗t,x,y,z,G[e

−r(T−t+∆)h(XT+∆,G[0,T+∆])] (3.6.2)

this implies that

Cε(t,x,y,z,G)−Cε,∆(t,x,y,z,G) = E∗t,x,y,z,G[E
∗
t,x,y,z,G{e−r(T−t)h(XT ,G[0,T ])|(W

y
p)t≤p≤T}

−E∗t,x,y,z,G{e−r(T−t+∆)h(XT+∆,G[0,T+∆])|(W
y
p)t≤p≤T}] (3.6.3)

The joint distribution of random vector [lnXT , lnG[0,T ]] given the path of (W y
p)t≤p≤T

is a multivariate normal distribution having a 2-dimensional vector [µx,µG] as the mean

vector and a 2×2 covariance matrix σ
2
ρ,x(T − t) σ

2
ρ,x

(T−t)2

2T

σ
2
ρ,x

(T−t)2

2T σ
2
ρ,x

(T−t)3

3T 2


where

µx = lnX t +

(
r−

σ
2
ρ,x

2

)
(T − t)+λt,T ,

µG =
t
T

lnG[0,t]+
1
T

(
lnX t(T − t)+

(
r−

σ
2
ρ,x

2

)
(T − t)2

2
+
∫ T

t
λt,qdq

)
,

σ
2
ρ,x(T − t) = (1−ρ

2)
∫ T

t
f 2
(p,y,z)d p

and

λt,T = ρ

∫ T

t
f (p,y,z)dW y

p −
ρ2

2

∫ T

t
f 2
(p,y,z)d p

Similarly, the joint distribution of random vector [lnXT+∆, lnG[0,T+∆]] given the path of

(W y
p)t≤p≤T , is a multivariate normal distribution having a 2-dimensional vector [µx,∆,µG,∆]

as the mean vector and a 2×2 covariance matrix σ
2
ρ,x,∆(T − t) σ

2
ρ,x,G,∆

(T−t)2

2T

σ
2
ρ,x,G,∆

(T−t)2

2T σ
2
ρ,G,∆

(T−t)3

3T 2


where

µx,∆ = lnXt +

(
r−

σ
2
ρ,x,∆

2

)
(T − t)+ r∆+λt,T ,



80

µG,∆ =
t
T

lnG[0,t]+
1
T

(
lnX t(T−t+∆)+

(
r−

σ
2
ρ,x,G,∆

2

)
(T − t)2

2
+
∫ T

t
λt,qdq+r∆(T−t+

∆

2

)
,

with

σ
2
ρ,x,∆(T − t) = σ

2
ρ,x(T − t)+σ

2
∆

σ
2
ρ,x,G,∆(T − t)2 = σ

2
ρ,x(T − t +∆)2 +ρ

2
σ

2
∆

2

and

σ
2
ρ,G,∆(T − t)3 = σ

2
ρ,x(T − t +∆)3 +ρ

2
σ

2
∆

3

The prices Cε and Cε,∆ involves β (t) which will be always finite for a finite t. Also,

under the assumption of bounded f (y,z) and using the expression of Black-Scholes price

for GAOs given in Section 1.4 of Chapter 1, it is easily obtained that

|Cε(t,x,y,z,G)−Cε,∆(t,x,y,z,G)| ≤ b1∆

for some constant b1 and some small ∆.

Lemma 3.2. Fix the point (t,s,y,z,u) where t < T , there exist constants ∆2 > 0,ε2 > 0

and b2 > 0 so that

|Ĉε(t,s,z,u)−Ĉε,∆(t,s,z,u)| ≤ b2∆

for all 0 < ε ≤ ε2 and 0 < ∆≤ ∆2.

Proof. This lemma gives that the difference in approximated price Cε and its corresponding

regularized price Cε,∆ is small. Proof of this lemma is straightforward and on the lines of

Lemma 2.2 of Chapter 2. From Eqs.(3.4.14), (3.4.31), (3.4.32) and (3.5.1), for the floating

and fixed strike GAOs call, the difference

Ĉε
f l, f ix(t,s,z,u)−Ĉε,∆

f l, f ix(t,s,z,u)

=

(
1+L f l, f ix

1
∂

∂u +L f l, f ix
2

∂ 2

∂u2 +L f l, f ix
3

∂ 3

∂u3

)
(C f l, f ix

0 −C f l, f ix,∆
0 ) (3.6.4)

where for i = 1,2,3 and j = 0,1, ...,5, L f l, f ix
i involves I j and V with their expressions

given in (3.4.33) and (3.4.19) respectively. V ε =
√

εV is bounded. Also for kt 6= 2, the

modification factor β (t), the Black-Scholes price for Asian options and its successive

derivatives w.r.t u are bounded in t < T , therefore the same holds for the modified Black-
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Scholes price of GAOs. So it is easily obtained that

|Ĉε(t,s,z,u)−Ĉε,∆(t,s,z,u)| ≤ b2∆

for some constant b2 and small ∆.

Lemma 3.3. Fix the point (t,s,y,z,u) where t < T , there exist constants ∆3 > 0,ε3 > 0

and b3 > 0 so that

|Cε,∆(t,s,y,z,u)−Ĉε,∆(t,s,z,u)| ≤ b3ε
1+c

2

for all 0 < ε ≤ ε3, any c < 1 and uniformly in ∆≤ ∆3

Proof. This lemma gives that the difference in regularized price Cε,∆ and the corresponding

regularized first order price approximation Ĉε,∆ is small. Its proof is on the lines of

Lemma B.3 of Fougue et al. [38], which has been proved for the European options. All the

assumptions given in Subsection 2.1 of Fougue et al. [38] clearly holds in case of GAO

where the volatility factors are considered to follow OU process.

Consider Cε,∆ =C∆
0 +
√

εC∆
1 + εC∆

2 + ε
√

εC∆
3 −Rε,∆, where Rε,∆ is the residual for the

regularized problem such that

L ε
a Rε,∆ = Kε,∆

with

Kε,∆ = L ε
a (C

∆
0 +
√

εC∆
1 + εC∆

2 + ε
√

εC∆
3 −Cε,∆)

= ε(L a
2 C∆

2 +L a
1 C∆

3 )+ ε
√

ε(L a
2 C∆

3 ) (3.6.5)

where

C∆
2 =−1

2
φ(y,z)D2C∆

0

C∆
3 =

µ√
2

ρψ1(y,z)D1D2C∆
0 −

1
2

φ(y,z)D2C∆
1

D1 =

(
∂

∂ s
− t

∂

∂u

)

D2 =

(
∂

∂ s
− t

∂

∂u

)2

−
(

∂

∂ s
− t

∂

∂u

)
and ψ1(y,z) is the solution of

L a
0 ψ(y,z) = f φ

′
−Ey[ f φ

′
]
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On substituting these values in (3.6.5) and solving for the floating and fixed strike GAOs,

we get

Kε,∆
f l = β f l

[
ε

(
∑

6
i=1 χ

f l
i,0(t,T,y,z)

∂ i

∂ui +(T − t)∑
6
i=1 χ

f l
i,1(t,T,y,z)

∂ i

∂ui

)
+ε
√

ε

(
∑

7
i=1 χ

f l
i,2(t,T,y,z)

∂ i

∂ui +(T − t)∑
7
i=1 χ

f l
i,3(t,T,y,z)

∂ i

∂ui

)]
B∆

0 (3.6.6)

and

Kε,∆
f ix = β f ix

[
ε

(
∑

6
i=1 χ

f ix
i,0 (t,T,y,z)

∂ i

∂ui +(T − t)∑
2
i=1 χ

f ix
i,1 (t,T,y,z)

∂ i

∂ui

+(T − t)2
∑

5
i=1 χ

f ix
i,2 (t,T,y,z)

∂ i

∂ui +(T − t)3
∑

6
i=1 χ

f ix
i,3 (t,T,y,z)

∂ i

∂ui

)
+ε
√

ε

(
∑

4
i=1 χ

f l
i,4(t,T,y,z)

∂ i

∂ui +(T − t)∑
5
i=1 χ

f l
i,5(t,T,y,z)

∂ i

∂ui

+(T − t)2
∑

5
i=1 χ

f l
i,6(t,T,y,z)

∂ i

∂ui +(T − t)3
∑

6
i=1 χ

f l
i,7(t,T,y,z)

∂ i

∂ui

+(T − t)4
∑

7
i=1 χ

f l
i,8(t,T,y,z)

∂ i

∂ui +(T − t)5
∑

7
i=1 χ

f l
i,9(t,T,y,z)

∂ i

∂ui

)]
B∆

0 (3.6.7)

Also at maturity,

Rε,∆(T ) = εC∆
2 (T,s,y,z,u)+ ε

√
εC∆

3 (T,s,y,z,u)

= Qε,∆(s,y,z,u) (say)

On considering the value of C∆
2 and C∆

3 for both floating and fixed strike GAO at

maturity, it is easily obtained that

Qε,∆
f l, f ix(s,y,z,u) = β

f l, f ix
[

ε

2

∑
i=1

q f l, f ix
i,0 (T,y,z)

∂ i

∂ui + ε
√

ε

3

∑
i=1

q f l, f ix
i,1 (T,y,z)

∂ i

∂ui

]
B∆

0

Clearly for fixed strike options this value is zero. Using this terminal condition, residual

Rε,∆ has the probabilistic representation

Rε,∆ = E∗t,s,y,z,u

[
e−r(T−t)Qε,∆−

∫ T

t
e−r(τ−t)Kε,∆dτ

]
Using Lemma B.4 of [38], for both fixed and floating strike options at a fixed t < T ,∣∣∣∣E∗t,s,y,z,u[Qε,∆(ST ,YT ,ZT ,UT )]

∣∣∣∣≤ b3ε
1+c

2
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and ∣∣∣∣E∗t,s,y,z,u[∫ T

t
e−r(τ−t)Kε,∆(s,y,z,u)dτ

]∣∣∣∣≤ c3ε
1+c

2

therefore,

|Cε,∆(t,s,y,z,u)−Ĉε,∆(t,s,z,u)|= |εC∆
2 + ε

√
εC∆

3 −Rε,∆|

where C∆
2 and C∆

3 are bounded for t < T giving

|Cε,∆(t,s,y,z,u)−Ĉε,∆(t,s,z,u)| ≤ b3ε
1+c

2

for some b3 and c < 1.

Using Lemmas 3.1, 3.2 and 3.3, the proof of Theorem 3.2 is straightforward.

Consider a fixed point (t,s,y,z,u). Taking ε = min (ε1,ε2,ε3) and ∆= min (∆1,∆2,∆3).

|Cε −Ĉε | ≤ |Cε −Cε,∆|+ |Cε,∆−Ĉε,∆|+ |Ĉε,∆−Ĉε |

≤ b1∆+b2∆+b3(ε
1+c

2 )

≤ 2max(b1,b2)∆+b3(ε
1+c

2 )

Let b4 = max(b1,b2) and on taking ∆ = ε, we get

|Cε −Ĉε | ≤ 2b4ε +b3(ε
1+c

2 )

≤ b(ε
1+c

2 ) (3.6.8)

This completes the required proof.

3.7 Estimation of Model Parameter

After establishing the accuracy of the approximated pricing formula of GAOs, we

intend to estimate V (given in Eq.(3.4.19)), the only parameter required for the

implementation of the approximate formulae. The fixed strike put options and

floating strike call options have the positive vegas. Therefore, the volatility smiles

can be captured for these options unlike the fixed strike call and floating strike put

options which may have the negative vegas. The European and Asian smiles are

captured together on the lines of the method given in Wong and Cheung [120].

The European smiles with the model under consideration have already been

obtained in Chapter 2.
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Firstly, the case of floating strike call options is considered. Assume the asymptotic

expansion for the market implied volatility (I) of the floating strike options. that is,

I f l = I f l
0 +
√

εI f l
1 + εI f l

2 + ...

The implied volatility I f l is obtained by matching the modified Black-Scholes price

for Asian options with the price Cε
f l of GAO. This gives

Cε
f l(t,s,z,u,σ(z)) =C f l

0 (t,s,z,u,σ = I f l)

Consider the Taylor expansion of the modified Black-Scholes price C f l
0 about I f l

0

and the asymptotic expansion of Cε
f l given in Eq.(3.4.1) to get

C f l
0 (σ(z))+

√
εC f l

1 (σ(z))+ ...=C f l
0 (I f l

0 )+
∂C f l

0 (I f l
0 )

∂σ

√
εI f l

1 + ...

Matching the terms of order zero and ε on both side to get

I f l
0 = σ(z)

and

I f l
1 =

(
∂C f l

0 (I f l
0 )

∂σ

)−1

C f l
1 (σ(z))

The first order approximated value of implied volatility is

I f l ≈ I f l
0 +
√

εI f l
1

For I f l
1 , consider the expression of C f l

1 from Eq.(3.4.31) and on rearranging the

terms

I f l ≈ σ(z)+
√

ε

[(
∂C f l

0 (σ(z))
∂σ

)−1(
p f l

(rσ(z))(I1
∂

∂u−2I2
∂2

∂u2 +I3
∂3

∂u3 )C
f l
0

1
(T−t) [

1
k log | kT−2

kt−2 |+
T−t

(kT−2)(kt−2) ]
+q f l

)]
which gives

(I f l−σ(z))
(

∂C f l
0 (σ(z))
∂σ

)
≈ pε

f l

(
(rσ(z))(I1

∂

∂u−2I2
∂2

∂u2 +I3
∂3

∂u3 )C
f l
0

1
(T−t) [

1
k log 2−kT

2−kt +
T−t

(2−kT )(2−kt) ]

)
+qε

f l
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where pε
f l =
√

ε p f l and qε
f l =
√

εq f l. The expressions of ∂C f l
0

∂u ,
∂ 2C f l

0
∂u2 ,

∂ 3C f l
0

∂u3 and ∂C f l
0

∂σ

are given as
∂C f l

0
∂u

=−β
f l(t)

es+ u
T−Q

T
N(d2)

∂ 2C f l
0

∂u2 =
β f l(t)

T

[
∂C f l

0
∂u

+
es+ u

T−Qφ(d2)

σ

√
T 3−t3

3

]

∂ 3C f l
0

∂u3 =
β f l(t)

T

[
∂ 2C f l

0
∂u2 + es+ u

T−Q
(

φ(d2)

σT
√

T 3−t3

3

+
d2φ(d2)

σ
2 T 3−t3

3

)]

and
∂C f l

0
∂σ

= β
f l(t)es+ u

T−Q
[

1
T

√
T 3− t3

3
φ(d2)+

σ(T − t)2(T +2t)N(d2)

6T 2

]
where, N(.) and φ(.) are respectively the cumulative distribution function and the

probability density function for the standard normal variate.

pε
f l and qε

f l are estimated using the simple linear regression and the value of V

is obtained from

V =
p f l(2rσ)

2
(T−t) [

1
k log 2−kT

2−kt +
T−t

(2−kT )(2−kt) ]
(3.7.1)

Similarly, for the fixed strike put options

(I f ix−σ(z))
(

∂P f ix
0 (σ(z))

∂σ

)
≈ pε

f ix

(
(rσ(z))(I4

∂2

∂u2−I5
∂3

∂u3 )P
f ix

0
1

(T−t) [
1
k log 2−kT

2−kt +
T−t

(2−kT )(2−kt) ]

)
+qε

f ix

where pε
f ix =

√
ε p f ix and qε

f ix =
√

εq f ix. The expressions of ∂ 2P f ix
0

∂u2 ,
∂ 3P f ix

0
∂u3 and ∂P f ix

0
∂σ

are given as:
∂P f ix

0
∂u

=−β
f ix(t)

es+ u
T−Q

T
N(−d̂1)

∂ 2P f ix
0

∂u2 =
β f ix(t)

T

[
∂P f ix

0
∂u

+
es+ u

T−Qφ(d̂1)

σ

√
(T−t)3

3

]

∂ 3P f ix
0

∂u3 =
β f ix(t)

T

[
∂ 2P f ix

0
∂u2 + es+ u

T−Q
(

φ(d̂1)

σT
√

(T−t)3

3

− d̂1φ(d̂1)

σ
2 (T−t)3

3

)]

and

∂P f ix
0

∂σ
= β

f ix(t)es+ u
T−Q

[
1
T

√
(T − t)3

3
φ(d̂1)+

σ(T − t)2(T +2t)N(−d̂1)

6T 2

]
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where N(.) and φ(.) are respectively the cumulative distribution function and the

probability density function for the standard normal variate.

pε
f ix and qε

f ix are estimated using the simple linear regression and the value of

V is obtained from

V =
p f ix(2rσ)

2
(T−t) [

1
k log 2−kT

2−kt +
T−t

(2−kT )(2−kt) ]
(3.7.2)

Numerical Illustration: The data of S&P 500 index GAOs with the floating strike

is considered for the period January 4,2016 to July 4,2016 with the initial stock

price X0 = 2013.99. The other parameters are k = 2,r = 0.0264,ε = 0.001,Z0 =

0.1834,m
′
= 0.20. σ(z) is estimated from the quadratic arc A t2 +Bt +C . T − t

ranges from 0.01 to 0.5. Firstly, V is calibrated from data. For this, consider

Eq.(3.7.1) which is written as

Y ≈ pε
f lX +qε

f l (3.7.3)

Using the simple linear regression with the least square approach, values of pε
f l

and qε
f l are estimated from Fig.3.1.

The estimated pε is 0.6367 and the corresponding V ε is calculated from (3.7.1)

which lies in the range −0.009 to −0.003 for different T − t values. With this

calibrated V , the approximated price of the floating strike GAO is obtained from

(3.5.1). The modification factor β f l is in the range 0.7 to 1.5 for the different values

of T − t. This approximated price is compared with the Black-Scholes price for the

floating strike GAOs with volatility 0.1834 against the moneyness G/x shown in

Fig.3.2.

The effect of modification factor β on the pricing of floating strike GAO is clearly

visible in Fig.3.2. For the data set under consideration, first order approximate

prices are improved than the Black-Scholes prices and the difference is more

prominent for moneyness G/x greater than 1.

The calculations get simplified with the quadratic arc approximation of the

persistent volatility factor. The formulae obtained are straight forward and easy to

implement. MATLAB2012b and Excel2013 are used for numerical computations.

The run time of this model is also very small and it takes a fraction of second to

obtain the results.
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Figure 3.1: Estimation of pε using the market data of S&P 500 index implied volatility
for the options with different maturities from January 04, 2016 to July 04, 2016.

Figure 3.2: The comparison of first-order approximated price of floating strike GAO with
the Black-Scholes price of floating strike GAO against the moneyness G/x.
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3.8 Conclusion

A first order approximated price expression for floating and fixed strike GAO is

obtained in a multifactor stochastic volatility framework where slow volatility factor

is approximated by a quadratic arc. The approximated price is perturbed around

the modified Black-Scholes price for the Asian options. The accuracy of the

approximated formulae is established and the model parameter V is calibrated

by collectively considering the Asian and the European volatility smiles. The first

order approximate price for the floating strike GAO is obtained and compared with

the corresponding Black-Scholes price using the S&P 500 index Asian options

data. The proposed model gives the improved results for the data set under

consideration in comparison to the Black-Scholes prices.

The quadratic arc expression of the slow volatility factor is quite important. So

in the next chapter this expression is used as a constraint for the maximization of

a two-parameter entropy to calibrate the risk-neutral density function.



Chapter 4

Calibration of the Risk-Neutral Density

Function by Maximization of a

Two-Parameter Entropy

In this chapter1, a two-parameter entropy is maximized to calibrate the risk-neutral

density function of the future asset price using options data subject to

the expectation and the variance constraints. In the variance constraint, the

volatility is assumed to be mean-reverting and following a quadratic path

as proposed in Chapter 2. The desired power law distribution is verified for

the density function obtained, containing both the entropy parameters, giving

additional degrees of freedom. The calibrated density function is used to price

the European call options for different strikes. The results thus obtained are also

discussed for the one-parameter Rényi and Tsallis entropies.

1The work reported in this chapter has been published in a research article “Calibration of the Risk-
Neutral Density Function by Maximization of a Two-Parameter Entropy, Physica A, 513, 45-54
(2019)”.

89
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4.1 Introduction

Shannon [109], in his mathematical theory of communication, used entropy as a

measure of information which laid the foundation of the field of information theory.

Entropy has broad applications in the field of finance including asset pricing,

portfolio selection and time series analysis. Out of these, one of the important

aspects is to obtain the risk-neutral density function for the future asset price from

the limited information available, using the principle of maximum entropy (or the

maximum entropy principle (MEP)) given in Subsection 1.5.2 of Chapter 1.

Most of the literature on MEP consider the maximization of the Shannon entropy

which gives the lognormal distribution of the future asset price. As the asset price

distribution follows the power law [45,46,51], Brody et al. [16] extended the results

of Buchen and Kelly [17] and proposed to use Rényi entropy to calibrate the

risk-neutral price distribution. They maximized the one-parameter Rényi entropy

instead of the Shannon entropy using market data of options on FTSE 100 futures,

and obtained the power law distribution for the future asset price. They have

also shown that the maximization of the Rényi entropy and maximization of the

Havrda-Charvát entropy (or the Tsallis entropy), under the same constraints, is

equivalent. The actual distribution of the underlying stock is not lognormal but is

high peaked having fat tails, so the maximization of Rényi entropy seems relevant

to the real market scenario.

While the calibration of the risk-neutral probability density function from the

option prices, Brody et al. [16] considered only the mean constraint, neglecting the

effect of volatility on the price distribution. The correlation between the volatility

and stock price effects the distribution of the stock prices [64], so when the risk-

neutral density function of the future asset price is calibrated using the options

data, this correlation can not be neglected. To incorporate this effect of volatility

structure on the terminal distribution of the stock price a second order moment

constraint should be imposed on the system.

In the present chapter, we propose to consider the variance constraint along

with the mean constraint in maximising the two-parameter Varma entropy [117].

While calibrating the risk-neutral density function from the option prices,

the volatility would be considered to follow a quadratic path. Consideration of

the two independent parameters provides an additional degree of freedom in



91

the application, and the volatility constraint makes the system realistic as its

correlation with the stock price effects the terminal distribution of the stock price.

Thus, this problem becomes more general and realistic.

This chapter proceeds as follows: A two-parameter entropy has been maximized

to obtain the power law distribution of the future price of an asset in Section 4.2.

The calibration of the risk-neutral density function has been discussed in Section

4.3 using S&P 500 index and FTSE 100 index call option data. Using this density

function, the option prices at different strikes have been obtained and compared

with the market data of S&P 500 index and FTSE 100 index in Section 4.4. The

discussion on the results and contribution to the literature has also been given in

this section. The conclusion has been presented in Section 4.5.

4.2 Two-Parameter Entropy Maximization

The two-parameter Varma entropy associated with the underlying asset price,

already given in Section 1.5.1 of Chapter 1 is

Hα,β =
1

β −α
log
∫

∞

0
pα+β−1(x)dx (4.2.1)

with β ≥ 1, β−1<α < β and α+β 6= 2. Clearly α+β > 1. For β = 1, Rényi entropy

of order α is obtained. The problem of interest is to find the unknown density

function p(x) that maximizes the expression (4.2.1) under the normalization

constraint: ∫
∞

0
p(x)dx = 1 (4.2.2)

and some additional constraints of the type

∫
∞

0
G(x)p(x)dx = M (4.2.3)

where M is the expectation of any continuous function G(x) of random variable X .

The expression of G(x) in Eq.(4.2.3) will be taken as x,x2 and (x−K j)
+, j = 1,2, ...,n

to specify (n+2) constraints in the next section. Thus, Eqs.(4.2.2) and (4.2.3) taken

together will comprise total (n+3) constraints.
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The Lagrange method is used to solve this problem such that

∂

∂ p

[
1

β −α
log
∫

∞

0
pα+β−1(x)dx−λ

(∫
∞

0
p(x)dx−1

)
− γ

(∫
∞

0
G(x)p(x)dx−M

)]
= 0

(4.2.4)

where λ and γ are the Lagrange multipliers. Eq.(4.2.4) on simplification gives

α +β −1
β −α

pα+β−2(x)∫
∞

0 pα+β−1(x)dx
−λ − γG(x) = 0 (4.2.5)

Given only two constraints, the value of Lagrange multipliers can be obtained

analytically. Like for λ , on multiplying both sides of Eq.(4.2.5) by p(x), integrating

from 0 to ∞ and using Eqs.(4.2.2) and (4.2.3), we get

λ =
α +β −1

β −α
− γM (4.2.6)

When a large number of constraints are given as in the next section, the

numerical methods are preferred over the analytical approach to obtain the value

of the Lagrange multipliers from the constraint equations. The expression of p(x)

obtained from Eq.(4.2.5) is

p(x) =
1
H

[
λ + γG(x)

] 1
α+β−2

(4.2.7)

This is the resulting maximum entropy distribution, where

1
H

=

(
β −α

α +β −1

∫
∞

0
pα+β−1(x)dx

) 1
α+β−2

(4.2.8)

As the procedure of entropy maximization is explained, the calibration of the

risk-neutral density function using option prices is discussed in the next section.

4.3 Calibration of the Risk-Neutral Density Function

We assume the market to be complete. The unknown risk-neutral density function

p(x) for the underlying asset price is calibrated by maximizing the Varma entropy

given in Eq.(4.2.1) subject to the normalization constraint (4.2.2), the first order
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moment (or the mean) constraint

∫
∞

0
xp(x)dx = S0erT , (4.3.1)

that is, the risk-neutral expectation of the price of the underlying asset at maturity

time t = T is the time value of the initial asset price S0 with the risk free constant

rate of interest r. The second order moment constraint

∫
∞

0
x2 p(x)dx = σ

2
T +(S0erT )2, (4.3.2)

here, the volatility is considered to follow the mean-reverting quadratic path as

proposed in Chapter 2, such that its value at the terminal time T is

σT = AT 2 +BT +C (4.3.3)

where the expressions of A, B and C, as obtained in Chapter 2, are given by

A =
(σ0−m)k2

2
, B =−(σ0−m)k, C = σ0 (4.3.4)

here σ0 is the initial value of volatility σt , m is the long-run mean and k is the

rate of mean-reversion of the volatility. In addition to these three constraints, the

constraints compatible with the multiple call prices C j where j = 1,2, ...,n, are given

by ∫
∞

0
(x−K j)

+p(x)dx =C jerT (4.3.5)

here {K j}n
j=1 are the strike prices which are assumed to satisfy 0 < K1 < K2 < ... <

Kn.

As in the previous section, the Lagrange method is used here for solving this

problem. The respective Lagrangian is

L =
1

β −α
log
∫

∞

0
pα+β−1(x)dx−λ

(∫
∞

0
p(x)dx−1

)
− γ0

(∫
∞

0
xp(x)dx−S0erT

)
−γ1

(∫
∞

0
x2 p(x)dx−VT

)
−

n

∑
j=1

ξ j

(∫
∞

0
(x−K j)

+p(x)dx−C jerT
)

(4.3.6)

where

VT = (AT 2 +BT +C)2 +(S0erT )2 (4.3.7)
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with A, B and C given by Eq.(4.3.4). λ , γ0, γ1 and ξ j, ( j = 1,2, ...,n), denote the

Lagrange multipliers relative to the constraints (4.2.2),(4.3.1),(4.3.2) and (4.3.5)

respectively. The Lagrangian L satisfies

∂

∂ p

[
1

β −α
log
∫

∞

0
pα+β−1(x)dx−λ

(∫
∞

0
p(x)dx−1

)
− γ0

(∫
∞

0
xp(x)dx−S0erT

)
−γ1

(∫
∞

0
x2 p(x)dx−VT

)
−

n

∑
j=1

ξ j

(∫
∞

0
(x−K j)

+p(x)dx−C jerT
)]

= 0

which on simplification gives

α +β −1
β −α

pα+β−2(x)∫
∞

0 pα+β−1(x)dx
−λ − γ0x− γ1x2−

n

∑
j=1

ξ j(x−K j)
+ = 0

this implies,

p(x) =
(

β −α

α +β −1

∫
∞

0
pα+β−1(x)dx

[
λ + γ0x+ γ1x2 +

n

∑
j=1

ξ j(x−K j)
+

]) 1
α+β−2

On taking H =

(
β−α

α+β−1
∫

∞

0 pα+β−1(x)dx
) 1

2−α−β

as the normalization factor,

p(x) =
1
H

[
λ + γ0x+ γ1x2 +

n

∑
j=1

ξ j(x−K j)
+

] 1
α+β−2

which can be further written as

p(x) =
[

λ + γ0x+ γ1x2 +
n

∑
j=1

ξ j(x−K j)
+

] 1
α+β−2

(4.3.8)

where λ = λ

Hα+β−2 , γ0 =
γ0

Hα+β−2 , γ1 =
γ1

Hα+β−2 and ξ j =
ξ j

Hα+β−2 for j = 1,2, ...,n.

This is the required power law expression for the density function (risk-neutral)

of the future asset price. The new set of variables (will be called the normalized

Lagrange multipliers) λ , γ0, γ1 and ξ j, ( j = 1,2, ...,n), are obtained by solving the

constraints (4.2.2),(4.3.1),(4.3.2) and (4.3.5) numerically.

The inclusion of the second order moment constraint has made the system

complex. Before applying the numerical procedures, the constraint equations are

further simplified. For this, putting the value of p(x) from Eq.(4.3.8) in Eq.(4.2.2)
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to get ∫
∞

0

[
λ + γ0x+ γ1x2 +

n

∑
j=1

ξ j(x−K j)
+

] 1
α+β−2

dx = 1 (4.3.9)

For 0 < K1 < K2 < ... < Kn, The integral (4.3.9) splits in n+1 integrals as

∫ K1

0

(
λ + γ0x+ γ1x2

) 1
α+β−2

dx+
∫ K2

K1

(
λ + γ0x+ γ1x2 +ξ1(x−K1)

) 1
α+β−2

dx

+
∫ K3

K2

(
λ + γ0x+ γ1x2 +ξ1(x−K1)+ξ2(x−K2)

) 1
α+β−2

dx

+ . . .+
∫

∞

Kn

(
λ + γ0x+ γ1x2 +

n

∑
j=1

ξ j(x−K j)

) 1
α+β−2

dx = 1

which on further simplification gives

∫ K1

0

(
λ + γ0x+ γ1x2

) 1
α+β−2

dx+
∫ K2

K1

(
(λ −ξ1K1)+(γ0 +ξ1)x+ γ1x2

) 1
α+β−2

dx

+
∫ K3

K2

(
(λ −

2

∑
j=1

ξ jK j)+(γ0 +
2

∑
j=1

ξ j)x+ γ1x2
) 1

α+β−2
dx

+ . . .+
∫

∞

Kn

(
(λ −

n

∑
j=1

ξ jK j)+(γ0 +
n

∑
j=1

ξ j)x+ γ1x2
) 1

α+β−2
dx = 1

Without loss of generality, taking K0 = 0, Kn+1 = ∞ and ξ0 = 0, the above equation

is written as

n

∑
i=0

∫ Ki+1

Ki

[
(λ −

i

∑
j=0

ξ jK j)+(γ0 +
i

∑
j=0

ξ j)x+ γ1x2
] 1

α+β−2
dx = 1

This expression is of the form

n

∑
i=0

∫ Ki+1

Ki

(
ax2 +bix+ ci

) 1
α+β−2

dx = 1 (4.3.10)

where a = γ1, bi = γ0 +∑
i
j=0 ξ j and ci = λ −∑

i
j=0 ξ jK j for i = 0,1, ...,n.

Similarly, substituting the value of p(x) from Eq.(4.3.8) in Eqs.(4.3.1),(4.3.2) and

(4.3.5), we get
n

∑
i=0

∫ Ki+1

Ki

x
(

ax2 +bix+ ci

) 1
α+β−2

dx = S0erT , (4.3.11)

n

∑
i=0

∫ Ki+1

Ki

x2
(

ax2 +bix+ ci

) 1
α+β−2

dx =VT (4.3.12)
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and
n

∑
i=l

∫ Ki+1

Ki

(x−Kl)

(
ax2 +bix+ ci

) 1
α+β−2

dx =ClerT (4.3.13)

where l = 1,2, ...,n.

So the Eqs.(4.3.10),(4.3.11),(4.3.12) and (4.3.13) represent the simplified

constraint equations. These constraints are solved for 1 < α + β < 2 by taking
1

α+β−2 =−q, where q(≥ 2) is assumed to be a positive integer. This gives α +β =

2q−1
q .

The Newton Raphson method is applied to find the value of the normalized

Lagrange multipliers using MAT LAB2012b. The run time is very small of the order

of 10−1s. The density function is calibrated using S&P 500 and FTSE 100 index

options data for the options starting from January 4,2016 with time to maturity 177

and 91 days. The initial price of the underlying asset of S&P 500 index is 2013.99

and of FTSE 100 index is 6093.43.
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10-3 Calibrated risk neutral probability density function for the different values of q (SPX 6m)
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Figure 4.1: Calibrated risk-neutral density function p(K) for the different values of q,
starting from q = 2, using the S&P 500 index options data from January 4,2016 with
maturity 177 days.

The risk-neutral density function is plotted for the different values of q for both

the indices at two different maturities. It is observed that with an increase in the

value of q, the graph has a very small vertical displacement for both the data sets.

This is given in Fig.4.1 and Fig.4.2 for S&P 500 index at two different maturities.

Also, for FTSE 100 index, see Fig.4.3 and Fig.4.4 at two different maturities.
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Figure 4.2: Calibrated risk-neutral density function p(K) for the different values of q,
starting from q = 2, using the S&P 500 index options data from January 4,2016 with
maturity 91 days.
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Figure 4.3: Calibrated risk-neutral density function p(K) for the different values of q,
starting from q = 2, using the FTSE 100 index options data from January 4,2016 with
maturity 177 days.

The range of α + β is governed by the nature and the number of constraints

used i.e. by the expression of G(x) used to impose the constraints. So it will be

changed by the inclusion or exclusion of the new constraints. With the mean and

the variance constraints and with the S&P 500 index options data for two different

maturities, the calibrated risk-neutral probability density function is given in
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Figure 4.4: Calibrated risk-neutral density function p(K) for the different values of q,
starting from q = 2, using the FTSE 100 index options data from January 4,2016 with
maturity 91 days.

Fig.4.1 and Fig.4.2. Similarly, with the mean and the variance constraints and

with the FTSE 100 index options data for two different maturities, the calibrated

risk-neutral density function is given in Fig.4.3 and Fig.4.4. It is observed in both

the data sets that the desired power law distribution is obtained for the small

values of q for both the maturities. Particularly, for q ranging from 2 to 4 for S&P

500 index data set and q ranging from 2 to 3 for FTSE 100 index.

On considering α +β = 2q−1
q , the expression of p(x) in Eq.(4.3.8) becomes

p(x) =
[

λ + γ0x+ γ1x2 +
n

∑
j=1

ξ j(x−K j)
+

]−q

(4.3.14)

with the power (exponent) of the tail distribution 2q.

For S&P 500 index with q = 2 to 4, the power of x varies from 4 to 8 and α +β

varies from 1.5 to 1.75. Here, α and β satisfy β ≥ 1 and β −1 < α < β . For β = 1,

the Varma entropy reduces to the Rényi entropy giving 0.5≤ α ≤ 0.75. Unlike the

Varma entropy, the Rényi entropy is monotonically decreasing, so it is maximized

for α = 0.5 with exponent of the power law distribution equal to 4 for q = 2.

For β > 1, α takes possible values in the range β −1 < α < β . For example, if

α +β = 1.5, with β = 1.1 then α = 0.4 (a unique value) in the range 0.1 < α < 1.1

so that their sum remains 1.5, and with β = 1.2, α becomes 0.3 which is well
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within the range 0.2 < α < 1.2 so that their sum remains 1.5 and so on. Thus for a

particular value of α +β , infinite pairs (α,β ) are obtained in accordance with the

desired power law distribution.

For the FTSE 100 index, the range of α + β is 1.5 ≤ α + β ≤ 1.66 with the

exponent of the tail distribution ranging from 4 to 6. For β = 1, the Varma entropy

reduces to the Rényi entropy giving 0.5≤ α ≤ 0.66 which is maximized for α = 0.5

with exponent of the power law distribution equal to 4 for q = 2.

The pricing of the European call options using the density function thus obtained

is discussed in next section.

4.4 Option Price Calibration

The price of the European call option with strike price K and maturity time T is

given as

C(K) =

[∫
∞

0
(x−K)+p(x)dx

]
e−rT

Using the expression of p(x) given in Eq.(4.3.8), it becomes

C(K) =

[∫
∞

K
(x−K)

(
λ + γ0x+ γ1x2 +

n

∑
j=1

ξ j(x−K j)
+

) 1
α+β−2

dx
]

e−rT (4.4.1)

The strike price K can lie in any of the range Kl−1 ≤ K < Kl, l = 1,2, ...,n+1 where

K0 < K1 < K2 < ... < Kn < Kn+1, K0 = 0 and Kn+1 = ∞. For l = 1,2, ...,n, the integral

on the right side of Eq.(4.4.1) is simplified to give

C(K) =

[∫ Kl

K
(x−K)

(
ax2 +bl−1x+ cl−1

) 1
α+β−2

dx+

n

∑
i=l

∫ Ki+1

Ki

(x−K)

(
ax2 +bix+ ci

) 1
α+β−2

dx
]

e−rT , (4.4.2)

and for l = n+1, it simply gives

C(K) =

[∫
∞

K
(x−K)

(
ax2 +bnx+ cn

) 1
α+β−2

dx
]

e−rT

If K = Kl for some l = 1,2, ...,n, then C(Kl) =Cl which is given by Eq.(4.3.13).
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Figure 4.5: Calibrated option prices C(K) at the different values of q, starting from q = 2,
for the S&P 500 index options from January 4,2016 with maturity 177 days.

The option prices are calibrated for S&P 500 index and FTSE 100 index with

maturity 177 days and 91 days. For the S&P 500 index option data with maturity

177 days, Fig.4.5 is obtained. The corresponding market values (MV) of option

with different strikes are given by the dotted line. For S&P 500 index with maturity

177 days, q = 2 fits better for in-the-money (ITM) and at-the-money (ATM) options

whereas for out-the-money (OTM) options q = 3 gives the better fit. It is to be

noted here that as the Rényi entropy is a particular case of the Varma entropy

with q = 2 only, so it does not give the good fit for OTM options. Hence, the fit is

much improved for the Varma entropy, obtained collaboratively with q = 2 and 3.

Similarly, for the input data of options with maturity 91 days, Fig.4.6 is obtained.

Here also, the best fit is obtained for Varma entropy collaboratively with q = 2 and

3, showing an improvement over the one-parameter Rényi entropy.

Also, for FTSE 100 index options, as shown by Fig.4.7 and Fig.4.8, the best

fit is given collaboratively with q = 2 and 3. This also supports the fact that the

consideration of Varma entropy gives improved results over the one-parameter

Rényi entropy.
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Figure 4.6: Calibrated option prices C(K) at the different values of q, starting from q = 2,
for the S&P 500 index options from January 4,2016 with maturity 91 days.
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Figure 4.7: Calibrated option prices C(K) at the different values of q, starting from q = 2,
for the FTSE 100 index options from January 4,2016 with maturity 177 days.
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Figure 4.8: Calibrated option prices C(K) at the different values of q, starting from q = 2,
for the FTSE 100 index options from January 4,2016 with maturity 177 days.

In the literature, much discussion is for the maximization of the Shannon entropy

under certain constraints which gives the lognormal distribution of the future asset

price. Brody et al. [16] extended this to the maximization of the one-parameter

Rényi entropy under the first order moment constraint which gives the more

realistic power law distribution for a single value of the entropy parameter α.

Here our contribution is two fold. One by maximization of the two-parameter

Varma entropy and another by the introduction of the volatility constraint following

a particular path. The benefit of the two-parameter formulation is the additional

degrees of freedom and the better fit to market data than the single parametric

formulation which in turn was better than the Shannon entropy framework.

Also, Brody et al. [16] has already established that under the same constraints,

the maximization of the Tsallis entropy is equivalent to the maximization of the

Rényi entropy. The maximization of the Rényi entropy with the additional volatility

constraint is the particular case of the Varma entropy maximization with β = 1.

Therefore, It can be inferred that the maximisation of the Tsallis entropy with

additional volatility constraint is equivalent to the maximization of Varma entropy

for β = 1.



103

4.5 Conclusion

The two-parameter Varma entropy is maximized with an additional volatility

constraint. In this constraint, variance follows a mean-reverting quadratic path

and its value is considered at the terminal time T . The entropy maximization

gives the power law distribution of the future asset prices. The maximum entropy

density function is calibrated against the options data of S&P 500 index and FTSE

100 index for maturity 177 days and 91 days. It is observed that, for S&P 500

index data set, the exponent of the power law lies in the range 4 to 8 and for

FTSE 100 index it lies in range 4 to 6. For S&P 500 index data set, α + β lies

in the range 1.5 to 1.75 and in the range 1.5 to 1.66 for FTSE 100 index. The

results are also discussed for the Rényi entropy case giving an exponent of the

tail distribution equal to 4, and α = 0.5 for both the indices. For the data sets under

consideration, Varma entropy gives the better fit to market option prices than the

Rényi entropy, obtained collaboratively with q = 2 and 3. Though we understand

that practitioners will be at convenience to use a single density function for the

purpose of calibration of option prices, we observe that the fractional values of

q will add complexity and hence not being recommended here. Further we are

of the opinion, as exhibited by the computation and the graphs, considering two

values of q to calibrate the option price is providing a better anatomy of the market

for the data sets under consideration.

The improvement in the calibration results and the additional degrees of freedom

provided by Varma entropy, also motivated us to apply this two-parameter entropy

for the analysis of asset log-return series, because the entropy based measures

are used in literature to quantify the complexity of a time series. So the financial

time series analysis aspect is explored in the next chapter using the Varma entropy

to introduce a two-parameter permutation entropy and its further extensions which

include weights and multiscales.





Chapter 5

Analysis of the Financial Log-Return

Time Series using Two-Parameter

Permutation Entropy

In this chapter1, a two-parameter permutation entropy is proposed. This entropy is

extended to obtain a two-parameter multiscale permutation entropy by introducing

a new coarse graining method of averaging the data points. Further, a two-

parameter weighted multiscale permutation entropy is also introduced which

captures the complexity of a financial time series on the multiple time scales, with

the additional amplitude information captured by including weights. For calculating

the weights of the neighbouring vectors, a new weighting scheme is proposed.

An empirical analysis is conducted on S&P 500 index data by comparing these

entropies at different values of embedding dimensions, scales and entropy

parameters. The effect of change in entropy parameters on the entropy values

is also discussed.

1The work reported in this chapter is communicated under the titles “Two-Parameter Multiscale
Permutation Entropy of a Financial Time Series” and “Analysis of Financial Time Series Using
a Two-Parameter Weighted Multiscale Permutation Entropy”. Some of this work is presented in
‘International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM)-2018’ held
at Delhi Technological University, Delhi from October 23−25,2018.
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5.1 Introduction

One of the interesting ways to analyse the complexity of any financial time series

is by using the concept of entropy. As already mentioned in Subsection 1.5.1 of

Chapter 1, to capture the multiple time scales inherent in healthy physiological

dynamics, Costa et al. [24] introduced the concept of multiscale entropy using the

coarse graining procedure given in Eq.(1.5.8). Yin and Shang [125] extended this

concept to introduce a multiscale permutation entropy (MPE) by calculating the

permutation entropy (PE) instead of sample entropy (SampEn) in the multiscale

entropy procedure. They also proposed the modification of MPE as the weighted

multiscale permutation entropy (WMPE) using the weighted permutation entropy

of Fadlallah et al. [32] given in Eq.(1.5.11), which captures the amplitude

information of a non-linear time series using a weighting scheme based on the

variance of each neighbouring vector.

The MPE and WMPE procedures involve the calculation of Shannon entropy.

Chen et al. [19] proposed the multiscale Rényi permutation entropy (MRPE)

and weighted multiscale Rényi permutation entropy (WMRPE) using Rényi

permutation entropy (RPE), which is a natural extension of PE to a one-parameter

PE.

We have already used Varma entropy [117] in the previous chapter for the

calibration of the risk-neutral probability density function, generalizing the results

given by Buchen and Kelly [17] and Brody et al. [16] on Shannon and Rényi

entropies respectively. In the present chapter, we have proposed a two parametric

generalisation of PE by calculating the Varma entropy in place of Shannon entropy

in the PE procedure given in Eq.(1.5.6) and have named it as two-parameter

permutation entropy (PEα,β ).

For the inclusion of multiscales in PEα,β , we have proposed a new averaging

scheme as a modification of the conventional coarse graining procedure of Costa

et al. [24] by taking the last data point of the present window in the next window

while averaging. This gives the two-parameter multiscale permutation entropy

(MPEα,β ) on overlapping scales.

To capture the amplitude information, the weights are included in MPEα,β

procedure. By using the weighting scheme of Fadlallah et al. [32] given

in Eq.(1.5.11), MPEα,β gives a two-parameter weighted multiscale permutation
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entropy (WMPEv
α,β ).

Along with this, a new weighting scheme is also proposed. For this, the overall

change in value from initial to final component of a neighbouring vector is proposed

as a weight of this vector. The resultant entropy using this new weighting scheme

is named as a two-parameter new weighted multiscale permutation entropy

(WMPEw
α,β ).

An empirical analysis is conduced using the closing prices of S&P 500 index

data. The two weighting schemes are compared in two-parameter permutation

entropy framework. The new weighting scheme proposed in this chapter,

successfully captures the amplitude information inherent in the financial log-return

series. It is simple, robust, computationally fast and has less standard deviation

than weighting scheme of Fadlallah et al. [32] of taking variance as weight. To

show the advantage of taking overlapping average over non-overlapping average,

the MPEα,β , WMPEv
α,β and WMPEw

α,β are calculated and compared on both

overlapping and non-overlapping scales.

The effect of change of parameters α and β on the entropy values is also

discussed. The MPE and WMPE methods of Yin and Shang [125] and MRPE and

WMRPE methods of Chen et al. [19] become the particular cases of WMPEv
α,β

over the non-overlapping scales. Consideration of two-parameter entropy gives

additional degrees of freedom to quantify the complexity of any non-linear time

series.

The rest of the chapter is organized as follows: In Section 5.2, the end point

overlapping average scheme has been introduced. Two-parameter permutation

entropy and its extensions to include multiscales and weights have been proposed

in Section 5.3. The new weighting scheme has also been introduced in this

section. Section 5.4 includes the empirical analysis and discussion of the results.

Finally, the conclusion has been given in Section 5.5.

5.2 The End Point Overlapping Average

The coarse graining procedure of Costa et al. [24], given in Eq.(1.5.8), considers

the average over disjoint windows to obtain a new time series. For a financial

log-return series {xi}N
i=1 of length N, which is obtained from the daily closing price

of an asset, such an average is represented in Fig.5.1 for scale 2 and 3.
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 Figure 5.1: Non-overlapping average with scale 2 and 3.

For scale s = 2, the first data point of the new series (y2
1 =

x1+x2
2 ) accommodates

the information about log-returns of the asset from day 1 to day 2. The next data

point accommodates the information of asset log-returns from day 3 to day 4. No

information is captured for the log-returns from day 2 to day 3. This results in

the discontinuity and loss of information in the new data set thus generated. The

same situation arises for the other values of scale factor s.

Thus, to maintain a continuity in the data set and to capture the information

between the terminal points while switching from present window to the next

window, a new averaging scheme is proposed. The new method involves the

average over overlapping windows of length s (scale factor), with last data point

of the present window to be considered in the next window while averaging. This

averaging scheme is named as the end point overlapping (EPO) scheme. The

procedure is explained as below:

Consider a one dimensional discrete time series {xi}N
i=1 from which a time

series {zs
j, j = 1,2, ..., [N−1

s−1 ]} is constructed by averaging the data points over the

overlapping windows (with only end point overlapping) of length s≥ 2 given by

zs
j =

1
s

j(s−1)+1

∑
i=(( j−1)(s−1))+1

xi (5.2.1)

where 1≤ j ≤
[

N−1
s−1

]
with [.] as the greatest integer function.
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Figure 5.2: EPO average with scale 2 and 3.

For s = 1, there will be no end point overlapping average. So, s = 1 case is taken

here as the original time series. This scheme is also shown in Fig.5.2 for scale 2

and 3.

The EPO scheme captures the information between the last day of a particular

window to the first day of its next window which is not captured by considering

non-overlapping scales.

Moreover, the average over the disjoint windows of length s reduces the length of

the series to
[

N
s

]
. To get the reliable results in permutation entropy procedure, the

length of the series should be significantly larger than the embedding dimension

(m) (refer to Yin and Shang [125]). So, when the permutation entropy is calculated

for a short time series it may lead to the unappropriate results at large value

of embedding dimension. With the EPO scheme, the length of the new series

obtained after averaging is
[

N−1
s−1

]
which is larger than

[
N
s

]
.

5.3 Two Parametric Entropy Methods

In this section, we have proposed the two-parameter permutation entropy. This

entropy is further extended to a two-parameter multiscale permutation entropy

and a two-parameter weighted multiscale permutation entropy.
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5.3.1 Two-Parameter Permutation Entropy

In Subsection 1.5.1 of Chapter 1, permutation entropy (PE) procedure is explained.

We here propose the two-parameter permutation entropy (PEα,β ) which is the

refinement of PE, by calculating the Varma entropy (1.5.5) instead of the Shannon

entropy in Eq.(1.5.6). It is given as

H(m,τ,α,β ) =
1

β −α
log
( m!

∑
l=1

(p(πl))
α+β−1

)
(5.3.1)

where the relative frequencies p(πl) are given in Eq.(1.5.7). α and β satisfy the

conditions β ≥ 1, β −1 < α < β and α +β 6= 2 . Clearly α +β > 1. For a particular

value of m, PEα,β gives a range of values with different combinations of α and

β but the PE gives only single value. Thus PEα,β generalizes PE. This is also

discussed empirically in Subsection 5.4.2.

PEα,β is a single scale entropy. To capture the multiple time scales inherent in

the financial time series, this entropy is extended to a two-parameter multiscale

permutation entropy as given in the next subsection.

5.3.2 Two-Parameter Multiscale Permutation Entropy

For the multiscale analysis, a new time series {zs
j; j = 1,2, ..., [N−1

s−1 ]} is obtained

from the original time series {xi}N
i=1 by the EPO average scheme. It is represented

in Eq.(5.2.1) as

zs
j =

1
s

j(s−1)+1

∑
i=(( j−1)(s−1))+1

xi

where s≥ 2. For s = 1, the results are discussed for the original time series {xi}N
i=1

because there will be no end point overlapping. For each new time series {zs
j},

obtained at different values of scale factor s, PEα,β is calculated as follows:

Consider the representation of data points of series {zs
j} as vectors

Zs
t (m,τ) = (zs

t , zs
t+τ , ..., zs

t+(m−1)τ)

where t = 1,2, ...,T − (m− 1)τ with T = [N−1
s−1 ], embedding dimension m and time

delay τ. Each of these T − (m− 1)τ vectors has m components. As m different

numbers can be ordered in m! ways, so each vector is assigned a pattern out of



111

the m! possible patterns {πl}m!
l=1. PEα,β of the time series {zs

j}T
j=1 with m ≥ 2 is

defined in the discrete form as

H(m,τ,α,β ) =
1

β −α
log
( m!

∑
l=1

(pz(πl))
α+β−1

)
(5.3.2)

This entropy is called the two-parameter multiscale permutation entropy (MPEα,β )

with EPO scales. The parameters α and β must satisfy the conditions β−1 < α <

β , β ≥ 1 and α +β 6= 2 of Varma entropy. Clearly α + β > 1. Here, the relative

frequency pz(πl) is given as

pz(πl) =
||{t : t ≤ T − (m−1)τ, (zs

t , zs
t+τ , ..., zs

t+(m−1)τ) has the ordinal pattern πl}||
T − (m−1)τ

(5.3.3)

It can be rewritten as

pz(πl) =
∑t≤T−(m−1)τ IAl(Z

s
t (m,τ))

∑t≤T−(m−1)τ IB(Zs
t (m,τ))

(5.3.4)

where IX(Z) denotes the indicator function such that IX(z) = 1 if z ∈ X otherwise

IX(z) = 0, for an element z of Z. Al is the set of all those vectors which have the

ordinal pattern πl. B is the set of all those vectors which have ordinal patterns in

the set {πl}m!
l=1.

To compare the EPO scheme with the conventional coarse graining procedure,

the MPEα,β is also calculated over non-overlapping scales. The procedure

involves the averaging of data points of the original time series {xi}N
i=1 over the

non-overlapping windows of length s to get a coarse grained time series {ys
r},r =

1,2, ..., [N
s ] given as

ys
r =

1
s

rs

∑
i=(r−1)s+1

xi ; 1≤ r ≤
[

N
s

]
(5.3.5)

For the scale factor s = 1, the time series in Eq.(5.3.5) becomes the original time

series {xi}N
i=1. For each coarse grained series in Eq.(5.3.5), obtained at different

values of scale factor s, the PEα,β (5.3.2) is calculated with relative frequencies

py(πl) =
∑t≤M−(m−1)τ IAl(Y

s
t (m,τ))

∑t≤M−(m−1)τ IB(Y s
t (m,τ))

(5.3.6)

here Y s
t (m,τ) = (ys

t ,y
s
t+τ , ...,y

s
t+(m−1)τ) is the vector with t = 1,2, ...,M− (m− 1)τ.

M = [N
s ] and I denotes the indicator function as explained earlier. This gives the
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MPEα,β over non-overlapping scales.

In the MPEα,β over non-overlapping scales, when β = 1, MRPE of order α given

by Chen et al. [19] is obtained. Moreover, for β = 1 and α = 1, MPE of Yin and

Shang [125] is obtained.

The MPEα,β is extended to include the weights in the PE procedure over EPO

and non-overlapping scales. For the inclusion of weights, a new weighting scheme

is also proposed in the next subsection.

5.3.3 Two-Parameter New Weighted Multiscale Permutation Entropy

Fadlallah et al. [32] proposed the weighted permutation entropy given in Eq.(1.5.11)

to overcome the limitations of PE. Sometimes, variance as weights may not retain

the correct amplitude information. For e.g., for the embedding dimension m = 3,

consider the possible arrangement of data points as (100,101,141), (100,140,141)

and (100,60,101). In the first two arrangements, pattern followed by data points is

(0 1 2). In the last arrangement, the pattern of the data points is (1 0 2). Despite of

the different variation from initial to final point, these three arrangements have the

same variance. So no correct amplitude information is obtained using variance.

In addition, sometimes for a particular pattern, one may be interested in the

overall change in the value from the initial position and not on the fluctuations in

between the initial and final time. For example, If an investor invests for n days,

then his fortune will be the overall change in value of asset (or return) from day

1 to day n and not the fluctuations in between. Similarly, if a person is interested

in trading an asset on day 3 from now (as in the European option contract), his

return will be dependent on the value of asset on day 3 and not on the fluctuations

in between.

For such path-independent patterns, a new weighting scheme is proposed here,

to calculate the weights of neighbouring vectors in the weighted permutation

entropy procedure. This method is simple and computationally fast. It gives

better result than the case of variance as weight because the standard deviation of

our new weighting scheme is less than than the standard deviation of weighting

scheme of Fadlallah et al. [32] of taking variance as weight (see Table 5.14 in

Subsection 5.4.4). The overall change in value from the initial point to final point is

taken as the weight of a neighbouring vector ignoring the fluctuations in between
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and is defined over EPO scales as:

wt =
m−1

∑
k=1

(zs
t+kτ − zs

t+(k−1)τ) (5.3.7)

where Zs
t (m,τ) = (zs

t , zs
t+τ , ..., zs

t+(m−1)τ) is a vector from the series {zs
j}T

j=1. We

define the weighted relative frequencies as

pw(πl) =

∣∣∣∣∑t≤T−(m−1)τ IAl(Z
s
t (m,τ)) wt

∣∣∣∣
G

(5.3.8)

where

G =
m!

∑
l=1

∣∣∣∣ ∑
t≤T−(m−1)τ

IAl(Z
s
t (m,τ)) wt

∣∣∣∣
The value of pw(πl) from (5.3.8) is used to calculate the weighted PEα,β given by

Hw(m,τ,α,β ) =
1

β −α
log
( m!

∑
l=1

pw(πl)
α+β−1

)
(5.3.9)

where β −1 < α < β , β ≥ 1 and α +β 6= 2. This is called the two-parameter new

weighted multiscale permutation entropy (WMPEw
α,β ) with EPO average. On the

same lines, WMPEw
α,β can be defined with non-overlapping average.

For comparing the results of this new weighting scheme with the weighting

scheme of Fadlallah et al. [32], we define the two-parameter weighted multiscale

permutation entropy (WMPEv
α,β ) using variance as weight for each neighbouring

vector Zs
t (m,τ). The variance of vector Zs

t (m,τ) is

vt =
1
m

m

∑
k=1

(zs
t+(k−1)τ −Zs

t (m,τ))2 (5.3.10)

where Zt(m,τ)) is the arithmetic mean of vector Zt(m,τ). The corresponding

weighted relative frequencies are

pv(πl) =
∑t≤T−(m−1)τ IAl(Z

s
t (m,τ)) vt

∑t≤T−(m−1)τ IB(Zs
t (m,τ)) vt

(5.3.11)

which give the WMPEv
α,β with EPO scales as

Hv(m,τ,α,β ) =
1

β −α
log
( m!

∑
l=1

pv(πl)
α+β−1

)
(5.3.12)
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where β−1<α < β , β ≥ 1 and α+β 6= 2. Similarly, WMPEv
α,β can be defined over

non-overlapping scales. After proposing the theoretical framework of MPEα,β ,

WMPEv
α,β and WMPEw

α,β over non-overlapping and EPO scales, an empirical

study is conducted in the next section using the financial market data.

5.4 Empirical Analysis and Discussion of Results

The PEα,β generalizes the PE. For each value of embedding dimension m, only

single value of PE is obtained but PEα,β gives a range of values with different

combinations of α and β . To show the advantage of considering PEα,β over PE

and to compare the MPEα,β , WMPEv
α,β and WMPEw

α,β over EPO scales and non-

overlapping scales, an empirical analysis is conducted on the financial market

data.

5.4.1 Data Used

The daily closing prices of S&P 500 index from November 1, 2009 to October

31, 2018 are considered. This time series contains 2320 data points. The daily

logarithmic return of this data is calculated. For the multiscale analysis, the scale

factor s is considered from 1 to 10 in both the averaging schemes. Scale factor

s = 1 gives the result for the original time series {xi}N
i=1.

Bandt and Pompe [8] suggested the range of embedding dimension m from

2, 3, ... 7 for the practical purposes. Also, to obtain the reliable results, the length

L of each time series must satisfy the constraint L >> m! for the permutation

analysis. Thus for calculating PE and PEα,β , m is chosen from 2 to 6 and for the

multiscale analysis we have considered m from 2 to 5 to get the reliable results.

The time delay τ is chosen 1 for simplicity. β is considered from 1.0 to 1.4 with step

size 0.1 and α is considered from 0.1 to 0.9 with step size 0.1. MATLAB2012b is

used to obtain the results. Only that combination of α and β is considered which

satisfies the conditions of Varma entropy on α and β such that β−1<α < β , β ≥ 1

and α +β 6= 2. The results obtained are discussed in the next subsections.
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5.4.2 Comparison of PEα,β with PE

For the data set under consideration, The PE and PEα,β values are calculated at

the different values of embedding dimension m. It is presented in Table 5.1 and

Tables 5.2 to 5.5 respectively.

Table 5.1: Permutation Entropy (PE) for different values of embedding dimension m.

m
Entropy 2 3 4 5 6

PE 0.9966 2.5722 4.5584 6.8407 9.1987

Table 5.2: Two-parameter permutation entropy (PEα,β ) at different values of α and β for
m=2.

β

Entropy α 1.0 1.1 1.2 1.3 1.4
0.1 0.9997 – – – –
0.2 0.9993 0.7770 – – –
0.3 0.9990 0.7490 0.5546 – –
0.4 0.9986 0.7131 0.4990 0.3325 –

PEα,β 0.5 0.9983 0.6653 0.4276 0.2493 0.1108
0.6 0.9980 0.5986 0.3324 0.1424 –
0.7 0.9976 0.4986 0.1994 – –
0.8 0.9973 0.3323 – – –
0.9 0.9969 – – – –

Table 5.3: Two-parameter permutation entropy (PEα,β ) at different values of α and β for
m=3.

β

Entropy α 1.0 1.1 1.2 1.3 1.4
0.1 2.5837 – – – –
0.2 2.5824 2.0076 – – –
0.3 2.5812 1.9349 1.4326 – –
0.4 2.5799 1.8419 1.2887 0.8587 –

PEα,β 0.5 2.5786 1.7182 1.1040 0.6437 0.2859
0.6 2.5773 1.5456 0.8583 0.3676 –
0.7 2.5760 1.2874 0.5147 – –
0.8 2.5748 0.8578 – – –
0.9 2.5735 – – – –
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Table 5.4: Two-parameter permutation entropy (PEα,β ) at different values of α and β for
m=4.

β

Entropy α 1.0 1.1 1.2 1.3 1.4
0.1 4.5823 – – – –
0.2 4.5797 3.5599 – – –
0.3 4.5770 3.4308 2.5399 – –
0.4 4.5744 3.2655 2.2845 1.5221 –

PEα,β 0.5 4.5717 3.0461 1.9570 1.1409 0.5068
0.6 4.5691 2.7399 1.5213 0.6516 –
0.7 4.5664 2.2819 0.9122 – –
0.8 4.5638 1.5204 – – –
0.9 4.5611 – – – –

Table 5.5: Two-parameter permutation entropy (PEα,β ) at different values of α and β for
m=5.

β

Entropy α 1.0 1.1 1.2 1.3 1.4
0.1 6.9002 – – – –
0.2 6.8935 5.3565 – – –
0.3 6.8869 5.1602 3.8187 – –
0.4 6.8802 4.9097 3.4335 2.2868 –

PEα,β 0.5 6.8736 4.5780 2.9402 1.7135 0.7608
0.6 6.8670 4.1162 2.2846 0.9782 –
0.7 6.8604 3.4269 1.3694 – –
0.8 6.8538 2.2824 – – –
0.9 6.8472 – – – –

Table 5.6: Two-parameter permutation entropy (PEα,β ) at different values of α and β for
m=6.

β

Entropy α 1.0 1.1 1.2 1.3 1.4
0.1 9.3902 – – – –
0.2 9.3671 7.2679 – – –
0.3 9.3445 6.9917 5.1670 – –
0.4 9.3223 6.6433 4.6397 3.08627 –

PEα,β 0.5 9.3006 6.1862 3.9679 2.3095 1.0242
0.6 9.2793 5.5551 3.0794 1.3169 –
0.7 9.2585 4.6191 1.8436 – –
0.8 9.2381 3.0727 – – –
0.9 9.2182 – – – –

Each column of Tables 5.2 to 5.5 represents the entropy values for a particular β

but α varying from 0.1 to 0.9. It is important to notice here that, entropies against

only those values of α and β are given which satisfy the conditions β − 1 < α <

β , β ≥ 1 and α +β 6= 2. For a particular β , the entropy value decreases with an
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increase in α value and same is the case for a fixed α.

It is clear that the PEα,β generalizes the PE. For β = 1 and α → 1, the PEα,β

reduces to PE for all values of m. For β = 1, the first column in each of the Tables

5.2 to 5.5 gives the Rényi permutation entropy of Chen et al. [19].

In next subsection, the extensions of PEα,β to MPEα,β , WMPEv
α,β and WMPEw

α,β

are compared over EPO and non-overlapping scales.

5.4.3 Comparison of MPEα,β , WMPEv
α,β and WMPEw

α,β

The MPEα,β , WMPEv
α,β and WMPEw

α,β on the non-overlapping and EPO scales

are compared in this subsection using the data of S&P 500 index. Corresponding

to a particular value of m and s, the MPEα,β , WMPEv
α,β and WMPEw

α,β on both

non-overlapping and EPO scales, can be represented in a single table. By varying

m from 2 to 5 and s from 2 to 10, total 36 such tables will be obtained. Additionally,

for s = 1, which corresponds to the original time series {xi}N
i=1 (for both non-

overlapping and EPO scales), there will be total 4 tables (one for each value of m).

To avoid the excessive number of tables which will be arising out of calculation,

we have confined ourselves to m = 4,5 and s = 1,4,7,10 in this chapter.

Table 5.7: Two parametric entropies at different values of α and β for s=1 and m=4,5.

For m = 4 For m = 5
β β

Entropy α 1.0 1.1 1.2 1.3 1.4 1.0 1.1 1.2 1.3 1.4
0.1 4.5823 – – – – 6.9002 – – – –
0.2 4.5797 3.5599 – – – 6.8935 5.3565 – – –
0.3 4.5770 3.4308 2.5399 – – 6.8869 5.1602 3.8187 – –
0.4 4.5744 3.2655 2.2845 1.5221 – 6.8802 4.9097 3.4335 2.2868 –

MPEα,β 0.5 4.5717 3.0461 1.9570 1.1409 0.5068 6.8736 4.5780 2.9402 1.7135 0.7608
0.6 4.5691 2.7399 1.5213 0.6516 – 6.8670 4.1162 2.2846 0.9782 –
0.7 4.5664 2.2819 0.9122 – – 6.8604 3.4269 1.3694 – –
0.8 4.5638 1.5204 – – – 6.8538 2.2824 – – –
0.9 4.5611 – – – – 6.8472 – – – –
0.1 4.5791 – – – – 6.8896 – – – –
0.2 4.5733 3.5524 – – – 6.8725 5.3320 – – –
0.3 4.5674 3.4212 2.5310 – – 6.8555 5.1289 3.7899 – –
0.4 4.5616 3.2541 2.2749 1.5147 – 6.8386 4.8727 3.4026 2.2629 –

WMPEv
α,β 0.5 4.5557 3.0333 1.9475 1.1346 0.5036 6.8218 4.5368 2.9094 1.6931 0.7507

0.6 4.5499 2.7264 1.5127 0.6475 – 6.8052 4.0732 2.2574 0.9651 –
0.7 4.5441 2.2691 0.9065 – – 6.7886 3.3861 1.3512 – –
0.8 4.5382 1.5108 – – – 6.7722 2.2520 – – –
0.9 4.5324 – – – – 6.7559 – – – –
0.1 4.5663 – – – – 6.8778 – – – –
0.2 4.5477 3.5227 – – – 6.8493 5.3055 – – –
0.3 4.5292 3.3830 2.4957 – – 6.8213 5.0953 3.7593 – –
0.4 4.5107 3.2087 2.2369 1.4852 – 6.7938 4.8334 3.3701 2.2380 –

WMPEw
α,β 0.5 4.4922 2.9826 1.9095 1.1093 0.4910 6.7667 4.4934 2.8774 1.6721 0.7403

0.6 4.4738 2.6733 1.4791 0.6313 – 6.7401 4.0284 2.2295 0.9519 –
0.7 4.4555 2.2187 0.8838 – – 6.7140 3.3442 1.3326 – –
0.8 4.4373 1.4731 – – – 6.6884 2.2210 – – –
0.9 4.4192 – – – – 6.6631 – – – –
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The scale factor s = 1 gives the original time series {xi}N
i=1, reducing MPEα,β ,

WMPEv
α,β and WMPEw

α,β to PEα,β , two-parameter weighted permutation entropy

(WPEv
α,β ) and two-parameter new weighted permutation entropy (WPEw

α,β )

respectively. For s = 1 and m = 4 and 5, the entropy values are given in Table 5.7.

In Table 5.7, for a particular value of α and β , the WMPEw
α,β is the smallest

among MPEα,β , WMPEv
α,β and WMPEw

α,β . This justifies that the consideration

of new weighting scheme captures more information than the weighting scheme

of Fadlallah et al. [32], which in turn captures more information than MPEα,β .

Further, for a particular value of β , as the α value increases, the WMPEw
α,β values

decline more rapidly than WMPEv
α,β .

Table 5.8: Two parametric entropies at different values of α and β for m=4 and s=4.

NoO scales EPO scales
β β

Entropy α 1.0 1.1 1.2 1.3 1.4 1.0 1.1 1.2 1.3 1.4
0.1 4.5811 – – – – 4.5771 – – – –
0.2 4.5773 3.5572 – – – 4.5692 3.5476 – – –
0.3 4.5736 3.4275 2.5369 – – 4.5612 3.4149 2.5251 – –
0.4 4.5699 3.2617 2.2815 1.5198 – 4.5532 3.2466 2.2686 1.5097 –

MPEα,β 0.5 4.5664 3.0419 1.9541 1.1390 0.5059 4.5452 3.0248 1.9410 1.1302 0.5014
0.6 4.5629 2.7357 1.5187 0.6504 – 4.5371 2.7174 1.5070 0.6447 –
0.7 4.5595 2.2781 0.9106 – – 4.5290 2.2605 0.9026 – –
0.8 4.5562 1.5176 – – – 4.5209 1.5043 – – –
0.9 4.5529 – – – – 4.5128 – – – –
0.1 4.5766 – – – – 4.5677 – – – –
0.2 4.5683 3.5467 – – – 4.5506 3.5261 – – –
0.3 4.5601 3.4139 2.5243 – – 4.5336 3.3876 2.5001 – –
0.4 4.5519 3.2455 2.2679 1.5092 – 4.5168 3.2144 2.2419 1.4892 –

WMPEv
α,β 0.5 4.5438 3.0238 1.9404 1.1300 0.5013 4.5002 2.9892 1.9146 1.1129 0.4928

0.6 4.5357 2.7166 1.5066 0.6446 – 4.4837 2.6805 1.4838 0.6336 –
0.7 4.5277 2.2599 0.9024 – – 4.4675 2.2257 0.8871 – –
0.8 4.5198 1.5040 – – – 4.4514 1.4785 – – –
0.9 4.5120 – – – – 4.4355 – – – –
0.1 4.5688 – – – – 4.5580 – – – –
0.2 4.5526 3.5284 – – – 4.5310 3.5030 – – –
0.3 4.5365 3.3902 2.5022 – – 4.5039 3.3576 2.4721 – –
0.4 4.5203 3.2172 2.2440 1.4907 – 4.4768 3.1784 2.2114 1.4653 –

WMPEw
α,β 0.5 4.5041 2.9920 1.9166 1.1140 0.4933 4.4497 2.9485 1.8839 1.0923 0.4825

0.6 4.4880 2.6832 1.4853 0.6343 – 4.4227 2.6375 1.4564 0.6204 –
0.7 4.4720 2.2280 0.8880 – – 4.3959 2.1846 0.8685 – –
0.8 4.4560 1.4800 – – – 4.3691 1.4475 – – –
0.9 4.4401 – – – – 4.3426 – – – –

In Table 5.8, for m = 4 and s = 4, the MPEα,β , WMPEv
α,β and WMPEw

α,β values

are compared on both non-overlapping (NoO) and EPO scales. Consideration of

the EPO average decrease the entropy values in comparison to the corresponding

entropies calculated on non-overlapping scales. Thus, the consideration of EPO

average captures more information than the non-overlapping average.

Table 5.9 and 5.10 gives the entropy values for m= 4 and s= 7 and 10 respectively.

For a particular m and a fixed value of α and β , the entropy values decrease with
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an increase in the scale factor s. As s increases, the entropy values decrease

more rapidly for a fixed β and increasing α from 0.1 to 0.9. This decline is more

prominent for EPO scales. The WMPEw
α,β decreases more quickly than MPEα,β

and WMPEv
α,β .

Table 5.11 to 5.13 gives the MPEα,β , WMPEv
α,β and WMPEw

α,β values with

embedding dimension m = 5 and scale factor s = 4,7 and 10 respectively. For

s = 4, WMPEw
α,β is smallest of all the three MPEα,β , WMPEv

α,β and WMPEw
α,β . It

is slightly high from WMPEv
α,β for s = 7 and s = 10. The entropy values decreases

more rapidly than in m = 4 case. For m = 5, the entropies on EPO scales are

smaller than the corresponding entropies on non-overlapping scales for s = 4.

These values start to increase for s = 7 and s = 10.

For m= 5 and s= 7 and 10 some fluctuations in the values of MPEα,β , WMPEv
α,β

and WMPEw
α,β are observed, refer to Table 5.12 and Table 5.13. These fluctuations

may perhaps be attributed due to more information being inherited by the proposed

WMPEw
α,β over WMPEv

α,β . The same is exhibited from Fig.5.7 and Fig.5.8 in the

next subsection.

Table 5.9: Two parametric entropies at different values of α and β for m=4 and s=7.

NoO scales EPO scales
β β

Entropy α 1.0 1.1 1.2 1.3 1.4 1.0 1.1 1.2 1.3 1.4
0.1 4.5769 – – – – 4.5774 – – – –
0.2 4.5690 3.5477 – – – 4.5701 3.5490 – – –
0.3 4.5613 3.4154 2.5259 – – 4.5630 3.4170 2.5274 – –
0.4 4.5538 3.2476 2.2698 1.5109 – 4.5561 3.2495 2.2713 1.5121 –

MPEα,β 0.5 4.5466 3.0264 1.9426 1.1315 0.5022 4.5493 3.0285 1.9441 1.1325 0.5026
0.6 4.5396 2.7196 1.5087 0.6457 – 4.5427 2.7218 1.5100 0.6463 –
0.7 4.5327 2.2630 0.9039 – – 4.5363 2.2650 0.9048 – –
0.8 4.5260 1.5065 – – – 4.5300 1.5079 – – –
0.9 4.5196 – – – – 4.5238 – – – –
0.1 4.5695 – – – – 4.5748 – – – –
0.2 4.5543 3.5307 – – – 4.5649 3.5429 – – –
0.3 4.5394 3.3936 2.5058 – – 4.5552 3.4092 2.5201 – –
0.4 4.5248 3.2218 2.2482 1.4942 – 4.5456 3.2402 2.2635 1.5060 –

WMPEv
α,β 0.5 4.5105 2.9976 1.9212 1.1173 0.4951 4.5363 3.0180 1.9363 1.1273 0.5001

0.6 4.4965 2.6896 1.4898 0.6366 – 4.5271 2.7108 1.5031 0.6429 –
0.7 4.4827 2.2347 0.8912 – – 4.5180 2.2546 0.9001 – –
0.8 4.4693 1.4854 – – – 4.5092 1.5002 – – –
0.9 4.4562 – – – – 4.5005 – – – –
0.1 4.5673 – – – – 4.5631 – – – –
0.2 4.5494 3.5243 – – – 4.5419 3.5165 – – –
0.3 4.5313 3.3847 2.4969 – – 4.5212 3.3758 2.4897 – –
0.4 4.5129 3.2103 2.2378 1.4856 – 4.5010 3.2010 2.2311 1.4812 –

WMPEw
α,β 0.5 4.4944 2.9838 1.9100 1.1094 0.4909 4.4814 2.9748 1.9044 1.1064 0.4898

0.6 4.4756 2.6740 1.4792 0.6312 – 4.4623 2.6662 1.4752 0.6297 –
0.7 4.4567 2.2187 0.8836 – – 4.4436 2.2127 0.8816 – –
0.8 4.4375 1.4727 – – – 4.4255 1.4693 – – –
0.9 4.4181 – – – – 4.4078 – – – –
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Table 5.10: Two parametric entropies at different values of α and β for m=4 and s=10.

NoO scales EPO scales
β β

Entropy α 1.0 1.1 1.2 1.3 1.4 1.0 1.1 1.2 1.3 1.4
0.1 4.5734 – – – – 4.5721 – – – –
0.2 4.5620 3.5393 – – – 4.5595 3.5366 – – –
0.3 4.5506 3.4044 2.5155 – – 4.5471 3.4012 2.5129 – –
0.4 4.5392 3.2343 2.2584 1.5019 – 4.5350 3.2308 2.2558 1.5001 –

MPEα,β 0.5 4.5280 3.0112 1.9310 1.1237 0.4982 4.5231 3.0077 1.9287 1.1223 0.4976
0.6 4.5168 2.7034 1.4982 0.6406 – 4.5115 2.7001 1.4964 0.6398 –
0.7 4.5057 2.2474 0.8968 – – 4.5002 2.2446 0.8957 – –
0.8 4.4947 1.4946 – – – 4.4892 1.4928 – – –
0.9 4.4839 – – – – 4.4784 – – – –
0.1 4.5652 – – – – 4.5490 – – – –
0.2 4.5464 3.5221 – – – 4.5149 3.4865 – – –
0.3 4.5284 3.3835 2.4972 – – 4.4827 3.3391 2.4573 – –
0.4 4.5113 3.2107 2.2396 1.4881 – 4.4521 3.1594 2.1979 1.4566 –

WMPEv
α,β 0.5 4.4950 2.9862 1.9132 1.1124 0.4929 4.4231 2.9305 1.8728 1.0863 0.4802

0.6 4.4793 2.6785 1.4832 0.6337 – 4.3957 2.6219 1.4484 0.6174 –
0.7 4.4642 2.2249 0.8871 – – 4.3698 2.1726 0.8644 – –
0.8 4.4497 1.4786 – – – 4.3452 1.4406 – – –
0.9 4.4357 – – – – 4.3219 – – – –
0.1 4.5611 – – – – 4.5491 – – – –
0.2 4.5369 3.5098 – – – 4.5132 3.4824 – – –
0.3 4.5126 3.3660 2.4796 – – 4.4774 3.3312 2.4477 – –
0.4 4.4880 3.1880 2.2192 1.4711 – 4.4416 3.1470 2.1851 1.4448 –

WMPEw
α,β 0.5 4.4633 2.9589 1.8914 1.0970 0.4848 4.4058 2.9134 1.8576 1.0747 0.4737

0.6 4.4383 2.6480 1.4627 0.6233 – 4.3701 2.6007 1.4330 0.6091 –
0.7 4.4133 2.1940 0.8726 – – 4.3345 2.1495 0.8527 – –
0.8 4.3881 1.4543 – – – 4.2990 1.4212 – – –
0.9 4.3628 – – – – 4.2636 – – – –

Table 5.11: Two parametric entropies at different values of α and β for m=5 and s=4.

NoO scales EPO scales
β β

Entropy α 1.0 1.1 1.2 1.3 1.4 1.0 1.1 1.2 1.3 1.4
0.1 6.8757 – – – – 6.8696 – – – –
0.2 6.8573 5.3196 – – – 6.8448 5.3050 – – –
0.3 6.8395 5.1167 3.7810 – – 6.8207 5.0978 3.7633 – –
0.4 6.8223 4.8612 3.3949 2.2581 – 6.7970 4.8385 3.3757 2.2431 –

MPEα,β 0.5 6.8057 4.5265 2.9032 1.6898 0.7494 6.7740 4.5009 2.8840 1.6770 0.7430
0.6 6.7897 4.0645 2.2531 0.9635 – 6.7514 4.0376 2.2359 0.9553 –
0.7 6.7742 3.3796 1.3489 – – 6.7294 3.3539 1.3374 – –
0.8 6.7592 2.2482 – – – 6.7078 2.2289 – – –
0.9 6.7446 – – – – 6.6868 – – – –
0.1 6.8431 – – – – 6.8393 – – – –
0.2 6.7946 5.2492 – – – 6.7867 5.2398 – – –
0.3 6.7490 5.0294 3.7028 – – 6.7369 5.0174 3.6918 – –
0.4 6.7059 4.7607 3.3131 2.1963 – 6.6898 4.7466 3.3015 2.1877 –

WMPEv
α,β 0.5 6.6650 4.4174 2.8239 1.6383 0.7243 6.6453 4.4020 2.8127 1.6312 0.7210

0.6 6.6261 3.9534 2.1845 0.9313 – 6.6031 3.9378 2.1750 0.9270 –
0.7 6.5890 3.2767 1.3038 – – 6.5630 3.2625 1.2978 – –
0.8 6.5534 2.1730 – – – 6.5250 2.1629 – – –
0.9 6.5191 – – – – 6.4888 – – – –
0.1 6.8360 – – – – 6.8398 – – – –
0.2 6.7830 5.2377 – – – 6.7864 5.2381 – – –
0.3 6.7342 5.0163 3.6917 – – 6.7346 5.0134 3.6866 – –
0.4 6.6884 4.7465 3.3018 2.1878 – 6.6845 4.7400 3.2944 2.1810 –

WMPEw
α,β 0.5 6.6451 4.4024 2.8129 1.6312 0.7208 6.6360 4.3926 2.8042 1.6247 0.7173

0.6 6.6035 3.9381 2.1749 0.9267 – 6.5889 3.9259 2.1662 0.9222 –
0.7 6.5635 3.2624 1.2974 – – 6.5431 3.2493 1.2911 – –
0.8 6.5248 2.1624 – – – 6.4986 2.1518 – – –
0.9 6.4872 – – – – 6.4553 – – – –
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Table 5.12: Two parametric entropies at different values of α and β for m=5 and s=7.

NoO scales EPO scales
β β

Entropy α 1.0 1.1 1.2 1.3 1.4 1.0 1.1 1.2 1.3 1.4
0.1 6.7151 – – – – 6.7985 – – – –
0.2 6.6895 5.1835 – – – 6.7773 5.2552 – – –
0.3 6.6645 4.9801 3.6759 – – 6.7567 5.0524 3.7316 – –
0.4 6.6402 4.7261 3.2969 2.1906 – 6.7365 4.7978 3.3489 2.2263 –

MPEα,β 0.5 6.6166 4.3959 2.8165 1.6376 0.7255 6.7169 4.4651 2.8624 1.6652 0.7381
0.6 6.5938 3.9430 2.1835 0.9328 – 6.6977 4.0074 2.2203 0.9490 –
0.7 6.5717 3.2752 1.3060 – – 6.6790 3.3304 1.3286 – –
0.8 6.5504 2.1766 – – – 6.6609 2.2144 – – –
0.9 6.5299 – – – – 6.6432 – – – –
0.1 6.6743 – – – – 6.7679 – – – –
0.2 6.6136 5.1010 – – – 6.7193 5.1907 – – –
0.3 6.5584 4.8811 3.5900 – – 6.6738 4.9734 3.6617 – –
0.4 6.5081 4.6158 3.2098 2.1268 – 6.6312 4.7079 3.2766 2.1724 –

WMPEv
α,β 0.5 6.4621 4.2797 2.7344 1.5859 0.7010 6.5911 4.3688 2.7931 1.6207 0.7167

0.6 6.4196 3.8282 2.1146 0.9013 – 6.5532 3.9103 2.1610 0.9215 –
0.7 6.3803 3.1718 1.2619 – – 6.5172 3.2415 1.2901 – –
0.8 6.3437 2.1031 – – – 6.4830 2.1501 – – –
0.9 6.3094 – – – – 6.4503 – – – –
0.1 6.6757 – – – – 6.7581 – – – –
0.2 6.6139 5.0986 – – – 6.7003 5.1694 – – –
0.3 6.5553 4.8748 3.5814 – – 6.6463 4.9466 3.6375 – –
0.4 6.4997 4.6047 3.1979 2.1157 – 6.5955 4.6767 3.2509 2.1527 –

WMPEw
α,β 0.5 6.4466 4.2639 2.7202 1.5751 0.6950 6.5474 4.3345 2.7678 1.6041 0.7085

0.6 6.3958 3.8083 2.1001 0.8936 – 6.5017 3.8749 2.1388 0.9109 –
0.7 6.3471 3.1502 1.2511 – – 6.4581 3.2082 1.2753 – –
0.8 6.3003 2.0851 – – – 6.4164 2.1255 – – –
0.9 6.2553 – – – – 6.3764 – – – –

Table 5.13: Two parametric entropies at different values of α and β for m=5 and s=10.

NoO scales EPO scales
β β

Entropy α 1.0 1.1 1.2 1.3 1.4 1.0 1.1 1.2 1.3 1.4
0.1 6.5013 – – – – 6.6899 – – – –
0.2 6.4790 5.0218 – – – 6.6655 5.1654 – – –
0.3 6.4565 4.8256 3.5620 – – 6.6413 4.9629 3.6629 – –
0.4 6.4341 4.5797 3.1946 2.1222 – 6.6172 4.7094 3.2847 2.1820 –

MPEα,β 0.5 6.4116 4.2594 2.7286 1.5861 0.7024 6.5932 4.3796 2.8054 1.6307 0.7222
0.6 6.3891 3.8200 2.1148 0.9031 – 6.5695 3.9276 2.1743 0.9286 –
0.7 6.3667 3.1721 1.2644 – – 6.5460 3.2614 1.3000 – –
0.8 6.3443 2.1073 – – – 6.5228 2.1666 – – –
0.9 6.3219 – – – – 6.4999 – – – –
0.1 6.4631 – – – – 6.6425 – – – –
0.2 6.4057 4.9398 – – – 6.5732 5.0604 – – –
0.3 6.3512 4.7246 3.4724 – – 6.5062 4.8310 3.5435 – –
0.4 6.2995 4.4646 3.1019 2.0532 – 6.4413 4.5560 3.1586 2.0859 –

WMPEv
α,β 0.5 6.2504 4.1359 2.6398 1.5294 0.6753 6.3783 4.2114 2.6819 1.5500 0.6826

0.6 6.2038 3.6957 2.0392 0.8682 – 6.3171 3.7546 2.0666 0.8777 –
0.7 6.1596 3.0588 1.2155 – – 6.2577 3.0999 1.2287 – –
0.8 6.1176 2.0259 – – – 6.1998 2.0479 – – –
0.9 6.0777 – – – – 6.1436 – – – –
0.1 6.4707 – – – – 6.6503 – – – –
0.2 6.4206 4.9566 – – – 6.5919 5.0849 – – –
0.3 6.3728 4.7452 3.4906 – – 6.5377 4.8652 3.5771 – –
0.4 6.3270 4.4879 3.1203 2.0665 – 6.4869 4.5991 3.1965 2.1165 –

WMPEw
α,β 0.5 6.2830 4.1604 2.6569 1.5398 0.6800 6.4388 4.2620 2.7212 1.5769 0.6964

0.6 6.2405 3.7196 2.0531 0.8743 – 6.3931 3.8096 2.1025 0.8953 –
0.7 6.1994 3.0797 1.2240 – – 6.3494 3.1537 1.2535 – –
0.8 6.1594 2.0401 – – – 6.3075 2.0891 – – –
0.9 6.1203 – – – – 6.2673 – – – –
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Thus, Table 5.7 to 5.13 gives the MPEα,β , WMPEv
α,β and WMPEw

α,β for different

values of α and β with some selective values of m and s.

Consideration of two parameters generalize the results of non parametric and

one parametric entropies giving additional degrees of freedom to analyse the

time series under observation. For instance, for β = 1 and varying α, the Rényi

permutation entropy results are obtained. The comparison of these entropies is

also studied on some selected range of parameters α and β in the next subsection.

5.4.4 Comparison of Entropies at Different Values of Parameters

In Section 4.3 of the previous chapter, for S&P 500 index, the calibrated density

function is obtained for α and β in the range 1.5 ≤ α +β ≤ 1.75. Here also, the

entropies are compared by considering different combinations of α and β such

that α +β = 1.5,1.6 and 1.7. The impact of changing α and β on entropy values

with different m and s values is given in Fig.5.3 to Fig.5.28.

Firstly, for a close observation, at a fixed α = 0.5 and β = 1.0 and for each

value of m, the two-parameter entropy values are plotted in Fig.5.3 to Fig.5.8 with

both non-overlapping and EPO average. For m = 2, the entropy values were very

insignificant different so we have demonstrated the case of m = 3,4 and 5 only.
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Figure 5.3: Entropies for m = 3 over non-overlapping scales at (α,β ) = (0.5,1.0).

Fig.5.3 and Fig.5.4 gives the MPEα,β , WMPEv
α,β and WMPEw

α,β values at m = 3

for non-overlapping and EPO scales respectively with α = 0.5 and β = 1.0.
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The difference in entropy patterns for non-overlapping and EPO scales is clearly

observable. Fig.5.4 considers the scale factor s≥ 2 as s = 1 (original time series)

is already covered in non-overlapping scales in Fig.5.3.
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Figure 5.4: Entropies for m = 3 over EPO scales at (α,β ) = (0.5,1.0).
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Figure 5.5: Entropies for m = 4 over non-overlapping scales at (α,β ) = (0.5,1.0).

In Fig.5.5 and Fig.5.6, MPEα,β , WMPEv
α,β and WMPEw

α,β values are given for

m = 4 over non-overlapping and EPO scales respectively with α = 0.5 and β =

1.0. For m = 4, the entropy values start to decrease with increase in s on non-

overlapping scales.
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For non-overlapping scales, there are more fluctuations in WMPEv
α,β and WMPEw

α,β

than in MPEα,β . For EPO scales these entropies firstly increase then decrease.

For m = 3 and 4, the WMPEw
α,β is smallest of the three.
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Figure 5.6: Entropies for m = 4 over EPO scales at (α,β ) = (0.5,1.0).

1 2 3 4 5 6 7 8 9 10 11

Scale (NoO)

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

E
n

tr
o

p
y

Two Parametric Entropies for +  = 1.5 (  = 0.5,  = 1) and m=5 over NoO Scales 

MPE
,

WMPE
,

v

WMPE
,

w

Figure 5.7: Entropies for m = 5 over non-overlapping scales at (α,β ) = (0.5,1.0).

In Fig.5.7 and Fig.5.8, MPEα,β , WMPEv
α,β and WMPEw

α,β values are given at

m = 5 for non-overlapping and EPO scales respectively with α = 0.5 and β = 1.0.

For m= 5, the entropies on non-overlapping scales are decreasing with increase

in scale factor s and the corresponding entropies on EPO scales follow a parabolic

path.
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The WMPEv
α,β and WMPEw

α,β are smaller than MPEα,β on both non-overlapping

and EPO scales supporting the fact that the inclusion of weight captures more

information.

2 3 4 5 6 7 8 9 10 11

Scale (EPO)

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

E
n

tr
o

p
y

Two Parametric Entropies for +  = 1.5 (  = 0.5,  = 1) and m=5 over EPO Scales 

MPE
,

WMPE
,

v

WMPE
,

w

Figure 5.8: Entropies for m = 5 over EPO scales at (α,β ) = (0.5,1.0).

Further, for m = 5, although the WMPEw
α,β and WMPEv

α,β gives the equivalent

results, but WMPEw
α,β is more simple, computationally fast and robust than WMPEv

α,β

on both non-overlapping and EPO scales.

Now, Fig.5.9 to Fig.5.28 are considered where the entropies are compared on

different m and scales s by taking different combinations of α and β .
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Figure 5.9: Entropies over non-overlapping scales for α = 0.5 and β = 1.0
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Figure 5.10: Entropies over EPO scales for α = 0.5 and β = 1.0

In Fig.5.9 and Fig.5.10, the entropies at different m values for α +β = 1.5 with

α = 0.5 and β = 1.0 are given on non-overlapping and EPO scales respectively.

For m = 3, there is almost no difference visible in the entropy values but this

difference was visible in Fig.5.3. As the m increases from 3 to 5, the WMPEv
α,β

and WMPEw
α,β begin to separate from MPEα,β . This separation is more visible on

EPO scales than on non-overlapping scales.

Fig.5.11 and Fig.5.12 gives the entropy values at different m values for α +β =

1.5 but with α = 0.4 and β = 1.1 on non-overlapping and EPO scales respectively.

This decrease in α and increase in β , to maintain α + β = 1.5, decreases the

entropy value. This decrease in entropy value is more prominent for α = 0.3 and

β = 1.2 in Fig.5.13 and Fig.5.14.

Similarly, for α+β = 1.6, all the possible combinations of (α,β ) are (0.6,1),(0.5,1.1)

and (0.4,1.2), giving Fig.5.15 to Fig.5.20 for both non-overlapping and EPO scales.

For α+β = 1.7, all the possible combinations of (α,β ) are (0.7,1),(0.6,1.1),(0.5,1.2)

and (0.4,1.2), giving Fig.5.21 to Fig.5.28 for both non-overlapping and EPO scales.
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Figure 5.11: Entropies over non-overlapping scales for α = 0.4 and β = 1.1
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Figure 5.12: Entropies over EPO scales for α = 0.4 and β = 1.1
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Figure 5.13: Entropies over non-overlapping scales for α = 0.3 and β = 1.2
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Figure 5.14: Entropies over EPO scales for α = 0.3 and β = 1.2
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Figure 5.15: Entropies over non-overlapping scales for α = 0.6 and β = 1.0
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Figure 5.16: Entropies over EPO scales for α = 0.6 and β = 1.0
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Figure 5.17: Entropies over non-overlapping scales for α = 0.5 and β = 1.1
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Figure 5.18: Entropies over EPO scales for α = 0.5 and β = 1.1
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Figure 5.19: Entropies over non-overlapping scales for α = 0.4 and β = 1.2
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Figure 5.20: Entropies over EPO scales for α = 0.4 and β = 1.2
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Figure 5.21: Entropies over non-overlapping scales for α = 0.7 and β = 1.0
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Figure 5.22: Entropies over EPO scales for α = 0.7 and β = 1.0
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Figure 5.23: Entropies over non-overlapping scales for α = 0.6 and β = 1.1
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Figure 5.24: Entropies over EPO scales for α = 0.6 and β = 1.1
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Figure 5.25: Entropies over non-overlapping scales for α = 0.5 and β = 1.2
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Figure 5.26: Entropies over EPO scales for α = 0.5 and β = 1.2
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Figure 5.27: Entropies over non-overlapping scales for α = 0.4 and β = 1.3
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Figure 5.28: Entropies over EPO scales for α = 0.4 and β = 1.3
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The WMPEw
α,β shows a significant improvement over MPEα,β and WMPEv

α,β .

Moreover, the standard deviation (S.D.) of WMPEw
α,β is smaller than the S.D. of

MPEα,β and WMPEv
α,β over both non-overlapping and EPO scales and has the

lower values on EPO scales than on non-overlapping scales. For instance, the

S.D. of WMPEv
α,β and WMPEw

α,β are given for m = 5 over non-overlapping and

EPO scales at the different combinations of α and β in Table 5.14.

Table 5.14: Standard deviation of WMPEv
α,β and WMPEw

α,β on m = 5.

NoO scales EPO scales
(α,β ) WMPEv

α,β WMPEw
α,β WMPEv

α,β WMPEw
α,β

(0.5,1.0) 0.174812039 0.154298455 0.160385345 0.126272746
(0.4,1.1) 0.124865742 0.110213182 0.114560961 0.090194818
(0.3,1.2) 0.097117799 0.085721364 0.08910297 0.070151525
(0.6,1.0) 0.184345756 0.160191144 0.177987598 0.138318245
(0.5,1.1) 0.122897171 0.106794096 0.118658399 0.092212163
(0.4,1.2) 0.092172878 0.080095572 0.088993799 0.069159122
(0.7,1.0) 0.193246981 0.165702303 0.194411586 0.149869569
(0.6,1.1) 0.115948189 0.099421382 0.116646951 0.089921741
(0.5,1.2) 0.082820135 0.071015273 0.083319251 0.064229815
(0.4,1.3) 0.06441566 0.055234101 0.064803862 0.049956523

5.5 Conclusion

The PEα,β is proposed and extended to give MPEα,β , WMPEv
α,β and WMPEw

α,β

over non-overlapping and EPO scales. Consideration of EPO scales captures

more information than non-overlapping scales, which commendably improves the

entropies and gives the visible difference in MPEα,β , WMPEv
α,β and WMPEw

α,β

even at m = 3 and m = 4. WMPEv
α,β and WMPEw

α,β values are always lower than

MPEα,β , supporting that the inclusion of weights capture more information.

It is also obtained that the WMPEw
α,β , which is proposed using a new weighting

scheme, gives the improved results than MPEα,β and WMPEv
α,β . This scheme

can be used as an alternate to variance for calculating the weights of neighbouring

vectors. The new proposed weighting scheme is comparatively fast and has

simple computations. The effect of change of parameters α and β on the entropy

values is also studied. Different combinations of α and β result in to a wide range

of entropy values. With an increase in α or β value, the entropy reduces.



Chapter 6

Comparative Study of Two Extensions

of Heston Stochastic Volatility Model

Present chapter1 contemplates two extensions of the Heston stochastic volatility

model. Out of which, one considers the addition of jumps to the stock price

process (a stochastic volatility jump diffusion model) and another considers an

additional stochastic volatility factor varying at a different time scale (a multiscale

stochastic volatility model), in the Heston’s model. An empirical analysis is carried

out on the market data of options with different strike prices and maturities, to

do a comparison in the pricing performance of these models and to capture their

implied volatility fit. The unknown parameters of these models are calibrated using

the non-linear least square optimization. It has been found that the multiscale

stochastic volatility model performs better than the Heston stochastic volatility

model and the stochastic volatility jump diffusion model for the data set under

consideration.

1The work reported in this chapter has been communicated in a research paper titled “Comparative
Study of a Stochastic Volatility Jump Model and a Multifactor Stochastic Volatility Model”. Some
of this work is presented in ‘International Conference on Interdisciplinary Mathematics, Statistics and
Computational Techniques’ held at Manipal University, Jaipur from December 22-24, 2016 and in
‘International Conference on Advanced Production and Industrial Engineering’ held at Delhi Technological
University, Delhi from October 6-7, 2017.
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6.1 Introduction

In Chapter 1, we discussed in detail that the derivative pricing model proposed

by Black and Scholes [14] assumes volatility to be constant and asset log-return

distributions as Gaussian. Empirically, the volatility is not constant and the asset

log-return distributions are non-Gaussian in nature characterised by heavy tails

and high peaks [48]. A wide range of research has been done to improve upon

classical Black-Scholes model. The model has been expanded to include either

constant volatility with jumps (e.g. jump diffusion models given by Merton [83] and

Kou [73]) or volatility itself a dynamic quantity as discussed in Subsection 1.3.4 of

Chapter 1.

In the consideration of dynamic volatility, the most realistic models are the

stochastic volatility models which allow the volatility to fluctuate randomly and are

able to explain many empirical characteristics of volatility namely volatility smile

(or skew), mean-reversion and leverage etc.

The Heston stochastic volatility (HSV) model [59] is most popular and successful

among the single factor stochastic volatility models because it gives a fast and

easily implemented semi closed form solution for the European call options, as

described in Eq.(1.3.18) to Eq.(1.3.23) of Chapter 1. Computationally, it is very

economical. But, despite its success and popularity, it has some shortcomings.

The model is not efficiently able to give the volatility fit for all maturities and strike

prices, particularity for the options with short expiry [48]. Shu and Zhang [110]

obtained that the Heston model overprices OTM and short-term options and it

underprices ITM options.

The single factor stochastic volatility models has been improved in many ways.

One of these ways is to consider the stochastic volatility jump diffusion (SVJD

or simply SVJ) models, which explain the distributional characteristics of return

and implied volatility smile for the short term options (see Bakshi et al. [6]). An

alternate approach is to consider the multifactor stochastic volatility (MSV) models.

These models contemplate the multiple factors of volatility which vary at different

time scales, thus sometimes named as the multiscale stochastic volatility models.

These models give the improved fit for the market implied volatility.

This motivated us to study and compare these two approaches in context of

Heston stochastic volatility model. So in this chapter, we have considered two
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extensions of Heston stochastic volatility model. One model is the stochastic

volatility jump diffusion model proposed in Yan and Hanson [124] where they

considered the log-uniform distribution for the jump amplitude in the stock price

process. The another model is the multiscale stochastic volatility model of

Fouque and Lorig [37] in which a fast mean-reverting volatility factor is additionally

considered in the framework of Heston stochastic volatility model.

These two models are compared with each other, and also with the Heston

stochastic volatility model using S&P 500 index options data. Firstly, the model

parameters are calibrated using non-linear least square optimization. Then the

models’ fit to the market implied volatility is captured against log moneyness at

different time to maturity. The mean relative error of models’ prices with market

data is also calculated. We have obtained that the MSV model performs better

than the other two models.

The rest of the chapter is organized as follows: The underlying models has been

explained in Section 6.2. The empirical analysis has been conducted in Section

6.3 to compare these models, where the calibration of the models’ parameters,

models’ fit to market implied volatility and mean relative error of model prices

with market data has been reported and the results obtained are discussed. The

conclusion has been given in Section 6.4.

6.2 Models Under Consideration

We explain the two models to be considered for the empirical analysis.

6.2.1 Stochastic Volatility Jump Diffusion Model

Yan and Hanson [124] proposed a SVJ model which considers the log-uniform

distribution of the jump amplitudes in the stock price process. The model is

explained below:

Let Xt be the stock price at time t whose dynamics under the risk-neutral

probability measure P∗ is

dXt = Xt((r−λJ)dt +
√

VtdW x
t + J(U)dNt) (6.2.1)
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where r is the risk free interest rate and J(U) is the Poisson jump-amplitude with

mean J. The variance Vt follows the CIR process given by

dVt = κ(θ −Vt)dt +σ
√

VtdW v
t (6.2.2)

with κ as the rate of mean-reversion, θ as the long-run mean value and σ as

the volatility of variance. The condition 2κθ ≥ σ2 must be satisfied to ensure the

positivity of the process (6.2.2). W x
t and W v

t are the standard Brownian motions for

the stock price process and the volatility process respectively with correlation

E[dW x
t .dW v

t ] = ρxvdt

U is the amplitude mark process which is assumed to be uniformly distributed

with density

ϕU(u) =


1

n−m if m≤ u≤ n,

0 otherwise

and is given by

U = ln(J(U)+1)

Nt is the standard Poisson jump counting process with jump intensity λ , J(U)dNt

is the Poisson sum which is given as

J(U)dNt =
dNt

∑
i=1

J(Ui)

here Ui is the ith jump-amplitude random variable and J, the mean of jump-

amplitude J, is given as

J = E[J(U)] =
en− em

n−m
−1.

Under this model, the pricing formula for the European call option, in terms of

log stock price s = ln(x), is given as:

Csv j = esP1(s,v, t,K,T )−Ke−r(T−t)P2(s,v, t,K,T ) (6.2.3)

where v = Vt is the variance at time t, T is the maturity time, K is the strike price

and r is the risk free interest rate. The subscript sv j in the price Csv j is just to
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specify the price obtained from SVJ model. The same convention is also followed

for Heston and MSV model.

For j = 1,2,

Pj(s,v, t,K,T ) =
1
2
+

1
π

∫
∞

0
Re
[

e−iφ lnK f j(s,v, t,φ ,T )
iφ

]
dφ , (6.2.4)

where the characteristic function f j of Pj is

f j(s,v, t,φ , t + τ) = eA(1 j)(τ,φ)+A(2 j)(τ,φ)v+iφs+β j(τ) (6.2.5)

with τ = T − t and β j(τ) = rτδ j,2; δ j,2 = 1 for j = 2 and 0 for j = 1. The other terms

are

A(1 j)(τ,φ) =rφ iτ− (λJiφ +λJδ j,1 + rδ j,2)τ +λτ

[
e(iφ+δ j,1)n− e(iφ+δ j,1)m

(n−m)(iφ +δ j,1)
−1
]
+A

′
(1 j)(τ,φ),

(6.2.6)

A(2 j)(τ,φ) =
b j−ρσφ i+d j

σ2

(
1− ed jτ

1−g jed jτ

)
, (6.2.7)

and

A
′
(1 j)(τ,φ) =

κθ

σ2

[
(b j−ρσφ i+d j)τ−2ln

(
1−g jed jτ

1−g j

)]
(6.2.8)

with

g j =
b j−ρσφ i+d j

b j−ρσφ i−d j
,

d j =
√
(ρσφ i−b j)2−σ2(2α jφ i−φ 2),

and

α1 =
1
2
, α2 =

−1
2
, b1 = κ−ρσ , b2 = κ (6.2.9)

The unknown parameters of this model are κ, θ , σ , ρ, v, λ , m and n.

After the SVJ model, we give the MSV model of Fouque and Lorig [37].

6.2.2 Multiscale Stochastic Volatility Model

Fouque and Lorig [37] extended the Heston stochastic volatility model to a MSV

model by considering an additional fast mean-reverting volatility factor in

the Heston stochastic volatility model. This model is given below.
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Under P∗, the dynamics of stock price Xt is given as

dXt = rXtdt +ηtXtdW x
t (6.2.10)

here ηt =
√

Vt f (Yt). Yt and Vt are respectively the fast and the slow scale factors

of volatility with their dynamics given as

dYt =
Vt

ε
(m−Yt)dt +µ

√
2

√
Vt

ε
dW y

t (6.2.11)

and

dVt = κ(θ −Vt)dt +σ
√

VtdW v
t (6.2.12)

W x
t ,W y

t and W v
t are the standard Brownian motions for the stock price process

and for the fast and the slow factors of volatility respectively with E(dW x
t .dW y

t ) =

ρxydt, E(dW x
t .dW v

t )= ρxvdt, and E(dW y
t .dW v

t )= ρyvdt. ρxy, ρxv and ρyv are constants

which satisfy ρ2
xy < 1,ρ2

xv < 1,ρ2
yv < 1 and ρ2

xy +ρ2
xv +ρ2

yv−2ρxyρxvρyv < 1.

The fast factor of volatility, Yt follows the OU process with the mean-reversion

rate Vt/ε and volatility of volatility parameter µ
√

2
√

Vt
ε

. ε > 0 is very small so that

Yt is fast mean-reverting towards its long-run mean m. The slow volatility factor Vt ,

as already explained for SVJ model, is the square root process. It slowly reverts

to its long-run mean θ .

Fouque and Lorig [37] used the perturbation technique to obtain the expression

for European call option prices. The asymptotic expansion of price in powers of
√

ε is given as

Cε
msv(x,y,v, t) =C0 +

√
εC1 + εC2 + ... (6.2.13)

They obtained the first order approximation to the price of the European call

option as

Cε
msv(x,v, t)≈C0(x,v, t)+

√
εC1(x,v, t)

This price approximation is clearly independent of the fast factor of volatility and

depends only on the slow volatility factor v. The approximated price is perturbed

around the Heston price C0 at the effective correlation ρxv < f >, where < f > is

the average of f (y) with respect to long-run distribution of the volatility factor Yt .

The first order approximation term C1 is

C1 = esQ1(s,v, t,K,T )−Ke−r(T−t)Q2(s,v, t,K,T ) (6.2.14)
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where s = lnx. For j = 1,2

Q j(s,v, t,K,T ) =
1
2
+

1
π

∫
∞

0
Re
[

e−iφ lnKq j(s,v, t,φ ,T )
iφ

]
dφ (6.2.15)

The characteristic function q j of Q j is

q j(s,v, t,φ , t + τ) = (κθ q̂0(τ,φ)+ vq̂1(τ,φ))(e
A
′
(1 j)(τ,φ)+A(2 j)(τ,φ)v+iφs

) (6.2.16)

here

q̂0(τ,φ) =
∫

τ

0
q̂1(z,φ)dz,

q̂1(τ,φ) =
∫

τ

0
B(z,φ)eA(3 j)(τ,φ ,z)dz

with

A(3 j)(τ,φ ,z) = (b j−ρσφ i+d j)
1−g j

d jg j
ln
(

g jed jτ −1
g jed jz−1

)
B(τ,φ) =−(V1A(2 j)(τ,φ)(2α jφ i−φ

2)+V2A2
(2 j)(τ,φ)(φ i)+V3(2α jφ

3i+φ
2)

+V4A(2 j)(τ,φ)(−φ
2)) (6.2.17)

All the other terms are already given in Eq.(6.2.8) to Eq.(6.2.9). The unknown

parameters of this model are κ, θ , σ , ρ, v, V1, V2, V3 and V4.

In the next section, the empirical analysis is conducted to compare these models.

6.3 Empirical Analysis and Discussion of Results

For the empirical analysis, the data of S&P 500 index options is considered from

January 4, 2016 with maturity ranging from 30 days to 180 days and moneyness

from 75% to 125%. The risk free rate of interest is the yield on 3-month “U.S.

government treasury bill”. Firstly, the unknown parameters of each model are

calibrated using non-linear least square optimization. Once the parameters are

obtained, the models’ fit to the market implied volatilities for the S&P 500 index are

captured and plotted against log moneyness. To compare the pricing performance,

the mean relative error of each model price is calculated corresponding to the

market option price data. These methods are explained in following subsections.
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6.3.1 Calibration of Model Parameters

The unknown parameters of Heston stochastic volatility model, SVJ model and

MSV model are calibrated using the data of S&P 500 index options. Let M1, M2

and M3 denote the parameter sets of unknown parameters of Heston, SVJ and

MSV model respectively , such that

M1 = (ζ ,ρ,σ ,θ ,v)

M2 = (ζ ,ρ,σ ,θ ,v,λ ,m,n)

M2 = (ζ ,ρ,σ ,θ ,v,V1,V2,V3,V4) (6.3.1)

here all of these unknown parameters are already mentioned in Section 6.2 except

ζ , which is obtained from the condition 2κθ ≥ σ2 of the CIR process (6.2.2) such

that ζ = κ− σ2

2θ
, ζ ≥ 0 . Thus, the rate of mean-reversion κ = ζ + σ2

2θ
is obtained

from the calibrated values of ζ , σ and θ .

These parameters are calibrated by non-linear least square optimization using

MATLAB2012b. The objective function is defined as:

∆
2
h(M1) = ∑

j
∑
i( j)

(Cmkt(Tj,Ki( j))−Ch(Tj,Ki( j),M1))
2 (6.3.2)

∆
2
sv j(M2) = ∑

j
∑
i( j)

(Cmkt(Tj,Ki( j))−Csv j(Tj,Ki( j),M2))
2 (6.3.3)

∆
2
msv(M3) = ∑

j
∑
i( j)

(Cmkt(Tj,Ki( j))−Cmsv(Tj,Ki( j),M3))
2 (6.3.4)

where Cmkt(Tj,Ki( j)) is the market price of call option with maturity Tj. For each

expiration Tj, the available collection of strike prices is Ki( j). Similarly,

for a particular value of Tj and Ki( j), Ch(Tj,Ki( j),M1), Csv j(Tj,Ki( j),M2) and

Cmsv(Tj,Ki( j),M3) are the prices of the European call options with expiration date

Tj and exercise price Ki( j), calculated from the Heston stochastic volatility model

with parameter set M1, SVJ model with the parameter set M2 and MSV model with

the parameter set M3 respectively.
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The optimal set of parameters M∗1 ,M∗2 and M∗3 is obtained which satisfies

∆
2
h(M

∗
1) = minM1(∆

2
h(M1))

∆
2
sv j(M

∗
2) = minM2(∆

2
sv j(M2))

∆
2
msv(M

∗
3) = minM3(∆

2
msv(M3)) (6.3.5)

Firstly, the optimal parameter set for the Heston stochastic volatility model,

M∗1 , is calibrated. Once the M∗1 is obtained, the initial iteration for SVJ model is

taken as (M∗1 , 50, −0.01, 0.01) with the lower and upper bounds for the last three

components as (1, −1, 0) and (100, 0, 1) respectively. Similarly, the initial iteration

for MSV model is taken as (M∗1 , 0.0001, 0, 0, 0) with the lower and upper bounds

for last four components as (−0.05, −0.05, −0.05, −0.05) and (0.05, 0.05, 0.05, 0.05)

respectively.

Using the optimal parameter set, the implied volatility fit for all the three models

is obtained and is plotted against log moneyness (logK
X ). The models fit are

compared relative to market implied volatility (MV) data. It is given in Fig.6.1

to Fig.6.3 for time to maturity 30 days, 90 days and 180 days respectively.
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Figure 6.1: Models’ fit to the implied volatilities of S&P 500 index with 30 days to
maturity
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Figure 6.2: Models’ fit to the implied volatilities of S&P 500 index with 90 days to
maturity

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Log Moneyness

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Im
p

li
e

d
 V

o
la

ti
li

ty

Calibrated Implied Volatilities (time to maturity = 180days)

MV Data
Heston Fit
SVJ Fit
MSV Fit

Figure 6.3: Models’ fit to the implied volatilities of S&P 500 index with 180 days to
maturity



147

The parameters are calibrated from the whole data but the results are given and

discussed for the different maturity times, separately.

Along with this, the mean relative error of the prices obtained from Heston

stochastic volatility model, SVJ model and MSV model, with the market data

of S&P 500 index option, is calculated at different maturity time. It is given in

Subsection 6.3.2.

6.3.2 Mean Relative Error

For a particular model with price Cmodel(Tj,Ki( j),Θ) at different values of Tj and

Ki( j), the mean relative error (MRE) of model price with respect to market price,

at time to maturity Tj is given as

MRE( j) =
1

N j
∑
i( j)

|Cmodel(Tj,Ki( j),Θ)−Cmkt(Tj,Ki( j))|
Cmkt(Tj,Ki( j))

(6.3.6)

where N j is the different number of call options that has expiry at time Tj, Θ is the

optimal parameter set for the given model.

The mean relative error of Heston stochastic volatility model, SVJ model and

MSV model is calculated for S&P 500 index data set. The maturity time is taken

from 30 days to 180 days. Corresponding to a particular maturity, the strike prices

range from 75% to 125%. The results are given in Table 6.1.

Table 6.1: The mean relative error of models prices with respect to market data.

Models
Maturity Time (T) Heston SVJ MSV

30 days 0.0697 0.0499 0.0225
90 days 0.0874 0.0987 0.0456

180 days 0.0284 0.1070 0.0380

Now, we discuss the results obtained in Fig.6.1 to Fig.6.3 and in Table6.1.

From the models fit to the implied volatility given in Fig.6.1 to Fig.6.3, it is clearly

observable that the MSV model performs in an improved way in comparison to

Heston stochastic volatility model and the SVJ model. For ATM and near the

money options, all the three models give equivalent results. The difference is

observable for ITM and OTM options.
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In Fig.6.1, the maturity time is short, that is 30 days. For such options, the

Heston model fit to market implied volatility is not good. This supports the empirical

findings that the Heston model poorly performs for short term options. The SVJ

model performs better than Heston model and MSV model for deep ITM options,

but as the log moneyness value increases, MSV model outperforms both Heston

model and SVJ model.

In Fig.6.2, the maturity time is medium, that is 90 days. The implied volatility

fit of Heston model is improved for the OTM options. For ITM options, implied

volatility fit of MSV model is better than the implied volatility fit of Heston model.

The Heston model fit is equivalent to the SVJ model fit to market implied volatility.

In Fig.6.3, at the longer maturity, which is 180 days, all of the three models

give almost similar fit for ITM options but for OTM options the Heston model

outperforms the other two models. The implied volatility fit of MSV model is better

than the fit of SVJ model to the market implied volatilities.

Thus, out of SVJ model and MSV model, the overall fit of MSV model to the

market implied volatility is better than SVJ model.

Additionally, from Table6.1, the pricing performance of three models is

compared in terms of mean relative error of models prices with the market option

price data. For the short and medium term options with maturity 30 and 90 days

respectively, the mean relative error of MSV model is least. Thus the MSV model

performs better than the SVJ model and Heston model in pricing. For maturity

time 30 days, SVJ model performs better than Heston model in pricing, but for

maturity 90 days, Heston model gives better pricing performance.

For the long term options with maturity 180 days, the MSV model performs better

than SVJ model and Heston model outperforms the SVJ and MSV model.

Thus, out of SVJ model and MSV model, the overall pricing performance of

MSV model is better than SVJ model for the data set under consideration.

6.4 Conclusion

The two extensions of Heston stochastic volatility model, already proposed in

literature, are studied and compared in this chapter on the basis of their fit to

the market implied volatility and pricing performance. An empirical analysis is

conducted on S&P 500 index options data and the results are obtained for all the
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three models. We obtained that for the data set under consideration and out of the

two models considered in this study, multiscale stochastic volatility performs better

than the stochastic volatility jump model. Thus, we conclude that the inclusion of

additional volatility factor to a stochastic volatility model enhances its fit to the

market implied volatility and improves its pricing performance in comparison to

the addition of jump factors to the underlying stock price process.





Conclusion and Further Scope of the

Work

The motive of the work reported in this thesis was to mathematically study the

risk in the financial markets. The standard measure of risk is volatility and an

alternate measure of risk is entropy which is also an uncertainty measure. We

have explored both these aspects for the asset pricing and analysis of financial

log-return series.

The Black-Scholes model for pricing European options was a turning point in

the history of option pricing. The model considered volatility to be constant and

lognormal distribution for the asset returns. Empirically, it was obtained that these

assumptions did not hold good in the actual market scenario. After 1987 stock

market crash, the model was extended in numerous ways. Many models were

proposed to capture the dynamic behaviour of volatility for the better accuracy of

the option pricing. Among these extensions, the stochastic volatility models were

the much reformed models because of their ability to capture many empirical

characteristics of volatility. The Heston stochastic volatility model became a very

popular single factor stochastic volatility model. These stochastic volatility models

with single factor of volatility were further improved, either by the addition of jumps

in the stock price or (and) the volatility process, or by the inclusion of additional

factors of volatility in the model, to capture the time varying nature of volatility.

The models with the additional factors of volatility, which varies at different time

scales, were named as the multifactor stochastic volatility models.

Amid these multifactor stochastic volatility models, Fouque et al. [39] proposed

a model with two factors of volatility, one varying on the fast time scale and another

on the slow time scale. Their model considered the diffusion of slow volatility

factor resulting from a simple time change. They did not emphasize much on the

dynamics of slow scale volatility factor which is the persistent volatility factor.
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This motivated us to introduce a new multifactor stochastic volatility model where

we have proposed to approximate slow volatility factor with a quadratic arc. This

model is firstly used to obtain the pricing formula and to capture the volatility

smiles for the European options. With this model, we have obtained a very

simple and easily implemented pricing formula for the European options with

only one unknown parameter which has been estimated from the implied volatility

calibration. To see the performance of this model for the path-dependent Asian

options, the model has further been extended to include additional factor

of randomness arose by geometric averaging in the pricing of floating and fixed

strike GAOs. A comparative study of a stochastic volatility jump model and a

multifactor stochastic volatility model has also been done to capture the market

implied volatility and for the pricing of European options, where we have found

that the multifactor stochastic model performs better than the stochastic volatility

jump model.

Entropy has widely been used for the asset pricing, portfolio selection and time

series analysis. Therefore, along with the stochastic volatility modeling, we have

worked on the entropy approach for the financial asset pricing and analysis of

asset log-return series. The concept of approximation of slow volatility factor

has been infused with the entropy maximization. For this, we have proposed

to calibrate the risk-neutral density function by the maximization of two-parameter

(Varma) entropy with the mean and variance constraint. For the variance

constraint, we have considered the quadratic expression of volatility. The

maximum entropy density function thus obtained has been used to price the

European options. The maximization of Varma entropy with additional volatility

constraint has generalized the maximization results of Shannon, Rényi and Tsallis

entropies for the calibration of risk-neutral density function and pricing of European

options. Also, the consideration of two-parameter entropy has given the additional

degrees of freedom. Additionally, for the analysis of asset log-return series, two-

parameter permutation entropy has been proposed and extended to include

multiscales and weights. The end point overlapping scheme for averaging the

time series has been proposed. A new weighting scheme has also been proposed.

The two-parameter multiscale permutation entropy and two-parameter weighted

multiscale permutation entropies thus proposed have been used to analyse the

asset log-return series.
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Throughout this thesis, we have verified our results on the actual market data of

stock indices. We have mainly used S&P 500 index closing price data, and S&P

500 index options data with different maturity and strike prices for both European

and geometric Asian call options. Along with this, FTSE 100 index options data

with different maturity and strike prices is also used for the empirical analysis. We

have used MATLAB2012b and Excel2013 for the numerical computations and

graphical representation of the results.

Further Scope of the Work

While working on this thesis several ideas have come up in our minds, which

could be of great potential to study further.

The proposed multifactor stochastic volatility model can be extended for the

pricing of American and other path-dependent options.

The foreign exchange options market is the deepest, largest and the most liquid

market for options of any kind. In 1983, Garman and Kohlhagen [47] extended

the Black-Scholes model for the foreign exchange option pricing to cope with the

presence of two interest rates. The model proposed in Chapter 2 has been used

to price only stock index options and can be extended for the pricing of foreign

exchange options.

The interesting issue of the relationship between the densities generated by

the stochastic volatility model and the maximum entropy density function can be

explored in the future work.

We have introduced a two-parameter permutation entropy and have shown

empirically with S&P 500 index data set that the two-parameter weighted

multiscale permutation entropy using new weighting scheme and using end point

overlapping average gives improved results. This entropy can be further

used for the comparative analysis of different stock indices.
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