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Preface

The various information theoretic measures for example Shannon entropy mea-

sure [104] and its various additive generalizations like Renyi entropy [99], and

Varma entropy [122], and non-additive generalizations like Havrda and Charvat

entropy measure [56] have applications in different fields like statistics, physics,

electronics etc. All these are based on single random variable. So by taking idea

from this, we try to explore the behaviour of various information theoretic mea-

sures when these are applied on the sequence of record random variables and

on the sequence of k-record random variables. In this thesis we study generalized

Varma entropy measure, Kerridge inaccuracy measure, Kullback-Leibler discrim-

ination measure, cumulative residual inaccuracy measure and entropy measure

for past lifetime for the sequence of record values. We introduce these measures

for record values and study some characterization results based on them.

This thesis includes seven chapters including the first chapter which is on intro-

duction and literature survey. The thesis is organized as follows:

In Chapter 2, we have considered a measure of past entropy based on Shan-

non [104] entropy measure for nth upper k-record value. A characterization result

for the measure under consideration has given. We have discussed some basic

properties of the proposed measure. Also we have constructed some bounds to

the proposed past entropy measure for nth k-records. The work reported in this

chapter has been published in the paper entitled, Measure of Entropy for Past

Lifetime and k-Record Statistics in Physica A, 2018, 503, 623-631.

In Chapter 3, we have introduced a measure of inaccuracy between distribu-

tions of the nth record value and parent random variable and discussed some
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properties of it. It has also been shown that the proposed inaccuracy measure

characterizes the distribution of parent random variable uniquely. Measure of in-

accuracy for some specific distributions has also been studied. Fα distributions

are equally important, so keeping this in mind we have also studied inaccura-

cy measure for Fα distributions. The part of the work reported in this chap-

ter has been published in the paper entitled, Kerridge Measure of Inaccura-

cy for Record Statistics in Journal of Information and Optimization Sciences,

2018, 39(5), 1149-1161 and some work has been presented in the International

Conference on interdisciplinary Mathematics, Statistics and Computational

Techniques held at Manipal University, Jaipur, Dec 22-24, 2016.

In Chapter 4, we have studied a measure of inaccuracy between nth upper

k-record value and mth upper k-record value. A simplified expression for the pro-

posed inaccuracy measure has also been derived to find the inaccuracy measure

for some specific probability distributions. We have also shown that the proposed

inaccuracy measure characterizes the underlying distribution function uniquely.

Further we have considered residual measure of inaccuracy between two k-record

values and given a characterization result for that. The results reported in this

chapter have been published in the paper entitled, Measure of Inaccuracy and

k-Record Statistics in Bulletin of Calcutta Mathematical Society, 2018, 110 (2),

151-166 and some work has been presented in National Seminar on Recen-

t Developments in Mathematical Sciences held at MDU, Rohtak, Mar 07-08,

2017.

In Chapter 5, we have provided an extension of cumulative residual inaccuracy

as suggested by Taneja and Kumar [116] to k-record values. We have studied

some properties of this measure. Also we have studied some stochastic ordering

and have found the proposed measure for some of the distributions which occur

often in many realistic situations and have applications in various fields of science

and engineering. The work reported in this chapter is communicated under the ti-

tle, Cumulative Residual Inaccuracy Measure for k-Record Values and some

work has been presented in International Conference on Recent Advances

in Pure and Applied Mathematics held at Delhi Technological University, Delhi,

Oct 23-25, 2018.
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In Chapter 6, we have provided an extension of Kullback-Leibler [66] informa-

tion measure to k-record values. The distance between two k-record distributions

of residual lifetime has been found. We have found the measure of discrepancy

between nth k-record value and mth k-record value. Also keeping the record times

fixed, we have derived the distance between k-record value and l-record value.

We have also studied some properties of the measure proposed and a characteri-

zation result for that. The work reported in this chapter is communicated under the

title, A Measure of Discrimination Between Two Residual Lifetime Distribu-

tions For k-Record Values and some work has been presented in International

Research Symposium on Engineering and Technology held at Singapore, Au-

gust 28-30, 2018.

In Chapter 7, we have considered and studied a generalized two parameters

entropy based on Varma’s entropy [122] function for k-record statistic. A general

expression for this entropy measure of k-record value has been derived. Further-

more based on this, we have proposed a generalized residual entropy measure

for k-record value and proved a characterization result that the proposed mea-

sure determines the distribution function uniquely. Also, an upper bound to the

dynamic generalized entropy measure has been derived. The part of the work

reported in this chapter has been communicated under the title, On Generalized

Information Measure of Order (α,β ) and k-Record Statistics.

In the last we have presented the conclusion of the work reported in this thesis

and further scope of work.
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Chapter 1

Introduction And Literature Survey

1.1 An Outline Of Information Theory

Information Theory is a branch of applied mathematics which deals with the

problems like information processing, information storage, information retrieval,

information utilization and decision-making. Basically it deals with all the theo-

retical problems which come across in the transmission of information over the

communication channels. Information Theory has found applications in various

fields like electrical engineering, financial mathematics, statistical modeling and

image processing etc. Although the first attempt in this direction was made by

Nyquist [90] and Hartley [55] considering the entropy measure for equally proba-

ble events, yet the theoretical foundation for all these developments dates backs

to the work of Shannon [104] and others in the mid of the 20th Century which led

to the development of information theory as a field of mathematics. The theory

basically considers following three fundamental questions:

• Compression: How much can data be compressed (coded) so that another

person can recover an identical copy of the uncompressed data?

• Lossy data compression: How much can data be compressed so that an-

other person can recover an approximate copy of the uncompressed data?

• Channel capacity: How quickly reliable communication is possible from the

source to destination through a noisy medium?

1
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It is concerned with the mathematical laws governing systems designed to com-

municate or manipulate information. Being an electrical engineer Shannon’s goal

was to get maximum line capacity with minimum distortion. He was interested in

the technical problems of high -fidelity transfer of message rather than semantic

meaning of a message or its pragmatic effect on the listener.The second half of

the 20th Century was characterized by the tremendous development of systems

in which the transmitted information (analog signal) is coded in a digital form. By

this coding the real nature of the information signal becomes secondary, that is,

the same system can transmit simultaneously signals of very different nature: da-

ta, audio, video etc. This development has been made possible by use of more

and more powerful integrated circuits.

In spite of the fact that Shannon presented entropy as a measure of uncertainty in

the communication theory, the measure has kept on finding diverse application-

s in a variety of disciplines including mathematics, physics, biological sciences,

pattern recognition etc, refer to [58,101,108,119]. Another important area where

information theoretic measures have found applications is that of reliability. Many

researchers have studied the information-theoretic measures based on lifetime

distributions of a system e.g. Ebrahimi [36], Ebrahimi and Kirmani [40], Asa-

di and Ebrahimi [11], Belzuence et al. [21], Nanda and Paul [88] and Kumar et

al. [69,70]. Another area of application of information theory which has drawn the

attention of researchers is order statistics and record values. Many researchers

have worked in the field connecting information theory and order statistics, re-

fer to, Baratpour [19, 20], Ebrahimi et al. [42] and Asadi and Zarezadeh [127],

Park [92], Ebrahimi et al. [42], Thapliyal and Taneja [120] and Thapliyal et al. [121]

. Many have done work for the information measures contained in the sequence

of record values. The information measures for record values have been investi-

gated by several authors, including Zahedi and Shakil [126], Baratpour et al. [19]

and Arghami and Abbasnejad [10]. To get rid of some of the difficulties in oc-

currence of record data, Dziubdziela and Kopocinski [35] introduced the model

of k-record statistics. Instead of observing the sequence of largest values as in

case of record values, he observed the sequence of kth largest values. The field

of k-record values has become the subject of interest for many researchers and

mathematicians refer to Ahmadi and Doostparast [6], Ahmadi and Mohtashmi [7].

Motivating by this, in this thesis, we study the information theoretic measures for

the record values and further for k-record values.
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1.2 Entropy Measure And Its Generalizations

1.2.1 Shannon’s Entropy

Shannon introduced a measure of information or entropy for a general finite

complete probability distribution and gave a characterization theorem for the en-

tropy measure introduced. Entropy as defined by Shannon [104] and added

upon by other physicists is closely related to thermodynamical entropy. Infact,

Shannon borrowed the idea of entropy from the second law of thermodynamic-

s, according to this law the universe is winding down from an organized state to

chaos, moving from predictability to uncertainty. Entropy is a measure of random-

ness. How much information a message contains is measured by the extent it

combats entropy. The less predictable the message, the more information it car-

ries. Consider the random variable X = {X1,X2, ...Xn} with probability distribution

P = {p1, p2, ..., pn}, then the Shannon’s entropy is defined as

H(P) =−
n

∑
i=1

pi log pi , 0 ≤ pi ≤ 1,
n

∑
i=1

pi = 1 (1.2.1)

Here it is assumed that 0log0 = 0; and normally the base of the logarithm is taken

as 2, and then, the units are ’bits’ a short of the term ’binary digit’. Shannon en-

tropy provides the measure of average uncertainty associated with the outcome

of the experiment or a measure of information conveyed through the knowledge of

the probabilities associated with the events. It satisfies following important prop-

erties which are usually considered desirable for a measure of uncertainty defined

in terms of probability distributions:

1. Non-negativity: H(P) is always non-negative, that is,

H(P) =−
n

∑
i=1

pi log pi ≥ 0 . (1.2.2)

The result is obvious since −pi log pi ≥ 0 for all i. It becomes zero, if one

pi = 1 and rest are zeros.

2. Maxima: H(p1, p2, . . . . . . , pn)≤ logn, with equality when pi =
1
n for all i.
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3. Continuity: H(p1, p2, . . . . . . , pn) is a continuous function of pi’s, that is, a

slight change in the probabilities pi’s results in the slight change in the un-

certainty measure also.

4. Symmetry: H(p1, p2, . . . . . . , pn) is a symmetric function of pi’s, that is, it is

invariant with respect to the order of the outcomes.

5. Grouping (or, Branching) Property:

H {p1, p2, p3, · · · , pn} = H{p1 + · · ·+ pr, pr+1 + · · ·+ pn}+(p1 + · · ·+ pr)×

H
(

p1

∑r
i=1 pi

, · · · , pr

∑r
i=1 pi

)
+(pr+1 + · · ·+ pn)H

(
pr+1

∑n
i=r+1 pi

, · · · , pn

∑n
i=r+1 pi

)

for r = 1,2, · · ·n−1.

6. Additivity: If P = (p1, p2, . . . . . . , pn) and Q = (q1,q2, . . . . . . ,qn) are two inde-

pendent probability distributions, then

H(P•Q) = H(P)+H(Q),

where P •Q is the joint probability distribution, that is, for two independent

distributions entropy of the joint distribution is the sum of the entropies of the

two marginal distributions.

Corresponding to (1.2.1), for a continuous probability distribution f (x), the mea-

sure of uncertainty is defined as

H(X) =−E[log f (X)] =−
∫ ∞

0
f (x) log f (x)dx . (1.2.3)

In general, this measure is termed as differential entropy, for more details refer

to McEliece [80]. Unlike the uncertainty measure (1.2.1) defined for discrete ran-

dom variable which is always positive, the differential entropy can take negative

value as well. The measure (1.2.3) has also been extensively studied by many

researchers.
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1.2.2 Generalizations

We have seen that Shannon entropy satisfies a number of useful properties

like non-negativity, continuity, symmetry, additivity, grouping, etc. Many of the

researchers have used some of these properties as axioms to characterize the

Shannon entropy. The most intuitive and compact axioms for characterizing the

Shannon entropy function have been given by Khinchin [65], which are known as

the Shannon-Khinchin axioms. Many other researchers have also characterized

Shannon entropy using different set of axioms. For some further results on char-

acterization and the algebraic properties of Shannon entropy refer to Aczel and

Darocozy [3].

Though Shannon’s entropy is at the focus in information theory, yet the idea of

information is so rich enabling no single definition that will have the capacity to

measure information legitimately. Hence, many researchers presented the para-

metric group of entropies as a mathematical generalization of Shannon’s entropy.

These entropies are functions of some parameters and tend to Shannon entropy

when these parameters approach their limiting values. For the first time, this was

done by Renyi [99] who characterized a scalar parametric entropy as entropy of

order α, which is additive in nature and includes Shannon entropy as a limiting

case given as

Hα(P) =
1

1−α
log

{
n

∑
i=1

pi
α

}
; α ̸= 1, α > 0. (1.2.4)

The additional parameter α makes it more sensitive to the shape of probability

distributions. When α → 1, the Renyi entropy becomes Shannon entropy and

it is substantially more versatile because of the parameter α, permitting several

measurements of uncertainty with in a given distribution. Analogous to (1.2.4),

the Renyi entropy for continuous random variable X , is given as

Hα(X) =
1

1−α
log
{∫ ∞

0
f α(x)dx

}
; α ̸= 1, α > 0. (1.2.5)

Another important generalization of Shannon entropy is given by Varma [122] who
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introduced a entropy measure, which is again additive in nature as

Hα
β (X) =

1
β −α

log
{∫ ∞

0
f α+β−1(x)dx

}
, β −1 < α < β ,β ≥ 1. (1.2.6)

It reduces to Renyi entropy measure (1.2.5) when β = 1 and Shannon entropy

measure when β = 1, α → 1.

In some realistic situations, the entropy measures which are additive in nature

are not able to justify the behaviour observed. So keeping this in mind, various

researchers introduced the non-additive entropy measures. In 1967, Havrda and

Charvat [56] introduced the entropy measure, non-additive in nature as

Hω(P) =
1

1−ω

[
n

∑
i=1

pω
i −1

]
, ω ̸= 1, ω > 0. (1.2.7)

Continuous analogous of (1.2.7), is given as

Hω(X) =
1

1−ω

[∫ ∞

0
f ω(x)dx−1

]
, ω ̸= 1, ω > 0. (1.2.8)

Also other than the entropy measures mentioned above there are several entropy

measures available in the literature invented by various researchers refer to e.g.

Kapur [60,61], and Sharma and Taneja [105].

1.3 Relative Measure Of Discrimination And Measure Of

Inaccuracy

Since the entropy measures have been considered as measure of information

contained in a given probability distribution, it is normal to examine measures

which allow one to evaluate the amount of information shared between two prob-

ability distributions or how close two distributions are from each other. One of

the most important and useful measure of distance was given by Kullback and

Leibler [66]. If P = {p1, p2, . . . , pn} is the actual probability distribution associated

with the outcomes X = {X1,X2, . . . ,Xn} and Q = {q1,q2, . . . ,qn} is the predicted (or

reference) distribution associated with the same experiment. Also pi ≥ 0, qi ≥ 0

and ∑n
i=1 pi = ∑n

i=1 qi = 1, then Kullback’s measure of relative information [66] is
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given by

H(P/Q) =
n

∑
i=1

pi log
pi

qi
. (1.3.1)

It is assumed that whenever qi = 0, the corresponding pi is also zero and 0log 0
0 =

0. The different authors gave this measure many different names such as measure

of discrimination, cross entropy, directed divergence, relative information etc. This

measure plays an important role in information theory. It quantizes the discrimina-

tion between two probability distributions and we observe that H(P/Q) = 0, when

pi = qi ∀ i. Some generalizations of the measure have been studied by Taneja

and Kumar [116], Taneja [113] and Kapur [60,61].

Another important concept is that of inaccuracy measure. In making a state-

ment about the probabilities of different outcomes in performing an experiment,

generally there is possibility of two types of errors, to be specific, one due to the

insufficient information and other from inaccurate information. Shannon entropy

measure is capable to explain the error resulting from ambiguity only. The mea-

sure which considered the both type of errors was given by Kerridge [63] as

H(P;Q) =−
n

∑
i=1

pi logqi , (1.3.2)

where qi is the predicted probability and pi is the actual probability of an outcome.

This is a generalization of Shannon entropy [104] in the sense that when qi = pi

for all i′s, then (1.3.2) reduces to (1.2.1), the Shannon entropy measure. The

measure of information, discrimination and inaccuracy are connected as

H(P;Q) = H(P)+H(P/Q) , (1.3.3)

that is, inaccuracy is the sum of entropy and discrimination. For a continuous

random variable Nath [83] extended Kerridge’s inaccuracy as

H( f ;g) =−
∫ ∞

0
f (x) logg(x)dx , (1.3.4)

Also he discussed some properties of it. Here f (x) denotes the actual distribution

and g(x) denotes the predicted distribution.
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Corresponding to the measure (1.3.1), the measure for relative information for

continuous random variable is given as

H( f/g) =
∫ ∞

0
f (x) log

f (x)
g(x)

dx . (1.3.5)

The Shannon’s entropy, Kullback-Leibler’s relative information and Kerridge’s in-

accuracy are the three classical measures of information associated with one and

two probability distributions.

1.4 Some Basic Concepts In Reliability Theory

Consider a random variable X representing the lifetime of a system or a com-

ponent and F(x) as its distribution function. There are many other functions like

survival function or reliability, Hazard rate function, reverse hazard rate function,

mean residual life function, mean inactivity time, which describe the distribution

of the random variable X completely. Next, we explain all these.

1.4.1 Reliability

Reliability or the survival function is defined as the probability that a given com-

ponent or a system will perform its required function without failure for a given

period of time when used under stated operating conditions. Consider a random

variable X with pdf f (x) and the distribution function F(x) representing the lifetime

of a component, then reliability is

F(x) = Pr(X > x) =
∫ ∞

x
f (u)du ,

Here F̄(x) = 1−F(x) is simply the survival function. It should be noted that F̄(x)

is a decreasing function of x with F̄(0) = 1 and limx→∞ F̄(x) = 0. We can obtain

the probability density function f (x) of X from its survival function F(x) by the

relationship

f (x) =− d
dx

F(x).
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1.4.2 Hazard Rate Function

The hazard rate function, also known as the conditional failure rate , is a non-

negative function given as

λ (x) = lim
∆x→0

P(x < X < x+∆x|X ≥ x)
∆x

.

Above expression represents the conditional probability of an item failing in the

interval (x,x+∆x) provided it has not failed by time x.

It is easy to see that for a continuous random variable X it is given by

λ (x) =
f (x)
F(x)

=− d
dx

logF(x). (1.4.1)

In the discrete domain, with non-negative integral support, Xekalaki [125] defines

the failure rate for a random variable X , as

λ (x) =
P(X = x)
P(X ≥ x)

. (1.4.2)

If X represents the lifetime of a component, then λ (x) is the probability that the

component will fail at X = x given that it has not failed up to the time before x.

The units of λ (x) are probability of failure per unit of time, distance or cycle. In

reliability analysis, a life distribution can be classified according to the shape of its

hazard rate function λ (x). Taking the bathtub curve, the early failure period has a

decreasing hazard function as time goes by; the useful life period has a constant

hazard function, and the wear-out period has an increasing hazard function. The

hazard rate function and survival function F(.) holds the relationship

F(x) = exp{−
∫ x

0
λ (t)dt} . (1.4.3)

1.4.3 Reverse Hazard Rate Function

The concept of reversed hazard rate is of great interest for many researchers,

refer to Keilson and Sumita [64]. It is useful especially in survival analysis and

reliability. The reversed hazard rate for a non-negative random variable X is given
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as

µ(x) = lim
∆x→0

P(x−∆x < X < x|X ≤ x)
∆x

. (1.4.4)

For a continuous random variable X which denotes the lifetime of a component,

the reversed hazard rate is given as

µ(x) =
f (x)
F(x)

=
d
dx

logF(x) .

Here f (x) and F(x) are the probability density function and the distribution function

of the random variable X . For the discrete random variable with non-negative

integral support reversed hazard rate function is given as

µ(x) =
P(X = x)
P(X < x)

. (1.4.5)

We can also compute the distribution function from reversed hazard rate function

uniquely using the relation

F(x) = exp
(
−
∫ ∞

x
µ(t)dt

)
.

We can see that the hazard rate and reversed hazard rate functions are related

as

µ(x) =
λ (x)F(x)

F(x)
. (1.4.6)

Finkelstein [45] has given that

µ(x) =
λ (x)

exp(−
∫ x

0 λ (t)dt)−1
. (1.4.7)

The reversed hazard rate function has found applications in forensic sciences to

know the exact time of failure of a system or a unit. For more details, one can

refer to Block et al. [23], Di Crescenzo [30], Gupta and Nanda [53], Gupta and

Wu [54], Nair et al. [85] and Sengupta et al. [102].

1.4.4 Mean Residual Lifetime Function

While discussing reliability theory, the mean residual life (MRL) of a system or

a component is another important aspect to discuss. It provides an idea of how
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long a device of any particular age can be expected to survive. It provides an idea

to improve the average lifetime of a system.

For a continuous random variable X with E(X)< ∞, the mean residual life func-

tion is defined as

δ (t) = E[X − t|X > t] =
∫ ∞

t F(x)dx
F(t)

. (1.4.8)

If we have some idea about the expected duration for which the component un-

der consideration will continue to work, then it becomes easy to replace or to

re-schedule that component. While constructing the maintenance policies, this

proves to be more useful than the failure rate. To study various properties and ap-

plication of mean residual life function one can refer to Barlow and Proschan [18],

Swartz [111] and Muth [82].

The relation between survival function and mean residual life function is given

as

F(t) =
δF(0)
δF(t)

exp
[
−
∫ t

0

dx
δF(x)

]
. (1.4.9)

Further failure rate is connected with the mean residual life function as

λF(t) =
δ ′

F(t)+1
δF(t)

. (1.4.10)

Several researchers have studied the characterizations problems of various prob-

ability models based on the mean residual life (MRL) function, refer to Sunoj et

al. [110] and Sullo and Rutherford [108] .

1.5 Hazard Models

In this section we discuss two types of dependence structures between two

probability distributions; one the proportional hazard model, and second, the pro-

portional reversed hazard model which have been extensively used in survival

analysis.

1.5.1 Proportional Hazard Model

The proportional hazard model was introduced by Cox [28] as a dependence

structure among two distributions. In literature, this model has been used to im-
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itate failure time data. This model is commonly known as Cox PH Model, but it

was basically introduced by Lehmann [74]. It is equally applicable for both dis-

crete and continuous random variables. It is quite useful for estimating the risk of

failure associated with a vector of covariates.

Consider two non-negative continuous random variables X and Y with the same

support denoting the time to failure of two systems with hazard rates λF(x) =
f (x)
F(x)

and λG(x) =
g(x)
G(x)

respectively, and if

λG(x) = βλF(x), (1.5.1)

where β is a positive constant, then this model is called proportional hazard model

(PHM).

We can easily see that (1.5.1) is equivalent to

Ḡ(x) = [F̄(x)]β , β > 0. (1.5.2)

This model is quite useful from application point of view . Many researchers

have found its applications in various fields such as reliability, medicine, survival

analysis, economics etc. Many have worked on the problems of characterization

of specific probability distributions using information theoretic measures under the

consideration of proportional hazards model refer to Ebrahimi and Kirmani [40],

Nair and Gupta [84] and Kumar [117].

Also there are some situations where the hazard rates of two random variables

are not proportional uniformly over the whole time interval, but may be proportion-

al differently in different intervals. To deal with such type of situations , Nanda and

Das [86] introduced the dynamic proportional hazard model (DPHM) and stud-

ied their properties for different aging classes. The dynamic proportional hazard

model can be obtained by proportional hazard model just by replacing β by some

non-negative function of some parameter t, then the model is defined as

λG(x) = β (t) λF(x), ∀ t > 0, (1.5.3)

which considers different proportionality for different time intervals.
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1.5.2 Proportional Reversed Hazard Model

Similar to proportional hazard model to analyze the failure time data Gupta et

al. [52] introduced another model called the proportional reversed hazard model

(PRHM). Later on Sengupta et al. [102] proved that in comparison to proportional

hazard model, proportional reversed hazard model gives a better fit for some data

set.

Consider two non-negative continuous random variables X and Y with the same

support and reversed hazard rates µX(x) =
f (x)
F(x) and µY (x) =

g(x)
G(x) respectively, and

if

µY (x) = β µX(x) , β > 0 (1.5.4)

then the model is called proportional reversed hazard model (PRHM).

Alternatively, this model is similar to

G(x) = [F(x)]β , (1.5.5)

where F(x) represents the baseline distribution function and G(x) represents the

reference distribution function.

When it comes to the analysis of right truncated data, proportional reversed haz-

ard model is more useful than proportional hazard model . Various authors have

studied properties and the comparison of both the models i.e. proportional hazard

model and proportional reverse hazard model, refer to Gupta and Gupta [49] and

Gupta and Wu [54]. Di Crescenzo [30] has studied some aging characteristics

and stochastic orders properties of proportional reversed hazard model . Similar

to dynamic proportional hazard model Nanda and Das [86] have proposed the

dynamic proportional reversed hazard model (DPRHM) which is defined as

µY (x) = β (t) µX(x) , (1.5.6)

which considers different proportionality for different time intervals.
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1.6 Dynamic Information Theoretic Measures

In various fields like reliability, survival analysis, actuary etc., the lifespan of a

system or a component is of prime importance. In such a situation information

theoretic measures as discussed earlier are not appropriate to measure the un-

certainty of such systems. So in the present section we discuss two types of

dynamic information theoretic measures :

(i) Residual information theoretic measures and

(ii) Past information theoretic measures

On the data which is left truncated, we apply the residual information theoretic

measures and on the data which is right truncated, we apply past information

theoretic measures.

1.6.1 Residual Information Theoretic Measures

If a system or a component has worked up to the time ’t ’, then the remaining

lifetime is called the residual lifetime of that system or component. Consider a

random variable X which represents the lifetime distribution of a component, then

the random variable [X − t|X > t] denotes the residual lifetime of that component.

To determine the uncertainty about the remaining lifetime of a system which has

already worked up to the time ’t ’, the Shannon’s differential entropy (1.2.3) is not

appropriate. So to deal with such type of systems, Ebrahimi [36] introduced the

concept of residual entropy. He proposed the dynamic measure of entropy based

on Shannon entropy as

H( f ; t) =−E[log ft(Xt)] =
∫ ∞

t
− ft(x) log ft(x)dx, (1.6.1)

where ft(x) denotes the probability density function of the random variable Xt =

[X − t|X > t] given as

ft(x) =


f (x)
F(t) ; if x > t

0 ; otherwise

H( f ; t) basically provides the expected uncertainty about the predictability of re-

maining lifetime of the unit contained in the conditional density of X −t given X > t.
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Using the probability density function of residual lifetime in (1.6.1), we get

H( f ; t) =
∫ ∞

t
− f (x)

F̄(t)
(x) log

f (x)
F̄(t)

dx. (1.6.2)

It is easy to see that the residual entropy in terms of hazard rate function can be

written as

H( f ; t) = −
∫ ∞

t

f (x)
F̄(t)

log
f (x)
F̄(t)

dx (1.6.3)

= log F̄(t)−
∫ ∞

t

f (x)
F̄(t)

log f (x)dx

= 1−
∫ ∞

t

f (x)
F̄(t)

logλF(x) , (1.6.4)

where λF(x) =
f (x)
F(x) is the hazard rate function.

Ebrahimi [36] has also shown that the residual entropy measure (1.6.2) deter-

mines the underlying distribution function uniquely. After Ebrahimi [36] introduced

the residual entropy measure, many researchers have studied various results

concerning the Shannon residual entropy measure. Rajesh and Nair [96] con-

siderd the discrete case and introduced the similar results. Asadi and Ebrahim-

i [11] have given characterization results using the relationship between dynamic

entropy and mean residual life of a system. Belzunce et al. [21] have studied

similar results for generalized residual entropy. Nanda and Paul [88] have studied

some characterization results for distributions based on a generalized residual

entropy function. For more details one can refer to Ebrahimi and Pellerey [41],

Ebrahimi [37], Sankaran and Gupta [100] and Ebrahimi [38].

Asadi et al. [12], Abraham and Sankaran [2], Baig and Dar [15] and Abbasne-

jada et al. [1] have also obtained some other results in connection with the Renyi

entropy and Varma entropy.

Next, analogous to Kullback-Leibler relative information measure (1.3.5), for two

non-negative continuous random variables X and Y with the same supports that

represent the lifetimes of two systems, Ebrahimi and Kirmani [39] proposed the
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measure of discrepancy between two residual-life distributions as

H( f/g; t) =
∫ ∞

t

f (x)
F̄(t)

log
f (x)/F̄(t)
g(x)/Ḡ(t)

dx (1.6.5)

= logG(t)−H( f ; t)−
∫ ∞

t

f (x)
F̄(t)

logg(x)dx .

H( f/g; t) can be interpreted as a measure of distance between ft(x) and gt(x) .

Here F̄(t) represents the actual survival distribution and Ḡ(t) represents the ref-

erence distribution. This measure is quite useful in ordering and classification of

survival function. Further results on this measure have been studied by Ebrahimi

and Kirmani [40] and Asadi et al. [12]. Also we can see that for each fixed t > 0,

H( f/g; t), has all the properties of the Kullback-Leibler discrimination information

measure H( f/g). Recently some extensions of (1.6.5) have given by Navarro et

al. [89] and the same have been used to characterize some bivariate distribution-

s. These distributions are also characterized in terms of proportional hazard rate

models and weighted distributions.

1.6.2 Past Information Theoretic Measures

In many real life situations, it is not always necessary that uncertainty is related

to the future but it can also be connected with the past. For example consider

a system which is examined at some preassigned time intervals, and it is found

dead at any time t, then the uncertainty of the system’s life is related with the

past. More specifically, consider a system which is examined at times ω,2ω,3ω,

. . . for some preassigned time ω, it is possible that at time (n−1)ω the system is

functioning, but at time nω the system is found to be down, where n is a positive

integer. Then, if X represents the failure time of the system, then our interest lies

in [nω −X |X ≤ nω] or in general tX = [t −X |X ≤ t] which is known as the inactivity

time or the past lifetime. For further details related to past lifetime, one can refer

to Chandra and Roy [25, 26] and Kayid and Ahmad [62]. So keeping this in mind

Di Crescenzo and Longobardi [31] have considered measure of past entropy over
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(0, t) given by

H∗( f ; t) = −
∫ t

0

f (x)
F(t)

log
f (x)
F(t)

dx (1.6.6)

= 1−
∫ t

0

f (x)
F(t)

log µF(x)dx,

where µF(x) is the reversed hazard rate function of X . Analogous to ft(x), in case

of residual lifetime, the probability density function of the past lifetime random

variable tX , is given by f (x)
F(t) = f ∗t (x) for X ≤ t. Some applications of past uncertainty

measure is found in forensic sciences where the knowledge of exact time of failure

is important, this type of measures are of added value. Using relationships among

past entropy, reversed hazard rate and mean inactivity time, Kundu et al. [73]

have given some characterization results. Nanda and Paul [87] have studied few

ordering properties based on this measure. Further extending these results, Di

Crescenzo and Longobardi [32] have given a measure of divergence which gives

a distance between two past lifetimes distributions. The discrimination measure

between past lifetimes is

H∗( f/g; t) =
∫ t

0

f (x)
F(t)

log
f (x)/F(t)
g(x)/G(t)

dx. (1.6.7)

Here F(.) represents the true distribution and G(.) represents the reference dis-

tribution function. Basically H∗( f/g; t) can also be considered as a measure of

distance between G∗
t (x) and the true distribution F∗

t (x). Further if X and Y satisfy

the proportional reversed hazard model (PRHM) then H∗( f/g; t) is constant and

vice versa, refer to Di Crescenzo and Longobardi [32]. Further results on this

in context to generalized measure of discrimination have been studied by Hoo-

da and Saxena [57]. Also a measure of inaccuracy between two past lifetime

distributions has been studied by Kumar et al. [68] which is given as

H∗( f ,g; t) =−
∫ t

0

f (x)
F(t)

log
g(x)
G(t)

dx. (1.6.8)
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1.7 Distribution Functions Based Information Theoretic

Measures

Though entropy measure (1.2.1) by Shannon is quite important in information

theory and various other fields. However for a continuous random variable, Shan-

non differential entropy (1.2.3) raises the following issue:

• It is density function based information theoretic measure. The density func-

tion of a random variable in general may or may not exist. This is the case

when the cumulative distribution function (CDF) is not derivable, in that case

it is not possible to define the differential entropy.

• The differential entropy can take a negative value in case of continuous ran-

dom variable while Shannon entropy of a discrete random variable is always

non-negative.

• Shannon entropy does not converge asymptotically to differential entropy

when evaluated from samples of a random variable. For further details refer

to Rao [94].

Rao [95] took in to account these issues and developed another measure of in-

formation or randomness as

ξ (X) =−
∫ ∞

0
F̄(x) log F̄(x)dx , (1.7.1)

where F̄(x) = 1 − F(x) is the survival function of a random variable X . This is

called Cumulative Residual Entropy (CRE). It is based on distribution function un-

like Shannon entropy measure which is based on density function of the random

variable X . It has following merits over the differential entropy:

• Cumulative residual entropy is always non-negative.

• It has a steady definition for both discrete and continuous domains.

• Cumulative residual entropy can be easily computed from sample data and

these computations asymptotically converge to the true value.
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Basically the objective was to introduce a new measure of randomness which

makes use of distribution function rather than density function because the density

function is the derivative of distribution function and hence it is more regular than

the density function. Also in real life situations the distribution function is of more

interest. For example, if we consider a random variable denoting the life span of

a machine, then the event of interest is not whether the life span equals a specific

instant, but rather whether the life span exceeds that instant. The definition by

Rao [94] also protects the principle that the logarithm of the probability of an

event should represent the information content in the event. Many properties of

this measure have been studied by Rao [95]. Further he studied its applications

in reliability engineering refer to Rao [95].

Asadi and Zohrevand [13] have proposed the cumulative residual entropy (CRE)

for the residual lifetime distribution of a system as

ξ (X ; t) =−
∫ ∞

t

F̄(x)
F̄(t)

log
F̄(x)
F̄(t)

dx . (1.7.2)

Also, Di Crescenzo and Longobardi [34] proposed the uncertainty measure based

on the failure distribution as

ξ (X) =−
∫ ∞

0
F(x) logF(x)dx . (1.7.3)

1.8 Order Statistics

The term "order statistics" was introduced by Wilks in 1942. However, the sub-

ject is much older. Early in the nineteenth century measures under consideration

included the median, symmetrically trimmed means, the mid range, and related

functions of order statistics. In 1818, Laplace obtained (essentially) the distribu-

tion of the rth-order statistic in random samples and also derived a condition on the

parent density under which the median is asymptotically more efficient than the

mean. Other topics considered are of more recent origin: extreme-value theory

and the estimation of location and scale parameters by order statistics. Suppose

that X1,X2, · · · ,Xn are independent and identically distributed observations from a

distribution FX , where FX is differentiable with a density function fX , which is pos-

itive in an interval and zero elsewhere. Order statistics of the sample is defined

by the arrangement of X1,X2, · · · ,Xn from the smallest to the largest denoted as
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X1:n ≤ X2:n ≤ ·· · ≤ Xn:n. It is well known that the p.d.f of ith order statistics is

fi:n(y) =
1

B(i,n− i+1)
(FX(y))

i−1(1−FX(y))
n−i fX(y),

where B(a,b) =
∫ 1

0 xa−1(1− x)b−1dx, a > 0, b > 0 is the beta Integral with parame-

ters a and b (for details refer to Arnold et al. [9]).

The subject of order statistics deals with the properties and applications of these

ordered random variables and of functions involving them. These statistics have

been used in a wide range of problems like detection of outliers, characteriza-

tions of probability distributions, quality control and strength of materials ( refer to

David and Nagaraja [29]). In reliability theory, order statistics are used for statis-

tical modelling. The mth order statistics in a sample of size n represents the life

length of a (n−m+1)-out-of-n system. For m = 1 and n, that is for sample minima

and maxima, (n−m+ 1)-out-of-n system corresponds to series and parallel sys-

tem respectively.

In 1990, Wong and Chen [124] calculated entropy of an ordered sequence. Park

[92] obtained some recurrence relations for this entropy of order statistics. E-

brahimi et al. [41] explored Shannon entropy and some of its properties for order

statistics. Arghami and Abbasnejad [10] explored information theoretic properties

of Renyi entropy based on order statistics. Thapliyal and Taneja [120] studied

dynamic residual Renyi entropy and dynamic cumulative residual entropy based

on order statistics.

1.9 Record Values

The concept of record values was first introduced by Chandler [24]. With the con-

cept of record values he also introduced the terms record times and inter record

times. He also studied some of the interesting properties of record values and

proved that for any random variable with any distribution, the expected value of

the inter record time is infinite. Feller [44] also studied record values with respect

to gambling problems. Record values sequences are of two types.

(i) Upper record values

(ii) Lower record values

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed continu-

ous random variables with distribution function F(x) and probability density func-
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tion f (x). An observation X j is called an upper record value if its value exceeds

that of all previous observations. Thus X j is an upper record if X j > Xi for every

i < j. A lower record value can be defined similarly. One can get lower record

values sequence from upper record value sequence by replacing {X j} by {−X j}.

Records are closely connected with the occurrence times of a corresponding non-

homogeneous Poisson process.

Record Times: The times at which upper record values or lower record values

appear are given by the random variables Tj which are called record times. T1 = 1

with probability 1 and for j ≥ 2, Tj = min {i : Xi > XTj−1}. The sequence of upper

record values can thus be defined by {XTj}, j = 1, 2, 3 .....

Inter- Record Times: Let ∆ j = Tj+1 −Tj and

∆( j) = T́j+1 − T́j, j = 1,2, ....

then ∆ j and ∆( j) are the upper and lower inter record times respectively.

To make more insight of this concept of record values following examples are

helpful.

1. Suppose following are the ten observations from a given experiment:

10,12,6,15,20,18,17,5,22,3.

The lower record values are: 10,6,5,3.

The upper record values are: 10,12,15,20,22.

2. Consider a sequence of objects that may stop working when we apply some

kind of stress on them and we want to find that minimum amount of stress under

which these objects stop working. So we test the objects for minimal failure stress

sequentially. We apply the stress on the first object until it gets fail and record this

minimal stress as X1. Now we test the next object for minimal failure stress and

record it only if it is less than X1 otherwise we consider the next object. In general,

we will record stress Xn only if it is less than all the previous minimal stresses
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i.e. Xn < min(X1,X2, ...,Xn−1),n > 1. In this way we get a sequence of lower record

values.

3. Consider the weighing of some objects on a scale missing its spring. When

we place an object on the scale, needle indicates the correct weight but as its

spring is missing, it can not return to zero back when the object is removed. If we

weigh the various objects, only the weight greater than the previous ones can be

recorded. In this way we get the sequence of upper record values.

The probability density function of upper record values (refer to Ahsanullah [8])

can be given as

f j(x) =
R j−1(x)

Γ( j)
f (x),−∞ < x < ∞. (1.9.1)

where r(x) = d
dxR(x) = f (x)

1−F(x) , and R(x) = − ln(1−F(x)), the function r(x) is the

hazard rate.

Similarly p.d.f of jth lower record value is given by

f j(x) =
H j−1(x)

Γ( j)
f (x),−∞ < x < ∞, (1.9.2)

where H(x) =− lnF(x).

1.10 k-Record Values

The record model becomes inadequate in several situations like when the ex-

pected waiting time between two record values is very large. In those situations,

k-record values are of great importance, see Kamps [59]. So, the concept of

k-record values has been studied in the literature widely, refer to Berred [22],

Fashandi and Ahmadi [43].

The model of k-record values was first introduced by Dziubdziela and Kopocin-

ski [35]. They defined the k-record values in terms of kth largest X yet seen,

where k is any positive integer. Define T1,k = k and for n ≥ 2,

Tn,k = min
{

j : j > Tn−1,k, X j−k+1: j > XTn−1,k−k+1:Tn−1,k

}
, Yn,k = XTn,k−k+1:Tn,k ,n ≥ 1,

where Xi:n represents the ith order statistic in a sample of size n and {Yn,k, n ≥ 1}
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represents the sequence of upper k-record values. The lower k-record values can

be defined in a similar way. The probability density function of nth upper k-record

and the nth lower k-record are given by

fn,k(x) =
kn

Γ(n)
[− log F̄(x)]n−1[F̄(x)]k−1 f (x) (1.10.1)

and

f L
n,k(x) =

kn

Γ(n)
[− logF(x)]n−1[F(x)]k−1 f (x), (1.10.2)

respectively, where Γ(.) is the complete gamma function, refer to Arnold et al. [9].

The survival function of nth upper k-record value and nth lower k-record value is

given as

F̄n,k(x) =
n−1

∑
j=0

1
j!
(F̄(x))k

(−k ln F̄(x)) j (1.10.3)

and

F̄L
n,k(x) =

n−1

∑
j=0

1
j!
(F(x))k (−k lnF(x)) j . (1.10.4)

Ordinary record values can be obtained from k-records by putting k = 1.

To elaborate the concept of k-record statistics, consider the following data giving

the average temperature of a city during the month of July measured for twenty

years, refer to Arnold et al. [9]:

19.0, 20.1, 18.4, 17.4, 19.7, 21.0, 21.4, 19.2, 19.9, 20.4, 20.9, 17.2, 20.2, 17.8,

18.1, 15.6, 19.4, 21.7, 16.2, 16.4

For k = 3, the upper and lower 3-record respectively denoted by RU
n,3, RL

n,3 and

3-record times respectively denoted by TU
n,3 and T L

n,3 are :

n 1 2 3 4 5 6 7

TU
n,3 3 5 6 7 10 11 18

RU
n,3 18.4 19.0 19.7 20.1 20.4 20.9 21.0

T L
n,3 3 4 12 14 16 19 20

RL
n,3 20.1 19.0 18.4 17.8 17.4 17.2 16.4

The nth k-record value represents the life length of a k−out of −Tn,k system. The

concept of record values and k-record values have been used in a wide range of

problems like estimation of parameters and prediction of future records, charac-

terizations of probability distributions, refer to Balakrishnan and Chan [16], Sultan
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et al. [107], Balakrishnan and Stepanov [17] and Su et al. [106].

1.11 Record Values And Information Theory

Apart from applications of record values and k-record values in different areas

cited above, a huge literature is devoted to information theoretic measures based

on record values and k-record values. Entropy properties of record values have

been studied by several authors, refer to Zahedi and Shakil [126], Baratpour et

al. [19, 20], Madadi and Tata [76], Razmkhan et al. [97], Asha and Chacko [14]

and Kumar [71].

1.12 Motivation And Plan Of Work

Considering the importance and various applications of record values and k-

record values in different fields, and in view of the above discussion and litera-

ture review, we were motivated to study information theoretic measures based

on record values and k-record values. As the generalized entropy measures are

useful due to flexibility provided by addition of parameters, so we have studied

two parametric generalizations of Shannon entropy for k-record values and have

also studied its dynamic version. Also, we have found considerable interest in

studying inaccuracy measures between two record values and further between

two k-record values and also a discrepancy measure between two k-record val-

ues, since these aspects were yet to be explored in case of record values. Also

we have suggested the past entropy measure for k-record values, as it is a useful

and interesting concept not explored so far. This thesis includes seven chapters

including the current chapter on introduction and literature survey. The organiza-

tion of the work reported is as follows:

In Chapter 2, we have introduced a measure of entropy for past lifetime based

on Shannon’s entropy measure [104] for nth upper k-record value. A characteri-

zation result for the measure under consideration has been given. We have dis-

cussed some basic properties of the proposed measure. Also we have construct-

ed some bounds to the proposed past entropy measure for nth k-records. The
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work reported in this chapter has been published in the paper entitled, Measure

of Entropy for Past Lifetime and k-Record Statistics in Physica A, 2018, 503,

623-631.

In Chapter 3, we have introduced a measure of inaccuracy between distribu-

tions of the nth record value and parent random variable and have studied a char-

acterization result. Measures of inaccuracy for some specific distributions have

also been studied. The Fα or the power distributions are equally important, so

keeping this in mind we have also studied inaccuracy measure for power distri-

bution. The part of the work reported in this chapter has been published in the

paper entitled, Kerridge Measure of Inaccuracy for Record Statistics, Jour-

nal of Information and Optimization Sciences, 2018, 39(5), 1149-1161 and some

work has been presented in the International Conference on interdisciplinary

Mathematics, Statistics and Computational Techniques held at Manipal Uni-

versity, Jaipur, Dec 22-24, 2016.

In Chapter 4, we have studied a measure of inaccuracy between nth upper

k-record value and mth upper k-record value. A simplified expression for the pro-

posed inaccuracy measure has also been derived to find the inaccuracy measure

for some specific probability distributions. We have also shown that the proposed

inaccuracy measure characterizes the underlying distribution function uniquely.

Further we have considered residual measure of inaccuracy between distribution

of nth upper k-record values and parent distribution and have given a characteri-

zation result for that. The results reported in this chapter have been published in

the paper entitled, Measure of Inaccuracy and k-Record Statistics, Bulletin of

Calcutta Mathematical Society, 2018, 110 (2), 151-166 and some work has been

presented in National Seminar on Recent Developments in Mathematical Sci-

ences held at MDU, Rohtak, Mar 07-08, 2017.

In Chapter 5, taking in to account the importance of cumulative residual entropy

(CRE) measures, we have provided an extension of cumulative residual inaccu-

racy, refer to Taneja and Kumar [116], to k-record values. We have studied some

properties of this measure. Also we have discussed some stochastic ordering

and have found the proposed measure for some of the distributions which occur
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often in many realistic situations and have applications in various fields of science

and engineering. The work reported in this chapter is communicated under the ti-

tle, Cumulative Residual Inaccuracy Measure for k-Record Values and some

work has been presented in International Conference on Recent Advances

in Pure and Applied Mathematics held at Delhi Technological University, Delhi,

Oct 23-25, 2018.

In Chapter 6, we have provided an extension of Kullback Leibler [66] informa-

tion measure to k-record values. The distance between two k-record distributions

of residual lifetime has been found. We have found the measure of distance or

discrepancy between nth k-record value and mth k-record value. Also keeping

the record times fixed, we have derived the distance between k-record value and

l-record value. We have also studied some properties of the measure proposed

and a characterization result for that. The work reported in this chapter is commu-

nicated under the title, A Measure of Discrimination Between Two Residual

Lifetime Distributions For k-Record Values and some work has been present-

ed in International Research Symposium on Engineering and Technology

held at Singapore, August 28-30, 2018.

In Chapter 7, we have considered and studied a generalized two parameters

entropy for k-record statistic based on Varma’s entropy [122] function. A simpli-

fied expression for this entropy measure has also been derived. Further based on

this, we have proposed a generalized residual entropy measure for k-record value

and have proved a characterization result. Also, an upper bound to the dynamic

generalized entropy measure has been derived. The part of the work reported in

this chapter has been communicated under the title, On Generalized Informa-

tion Measure of Order (α,β ) and k-Record Statistics.

In the last we have presented the conclusion of the work reported in this thesis

and further scope of work, followed by bibliography and the list of publications.



Chapter 2

Measure Of Entropy For Past Lifetime

And k-Record Values

2.1 Introduction

The measure of Shannon entropy which gives the average uncertainty contained

in the probability density function f (x) associated with the random variable X is

not suitable as a measure of uncertainty for the remaining lifetime of a system

which has already survived up to time t. This time period ′t ′ has great importance

in economics, reliability, business and survival analysis. For such type of systems

Ebrahimi [36] proposed the measure of uncertainty of the remaining lifetime Xt =

(X − t|X > t) as

H( f ; t) =−
∫ ∞

t

f (x)
F̄(t)

log
f (x)
F̄(t)

dt, t > 0. (2.1.1)

In many realistic situations, uncertainty is not related to future only, this may refer

to past also. Suppose some one has under gone a medical test at time t, to check

for a certain disease and that test is found positive. Let X denotes the age when

the patient was infected, then obviously X < t. Now the question is, how much time

has elapsed since the patient had been infected by this disease. Such random

time can be called inactivity time or past lifetime tX = [t −X |X < t] , for fixed t > 0.

The work reported in the present chapter has been published in the paper Measure of Entropy for Past
Lifetime and k-Record Statistics in Physica A, 2018, 503, 623-631.

27
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This gives the time elapsed from the failure of a component given that its lifetime

is less than or equal to t. It is also called the reversed residual lifetime. Based on

this idea Dicrescenzo and Longobardi [31] defined the measure of uncertainty for

past lifetime distribution over (0, t) as

H̄( f ; t) =−
∫ t

0

f (x)
F(t)

log
f (x)
F(t)

dx. (2.1.2)

The measure (2.1.2) can be considered as dual to the measure (2.1.1) proposed

by Ebrahimi [36]. The above measure has applications in forensic science. The

measures of uncertainty for inactivity time, called past entropy, have been studied

by various researchers, refer to Di Crescenzo and Longobardi [32,33] and Kumar

et al. [68] and Kundu et al. [73].

Also record values originates in many realistic situations. Records are closely

connected with the occurrence times of a corresponding non-homogeneous Pois-

son process and reliability theory. But this record model becomes inadequate in

several situations when the expected waiting time between two record values is

very large. In those situations, second or third highest values are of great impor-

tance, see Kamps [59]. So, the concept of k-record values has been studied in

the literature widely, refer to Berred [22], Fashandi and Ahmadi [43].

These statistics have been used in a wide range of problems like estimation of

parameters and prediction of future records, characterizations of probability dis-

tributions, refer to Balakrishnan and Chan [16], Sultan et al. [107], Balakrishnan

and Stepanov [17] and Su et al. [106]. Entropy properties of record values have

been investigated by several authors, refer to Zahedi and Shakil [126], Madadi

and Tata [76], Razmkhan et al. [97] and Asha and Chacko [14].

In the present chapter we consider a measure of past entropy in the context of

k-record values. The chapter is organized as follows: In Section 2.2, we propose

the measure of past entropy and give a characterization result for the proposed

measure in Section 2.3. In Section 2.4, we derive some bounds to the proposed

measure and study its important properties like effect of linear transformation and

stochastic ordering. In Section 2.5, we find the entropy measure for past lifetime

for some specific distributions. Section 2.6 is devoted to conclusion.
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2.2 Past Entropy For Upper k-Record

Corresponding to measure (2.1.2) proposed by Dicrescenzo and Longobardi [31],

we define the measure of uncertainty for past life distribution over the interval (0, t)

for the distribution of nth upper k-record value as follows:

H̄( fn,k; t) = −
∫ t

0

fn,k(x)
Fn,k(t)

ln
(

fn,k(x)
Fn,k(t)

)
dx

= lnFn,k(t)−
1

Fn,k(t)

∫ t

0
fn,k(x) ln fn,k(x)dx

= 1− 1
Fn,k(t)

∫ t

0
fn,k(x) lnrn,k(x)dx, (2.2.1)

where fn,k(x) is the pdf of nth upper k-record value given by (1.10.1) and rn,k(x) =
fn,k(x)
Fn,k(x)

is the reversed hazard rate of Xn,k.

Differentiating (2.2.1) with respect to t both sides, we get

d
dt
(H̄( fn,k; t)) = −rn,k(t) lnrn,k(t)+

fn,k(t)
F2

n,k(t)

∫ t

0
fn,k(x) lnrn,k(x)dx

= −rn,k(t) lnrn,k(t)+ rn,k(t)
∫ t

0

fn,k(x)
Fn,k(t)

lnrn,k(x)dx.

Using (2.2.1), we get

d
dt
(H̄( fn,k; t)) = rn,k(t)

(
1− H̄( fn,k; t)− lnrn,k(t)

)
. (2.2.2)

Remark 2.2.1. When we put k = 1, (2.2.1) defines the past entropy measure for usual

records as

H̄( fn; t) = −
∫ t

0

fn(x)
Fn(t)

ln
(

fn(x)
Fn(t)

)
dx

= 1− 1
Fn(t)

∫ t

0
fn(x) lnrn(x)dx,

where fn(x) is the pdf of nth upper record value given by

fn(x) =
(− ln F̄(x))n−1 f (x)

Γn

and rn(x) =
fn(x)
Fn(x)

is the reversed hazard rate function of Xn, the nth record value.

Further for n = k = 1, the equation (2.2.1) gives the past entropy measure for parent
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random variable. Also we can express Shannon differential entropy of nth upper k-record

value, in terms of the past entropy of nth upper k-record value (2.2.1) and residual entropy

of Xn,k

H( fn,k; t) =−
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln
(

fn,k(x)
F̄n,k(t)

)
dx, (2.2.3)

given as

H( fn,k) = Fn,k(t)H̄( fn,k; t)+ F̄n,k(t)H( fn,k; t)+β (Fn,k(t), F̄n,k(t)), (2.2.4)

where β (p,1− p) =−p ln p− (1− p) ln(1− p) denotes the Shannon entropy measure for

a Bernoulli random variable. This follows as

H( fn,k) = −
∫ ∞

0
fn,k(x) ln fn,k(x)dx

= −
∫ t

0
fn,k(x) ln fn,k(x)dx−

∫ ∞

t
fn,k(x) ln fn,k(x)dx

= −Fn,k(t)
∫ t

0

fn,k(x)
Fn,k(t)

ln fn,k(x)dx− F̄n,k(t)
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln fn,k(x)dx

= Fn,k(t)H̄( fn,k; t)+ F̄n,k(t)H( fn,k; t)− F̄n,k(t) ln F̄n,k(t)−Fn,k(t) lnFn,k(t)

= Fn,k(t)H̄( fn,k; t)+ F̄n,k(t)H( fn,k; t)+B(Fn,k(t), F̄n,k(t)).

The above result shows that the uncertainty contained in the failure time of a

component or an item can be decomposed in to three parts :

• The uncertainty of whether the item has failed before or after time ’t ’.

• The uncertainty about the failure time in (0, t) given that the item has failed

before ’t ’.

• The uncertainty about the lifetime in (t,∞) given that the item has failed after

’t ’.

2.3 Characterization Result

Shannon information measure can be equal for two different distributions, so a

distribution function can not be described by its Shannon entropy. A natural ques-

tion arises that whether the proposed past measure of entropy determines the

lifetime distribution F(.) uniquely. In this section we study the condition under
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which the proposed measure determines the parent distribution uniquely. For that

we use the lemma and theorem due to Gupta and Kirmani [51] which is stated as

below.

Theorem 2.3.1. Consider a function f defined in a domain D ⊂ R2 and let f is continuous

and with respect to y, it satisfies Lipschitz condition in D, that is

| f (x,y1)− f (x,y2| ≤ k |y1 − y2|, k > 0,

for any two point (x,y1) and (x,y2) in D. Then the function y = ϕ(x) satisfying the initial

value problem y′ = f (x,y) and ϕ(x0) = y0, xεI, is unique.

The following lemma, refer to Gupta and Kirmani [51], presents the sufficient con-

dition which ensures that Lipschitz condition is satisfied in D.

Lemma 2.3.1. Let f is continuous function in a convex region D ⊂ R2 and let partial

derivative of f that is ∂ f
∂y exists and is continuous in D. Then, f satisfies Lipschitz condition

in D.

Theorem 2.3.2. Let X be a non-negative continuous random variable with distribution

function F(x). Let the past entropy measure of the corresponding nth k-record value

H̄( fn,k; t) be finite for all t ≥ 0. Then H̄( fn,k; t) characterizes the distribution function

uniquely.

Proof. From (2.2.2), we have

d
dt
(H̄( fn,k; t)) = rFn,k(t)− rFn,k(t)H̄( fn,k; t))− rFn,k(t) lnrFn,k(t),

where rFn,k(t) is the reversed hazard rate function of Xn,k. Differentiating with respect to t

again, we obtain

r′Fn,k
(t) =

H̄ ′( fn,k; t)rFn,k(t)+ H̄ ′′( fn,k; t)
−H̄( fn,k; t)− lnrFn,k(t)

. (2.3.1)

Consider two distribution functions F and F∗ such that

H̄( fn,k; t) = H̄( f ∗n,k; t) = γ(t), say.

Then ∀ t, from (2.3.1) we get

r′Fn,k
(t) = ψ

(
t,rFn,k(t)

)
, r′F∗

n,k
(t) = ψ

(
t,rF∗

n,k
(t)
)
,
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where

ψ(t,y) =
(
−γ(t)y+ γ ′′(t)

γ(t)+ lny

)
.

Using theorem and lemma by Gupta and Kirmani [51] we get, rFn,k(t) = rF∗
n,k
(t), ∀ t. This

proves the uniqueness of reversed hazard rate function. As reversed hazard function char-

acterizes the distribution function uniquely, therefore this characterizes the distribution

function Fn,k and hence parent distribution uniquely.

2.4 Some Results On Past Entropy For k-Record

2.4.1 A Bound To Past Entropy:

"If H̄( fn,k; t) is increasing function of t > 0, then rn,k(t) ≤ exp(1− H̄( fn,k; t)) and

H̄( fn,k; t)≤ 1− lnrn,k(t)."

Proof. From (2.2.1), we have

H̄( fn,k; t) = 1− 1
Fn,k(t)

∫ t

0
fn,k(x) lnrn,k(x)dx.

or

1− H̄( fn,k; t) =
1

Fn,k(t)

∫ t

0
fn,k(x) lnrn,k(x)dx.

Now 1− H̄( fn,k; t) is decreasing function of t as H̄( fn,k; t) is increasing, hence for

x ≤ t,

1− H̄( fn,k; t) ≥ 1
Fn,k(t)

∫ t

0
fn,k(x) lnrn,k(t)dx

= lnrn,k(t).

or

rn,k(t)≤ exp(1− H̄( fn,k; t)). (2.4.1)

Also from (2.4.1), it follows directly

H̄( fn,k; t)≤ 1− lnrn,k(t). (2.4.2)

Hence from (2.4.1) and (2.4.2), we get the result.
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2.4.2 Effect Of Monotone Transform:

"For a strictly convex function ϕ with ϕ(0) = 0. Let Y = ϕ(X), then

H̄(gn,k; t) = H̄( fn,k;ϕ−1(t))+E fn,k [lnϕ ′(X)|Xn,k < ϕ−1(t)], (2.4.3)

where E fn,k denotes the expectation with respect to fn,k and other letters have

usual meaning."

Proof. From (2.2.1), the past measure of entropy associated with Yn,k is

H̄(gn,k; t) = 1− 1
Gn,k(t)

∫ t

0
gn,k(y) lnrG

n,k(y)dy, t > 0

= 1−
∫ t

0

kn(− ln Ḡ(y))n−1
(Ḡ(y))k−1g(y)

(Γn)Gn,k(t)
lnrG

n,k(y)dy

= 1−
∫ ϕ−1(t)

0

kn(− ln F̄(x))n−1
(F̄(x))k−1 f (x)

(Γn)Fn,k(ϕ−1(t))ϕ ′(x)
ln

(
rF

n,k(x)

ϕ ′(x)

)
ϕ ′(x)dx

= 1− 1
Fn,k(ϕ−1(t))

∫ ϕ−1(t)

0
fn,k(x) lnrF

n,k(x)dx+
1

Fn,k(ϕ−1(t))

∫ ϕ−1(t)

0
fn,k(x) lnϕ ′(x)dx

= H̄( fn,k;ϕ−1(t))+E fn,k [lnϕ ′(X)|Xn,k < ϕ−1(t)].

Here rF
n,k and rG

n,k denote the reversed hazard rates of the nth k-record values for the parent

distribution functions F and G respectively.

2.4.3 Stochastic Ordering Of Past Entropy:

Here we prove some order properties for the past entropy measure. First, we

give some definitions from Nanda and Paul [87] as follows:

Definition 2.4.1. A random variable is said to have increasing uncertainty of life (IUL) if

H̄( f ; t) is increasing in t ≥ 0.

Definition 2.4.2. Let X1 and X2 be two random variables denoting the lifetimes of two

components with pdfs f1 and f2 respectively. Then X1 is said to be greater than X2 in past

entropy order (written as X1
PE
≥ X2 ) if H̄( f1; t)≤ H̄( f2; t), ∀ t ≥ 0.

Example 2.4.1. If X1 and X2 are two exponentially distributed random variable with

means a1 and 2a1, then for n = k = 1, we can easily see that H( fn,k; t) ≤ H(gn,k; t),

where fn,k(x) and gn,k(x) represent the pdfs of nth k-record values corresponding to X1

and X2 respectively. Therefore X1 is greater than X2 in past entropy order that is X1
PE
≥ X2.
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Next, Theorem 2.4.1 and Theorem 2.4.2 prove results on order properties of

the past entropy measure (2.2.1).

Theorem 2.4.1. Consider two non-negative random variables X1 and X2 with X (1)
n,k

PE
≥ X (2)

n,k

and ϕ be a strictly increasing, differentiable and convex function with ϕ(0) = 0 and ϕ ′(x)

is continuous with ϕ ′(0) ≥ 1. Then ϕ(X (1)
n,k )

PE
≥ ϕ(X (2)

n,k ), where X (1)
n,k and X (2)

n,k denote the

nth k-record values corresponding to X1 and X2 respectively.

Proof. From (2.4.3), we can write

H̄(g(1)n,k ; t)− H̄(g(2)n,k; t) = H̄( f (1)n,k ;ϕ−1(t))− H̄( f (2)n,k ;ϕ−1(t))

+E
f (1)n,k

(lnϕ ′(X)|X1 < ϕ−1(t))−E
f (2)n,k

(lnϕ ′(X)|X2 < ϕ−1(t)). (2.4.4)

Here f (1)n,k , f (2)n,k , g(1)n,k and g(2)n,k represent the pdfs of nth k-record values corresponding to X1,

X2, ϕ(X1) and ϕ(X2) respectively.

Now, X (1)
n,k

PE
≥ X (2)

n,k implies that H̄( f (1)n,k ;ϕ−1(t))≤ H̄( f (2)n,k ;ϕ−1(t)), where as

E
f (1)n,k

(lnϕ ′(X)|X1 < ϕ−1(t))−E
f (2)n,k

(lnϕ ′(X)|X2 < ϕ−1(t))

=
∫ ϕ−1(t)

0
lnϕ ′(x)

 f (1)n,k (x)

F(1)
n,k (ϕ−1(t))

−
f (2)n,k (x)

F(2)
n,k (ϕ−1(t))

dx

≤ lnϕ ′(ϕ−1(t))
∫ ϕ−1(t)

0

 f (1)n,k (x)

F(1)
n,k (ϕ−1(t))

−
f (2)n,k (x)

F(2)
n,k (ϕ−1(t))

dx

= 0.

The above inequality holds due to ϕ ′(x) is an increasing function of x. Hence using (2.4.4),

we get H̄(g(1)n,k; t)≤ H̄(g(2)n,k; t), ∀ t ≥ 0, which results in ϕ(X (1)
n,k )

PE
≥ ϕ(X (2)

n,k ).

Example 2.4.2. From Example 2.4.1, X1
PE
≥ X2. Let us take ϕ(x) = λx, where λ ≥ 1. Now

ϕ(x) is strictly increasing, differentiable and convex function with ϕ(0) = 0 and ϕ ′(x)

is continuous with ϕ ′(0) ≥ 1. Therefore, by Theorem 2.4.1, for n = k = 1, ϕ(X (1)
n,k )

PE
≥

ϕ(X (2)
n,k ).

Next, we show that the above past entropy order is closed under increasing past

entropy measure. First we prove the following lemma.

Lemma 2.4.1. Consider Z = aX +b, where X be any absolutely continuous random vari-
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able, and a > 0 and b ≥ 0 are constants. Then, for t > b,

H̄(gn,k; t) = H̄( fn,k;
t −b

a
)+ lna, (2.4.5)

where gn,k and fn,k are the pdf of nth upper k-record values for Z and X respectively.

Proof. We know that

H̄(gn,k; t) = lnGn,k(t)−
1

Gn,k(t)

∫ t

0
gn,k(z) lngn,k(z)dz.

After substituting (1.10.1) and using the transformation Z = aX +b we get,

H̄(gn,k; t) = lnFn,k(t)−
1

Fn,k(t)

∫ t−b
a

0
fn,k(x) ln

(
fn,k(x)

a

)
dx

= H̄( fn,k;
t −b

a
)+ lna.

Here t > b, a > 0 ⇒ t−b
a > 0.

Theorem 2.4.2. For any two absolutely continuous random variables X and Y, define

Zx
n,k = a1Xn,k+b1 and Zy

n,k = a2Yn,k+b2, where a1, a2 > 0 and b1, b2 ≥ 0 are constants.

Let

(i) Xn,k
PE
≥ Yn,k, (ii) a1 ≥ a2 and b1 ≥ b2. Then, Zx

n,k

PE
≥ Zy

n,k if either H̄( fn,k; t) or H̄(gn,k; t)

is increasing in t > b1. Here fn,k(x) and gn,k(x) denote the p.d.f of nth k-record values

corresponding to X and Y respectively.

Proof. Let H̄( fn,k; t) is increasing in t. As t−b1
a1

≤ t−b2
a2

, therefore

H̄( fn,k;
t −b1

a1
)≤ H̄( fn,k;

t −b2

a2
).

Also Xn,k
PE
≥ Yn,k

⇒ H̄( fn,k;
t −b2

a2
)≤ H̄(gn,k;

t −b2

a2
).

Combining above two inequalities, we have

H̄( fn,k;
t −b1

a1
)≤ H̄(gn,k;

t −b2

a2
). (2.4.6)

Using (2.4.5), we get

H̄(zx
n,k; t)≤ H̄(zy

n,k; t).
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⇒ Zx
n,k

PE
≥ Zy

n,k,

this proves the result. Also if H̄(gn,k; t) is increasing in t, then proof is on similar lines

and hence omitted.

Corollary 2.4.1. Let X and Y be two absolutely continuous random variables such that

Xn,k
PE
≥ Yn,k. Define Zx

n,k = aXn,k + b and Zy
n,k = aYn,k + b, where a > 0 and b ≥ 0 are

constants. Then, Zx
n,k

PE
≥ Zy

n,k, if either H̄( fn,k; t) or H̄(gn,k; t) is increasing in t > b.

Although this corollary can be derived directly from the above theorem by taking

a1 = a2 = a and b1 = b2 = b, a stronger result stated below as Theorem 2.4.3 can

be proved in which condition of increasing entropy measure in the Theorem 2.4.2

has been droped.

Theorem 2.4.3. Let X and Y be two absolutely continuous random variables. Define

Zx
n,k = aXn,k +b and Zy

n,k = aYn,k +b, where a > 0 and b ≥ 0. Then, Zx
n,k

PE
≥ Zy

n,k, if Xn,k
PE
≥

Yn,k.

Proof. Proof can be done on the same lines as Theorem 2.4.2 and hence omitted.

Next, we derive the simplified expression for the computation of past entropy mea-

sure for specific distribution functions.

2.5 Past Entropy For Some Specific Distributions

For this first we prove a lemma as given below.

Lemma 2.5.1. Let Xn,k denotes the nth upper k-record value having pdf fn,k(x), and F(x)

and f(x) denote the distribution and density function of parent random variable respec-

tively. Then the past entropy measure can be expressed as

H̄( fn,k; t) = ln
(

Fn,k(t)
Γn
k

)
− 1

Fn,k(t)

∫ −k ln F̄(t)

0

un−1e−u

Γn
ln
(

un−1 f (F−1(1− e−
u
k ))
)

du

+
n(k−1)

k
Fn+1,k(t)
Fn,k(t)

.

(2.5.1)

Proof. We have

H̄( fn,k; t) = lnFn,k(t)−
1

Fn,k(t)

∫ t

0
fn,k(x) ln fn,k(x)dx.
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After substituting (1.10.1) and using substitution −k ln F̄(x) = u, we get

H̄( fn,k; t) = lnFn,k(t)−
kn

Fn,k(t)Γn

∫ t

0
(− ln F̄(x))n−1

(F̄(x))k−1 f (x)

ln
(

kn

Γn
(− ln F̄(x))n−1

(F̄(x))k−1 f (x)
)

dx.

= lnFn,k(t)−
1

Fn,k(t)Γn

∫ −k ln F̄(t)

0
un−1e−u ln

(
k

Γn
un−1e−(1− 1

k )u f
(

F−1(1− e−
u
k )
))

du

+
n(k−1)

k
Fn+1,k(t)
Fn,k(t)

= lnFn,k(t)− ln
k

Γn
− 1

Fn,k(t)Γn

∫ −k ln F̄(t)

0
un−1e−u ln

(
un−1 f

(
F−1(1− e−

u
k )
))

du

+
n(k−1)

k
Fn+1,k(t)
Fn,k(t)

= ln
(

Fn,k(t)
Γn
k

)
− 1

Fn,k(t)

∫ −k ln F̄(t)

0

un−1e−u

Γn
ln
(

un−1 f
(

F−1(1− e−
u
k )
))

du

+
n(k−1)

k
Fn+1,k(t)
Fn,k(t)

.

We can also write the (2.5.1) in terms of expectation as

H̄( fn,k; t) = ln
(

Fn,k(t)
Γn
k

)
− 1

Fn,k(t)
.E
(

ln
(

u∗n−1 f
(

F−1(1− e−
u∗
k )
)))

+
n(k−1)

k
Fn+1,k(t)
Fn,k(t)

.

Here E(.) denotes the expectation and u∗ follows the incomplete gamma distri-

bution. Now, the following example obtain the measure of past entropy for nth

upper k-record value from exponential distribution in terms of incomplete gamma

function which is defined as

Γ(n;a) =
∫ a

0
un−1e−udu a > 0.

Example 2.5.1. Let f ∗n,k denotes the pdf of nth upper k-record value from standard expo-

nential distribution. Then Fn,k(t) =
Γ(n;kat)

Γ(n) . Using (2.5.1), we get

H( f ∗n,k; t) = ln
Γ(n;kat)

ak
− (n−1)Γn

Γ(n;kat)
E(lnν∗)+

Γ(n+1;kat)
Γ(n;kat)

. (2.5.2)

Here ν∗ has the incomplete gamma distribution Γ(n;kat).

Remark 2.5.1. The entropy measure of nth k-record value from distribution F(x) can be
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expressed in terms of past entropy measure from standard exponential distribution as

H̄( fn,k; t) = H( f ∗n,k, t)+ lna− 1
k

Γ(n+1;−k ln F̄(t))
Γ(n;−k ln F̄(t))

− Γn
Γ(n;− ln F̄(t))

. (2.5.3)

Proof. The proof follows directly using (2.5.1) and (2.5.2).

Example 2.5.2. If X follows the finite range distribution with pdf

f (x) =
a
b

(
1− x

b

)a−1
, a > 1, 0 ≤ x ≤ b.

and survival function

F̄(x) = 1−F(x) =
(

1− x
b

)a
, then

Fn,k(t) =
Γ(n;−k ln F̄(t))

Γn
=

Γ(n;−k ln
(
1− t

b

)a
)

Γn
.

Substituting −k ln F̄(x) = u, we observe that x = F−1(1− e−
u
k ) = b(1− e−

u
ak ).

Using (2.5.1), we get

H̄( fn,k; t) = ln
(

Fn,k(t)
Γn
k

)
− 1

Fn,k(t)
E
(

lnν∗n−1
)

− 1
Fn,k(t)

∫ −k ln F̄(t)

0

un−1e−u

Γn
ln
(

f
(

F−1(1− e−
u
k

))
du

+
n(k−1)

k
Fn+1,k(t)
Fn,k(t)

= ln
(

Fn,k(t)
Γn
k

)
− 1

Fn,k(t)
E(lnν∗n−1)− ln

a
b
+

(a−1)nFn+1,k(t)
akFn,k(t)

+
n(k−1)

k
Fn+1,k(t)
Fn,k(t)

.

where ν∗ follows the incomplete gamma distribution Γ(n,−k ln
(
1− t

b

)a
).

Example 2.5.3. If X follows the Pareto distribution with pdf and cdf as

f (x) =
a

xa+1 , x ≥ 1, a > 0 and F(x) = 1− 1
xa , then

Fn,k(t) =
Γ(n;ak ln t)

Γn
and f

(
F−1(1− e−

u
k )
)
= ae−

u
k (1+

1
a ).

Using (2.5.1) , we get

H̄( fn,k; t) = ln
(

Fn,k(t)
Γn
ak

)
− (n−1)

Fn,k(t)
E(lnν∗)+

nFn+1,k(t)
kFn,k(t)

(
2+

1
a
− 1

k

)
,
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where ν∗ follows the incomplete gamma distribution Γ(n;ak ln t).

2.6 Conclusion

Past information measures have found applications in reliability and life testing.

In this chapter we have considered a system or a component which was continu-

ously under supervision at regular interval times but at particular instant of time, it

was found to be dead. We have defined the measure of uncertainty in past lifetime

distribution for such type of systems for k-record values. We have proved that the

proposed measure of uncertainty for k-record values determines the underlying

distribution uniquely. In addition to a few other properties it satisfies stochastic

ordering property. Also we have derived its expression for a few specific distribu-

tions.





Chapter 3

Kerridge Measure Of Inaccuracy For

Record Statistics

3.1 Introduction

One of the basic problems encountered in reliability theory is the identification of

an appropriate probability distribution for lifetime of a component or a system. Var-

ious methods like goodness of fit procedures, probability plots etc. are available in

literature to find a suitable model followed by the observations. Kerridge inaccu-

racy [63] provides a useful tool in measuring the two types of errors in expressing

the probabilities of various events in performing an experiment. The inaccuracy

measure has various applications in different areas of science and technology

such as statistical inference, estimation and coding theory (see Nath [83]). Next,

the record data evolves in various practical situations like hydrology, sports, in-

dustrial stress testing, meteorological analysis and seismology see, for instance,

Ahmadi and Arghami [4].

In the preceding chapter we have considered measure of entropy for past lifetime

for k-record values. Also we have proved that this entropy measure for past life-

The work reported in this chapter has been published in the paper entitled, Kerridge Measure of
Inaccuracy for Record Statistics in Journal of Information and Optimization Sciences, 2018, 39(5), 1149-
1161, and some work has been presented in the International Conference on interdisciplinary Mathematics,
Statistics and Computational Techniques held at Manipal University, Jaipur, Dec 22-24, 2016.
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time characterizes the distribution function uniquely. If we put k = 1 in the results

for k-record values, we can get the results for ordinary records. In this chapter, we

extend the concept of Kerridge measure of inaccuracy to record values and also

study some of its properties.

The chapter is organised as follows: In Section 3.2 , we propose an inaccuracy

measure between the distribution of nth record values from a sequence of iid ran-

dom variables and parent distribution and study a characterization result based on

this measure. In Section 3.3 , we study the inaccuracy measure for some specific

distributions and in Section 3.4 and 3.5 we consider Fα distributions and study

measure of inaccuracy for some specific Fα distributions. Section 3.6 concludes

the chapter.

3.2 A Measure Of Inaccuracy For Record Statistics

Corresponding to the inaccuracy measure given by Kerridge [63], we define the

measure of inaccuracy between the distribution of nth record value and the parent

distribution as

H( fn, f ) =−
∫ ∞

0
fn(x) log f (x)dx. (3.2.1)

Here fn(x) denotes the pdf of the nth record value given by

fn(x) =
Rn−1(x)

Γ(n)
f (x),−∞ < x < ∞, (3.2.2)

where R(x) =− ln(1−F(x)).

From (3.2.1), we can write

H( fn, f ) =−
∫ ∞

0
fn(x) log

(
f (x) fn(x)

fn(x)

)
dx

=
∫ ∞

0
fn(x) log

(
fn(x)
f (x)

)
dx−

∫ ∞

0
fn(x) log fn(x)dx

=H( fn/ f )+H( fn),

where H( fn/ f ) and H( fn) denote the Kullback measure of relative information be-

tween the distribution of nth record value and the parent distribution and Shannon

measure of entropy for the nth record value respectively.

Next, we show that the inaccuracy measure defined above determines the parent
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distribution function uniquely. To prove this we use the lemma by Goffman and

Pedrick [48] which is stated as follows:

Lemma 3.2.1. A complete orthogonal system for the space L2(0, ∞) is given by the se-

quence of Laguerre functions

ϕn(x) =
1
n!

e−
x
2 Ln(x), n ≥ 0.

Here Ln(x) denotes the Laguerre polynomial which is defined as the sum of coefficients of

e−x in the nth derivative of xne−x, that is

Ln(x) = ex dn

dxn (x
ne−x) =

n

∑
k=0

(−1)k
(

n
k

)
n(n−1) · · ·(k+1)xk.

The completeness of Laguerre functions in L2(0, ∞) means that if f ∈ L2(0, ∞) and∫ ∞
0 f (x)e−

x
2 Ln(x)dx = 0, ∀n ≥ 0, then f is zero almost everywhere.

Now, we give the characterization result as follows:

Theorem 3.2.1. Let X1 and X2 be two random variables with pdfs f1(x) and f2(x) and

absolutely continuous cdfs F1(x) and F2(x) respectively. Then F1 and F2 belong to the

same family of distributions but for change in location, iff

H( fn,1, f1) = H( fn,2, f2), n ≥ 1. (3.2.3)

Here fn,1(x) and fn,2(x) are the density functions of nth record value for the parent distri-

butions f1(x) and f2(x) respectively.

Proof. The necessary part is obviously holds. We need to prove the sufficient part only.

For all n ≥ 1, let

H( fn,1(x), f1(x)) = H( fn,2(x), f2(x))

⇒−
∫ ∞

0
fn,1(x) log( f1(x))dx =−

∫ ∞

0
fn,2(x) log( f2(x))dx

−
∫ ∞

0

(− log(1−F1(x)))n−1 f1(x)
Γ(n)

log( f1(x))dx =−
∫ ∞

0

(− log(1−F2(x)))n−1 f2(x)
Γ(n)

log( f2(x))dx

Putting u =− log(1−F1(x)) and u =− log(1−F2(x)), we obtain

∫ ∞

0
un−1e−u log( f1(F−1

1 (1− e−u)))du =
∫ ∞

0
un−1e−u log( f2(F−1

2 (1− e−u)))du
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⇒
∫ ∞

0
{log( f1(F−1

1 (1− e−u)))− log( f2(F−1
2 (1− e−u)))}e−uun−1du = 0.

⇒
∫ ∞

0
{log( f1(F−1

1 (1− e−u)))− log( f2(F−1
2 (1− e−u)))}e

−u
2 Ln(u)du = 0.

Here Ln(u) is the Laguerre polynomial given in Lemma 3.2.1

Using Lemma 3.2.1, we have

f1(F−1
1 (1− e−u)) = f2(F−1

2 (1− e−u)).

Substituting 1− e−u = v in the above expression, we get

f1(F−1
1 (v)) = f2(F−1

2 (v)), ∀ v ∈ (0,1).

It is easy to show that d(F−1(v))
dv = (F−1)

′
(v) = 1

f (F−1(v)) . Therefore, we have

(F−1
1 )

′
(v) = (F−1

2 )
′
(v), ∀ v ∈ (0,1)

F−1
1 (v) = F−1

2 (v)+a,

where a is constant and this proved the result.

Next we prove another result to show the effect of monotone transformations on

inaccuracy measure defined in (3.2.1) in the following theorem.

Theorem 3.2.2. Let X be a non-negative and continuous random variable with pdf f (x)

and distribution function F(x). Let Y = ϕ(X), where ϕ is a strictly monotonically in-

creasing and differentiable function with derivative ϕ ′, and let G(y) and g(y) denote the

distribution and density functions of Y respectively and Xn denotes the nth record value

associated with X with pdf fn and Yn denotes the nth record value associated with Y with

pdf gn . Then we have

H(gn,g) = H( fn, f )−H( fn,ϕ ′(x)) (3.2.4)

Proof. The probability density function of Y = ϕ(X) is g(y) = f (ϕ−′(y))
ϕ ′(ϕ−1(y)) . Thus

H(gn,g) =−
∫ ∞

0

(− logG(y))n−1

Γ(n)
g(y) logg(y)dy.

This gives

H(gn,g) =−
∫ ∞

0

(− logF(ϕ−1(y)))n−1

Γ(n)
f (ϕ−1(y))

ϕ ′(ϕ−1(y))
log

f (ϕ−1(y))
ϕ ′(ϕ−1(y))

dy.
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By taking x = ϕ−1(y), we obtain

H(gn,g) =−
∫ ∞

0

(− logF(x))n−1

Γ(n)
f (x) log

f (x)
ϕ ′(x)

dx

=−
∫ ∞

0

(− logF(x))n−1

Γ(n)
f (x) log f (x)dx+

∫ ∞

0

(− logF(x))n−1

Γ(n)
f (x) logϕ ′(x)dx.

This can be written as

H(gn,g) = H( fn, f )−H( fn,ϕ
′
(x)).

This proves the result.

Remark 3.2.1. Let Y = aX +b, where X be any absolutely continuous random variable

and a > 0, b are constants. Then

ϕ
′
(x) = a

H(gn,g) = H( fn, f )+ loga .

Thus inaccuracy measures defined in (3.2.1) is invariant under location but not under

scale transformation.

In particular, if a = 1, that is Y = X + b, then H(gn,g) = H( fn, f ), where f and g

denote the p.d.f for X and Y respectively.

3.3 Meaure Of Inaccuracy For Some Specific Distribu-

tions

Following are the expressions for the proposed inaccuracy measure (3.2.1) for

some specific probability distributions for a random variable X .

(i) Uniform Distribution

Consider a random variable X having uniform distribution over (a,b), a ≥ 0, a < b ,

then pdf and cdf of X is

f (x) =
1

b−a
a ≤ x ≤ b and F̄(x) =

b− x
b−a
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Then from (3.2.1),

H( fn, f ) =−
∫ ∞

0
fn(x) log f (x)dx

=
(−1)n+1 ln(b−a)
(b−a)(n−1)!

∫ b

a

(
ln

b− x
b−a

)n−1

dx

= log(b−a).

(3.3.1)

Let △n =H( fn+1, f )−H( fn, f ) be the nth inaccuracy differential, that is , the change

in inaccuracy in observing the record value from the nth to the (n+1)th . In case of

uniform distribution △n = H( fn+1, f )−H( fn, f ) = 0, that is , measure of inaccuracy

H( fn, f ) remains constant for all n for uniform distribution.

(ii) Exponential Distribution

Consider a random variable X having exponential distribution with parameter a >

0, then pdf and cdf is given by

f (x) = ae−ax and F̄(x) = e−ax,

Substituting this in (3.2.1) we get

H( fn, f ) =− 1
(n−1)!

∫ ∞

0
(ax)(n−1)ae−ax log(ae−ax)dx

=− an

(n−1)!

∫ ∞

0
x(n−1)e−ax ln(ae−ax)dx.

=− an

(n−1)!

∫ ∞

0
x(n−1)e−ax (lna−ax)dx.

=− loga+n.

(3.3.2)

We observe that for a fixed value of n, inaccuracy of nth record value for exponen-

tial distribution decreases with increasing value of the parameter a > 0.

Similarly, if a is fixed then H( fn, f ) increases with increase in sample size. In this

case we obtain ∆n = H( fn+1, f )−H( fn, f ) = 1,∀ n, that is nth inaccuracy differential

does not depend on the sample size.

(iii) Weibull Distribution
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For Weibull distribution pdf is

f (x) = abxb−1 exp
{
−axb

}
, a, b > 0, x > 0

where a and b are parameters. The survival function is

F̄(x) = e−axb
.

We have

H( fn, f ) =−
∫ ∞

0

abxb−1e−axb
log(abxb−1e−axb

)(− log(e−axb
))n−1

(n−1)!
dx

Substituting − log F̄(x) =− log(e−axb
) = t, we obtain

H( fn, f ) = −b−1
b

∫ ∞

0

tn−1e−t log t
Γ(n)

dt − 1
b

∫ ∞

0

tn−1e−t log(abb)

Γ(n)
dt +

∫ ∞

0

tne−t

Γ(n)
dt.

=−b−1
b

Ψ(n)− loga
b

− logb+n. (3.3.3)

In particular for b = 1, (3.3.3) reduces to the nth record inaccuracy for exponential

distribution.

The nth inaccuracy differential is

∆n = H( fn+1, f )−H( fn, f )

=
b−1

b
(Ψ(n)−Ψ(n+1))+1

=

(
1−b

bn

)
+1

3.4 Fα Distributions

Fα distributions are quite important concept in statistics because of their utility

in modelling and analysis of lifetime data. Various classes of Fα distributions

have been developed in literature by various researchers. Let X be an absolute-

ly continuous positive random variable. Then X is said to have Fα distribution

if its cumulative distribution function is given by G(x) = Fα(x) = [F(x)]α , α > 0,

the α-th power of the baseline distribution function F(x), refer to Ahsanullah et
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al. [8]. The distribution G(x) is also called an exponentiated distribution of giv-

en baseline distribution function F(x). Its probability density function is given by

g(x) = α f (x)Fα−1(x), α > 0, where f (x) = dF(x)
dx is the probability density function

of the random variable X .

Further we know that, two random variables X and Y satisfy the proportional re-

versed hazard rate model (refer Gupta et.al. [49]) with proportionality constant

α (> 0), if

G(x) = Fα(x) (3.4.1)

Here F(x) is the baseline distribution and G(x) can be considered as some refer-

ence distribution.

Next, the reverse hazard rate of G(x) denoted by λG(x) is given as λG(x) =
g(x)
G(x) .

Substituting values of pdf g(x) and G(x) from above, we get

λG(x) =
α f (x)Fα−1(x)

Fα (x) = αλF(x), where λF(x) denotes the reverse hazard rate corre-

sponding to the distribution F(x). Thus in case of power distributions, that reverse

hazard rate function of G(x) is proportional to reverse hazard rate function of F(x)

with proportionality constant α .

3.5 Measure of Inaccuracy For Fα Distributions

In this section we introduce the inaccuracy measure for nth lower record value

for some of the Fα distributions.

(i) Gompertz-Verhulst Exponentiated Distribution

Gompertz-Verhulst Exponentiated distribution is used to compare known human

mortality tables and to represent population growth defined by the cdf and pdf

given as follows

G(x) = (1−ρe−λx)α

and

g(x) = α(1−ρe−λx)α−1(ρλe−λx),

where x > 1
λ lnρ > 0 and ρ ,λ ,α > 0. Then

H(gn,g)=−
∫ ∞

0

(− ln(1−ρe−λx)α)n−1α(1−ρe−λx)α−1ρλe−λx ln(α(1−ρe−λx)α−1ρλe−λx))

Γn
dx.
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Substituting − ln(1−ρe−λx)α = t, we will get

H(gn,g) =
(α −1)n

α
− lnαλ −

∫ ∞

0

e−ttn−1 ln(1− e−
t
α )

Γn
dt.

Using − ln(1− e−
t
α ) = ∑∞

j=1
e−

jt
α

j , we obtain

H(gn,g) =
(α −1)n

α
− lnαλ +

1
Γ(n)

∞

∑
j=1

1
j

∫ ∞

0
e−(1+ j

α )ttn−1dt

Let (1+ j
α )t = θ then

H(gn,g) =
(α −1)n

α
− lnαλ +

1
Γ(n)

∞

∑
j=1

1
j

∫ ∞

0

e−θ θ n−1dθ
(1+ j

α )
n

This gives

H(gn,g) =
(α −1)n

α
− lnαλ +

∞

∑
j=1

1

j(1+ j
α )

n
(3.5.1)

H(g1,g) =
(α −1)

α
− lnαλ +

∞

∑
j=1

1

j(1+ j
α )

∆n = H(gn+1,g)−H(gn,g) =
α −1

α
−

∞

∑
j=1

1

α(1+ j
α )

n+1
.

(ii) Power Function Distribution

A random variable X is said to have power function distribution if its cdf and pdf

are given by

G(x) =
( x

λ

)α
, 0 < x < λ ,

and

g(x) =
α
λ

( x
λ

)α−1
, λ > 0, α > 0.

Using the substitution − ln( x
λ )

α = t, we get

H(gn,g) =−
∫ ∞

0

tn−1e−t(ln(α
λ )+ ln(e−

t
α )α−1)

Γ(n)
dt

= ln
(

λ
α

)
+

(α −1)n
α

.
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Now put n = 1,

H(g1,g) = ln(
λ
α
)+

(α −1)
α

.

Also

∆n = H(gn+1,g)−H(gn,g) =
α −1

α
,

which means that difference between inaccuracy measures of two consecutive

record values from power function distribution does not depends on n. For α = 1

it is reduced to uniform distribution.

(iii) Generalized Exponential Or Exponentiated Exponential Distribution

The exponentiated exponential distribution was introduced by Gupta and Kundu

[50]. A random variable X is said to have exponentiated exponential distribution if

its probability density function (pdf) and cumulative distribution function (cdf) are

given by

f (x) = αλe−λx(1− e−λx)α−1, x > 0 (3.5.2)

and

F(x) = {1− exp(−λx)}α , α > 0, λ > 0, (3.5.3)

respectively, which is α th power of cdf of standard exponential distribution. There-

fore for α = 1, (3.5.2) is exponential .

This distribution has some important physical significance. We know that a par-

allel system consisting of α components, works only when at least one of the

α-components works. If the lifetime of the components are independent and i-

dentically distributed random variables and follows the exponential distribution,

then lifetime distribution of the system can be defined as (3.5.2). This is the par-

ticular case of Gompertz-Verhulst Exponentiated distribution, when ρ = 1. Putting

ρ = 1 in (3.5.1), we get H(gn,g) same as that of Gompertz-Verhulst Exponentiated

distribution.

(iv) Pareto Type 2 Distribution
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The cdf and pdf of this distribution is given by

G(x) =

(
1−
(

1
1+ x

)β
)α

, β , α > 0,

and

g(x) = αβ

(
1−
(

1
1+ x

)β
)α−1(

1
1+ x

)β+1

, x > 0.

Now, the inaccuracy measure comes out to be

H(gn,g)=− 1
Γ(n)

∫ ∞

0

{
− ln

(
1− (

1
1+ x

)β
)α}n−1

g(x) lnαβ (1− (
1

1+ x
)β )α−1(

1
1+ x

)β+1)dx.

By putting
(

1−
( 1

1+x

)β
)α

= t, we get

H(gn,g) =−
∫ ∞

0

tn−1e−t ln
(

αβe
−t(α−1)

α (1− e
−t
α )

β+1
β

)
Γ(n)

dt

Using − ln(1− e−
t
α ) = ∑∞

j=1
e−

jt
α

j , we obtain

=− ln(αβ )+
n(α −1)

α
+

(β +1)
βΓ(n)

∞

∑
j=1

1
j

∫ ∞

0
tn−1e−t(1+ j

α )dt.

Let (1+ j
α )t = θ , then

H(gn,g) =− ln(αβ )+
n(α −1)

α
+

(β +1)
β

∞

∑
j=1

1

j(1+ j
α )

n
. (3.5.4)

H(g1,g) =− ln(αβ )+
(α −1)

α
+

(β +1)
β

∞

∑
j=1

1

j(1+ j
α )

.

∆n = H(gn+1,g)−H(gn,g) =
(α −1)

α
− (β +1)

β

∞

∑
j=1

1

α(1+ j
α )

n+1
.

When α = 1, (3.5.4) gives the inaccuracy measure for Standard Pareto distribu-

tion. Putting α = 1 in (3.5.4), we get

H(gn,g) =− ln(β )+
(β +1)

β

∞

∑
j=1

1
j(1+ j)n .
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3.6 Conclusion

We have extended the concept of Kerridge measure of inaccuracy for record val-

ues by defining the inaccuracy measure between the distribution of nth record val-

ue and the parent distribution. Also we have proved that the proposed measure

characterizes the parent distribution uniquely. Some properties of the proposed

measure like effect of monotone transformation have been discussed. The mea-

sure has been studied for some specific distributions. Also keeping in mind the

usefulness of Fα distributions, the inaccuracy measure has been discussed for

that class of distributions also.



Chapter 4

Measure Of Inaccuracy And Residual

Inaccuracy Measure For k-Records

4.1 Introduction

The inaccuracy measure as given by Kerridge [63] is defined as

H( f ,g) =−
∫ ∞

0
f (x) logg(x)dx. (4.1.1)

Here f (x) is the actual distribution and g(x) is the predicted one. When g(x) = f (x)

for all x, (4.1.1) becomes the Shannon’s entropy.

The measure of information and inaccuracy are associated as H( f ,g) = H( f )+

H( f/g), where H( f/g) represents the Kullback-Leibler [67] relative information

measure of X about Y , defined as

H( f/g) =
∫ ∞

0
f (x) log

f (x)
g(x)

dx. (4.1.2)

In the previous chapter we have discussed the inaccuracy measure between the

sequence of record values and the parent distribution. Recently the concept of

The results reported in this chapter have been published in the paper entitled Measure of Inaccuracy
and k-Record Statistics in Bulletin of Calcutta Mathematical Society, 2018, 110 (2), 151-166, and some
work has been presented in National Seminar on Recent Developments in Mathematical Sciences held at
MDU, Rohtak, Mar 07-08, 2017.
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k-record values has found great importance in the various fields as the record

values does not generate frequently, so it makes statistical inference based on

records very difficult to perform. To overcome these difficulties Dziubdziela and

Kopocinski [35] introduced the model of k-record statistics. Instead of observing

the sequence of largest values, he observed the sequence of kth largest values.

Statistical inference problems based on k-records have been considered by sev-

eral authors, see, Berred [22], Malinowska and Szynal [78], Ahmadi and Doost-

parast [6] and Mary and Chacko [79]. So it is worthwhile, to extend the concept of

measure of inaccuracy as given by Kerridge [63] and dynamic measure of inac-

curacy between two residual lifetimes as given by Taneja et al. [117] to k-record

values. In the present chapter we propose and study a measure of inaccuracy

between nth and mth upper k-record values and also study a residual measure of

inaccuracy between the nth upper k-record value and the parent distribution.

The chapter is organised as follows : In Section 4.2, the inaccuracy measure be-

tween distributions of nth and mth upper k-records is proposed. A general expres-

sion for this inaccuracy measure is given in the Section 4.3 and the inaccuracy

measure between k-record values associated with Uniform, Exponential, Weibull,

Pareto and Finite range distributions are presented . Section 4.4 is devoted to

the characterization result. In Section 4.5 we have given an expression for resid-

ual measure of inaccuracy and a characterization for it. The chapter ends with

conclusion.

4.2 Measure Of Inaccuracy Between Distributions Of nth

And mth Upper k-Records

The Shannon entropy for the nth upper k-record values is given as

H( fn,k) =−
∫ ∞

0
fn,k(x) ln fn,k(x)dx, (4.2.1)

where fn,k(x) is the p.d.f of nth upper k-record value as given by (1.10.1). Also

Kullback measure of relative information between nth and mth upper k-records is

given as

H( fn,k/ fm,k) =
∫ ∞

0
fn,k(x) ln

(
fn,k(x)
fm,k(x)

)
dx, (4.2.2)
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refer to, Ahmadi and Mohtashami [7]. Adding (4.2.1) and (4.2.2), we get

H( fn,k)+H( fn,k/ fm,k) =−
∫ ∞

0
fn,k(x) ln fm,k(x)dx = H( fn,k, fm,k), (4.2.3)

which can be considered as the inaccuracy measure between nth and mth upper k-

records. In particular if m = 1 and k = 1 then (4.2.3) gives the inaccuracy measure

between nth k-record and the parent distribution refer to, (3.2.1).

4.3 Measure Of Inaccuracy For k-Record Value Obtained

For Some Specific Distributions

First we prove the following result.

Lemma 4.3.1. The inaccuracy measure H( fn,k, fm,k) between nth and mth upper k-record

values can be expressed as

H( fn,k, fm,k) =− ln
km

Γm
− (m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)− kn

Γn
.∫ ∞

0
un−1e−uk ln f (F−1(1− e−u))du.

(4.3.1)

Proof. The inaccuracy measure (4.2.3) is

H( fn,k, fm,k) =−
∫ ∞

0
fn,k(x) ln fm,k(x)dx, ∀ n,m ≥ 1 .

Using (1.10.1), this becomes

H( fn,k, fm,k)=−
∫ ∞

0

kn

Γn
(− ln F̄(x))n−1(F̄(x))k−1 f (x) ln

(
km

Γm
(− ln F̄(x))m−1(F̄(x))k−1 f (x)

)
dx.

Substituting − ln F̄(x) = u and hence x = F−1(1− e−u), we have

H( fn,k, fm,k) =−
∫ ∞

0

kn

Γn
un−1e−ku ln

(
km

Γm
um−1e−u(k−1) f (F−1(1− e−u)

)
du

=− kn

Γn
ln

km

Γm

∫ ∞

0
un−1e−kudu− kn

Γn
(m−1)

∫ ∞

0
un−1e−ku lnudu

+
kn

Γn
(k−1)

∫ ∞

0
une−kudu− kn

Γn

∫ ∞

0
un−1e−ku ln f (F−1(1− e−u)du.
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Using Gamma function as Γn =
∫ ∞

0 un−1e−udu and after some simplifications,

we get

H( fn,k, fm,k)=− ln
km

Γm
−(m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)− kn

Γn

∫ ∞

0
un−1e−uk ln f (F−1(1− e−u))du ,

this proves the result.

Here Ψ(x) denotes digamma function which is logarithmic derivative of the gamma

function, given by

Ψ(x) =
d
dx

{lnΓ(x)}= Γ′
(x)

Γ(x)
.

Next, using (4.3.1), we obtain the inaccuracy measure H( fn,k, fm,k) for certain spe-

cific distributions.

1. Exponential Distribution

Let X be a random variable having the exponential distribution over (0,∞) , then

its density and distribution functions are given respectively by

f (x) = θe−θx ,and F̄(x) = 1−F(x) = e−θx.

Substituting − ln F̄(x) = u, we observe that x = F−1(1−e−u) =
( u

θ
)

and for comput-

ing H( fn,k, fm,k), we have

f (F−1(1− e−u)) = f (
u
θ
) = θe−u .

From (4.3.1)

H( fn,k, fm,k) =− ln
km

Γm
− (m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)− kn

Γn

∫ ∞

0
un−1e−uk ln(θe−u)du

=− ln
km

Γm
− (m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)− kn

Γn
lnθ

∫ ∞

0
un−1e−ukdu

+
kn

Γn

∫ ∞

0
une−ukdu.

After substituting ku = t and some simplifications we get
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H( fn,k, fm,k) =− ln
km

Γm
− (m−1)Ψ(n)+(m−1) lnk+n− lnθ . (4.3.2)

When k = 1, (4.3.2) reduces to

H( fn, fm) = lnΓm− (m−1)Ψ(n)+n− lnθ ,

the inaccuracy measure between nth and mth upper record values. When m = k =

1, (4.3.2) reduces to

H( fn, f ) = n− lnθ ,

the inaccuracy measure between nth upper record values and parent random vari-

able refer to, (3.3.2).

When n = m and k = 1 (4.3.2) reduces to

H( fn) = logΓn− (n−1)Ψ(n)+n− logθ , (4.3.3)

the shannon entropy of nth record values for exponential variate.

Also when n = m = k = 1 this comes out to be

H( f ) = 1− lnθ ,

the shannon entropy of parent distribution for exponential variate.

2. Uniform Distribution

If a random variable X is uniformly distributed over (a ,b), a < b, then its den-

sity and distribution functions are given respectively by

f (x) =
1

b−a
and F(x) =

x−a
b−a

, a < x < b.

From (4.3.1)

H( fn,k, fm,k)=− ln
km

Γm
−(m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)− kn

Γn

∫ ∞

0
un−1e−uk ln f (x)du.

Thus inaccuracy measure between nth and mth k-record value for uniform distri-
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bution is given as

H( fn,k, fm,k)=− ln
km

Γm
−(m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)− kn

Γn

∫ ∞

0
un−1e−uk ln

1
b−a

du.

This gives

H( fn,k, fm,k) =− ln
km

Γm
− (m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)+ ln(b−a). (4.3.4)

When n = m and k = 1 (4.3.4) reduces to

H( fn) = log(Γn)− (n−1)Ψ(n)+ log(b−a) (4.3.5)

the Shannon entropy of nth record values for uniform variate.

When m = k = 1 (4.3.4) comes out to be

H( fn, f ) = ln(b−a),

the inaccuracy measure between nth upper record values and parent distribution,

refer to (3.3.1) .

Also when n = m = k = 1 this comes out to be

H( f ) = ln(b−a),

the Shannon entropy of parent distribution for uniform variate.

3. Pareto Distribution

Let X be a random variable having Pareto distribution with pdf

f (x) =
a

xa+1 , x ≥ 1, a > 0.

Substituting − ln F̄(x) = u, we observe that x=F−1(1−e−u) = e
u
a and for computing

H( fn,k, fm,k), we have

f (F−1(1− e−u)) = ae−(u+ u
a ) .

Thus using (4.3.1) inaccuracy measure (4.2.3) between nth and mth upper k-record
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values for Pareto distribution is given as

H( fn,k, fm,k) =− ln
km

Γm
− (m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)− kn

Γn

∫ ∞

0
un−1e−uk ln(ae−(u+ u

a ))du

=− ln
km

Γm
− (m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)− kn

Γn

∫ ∞

0
un−1e−uk lnadu+

kn

Γn
(1+

1
a
)
∫ ∞

0
une−ukdu.

This gives

H( fn,k, fm,k) = ln
Γm
k

− (m−1)Ψ(n)+n− lna+
n
ak

. (4.3.6)

When k = 1, (4.3.6) reduces to

H( fn, fm) = ln(Γm)− (m−1)Ψ(n)+n− lna+
n
a
,

When m = k = 1, (4.3.6) reduces to

H( fn, f ) = n− lna+
n
a
,

the inaccuracy measure between nth and mth record values for pareto distribution.

When n = m and k = 1 (4.3.6) reduces to

H( fn) = log(Γn)− (n−1)Ψ(n)+n− loga+
n
a

the Shannon entropy of nth record values for Pareto variate.

Also when n = m = k = 1, (4.3.6) comes out to be

H( f ) = 1− lna+
1
a
,

the Shannon entropy of parent distribution for Pareto variate.

4. Weibull Distribution

The pdf of Weibull distribution is

f (x) = abxb−1 exp
(
−axb

)
, a, b > 0, x > 0,
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where a and b are scale and shape parameters respectively. The survival function

is

F̄(x) = 1−F(x) = e−axb
.

Substituting − ln F̄(x) = u, we observe that x = F−1(1− e−u) = (u
a)

1
b and for com-

puting H( fn,k, fm,k), we have

f (F−1(1− e−u)) =
(

ba
1
b

)
(u)

(b−1)
b e−u.

From (4.3.1)

H( fn,k, fm,k)=− ln
km

Γm
−(m−1)Ψ(n)+(m−1) lnk+n− n

k
− kn

Γn

∫ ∞

0
un−1e−uk ln

(
ba

1
b u

(b−1)
b e−u

)
du

= ln(
Γm
k
)− (m−1)Ψ(n)+n− n

k
− kn

Γn
ln
(

ba
1
b

)∫ ∞

0
un−1e−ukdu

−kn(b−1)
bΓn

∫ ∞

0
un−1e−uk lnudu+

kn

Γn

∫ ∞

0
une−ukdu.

After some simplifications, we get

H( fn,k, fm,k) = ln
(

Γm

k
1
b

)
− (m− 1

b
)Ψ(n)+n− ln(ba

1
b ). (4.3.7)

If k = 1, this gives

H( fn, fm) = ln(Γm)− (m− 1
b
)Ψ(n)+n− ln(ba

1
b ),

this is the inaccuracy measure between nth and mth record values. If m = k = 1,

(4.3.7) gives

H( fn, f ) =−(1− 1
b
)Ψ(n)+n− ln(ba

1
b ),

the inaccuracy measure between nth upper record values and parent random vari-

able, refer to (3.3.3).

If n = m and k = 1, then (4.3.7) gives

H( fn) = ln(Γn)− (n− 1
b
)Ψ(n)+n− lng(ba

1
b ),

the Shannon entropy for nth record values.
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If n = m = k = 1, then (4.3.7) becomes

H( f ) =−(1− 1
b
)Ψ(1)+1− ln(ba

1
b ),

the shannon entropy of parent distribution for weibull variate.

5. Finite Range Distribution

The pdf of the finite range distribution is given by

f (x) =
a
b

(
1− x

b

)a−1
, a > 1, 0 ≤ x ≤ b.

The survival function is

F̄(x) = 1−F(x) =
(

1− x
b

)a
.

Substituting − ln F̄(x) = u, we observe that x = F−1(1− e−u) = b(1− e−
u
a ) and for

computing H( fn,k, fm,k), we have

f (F−1(1− e−u)) =
ae−u+ u

a

b
.

From (4.3.1) gives

H( fn,k, fm,k)=− ln
km

Γm
−(m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)− kn

Γn

∫ ∞

0
un−1e−uk ln

(
ae−u+ u

a

b

)
du

= ln
Γm
k

−(m−1)Ψ(n)+
n
k
(k−1)− kn

Γn
ln(

a
b
)
∫ ∞

0
un−1e−ukdu− kn

Γn

∫ ∞

0
un−1e−uk(

1
a
−1)udu.

This gives

H( fn,k, fm,k) = ln
Γm
k

− (m−1)Ψ(n)+n− ln(
a
b
)− n

ak
. (4.3.8)

When m = k = 1, (4.3.8) reduces to

H( fn, f ) = ln(Γm)− (m−1)Ψ(n)+n− ln(
a
b
)− n

a
.

the inaccuracy measure between nth and mth record value for finite range distribu-

tion.
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When n = m and k = 1 (4.3.8) reduces to

H( fn) = log(Γn)− (n−1)Ψ(n)+n− log(
a
b
)− n

a
,

the shannon entropy of nth record value for finite range distribution.

When m = n = k = 1, (4.3.8) becomes

H( f ) = 1− ln(
a
b
)− 1

a
,

the shannon entropy of parent distribution for finite range distribution.

4.4 Characterization Problem

For proving characterization result, we will use the lemma by Goffman and Pedrick

[48] which we have already stated and used refer to Lemma 3.2.1. The result is

as follows:

Theorem 4.4.1. Let X and Y be two non-negative random variables having distribution

function F and G. Let H( fn,k, fm,k) < ∞ and H(gn,k,gm,k) < ∞ are the inaccuracy mea-

sures between nth and mth upper k-record values for the parent distribution F and G

respectively. Then F and G belong to the same location family of distribution, if and only

if

H( fn,k, fm,k) = H(gn,k,gm,k) , ∀ n,k ≥ 1.

Proof. The necessary part is clear. We need to prove the sufficiency part only. Let

H( fn,k, fm,k) = H(gn,k,gm,k) , ∀ n,k ≥ 1.

From (4.3.1), we know

H( fn,k, fm,k) =− ln
km

Γm
− (m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)− kn

Γn
.∫ ∞

0
un−1e−uk ln f (F−1(1− e−u))du,

where u =− ln F̄(x) and hence x = F−1(1− e−u). Similarly we get

H(gn,k,gm,k) =− ln
km

Γm
− (m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)

− kn

Γn

∫ ∞

0
un−1e−uk lng(G−1(1− e−u))du.
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Let uk = z, then the above equations become respectively

H( fn,k, fm,k) =− ln
km

Γm
− (m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)

− 1
Γn

∫ ∞

0
zn−1e−z ln

(
f (F−1(1− e

−z
k ))
)

dz
(4.4.1)

and

H(gn,k,gm,k) =− ln
km

Γm
− (m−1)Ψ(n)+(m−1) lnk+

n
k
(k−1)

− 1
Γn

∫ ∞

0
zn−1e−z ln

(
g(G−1(1− e

−z
k ))
)

dz.
(4.4.2)

Equating (4.4.1) and (4.4.2), we obtain

1
Γn

∫ ∞

0

(
ln f (F−1(1− e

−z
k ))− lng(G−1(1− e

−z
k ))
)

e−zzn−1dz = 0,

It can be rewritten

1
Γn

∫ ∞

0

(
ln f (F−1(1− e

−z
k ))− lng((G−1(1− e

−z
k ))
)

e−
z
2 Ln(z)dz = 0, (4.4.3)

for all n ≥ 1, where Ln(z) is the Laguerre polynomial defined in the Lemma 3.2.1. Using

Lemma 3.2.1 and simplifying further, we obtain

f
(

F−1(1− e−
z
k )
)
= g

(
G−1(1− e−

z
k )
)
, ∀ n ≥ 1.

Let (1− e−
z
k ) = v. As d

dvF−1(v) = 1
f (F−1(v)) , it follows that

(F−1)
′
(v) = (G−1)

′
(v) ∀ v ∈ (0,1).

⇒ F−1(v) = G−1(v)+ a,

where a is a constant. Hence the desired result follows.

4.5 Residual Measure Of Inaccuracy For k-Records

Since the information measures defined previously are not applicable to a sys-

tem which has already worked for some unit of time, thus the concept of residual

measures has been developed in the literature. Let X denote lifetime of a system.

The residual lifetime of the system when it is still working at time t, is denoted
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by Xt = (X − t | X > t). Thus provided a system has survived up to time t, the

corresponding dynamic measures of uncertainty, refer to Ebrahimi [36], and of

discrimination, refer to Ebrahimi and Kirmani [40], are given as

H( f ; t) =−
∫ ∞

t

f (x)
F̄(t)

ln
f (x)
F̄(t)

dx

and

H( f | g; t) =
∫ ∞

t

f (x)
F̄(t)

ln
f (x)/F̄(t)
g(x)/Ḡ(t)

dx

respectively. Further Taneja et al. [117] introduced a dynamic measure of inaccu-

racy between two residual lifetime distributions as

H( f ,g; t) =−
∫ ∞

t

f (x)
F̄(t)

ln
g(x)
Ḡ(t)

dx . (4.5.1)

When t = 0, it reduces to Kerridge inaccuracy measure [63]. Madadi and Tata

[77] gave the generalized results for Shannon information measure to k-records.

Asha and Chacko [14] have studied residual Renyi entropy for k-record values.

Now, corresponding to the measure (4.5.1), we propose the residual measure of

inaccuracy between the nth upper k-record value and the parent distribution as

H( fn,k, f ; t) =−
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln
f (x)
F̄(t)

dx , t > 0. (4.5.2)

Next, we give a characterization result for the above measure and for proving it

we will first state the following theorem and lemma from Gupta and Kirmani [51]

which we have also used earlier.

Theorem 4.5.1. Let the function f be a continuous function defined in a domain D ⊂ R2

and f satisfies the Lipschitz condition (with respect to y) in D, that is

| f (x,y1)− f (x,y2| ≤ k|y1 − y2|,k > 0,

for every point (x,y1) and (x,y2) in D. Then the function y = ϕ(x) satisfying the initial

value problem y′ = f (x,y) and ϕ(x0) = y0, xεI, is unique.

Lemma 4.5.1. Suppose that the function f is continuous in a convex region D ⊂ R2. Sup-

pose that ∂ f
∂y exists and it is continuous in D. Then, f satisfies Lipschitz condition in D.

Theorem 4.5.2. Let X be a non-negative continuous random variable with distribution

function F(x). Let the residual measure of inaccuracy of the corresponding nth k-record
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value , denoted by H( fn,k, f ; t) be finite for all t ≥ 0. Then H( fn,k, f ; t) characterizes the

distribution.

Proof. We know that

H( fn,k, f ; t) =−
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln
f (x)
F̄(t)

dx , t > 0

= ln F̄(t)− 1
F̄n,k(t)

∫ ∞

t
fn,k(x) ln f (x)dx.

Taking derivative of both sides with respect to t, we have

d
dt
(H( fn,k, f ; t)) =−λF(t)+λFn,k(t)(H( fn,k, f ; t))+ ln(λF(t)),

where λF(t) and λFn,k(t) are the hazard rates of X and Xn,k respectively. Taking derivative

with respect to t again and using the relation

λFn,k(t) = α(t)λF(t).

where

α(t) =
(

kn(− ln F̄(t))n−1(F̄(t))k

Γn,−k ln F̄(t)

)
,

we get

λ ′
F(t)=

α(t)λF(t)H ′( fn,k, f ; t)+α ′(t)λF(t)H( fn,k, f ; t)+α ′(t)λF(t) lnλF(t)−H”( fn,k, f ; t)
1−α(t)−α(t)H( fn,k, f ; t)−α(t) lnλF(t)

.

(4.5.3)

Suppose there are two distribution functions F and F* such that

H( fn,k, f ; t) = H( f ∗n,k, f ; t) = c(t),say.

Then for all t, from (4.5.3) we get

λ ′
F(t) = ψ(t,λF(t)),λ ′

F∗(t) = ψ(t,λF∗(t)),

where

ψ(t,y) =
(

α(t)c′(t)y+α ′(t)c(t)y+α ′(t)y lny− c”(t)
1−α(t)−α(t)c(t)−α(t) lny

)
.

Using Theorem 4.5.1 and Lemma 4.5.1 we get, λF(t) = λF∗(t), for all t. Also hazard rate

function characterizes the distribution function uniquely, so we get the desired result.
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Lemma 4.5.2. Let {Xi, i ≥ 1} be a sequence of i.i.d. continuous random variables having

distribution F(x) and pdf f(x). Let Xn,k be the nth upper k-record value. Then the residual

measure of inaccuracy (4.5.1) between nth upper k-record and parent distribution can be

represented as

H( fn,k, f ; t) = ln F̄(t)− 1
F̄n,k(t)Γn

∫ ∞

−k ln F̄(t)
un−1e−u ln f (F−1(1− e−

u
k ))du. (4.5.4)

Proof. Consider

H( fn,k, f ; t) =−
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln
f (x)
F̄(t)

dx , t > 0

=− 1
F̄n,k(t)

∫ ∞

t
fn,k(x) ln f (x)dx+ ln F̄(t).

Using (1.10.1)

H( fn,k, f ; t) =− 1
F̄n,k(t)

∫ ∞

t

kn

Γn
[− ln F̄(x)]n−1[F̄(x)]k−1 f (x) ln f (x)dx+ ln F̄(t).

and putting −k ln F̄(x) = u , we get

H( fn,k, f ; t) = ln F̄(t)− 1
F̄n,k(t)Γn

∫ ∞

−k ln F̄(t)
un−1e−u ln f (F−1(1− e−

u
k ))du.

Example 4.5.1. The pdf of the finite range distribution is given by

f (x) =
a
b

(
1− x

b

)a−1
, a > 1, 0 ≤ x ≤ b.

The survival function is

F̄(x) = 1−F(x) =
(

1− x
b

)a
.

Substituting −k ln F̄(x) = u, we observe that x = F−1(1− e−
u
k ) = b(1− e−

u
ak ).

and

f
(

F−1(1− e−
u
k )
)
= f

(
b(1− e−

u
ak )
)
=

a
b

e−
u
k (1−

1
a ).

Putting in (4.5.4), we will get

H( fn,k, f ; t) = a ln(1− t
b
)− ln(

a
b
)+

Γ(n+1,−k ln ¯F(t))
Γ(n,−k ln ¯F(t))

(
a−1

ak

)
.

Proposition 4.5.1. If H( fn,k, f ) is the inaccuracy measure between nth k-record value
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and parent random variable, then

H( fn,k, f ; t)≤
H( fn,k, f )

F̄n,k(t)
.

Proof. We know

H( fn,k, f ; t) = ln F̄(t)− 1
F̄n,k(t)

∫ ∞

t
fn,k(x) ln f (x)dx , t > 0

As for t ≥ 0 ln F̄(t)≤ 0

⇒ H( fn,k, f ; t)≤− 1
F̄n,k(t)

∫ ∞

t
fn,k(x) ln f (x)dx , t > 0

≤− 1
F̄n,k(t)

∫ ∞

0
fn,k(x) ln f (x)dx ,

=
H( fn,k, f )

F̄n,k(t)
.

Proposition 4.5.2. Let M be the mode of the distribution.Then

H( fn,k, f ; t)≥ ln
F̄(t)
M

.

Proof. As M is the mode, therefore f (x)≤ M, ∀ x ≥ t.Therefore,

H( fn,k, f ; t) = ln F̄(t)− 1
F̄n,k(t)

∫ ∞

t
fn,k(x) ln f (x)dx , t > 0

≥ ln F̄(t)− lnM
F̄n,k(t)

∫ ∞

t
fn,k(x)dx , t > 0

= ln
F̄(t)
M

.

This proves the result.

4.6 Conclusion

The inaccuracy measure has various applications in different areas of science

and technology such as statistical inference, estimation and coding theory. We

have studied the inaccuracy measure based on k-record values. The inaccura-

cy measure for various distributions which are commonly used in the reliability

modeling, has been discussed. A characterization result has also been given.

We have also studied the concept of residual measure of inaccuracy for k-record
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values and also some properties of it. It has also shown that it characterizes the

distribution function uniquely.



Chapter 5

Cumulative Residual Inaccuracy

Measure For k-Record Values

5.1 Introduction

So far we have discussed information measure based on probability density func-

tion which have their own limitations. To overcome some of the limitations of

Shannon’s entropy measure as discussed in Section 1.7, a new measure of un-

certainty has been developed by Rao et al. [95], known as cumulative residual

entropy (CRE) in which the probability density function f (x) has been replaced

with the survival function F̄(x) of the random variable X , given as

H(F̄) =−
∫ ∞

0
F̄(x) log F̄(x)dx. (5.1.1)

This measure of uncertainty is particularly appropriate to describe the information

in problems connected with the ageing properties of reliability theory based on

the mean residual life function. After Rao [95] proposed this cumulative residu-

al entropy, this measure became the subject of interest for various researchers.

Asadi and Zohrevand [13] considered its dynamic version to explain the age effect

The result of this chapter has been communicated in a research paper under the title Cumulative
Residual Inaccuracy Measure for k-Record Values and some work has been presented in International
Conference on Recent Advances in Pure and Applied Mathematics held at Delhi Technological University,
Delhi, Oct 23-25, 2018.

69
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on the information concerning the residual lifetime of a system or a component

. In analogy with cumulative residual entropy (5.1.1), Dicrescenzo and Longob-

ardi [34] introduced the cumulative entropy particularly suitable for the problem-

s related to inactivity time. Sunoj and Linu [109] proposed cumulative Renyi’s

entropy. Taneja and Kumar [116] extended the concept of cumulative Residual

Entropy to cumulative residual inaccuracy and then to dynamic cumulative inac-

curacy and also studied some of its properties. The measure proposed by Taneja

and Kumar [116] is given as

H(F̄ , Ḡ) =−
∫ ∞

0
F̄(x) log Ḡ(x)dx. (5.1.2)

Psarrakos and Navarro [93] studied this concept for k-record values. Tahmasebi

and Eskandarzadeh [112] proposed the extension of cumulative entropy based

on kth lower record values and also considered its dynamic version using the past

lifetime.

In the preceding chapters we have studied the inaccuracy measure between

record distribution and the parent distribution and then between k-record distri-

bution and parent distribution. In this chapter we study the cumulative residual

inaccuracy contained in the sequence of k-record values. The organisation of

the chapter is as follows: In Section 5.2, we propose the extension of cumulative

residual inaccuracy measure to k-record values. In Section 5.3, we study some of

the properties of the proposed measure and find some bounds to the measure.

Then in Section 5.4, some stochastic ordering has been studied. Section 5.5 pro-

vides the simplified expression for the cumulative residual inaccuracy to make the

computations and calculations easy. Section 5.6 concludes the chapter.

5.2 Cumulative Residual Inaccuracy Measure

Corresponding to the measure (5.1.2), here we are introducing the cumulative

residual inaccuracy measure between k-record distribution F̄n,k(x) and the parent

distribution F̄ as

H(F̄n,k, F̄) =−
∫ ∞

0
F̄n,k(x) ln F̄(x)dx. (5.2.1)
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Using (1.10.3)

H(F̄n,k, F̄) =−
∫ ∞

0

n−1

∑
j=0

1
j!
(F̄(x))k

(−k ln F̄(x)) j ln F̄(x)dx

=
n−1

∑
j=0

∫ ∞

0

k j

j!
(F̄(x))k

(− ln F̄(x)) j+1dx.

(5.2.2)

After some rearrangements, we get

H(F̄n,k, F̄) =
n−1

∑
j=0

∫ ∞

0

( j+1)
k2λF(x)

.
k j+2 (− ln F̄(x))( j+1) f (x)

Γ( j+2)
dx

=
n−1

∑
j=0

∫ ∞

0

( j+1)
k2λF(x)

f j+2,k(x) dx

=
n−1

∑
j=0

( j+1)
k2 E f j+2,k

(
1

λF(x)

)
.

(5.2.3)

Here E stands for expectation and λF(x) stands for hazard rate function corre-

sponding to F(x).

5.3 Properties And The Bounds To The Measure

In the present section, we study some of the properties of the proposed measure

of cumulative inaccuracy as follows:

1. If µn,k(x) =
∫ ∞

0 F̄n,kdx, then inaccuracy measure can be expressed as

H(F̄n,k, F̄) =
(n−1)

∑
j=0

k j( j+1)
(
µ j+2,k(x)−µ j+1,k(x)

)
,

Proof. From (1.10.3), we can write

F̄j+2,k(x)− F̄j+1,k(x) = (F̄(x))k (−k ln F̄(x)) j+1

( j+1)!
. (5.3.1)

Therefore from (5.2.2) and (5.3.1), we get

H(F̄n,k, F̄) =
(n−1)

∑
j=0

k j( j+1)
∫ ∞

0

(
Fj+2,k(x)−Fj+1,k(x)

)
dx

=
(n−1)

∑
j=0

k j( j+1)
(
µ j+2,k(x)−µ j+1,k(x)

)
.
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Remark 5.3.1. If for a fixed k, Fn,k is a decreasing function of n, that is, F̄n,k is an

increasing function of n, then F̄j+2,k > F̄j+1,k. From above result, we can see that

H(F̄n,k, F̄) is an increasing function of n.

2. Consider two random variables X and Y with survival functions F̄(x) and Ḡ(y)

respectively such that Y = ϕ(X), where ϕ is a strictly increasing function with

ϕ(0) = 0, then

H(Ḡn,k, Ḡ) =
(n−1)

∑
j=0

∫ ∞

0

k j

j!
(F̄(x))k(− ln F̄(x)) j+1ϕ

′
(x)dx. (5.3.2)

Proof. We can write from (5.2.2)

H(Ḡn,k, Ḡ) =
(n−1)

∑
j=0

∫ ∞

0

k j

j!
(Ḡ(y))k (− ln Ḡ(y)

) j+1 dy. (5.3.3)

Now Y = ϕ(X)⇒ Ḡ(y) = F̄(x) and Ḡn,k(y) = F̄n,k(x). Also dy = ϕ ′
(x)dx.

Putting all these values in (5.3.3), the result is obvious.

Remark 5.3.2. In particular Y = ϕ(X) = aX ⇒ ϕ ′
(x) = a. Therefore (5.3.2) be-

comes

H(Ḡn,k, Ḡ) =
(n−1)

∑
j=0

a
∫ ∞

0

k j

j!
(F̄(x))k(− ln F̄(x)) j+1dx

= a H(F̄n,k, F̄).

3. If Ḡ(x) = (F̄(x))β
, β is an integer greater than 1, then

H(Ḡn,k, Ḡ) = βH(F̄n,kβ , F̄)

Proof. We know

H(Ḡn,k, Ḡ) =
(n−1)

∑
j=0

∫ ∞

0

k j

j!
(Ḡ(x))k(− ln Ḡ(x)) j+1dx

=
(n−1)

∑
j=0

∫ ∞

0

k j

j!
(F̄(x))kβ (−β ln F̄(x)) j+1dx

= β
(n−1)

∑
j=0

∫ ∞

0

(kβ ) j

j!
(F̄(x))kβ (− ln F̄(x)) j+1dx

= βH(F̄n,kβ , F̄).



73

4. Consider η(X) =−
∫ ∞

0 (F̄(x))k ln F̄(x)dx, then

H(F̄n,k, F̄)≥
(n−1)

∑
j=0

k j

j!
(η(X)) j+1 , (5.3.4)

Proof. From (5.2.2)

H(F̄n,k, F̄) =
(n−1)

∑
j=0

∫ ∞

0

k j

j!
(F̄(x))k

(− ln F̄(x)) j+1dx

=
(n−1)

∑
j=0

∫ ∞

0

k j

j!
(F̄(x))k−1 F̄(x)(− ln F̄(x)) j+1dx

≥
(n−1)

∑
j=0

∫ ∞

0

k j

j!
(F̄(x))k−1

(F̄(x)) j+1
(− ln F̄(x)) j+1dx.

Now, using Jensen’s inequality, we get

H(F̄n,k, F̄)≥
(n−1)

∑
j=0

k j

j!

(∫ ∞

0
−(F̄(x))k ln F̄(x)

) j+1

dx

≥
(n−1)

∑
j=0

k j

j!
(η(X)) j+1 .

Here η(X) =−
∫ ∞

0 (F̄(x))k ln F̄(x)dx.

5. Let X be an absolutely continuous non-negative random variable, then

H(F̄n,1, F̄)≥
(n−1)

∑
j=0

(H(F̄))
j+1

j!
, (5.3.5)

where H(F̄) is given by (5.1.1).

Proof. This result can be proved directly from (5.3.4) by taking k = 1. Also if we

put k = 1 in η(X) = −
∫ ∞

0 (F̄(x))k ln F̄(x)dx, it becomes the cumulative residual

entropy given as H(F̄) =−
∫ ∞

0 F̄(x) ln F̄(x)dx. This proves the result.

5.4 Some Results On Stochastic Ordering

In this section we prove some order properties of cumulative inaccuracy mea-

sure for k-record values. First we give following definitions.
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Definition 5.4.1. A random variable X is said to be less than Y in the stochastic ordering

denoted by X
st
≤Y if F̄(x)≤ Ḡ(x) for all x, where F̄(x) and Ḡ(x) are the survival functions

of X and Y respectively.

Definition 5.4.2. A random variable X is said to be less than Y in the likelihood ratio

ordering denoted by X
lr
≤ Y if fX (x)

gY (x)
is non increasing in x, where fX(x) and gY (x) are the

pdf of X and Y respectively.

Proposition 5.4.1. If E(Xn,k) and E(X), are the expected value of nth k-record value and

the parent distribution such that Xn,k
st
≤ X , then

(i) H(F̄n,k)≤ H(F̄n,k, F̄)−E(Xn,k) ln
E(Xn,k)

E(X)
. (5.4.1)

(ii) H(F̄n,k)≤ H(F̄)−E(Xn,k) ln
E(Xn,k)

E(X)
. (5.4.2)

Here H(F̄n,k) and H(F̄) denote the cumulative residual entropy for the random variables

Xn,k and X respectively.

Proof. Using log-sum inequality we can write

∫ ∞

0
F̄n,k(x) ln

F̄n,k(x)
F̄(x)

dx ≥
∫ ∞

0
F̄n,k(x)dx ln

∫ ∞
0 F̄n,k(x)dx∫ ∞

0 F̄(x)dx

= E(Xn,k) ln
E(Xn,k)

E(X)
.

Hence using above inequality, we obtain

H(F̄n,k) =−
∫ ∞

0
F̄n,k(x) ln F̄n,k(x) dx

≤−
∫ ∞

0
F̄n,k(x) ln F̄(x) dx−E(Xn,k) ln

E(Xn,k)

E(X)

= H(F̄n,k, F̄)−E(Xn,k) ln
E(Xn,k)

E(X)
.

Now using Xn,k
st
≤ X in above inequality, we get

H(F̄n,k)≤−
∫ ∞

0
F̄n,k(x) ln F̄(x) dx−E(Xn,k) ln

E(Xn,k)

E(X)

≤−
∫ ∞

0
F̄(x) ln F̄(x) dx−E(Xn,k) ln

E(Xn,k)

E(X)

= H(F̄)−E(Xn,k) ln
E(Xn,k)

E(X)
.
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This proves the result.

Proposition 5.4.2. Let X > 0 be with density function f (x) and cumulative distribution

function F(x). If Xn,k
st
≤ X , then

H(F̄n,k, F̄)≤CeH( fn,k, f ). (5.4.3)

Here H( fn,k, f ) =−
∫ ∞

0 fn,k(x) ln f (x)dx.

Proof. Consider

∫ ∞

0
fn,k(x) ln

f (x)
F̄n,k(x) ln F̄(x)

dx ≥ ln
1∫ ∞

0 F̄n,k(x) ln F̄(x)dx

= ln
1

−H(F̄n,k, F̄)
.

The inequality above results from log-sum inequality. Continuing, we get

∫ ∞

0
fn,k(x) ln f (x)dx−

∫ ∞

0
fn,k(x) ln

(
F̄n,k(x) ln F̄(x)

)
dx ≥− ln

(
−H(F̄n,k, F̄)

)
.

or

H( fn,k, f )+
∫ ∞

0
fn,k(x) ln

(
F̄n,k(x) ln F̄(x)

)
dx ≤ ln(−H(F̄n,k, F̄)).

Using Xn,k
st
≤ X , we get

H( fn,k, f )+
∫ ∞

0
fn,k(x) ln

(
F̄n,k(x) ln F̄n,k(x)

)
dx ≤ ln(−H(F̄n,k, F̄)). (5.4.4)

Using substitution F̄n,k(x) = u, we get

∫ ∞

0
fn,k(x) ln

(
F̄n,k(x) ln F̄n,k(x)

)
dx =

∫ 1

0
ln(u lnu)du = k. (say)

Therefore, by putting this value in (5.4.4)

H( fn,k, f )+ k ≤ ln(−H(F̄n,k, F̄)).

or

H(F̄n,k, F̄)≤C eH( fn,k, f ),

where C denotes the constant.
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Proposition 5.4.3. Let X be a non-negative random variable, then

H(F̄n,k)≤
E fn,k(X

β+1)Γβ (1+ 1
β )

(β +1)Eβ (Xn,k)
. (5.4.5)

Proof. Let X has Weibull distribution with reliability function F̄(x) = e−(λx)β
.

From (5.4.1)

H(F̄n,k)≤−
∫ ∞

0
F̄n,k(x) ln F̄(x) dx−E(Xn,k) ln

E(Xn,k)

E(X)
.

For Weibull distribution, it becomes

−H(F̄n,k)≥ E(Xn,k) ln
E(Xn,k)

E(X)
−
∫ ∞

0
F̄n,k(x)(λx)β dx

= E(Xn,k) ln
E(Xn,k)

E(X)
− λ β

β +1
E fn,k(X

β+1).

Let E(X) = µ =
∫ ∞

0 F̄(x)dx =
Γ( 1

β +1)
λ . Hence,

−H(F̄n,k)≥ E(Xn,k) ln
E(Xn,k)

µ
−

E fn,k(X
β+1)Γβ (1+ 1

β )

(β +1)µβ . (5.4.6)

The right hand side of above equation is maximized for a fixed β at

µβ =

(
βE fn,k(X

β+1)Γβ (1+ 1
β )

(β +1)E(Xn,k)

) 1
β

.

Using this in (5.4.6)

−H(F̄n,k)≥ E(Xn,k) ln
E(Xn,k)

µβ
−

E fn,k(X
β+1)Γβ (1+ 1

β )

(β +1)µβ
β

=−
E(Xn,k)

β
ln

(
βE fn,k(X

β+1)Γβ (1+ 1
β )

(β +1)Eβ+1(Xn,k)

)
−

E(Xn,k)

β
.

≥
E(Xn,k)

β

(
1−

βE fn,k(X
β+1)Γβ (1+ 1

β )

(β +1)Eβ+1(Xn,k)

)
−

E(Xn,k)

β

=
−E fn,k(X

β+1)Γβ (1+ 1
β )

(β +1)Eβ (Xn,k)
.

or H(F̄n,k)≤
E fn,k(X

β+1)Γβ (1+ 1
β )

(β +1)Eβ (Xn,k)
.
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This completes the proof.

Remark 5.4.1. If we put β = 1 and n = k = 1 in above result, it reduces to

H(F̄)≤ E(X2)

2E(X)
, (5.4.7)

a bound obtained by Rao et al. [95].

Proposition 5.4.4. Suppose that the non-negative random variable X has decreasing haz-

ard rate, then

H(F̄n+1,k, F̄)≤ H(F̄n,k, F̄) (5.4.8)

Proof. Consider two pdfs of consecutive record values fn,k(x) and fn+1,k(x).

Using (1.10.1), we get

fn,k(x)
fn+1,k(x)

=− n
k ln F̄(x)

, (5.4.9)

which is a decreasing function in x. This implies that Xn,k
lr
≤ Xn+1,k. Therefore Xn,k

st
≤

Xn+1,k, that is F̄n,k(x) ≤ F̄n+1,k(x). (For more details one can refer to Shaked and Shan-

tikumar [103]). Therefore for all increasing function ψ, this is equivalent to E(ψ(Xn,k))≤

E(ψ(Xn+1,k)), provided these expectations exist.

Now if X has decreasing hazard rate λF(x), then 1
λF (x)

is an increasing function.Therefore

by above

E
(

1
λF(Xn,k)

)
≤ E

(
1

λF(Xn+1,k)

)
From (5.2.3), we can see that

H(F̄n,k, F̄)≤ H(F̄n+1,k, F̄) (5.4.10)

Here λF(Xn,k) and λF(Xn+1,k) denotes the hazard rate corresponding to Xn,k and Xn+1,k

respectively. This completes the proof.

5.5 Cumulative Inaccuracy For Some Specific Distribu-

tions

In this section first we give a lemma providing a simplified expression for find-

ing the cumulative inaccuracy measure for various distributions and then we give
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some examples based on it.

Lemma 5.5.1. Consider a random variable X having distribution function F̄(x), then

cumulative inaccuracy measure between k-record values and parent distribution is given

as

H(F̄n,k, F̄) =
(n−1)

∑
j=0

k j

j!

∫ ∞

0

u j+1e−u(k+1)

f (F−1(1− e−u))
du. (5.5.1)

Proof. From (5.2.2)

H(F̄n,k, F̄) = (F̄(x))k
(n−1)

∑
j=0

∫ ∞

0

k j

j!
(− ln F̄(x)) j+1dx.

By putting − ln F̄(x) = u in above equation, we get

H(F̄n,k, F̄) = e−ku
(n−1)

∑
j=0

∫ ∞

0

k ju j+1e−u

j! f (F−1(1− e−u))
du

=
(n−1)

∑
j=0

k j

j!

∫ ∞

0

u j+1e−u(k+1)

f (F−1(1− e−u))
du.

Example 5.5.1. Consider finite range distribution with pdf f (x) = a
b

(
1− x

b

)a−1
, a >

1, 0 ≤ x ≤ b and distribution function F(x) =
(
1− x

b

)a
.

Then F−1(1− e−u) = b(1− e−
u
a ) and this gives f (F−1(1− e−u)) = a

be−
u(a−1)

a . Putting

all these values in (5.5.1), we get

H(F̄n,k, F̄) =
(n−1)

∑
j=0

k j

j!

∫ ∞

0

u j+1e−u(k+1)

f (F−1(1− e−u))
du

=
(n−1)

∑
j=0

k jb
j!a

∫ ∞

0

u j+1e−u(k+1)

e−
u(a−1)

a

du

=
(n−1)

∑
j=0

k jb
j!a

∫ ∞

0
u j+1e−u(k+ 1

a )du.

Now using substitution u(k+ 1
a) = t

H(F̄n,k, F̄) =
(n−1)

∑
j=0

k jb
j!a(k+ 1

a)
j+2

∫ ∞

0
t j+1e−tdt

=
b
a

(n−1)

∑
j=0

k j( j+1)
(k+ 1

a)
j+2

.

(5.5.2)
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Here
∫ ∞

0 t j+1e−tdt = Γ( j+2)

In particular if n = 2 and k = 1, Then we have inaccuracy measure between second

record value and parent distribution as

H(F̄2,1, F̄) =
b

a(1+ 1
a)

2

(
3

∑
j=1

j
(1+ 1

a)
j−1

)
. (5.5.3)

Example 5.5.2. For uniform distribution, if we put a = 1 in (5.5.2), we get inaccuracy

measure corresponding to uniform distribution as

H(F̄n,k, F̄) = b
(n−1)

∑
j=0

k j( j+1)
(k+1) j+2 .

Example 5.5.3. If X is a random variable with Weibull distribution having pdf f (x) =

αβxβ−1e−αxβ
, f or x > 0, α > 0, β > 0 and survival function F̄(x) = 1− e−αxβ

, this

gives F−1(1− e−u) =
( u

α
) 1

β . Therefore putting these values in (5.5.1), then inaccuracy

measure will come out to be

H(F̄n,k, F̄) =
(n−1)

∑
j=0

k jΓ( j+1+ 1
β )

j!(αβ β )
1
β k j+1+ 1

β
. (5.5.4)

Example 5.5.4. If X is a exponentially distributed random variable, then by putting β = 1

in (5.5.4), we get the inaccuracy measure corresponding to exponential distribution as

H(F̄n,k, F̄) =
(n−1)

∑
j=0

( j+1)
k2α

. (5.5.5)

Remark 5.5.1. If we put k = 1, then H(F̄n,k, F̄) becomes H(F̄n, F̄), which represents the

cumulative residual inaccuracy measure between nth record value and parent distribution

and if n = 1, k = 1, this represents the cumulative residual entropy given by (refer to Rao

et al. [95]).

5.6 Conclusion

Record values and k-record values originates very often in the many realistic situ-

ations. Athletic events, hydrology, weather forecasting are some of the examples.

Also Kerridge [63] inaccuracy measure is quite useful to measure inaccuracy be-

tween two distributions. So by considering this, we have provided the cumulative

residual inaccuracy between the distributions of k-record values and the parent
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random variable. Also we have obtained some properties of this measure includ-

ing stochastic ordering. To minimise the computation work to get the inaccuracy

for various distributions, we have provided a simplified expression for the pro-

posed inaccuracy measure and have applied it to some of the standard distribu-

tions.



Chapter 6

Residual Measure Of Discrimination

6.1 Introduction

Sometimes in statistical analysis there is difference between registered distribu-

tion and the original distribution. Many events in nature are conveyed via the study

of relation between registered and original distributions. Kullback Leibler [66] in-

formation measure is connected with the statistical problem of discrimination by

considering a measure of distance or divergence between two distributions asso-

ciated with the same random experiment. It is given by

H( f/g) =
∫ ∞

0
f (x) ln

f (x)
g(x)

dx. (6.1.1)

Here f (x) is the actual distribution of random variable X and g(x) is its predicted

distribution. Basically this is a measure of how one probability distribution differs

from a second probability distribution. If it comes out to be zero, it indicates that

we can expect similar behaviour of two different distributions. Although above

measure is not actual a metric, yet it is termed as ’distance’ because H( f/g)≥ 0

and equality holds iff f (x) = g(x), ∀ x. In various phenomenons for example

life testing and survival analysis, one has the knowledge about the time ’t ’ up to

The work presented in this chapter is communicated with the title A Measure of Discrimination Be-
tween Two Residual Lifetime Distributions For k-Record Values and some work has been presented in
International Research Symposium on Engineering and Technology held at Singapore, August 28-30, 2018.

81
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which the system has already worked. In such cases, this time ’t ’ must be consid-

ered, while finding the discrimination measure between two systems. By taking

in to account this fact, Ebrahimi and Kirmani [40] gave the measure of discrimina-

tion between the residual lifetime distributions by replacing the probability density

functions f (x) and g(x) by corresponding residual pdfs f (x)
F̄(t) and g(x)

Ḡ(t) as

H( f/g; t) =
∫ ∞

t

f (x)
F̄(t)

ln
(

f (x)/F̄(t)
g(x)/Ḡ(t)

)
dx. (6.1.2)

Here F̄(t) and Ḡ(t) denote the survival functions corresponding to the distribu-

tions f (x) and g(x) respectively. When t = 0, then the measure (6.1.2) becomes

(6.1.1). Ebrahimi and Kirmani [39] studied a characterization result of measure of

discrimination between two residual life distributions using proportional hazards

model.

In the previous chapters we have discussed the inaccuracy measure between

the distribution of nth record value and the parent distribution and then the in-

accuracy measure between nth k-record value and the parent distribution. So it

is natural that one can also extend the concept of K-L information measure and

its dynamic version given by Ebrahimi and Kirmani [40] to k-record values. So

considering this in the present chapter we provide an extension of the measure of

discrimination given by Ebrahimi and kirmani [40] to k-record values. The distance

between two k-record distributions of residual lifetime is found. Also keeping the

record times fixed, we derive the distance between k-record value and l-record

value.

The chapter is organised as follows : In Section 6.2, we propose a measure of

discrimination between two k-record values of residual lifetime distribution and

give a characterization result for that. In Section 6.3, we study some properties

of this measure. In Section 6.4, the proposed measure is computed for some

specific distributions. Some bounds to the discrimination measure are found in

Section 6.5. Section 6.6 is of conclusion.



83

6.2 A Measure Of Discrimination Between Two Residual

Lifetime Distributions

Record data appears in miscellaneous fields for example sports, hydrology, weath-

er forecasting and even in the field of medicines. So the distance between two

record value distributions becomes important. So taking this in to mind here we

extend the measure of discrimination between two residual lifetime distributions

proposed by Ebrahimi and Kirmani [40] to k- record values. For all t > 0, we pro-

pose the measure of discrimination between nth and mth upper k-record values of

residual lifetime as

H( fn,k/ fm,k; t) =
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln

 fn,k(x)
F̄n,k(t)
fm,k(x)
F̄m,k(t)

dx

=
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln
(

fn,k(x)F̄m,k(t)
F̄n,k(t) fm,k(x)

)
dx,

(6.2.1)

where fn,k(x) and fm,k(x) are pdfs of nth and mth upper k-record value given by

(1.10.1). Also F̄n,k(t) and F̄m,k(t) are corresponding survival functions.

In terms of residual measure of entropy denoted by H( fn,k; t), it can be written as

H( fn,k/ fm,k; t) =−H( fn,k; t)−
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln
fm,k(x)
F̄m,k(t)

dx, (6.2.2)

where

H( fn,k; t) =−
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln
fn,k(x)
F̄n,k(t)

dx

= ln F̄n,k(t)−
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln fn,k(x)dx .

In another way H( fn,k/ fm,k; t) can be represented as

H( fn,k/ fm,k; t) = ln
F̄m,k(t)
F̄n,k(t)

+
1

F̄n,k(t)

∫ ∞

t
fn,k(x) ln

fn,k(x)
fm,k(x)

dx, t > 0. (6.2.3)

When t = 0, then (6.2.1) become

H( fn,k/ fm,k) =
∫ ∞

0
fn,k(x) ln

fn,k(x)
fm,k(x)

dx,
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the extension of K-L information measure to k-record values refer to Mosayeb and

Borzadaran [81].

Next, we prove that the measure of discrimination between two k-record values

of residual lifetime characterizes the distribution function of parent random vari-

able uniquely. We derive the required result using the theorem and lemma due to

Gupta and Kirmani [51] which we have stated earlier (refer to Theorem 4.5.1 and

Lemma 4.5.1). The result is stated as:

Theorem 6.2.1. Let H( fn,k/ fm,k; t) is the discrimination measure between two k-record

values of residual lifetime corresponding to the random variable X having distribution

function F(x). Then this measure characterizes the distribution function of parent random

variable uniquely.

Proof. We can write from (6.2.3)

H( fn,k/ fm,k; t) = ln F̄m,k(t)− ln F̄n,k(t)+
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln fn,k(x)dx−
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln fm,k(x)dx.

Taking derivative both sides with respect to t, we get

H ′( fn,k/ fm,k; t) =−λFm,k(t)+λFn,k(t)
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln fn,k(x)dx−λFn,k(t) ln fn,k(t)

+λFn,k(t)−λFn,k(t)
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln fm,k(x)dx+λFn,k(t) ln fm,k(t)

= λFn,k(t)−λFm,k(t)+λFn,k(t) ln
fm,k(t)
fn,k(t)

+λFn,k(t)
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln
fn,k(x)
fm,k(x)

dx.

After some rearrangements, we get

H ′( fn,k/ fm,k; t) = λFn,k(t)−λFm,k(t)+λFn,k(t) ln
λFm,k(t)
λFn,k(t)

+λFn,k(t)H( fn,k/ fm,k; t).

Taking derivative with respect to t again and using the relation

λFn,k(t) = c(t)λFm,k(t),

where

c(t) = (− ln F̄(t))(n−m) Γ(n)Γ(m;−k ln F̄(t))
Γ(m)Γ(n;−k ln F̄(t))

.
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We get

H ′′( fn,k/ fm,k; t) = c(t)−1+ c(t)
(
− lnc(t)+H( fn,k/ fm,k; t)

)
λ ′

Fm,k
(t)+λFm,k(t).(

c′(t)+ c′(t)
(
− lnc(t)+H( fn,k/ fm,k; t)

)
+ c(t)

(
−c′(t)

c(t)
+H ′( fn,k/ fm,k; t)

))
.

(6.2.4)

Suppose there are two distributions F1 and F2 such that

H( f (1)n,k / fm,k; t) = H( f (2)n,k / fm,k; t) = κ(t),say

then ∀ t , from (6.2.4), we get

λ ′
F(1)

m,k
(t) = f (t,λ

F(1)
m,k
(t)) and λ ′

F(2)
m,k
(t) = f (t,λ

F(2)
m,k
(t)),

where

f (t,y) =
(

κ ′′(t)− y(c′(t)− c′(t) lnc(t)+ c′(t)κ(t))
c(t)−1− c(t) lnc(t)+ c(t)κ(t)

)
.

Using Theorem 4.5.1 and Lemma 4.5.1 , we get λ ′
F(1)

m,k

(t) = λ ′
F(2)

m,k

(t), ∀ t . Also haz-

ard rate function characterizes the distribution function uniquely. So we get the

desired result.

In the next section we study some properties of the measure of discrimination

between two k-record values.

6.3 Properties

• For each t > 0, H( fn,k/ fm,k; t) ≥ 0 and the equality holds iff fn,k(x) = fm,k(x)

almost everywhere.

Here result is obvious as for each fixed t > 0, H( fn,k/ fm,k; t) satisfies all the

properties of H( fn,k/ fm,k).

• Let X and Y be two non-negative and continuous random variables having

pdfs f (x) and g(y) respectively. Also Y = ϕ(X), where ϕ is a strictly mono-

tonically increasing and differentiable function. Then

H( fn,k/ fm,k;ϕ−1(t)) = H(gn,k/gm,k; t), (6.3.1)
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where letters have the usual meaning.

Proof. We can write from (6.2.3)

H(gn,k/gm,k; t) = ln
Ḡm,k(t)
Ḡn,k(t)

+
∫ ∞

t

gn,k(y)
Ḡn,k(t)

ln
gn,k(y)
gm,k(y)

dy.

Using (1.10.1), we get

H(gn,k/gm,k; t) = ln
Ḡm,k(t)
Ḡn,k(t)

+
1

Ḡn,k(t)
×∫ ∞

t

kn

Γ(n)
(− ln Ḡ(y))n−1(Ḡ(y))k−1g(y) ln

(
kn−m Γ(m)

Γ(n)
(− ln Ḡ(y))n−m

)
dy.

Now, the transformation Y = ϕ(X)⇒G(y) = F(x) and g(y) = f (x)ϕ ′(x). There-

fore the measure H(gn,k/gm,k; t) becomes

H(gn,k/gm,k; t) = ln
F̄m,k(ϕ−1t)
F̄n,k(ϕ−1t)

+
1

F̄n,k(ϕ−1(t))
×∫ ∞

ϕ−1(t)

kn

Γ(n)
(− ln F̄(x))n−1(F̄(x))k−1 f (x) ln

(
kn−m Γ(m)

Γ(n)
(− ln F̄(x))n−m

)
dx

= H( fn,k/ fm,k;ϕ−1(t)).

• Consider three non-negative random upper k-record values Xn1,k, Xn2,k and

Xn3,k with pdfs fn1,k(x), fn2,k(x) and fn3,k(x) and reverse hazard rate functions

λ fn1,k
(x), λ fn2,k

(x) and λ fn3,k
(x) respectively. If

a. fn1,k(x)
fn3,k(x)

is increasing in x,

b. λ fn2,k
(x)≤ λ fn1,k

(x), then H( fn1,k/ fn3,k; t)≤ H( fn2,k/ fn3,k; t).

Proof. Using (6.2.1), we can write

H( fn1,k/ fn3,k; t)−H( fn2,k/ fn3,k; t)

=
∫ ∞

t

fn1,k(x)
F̄n1,k(t)

ln
(

fn1,k(x)F̄n3,k(t)
F̄n1,k(t) fn3,k(x)

)
dx−

∫ ∞

t

fn2,k(x)
F̄n2,k(t)

ln
(

fn2,k(x)F̄n3,k(t)
F̄n2,k(t) fn3,k(x)

)
dx

=
∫ ∞

t

fn1,k(x)
F̄n1,k(t)

ln
(

fn1,k(x)F̄n3,k(t)
F̄n1,k(t) fn3,k(x)

)
dx−

∫ ∞

t

fn2,k(x)
F̄n2,k(t)

ln
(

fn1,k(x)F̄n3,k(t)
F̄n1,k(t) fn3,k(x)

)
dx−∫ ∞

t

fn2,k(x)
F̄n2,k(t)

ln
(

fn2,k(x)F̄n1,k(t)
F̄n2,k(t) fn1,k(x)

)
dx
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≤
∫ ∞

t

fn1,k(x)
F̄n1,k(t)

ln
(

fn1,k(x)F̄n3,k(t)
F̄n1,k(t) fn3,k(x)

)
dx−

∫ ∞

t

fn2,k(x)
F̄n2,k(t)

ln
(

fn1,k(x)F̄n3,k(t)
F̄n1,k(t) fn3,k(x)

)
dx

=
∫ ∞

t

fn1,k(x)
F̄n1,k(t)

ln
(

fn1,k(x)
fn3,k(x)

)
dx−

∫ ∞

t

fn2,k(x)
F̄n2,k(t)

ln
(

fn1,k(x)
fn3,k(x)

)
dx .

Here we use the fact that H( fn2,k/ fn1,k; t) ≥ 0. Also (b) implies that X (t)
n2,k

is s-

tochastically larger than X (t)
n1,k

, where X (t)
ni,k

, i = 1,2,3 is a random record variable

with pdf f (t)ni,k
=

fni,k(x)
F̄ni,k(t)

. Using (a) and (b), the expression is non-positive. This

completes the proof.

6.4 Measure Of Discrimination For Some Specific Distri-

butions

First we prove the following lemma which provides a general expression for the

measure (6.2.1) which can be used to find measure of discrimination for specific

distributions.

Lemma 6.4.1. Let fn,k and fm,k are the pdfs of nth and mth k-record values given by

(1.10.1), then the measure (6.2.1) is given as

H( fn,k/ fm,k; t) = ln
F̄m,k(t)Γ(m)

F̄n,k(t)Γ(n)
+

(n−m)

F̄n,k(t)Γ(n)

∫ ∞

−k ln F̄(t)
un−1e−u lnu du . (6.4.1)

Proof. We know from (6.2.3)

H( fn,k/ fm,k; t) = ln
F̄m,k(t)
F̄n,k(t)

+
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln
(

fn,k(x)
fm,k(x)

)
dx.

Using (1.10.1) in above , we get

H( fn,k/ fm,k; t) = ln
F̄m,k(t)
F̄n,k(t)

+ ln
(

kn−mΓ(m)

Γ(n)

)
+

1
F̄n,k(t)

×∫ ∞

t

kn

Γ(n)
(− ln F̄(x))n−1

(F̄(x))k−1 f (x) ln(− ln F̄(x))(n−m) dx.

After substituting −k ln F̄(x) = u, we obtain

H( fn,k/ fm,k; t) = ln
F̄m,k(t)kn−mΓ(m)

F̄n,k(t)Γ(n)
+

(n−m)

F̄n,k(t)

∫ ∞

−k ln F̄(t)

un−1e−u

Γ(n)
(lnu− lnk) du .

⇒ H( fn,k/ fm,k; t) = ln
F̄m,k(t)Γ(m)

F̄n,k(t)Γ(n)
+

(n−m)

F̄n,k(t)

∫ ∞

−k ln F̄(t)

un−1e−u

Γ(n)
lnu du .
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This completes the proof.

Remark 6.4.1. In terms of expectation it can be written as

H( fn,k/ fm,k; t) = ln
F̄m,k(t)Γ(m)

F̄n,k(t)Γ(n)
+

(n−m)

F̄n,k(t)
E(lnν∗), (6.4.2)

where ν∗ follows the gamma distribution. That is ν∗ ∼ Γ(n;−k ln F̄(t)).

The above expression gives the measure of discrimination when we keep k fixed.

Next, we give an expression for measure when n is fixed but k varies.

Lemma 6.4.2. Let fn,k and fn,l are nth k-record value and l-record value with survival

functions F̄n,k(t) and F̄n,l(t) respectively. Then

H( fn,k/ fn,l; t) = ln
F̄n,l(t)kn

F̄n,k(t)ln +
(l − k)n
kF̄n,k(t)

F̄n+1,k. (6.4.3)

Proof. We know from (6.2.3)

H( fn,k/ fn,l; t) = ln
F̄n,l(t)
F̄n,k(t)

+
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln
fn,k(x)
fn,l(x)

dx.

After using (1.10.1), we get

H( fn,k/ fn,l; t) = ln
F̄n,l(t)
F̄n,k(t)

+n ln
k
l
+

(k− l)
F̄n,k(t)

∫ ∞

t
fn,k(x) ln F̄(x)dx.

Substituting −k ln F̄(x) = u and after some rearrangements, we get

H( fn,k/ fn,l; t) = ln
(

F̄n,l(t)kn

F̄n,k(t)ln

)
− (k− l)

kF̄n,k(t)

∫ ∞

−k ln F̄(t)

une−u

Γ(n)
du

= ln
(

F̄n,l(t)kn

F̄n,k(t)ln

)
+

(l − k)n
kF̄n,k(t)

F̄n+1,k(t).

Hence the result.

Example 6.4.1. Let X be a random variable having finite range distribution with pdf

f (x) = a
b

(
1− x

b

)(a−1)
, a > 1, 0 ≤ x ≤ b and survival function F(x) = 1−

(
1− x

b

)a
.

⇒ F̄n,k(t) =
Γ(n;−k ln(1− t

b )
a)

Γn and F̄n,l(t) =
Γ(n;−l ln(1− t

b )
a)

Γn .

Hence from (6.4.1), we get

H( fn,k/ fm,k; t) = ln
Γ(m;−k ln(1− t

b)
a)

Γ(n;−k ln(1− t
b)

a)
+

(n−m)

Γ(n;−k ln(1− t
b)

a)
E(lnν∗) , (6.4.4)
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where ν∗ ∼ Γ(n;−k ln
(
1− t

b

)a
).

Also from (6.4.3), we get

H( fn,k/ fn,l; t) = ln
Γ(n;−l ln(1− t

b)
a)kn

Γ(n;−k ln(1− t
b)

a)ln +
(l − k)Γ(n+1;−k ln(1− t

b)
a)

kΓ(n;−k ln(1− t
b)

a)
. (6.4.5)

Example 6.4.2. For a = 1, the finite range distribution becomes uniform distribution

with pdf f (x) = 1
b for 0 ≤ x ≤ b. Hence putting a = 1 in (6.4.4) and (6.4.5), we get

discrimination measures for uniform distribution as

H( fn,k/ fm,k; t) = ln
Γ(m;−k ln(1− t

b))

Γ(n;−k ln(1− t
b))

+
(n−m)

Γ(n;−k ln(1− t
b))

E(lnν∗),

where ν∗ ∼ Γ(n;−k ln
(
1− t

b

)
)

and

H( fn,k/ fn,l; t) = ln
Γ(n;−l ln(1− t

b))k
n

Γ(n;−k ln(1− t
b))l

n +
(l − k)Γ(n+1;−k ln(1− t

b))

kΓ(n;−k ln(1− t
b))

.

Remark 6.4.2. A relation among discrimination measure between two distribution with

discrimination measure between their corresponding residual lifetime distribution and

discrimination measure between their past lifetime distributions is given by

H( fn,k/ fm,k)=Fn,k(t)H̄( fn,k/ fm,k; t)+Fn,k(t) ln
Fn,k(t)
Fm,k(t)

+F̄n,k(t)H( fn,k/ fm,k; t)+F̄n,k(t) ln
F̄n,k(t)
F̄m,k(t)

,

(6.4.6)

where H̄( fn,k/ fm,k; t) denotes the discrimination measure between two past lifetime record

distributions. Since

H( fn,k/ fm,k) =
∫ ∞

0
fn,k(x) ln

fn,k(x)
fm,k(x)

dx.

refer to Mosayeb and Borzadaran [81].

After some rearrangements, we get

H( fn,k/ fm,k) =Fn,k(t)
∫ t

0

fn,k(x)
Fn,k(t)

ln
(

fn,k(x)Fm,k(t)
Fn,k(t) fm,k(x)

)
dx+Fn,k(t) ln

Fn,k(t)
Fm,k(t)

+

F̄n,k(t)
∫ ∞

t

fn,k(x)
F̄n,k(t)

ln
(

fn,k(x)F̄m,k(t)
F̄n,k(t) fm,k(x)

)
dx+ F̄n,k(t) ln

F̄n,k(t)
F̄m,k(t)

=Fn,k(t)H̄( fn,k/ fm,k; t)+Fn,k(t) ln
Fn,k(t)
Fm,k(t)

+ F̄n,k(t)H( fn,k/ fm,k; t)+ F̄n,k(t) ln
F̄n,k(t)
F̄m,k(t)

.
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6.5 Bounds To The Measure

1. If f (x) is a increasing function then ∀ n > m,

H( fn,k/ fm,k; t)≥ ln
λFn,k(t)

λFm,k(t)
. (6.5.1)

and inequality is reversed if f (x) is a decreasing function, where λFn,k(t) and

λFm,k(t) denote the hazard rates of Xn,k and Xm,k respectively.

Proof. We know

fn,k(x)
fm,k(x)

=
k(n−m)Γ(m)

Γ(n)
(− ln F̄(x))(n−m)

. (6.5.2)

As f (x) is an increasing function, this gives ∀ n > m, fn,k(x)
fm,k(x)

is also increasing

function of x

Therefore

x ≥ t ⇒
fn,k(x)
fm,k(x)

≥
fn,k(t)
fm,k(t)

.

From (6.2.1), we have

H( fn,k/ fm,k; t) =
1

F̄n,k(t)

∫ ∞

t
fn,k(x) ln

(
fn,k(x)F̄m,k(t)
F̄n,k(t) fm,k(x)

)
dx

≥ 1
F̄n,k(t)

∫ ∞

t
fn,k(x) ln

(
fn,k(t)F̄m,k(t)
F̄n,k(t) fm,k(t)

)
dx

= ln
λFn,k(t)

λFm,k(t)
.

Also we see that (6.5.1) can be expressed in terms of survival function as follows

H( fn,k/ fm,k; t)≥ ln

(
k(n−m)Γ(m)

Γ(n)
(− ln F̄(t))(n−m) F̄m,k(t)

F̄n,k(t)

)
. (6.5.3)

Similarly if f (x) is a decreasing function. Then for x ≥ t ⇒ fn,k(x)
fm,k(x)

≤ fn,k(t)
fm,k(t)

. There-

fore we get,

H( fn,k/ fm,k; t)≤ ln
λFn,k(t)

λFm,k(t)
.
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2. Also when f (x) is increasing, then

H̄( fn,k/ fm,k; t)≤ ln
rFn,k(t)

rFm,k(t)
, (6.5.4)

where H̄( fn,k/ fm,k; t) represents the discrimination measure between two

past lifetime distributions of records and rFn,k(t) represents reverse hazard

rate function of Xn,k and inequality is reversed if f (x) is a decreasing func-

tion.

Proof. Proof is on similar lines as above and hence omitted.

3. If f (x) is an increasing function. Then

H( fn,k/ fm,k)≤ ln
fn,k(t)
fm,k(t)

(6.5.5)

and inequality is reversed if f (x) is decreasing function.

Proof. We know from (6.4.6)

H( fn,k/ fm,k)=Fn,k(t)H̄( fn,k/ fm,k; t)+Fn,k(t) ln
Fn,k(t)
Fm,k(t)

+F̄n,k(t)H( fn,k/ fm,k; t)+F̄n,k(t) ln
F̄n,k(t)
F̄m,k(t)

.

Putting (6.5.2) and (6.5.4) in this, we get

H( fn,k/ fm,k)≤ Fn,k(t) ln
rFn,k(t)
rFm,k(t)

− F̄n,k(t) ln
λFm,k(t)
λFn,k(t)

+Fn,k(t) ln
Fn,k(t)
Fm,k(t)

+ F̄n,k(t) ln
F̄n,k(t)
F̄m,k(t)

= Fn,k(t) ln

(
rFn,k(t)Fn,k(t)
rFm,k(t)Fm,k(t)

)
+ F̄n,k(t) ln

(
F̄n,k(t)λFn,k(t)
F̄m,k(t)λFm,k(t)

)

= Fn,k(t) ln
fn,k(t)
fm,k(t)

+ F̄n,k(t) ln
fn,k(t)
fm,k(t)

=
(
Fn,k(t)+ F̄n,k(t)

)
ln

fn,k(t)
fm,k(t)

.

⇒ H( fn,k/ fm,k)≤ ln
fn,k(t)
fm,k(t)

.

Also we see that (6.5.5) can be expressed in terms of survival function as follows

H( fn,k/ fm,k)≤ ln

(
k(n−m)Γ(m)

Γ(n)
(− ln F̄(t))(n−m)

)
. (6.5.6)
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Now, we give some examples based on above bounds.

Example 6.5.1. Let X be a exponentially distributed random variable with pdf f (x) =

ae−ax and the survival function F̄(x) = e−ax, a ≥ 0. Here f (x) is a decreasing function.

Therefore from (6.5.3) and using (6.5.6) for decreasing function, we get

H( fn,k/ fm,k; t)≤ ln

(
k(n−m)Γ(m)

Γ(n)
(− ln F̄(t))(n−m) F̄m,k(t)

F̄n,k(t)

)

= ln

(
(kat)(n−m)Γ(m;−k ln F̄(t))

Γ(n;−k ln F̄(t))

)

and

H( fn,k/ fm,k)≥ ln

(
(kat)(n−m)Γ(m)

Γ(n)
)

)
.

Example 6.5.2. Let X be an absolutely continuous random variable with support (0,1]

with pdf

f (x) = 2x, i f x ε (0,1]

and survival function F̄(x) = 1−x2. It is an increasing function on (0,1] and hence using

(6.5.3), we get

H( fn,k/ fm,k; t)≥ ln

(
k(n−m)Γ(m)

Γ(n)
(− ln F̄(t))(n−m) F̄m,k(t)

F̄n,k(t)

)

= ln
((

−k ln(1− t2)
)(n−m) Γ(m;−k ln(1− t2))

Γ(n;−k ln(1− t2))

)
.

and also from (6.5.6)

H( fn,k/ fm,k)≤ ln
((

−k ln(1− t2)
)(n−m) Γ(m)

Γ(n)

)
.

6.6 Conclusion

Considering the importance of discrimination measure, in this chapter we have

proposed a measure of discrimination between two k-record value distributions

and a measure of discrimination between k-record value and l-record value distri-

butions of residual lifetime corresponding to the random variable X and studied a

characterization result for that. Also we have studied some of the properties of the

proposed measure like non negativity and effect of monotone transformation on

it. Also some upper and lower bounds to the discrimination measure have been
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obtained.





Chapter 7

Generalized Entropy Measure For

k-Record Values

7.1 Introduction

Shannon [104] entropy measure plays a crucial role in information theory. Though

this measure is a focal part of information theory, yet the idea of information is so

rich that no single definition have the capacity to measure the information legiti-

mately. Hence many researchers presented the parametric group of entropies as

a mathematical generalization of Shannon’s entropy. These entropies are func-

tions of some parameters and tend to Shannon entropy when these parameters

approach their limiting values. A huge literature is devoted to the characterization-

s, generalizations and applications of the Shannon information measure, refer to

Cover and Thomas [27], Aczel and Daroczy [3], Wells [123] etc. A two parametric

generalization of Shannon entropy measure has been given by Verma [122]. He

introduced the generalization of order α and type β of the entropy as

Hβ
α (X) =

1
β −α

log
[∫ ∞

0
f α+β−1(x)dx

]
; β −1 < α < β , β ≥ 1, (7.1.1)

The result of this chapter has been communicated in a research paper under the title On Generalized
Information Measure of Order (α ,β ) and k-Record Statistics.

95
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where

lim
β=1

Hβ
α (X) = Hα(X) =

1
1−α

log
[∫ ∞

0
f α(x)dx

]
, (7.1.2)

is the Renyi entropy [99] and

lim
β=1,α→1

Hβ
α (X) =−

∫ ∞

0
f (x) log f (x)dx,

is the Shannon entropy [104].

The Shannon’s entropy and their generalizations on order statistics and record

data have been studied by several authors, refer to Ebrahimi et al. [42], Barat-

pour et al. [19,20], Madadi and Tata [76], Asha and Chacko [14] and Kumar [71].

Some authors have studied the various characterizations of distribution function F

based on the properties of order statistics and record values, refer to Zahedi and

Shakil [126], and Raqab and Awad [98]. The theory of kth records is still develop-

ing. An interesting question is whether we can determine the generalized version

of measure of information contained in a sequence of k-record values from a se-

quence of iid random variables. Taking idea from this, here in this chapter, we

study the generalized entropy measure (7.1.1) for k-record values and further we

study its dynamic version.

The chapter is organized as follows: The generalized entropy of order α and type

β of k-record values associated with some lifetime distributions is presented in

Section 7.2. In Section 7.3, we study characterization result for the generalized

entropy measure. Generalized residual entropy of order α and type β for k-record

values has been studied in Section 7.4 and its characterization result in Section

7.5. An upper bound to this residual entropy of order (α,β ) has been derived in

Section 7.6 and chapter is concluded in Section 7.7.
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7.2 Generalized Entropy For k-Record values Obtained

For Some Specific Distributions

Corresponding to the generalized entropy measure (7.1.1), we propose the gen-

eralized entropy measure for the k-record values as

Hβ
α (Xn,k) =

1
β −α

log
{∫ ∞

0
( fn,k(x))α+β−1dx

}
, β −1 < α < β , β ≥ 1. (7.2.1)

Now, we use the probability integral transformation U = F(X), where the distribu-

tion of U is the standard uniform distribution, for the generalized entropy measure

(7.1.1). The probability integral transformation provides the following useful rep-

resentation for the random variable X

Hβ
α (X) =

1
β −α

log
{∫ 1

0
f (α+β−2)(F−1(u)du

}
. (7.2.2)

Next we prove the following result.

Lemma 7.2.1. The entropy measure (7.2.1) of the nth upper k-record values Xn,k can be

expressed as

Hβ
α (Xn,k) =

1
β −α

log
{ kn(α+β−1) Γ((n−1)(α +β −1)+1)
((k−1)(α +β −1)+1)(n−1)(α+β−1)+1 (Γ(n))(α+β−1)

×

E{ f α+β−2(F−1(1− e−u))}
}
, (7.2.3)

where u follows gamma distribution with parameter ((n− 1)(α +β − 1)+ 1) and ((k−

1)(α +β −1)+1) and E denotes the expectation.

Proof. Using (1.10.1), the entropy measure (7.2.1) can be rewritten as

Hβ
α (Xn,k) =

1
β −α

log
{ kn(α+β−1)

(Γ(n))(α+β−1)
× (7.2.4)∫ ∞

0
(− log F̄(x))(n−1)(α+β−1)

(F̄(x))(k−1)(α+β−1) f (α+β−1)(x)dx
}
.

Substituting − log F̄(x) = u, and hence x = F−1(1− e−u), we have

Hβ
α (Xn,k) =

1
β −α

log
{ kn(α+β−1)

(Γ(n))(α+β−1)
×∫ ∞

0
u(n−1)(α+β−1)e−u((k−1)(α+β−1)+1)

{
f α+β−2(F−1(1− e−u))

}
du
}
.
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It can be rewritten as

Hβ
α (Xn,k)=

1
β −α

log

{
kn(α+β−1) Γ((n−1)(α +β −1)+1)

((k−1)(α +β −1)+1)(n−1)(α+β−1)+1 (Γ(n))(α+β−1)
E{ f (α+β )−2(F−1(1− e−u))}

}
.

So, the result follows.

For some specific univariate continuous distributions, the expression (7.2.3) is

evaluated, refer to Table 7.1, and the generalized entropy (7.2.2) for the parent

distribution is provided in Table 7.2 which can be obtained from Table 7.1 by taking

n = k = 1.

Distribution Function Generalized Entropy Hβ
α (Xn,k)

Uniform, X ∼U(a,b) 1
β−α log

{
kn(α+β−1)Γ[(n−1)(α+β−1)+1]

(b−a)α+β−2(Γ(n))α+β−1

}
Exponential, X ∼ exp(θ) 1

β−α log
{

kn(α+β−1)θ (α+β−2)Γ((n−1)(α+β−1)+1)
(Γ(n))(α+β−1){k(α+β−1)}(n−1)(α+β−1)+1

}

Pareto, X ∼ P(a) 1
β−α log

{
Γ[(n−1)(α+β−1)+1]kn(α+β−1)aα+β−2(

Γ(n))α+β−1{k(α+β−1)+α+β−2
a

}(n−1)(α+β−1)+1

}

Weibull, X ∼W (a,b) 1
β−α log


kn(α+β−1)

(
ba

1
b

)α+β−2
Γ(n(α+β−1)−α+β−2

b )

(Γ(n))α+β−1{k(α+β−1)}(n(α+β−1)−α+β−2
b )


Finite Range 1

β−α log
{

Γ((n−1)(α+β−1)+1)
{ka(α+β−1)−(α+β−2)}((n−1)(α+β−1)+1)

}
+ 1

(β−α) log
{

(ka)n(α+β−1)

bα+β−2(Γ(n))α+β−1

}

Table 7.1: Generalized entropy of k-record Hβ
α (Xn,k) for various lifetime distributions.
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Distribution Function Generalized Entropy Hβ
α (X)

Uniform, X ∼U(a,b) =
(

2−α−β
β−α

)
log(b−a)

Exponential, X ∼ exp(θ) = 1
(β−α) log

(
θ α+β−2

α+β−1

)
Pareto, X ∼ P(a) = 1

(β−α) log
{

aα+β−1

((α+β−1)a+α+β−2)

}

Weibull, X ∼W (a,b) = 1
(β−α) log


(

ba
1
b

)α+β−2
Γ((α+β−1)−α+β−2

b )

(α+β−1)((α+β−1)−α+β−2
b )


Finite Range , X ∼ FR(a,b) = 1

(β−α) log
{

(a)(α+β−1)(b)(2−α−β )

(α+β−1)a−(α+β−2)

}

Table 7.2: Generalized entropy Hβ
α (X) for various lifetime distributions.

7.3 Characterization Result

Next, we show that distribution function F can be uniquely specified up to a lo-

cation change by the generalized entropy of order (α ,β ) for nth upper k−record

values. For this, we will use the lemma due to Goffman and Pedrick [48] which we

have stated earlier (refer to Lemma 3.2.1). The characterization result is stated

as follows.

Theorem 7.3.1. Let X and Y be two non-negative random variables having common sup-

port. Let Hβ
α (Xn,k) < ∞ and Hβ

α (Yn,k) < ∞ be their generalized entropies of nth upper

k-record values respectively. Then F and G belong to the same location family of distri-

butions, if and only if

Hβ
α (Xn,k) = Hβ

α (Yn,k) , ∀ n,k ≥ 1.

The proof of this follows on the same lines as in case of characteriztion result for

Varma entropy for record values given by Kumar [71], and hence is omitted.

7.4 Generalized Residual Entropy For k-Record Values

The lifetime of a component has been considered as a prime variable of interest

in many field such as reliability, survival analysis and economics, business etc. In

such cases, the information measures are functions of time, thus as such they
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are dynamic. In reliability theory and survival analysis, X with density function

f (x) usually denotes a duration such as the lifetime of a component. The residual

lifetime of the system when it is still operating at time t is Xt = (X −t|X > t) and has

the probability density f (x; t) = f (x)
F̄(t) , x ≥ t > 0. Ebrahimi [40] proposed the entropy

of the residual lifetime Xt as

H(X ; t) =−
∫ ∞

t

f (x)
F̄(t)

log
f (x)
F̄(t)

dt , t > 0. (7.4.1)

Similar results in case of a generalized residual entropy have been derived by

Belzunce et al. [21] and Nanda and Paul [88]. Baig and Dar [15] have proposed

the dynamic residual entropy of order α and type β as

Hβ
α (X ; t) =

1
β −α

log

{∫ ∞
t f α+β−1(x)dx

F̄α+β−1(t)

}
; β −1 < α < β , β ≥ 1, (7.4.2)

and studied its properties. For β = 1, (7.4.2) reduces to residual Renyi entropy

given by

Hα(X ; t) =
1

1−α
log
{∫ ∞

t f α(x)dx
F̄α(t)

}
,

for more details refer to Abraham and Sankaran [2]. In actuarial science, gener-

alized entropy given in (7.4.2) can be presented as the pre-payment entropy of

claims (losses) with a deductible t.

The role of residual entropy as a measure of uncertainty in order statistics and

record value has been studied by many researchers refer to, Zarezadeh and Asa-

di [127]. Madadi and Tata [77] generalized the results for Shannon information

measure to k -records. Now, analogous to the measure (7.4.2), we propose the

generalized residual entropy of order α and type β for nth upper k-record value as

Hβ
α (Xn,k; t) =

1
β −α

log

∫ ∞
t f α+β−1

n,k (x)dx

F̄α+β−1
n,k (t)

 ; β −1 < α < β , β ≥ 1.

Next, we derive a simplified expression for generalized residual entropy of order α

and type β for the nth upper k-record value. Here we use the notation X ∼ Γt(n,λ )

to indicate that X has a truncated gamma distribution with density function

f (x) =
λ n

Γ(n; t)
xn−1e−λx, x > t > 0,
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where Γ(n; t) is the incomplete gamma function defined as Γ(n; t) =
∫ ∞

t xn−1e−xdx,

n , λ > 0.

Theorem 7.4.1. Let Xn,k, n,k > 1 be a sequence of record random variables with parent

distribution F(x) and density function f (x). Here F−1(.) denotes the quantile function.

Then the generalized residual entropy (7.4.2) of nth upper k-record value can be expressed

as

Hβ
α (Xn,k; t) =

1
β −α

log
{ kn(α+β−1) Γ((n−1)(α +β −1)+1;−k log F̄(t))
((k−1)(α +β −1)+1)(n−1)(α+β−1)+1(Γ(n;−k log F̄(t)))α+β−1

×

E{ f α+β−2(F−1(1− e−Vz))}
}
. (7.4.3)

where z = −k log F̄(t) and Vz ∼ Γ{(n− 1)(α +β − 1)+ 1;−k log F̄(t)} and E is the ex-

pectation.

Proof. Consider

Hβ
α (Xn,k; t) =

1
β −α

log

∫ ∞
t f α+β−1

n,k (x)dx

F̄α+β−1
n,k (t)

 ; β −1 < α < β , β ≥ 1

=
1

β −α
log

{
kn(α+β−1) ∫ ∞

t (− log F̄(x))(n−1)(α+β−1)
(F̄(x))(k−1)(α+β−1) f α+β−1(x)dx

(Γ(n;−k log F̄(t)))α+β−1

}
.

Substituting −k log F̄(x) = u and x = F−1(1− e−
u
k ), we get

Hβ
α (Xn,k; t) =

1
β −α

log
{ kn(α+β−1)

k(n−1)(α+β−1)+1(Γ(n;−k log F̄(t)))α+β−1
×∫ ∞

−k log F̄(t)
u(n−1)(α+β−1)e−u( (k−1)(α+β−1)+1

k )
{

f α+β−2(F−1(1− e−
u
k ))
}

du
}

rewriting it, we get

Hβ
α (Xn,k; t) =

1
β −α

log
{ kn(α+β−1) Γ((n−1)(α +β −1)+1;−k log F̄(t))
((k−1)(α +β −1)+1)(n−1)(α+β−1)+1(Γ(n;−k log F̄(t)))α+β−1

×

E{ f α+β−2(F−1(1− e−Vz))}
}
.

Hence, the result follows.

Example 7.4.1. Let U∗
n,k be the nth upper k-record value for a sequence of observations
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from uniform distribution on (0,1). Then

Hβ
α (U

∗
n,k; t)=

1
β −α

log

{
kn(α+β−1)Γ((n−1)(α +β −1)+1;−k log(1− t))

((k−1)(α +β −1)+1)(n−1)(α+β−1)+1 (Γ(n;−k log(1− t)))α+β−1

}
.

(7.4.4)

Example 7.4.2. Let Ūn,k be the nth upper k-record values for a sequence of observations

from standard exponential distribution. Then

Hβ
α (Ūn,k; t)=

1
β −α

log

{
kn(α+β−1)

(k(α +β −1)+1)(n−1)(α+β−1)+1
Γ((n−1)(α +β −1)+1;kt)

(Γ(n;kt))(α+β−1)

}
.

(7.4.5)

Example 7.4.3. For Weibull random variable X with pdf is

f (x) = abxb−1e−axb
, a, b > 0, x > 0

where a and b are parameters. The survival function is

F̄(x) = 1−F(x) = e−axb
.

Substituting −k log F̄(x) = u, we observe that x = F−1(1−e−
u
k ) = ( u

ak)
1
b and for comput-

ing Hα(Xn,k; t), we have

f α+β−2
(

F−1(1− e−
u
k )
)
=

{b(ak)
1
b}α+β−2u

(α+β−2)(b−1)
b e−

u
k (α+β−2)

kα+β−2 .

Therefore

Hβ
α (Xn,k; t) =

1
β −α

log


(

b(ak)
1
b

)α+β−2
Γ
(

n(α +β −1)− α+β−2
b ;katb

)
(
Γ(n;katb)

)α+β−1
(α +β −1)n(α+β−1)−α+β−2

b

 .

7.5 Characterization Result For Generalized Residual En-

tropy

In this section, we prove that like generalized entropy for k-record values, the

residual entropy measure also characterizes the distribution function uniquely.

We derive the characterization result for the generalized residual entropy of the

nth k-record value using the sufficient condition for the uniqueness of the solution
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of initial value differential equations. Consider the problem of finding a sufficient

condition for the unique solution of the initial value problem (IVP)

dy
dx

= f (x,y), y(x0) = y0 (7.5.1)

where f is a function of two variables whose domain is a region D ⊂ R2, (x0,y0) is

a point in D and y is the unknown function. By the solution of (7.5.1), we find a

function which satisfies the following conditions: (i) ϕ is differentiable on I, (ii) the

growth of ϕ lies in D, (iii)ϕ(x0) = y0 and (iv) ϕ ′(x) = f (x,ϕ(x)), for all xεI. For that

we use the theorem and lemma due to Gupta and Kirmani [51] (refer to Theorem

4.5.1 and Lemma 4.5.1) which will help in proving our characterization result. The

result is stated as:

Theorem 7.5.1. Let X be a non-negative continuous random variable with distribution

function F(x). Let generalized residual entropy measure of the corresponding nth k-record

value denoted by Hβ
α (Xn,k; t) be finite for all t ≥ 0. Then Hβ

α (Xn,k; t) characterizes the

distribution.

Proof. Suppose for two distributions F1 and F2 such that

Hβ
α (X1n,k; t) = Hβ

α (X2n,k; t) ∀t ≥ 0. (7.5.2)

We know that

Hβ
α (Xn,k; t) =

1
β −α

log

∫ ∞
t f α+β−1

n,k (x)dx

F̄α+β−1
n,k (t)

 ; β −1 < α < β , β ≥ 1

=
1

β −α
log
∫ ∞

t
f α+β−1
n,k (x)dx− 1

β −α
log F̄α+β−1

n,k (t).

Taking derivative with respect to t both sides, we get

(β −α)Hβ
α (Xn,k; t)Hβ ′

α (Xn,k; t) = [(α +β −1)Hβ
α (Xn,k; t)− e(α−β )]λFn,k(t).

Here λFn,k(t) denotes the hazard rate function for nth k-record value corresponding to the

distribution function F. Differentiating above equation with respect to t again and further

simplifying, we get

λ ′
Fn,k

(t) =
(β −α)[−Hβ ′′

α (Xn,k; t)+λ (α+β−1)
Fn,k

(t)e(α−β )Hβ
α (Xn,k;t)Hβ ′

α (Xn,k; t)]

(α +β −1)(−1+ e(α−β )Hβ
α (Xn,k;t))λ (α+β−2)

Fn,k
(t)

. (7.5.3)
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Suppose that

Hβ
α (X1n,k; t) = Hβ

α (X2n,k; t) = c(t), say.

Then for all t ≥ 0, from (7.5.3) we get

λ ′
F1n,k

(t) = ψ(t,λF1n,k(t)), λ ′
F2n,k

(t) = ψ(t,λF2n,k(t)),

where

ψ(t,y) =
(β −α)[−c′′(t)+ y(α+β−1)e(α−β )c(t)c′(t)]
(α +β −1)(−1+ e(α−β )c(t))y(α+β−2)

.

Using Theorem 4.5.1 and Lemma 4.5.1, we get, λF1n,k(t) = λF2n,k(t), ∀t. Since the haz-

ard rate function characterizes the distribution function uniquely, thus we get the desired

result.

7.6 Bounds To Generalized Residual Entropy Of Upper

k-Record Values

Bounds to the Renyi entropy of upper record values has been considered by

Zarezadeh and Asadi [127]. Here, we introduce some bounds to the generalized

residual entropy of order α and type β of k-record statistic.

Theorem 7.6.1. Let X be a non-negative continuous random variable with hazard rate

function λF(x) =
f (x)
F̄(x) . Also let Hβ

α (X ; t) and Hβ
α (Xn,k; t) denote the generalized residual

entropies of X and Xn,k, respectively. Also Hβ
α (X ; t) is finite and mn = max{(α + β −

1)(n−1),−k log F̄(t)}, then for α > β

Hα(Xn,k; t) > (<)
α +β −1

α −β
logΓ(n,−k log F̄(t))− 1

α −β
. (7.6.1)

log

(
kn(α+β−1)

((k−1)(α +β −1)+1)(n−1)(α+β−1)+1

)
− 1

α −β
{(α +β −1)(n−1) log(mn)−mn}+S(t).

where S(t) =− 1
α−β log

∫ ∞
t kλF(y) f α+β−2(y)dy.

Proof. Here mn is the mode of Gamma distribution with density function
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Mn = f (mn) =
m(α+β−1)(n−1)

n e−mn

Γ((α +β −1)(n−1)+1,−k log F̄(t))
.

From (7.2.3) we have

Hβ
α (Xn,k) =

1
β −α

log
{ kn(α+β−1) Γ((n−1)(α +β −1)+1;−k log F̄(t))
((k−1)(α +β −1)+1)(n−1)(α+β−1)+1(Γ(n;−k log F̄(t)))α+β−1

×

E{ f α+β−2(F−1(1− e−Vz))}
}
.

Now, we write for α > β

− 1
α −β

logE{ f α+β−2{F−1(1− e−Vz)}

=− 1
α −β

log
∫ ∞

−k log F̄(t)

v(α+β−1)(n−1)e−v

Γ((α +β −1)(n−1)+1,−k log F̄(t))
{ f α+β−2{F−1(1− e−

v
k )}dv,

>− 1
α −β

log f (mn)−
1

α −β
log
∫ ∞

−k log F̄(t)
{ f α+β−2{F−1(1− e−

v
k )}dv.

Using the transformation y = F−1(1− e−
v
k ), we obtain

− 1
α −β

logE{ f α+β−2{F−1(1−e−Vz)}=− 1
α −β

logMn−
1

α −β
log
∫ ∞

t
kλF(y) f α+β−2(y)dy.

Therefore

Hα(Xn,k; t) > (<)
α +β −1

α −β
logΓ(n,−k log F̄(t))

− 1
α −β

log

(
kn(α+β−1)

((k−1)(α +β −1)+1)(n−1)(α+β−1)+1

)
− 1

α −β
{(α +β −1)(n−1) log(mn)−mn}+S(t).

Hence proved.

Remark 7.6.1. By putting k = 1, the results for usual records can be obtained as special

case.

7.7 Conclusion

The two parameters generalized entropies plays a vital role as a measure of com-

plexity and uncertainty in different areas such as physics, electronics and engi-
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neering to describe many chaotic systems. Using probability integral transforma-

tion we have studied the Varma entropy and generalized residual entropy based

on k-record values. The Varma entropy measure of k-record value distribution-

s associated with various distributions viz. uniform, exponential, weibull, pareto

and finite range distributions which are commonly used in the reliability modeling,

has been discussed. Also we have studied some upper and lower bounds to the

generalized residual entropy measure.



Summary And Further Scope

Here we summarize the work which we have presented in this thesis and also

provide some scope of further investigations which can be performed on the basis

of the results reported.

Summary Of The Work Reported

Shannon [104] entropy is at the focus in information theory by providing average

uncertainty of a random variable X having probability density function f (.). But

this measure has been found inappropriate in determining the uncertainty about

the remaining lifetime [X ,X ≥ t] of a system or a component which has already

worked up to time t. Thus the concept of residual measures have been devel-

oped in the literature, refer to Ebrahimi [36]. He introduced the residual entropy

measure for finding the uncertainty about the remaining lifetime. Dual to the mea-

sure proposed by Ebrahimi [36], Dicrescenzo and Longobardi [31] defined the

measure of uncertainty for past lifetime for a system which has been found dead

at any time ’t ’. In our study in Chapter 2, we have considered a measure of past

entropy for nth upper k-record value. We have discussed some basic properties

of the proposed measure.

Kerridge [63] inaccuracy measure is one of the generalization of Shannon en-

tropy. The inaccuracy measure has various applications in different areas of sci-

ence and technology such as statistical inference, estimation and coding theory.

In Chapter 3, we have explored the concept of inaccuracy measure for record

values. We have introduced a measure of inaccuracy between distributions of the

nth record value and parent random variable and discuss some properties of it.

Also keeping in mind the importance of k- record values, in Chapter 4, we have

107
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also proposed and studied a measure of inaccuracy based on Kerridge measure

of inaccuracy for k-record values.

To overcome some of the limitations of Shannon’s entropy measure, a new mea-

sure of uncertainty was developed by Rao et al. [95], known as cumulative resid-

ual entropy in which the probability density function f (x) has been replaced with

the survival function F̄(x) of the random variable X , This measure of uncertainty

is particularly appropriate to describe the information in problems connected with

the ageing properties of reliability theory based on the mean residual life function.

Taneja and Kumar [116] extended the concept of CRE to cumulative residual in-

accuracy and then to dynamic cumulative inaccuracy and also studied some of its

properties. We have provided an extension of cumulative residual inaccuracy as

suggested by Taneja and Kumar [116] to k-record values in Chapter 5.

Sometimes in statistical analysis there is difference between registered distribu-

tion and the original distribution. Many events in nature are conveyed via the study

of relation between registered and original distributions. Kullback Leibler [66] in-

formation measure is connected with the statistical problem of discrimination by

considering a measure of distance or divergence between two distributions as-

sociated with the same random experiment. In Chapter 6, we have provided an

extension of Kullback Leibler [66] information measure to k-record values. The

distance between two k-record distributions of residual lifetime has found. Also

keeping the record times fixed, we have derived the distance between k-record

value and l-record value.

Over the time various generalizations and characterizations of Shannon entropy

have been introduced by many researchers which are suitable for different types

of problems. Various generalizations of Shannon entropy like Renyi, Havrda and

Charvat are important in Probability and Statistics because of their role in large

deviations theory and in the study of likelihood-based inference principles. Varma

[122] entropy measure plays an essential role as a measure of complexity and

uncertainty in different areas. We have extended the concept of Varma entropy to

k-record values in Chapter 7.
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Further Scope Of The Work

While assembling this thesis many ideas have emanated in our mind which can

be useful for further study. The concept of weighted uncertainty measures based

on record values is still untouched. A huge literature on weighted entropy mea-

sure and its generalizations is available, but no one yet has explored this idea us-

ing record values. We have tried to discuss the past entropy measure for k-record

values but this idea for various uncertainty measures and its generalizations for

the past lifetime of a random variable can be explored further.

Distribution function based uncertainty measures are of great importance. A

huge literature is available in favour of this idea. Some work has also been carried

using this idea for record values, but being a useful concept, it needs to be studied

further in respect of record values.

In various realistic situations, the discrete random data is of great usage. But in

comparison to continuous case, less work has been carried on discrete domain.

We can study various information theoretic measures using discrete record ran-

dom variables. The work presented in this thesis can be studied for bivariate and

multivariate domains also.

The concept of k-records have been studied by many researchers, but still it can

be explored further for various entropy measures.
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