
 

 

 

Mathematical Modeling in Epidemiology 

Thesis Submitted to the Delhi Technological University 

for the Award of Degree of 

Doctor of Philosophy 

in 

Mathematics 

by 

 

Abhishek Kumar 

(Enrollment No.: 2K14/Ph.D/AM/01) 

Under the Supervision 

of 
 

Dr. Nilam 
 

Assistant Professor 

 

Department of Applied Mathematics  
Delhi Technological University  

Delhi-110042, India. 

June 2019 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
© Delhi Technological University-2019 

All Rights Reserved 

 

 

 

 

 

 

 

 



i 
 

DECLARATION 

 

 

I declare that the research work reported in this thesis entitled “Mathematical Modeling 

in Epidemiology” for the award of the degree of Doctor of Philosophy in Mathematics 

has been carried out by me under the supervision of Dr. Nilam, Department of Applied 

Mathematics, Delhi Technological University, Delhi, India. 

     The research work in this thesis, except where otherwise indicated, is my original 

research. This thesis has not been submitted by me earlier in part or full to any other 

University or Institute for the award of any degree or diploma. This thesis does not 

contain other person’s data, graph or the information unless specifically acknowledged. 

 

Date:          Abhishek Kumar 

Place:                            Enrollment No.: 2K14/Ph.D/AM/01 

     This is to certify that the above statement made by the candidate is correct to the best 

of my knowledge. 

       

 

Date:           Dr. Nilam   

(Supervisor) 

  

     The Ph.D. Viva-Voce Examination of Mr. Abhishek Kumar, Research Scholar, has 

been held on ………………………………………………………………………….……. 

 

 

Signature of Supervisor            Chairman, DRC        Signature of External Examiner  

  

 

                                                                                      

Signature of Head of Department 

 



 



 

iii 
 

Delhi Technological University 

 

Formerly Delhi College of engineering 

Shahbad Daulatpur, Bawana Road, Delhi-110042 

 

 

    CERTIFICATE 
  

 

This is to certify that the research work embodied in the thesis entitled 

“Mathematical Modeling in Epidemiology” submitted by Mr. Abhishek Kumar with 

enrollment number 2K14/Ph.D/AM/01 is the result of his original research  carried  out  in  

the  Department  of  Applied  Mathematics,  Delhi  Technological University, for the award 

of Doctor of Philosophy under the supervision of Dr.  Nilam. 

  It is further certified that this work is original and has not been submitted in part or 

fully to any other University or Institute for the award of any degree or diploma. 

 

This is to certify that the above statement made by the candidate is correct to the best of 

our knowledge. 

 
 
 
 
 
 
  
 

                                                                     

                                                                        

                                                                                           

                                                       

 

 
 
 
 

Dr. Nilam 

Supervisor,  

Assistant professor 

Department of Applied Mathematics  

Delhi Technological University  

Delhi-110042 India 

Prof. Sangita Kansal 

Head of Department,  

Department of Applied Mathematics  

Delhi Technological University  

Delhi-110042 India 



 



 

v 
 

 ACKNOWLEDGMENTS 

 

 

This thesis would have not been possible without the guidance and the help of several 

individuals who have extended their valuable assistance in the preparation and 

completion of the thesis. 

     I wish to express my deep and sincere gratitude to my supervisor Dr. Nilam, Assistant 

Professor, Department of Applied Mathematics, Delhi Technological University (DTU), 

Delhi for her inspiring guidance and support during my research work and preparation of 

this thesis. It is indeed a great pleasure for me to work under her supervision. She does 

not only offer me guidance and necessary support for the successful completion of this 

work but also served to boost my moral. Her understanding, encouragement and personal 

guidance have provided a good basis for the present thesis. 

     I sincerely thank Dr. Sangita Kansal, Professor and Head, Department of Applied 

Mathematics, DTU, for providing necessary facilities and valuable suggestions during the 

progress of my work. I extend my sincere thanks to Professor H. C. Taneja, Dean, PG, 

DTU for his everlasting support. My special thanks to Dr. Vivek Kumar Aggarwal, DTU 

for spending his invaluable time during the discussion over lectures and seminars. I want 

to thank Mr. Manoj Kumar, DRDO, Delhi, Ms. Kanica Goel, DTU, Delhi and Mr. Raj 

Kishor for spending his invaluable time in this work. 

     I would like to take this opportunity to thank the former and present Hon’ble Vice 

Chancellor, DTU, Delhi, for providing necessary facilities during the research work. I am 

also thankful to the members of DRC and SRC, who allow me to do this work. I sincerely 

thank all faculty members of the Department of Applied Mathematics and other 

Departments of DTU for their constant support and encouragement. 

     I also express my thanks to all the people working in the field of Mathematical 

Epidemiology whose research works provided me a platform to carry out my research 

work. 

     I owe my gratitude to all the Ph. D. fellows of my department that in one way or 

another shared with me the daily life at work. I wish to express my warm thank to Dr. 

Pankaj Kumar, Dr. Vijay Singh, Dr. Shashi Kant, Dr. Minakshi Dhamija, Dr. Milan 

Srivastava, Dr. Anjali Singh, , Dr. Kanika Khattar, Mr. Akhilesh Kumar, Ms. Charu 

Arora, Ms. Gifty Malhotra, Ms. Ritu Goel, Ms. Mamta Sahu, Ms. Payal, Ms. Mridula 



 

vi 
 

Mundalia and Mr. Ajay Kumar. I would like to thank Dr. Saloni Rathee, Dr. Lucky 

Krishnia, Mr. Vijay Kumar Yadav, Mr. Ankit Sharma, Mr. Ram Pratap, Mr. Rahul 

Bansal, Mr. Manoj Kumar and Mr. Anil Kumar Rajak for their valuable suggestions and 

constant support. 

 

     I wish to record my profound gratitude to my parents, maternal grandparents and 

paternal grandparents who provided me with all kinds of support and helps for my 

humble academic achievements. I would like to express my thanks to my sisters (Dr. Jyoti 

and Ms. Priyanka), sister-in-law (Mrs. Amrita Sharma), and brother-in-laws (Dr. Piyush 

and Mr. Rajdeep) for their heartiest cooperations and affections. I owe a lot to my brother 

Mr. Deepak Kumar for his support and guidance. I would like to express my special 

thanks to my little nephew Atharv to bring happiness and joy to me and our family. 

 

Thank you!!! 

 

 

 

               Abhishek Kumar 

          

 



 

 

 

 

 

 

Dedicated to 

My parents and teachers, for making it possible to commence and 

complete this journey 

 

 

 

 

 

 

 

 

 

 



 



ix 
 

CONTENTS 

 

 

Declaration 

 

i 

Certificate iii 

Acknowledgments v 

Abstract xv 

List of tables  xvii 

List of figures xix 

1 Introduction 1 

 1.1 Epidemiology. …………………………………………………………. 

1.2 Modes of transmission. ………………………………………………... 

1.3 Disease prevention and control………………………………………… 

1.4 Basic compartmental models. ……………………………………….… 

1.5 Epidemic models. ……………………………………………………… 

1.6 Basic reproduction number. …………………………………………… 

1.7 Stability analysis. ……………………………………………………… 

1.8 The organization of the thesis. ………………………………………… 

2 

2 

4 

5 

6 

10 

11 

12 

2 A SIR epidemic model with Monod-Haldane functional type incidence 

and treatment rates 

 

19 

 2.1 Introduction. …………………………………………………………… 

2.2 Mathematical model. ………………………………………………….. 

2.3 Basic properties of the model. ………………………………………… 

2.4 Equilibria and their stability analysis. …………………………………. 

2.4.1 Computation of the basic reproduction number(𝑅0). ………... 

2.4.2 Analysis at 𝑅0 = 1. …………………………………………... 

2.4.3 Global stability of the disease-free equilibrium (DFE) 

2.4.4 Existence of endemic equilibrium (EE)………………………. 

2.4.5 Stability of endemic equilibrium. ……………………………..  

2.5 Numerical simulation…………………………………………………… 

2.6 Conclusions. ……………………………………………………………. 

20 

22 

23 

24 

24 

25 

26 

27 

29 

32 

33 

3 A SIR epidemic model with ratio-dependent incidence and Holling  



x 
 

functional type II treatment rates 39 

 3.1 Introduction. …………………………………………………………… 

3.2 Mathematical model. ………………………………………………….. 

3.3 Basic properties of the model. ………………………………………… 

3.4 Equilibria and their stability analysis. …………………………………. 

3.4.1 Computation of the basic reproduction number (𝑅0). ……….. 

3.4.2 Analysis at 𝑅0 = 1. …………………………………………... 

3.4.3 Existence of endemic equilibrium (EE). ……………………... 

3.4.4 Stability of endemic equilibrium. ……………………………..  

3.5 Numerical simulation. ………………………………………………….. 

3.6 Conclusions. ……………………………………………………………. 

40 

41 

43 

44 

44 

44 

46 

48 

51 

52 

4 Time-delayed SIR epidemic model with Holling functional type II 

incidence rate and different treatment rates 

 

59 

 4.1 Introduction. …………………………………………………………… 

4.2 Mathematical model. ………………………………………………….. 

4.3 Basic properties of the model. ………………………………………… 

4.4 Equilibrium points. ……………………………………………………. 

4.5 Stability analysis of the equilibria for the combination of Holling type 

II incidence and treatment rates. ………………………………………. 

4.5.1 Computation of basic reproduction number (𝑅0). ……….. 

4.5.2 Analysis for 𝑅0 ≠ 1. …………………………………………. 

4.5.3 Analysis at 𝑅0 = 1. …………………………………………... 

4.5.4 Existence and stability analysis of endemic equilibrium. ……. 

4.6 Stability analysis of the equilibria for the combination of Holling type 

II incidence rate and Holling type III treatment rate. …………………..  

4.6.1 Computation of the basic reproduction number (𝑅0). ……….. 

4.6.2 Analysis for 𝑅0 ≠ 1. …………………………………………. 

4.6.3 Analysis at 𝑅0 = 1. …………………………………………... 

4.6.4 Existence and stability analysis of the endemic equilibrium. ... 

4.6.5 Hopf bifurcation analysis. ……………………………………. 

4.6.6 Global stability analysis. ……………………………………... 

4.6.7 Undelayed system. …………………………………………… 

4.7 Numerical simulation. …………………………………………………. 

60 

62 

63 

65 

 

65 

65 

66 

67 

69 

 

72 

72 

72 

73 

74 

76 

78 

81 

83 



xi 
 

4.8 Conclusions. …………………………………………………………… 85 

5 Dynamical study of a SIR epidemic model along with time delay; 

Holling functional type II incidence rate and Monod-Haldane 

functional type treatment rate 

 

 

93 

 5.1 Introduction. …………………………………………………………… 

5.2 Mathematical model. ………………………………………………….. 

5.3 Basic properties of the model………………………………………….. 

5.4 Equilibria and their stability analysis. …………………………………  

5.4.1 Computation of the basic reproduction number (𝑅0). ……….. 

5.4.1.1 Analysis for 𝑅0 ≠ 1. ……………………………... 

5.4.1.2 Analysis at 𝑅0 = 1. ………………………………. 

5.4.2 Existence and stability analysis of endemic equilibrium. ……. 

5.5 Numerical simulation. …………………………………………………. 

5.6 Conclusions. …………………………………………………………… 

94 

95 

96 

97 

97 

98 

99 

100 

103 

104 

6 Time delayed SIR epidemic model with Monod-Haldane incidence rate 

and different treatment rates 

 

109 

 6.1 Introduction. …………………………………………………………… 

6.2 Mathematical model. ………………………………………………….. 

6.3 Basic properties of the model. ………………………………………… 

6.4 Equilibrium points. ……………………………………………………. 

6.5 Stability analysis of the equilibria for the combination of M-H type 

incidence and Holling type II treatment rates. ………………………… 

6.5.1 Computation of basic reproduction number (𝑅0). ………. 

6.5.2 Analysis for 𝑅0 ≠ 1. …………………………………………. 

6.5.3 Analysis at 𝑅0 = 1. …………………………………………... 

6.5.4 Existence and stability analysis of endemic equilibrium. ……. 

6.5.5 Hopf bifurcation analysis. ……………………………………. 

6.6 Stability analysis of the equilibria for the combination of M-H type 

incidence and Holling type III treatment rates. ………………………...  

6.6.1 Computation of basic reproduction number (𝑅0). ……….. 

6.6.2 Analysis at 𝑅0 ≠ 1. …………………………………………. 

6.6.3 Analysis at 𝑅0 = 1. …………………………………………... 

6.6.4 Existence and stability analysis of endemic equilibrium. ……. 

110 

111 

113 

114 

 

114 

114 

114 

115 

117 

121 

 

122 

122 

123 

124 

125 



xii 
 

6.6.5 Hopf bifurcation analysis. ……………………………………. 

6.6.6 Global stability analysis. ……………………………………... 

6.6.6.1 Global stability of disease-free equilibrium (DFE). 

6.6.6.2 Global stability of endemic equilibrium (EE). …… 
 

6.7 Numerical simulations. ………………………………………………... 

6.7.1 Numerical simulation of the model for the combination of 

M-H type incidence and Holling type II treatment rates…….. 

6.7.2 Numerical simulation of the model for the combination of 

M-H type incidence and Holling type III treatment rates…… 

6.8 Conclusions. …………………………………………………………... 

128 

128 

129 

131 

133 

 

133 

 

135 

136 

7 Analysis of a time-delayed SIR epidemic model with Crowley-Martin 

functional type incidence rate and Holling functional type II treatment 

rate 

 

 

149 

 7.1 Introduction. …………………………………………………………… 

7.2 Mathematical model. ………………………………………………….. 

7.3 Basic properties of the model. ………………………………………… 

7.4 Equilibria and their stability analysis. …………………………………. 

7.4.1 Disease-free equilibrium (DFE). …………………………….. 

7.4.1.1 Analysis for 𝑅0 ≠ 1. ……………………………... 

7.4.1.2 Analysis at 𝑅0 = 1. ………………………………. 

7.4.2 Existence and stability analysis of endemic equilibrium. ……. 

7.4.2.1 Hopf bifurcation analysis. ………………………... 

7.4.3 Global stability analysis. ……………………………………...  

7.4.3.1 Global stability of disease-free equilibrium (DFE).  

7.4.3.2 Global stability of endemic equilibrium (EE). …… 
 

7.5 Numerical simulation. …………………………………………………. 

7.6 Conclusions. ……………………………………………………………  

150 

150 

152 

153 

153 

154 

154 

156 

160 

161 

161 

164 

167 

169 

8 Mathematical and numerical study of a SIR epidemic model with 

the inclusion of alertness, incubation period and pre & post 

treatment classes 

 

 

179 

 8.1 Introduction. …………………………………………………………. 

8.2 A susceptible-alert-infected-recovered (SAIR) model. ………………. 

8.2.1 Basic properties of the model. ……………………………... 

180 

181 

182 

 



xiii 
 

8.2.2 Equilibria and their stability analysis. ……………………... 

8.2.2.1 Computation of the basic reproduction 

number (𝑅0). …...................................................... 

8.2.2.2 Stability analysis of disease-free equilibrium. …...  

8.2.2.2.1 Analysis for 𝑅0 ≠ 1. ……………… 

8.2.2.2.2 Analysis at𝑅0 = 1. ……………….. 

8.2.2.3 Existence and stability analysis of endemic 

equilibrium. ……………………………………… 
 

8.3 A susceptible-pre-treated-infected-post treated-recovered model. …………...  

8.3.1 Basic properties of the model. …………………………………... 

8.3.2 Equilibria and their stability analysis. …………………………...  

8.3.2.1 Disease-free equilibrium and its stability analysis. ... 

8.3.2.1.1 Analysis for 𝑅0 ≠ 1. ………………… 

8.3.2.1.2 Analysis at 𝑅0 = 1. ………………….. 

8.3.2.2 Existence and stability analysis of the endemic 

equilibrium. ………………………………………... 
 

8.4 Numerical simulations. ..…………………………………………………... 

8.4.1 Results of the system (8.1). ……………………………….……. 

8.4.2 Results of the system (8.9). ……………………………………. 

8.5 Conclusions. ……………………………………………………………….. 

184 

 

184 

185 

185 

185 

 

187 

189 

192 

193 

193 

193 

194 

 

196 

201 

201 

203 

204 

9 Conclusions and future work 217 

 9.1 Conclusions. …………………………………………………………… 

9.2 Future work. …………………………………………………………… 

217 

218 

Bibliography 219 

List of publications 

List of conferences 

229 

231 

 



 



xv 
 

ABSTRACT 

  

 

In the present thesis, various aspects of the transmission dynamics of epidemics are 

discussed through the mathematical models. We have proposed and analyzed the various 

mathematical models to control the spread of emerging/ re-emerging epidemics. We have 

investigated the facts and reasons behind the spread and control of infectious diseases/ 

epidemics. After analyzing several systems, various results obtained by analysis of the 

problem are discussed. The mathematical models have been analyzed for positiveness, 

boundedness, and stability. Locals stability, global stability, Routh-Hurwitz stability 

criterion, Descartes’ rule of signs, Lyapunov function, MATLAB 2012b (ODE 45, DDE 

23), MATHEMATICA 11 are the main tools applied for analysis and simulations of 

mathematical models. 

 

 We have studied two types of mathematical models: ordinary differential 

equations (ODEs) model and delay differential equations (DDEs) model. The time delay 

exists almost in every biological phenomenon and is responsible for the severity of the 

disease and hence in its treatment. Therefore, the importance of the DDE model cannot be 

ignored in the control and transmission dynamics of the epidemic. The DDE models have 

been developed for a better understanding of the transmission dynamics of epidemics. 

Keywords: Epidemic; Delay differential equations (DDE); Ordinary differential 

equations (ODE); Time Delay; Nonlinear incidence rates; Nonlinear treatment rates; 

Bifurcation; Stability. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Infectious diseases/ epidemics pose a constant threat to human’s life as they can affect 

any individual when contacting or living with the infected individual. The emergence and 

re-emergence of infectious diseases have turned into critical overall issues. This chapter is 

introductory in nature which gives a short review of the work done in the field of 

mathematical epidemiology till now for the transmission dynamics of epidemics. The 

purpose of the current chapter is to provide some rudimentary information about the 

infection mechanisms, the control mechanism of epidemics, the role of mathematical 

models in the field of epidemiology and the motivation behind the work carried out in this 

thesis. Also, a glimpse of the work carried out has been presented in the present chapter. 
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1.1 Epidemiology  

 

The study of epidemics is the investigation of components influencing the health and 

illness of populations and serves as the foundation and logic of interventions made in the 

interest of public health and preventive drugs. It is viewed as a foundation philosophy of 

public health research and is much respected in evidence-based medicine for 

distinguishing hazard factors for disease and deciding ideal treatment ways to deal with 

clinical practice [Allen (1994); Padma (2008)]. The ultimate aim of any epidemiological 

study is to eliminate or reduce health problems thereby promoting the health and well-

being of the society as a whole. Epidemiological studies are useful for the following 

reasons: 

• It provides relevant information on the rise and fall of disease in a given 

population. 

• Helps in the search for cause and risk factors for disease. 

• Elucidate natural course and transmission of the disease. 

• Promotes the planning and evaluation of health care facilities and programs. 

• Risk assessment of the individual and society. 

• Identification of new diseases and syndromes. 

 

Transmission of the diseases decides the severity of the disease in society. Based on the 

type of transmission, diseases can be classified as: 

• Communicable diseases 

“A communicable disease is an illness due to a specific infectious (biological) 

agent or its toxic products capable of being directly or indirectly transmitted from 

man to man, from animal to man, from animal to animal, or from the 

environment” [Barreto et al. (2006)]. Examples: H1N1, Ebola, Malaria, 

HIV/AIDS, Cholera, etc. 

• Non-communicable diseases 

A non-communicable disease is a disease that is not transmissible directly from 

one person to another. Non-communicable diseases include autoimmune diseases, 

strokes, heart diseases, cancer, diabetes, chronic kidney disease, etc. 

 

1.2 Modes of transmission 
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Infectious diseases/epidemics can spread in different ways and pathogens cause 

contamination by various methods of transmission. A few diseases may occur through 

immediate contact while others might be caused through backhanded contacts. 

Transmission can likewise be made through carriers or vectors. For examples, Malaria, 

Dengue, and Chikungunya spread through mosquitoes. However, two methods of 

transmission are especially fascinating: airborne infections and sexually transmitted 

illnesses, and they have been given careful consideration. The examples of airborne 

infections are flu, SARS, etc. The airborne infection spreads from an infected individual 

to an uninfected individual through sneeze, cough and even through a laugh. The 

organisms that are released from a contaminated individual may stay on the dust particles 

or some other medium. Contamination may happen when these organisms are breathed in 

or reach bodily fluid film of an uninfected individual through body contact [Rahman 

(2016)]. Hand-shaking likewise could be a potential path for the transmission of diseases. 

 

On the other hand, a significant number of diseases are sexually transmitted and they are 

likewise transmitted through contaminated blood and semen, breastfeeding, or during 

childbirth. HIV stands out amongst the most causing demise due to sexually transmitted 

infections. Other sexually transmitted diseases including herpes, syphilis, gonorrhea, and 

chlamydia likewise cause huge contamination and mortality [Rahman (2016)]. These 

stances serious social and financial results because of longer infectious life, infected 

people with the sexually transmitted disease may contribute an expanded number of 

contaminations and subsequently remain a noteworthy issue in the counteraction of 

diseases. Another basic part of the sexually transmitted diseases is that it may not show 

any indications on the infectious individual for a longer period. As an outcome, a 

contaminated individual may transmit disease unknowingly.  

 

The disease transmission specialist can draw its dynamics from various demonstrating 

models, including compartmental, environmental, atmospheric, and survival models. 

Models can be developed using deterministic or stochastic approaches; continuous, 

discrete in time or non-temporal; non-spatial or spatial; homogeneous or heterogeneous 

with the mixed population; and static or real-time. Significantly more modern 

epidemiological models are conceivable [Rahman (2016)].  

 

In this thesis, we present only deterministic compartmental models. 
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1.3 Disease prevention and control 

 

A powerful approach to control the epidemics is to reduce contacts. However, in modern 

life with increased interactions among people, this approach is not easy to achieve. In 

addition, to maintain social separation, alternative counteractive actions need to be 

adopted. Immunization and treatment are the generally utilized counteractive tools that 

can possibly lessen transmissions and control the diseases. 

 

The spread of infection has been controlled during the last decade due to a combination of 

behavior change in the population, scaling-up of prevention services, and treatment of 

disease and vaccination. The main motivation for the prevention of infections among 

people is that it is feasible and effective if properly implemented. Implementation of 

effective measures can prevent disease and minimize the harm caused by infectious 

diseases. Effective measures to prevent infections exist but are either not offered or not 

accessible to a high proportion of those in need of them. The treatment represents an 

important component in a comprehensive response to prevent health-related harm. 

Treatment of infected individuals prevent further transmission, reduce the total healthcare 

and social costs, improve productivity (health and quality of life) and reduce mortality 

and morbidity among the target group (i.e. susceptible individuals). For the effective 

treatments, its services must be well-organized, and of high-quality, including the level of 

training of staff, to achieve the best results. Availability of effective treatment services 

presents an opportunity to reduce the spread of infection at a higher rate in society. 

An immunization (vaccine) is utilized to help the immune system against some particular 

pathogen. The substance contained in immunization has comparative physical properties 

to those of a pathogen. Typically, an antibody can be thought of like a phony pathogen 

that has no capacity to replicate and cause disease. It very well may be made of a 

powerless or slaughtered pathogen. As immunizations are like pathogenic microorganism, 

they can stimulate the immune system of the host which develops antibodies against the 

pathogens to remember them as foreign organisms. In this way, at whatever point such a 

genuine microorganism is experienced inside a host, the immune system destroys it. This 

phenomenon is known as resistance or immunity. Therefore, as long as an antibody for a 

disease is accessible, it is a perfect method for shielding the population from the infection. 

After Edward Jenner's cowpox antibody, the first known immunization, various effective 
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campaigns have been propelled against numerous infectious diseases [Lakhani (1992)]. 

Actually, antibodies have saved millions of lives. Before presenting the primary measles 

immunization in 1963, around 400,000 measles incidences used to be reported in the 

United States each year [Rahman (2016)]. Polio, rubella, mumps and other childhood 

infections likewise used to cause huge mortality and morbidity. With the adequate 

execution of the immunizations, these diseases no longer remained epidemic. 

 

Vaccines additionally have had a fruitful history against the transmission of flu, the most 

widely recognized infectious disease around the globe. Prior to the invention of influenza 

vaccines, controlling a flu pandemic was an incomprehensible assignment. It was 

evaluated that 20-50 million individuals overall died in the outbreak of Spanish influenza 

in 1918-19. After a century, the worldwide loss of life for the 2009-10 pandemic was just 

around 0.3 million [Bryan (2014)]. The vaccine has decreased the loss rate to a huge 

extent. Flu vaccination presently turns into a routine procedure. An individual is 

prescribed to get an updated influenza immunization (vaccine) as influenza season 

approaches with more up to date strains of influenza infections. In spite of the fact that 

vaccines are extremely powerful against transmission, commonly, there are constraints on 

the quantities, particularly in developing nations. In this way, how to circulate the limited 

vaccines becomes crucial for optimal advantages. Social, geographical, monetary and 

moral issues could be significant obstructions in the implementation of vaccines 

[Medlock and Galvani (2009)]. Moreover, certain groups of people may have a higher 

susceptibility to the infections than others. In flu, for instance, school-going youngsters 

can easily catch the infection and spread the disease more quickly than other people [Foy 

et al. (1976); Longini and Halloran (2005); Jordan et al. (2006); Loeb et al. (2010)]. 

 

1.4 Basic compartmental models 

 

The general idea for most deterministic models is to look at compartmental models, in 

which the population is divided into compartments based on infection dynamics. 

Individuals already in one compartment may either transfer to another compartment (for 

example by recovering from the disease) or may leave compartment altogether (e.g. by 

disease-induced death). Individuals may enter into a compartment through processes such 

as immigration or birth. Some basic entrance, exit, and transfer mechanisms among 



6 
 

various compartments such as SI, SIR, and SEIR (where 𝑆, 𝐸, 𝐼 and 𝑅 are denoting the 

susceptible, exposed, infected and recovered individuals compartment according to the 

disease status.) are shown in Fig.1.1-1.3. Compartmental models may become very 

complex; they may use many compartments, or assume complicated disease distribution 

or incidence, or have parameters which are time or even state-dependent. These three 

concepts, however, of entering the population, transferring between compartments, and 

leaving the population, always underlie the assumptions. 

 

1.5 Epidemic models 

 

The earliest mathematical modeling can be traced back to the eighteenth century when 

Daniel Bernoulli figured a model for smallpox to evaluate the effectiveness of control 

measures on the infected population with smallpox [Benenson (1995); Hethcote (2000)]. 

However, mathematical models have been developing since the middle of the twentieth 

century after Kermack and McKendrick [1927] published their paper on epidemic models 

which contained threshold results that decide if an epidemic outbreak may occur or not 

[Hethcote (2000); Kermack and McKendrick (1927)]. In the course of the most recent 

two rapid increases in modeling, practices have been employed in the biological sciences 

[Anderson and May (1982); Hethcote (2000)]. These models have addressed numerous 

aspects of biological phenomena, for example, phases of infection, vertical transmission, 

disease vectors, age structure, social and sexual mixing groups, spatial spread, 

chemotherapy, immunization, isolate, passive immunity, steady loss of vaccine and 

disease-acquired immunity [Anderson and May (1982); Hethcote  (2000); Grassly and 

Fraser (2008)]. A few models were focused on diseases like measles, rubella, chickenpox, 

diphtheria, cancer, smallpox, malaria, rabies, herpes, syphilis, and HIV/AIDS [Anderson 

and May (1982); Usher (1994); Hethcote (2000); Longini and Halloran (2005)]. 

 

The disease transmission models describe the transmission procedure and trace the 

infected population. Such models can recognize the number or extent of the population 

that is left uninfected towards the end of an epidemic. In epidemic models, the idea of 

population compartments is broadly utilized [Anderson and May (1982); Murray (1989); 

Diekmann and Heesterbeek (2000); Hethcote (2000)]. For mathematical convenience, 

these compartments are normally denoted by their first letter, for example, S, E, I, and R 
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denotes the number of susceptible, exposed, infected and recovered population 

respectively. People who are vulnerable against infection are known as susceptible and 

have been placed into the S (susceptible) compartment. A person, who is presently 

infected, yet does not indicate symptoms or can't contaminate others has been placed into 

the E (exposed) compartment. Once an infected individual begins contaminating others, 

he/she has been considered as infectious and is placed into I (infected) compartment. 

Finally, when an individual has been cured of the infection, he/she has been placed into 

the R (recovered) compartment. Depending upon the particular disease, a recovered 

individual either stays there if he/she gets permanent recovery or may become susceptible 

again and move once more into S compartment. Different models can be developed by 

considering these compartments in light of the idea of pathogens and infections, for 

example, SIS, SIR, SIRS and so on. If an infected individual becomes susceptible again 

after cure, a SEIS or SIS type model would be appropriate for the disease dynamics. 

Bacterial diseases could be considered an example of SIS models. Then again, if recovery 

is lasting and the recovered people are not any more vulnerable to that pathogen, as 

observed in viral infection, at that point a SIR-type model would be appropriate. In all 

cases, the population is thought to be homogeneously mixed and people catching 

infections or be cured at constant rates. Some representational diagrams are also shown in 

Figs. 1.1-1.3. 

 

A basic SIR epidemic model is described by following ordinary differential equations 

[Kermack and McKendrick (1927)]: 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽𝑆(𝑡)𝐼(𝑡),  

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡),             (1.1) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡).  

where 𝛽 is the transmission rate and 𝛾 is the recovery rate. Without considering the 

demography of the host population, this simple model describes how sub-populations of 

susceptible, infected and recovered classes evolve. Model (1.1) has been modified by 

incorporating various factors to capture the important aspects of the specific problems one 

is concerned with, but such modifications increase the complexity of the model and make 

the analysis challenging and sometimes even impossible (see, e.g. [Murray (1989); 

Diekmann and Heesterbeek (2000); Guo and Li (2006); Lewis (2009)]). Therefore, 
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balancing the rationality and mathematical tractability of a model always remains an 

important issue when using a mathematical modeling approach to study disease 

dynamics. 

 

In model (1.1) the term 𝛽𝑆(𝑡)𝐼(𝑡) is referred to as bilinear or mass action incidence rate 

which demonstrates that incidence increases with the numbers of susceptible and infected. 

This transmission rate is the product of the rate of contact among individuals and the 

probability that a susceptible individual coming in contact with an infectious individual 

will become infected (Park, 1997). Numerous other nonlinear saturated incidence rates 

are also commonly used by various researchers [Murray (1989); Diekmann and 

Heesterbeek (2000); Guo and Li (2006); Dubey et al. (2013) & (2016)]. We explore some 

of the nonlinear incidence rates here: 

• Holling functional type II 

The expression 𝐹(𝑆, 𝐼) =
𝛽𝐼

1+𝛾𝐼
𝑆,  𝛽, 𝛾 > 0, is known as Holling functional type II 

incidence rate. This incidence rate is also known as the saturated incidence rate 

and it was proposed by C. S. Holling [1959]. In Holling type II, “for any outbreak 

of the disease, its incidence is first very low and then grows slowly with increase 

in infection. Further, when the number of infected individuals is very large, the 

infection reaches its maximum due to the crowding effect” [Dubey (2016)]. 

 

• Ratio-dependent functional type 

The expression 𝑓(𝑆, 𝐼) = 𝐺 (
𝑆

𝛾𝐼
) 𝐼 =

𝛽𝑆

𝛼𝑆+𝛾𝐼
𝐼,  𝛽,  𝛼, 𝛾 > 0 is known as ratio-

dependent functional type incidence rate. This incidence rate is obtained by 

putting 
𝑆

𝛾𝐼
 in Holling type II i.e.  

𝛽𝑆

1+𝛼𝑆
. This incidence rate is applicable for a low 

density of susceptible population. 

 

• Beddington-DeAngelis (B-D) functional type 

“The expression 𝐹(𝑆,  𝐼) =
𝛽𝑆𝐼

(1+𝛼𝑆+𝛾𝐼)
,   𝛽, 𝛼, 𝛾 > 0 is known as Beddington-

DeAngelis type incidence rate. Here 𝛽 is the transmission rate, 𝛼 is a measure of 

inhibition effect, such as preventive measure taken by susceptibles and 𝛾 is a 

measure of inhibition effect such as treatment with respect to infectives” [Dubey 

et al. (2015)]. This incidence rate was introduced by Beddington [1975] and 
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DeAngelis et al. [1975] independently. “This incidence rate considers the effect of 

inhibition among infectives in case of the low density of susceptible populations” 

[Dubey et al. (2015)]. 

 

In the model (1.1), an ODE framework has been used in which the time-dependence is 

given by the present time 𝑡. In contrast to Ordinary Differential Equations (ODEs), Delay 

Differential Equations (DDEs) take into account the inclusion of past activities into 

mathematical frameworks, thus making the model closer to the real-world phenomenon. 

In the study of epidemics, the time delay can represent the latent or incubation period, or 

the time in which, a host stays infected. However, delay equations can also be used to 

investigate the phenomenon of waning immunity. When the body gets contaminated by a 

virus, indeed, the immune system develops a certain resistance against it. In fact, disease-

induced immunity tends to wane and, a long time after recovery, an individual might 

again become susceptible to the virus. Delay equations can have more rich dynamics than 

ODEs and can be a superior fit to complex real phenomenon e. g. spread of an epidemic. 

They can be far more complicated than ODEs because a delay differential equation is 

infinite-dimensional; thus chaos may happen even in low-order systems. 

 

The disease transmission models with latent or incubation period have been studied by 

various authors, because numerous diseases, for example, flu, tuberculosis, H1N1, have a 

latent or incubation period, during which the individual is said to be infected but not 

infectious. Delay differential equations (DDEs) have been effectively used to model 

varying infectious periods in the scope of SIR, SIS, SEIR, and SIRS epidemic models 

[Mukherjee (1996); Naresh et al. (2009); Huang et al.(2011); Huang and Takeuchi 

(2011); Mishra et al.(2011);  Paulhus and Wang (2015); Waezizadeh (2016)]. Many 

researchers [Xu and Ma (2009a); Hattaf et al. (2013); Li and Liu (2014)] have considered 

an epidemic model with constant time delay, which represents the duration of 

infectiousness. The epidemic model (1.1) is an example which involves the transmission 

of disease through one population (i.e. Humans). On the other hand, vector-borne diseases 

models can utilize mixed delays because of the interaction between two species 

population, for example, mosquitos spreading malaria in humans. 
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Meng et al. [2010] discussed a condition with the delay in the infected (𝐼) of the 

incidence, however not in 𝑆; that is, the bilinear incidence rate is 𝛽𝑆(𝑡) 𝐼(𝑡 − 𝜏)   with an 

incubation period 𝜏. The present rate of new infective individuals relies upon the present 

number of vulnerable individuals and upon the present number of infective mosquitoes.  

 

It is established that proper and timely treatment methodology can substantially reduce 

the effect of disease on society. In classical epidemic models, the treatment rate of 

infected individuals is assumed to be either constant or proportional to the number of 

infected individuals. However, we know that there are limited treatment resources 

available in the community [Zhou and Fan (2012)] for new and mutated re-emerging 

infections. In the absence of effective therapeutic treatments and vaccines, the epidemic 

control strategies are based on the choice of appropriate preventive measures. Many 

researchers [Gumel et al. (2006); Hattaf and Yousfi (2009); Naresh et al. (2009)] 

incorporated treatment rate as constant or linear while some have been found that have 

nonlinear saturated treatments such as Holling type II & III [Zhang and Liu (2008); Zhou 

and Fan (2012); Dubey et al. (2013); Goel and Nilam (2019)] and give a better alternative 

due to its saturated behavior. Some infections cannot be controlled completely by 

treatment only due to the limited availability of medical resources. The dissemination of 

awareness about prevention, spread, and treatment modalities of infectious diseases 

through public and social media and health care workers is also an important tool to 

control and restrain further infection [Dubey (2016)]. 

 

1.6 Basic reproduction number 

 

A typical parameter utilized in modeling diseases is the basic reproduction number 𝑅0, 

describes various aspects, for example, contact rate, duration of contamination and 

infectiousness of the causative agent. Contact rate strongly affects the transmission and 

spread of infectious disease. Contact patterns are some of the more complicated aspects of 

predicting outbreaks, because the human behavior is quite complex and does not remain 

consistent among all individuals. The basic reproduction number 𝑅0 is characterized as 

“the average number of secondary infections caused by one infected individual during 

his/her entire infectious period in a completely vulnerable population” [Driessche and 

Watmough (2002)]. Contact rate has a large effect on this parameter, as higher the 
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effective contacts lead to higher rates of new infection. Another determinant of 𝑅0 is the 

duration of infectiousness; people with longer infectiousness periods will contact and thus 

possibly infect more people over the whole range of the infection. The basic reproduction 

number is a fundamental determinant of the dynamics of disease infection in the 

population level. An epidemic outbreak will occur if and only if  𝑅0 is greater than one. 

This threshold property provides important information about the progression of disease 

spread and the impact of control mechanisms. 

 

1.7 Stability analysis 

 

Mathematical models are becoming increasingly complicated when a higher level of non-

linearity is adopted to address real-world problems. Finding an explicit solution of these 

models is relatively impossible. Through numerical simulations, approximate solutions 

with fix parameters can be found, though still, the general solution may remain unknown. 

At the point when the general solution is difficult to accomplish, stability analysis can be 

used to get a sense of the solution’s long-term behavior exceptionally well. In general, 

there are two kinds of model solution widely used in literature: local and global. Local 

stability is concerned with the behavior of the model solution around the equilibrium 

point, while global stability can describe solution behavior in the whole domain. 

 

Delay differential equations are often of interest to determine whether or not the 

delay values affect the stability of a steady-state. Mainly, the delay is treated as a 

bifurcation parameter. To determine whether or not a stable steady-state can become 

unstable by changing the delay value, we look at the eigenvalues from roots of 

characteristic equations. If all the roots have a negative real part, the steady-state is stable. 

When we vary the delay, if one of the root changes from having a negative real part to 

having a positive real part, the steady-state will become unstable. This is also equivalent 

to having the root crossing the imaginary-axis (imagine the root as a graph with a real part 

on the x-axis and imaginary part on the y-axis). Therefore, if the root really changes to 

positive real part, there must be a root that is purely imaginary part (i.e. the intersection 

between the graph of the root and the imaginary-axis exist.). 
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In this thesis, the Routh-Hurwitz (R-H) criterion and Lyapunov direct method [Sastry 

(1999)] are mainly used for the stability of model equilibria. The Routh-Hurwitz (R-H) 

criterion is useful to check the local stability of an equilibrium point. The local stability 

describes the qualitative behavior of the solution in a certain neighborhood. It does not 

give any information about the behavior of the solution beyond that neighborhood. The 

Lyapunov direct method can be useful to study the stability behavior of nonlinear 

systems. The physical validity of this method is contained in the fact that the stability of 

the system depends on the energy of the system which is a function of system variables. 

The Lyapunov direct method consists in finding out such energy functions termed as 

Lyapunov function which need not be unique. The major role in this process is played by 

positive or negative definite functions which can be obtained in general by the trial of 

some particular functions of state variables, and in some case with a planned procedure 

[Dubey (2016)]. 

 

1.8 The organization of the thesis 

 

The thesis entitled “Mathematical Modeling in Epidemiology” contains nine chapters 

followed by conclusion & future scope and bibliography. The thesis is organized as 

follows: 

 

Chapter 1: Chapter 1 is introductory and gives a general background of epidemic 

modeling theory, basic terminology, important concepts, and types of models. The 

purpose of this chapter is to give the chronological development in epidemiology and 

motivation behind the work done in the thesis. 

 

Chapter 2: In Chapter 2, the dynamic behavior of a susceptible-infected-recovered 

(SIR) epidemic model is presented and analyzed with the incidence rate of new infection 

as Monod-Haldane (M-H) functional type and treatment rate also as Monod- Haldane (M-

H) functional type. M-H type incidence rate defines the inhibitory or psychological effect 

from the behavioral change of the susceptible individuals in case of a large number of 

infected individuals. It has great significance, as the number of effective contacts between 

infected and susceptible individuals decreases at high levels, because of either isolation of 

infected individuals or precautionary measures taken by susceptible individuals. In M-H 
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treatment rate, the removal/treatment at first increases with the increasing number of 

infectives and attains its peak, i.e., the treatment is being given to the maximum number 

of infectives; after that decay in the slope begins and the incidence rate approaches zero. 

The limitation in the availability of treatment for a large number of infected people can be 

captured mathematically by M-H treatment rate. The numerical results of the model 

demonstrate the impact of M-H treatment and incidence rates on the infected population. 

 

The work presented in this chapter has been communicated under the title “A SIR 

Disease Transmission Model with Nonlinear Functional Response”. 

 

Chapter 3: This chapter demonstrates the control strategy for the epidemics in which 

infection grows at a very high rate and even at some stage; the infected population is 

more than the susceptible population. Such a situation can be modeled by considering the 

incidence rate of infection as a ratio-dependent functional. Because of the large number of 

infected individuals, the treatment facilities may not be made available for the entire 

infected population at the same time. This limitation of the treatment facilities can be 

represented mathematically by using Holling functional type II treatment rate. Therefore, 

the progression of the epidemic has been modeled by taking the combination of ratio-

dependent incidence and Holling functional type II treatment rates. The impact of this 

combination on the transmission dynamics of the epidemic has been demonstrated with 

the help of numerical simulations. 

 

The work presented in this chapter has been communicated under the title “A Study 

on the Dynamics of An Epidemic Model with Ratio-Dependent Incidence and 

Holling Type II Treatment Rates.” 

 

Chapter 4: For most communicable diseases there is a time interval between infection 

and occurrence of symptoms (the incubation period) in which the infectious agents are 

increasing with time. The incubation period is a deciding factor for the severity of the 

disease because the disease cannot be identified initially and hence can’t be treated during 

the incubation period. This incubation period has been modeled as the delay time in 

Holling type II incidence rate with an inhibitory effect. Since the treatment facilities will 

be extremely constrained for new or evolved infection, therefore, Holling functional type 
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II will be used as a treatment rate. The model has been analyzed for local stability for 

model equilibria. The outcomes of numerical simulation recommend that the disease be 

precisely controlled when treatment is given to infectives under Holling functional type II 

treatment rate.  

 

The results of this part of the chapter have been published entitled “Stability of a 

Time Delayed SIR Epidemic Model Along with Nonlinear Incidence Rate and 

Holling Type – II Treatment Rate” in International Journal of Computational Methods, 

2018 (World Scientific).  

 

An attempt has also been made to find the more suitable treatment method of a known 

disease which has re-emerged and has available treatment methods. Treatment rate of 

such diseases can be modeled by the Holling functional type III. Therefore, the treatment 

rate has been changed to Holling functional type III while the incidence rate will be kept 

as Holling functional type II with time delay only to find out the changes in the infected 

population theoretically. Hopf bifurcation analysis of endemic equilibrium and global 

stability analysis of model equilibria are also discussed.  

 

The results of this part of the chapter have been communicated under the title “A 

Deterministic Time-Delayed SIR Epidemic Model: Mathematical Modeling and 

Analysis”. 

   

Chapter 5: Some communicable diseases can be transmitted in humans even without 

showing clinical symptoms. The time taken between infection and infectiousness is called 

the latency period. The duration of this period may be responsible for disseminating the 

disease. Therefore, to capture the role of latency period mathematically, it has been used 

as the time delay in both susceptible and infectives in Holling functional type II incidence 

rate. The treatment rate of infected is taken as Monod-Haldane (M-H) functional type. 

This treatment rate consists of the cure rate and limitation rate in treatment availability. In 

the M-H treatment rate, the removal/treatment rate grows initially with the development 

of infectives and diminishes after attaining its maxima. The results obtained from the 

numerical simulations have been discussed in detail in chapter 5. 
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The work reported in this chapter entitled “Dynamical Model of Epidemic Along 

with Time Delay; Holling Type II Incidence Rate and Monod–Haldane Type 

Treatment Rate” has been published in Differential Equations and Dynamical Systems, 

2018 (Springer). 

 

Chapter 6: Monod-Haldane (M-H) type incidence rate is a possible mathematical 

representation to explain the psychological effects from the behavioral changes of the 

susceptible individuals when the number of infectives is relatively very high. As 

discussed earlier in chapter 4, incubation period is also a vital factor in disseminating the 

disease, therefore in the present chapter, the same delay term has been used in incidence 

rate to push the epidemic model into a more realistic state. Now, according to the newly 

modeled incidence rate, the infection force may decrease with increasing numbers of 

infectious people because the number of contacts in the population may tend to reduce per 

unit time in the presence of a large number of infectious individuals. Hence, the effects of 

the novel combination of M-H functional incidence rate with the inclusion of time delay 

and Holling type II functional treatment rate on susceptibles and the infected population 

has been studied with the help of the present model. 

 

Then, there will be a situation when for some communicable diseases, effective 

pre- and post-vaccination/treatment can be made available. In such cases, the 

removal/treatment rate is relatively high initially in spite of increasing infectives, and 

afterward, it decreases gradually, finally reaching a saturated value. After this, any 

expansion in numbers of infectives won't affect the removal rate. Such a situation can be 

modeled with the Holling functional type III treatment rate. Therefore, an alternate 

approach by considering the combination of Holling type III treatment rate along with M-

H functional type incidence rate has been used to study the epidemic in a more realistic 

way. The mathematical analysis of the model consists of the local stability as well as 

global stability analysis at model equilibria and results have been discussed in detail for 

the modified model. 

 

Some results of the work presented in this chapter have been published entitled 

“Mathematical Analysis of a Delayed Epidemic Model with Nonlinear Incidence and 

Treatment Rates”  in Journal of Engineering Mathematics, 2019 (Springer) and some 
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results are communicated under the title “Analysis of a Disease Transmission Model 

with Time Delay, Nonlinear Functional Type Incidence Rate and Saturated 

Treatment Rate”. 

 

Chapter 7: In this chapter, the incidence rate of a new infection is considered as 

Crowley-Martin (C-M) functional type because it considers the effect of inhibition among 

infectives even in case of the high density of susceptible population which is neglected by 

any other incidence rate. The latency time has been used as a delay in the incidence rate 

to understand the dynamics of the epidemic more pragmatically. Therefore, a 

combination of C-M incidence rate along with time delay and Holling functional type II 

treatment rate is studied. The local stability, as well as global stability analysis of the 

model equilibria, is discussed. The numerical outcomes demonstrate the impact of 

inhibitory effects, time delay and nonlinear treatment on the infectious population. 

 

The work presented in this chapter has been communicated under the title 

“Dynamic Behavior of An SIR Epidemic Model Along With Time Delay; Crowley-

Martin Type Incidence Rate and Holling Type II Treatment Rate”. 

 

Chapter 8: It has been reported that awareness can play a vital role in the spread of an 

epidemic. Therefore, to quantify the impact of the effectiveness of being aware of an 

emerging/re-emerging epidemic a new compartment called alert (𝐴) is introduced in the 

SIR epidemic model. This requires two incidence rates: one from the susceptible class to 

infectious class and another from alert class to infectious class which are taken as Holling 

functional type II. The treatment rate of infectious is taken as Holling functional type II 

on the grounds that for an outbreak of the disease its treatment effectiveness is low 

initially and improves gradually with the introduction of hospital facilities, availability of 

more effective medicines, etc. The result obtained from numerical simulations of the 

model having a combination of above explained incidence and treatment rates 

demonstrates the impact of alert class on the infectives. 

 

In this model, it has been considered that health agencies are spreading awareness while 

the concept of immunization has not been covered. To save the lives of humans from the 

epidemics it is very important to provide immunization to the general public, but 
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immunization is not possible for all, and also it has some failure aspects. However, 

immunization minimizes the effect of the epidemic in societies. Therefore, two explicit 

treatment classes which are pre-treated individuals class and post-treated individual’s 

class are introduced in the SIR model resulting in a five-compartment model. The 

pretreated class is introduced to minimize the infectives in the general public, and post-

treated class is introduced for the recovery of the infectives. This motivates us to take 

Holling functional type I and III rates for pre-treatment and post-treatment of individuals, 

respectively, to control the illness. The incidence rate from susceptible to infectives has 

been considered as Holling function type II with incubation period as a time delay to 

study the dynamic of the epidemic more realistically. The numerical outcomes suggest 

that disease can be controlled in the general public if preventive measures and treatment 

of susceptible and infectious are managed by Holling type I and III treatment rates 

separately. 

 

Some results of the work presented in this chapter have been published in 

Computational and Applied Mathematics, 2019 (Springer) under the title “Stability of a 

Delayed SIR Epidemic Model by Introducing Two Explicit Treatment Classes Along 

With Nonlinear Incidence Rate and Holling Type Treatment” and some results have 

been published in SeMA Journal, 2019 (Springer) under the title “A Short Study of An 

SIR Model with Inclusion of An Alert Class, Two Explicit Nonlinear Incidence Rates 

And Saturated Treatment Rate”. 

 

Chapter 9: This chapter contains the conclusion of the work done and future scope of the 

models discussed in the thesis. 
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Fig. 1.1: Progression of infection through basic susceptible-infected (SI) compartment 

model with transmission rate (𝛽). 

 

 

 

                     𝛽𝑆𝐼          𝛾𝐼 

 

 

 

Fig. 1.2: Progression of infection through basic susceptible-infected-recovered (SIR) 

compartment model with transmission rate (𝛽) and recovery rate (𝛾). 
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Fig. 1.3:  Progression of infection through basic susceptible-exposed-infected-recovered 

(SEIR) compartment model with transmission rate (𝛽), exposed rate (𝛿) and 

recovery rate (𝛾). 
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CHAPTER 2 

 

A SIR EPIDEMIC MODEL WITH MONOD-HALDANE 

FUNCTIONAL TYPE INCIDENCE AND TREATMENT 

RATES 

 

 

In this chapter, a SIR epidemic model has been presented and analyzed with a novel 

combination of incidence and treatment rates both of Monod-Haldane (M-H) functional 

type. Stability of the disease-free (DFE) and endemic equilibria (EE) has been discussed. 

The stability of DFE has been discussed in terms of the basic reproduction number(𝑅0) 

and it was shown that DFE is locally asymptotically stable when 𝑅0 < 1 and unstable 

when 𝑅0 > 1. Stability of DFE at 𝑅0 = 1 has been investigated using center manifold 

theory; it was found that DFE exhibits a forward bifurcation. Conditions have been 

obtained for the stability of EE. Furthermore, the global stability of DFE has also been 

discussed. Lastly, numerical simulations have been performed to illustrate the results 

predicted by the analysis.  
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2.1 Introduction 

 

To control the spread of infectious diseases, mathematical modeling always plays a vital 

role. In the literature of mathematical epidemiology, numerous mathematical models have 

already been proposed for disease dynamics such as SIS [Li et al.(2006)], SIR [Shulgin et 

al. (1998); Kaddar (2009) & (2010); Li et al. (2009); Xu and Ma (2009b), McCluskey 

(2010); Pathak et al. (2010); Xu and Du (2011); Abta et al. (2012); Hattaf et al. (2013); 

Adebimpe et al. (2015); Dubey et al. (2015) & (2016); Chen et al. (2016)], SIRS [Xu and 

Ma (2009a); Sun and Yang (2010)], SEI [McCluskey (2012)], SEIR [Li and Muldowney 

(1995); Zhang and Ma (2003); Li and Jin (2005); Katim and Razali (2011); Abta et al. 

(2012); Dubey et al. (2013); Tipsri and Chinviriyasit (2014); Liu et al. (2015)], SEIS 

[Guo et al. (2010)], SVIR [Liu et al.(2008); Wang et al. (2016)], SVEIR [Gumel et al. 

(2006); Wei et al. (2009); Wang et al. (2015)](where, 𝑆, 𝑉, 𝐸, 𝐼, and 𝑅 denotes the 

susceptible, vaccinated, exposed, infected and recovered individuals respectively) and 

many others. The spread of the epidemic mainly depends on the incidence rate. The 

number of individuals who become infected per unit of time in epidemiology is known as 

the incidence rate [Dubey et al. (2015)]. Kermack and McKendrick [1927] proposed that 

the dynamics of an infectious disease could be described using a bilinear incidence rate 

𝛽𝑆𝐼 of infection. However, this bilinear type incidence rate depends on the law of mass 

action, which is unreasonable for a large infected population. Indeed, one can infer from 

the term 𝛽𝑆𝐼 that, if the number of susceptible individuals increases, incidence rate also 

increases, which is unrealistic. Hence, there is a need to modify the classical linear 

incidence rate in order to study the dynamics of infection among a large population. 

Many researchers [Xu and Ma (2009a); Hattaf et al. (2013); Dubey et al. (2015) & 

(2016)] have proposed transmission laws that include nonlinearity, such as the Holling 

type II functional, Crowley–Martin functional, Beddington-DeAngelis functional, etc., for 

the dynamics of infectious diseases. The general incidence rate 

𝑔(𝐼)𝑆 =
𝑘𝐼𝑝𝑆

1 + 𝛼𝐼𝑞
, 

was suggested by Liu et al. [1987] and thereafter considered by numerous researchers in 

their models (see, for example, [Hethcote and Levin (1989); Hethcote and Driessche 

(1991); Derrick and Driessche (1993); Hethcote (2000); Alexander and Moghadas 

(2004)]). If the function 𝑔(𝐼 ) is non-monotonic, that is, 𝑔(𝐼 ) is increasing when 𝐼 is 



21 
 

small but decreasing when 𝐼 is large, it can be used to interpret the “psychological” effect, 

i.e. the infection force may get reduced as the number of infected increases for a large 

number of infected population, because in such situation the number of contacts per unit 

time may tend to reduce for 𝑝 < 𝑞. For example, the epidemic outbreak of SARS showed 

such psychological effects on the general public; aggressive measures and policies, such 

as border screening, mask wearing, quarantine, isolation, etc., have been proven to be 

very effective [Xiao and Ruan (2007)] in reducing the infective rate at the later stage of 

the SARS outbreak, even when the number of infected individuals was increasing. The 

above-mentioned phenomenon can be modelled by using the nonlinear Monod–Haldane 

(M-H) incidence rate: 

𝑓(𝑆, 𝐼) = 𝑔(𝐼)𝑆 =
𝑘𝐼𝑆

1+𝛼𝐼2
, where 𝑘, 𝛼 > 0. 

where 𝑘𝐼 measures the force of infection of the disease and 1/ (1 +  𝛼𝐼2) describes the 

psychological effect from the behavioral change of susceptibles when the number of 

infectives is very large. 

 

Treatment rate always helps doctors and health agencies to control/ eradicate the infection 

from the population. It is known that there are limited treatment resources available in the 

community [Zhou and Fan (2012)] for large infected populations. In the absence of 

effective therapeutic treatments and vaccines, epidemic control strategies are based on 

taking appropriate preventive measures.  Therefore, we incorporate the treatment rate as 

nonlinear Monod-Haldane (M-H) type in our epidemic model. In the M-H functional type 

treatment, “the removal/treatment rate firstly increases with the growth of infectives, 

reaches the maximum and then starts decaying. Such a situation may arise due to the 

limitation in the availability of treatment for a large number of infected populations. 

When supplies of treatment (medicine, immunization, etc.) are depleted, then in spite of 

the high number of infectives the available treatments become very scarce. This case may 

arise when there is the re-emergence and spread of disease in the presence of limited 

treatment facilities” [Dubey et al. (2013)]. 

 

This chapter presents the dynamics of a susceptible-infected-recovered (SIR) 

mathematical model with M-H functional type incidence and treatment rates to capture 

the impact of physiological effect and limitation of resources on infectives. The basic 

properties of the model have been discussed. The stability of the model has been 
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discussed for the two equilibria which are named as disease-free equilibrium (DFE) and 

endemic equilibrium (EE). We discuss the local and global stability of DFE through the 

basic reproduction number and Lyapunov function. Furthermore, the stability of EE has 

also been discussed by application of the Routh-Hurwitz criterion. 

 

2.2 Mathematical model 

 

In this section, a mathematical epidemic transmission model is being proposed. For this, it 

is considered that the total population at time 𝑡 is 𝑃(𝑡), with the immigration of 

susceptible individuals at a constant rate 𝐴. Further, the total population 𝑃(𝑡) has been 

divided into three classes (or compartments), which are named as: susceptible class 𝑆(𝑡), 

infected class 𝐼(𝑡) and recovered class 𝑅(𝑡). It is assumed that the disease can spread due 

to the direct contact between susceptibles and infectives only. It is also assumed that 

recovered individuals are immune for their entire life and they will not re-infect and 

therefore no movement is possible from 𝑅(𝑡) to 𝑆(𝑡) compartment. Let 𝜇 be the natural 

death rate of the population, 𝑑 the disease-induced mortality and 𝛿 the recovery rate of 

infected individuals.  

 

By taking above assumptions into consideration, the dynamics of the model will be given 

by the following system of nonlinear ordinary differential equations: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑆(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡)

1+𝛼𝐼2(𝑡)
 ,          

𝑑𝐼(𝑡)

𝑑𝑡
=
𝛽𝑆(𝑡)𝐼(𝑡)

1+𝛼𝐼2(𝑡)
− (𝜇 + 𝑑 + 𝛿)𝐼(𝑡) −

𝑎𝐼(𝑡)

1+𝑏𝐼2(𝑡)
  ,         (2.1) 

𝑑𝑅(𝑡)

𝑑𝑡
=

𝑎𝐼(𝑡)

1+𝑏𝐼2(𝑡)
+ 𝛿𝐼(𝑡) − 𝜇𝑅(𝑡) .          

where 𝑆(0) > 0, 𝐼(0) ≥ 0 and 𝑅(0) ≥ 0. 

 

In the model (2.1), the term  
𝛽𝑆(𝑡)𝐼(𝑡)

1+𝛼𝐼2(𝑡)
  represents the M-H functional type incidence rate, 

here, 𝛽 is the transmission rate of disease and 𝛼 is the inhibitory effect. This nonlinear 

functional response was suggested by Sokol and Howell [1981]. It is understood that if 

we take 𝛼 = 0, the bilinear incidence rate [Gumel et al. (2006)] can also be derived from 



23 
 

this incidence rate. The term  
𝑎𝐼(𝑡)

1+𝑏𝐼2(𝑡)
, represent the M-H functional type treatment rate, 

where 𝑎 and 𝑏 are non-negative constants. The constants 𝑎 and 𝑏 are the cure rate of the 

infected people and limitation rate in the availability of treatment, respectively. 

Furthermore, it is assumed that all parameters of the model are positive, as required by 

the biological interpretation. 

 

It should be mentioned that although the recovered population continues to make contact 

with other members of the population, it does not contribute to the transmission dynamics 

of the disease. Since the recovered population, 𝑅(𝑡), does not feature in the first two 

equations of the model. Therefore this equation can be omitted for the analysis without 

loss of generality. Thus, we consider the following reduced system for the mathematical 

analysis: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑆(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡)

1+𝛼𝐼2(𝑡)
 ,          

𝑑𝐼(𝑡)

𝑑𝑡
=
𝛽𝑆(𝑡)𝐼(𝑡)

1+𝛼𝐼2(𝑡)
− (𝜇 + 𝑑 + 𝛿)𝐼(𝑡) −

𝑎𝐼(𝑡)

1+𝑏𝐼2(𝑡)
 .         (2.2) 

 

2.3 Basic properties of the model 

 

For the system (2.2), we find that all solutions with nonnegative initial data will remain 

non-negative and bounded for all time. It can be shown as follows: 

Let, the total population 𝑁(𝑡) is  

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) 

Then  

𝑑𝑁(𝑡)

𝑑𝑡
=
𝑑𝑆(𝑡)

𝑑𝑡
+
𝑑𝐼(𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑁(𝑡) − (𝑑 + 𝛿)𝐼(𝑡) −

𝑎𝐼(𝑡)

1 + 𝑏𝐼2(𝑡)
≤ 𝐴 − 𝜇𝑁(𝑡) 

Then, 

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 +
𝐴

𝜇
(1 − 𝑒−𝜇𝑡) 

Thus,  
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Lim
𝑡→∞

𝑠𝑢𝑝  𝑁(𝑡) ≤
𝐴

𝜇
. 

Furthermore, 
𝑑𝑁(𝑡)

𝑑𝑡
< 0 if 𝑁(𝑡) > 0. This shows that all solutions of the system (2.2) 

approaches towards the region 𝐷 defined in Lemma 2.1 discussed below. Hence, the 

region 𝐷 is positively invariant and solutions of the system (2.2) are bounded. Thus, we 

can establish the following lemma: 

Lemma 2.1: The set 𝐷 = {(𝑆, 𝐼): 0 < 𝑆 + 𝐼 ≤
𝐴 

𝜇
} is a positively invariant region of the 

system (2.2). 

Lemma 2.1 shows that all solutions of the system (2.2) are bounded and non-negative. 

Hence, the system (2.2) is well-posed mathematically and epidemiologically. 

 

2.4 Equilibria and their stability analysis 

 

The system (2.2) has two non-negative equilibria which are obtained by setting the right-

hand sides of the system (2.2) equal to zero. They are as follows: 

i. Disease-free equilibrium (DFE) 𝑄 (
𝐴

𝜇
, 0). 

ii. Endemic equilibrium (EE) 𝑄∗(𝑆∗, 𝐼∗).   

For the stability of equilibria, first, we find the basic reproduction number 𝑅0 as given 

below: 

 

2.4.1 Computation of the basic reproduction number (𝑹𝟎) 

 

The characteristic equation at 𝑄 (
𝐴

𝜇
, 0) of the system (2.2) is given by  

    (𝜇 + 𝜆) (
𝛽𝐴

𝜇
 − 𝜇 − 𝑑 − 𝛿 − 𝑎 − 𝜆) = 0                                (2.3) 

 

One of the roots of Eq. (2.3) is given by 𝜆1 = −𝜇 and the other root is given by 𝜆2 =

(𝜇 + 𝑑 + 𝛿 + 𝑎)( 𝑅0 − 1). 

where 
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𝑅0 =
𝛽𝐴

𝜇(𝜇 + 𝑑 + 𝛿 + 𝑎)
.  

This 𝑅0 is known as the basic reproduction number.  

Clearly, if 𝑅0 < 1, then 𝜆2 is negative. Hence, we have the following theorem: 

 

Theorem 2.1: DFE  𝑄 (
𝐴

𝜇
, 0) is locally asymptotically stable when 𝑅0 is less than unity 

and unstable when 𝑅0 is greater than unity.  

 

2.4.2 Analysis at 𝑹𝟎 = 𝟏 

 

Now, we check the behavior of the system (2.2) when 𝑅0 = 1.  

 

Let us redefine  𝑆 = 𝑥1 and 𝐼 = 𝑥2 then the system (2.2) can be rewritten as 

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑥1(𝑡) −

𝛽𝑥1(𝑡)𝑥2(𝑡)

1+𝛼𝑥22(𝑡)
≡ 𝑓1 ,                  

𝑑𝑥2(𝑡)

𝑑𝑡
=
𝛽𝑥1(𝑡)𝑥2(𝑡)

1+𝛼𝑥22(𝑡)
− (𝜇 + 𝑑 + 𝛿)𝑥2(𝑡) −

𝑎𝑥2(𝑡)

1+𝑏𝑥22(𝑡)
≡ 𝑓2.         (2.4) 

 

The linearization matrix of the model the system (2.4) at 𝑄 (
𝐴

𝜇
, 0) and on choosing the 

bifurcation parameter 𝛽 given by 𝛽∗ =
𝜇(𝜇+𝑑+𝛿+𝑎)

𝐴
   so 𝑅0 = 1 when 𝛽 = 𝛽∗ is given by 

𝐽 =

(

 
 
−𝜇 −

𝛽∗𝐴

𝜇

0
𝛽∗𝐴

𝜇
 − 𝜇 − 𝑑− 𝛿− 𝑎

)

 
 
= (

−𝜇 −
𝛽∗𝐴

𝜇
0 0

). 

 

The matrix  𝐽 admits a simple zero (null) eigenvalue at 𝑅0 = 1 and other eigenvalue of 

𝐽(𝜆 = −𝜇) has a negative real part. Consequently, the linearization technique fails to 

determine the behavior of the system (2.4) [Dubey et al. (2016)]. Therefore, we use 

Theorem 4.1 of [Chavez and Song (2004)] which is based on center manifold theory. 

Then, the bifurcation constants 𝑎1 and 𝑏1 are given by 

𝑎1 = ∑ 𝑢𝑘𝑤𝑖𝑤𝑗

2

𝑘,𝑖,𝑗=1

(
𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

)
𝑄

, 
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and  

𝑏1 = ∑ 𝑢𝑘𝑤𝑖

2

𝑘,𝑖=1

(
𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝛽∗

)
𝑄

 

where 𝑤 = (𝑤1, 𝑤2)
𝑇 and 𝑢 = (𝑢1, 𝑢2) are the right and left eigenvectors of the matrix 𝐽 

associated with the null eigenvalue respectively. Thus, we get 

𝑢1 = 0, 𝑢2 = 1 and 𝑤1 = −
𝛽∗𝐴

𝜇2
, 𝑤2 = 1 

 

The partial derivatives related to the functions of the system (2.4) evaluated at  𝑅0 = 1 

and  𝛽 = 𝛽∗ are  

(
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2
)
𝑄
= 𝛽∗, (

𝜕2𝑓2

𝜕𝑥2𝜕𝑥1
)
𝑄
= 𝛽∗, (

𝜕2𝑓2

𝜕𝑥12
)
𝑄
= 0,  (

𝜕2𝑓2

𝜕𝑥22
)
𝑄
= 0 and (

𝜕2𝑓2

𝜕𝑥2𝜕𝛽∗
)
𝑄
=
𝐴

𝜇
 

Therefore, 

𝑎1 = 𝑢2(2𝑤1𝑤2 𝛽
∗ + 𝑤2

2. 0 + 𝑤1
2. 0) 

= −2
 𝛽∗2𝐴

𝜇2
< 0, 

and 

𝑏1 = 𝑢2 (𝑤2
𝐴

𝜇
) 

=
𝐴

𝜇
> 0. 

It can be seen that 𝑎1 is negative and 𝑏1 is positive. Hence, bifurcation is forward. 

Therefore, we obtain the following theorem: 

 

Theorem 2.2: The system (2.4) exhibits a forward bifurcation at DFE 𝑄 (
𝐴

𝜇
, 0) , 𝑅0 =

1 and bifurcation parameter 𝛽 = 𝛽∗ =
𝜇(𝜇+𝑑+𝛿+𝑎)

𝐴
 . 

 

2.4.3 Global stability of the disease-free equilibrium (DFE) 

 

In this subsection, the global stability behavior of disease-free equilibrium 𝑄 (
𝐴

𝜇
, 0) is 

discussed using a Lyapunov function. 
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Theorem 2.3: DFE 𝑄 (
𝐴

𝜇
, 0) is globally asymptotically stable at 𝑅0 ≤ 1 when the 

following condition hold true simultaneously: 

𝑎𝑏 ≤ 𝛼(𝜇 + 𝑑 + 𝛿). 

Proof: Let 𝐿 is the Lyapunov function defined as: 

𝐿 = 𝑆 − 𝑆0 − 𝑆0 ln
𝑆

𝑆0
+ 𝐼 , where 𝑆0 =

𝐴

𝜇
 

Differentiating the 𝐿 along the solutions of the system (2.2), then 

𝑑𝐿

𝑑𝑡
=
𝜕𝐿

𝜕𝑆
.
𝑑𝑆

𝑑𝑡
+
𝜕𝐿

𝜕𝐼
.
𝑑𝐼

𝑑𝑡
 

⟹  

𝑑𝐿

𝑑𝑡
= −

𝜇(𝑆 − 𝑆0)
2

𝑆
+
(𝜇 + 𝑑 + 𝛿 + 𝑎)(𝑅0 − 1)𝐼

1 + 𝛼𝐼2

+ (
𝑎𝑏 − 𝛼(𝜇 + 𝑑 + 𝛿) − 𝑏𝛼(𝜇 + 𝑑 + 𝛿)𝐼2)

(1 + 𝛼𝐼2)(1 + 𝑏𝐼2)
) 𝐼3. 

Since all parameters of the model are positive, it follows that 
𝑑𝐿

𝑑𝑡
< 0 if 𝑅0 ≤ 1,

𝑎𝑏

𝛼(𝜇+𝑑+𝛿)
≤ 1 simultaneously and 

𝑑𝐿

𝑑𝑡
= 0 if 𝑆 = 𝑆0 =

𝐴

𝜇
 and 𝐼 = 𝐼0 = 0. Hence, 𝐿 is a 

Lyapunov function on 𝐷 = {(𝑆, 𝐼): 0 < 𝑆 + 𝐼 ≤
𝐴 

𝜇
}. 

This implies that the largest compact invariant set in {(𝑆, 𝐼) ∈ 𝐷:
𝑑𝐿

𝑑𝑡
= 0} is the singleton 

set {𝑄}. From LaSalle’s invariance principle [LaSalle (1976); Sastry (1999)] DFE is 

globally asymptotically stable. 

 

2.4.4 Existence of endemic equilibrium (EE) 

 

To find the conditions for the existence of endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗), the system 

(2.2) is rearranged to get 𝑆∗ and 𝐼∗ which gives: 

𝑆∗ =
((𝜇 + 𝑑 + 𝛿)(1 + 𝑏𝐼∗2) + 𝑎) (1 + 𝛼𝐼∗2)

𝛽(1 + 𝑏𝐼∗2)
, 

and  𝐼∗ is given by the equation 

                                            𝐶1𝐼
∗4 + 𝐶2𝐼

∗3 + 𝐶3𝐼
∗2 + 𝐶4𝐼

∗ + 𝐶5 = 0                            (2.5) 

where, 

𝐶1 = 𝑏𝜇𝛼(𝜇 + 𝑑 + 𝛿),   

𝐶2 = 𝛽𝑏(𝜇 + 𝑑 + 𝛿),  
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𝐶3 = (𝜇𝛼(𝜇 + 𝑑 + 𝛿 + 𝑎) + 𝑏𝜇(𝜇 + 𝑑 + 𝛿) − 𝛽𝐴𝑏), 

𝐶4 = 𝛽(𝜇 + 𝑑 + 𝛿 + 𝑎),  

𝐶5 = (𝜇(𝜇 + 𝑑 + 𝛿 + 𝑎) − 𝛽𝐴) = 𝜇(𝜇 + 𝑑 + 𝛿 + 𝑎)(1 − 𝑅0) . 

 

Using the Descartes’ rule of signs [Wang (2004)], for 𝑅0 > 1 there exists a unique 

positive real root of biquadratic equation (2.5) if the condition 𝐶1 > 0, 𝐶2 > 0, 𝐶3 >

0, 𝐶4 > 0 and 𝐶5 < 0 is satisfied. 

 

After getting the value of  𝐼∗, we can find the value of 𝑆∗. Thus, there exists a unique 

positive 𝑄∗(𝑆∗, 𝐼∗) if the above condition holds true. Hence, we state the following 

theorem: 

 

Theorem 2.4: If 𝑅0 > 1, the system (2.2) admits a unique positive endemic 

equilibrium 𝑄∗(𝑆∗, 𝐼∗). 

 

Now, we show the uniform persistence of the system (2.2). Let 𝐷1 denotes the interior of 

𝐷 and 𝜕𝐷 denotes the boundary of 𝐷. Epidemiologically, persistence implies that the 

subpopulation exists always and will not lead to elimination if initially, they exist. For 

this, we propose the following theorem: 

 

Theorem 2.5: If 𝑅0 > 1, the system (2.2) is uniformly persistent, this means that there 

exist a positive constant 𝐾 such that every solution (𝑆, 𝐼) of the system (2.2) with the 

initial data (𝑆(0), 𝐼(0)) ∈ 𝐷1 satisfies 

Lim
𝑡→∞

inf 𝑆(𝑡) ≥ 𝐾, Lim
𝑡→∞

inf 𝐼(𝑡) ≥ 𝐾, 

where 𝐾 is independent of initial data in 𝐷1  

Proof: From theorem 2.4 for 𝑅0 > 1, there exists a unique endemic equilibrium 𝑄∗. 

From theorem 2.1 we know that 𝑅0 > 1 implies that the DFE  𝑄 is unstable. By Theorem 

4.3 in [Freedman et al. (1994)], the instability of 𝑄, together with 𝑄 ∈ 𝜕𝐷, imply the 

uniform persistence of the state variables of the system (2.2). Therefore, there exists a 

positive constant 𝐾 such that every solution (𝑆, 𝐼) of the system (2.2) with the initial data 

(𝑆(0), 𝐼(0)) ∈ 𝐷1  satisfies 

Lim
𝑡→∞

inf 𝑆(𝑡) ≥ 𝐾, Lim
𝑡→∞

inf 𝐼(𝑡) ≥ 𝐾, 
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where 𝐾 is independent of initial data in 𝐷1 . 

 

The uniform persistence, along with the boundedness of 𝐷, is equivalent to the existence 

of a compact set in the interior of 𝐷 which is absorbing for the system (2.2) [Hutson and 

Schmit (1992)]. So, we have the following theorem: 

 

Theorem 2.6: If 𝑅0 > 1, then there exists a compact absorbing set 𝐵 ⊂ 𝐷1 . 

 

Next, the local stability of 𝑄∗(𝑆∗, 𝐼∗) has been discussed.  

 

2.4.5 Stability of endemic equilibrium 

 

The local stability of  𝑄∗(𝑆∗, 𝐼∗) is explored as follows: the variational matrix 

corresponding to 𝑄∗(𝑆∗, 𝐼∗) of the system (2.2) is 

𝐽𝑄∗ = (
−𝜇 −

𝛽𝐼∗

1+𝛼𝐼∗2
−
𝛽𝑆∗(1−𝛼𝐼∗

2
)

(1+𝛼𝐼∗2)2

𝛽𝐼∗

1+𝛼𝐼∗2
𝛽𝑆∗(1−𝛼𝐼∗

2
)

(1+𝛼𝐼∗2)2
− (𝜇 + 𝑑 + 𝛿) −

𝑎(1−𝑏𝐼∗
2
)

(1+𝑏𝐼∗2)2

).  

 

The characteristic equation of the variational matrix  𝐽𝑄∗ is as follows: 

휀2 + 𝑝1휀 + 𝑝2 = 0         (2.6) 

where, 

𝑝1 = (2𝜇 + 𝑑 + 𝛿 +
𝛽𝐼∗

1+𝛼𝐼∗2
+

𝑎

(1+𝑏𝐼∗2)2
+

𝛽𝛼𝑆∗𝐼∗
2

(1+𝛼𝐼∗2)2
− (

𝑎𝑏𝐼∗
2

(1+𝑏𝐼∗2)2
+

𝛽𝑆∗

(1+𝛼𝐼∗2)2
)) ,             

𝑝2 = (𝜇(𝜇 + 𝑑 + 𝛿) +
𝛽(𝜇+𝑑+𝛿)𝐼∗

1+𝛼𝐼∗2
+

𝑎𝛽𝐼∗

(1+𝛼𝐼∗2)(1+𝑏𝐼∗2)2
+

𝜇𝑎

(1+𝑏𝐼∗2)2
+
𝜇𝛽𝛼𝑆∗𝐼∗

2

(1+𝛼𝐼∗2)2
−

  (
𝑎𝑏𝛽𝐼∗

3

(1+𝛼𝐼∗2)(1+𝑏𝐼∗2)2
+

𝜇𝑎𝑏

(1+𝑏𝐼∗2)2
+

𝜇𝛽𝑆∗

(1+𝛼𝐼∗2)2
)). 

The real part of the eigenvalues of the variational matrix  𝐽𝑄∗  is negative if and only if 

𝑝1 > 0 and 𝑝2 > 0. Hence, the results are stated in the form of theorems given below: 
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Theorem 2.7: The endemic equilibrium  𝑄∗(𝑆∗, 𝐼∗) is locally asymptotically stable if 

the following inequalities hold true simultaneously 

  (
𝑎𝑏𝐼∗

2

(1+𝑏𝐼∗2)2
+

𝛽𝑆∗

(1+𝛼𝐼∗2)2
) < 𝑀1                   (2.7) 

(
𝑎𝑏𝛽𝐼∗

3

(1+𝛼𝐼∗2)(1+𝑏𝐼∗2)2
+

𝜇𝑎𝑏

(1+𝑏𝐼∗2)2
+

𝜇𝛽𝑆∗

(1+𝛼𝐼∗2)2
) < 𝑀2                         (2.8) 

where 

     𝑀1 = (2𝜇 + 𝑑 + 𝛿 +
𝛽𝐼∗

1+𝛼𝐼∗2
+

𝑎

(1+𝑏𝐼∗2)2
+

𝛽𝛼𝑆∗𝐼∗
2

(1+𝛼𝐼∗2)2
),    

𝑀2 = (𝜇(𝜇 + 𝑑 + 𝛿) +
𝛽(𝜇+𝑑+𝛿)𝐼∗

1+𝛼𝐼∗2
+

𝑎𝛽𝐼∗

(1+𝛼𝐼∗2)(1+𝑏𝐼∗2)2
+

𝜇𝑎

(1+𝑏𝐼∗2)2
+
𝜇𝛽𝛼𝑆∗𝐼∗

2

(1+𝛼𝐼∗2)2
).  

 

Theorem 2.8: The endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗), whenever exists, is a saddle point if 

the inequality (2.7) and the following inequality holds true 

                       (
𝑎𝑏𝛽𝐼∗

3

(1+𝛼𝐼∗2)(1+𝑏𝐼∗2)2
+

𝜇𝑎𝑏

(1+𝑏𝐼∗2)2
+

𝜇𝛽𝑆∗

(1+𝛼𝐼∗2)2
) > 𝑀2      (2.9) 

 

Theorem 2.9: The endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗), whenever exists is unstable if the 

inequality (2.8) and the following inequality hold true 

(
𝑎𝑏𝐼∗

2

(1+𝑏𝐼∗2)2
+

𝛽𝑆∗

(1+𝛼𝐼∗2)2
) > 𝑀1                                       (2.10) 

 

Theorem 2.10: The system (2.2) exhibits the Hopf bifurcation near endemic 

equilibrium 𝑄∗(𝑆∗, 𝐼∗)  if the inequality (2.8) and following equality hold true 

(
𝑎𝑏𝐼∗

2

(1+𝑏𝐼∗2)2
+

𝛽𝑆∗

(1+𝛼𝐼∗2)2
) = 𝑀1      (2.11) 

Proof: Equality (2.11) implies that 𝑝1 = 0 in Eq. (2.6) and inequality (2.8) implies 

that 𝑝2 > 0. Thus, Eq. (2.6) has purely imaginary roots. From the theorem 2.7 and 

theorem 2.9, it follows that  𝑄∗(𝑆∗, 𝐼∗) changes its behavior from stable to instability as 

the parameter 𝛽 passes through the critical value  𝛽 = 𝛽∗[Dubey et. al. (2015)], where 

𝛽∗ =
(1+𝛼𝐼∗

2
)2

𝑆∗(1−𝛼𝐼∗2)−𝐼∗(1+𝛼𝐼∗2)
(2𝜇 + 𝑑 + 𝛿 +

𝑎(1−𝑏𝐼∗
2
)

(1+𝑏𝐼∗2)2
)  

Again, we have 



31 
 

𝑑

𝑑𝛽
[𝑡𝑟 (𝐽𝑄∗)]𝛽=𝛽∗ =

𝑆∗(1−𝛼𝐼∗
2
)−𝐼∗(1+𝛼𝐼∗

2
)

(1+𝛼𝐼∗2)2
=

1

𝛽∗
(
𝑎(1−𝑏𝐼∗

2
)

(1+𝑏𝐼∗2)2
+ (2𝜇 + 𝑑 + 𝛿)) ≠ 0.  

This condition is required for Hopf bifurcation to occur. Hence, the system (2.2) shows a 

Hopf bifurcation near the equilibrium point 𝑄∗(𝑆∗, 𝐼∗) when 𝛽 = 𝛽∗. 

Now, we prove the non-existence of the periodic solution. For this, the following theorem 

has been proved: 

 

Theorem 2.11: If  𝛼 ≥ 𝑏, then the system (2.2) does not admit any periodic solution in 

the interior of the positive quadrant of the 𝑆 − 𝐼 plane. 

Proof: We take a real-valued function in the interior of the 𝑆 − 𝐼 plane as given below: 

𝐻(𝑆, 𝐼) =
1 + 𝛼𝐼2

𝑆𝐼
 

Let us consider 

ℎ1(𝑆, 𝐼) = 𝐴 − 𝜇𝑆 −
𝛽𝑆𝐼

1 + 𝛼𝐼2
 , 

ℎ2(𝑆, 𝐼) =
𝛽𝑆𝐼

1 + 𝛼𝐼2
− (𝜇 + 𝑑 + 𝛿)𝐼 −

𝑎𝐼

1 + 𝑏𝐼2
 

Then we have  

𝑑𝑖𝑣 (𝐻ℎ1, 𝐻ℎ2) =
𝜕

𝜕𝑆
(𝐻ℎ1) +

𝜕

𝜕𝐼
(𝐻ℎ2) 

= −
𝐴(1 + 𝛼𝐼2)

𝐼𝑆2
−
2𝛼(𝜇 + 𝑑 + 𝛿)𝐼

𝑆
−
2𝑎 (𝛼 − 𝑏)𝐼

𝑆(1 + 𝑏𝐼2)2
. 

Clearly, it can be seen that the above expression can never be equal to zero when 𝛼 > 𝑏 

and also, the sign of this expression will not be changed in the positive quadrant of the 

𝑆 − 𝐼 plane if the condition 𝛼 ≥ 𝑏 holds true. Then, by Dulac’s criterion [Sastry (1999)], 

it can be said that the system (2.2) does not have any periodic solution in the interior of 

the positive quadrant of the 𝑆 –  𝐼 plane. Epidemiologically, this theorem implies that if 

the given condition holds true, then the disease will not reappear in the society. 
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Since the set  𝐷 defined in the Lemma 2.1 is a positively invariant set, then the following 

theorem is a direct result of the Poincare-Bendixon theorem [Sastry (1999)] showing the 

existence of a limit cycle in the interior of the positive quadrant of the 𝑆 –  𝐼 plane. 

 

Theorem 2.12: If either inequality (2.8) and (2.10) or (2.9) are satisfied, then the 

system (2.2) has at least one limit cycle in the interior of the positive quadrant of the 𝑆 −

𝐼 plane. 

 

Epidemiologically, the above theorem implies that if the positive equilibrium  𝑄∗(𝑆∗, 𝐼∗) 

is a saddle point or unstable then disease may reoccur in the society in the future. 

 

2.5 Numerical simulation 

 

In this section, the model is simulated numerically. The following set of tested parameters 

is used for the simulation [Dubey et al. (2015) & (2016)]: 

 

𝐴 = 9 , 𝛽 = 0.005 , 𝛼 = 0.05, 𝜇 = 0.03 , 𝑑 = 0.005 , 𝛿 = 0.01 , 𝑎 = 0.02, 𝑏 = 0.05. 

At the above parameters values, the endemic equilibrium (𝑄∗) is calculated as 

(264.0335, 23.6191) and the eigenvalues of the matrix 𝐽𝑄∗ are calculated as 

(−0.0905,−0.0310). Hence, 𝑄∗ is stable. 

The initial values are as follow: 

𝑆(0) = 280, 𝐼(0) = 8. 

Fig. 2.1 shows the combined population of susceptible and infected individuals. It can be 

observed from the Fig.2.1 that the susceptible individuals are decreasing and infected 

individuals are increasing, and both populations approaching the endemic equilibrium. 

Fig. 2.2 and Fig. 2.3 show the infected population at different values of the transmission 

rate (𝛽) and inhibitory effect (𝛼) respectively. It can be seen from the Fig. 2.2 that the 

number of infected individuals is increasing with the increase in transmission rate and in 

Fig. 2.3 the number of infected individuals are decreasing with increment in the inhibitory 

effect. In both the figures, the infected population is initially increasing and as time 
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passes, they approach to their steady state. This steady state may be achieved due to 

treatment or inhibitory effect. 

Fig. 2.4 shows the behavior of the infected population at increased values of cure rate (𝑎). 

It can be observed from the figure that the number of infected individuals is decreasing 

with the increment in the cure rate of infected. 

Fig. 2.5 shows the total number of infected individuals at various values of 𝐼(0) (i.e. 

initially infected population). It can be seen from this figure that the infected population 

approaches to the same endemic point for all values of 𝐼(0)(i. e.  𝐼(0) = 8, 12, 15). 

Fig. 2.6 shows the difference between the infected individuals with M-H treatment rate 

and without M-H treatment rate. It can be observed from the figure that when M-H 

treatment is given to the infected population then the total number of infected individuals 

is less in comparison of the population without M-H treatment rate. 

 

Fig. 2.7 shows the phase plane (S-I plot) and the occurrence of the limit cycle. For this, 

the following set of parameters values are taken: 

 

𝐴 = 7 , 𝛽 = 0.021 , 𝛼 = 0.0002, 𝜇 = 0.002 , 𝑑 = 0.005 , 𝛿 = 0.01 , 𝑎 = 2, 𝑏 = 0.0002. 

 

2.6 Conclusions 

 

In this chapter, we have proposed a new SIR epidemic model with the incidence rate of 

infection and treatment rate of infectives both are Monod-Haldane (M-H) functional type. 

We found that the model has two equilibria which are disease-free (𝑄) and endemic (𝑄∗). 

We found that the disease-free equilibrium (DFE) is locally asymptotically stable when 

the basic reproduction number (𝑅0) is less than unity and unstable when greater than 

unity which leads to the existence of the endemic equilibrium. Further, we also 

investigated that the model exhibits a forward bifurcation at 𝑅0 = 1. The local and global 

stability of DFE (𝑄) and local stability of endemic equilibrium (𝑄∗) have been studied 

and it has been investigated that persistence or eradication of infection is uniformly 

persistent under the conditions stated in Theorem 2.5. Furthermore, we found that 

endemic equilibrium is locally asymptotically stable when the condition stated in theorem 

2.7 hold true. The non-existence of periodic solutions under the condition stated in 
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theorem 2.11 shows that the infection will not reappear in the society in the future if these 

conditions are fulfilled. We also showed that the model exhibits a Hopf bifurcation at the 

endemic equilibrium. The numerical simulations of the model showed that the newly 

infectives can be controlled in the society due to the inhibitory effect and treatment rate of 

infectives according to Monod-Haldane functional. 

 

 

Fig 2.1:  Susceptible (𝑆) and infected (𝐼) population. 

 

Fig 2.2: Infected population (𝐼) at increased values of the transmission rate (𝛽). 
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Fig 2.3: Infected population (𝐼) at increased values of inhibitory effects (𝛼). 

 

Fig 2.4: Infected population (𝐼) at increased values of cure rate (𝑎). 
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Fig 2.5: Infected population (𝐼) at various values of initially infected population 𝐼(0). 

 

Fig 2.6: Infected population (𝐼) with and without Monod-Haldane (M-H) treatment rate.  
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Fig. 2.7: S-I plot and occurrence of the limit cycle. 



 



39 
 

  CHAPTER 3 

 

A SIR EPIDEMIC MODEL WITH RATIO-DEPENDENT 

INCIDENCE AND HOLLING FUNCTIONAL TYPE II 

TREATMENT RATES 

 

 

In this chapter, a nonlinear susceptible-infected-recovered (SIR) epidemic model has been 

proposed. The infection spreads very rapidly at the time of the outbreak of the disease 

(e.g. Cholera, Pneumonic plague, and Ebola), and at some stage, there are more infectives 

than susceptibles. This condition has been modeled by taking the incidence rate of 

infection as a ratio-dependent functional and the treatment rate as Holling type II 

functional.  Two types of equilibrium points of the model have been obtained, which are 

named as disease-free equilibrium (DFE) and endemic equilibrium (EE) points. Stability 

of the model has been discussed for equilibrium points. The local stability of the model 

for DFE has been discussed by the basic reproduction number (𝑅0). The model for DFE 

is locally asymptotically stable when 𝑅0 < 1 and unstable when 𝑅0 > 1. The stability of 

the model for DFE at 𝑅0 = 1 has been examined using center manifold theory and 

showed that DFE exhibits a forward bifurcation. The local stability of the model at EE 

has also been discussed. Further, the model has been simulated numerically to explain the 

theoretical results.  
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3.1 Introduction 

 

Proper and timely treatment methodology can substantially reduce the effect of the 

disease such as Cholera, Pneumonic plague, Ebola, etc. on society. In classical epidemic 

models, the treatment rate of infected individuals is assumed to be either constant or 

proportional to the number of infected individuals. However, we know that there are 

limited treatment resources available in the community in case of outbreak of an 

unknown epidemic. Therefore, this is very important to choose a suitable treatment rate of 

a disease. In the absence of effective therapeutic treatments and vaccines, the epidemical 

control strategies are based on taking appropriate preventive measures. Since every nation 

or city has its maximal limit with regards to the treatment of an infection, Wang and Ruan 

[2004] presented an arranged treatment function which describes that the treatment rate is 

relative to the number of infectives when the limit of treatment isn't reached, and 

otherwise, takes the maximal saturated level i. e. 

𝐻(𝐼)  = {
𝑏  ,      𝐼 > 0,

        0 ,        𝐼 = 0.       
 

here 𝑏 is a positive constant and 𝐼 is the number of infected people. This appears to be 

more sensible than the usual linear function. Other than this, we realize that the 

effectiveness for treatment will be genuinely influenced if the infective people are 

postponed for treatment. To show the saturated phenomenon of the treatment discussed 

above, Zhou and Fan [2012] proposed a function 𝐻(𝐼) as given below: 

𝐻(𝐼) =
𝑎𝐼

1 + 𝑏𝐼
 , 𝐼 ≥ 0, 𝑎 > 0, 𝑏 > 0.  

where 𝑎 is the cure rate. We can see that this function is more realistic than the previous 

ones. Firstly, for small  𝐼,  𝐻(𝐼)  ∼  𝑎𝐼, whereas for large 𝐼, 𝐻(𝐼)  ∼  𝑎/𝑏. This 

characterizes the saturated phenomenon of the treatment by a continuous and 

differentiable function. Further, 1/(1 +  𝑏𝐼) describes the reverse effect of the infected 

being delayed for treatment. If  𝑏 =  0, saturated treatment function comes back to the 

direct one. The treatment rate function 𝐻(𝐼) =
𝑎𝐼

1+𝑏𝐼
 is also known as Holling type II 

treatment rate. Dubey et al. [2015] have also utilized the Holling type II treatment rate to 

propose the dynamics of a SIR model. 

 

In the dynamics of epidemics, it is well known that the form of incidence rate is an 

important factor. Arditi and Ginzburg [1989] proposed a ratio-dependent functional for a 
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low-density population of prey in prey-predator dynamics. Using the concept of this 

above important work, in the present study we introduce the incidence rate for the low 

density of susceptible individuals as a ratio-dependent functional type for disease 

dynamics. The per capita effect of infection on the susceptible population is modeled by a 

function 𝐺 which is a function of the ratio 𝑆/𝛾𝐼 of susceptible to infected. For the 

incidence rate of new infection, we incorporate the Arditi and Ginzburg type functional in 

Holling type II functional [Anderson and May (1982)] which is given below: 

𝑓(𝑆, 𝐼) = 𝐺 (
𝑆

𝛾𝐼
) 𝐼 =

𝛽𝑆𝐼

𝛼𝑆 + 𝛾𝐼
,where 𝛽, 𝛼, 𝛾 > 0, 

parameters 𝛽, 𝛼 and 𝛾 represent the transmission rate of infection, the measure of 

inhibition due to susceptible and measure of inhibition due to infected, respectively.  

 

In this chapter, a nonlinear SIR epidemic model is proposed with an incidence rate of the 

epidemic as a ratio-dependent functional type and treatment rate as Holling functional 

type II. Further, the basic properties of the model have been discussed. We also discuss 

the stability of the model at equilibrium points with the help of the basic reproduction 

number (𝑅0) and Routh-Hurwitz criterion.  

 

3.2 Mathematical model 

 

In this section, a nonlinear mathematical model for the epidemic has been proposed. For 

this, we consider the total population 𝑃(𝑡) at time 𝑡, with the immigration of susceptible 

individuals with a constant rate 𝐴. Further, the total population 𝑃(𝑡) has been divided into 

three classes (or compartments), which are named as: Susceptible class 𝑆(𝑡), infected 

class 𝐼(𝑡) and recovered class 𝑅(𝑡). It is assumed that the disease can spread due to the 

direct contact between susceptible and infective only. We also assume that the susceptible 

population is a low-density population. Let 𝜇 be the natural death rate of the population, 𝑑 

the death rate due to the disease and 𝛿 the recovery rate of infected individuals. The 

progression of an epidemic in different compartments is shown by the block diagram in 

Fig.3.1. 

 

 

 

https://en.wikipedia.org/wiki/Ratio
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𝒂𝑰(𝒕)

𝟏+𝒃𝑰(𝒕)
 

               𝑨       
𝜷𝑺(𝒕)𝑰(𝒕)

𝜶𝑺(𝒕)+𝜸𝑰(𝒕)
                                 𝜹𝑰    

 

 

     𝝁𝑺                                 (𝝁 + 𝒅)𝑰                        𝝁𝑹        

                   

Fig. 3.1: Progression of the infection from susceptible (𝑆) individuals through infected 

(𝐼) and recovered (𝑅) compartments for the model. 

 

The rate of change in each compartment is given by the following system of nonlinear 

ordinary differential equations: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑆(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡)

𝛼𝑆(𝑡)+𝛾𝐼(𝑡)
 ,                   

𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝑆(𝑡)𝐼(𝑡)

𝛼𝑆(𝑡)+𝛾𝐼(𝑡)
− (𝜇 + 𝑑 + 𝛿)𝐼(𝑡) −

𝑎𝐼(𝑡)

1+𝑏𝐼(𝑡)
  ,         (3.1) 

𝑑𝑅(𝑡)

𝑑𝑡
=

𝑎𝐼(𝑡)

1+𝑏𝐼(𝑡)
+ 𝛿𝐼(𝑡) − 𝜇𝑅(𝑡) .                   

where 𝑆(0) > 0, 𝐼(0) > 0 and 𝑅(0) > 0. 

 

The term 
𝛽𝑆(𝑡)𝐼(𝑡)

𝛼𝑆(𝑡)+𝛾𝐼(𝑡)
  in the model (3.1) represents the ratio-dependent incidence rate 

where 𝛽 is transmission rate of infection, and 𝛼 is the effect of inhibition due to the 

susceptible individuals and 𝛾 is the effect of inhibition due to the infected individuals. 

The term  
𝑎𝐼(𝑡)

1+𝑏𝐼(𝑡)
 in the model represent the Holling type II treatment rate, where 𝑎 and 𝑏 

both are non-negative constants. The constants 𝑎 and 𝑏 both are named as cure rate and 

limitation rate in the treatment availability [Dubey et al. (2015)] respectively. 

Furthermore, it is assumed that all parameters of the model are positive.  

 

From the above model (3.1), the first two equations do not depend on the third equation, 

and therefore this equation can be omitted for the analysis without loss of generality. 

Thus, it is enough to consider the following reduced system for mathematical analysis: 

𝑆(𝑡) 𝐼(𝑡) 𝑅(𝑡) 
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𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑆(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡)

𝛼𝑆(𝑡)+𝛾𝐼(𝑡)
 ,                  

𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝑆(𝑡)𝐼(𝑡)

𝛼𝑆(𝑡)+𝛾𝐼(𝑡)
− (𝜇 + 𝑑 + 𝛿)𝐼(𝑡) −

𝑎𝐼(𝑡)

1+𝑏𝐼(𝑡)
 .        (3.2) 

where 𝑆(0) > 0 and 𝐼(0) > 0 . 

 

3.3 Basic properties of the model 

 

For the above system (3.2), we find a region of attraction which is given by Lemma 3.1. 

 

Lemma 3.1: The set 𝐷 = {(𝑆, 𝐼): 0 < 𝑆 + 𝐼 ≤
𝐴 

𝜇
} is a positively invariant region for the 

disease transmission model given by the system (3.2). 

Proof: Let, the total population 𝑁(𝑡) is  

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) 

Then  

𝑑𝑁(𝑡)

𝑑𝑡
=
𝑑𝑆(𝑡)

𝑑𝑡
+
𝑑𝐼(𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑁(𝑡) − (𝑑 + 𝛿)𝐼(𝑡) −

𝑎𝐼(𝑡)

1 + 𝑏𝐼(𝑡)
≤ 𝐴 − 𝜇𝑁(𝑡) 

Then, 

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 +
𝐴

𝜇
(1 − 𝑒−𝜇𝑡) 

Thus,  

Lim
𝑡→∞

𝑠𝑢𝑝  𝑁(𝑡) ≤
𝐴

𝜇
. 

Furthermore, 
𝑑𝑁(𝑡)

𝑑𝑡
< 0 if 𝑁(𝑡) > 0. This shows that all solutions of the system (3.2) 

approach the region 𝐷 defined in Lemma 3.1 above. Hence, the region 𝐷 is positively 

invariant and solutions of the system (3.1) are bounded. 

 

The above Lemma 3.1 shows that all solutions of the model are non-negative and 

bounded. Thus, the system (3.2) is well-posed mathematically and epidemiologically. 



44 
 

3.4 Equilibria and their stability analysis 

 

In this section, we analyze the system (3.2) by finding its equilibria and stability analysis. 

We observe that the model has two equilibrium points which are obtained by setting 

right-hand side of equations of the system (3.2) to zero, given as:  

i. Disease-free equilibrium (DFE) point 𝑄(
𝐴

𝜇
, 0). 

ii. Endemic equilibrium (EE) point 𝑄∗(𝑆∗, 𝐼∗). 

 

3.4.1 Computation of the basic reproduction number (𝑹𝟎) 

 

In this section, we compute the basic reproduction number 𝑅0 for disease free 

equilibrium 𝑄. The characteristic equation at 𝑄 (
𝐴

𝜇
, 0) of the system (3.2) is given by  

                  (𝜇 + 𝜆) (
𝛽

𝛼
 − 𝜇 − 𝑑 − 𝛿 − 𝑎 − 𝜆) = 0                               (3.3) 

 

One of the roots of Eq. (3.3) is given by 𝜆1 = −𝜇 and the other root is given by 𝜆2 =

(𝜇 + 𝑑 + 𝛿 + 𝑎)( 𝑅0 − 1). 

where 

𝑅0 =
𝛽

𝛼(𝜇 + 𝑑 + 𝛿 + 𝑎)
  

 Clearly, if 𝑅0 < 1, then 𝜆2 is negative. Therefore, we can state the following theorem 

indicating the stability of disease-free equilibrium 𝑄.  

 

Theorem 3.1: The DFE 𝑄 (
𝐴

𝜇
, 0) is locally asymptotically stable if basic reproduction 

number 𝑅0 is less than one and unstable if 𝑅0 is greater than one.  

 

3.4.2  Analysis at 𝑹𝟎 = 𝟏 

 

In this section, we analyze the behavior of the system (3.2) when the basic reproduction 

number equals one.  
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Let us redefine  𝑆 = 𝑥1 and 𝐼 = 𝑥2 then the system (3.2) can be rewritten as 

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑥1(𝑡) −

𝛽𝑥1(𝑡)𝑥2(𝑡)

𝛼𝑥1(𝑡)+𝛾𝑥2(𝑡)
≡ 𝑓1 ,                 

𝑑𝑥2(𝑡)

𝑑𝑡
=

𝛽𝑥1(𝑡)𝑥2(𝑡)

𝛼𝑥1(𝑡)+𝛾𝑥2(𝑡)
− (𝜇 + 𝑑 + 𝛿)𝑥2(𝑡) −

𝑎𝑥2(𝑡)

1+𝑏𝑥2(𝑡)
≡ 𝑓2.         (3.4) 

 

The linearization matrix of the system (3.2) at 𝑄 (
𝐴

𝜇
, 0) and bifurcation parameter 𝛽 =

𝛽∗ = 𝛼(𝜇 + 𝑑 + 𝛿 + 𝑎) is given by 

𝐽 = (
−𝜇 −

𝛽∗

𝛼

0           
𝛽∗

𝛼
 − 𝜇 − 𝑑 − 𝛿 − 𝑎

) 

 

The matrix  𝐽 has a simple zero eigenvalue at 𝑅0 = 1 and other eigenvalue of the matrix 

has a negative real part. At this stage, the linearization technique fails to capture the 

behavior of the system (3.4) [Dubey et al. (2016)]. Therefore, we applied the center 

manifold theory to study the behavior of the equilibrium. Then, from theorem 4.1 of 

[Chavez and Song (2004)], the bifurcation constants 𝑎1 and 𝑏1 are given by 

𝑎1 = ∑ 𝑢𝑘𝑤𝑖𝑤𝑗

2

𝑘,𝑖,𝑗=1

(
𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

)
𝑄

, 

and  

𝑏1 = ∑ 𝑢𝑘𝑤𝑖

2

𝑘,𝑖=1

(
𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝛽∗

)
𝑄

 

where 𝑤 = (𝑤1, 𝑤2)
𝑇 and 𝑢 = (𝑢1, 𝑢2) are the right eigenvector and left eigenvector of 

the matrix 𝐽 corresponding to the zero eigenvalue respectively. Then we have 

𝑢1 = 0, 𝑢2 = 1 and 𝑤1 = −
𝛽∗

𝛼𝜇
, 𝑤2 = 1 

 

The non-zero partial derivatives associated with the functions of the system (3.4) 

evaluated at  𝑅0 = 1 and  𝛽 = 𝛽∗ are  

  (
𝜕2𝑓2

𝜕𝑥22
)
𝑄
= −

2𝜇𝛽∗𝛾

𝛼2𝐴
 and (

𝜕2𝑓2

𝜕𝑥2𝜕𝛽∗
)
𝑄
=
1

𝛼
. 

Therefore, 

𝑎1 = 𝑢2 (2𝑤1𝑤2. 0 + 𝑤2
2. (−

2𝜇𝛽∗𝛾

𝛼2𝐴
) + 𝑤1

2. 0) 
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= −
2𝜇𝛽∗𝛾

𝛼2𝐴
< 0, 

and 

𝑏1 = 𝑢2 (𝑤2.
1

𝛼
) 

=
1

𝛼
> 0. 

It can be seen that 𝑎1 is negative and 𝑏1 is positive. Hence, by theorem 4.1 [Chavez and 

Song (2004)], we state the following theorem: 

 

Theorem 3.2: DFE 𝑄 (
𝐴

𝜇
, 0)changes its stability from stable to unstable at 𝑅0 = 1 and 

there exists a positive equilibrium as 𝑅0 crosses one. Hence, the system (3.2) undergoes a 

forward bifurcation with bifurcation parameter 𝛽 = 𝛽∗ = 𝛼(𝜇 + 𝑑 + 𝛿 + 𝑎) at 𝑅0 = 1. 

 

3.4.3 Existence of endemic equilibrium (EE) 

 

To find the conditions for the existence of equilibrium  𝑄∗(𝑆∗, 𝐼∗) for which the disease is 

endemic in the population, the system (3.2) is rearranged to get 𝑆∗ and 𝐼∗ which gives: 

𝑆∗ =
((𝜇 + 𝑑 + 𝛿 + 𝑎) + 𝑏(𝜇 + 𝑑 + 𝛿)𝐼∗)𝛾𝐼∗

(𝑅0 − 1)(𝛼(𝜇 + 𝑑 + 𝛿 + 𝑎) + 𝛼𝑏𝐼∗) + 𝑎𝛼𝑏𝐼∗
 

and  𝐼∗ is given by the equation 

                                            𝐶1𝐼
∗3 + 𝐶2𝐼

∗2 + 𝐶3𝐼
∗ + 𝐶4 = 0                                          (3.5) 

where, 

𝐶1 = 𝑏
2(𝜇 + 𝑑 + 𝛿)(𝛼(𝜇 + 𝑑 + 𝛿 + 𝑎)(𝑅0 − 1) + (𝑎𝛼 + 𝛾𝜇)),  

𝐶2 = −𝐴𝑏
2𝛽 + 𝑎𝑏(2𝑎𝛼 + 𝛾𝜇 − 𝛽) + 2𝑏(𝑅0 − 1)(𝑎𝛼(𝜇 + 𝑑 + 𝛿 + 𝑎) + (𝜇 + 𝑑 +

𝛿)) + 𝐴𝑏2𝛼(𝜇 + 𝑑 + 𝛿) + 2𝑏(𝜇 + 𝑑 + 𝛿)(𝑎𝛼 + 𝛾𝜇),  

𝐶3 = −𝑎
2𝛼 + 𝑎(𝐴𝑏𝛼 − 2𝑑𝛼 + 𝛽 − 2𝛼𝛿 − 2𝛼𝜇 + 𝛾𝜇) + 𝛾𝜇(𝑑 + 𝛿 + 𝜇) + (𝑑 + 𝛿 + 𝜇 −

2𝐴𝑏)𝛼(𝑑 + 𝛿 + 𝜇 + 𝑎)(𝑅0 − 1) + 𝑎𝛼(𝑑 + 𝛿 + 𝜇 − 2𝐴𝑏),  

 𝐶4 = −𝐴𝛼(𝑎 + 𝑑 + 𝛿 + 𝜇)(𝑅0 − 1).  

 

Using the Descartes’ rule of signs [Wang (2004)], if any of the following conditions are 

satisfied for 𝑅0 > 1, then Eq. (3.5) admits a unique positive real value of 𝐼∗: 

i. 𝐶1 > 0, 𝐶2 > 0, 𝐶3 > 0, and 𝐶4 < 0 . 
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ii. 𝐶1 > 0, 𝐶2 > 0, 𝐶3 < 0, and 𝐶4 < 0 . 

iii. 𝐶1 > 0, 𝐶2 < 0, 𝐶3 < 0, and 𝐶4 < 0 . 

 

Remark: For 𝑅0 > 1, 𝐶1 > 0, and 𝐶4 < 0, it is also possible to have 𝐶2 < 0 and 𝐶3 >

0. In this case, Eq. (3.5) admits three positive real value of 𝐼∗. In the above conditions, we 

have considered the case of unique endemic equilibrium only.  

 

After getting  𝐼∗, we can obtain  𝑆∗. It implies the existence of a unique 

positive  𝑄∗(𝑆∗, 𝐼∗) if one of the above conditions holds true. Hence, we state the 

following theorem: 

 

Theorem 3.3: If 𝑅0 > 1, the system (3.2) has a unique endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗). 

 

Now, we show the uniform persistence of the system (3.2). Let 𝐷1 be the interior of 𝐷 

and 𝜕𝐷 denotes the boundary of 𝐷. Epidemiologically, persistence implies that the 

subpopulation exists always and will not lead to elimination if initially, they exist. For 

this, we propose the following theorem: 

 

Theorem 3.4: If 𝑅0 > 1, the system (3.2) is uniformly persistent, which means that 

there exists a positive constant K such that every solution (𝑆, 𝐼) of the system (3.2) with 

the initial data (𝑆(0), 𝐼(0)) ∈ 𝐷1 satisfies 

𝐿𝑖𝑚
𝑡→∞

𝑖𝑛𝑓 𝑆(𝑡) ≥ 𝐾, 𝐿𝑖𝑚
𝑡→∞

𝑖𝑛𝑓 𝐼(𝑡) ≥ 𝐾, 

where 𝐾 is independent of initial data in 𝐷1. 

Proof: The proof of this theorem is similar to the proof of theorem 2.5 as discussed in 

Chapter 2. Hence, we omitted.  

 

The uniform persistence, along with the boundedness of 𝐷, is equivalent to the existence 

of a compact set in the interior of 𝐷 which is absorbing for the system (3.2) [Hutson and 

Schmit (1992)]. So, the following theorem is stated: 

 

Theorem 3.5: If 𝑅0 > 1, then there exists a compact absorbing set 𝐵 ⊂ 𝐷1. 
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Next, the local stability of  𝑄∗(𝑆∗, 𝐼∗) will be discussed. 

 

3.4.4  Stability of endemic equilibrium 

 

The local stability of  𝑄∗(𝑆∗, 𝐼∗) is explored as follow: 

 

The variational matrix corresponding to 𝑄∗(𝑆∗, 𝐼∗) of the system (3.2) is given by 

𝐽𝑄∗ =

(

 
 
−𝜇 −

𝛽𝛾𝐼∗2

(𝛼𝑆∗ + 𝛾𝐼∗)2
−

𝛽𝛼𝑆∗2

(𝛼𝑆∗ + 𝛾𝐼∗)2

𝛽𝛾𝐼∗2

(𝛼𝑆∗ + 𝛾𝐼∗)2
𝛽𝛼𝑆∗2

(𝛼𝑆∗ + 𝛾𝐼∗)2
− (𝜇 + 𝑑 + 𝛿) −

𝑎

(1 + 𝑏𝐼∗)2)

 
 

 

 

The characteristic equation of the variational matrix  𝐽𝑄∗ is given by the following 

equation 

𝜏2 + 𝜖1𝜏 + 𝜖2 = 0              (3.6) 

where 

𝜖1 = (−
𝛽𝛼𝑆∗

2

(𝛼𝑆∗+𝛾𝐼∗)2
+

𝛽𝛾𝐼∗
2

(𝛼𝑆∗+𝛾𝐼∗)2
+ (2𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2
) ,   

 𝜖2 = ((𝜇 +
𝛽𝛾𝐼∗

2

(𝛼𝑆∗+𝛾𝐼∗)2
) ((𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2
) −

𝜇𝛽𝛼𝑆∗
2

(𝛼𝑆∗+𝛾𝐼∗)2
).  

Clearly, the eigenvalues of the variational matrix 𝐽𝑄∗ have the negative real part if and 

only if 𝜖1 > 0 and 𝜖2 > 0. Thus, the results are stated in the form of theorems given 

below: 

 

Theorem 3.6: The endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗) is locally asymptotically stable if 

the following inequalities hold true simultaneously 

𝛽𝛼𝑆∗
2

(𝛼𝑆∗+𝛾𝐼∗)2
< 𝑀1                                               (3.7) 

𝜇𝛽𝛼𝑆∗
2

(𝛼𝑆∗+𝛾𝐼∗)2
< 𝑀2                                                     (3.8) 

where 
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𝑀1 = (
𝛽𝛾𝐼∗

2

(𝛼𝑆∗+𝛾𝐼∗)2
+ (2𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2
),  

𝑀2 = ((𝜇 +
𝛽𝛾𝐼∗

2

(𝛼𝑆∗+𝛾𝐼∗)2
) ((𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2
)).       

 

Theorem 3.7:  The endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗), whenever exists, is a saddle point 

if the inequality (3.7) and the following inequality hold true 

𝜇𝛽𝛼𝑆∗
2

(𝛼𝑆∗+𝛾𝐼∗)2
> 𝑀2                              (3.9) 

 

Theorem 3.8: The endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗), whenever exists is unstable if the 

inequality (3.8) and the following inequality hold true 

𝛽𝛼𝑆∗
2

(𝛼𝑆∗+𝛾𝐼∗)2
> 𝑀1                                                 (3.10) 

 

Theorem 3.9: The system (3.2) exhibits the Hopf bifurcation near endemic 

equilibrium 𝑄∗(𝑆∗, 𝐼∗)  if the inequality (3.8) and following equality hold true 

𝛽𝛼𝑆∗
2

(𝛼𝑆∗+𝛾𝐼∗)2
= 𝑀1      (3.11) 

Proof: Equality (3.11) implies that 𝜖1 = 0 in Eq. (3.6) and inequality (3.8) implies 

that 𝜖2 > 0. Thus, Eq. (3.6) has purely imaginary roots. From the theorem 3.6 and 

theorem 3.8, it follows that 𝑄∗(𝑆∗, 𝐼∗) changes its behavior from stable to instability as 𝛽 

passes through the critical value  𝛽 = 𝛽∗ [Dubey et al. (2016)], where 

𝛽∗ = (2𝜇 + 𝑑 + 𝛿 +
𝑎

(1 + 𝑏𝐼∗)2
) (
(𝛼𝑆∗ + 𝛾𝐼∗)2

𝛼𝑆∗2 − 𝛾𝐼∗2
) 

Again, we have 

𝑑

𝑑𝛽
[𝑡𝑟 (𝐽𝑄∗)]𝛽=𝛽∗ =

𝛼𝑆∗2 − 𝛾𝐼∗2

(𝛼𝑆∗ + 𝛾𝐼∗)2
=
1

𝛽∗
(2𝜇 + 𝑑 + 𝛿 +

𝑎

(1 + 𝑏𝐼∗)2
) ≠ 0. 

Hence, the system (3.2) shows a Hopf bifurcation around (𝑆∗, 𝐼∗) when 𝛽 = 𝛽∗. 

 

Theorem 3.10: If  𝑆 ≤
𝛾

𝛼𝑏
, then the system (3.2) does not admit any periodic solution 

in the interior of the positive quadrant of the S – I plane. 
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Proof: We define a real-valued function in the interior of the S-I plane as follows: 

𝐺(𝑆, 𝐼) =
𝛼𝑆 + 𝛾𝐼

𝑆𝐼
 

Let us consider 

𝑔1(𝑆, 𝐼) = 𝐴 − 𝜇𝑆 −
𝛽𝑆𝐼

𝛼𝑆 + 𝛾𝐼
 , 

𝑔2(𝑆, 𝐼) =
𝛽𝑆𝐼

𝛼𝑆 + 𝛾𝐼
− (𝜇 + 𝑑 + 𝛿)𝐼 −

𝑎𝐼

1 + 𝑏𝐼
 

Then we have  

𝑑𝑖𝑣 (𝐺𝑔1, 𝐺𝑔2) =
𝜕

𝜕𝑆
(𝐺𝑔1) +

𝜕

𝜕𝐼
(𝐺𝑔2) 

= −
𝐴𝛾

𝑆2
−
𝜇𝛼

𝐼
−
(𝜇 + 𝑑 + 𝛿)𝛾

𝑆
−
𝑎

𝑆
(
𝛾 − 𝛼𝑏𝑆

(1 + 𝑏𝐼)2
) 

Clearly, it can be seen that the above expression can never be equal to zero and also, the 

sign of this expression will not be changed in the positive quadrant of the 𝑆 − 𝐼 plane, if 

the condition 𝑆 ≤
𝛾

𝛼𝑏
 holds true. Then, by Dulac’s criterion [Sastry (1999)], it can be said 

that the system (3.2) does not have any periodic solution in the interior of the positive 

quadrant of the S-I plane. Epidemiologically, this theorem implies that if the given 

condition holds true, then the disease will not reappear in the society. 

 

Since the set  𝐷 defined in the Lemma 3.1 is a positively invariant set, then the following 

theorem is a direct result of the Poincare-Bendixon theorem [Sastry (1999)] showing the 

existence of a limit cycle in the interior of the positive quadrant of the S – I plane. 

 

Theorem 3.11: If either inequalities (3.8) and (3.10) or (3.9) are satisfied, then the 

system (3.2) has at least one limit cycle in the interior of the positive quadrant of the S-I 

plane. 

 

Epidemiologically, the above theorem implies that if the positive equilibrium  𝑄∗(𝑆∗, 𝐼∗) 

is a saddle point or unstable then disease may reoccur in the society in the future. 
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3.5 Numerical simulation 

 

In this section, numerical simulation of the system (3.2) is performed. The following set 

of numerically experimental values of the parameters is taken for the simulation [Dubey 

et al. (2015) & (2016); Goel and Nilam (2019)]: 

 

A = 9, 𝛼 = 0.05, 𝛽 =  0.005, 𝜇 = 0.03, 𝑑 =  0.01, 𝛾 =  0.05, 𝑎 = 0.01, 𝑏 =  0.005, 𝛿 =

 0.005. 

 

At the above parameters values, the endemic equilibrium (𝑄∗) is calculated as 

(114.6418, 107.9844) and the eigenvalues of the matrix 𝐽𝑄∗ are calculated as 

(−0.0381147 ± 0.0196544 𝑖). Hence, 𝑄∗ is stable. 

Initial values are taken as  

𝑆(0) = 255, 𝐼(0) = 17 

Fig. 3.2 shows the changes in susceptible and infected individuals with time. From Fig. 

3.2 it can be seen that both susceptible and infected population are approaching to 

endemic equilibrium (𝑄∗) with the passage of time. 

 

Fig. 3.3 shows the variation in the infected population at numerous values of initially 

infected 𝐼(0). Clearly, it can be observed from the Fig. 3.3 that for all values of 𝐼(0) 

infected population is approaching to same steady state.  

 

Figs. 3.4, 3.5 and 3.6 demonstrate the infected population at numerous values of the 

transmission rate( 𝛽), measures of inhibition (𝛼) taken by susceptibles, and measures of 

inhibition (𝛾) taken by infectives respectively. It is clear from the Figs 3.5 and 3.6 that 

the number of infected individuals is increasing when (𝛼) and (𝛾) are decreasing and 

Fig. 3.4 demonstrates that the number of infected individuals is increasing when 𝛽 is 

increasing.  

 

Figs. 3.7 and 3.8 exhibit the changes in infected populations at various values of cure rate 

(𝑎) and limitation rate (𝑏) in treatment availability respectively. It can be seen form the 
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figures that the number of infected are decreasing with increment in cure rate while they 

are decreasing with the increment in limitation rate in treatment availability. 

 

Fig. 3.9 indicates the difference in the total number of infected individuals between with 

and without Holling type II treatment rate. Clearly, it can be seen that when Holling type 

II treatment is given to the infected population then the number of newly infected become 

less while the number of newly infected individuals is higher when no Holling type II 

treatment given to infectives. Hence, it can be concluded that Holling type II treatment 

plays a vital role to control the infection. 

 

Fig. 3.10 shows the phase plane (S-I plot) and the occurrence of the limit cycle. For this, 

the following set of tested parameters values are taken: 

 

𝐴 = 7 , 𝛽 = 0.064 , 𝛼 = 0.0613, 𝛾 = 024, 𝜇 = 0.002 , 𝑑 = 0.005 , 𝛿 = 0.01 , 𝑎 = 1, 𝑏 =

0.0002.  

 

3.6 Conclusions 

 

In this chapter, we contributed to the nonlinear dynamics of the epidemics by proposing a 

mathematical SIR epidemic model with a nonlinear incidence rate as the ratio-dependent 

functional type for the low density of susceptibles and treatment rate as Holling 

functional type II. Equilibria are obtained for the model, which are called disease-free and 

endemic. We investigated the stability of model equilibria and found that disease-free 

equilibrium (DFE) is locally asymptotically stable when the basic reproduction number is 

less than unity and unstable when greater than unity. We also investigated that model 

undergoes a transcritical forward bifurcation with bifurcation parameter 𝛽∗ for DFE 

at 𝑅0 = 1. Further, we investigated that endemic equilibrium (EE) is locally 

asymptotically stable when the conditions in theorem 3.6 hold true and unstable when the 

conditions stated in theorem 3.8 hold true. Furthermore, we showed that the model 

exhibits the Hopf bifurcation near to EE. Non-existence of periodic solutions under the 

condition stated in theorem 3.10 shows that the infection will not reappear in the society 

in the future if the mentioned conditions are fulfilled. Numerical simulations showed that 
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infection can be controlled in the society if the treatment is given to the infected 

accordingly managed by Holling type II treatment. 

 

 

Fig. 3.2: Susceptible (𝑆) and infected (𝐼) population. 

 

Fig 3.3: Infected population (𝐼) at various values of initially infected population 𝐼(0). 



54 
 

 

Fig. 3.4: Variation in the infected population (𝐼) at various values of the transmission 

rate (𝛽). 

 

Fig. 3.5: Variation in the infected population (𝐼) at various values of measure of 

inhibition (𝛼) due to the susceptibles. 
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Fig. 3.6: Variation in the infected population (𝐼) at various values of measure of 

inhibition (𝛾) due to the infectives. 

 

Fig. 3.7: Variation in the infected population (𝐼) at various values of cure rate (𝑎). 
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Fig. 3.8: Variation in the infected population (𝐼) at various values of limitation rate (𝑏) 

in treatment availability. 

 

Fig. 3.9: Infected population (𝐼) with and without Holling type II treatment rate. 
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Fig. 3.10: S-I plot and occurrence of the limit cycle. 
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CHAPTER 4 

 

TIME-DELAYED SIR EPIDEMIC MODEL WITH 

HOLLING FUNCTIONAL TYPE II INCIDENCE RATE 

AND DIFFERENT TREATMENT RATES 

 

 

In this chapter, a SIR model has been studied for the transmission and control of an 

epidemic. The incidence rate of susceptible becoming infectious is extremely crucial in 

the spread of disease. The time delay in infectives in the incidence rate is also crucial. A 

susceptible-infected-recovered (SIR) mathematical model, with time delay as the 

incubation period of the disease, is proposed for the disease transmission dynamics. We 

have taken the incidence rate of new infection as Holling functional type II along with 

two different nonlinear treatment rates (Holling functional type II & III) for 

understanding the dynamics of the epidemic. The model stability has been analyzed in 

terms of the basic reproduction number. Mathematical analysis of the model demonstrates 

that disease-free equilibrium (DFE) is locally asymptotically stable when the basic 

reproduction number is less than unity. We have explored the stability of the model for 

disease-free equilibrium when the basic reproduction number equals to unity by center 

manifold theory. We likewise examined some stability conditions for endemic 

equilibrium (EE).  Further, numerical simulations of the model have been carried out to 

support theoretical results. 
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4.1 Introduction 

 

The structure of deterministic mathematical models for observing and controlling the 

spread of various human diseases is of public health interest in the light of the fact that 

the mathematics helps to formulate effective mechanisms for controlling their spread. 

After the first compartmental model given by Kermack and Mckendrick [1927], various 

mathematical models involving some complex assumptions [Michael et al. (1999); Wang 

(2002); Wang and Ruan (2004); Korobeinikov and Maini (2004); Gumel et al. (2006); 

Xiao and Ruan (2007); Naresh et al. (2009); Xu and Ma (2009b); Huang et al. (2010a); 

Zhang and Yaohong (2010); Buonomo and Lacitignola (2011); Hattaf et al. (2012); Zhou 

and Fan (2012); Hattaf and Yousfi (2013); Dubey et al. (2013), (2015) & (2016); Cui et 

al. (2017); Li and Zhang (2017); Goel and Nilam (2019)] have been proposed and 

considered, for instance, SIR, SIS, SEIR, and SEIRS models. In recent times, 

considerable attention has been paid to study the dynamics of epidemic models with 

epidemiologically meaningful time delays. In the context of disease transmission, delays 

can be caused by a variety of factors. The most well-known reasons for the delay are 

(𝑖) the latency of the infection in a vector and (𝑖𝑖) the latency of the infection in an 

infected host [Huang et al. (2010a) & (2010b); Li and Liu (2014)]. In these cases, some 

time should elapse before the level of infection in the infected host or the vector is 

sufficiently high to transmit the infection further. 

 

It is well known that disease transmission progress plays a vital role in epidemic 

dynamics; that is, different incidence rates can potentially change the behavior of the 

system. In many epidemic models, numerous incidence functions with or without delay 

are widely used in different epidemiological backgrounds [Li and Liu (2014)]. The 

incidence rate can also be modeled by many other kinds of more general functions. It is 

interesting whether the functional form of the incidence rate can change the epidemic 

dynamics or not. Liu et al. [1987] suggested a nonlinear saturated incidence function 

𝛽𝑆𝐼𝑙/(1 + 𝛼𝐼ℎ) to model the impact of behavioral changes in particular communicable 

diseases, where 𝛽𝑆𝐼𝑙 describes the infection force of the disease, 1/(1 + 𝛼𝐼ℎ) measures 

the inhibition effect from the behavioral change of the susceptible people when the 

number of infectious people increases; 𝑙, ℎ and 𝛽 are all positive constants, and 𝛼 is a 

nonnegative constant. The case 𝑙 = ℎ = 1, i.e. the incidence function becomes  𝛽𝑆𝐼/(1 +
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𝛼𝐼), was used by Capasso and Serio [1978] to represent a ‘‘protection measure’’ in 

modeling the cholera epidemics in Bari in 1973. 

 

In classical epidemic models, the treatment rate of infected individuals is assumed to be 

either constant or proportional to the number of infected individuals. However, we know 

that there are limited treatment resources available in the community. Therefore, this is 

very important to choose a suitable treatment rate for a disease. Zhou and Fan [2012] 

proposed an epidemic model with following treatment rate (Holling type II): 

𝐻(𝐼) =
𝑎𝐼

1 + 𝑏𝐼
 , 𝐼 ≥ 0, 𝑎 > 0, 𝑏 > 0.  

They have shown that with varying amount of medical resources and their supply 

efficiency, the target model admits various bifurcations. The detail explanations of the 

Holling type II treatment rate is already given in section 3.1. Further, to contribute more 

in the study of nonlinear treatment, we incorporate the Holling type III [Dubey et al. 

(2013) & (2016)] treatment rate, which characterizes the case in which removal rate is 

initially fast with increment in infectives and then it grows slowly and finally settles to a 

saturated value. Any subsequent expansion in infectives won’t influence the removal 

/recovery rate. This case relates to a known disease which has re-emergence and available 

treatment methods. The following functional form is known as Holling functional type III 

treatment rate: 

𝐻(𝐼) =
𝑎𝐼2

1 + 𝑏𝐼2
, 𝑎, 𝑏, 𝐼 > 0. 

 

In this chapter, we propose and analyze a mathematical susceptible-infected-recovered 

model to gain a better understanding of transmission and subsequent control of the spread 

of infectious/communicable disease via a combination of nonlinear saturated incidence 

and different treatment rates. We incorporate time delay in incidence rate as the 

incubation period of the disease. We show the positivity and boundedness of the solution 

of the model. Further, we find the equilibrium points of the model and discuss the local 

and global stability of the equilibria. For the combination of Holling type II incidence and 

treatment rates, we explore only local stability of equilibria and for the combination of 

Holling type II incidence and Holling type III treatment rates, we explore the local as well 

as global stability of the equilibria. The stability of equilibria is discussed by using the 

basic reproduction number [Driessche and Watmogh (2002)], Routh-Hurwitz criterion, 



62 
 

and Lyapunov functional. Moreover, bifurcation analysis is also discussed. Our goal is to 

study the effect of nonlinear incidence along with time delay and Holling type II & III 

treatment rates, on the transmission dynamics of the infectious disease in the human 

population.  

 

4.2 Mathematical model 

 

In this section, an epidemic transmission model is being proposed. For this, it is assumed 

that the total population at time 𝑡 is  𝑁(𝑡), which we divide into three compartments: 

susceptible individuals compartment  𝑆(𝑡), infected individuals compartment 𝐼(𝑡) and 

recovered individuals compartment 𝑅(𝑡). The definitions of susceptible, infected and 

recovered people have already been given in section 1.5. Further, it is assumed that 

infected people are being treated for the recovery with Holling type treatment rates. 

Furthermore, the susceptible population is recruited at a constant rate 𝐴. The natural death 

rate is supposed to be the same for all the individuals and is represented by 𝜇. The contact 

capable of leading the infection in the human population is assumed as a rate 𝛽 

(transmission rate of infection). The protection measures (psychological or inhibitory 

effect) are considered at a rate 𝛼. The infected people also die due to disease related death 

at a rate 𝑑 (disease-induced mortality). The rate of cure of infectious is 𝑎 and limitation 

rate in the treatment of infected is 𝑏. The rate of recovery from the infection is  𝛾. The 

progression of an epidemic in a different compartment is shown by the block diagram in 

Fig. 4.1 below: 

  

                                                                               𝑯(𝑰) 

              𝑨     
𝜷𝑺𝑰(𝒕−𝝉)

𝟏+𝜶𝑰(𝒕−𝝉)
                    𝜸𝑰    

 

     𝝁𝑺                     (𝝁 + 𝒅)𝑰                   𝝁𝑹        

Fig. 4.1: Transfer diagram of the infection through various compartments. 

 

These assumptions lead to the following nonlinear system of the delay differential 

equations to describe the changes in 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡) with respect to time 𝑡: 

𝑆(𝑡) 𝐼(𝑡) 𝑅(𝑡) 
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𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑆(𝑡) −

𝛽𝑆𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
,  

𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
− (𝜇 + 𝑑 + 𝛾)𝐼(𝑡) − 𝐻(𝐼(𝑡)),                  (4.1) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝐻(𝐼(𝑡)) + 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡).  

where 𝜏 > 0 is a fixed time during which the infectious agents develop in the vector and 

it is only after that time that the infected vector can infect a susceptible person. 

The initial conditions of (4.1) are given by 

𝑆(𝜃) = 𝜑1(𝜃), 𝐼(𝜃) = 𝜑2(𝜃), 𝑅(𝜃) = 𝜑3(𝜃),   𝜑𝑖(𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0], 𝜑𝑖(0) > 0 (𝑖 =

1,2,3)                       (4.1.1) 

 

where (𝜑1(𝜃), 𝜑2(𝜃), 𝜑3(𝜃)) ∈ 𝐶([−𝜏, 0], ℝ+
3 ). Here 𝐶 denotes the Banach space of 

continuous functions mapping the interval [−𝜏, 0] into ℝ+
3 . 

 

The term  𝐻(𝐼(𝑡)) is denoting the nonlinear saturated treatment rate. 𝐻(𝐼(𝑡)) is taken in 

following two form: 

i. 𝐻1(𝐼(𝑡)) =
𝑎 𝐼(𝑡)

(1+𝑏 𝐼(𝑡))
  (Holling type II treatment rate). 

ii. 𝐻2(𝐼(𝑡)) =
𝑎 𝐼2(𝑡)

(1+𝑏 𝐼2(𝑡))
 (Holling type III treatment rate). 

 

The incidence rate  
𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
 represents the rate at the time (𝑡 − 𝜏) at which susceptible 

individuals leave the susceptible class and enter in the infectious class at time t. 

 

4.3 Basic properties of the model 

 

For ecological regions, it is assumed that all parameters 𝐴, 𝜇, 𝛽, 𝑑, 𝛾, 𝑎, 𝑏 are positive and 

state variables of the model (4.1) are nonnegative i.e. (𝑆, 𝐼, 𝑅) ∈ ℝ+
3 . This can be seen as 

follows: 

 

Theorem 4.1: The set 𝐷 = {(𝑆, 𝐼, 𝑅) ∈ ℝ+
3 : 0 < 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) ≤

𝐴

𝜇
} is a 

positively invariant and attracting region for the model (4.1.) 
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Proof:  We assume that the state variables and parameters of the model are non-

negative.  Since the right-hand side of the model (4.1) is continuous and differentiable, 

therefore the model is well-posed for  𝑁(𝑡)  >  0. The invariant region for the existence 

of the solutions is obtained as follows:  

𝑑[𝑆(𝑡)+𝐼(𝑡)+𝑅(𝑡)]

𝑑𝑡
=

𝑑𝑁(𝑡)

𝑑𝑡
≤ 𝐴 − 𝜇 𝑁(𝑡)                  (4.2) 

⇒ 0 < 𝑙𝑖𝑚 𝑖𝑛𝑓 𝑁(𝑡)  ≤  𝑙𝑖𝑚 𝑠𝑢𝑝 𝑁(𝑡)  ≤
𝐴

𝜇
  (𝑎𝑠 𝑡 →  ∞).          (4.3) 

Since 𝑁(𝑡) > 0 on [−𝜏 , 0], by assumption 𝑁(𝑡) >  0 for all 𝑡 ≥  0. Therefore, from Eq. 

(4.2) above, 𝑁(𝑡) can’t approach to infinity in finite time. The model system is dissipative 

and therefore, the solution exists globally for all 𝑡 >  0 in the invariant and compact 

set  𝐷 =   {(𝑆, 𝐼, 𝑅) ∈  ℝ+
3 : 𝑆(𝑡) +  𝐼(𝑡) +  𝑅(𝑡) =  𝑁(𝑡) ≤

𝐴

𝜇
} . As 𝑁 → 0, 𝑆(𝑡), 𝐼(𝑡) 

and 𝑅(𝑡) also tend to zero. Hence, each of these terms tends to zero as 𝑁(𝑡) does. It is 

therefore natural to interpret these terms as zero when 𝑁(𝑡)  =  0. 

 

Without loss of generality, for mathematical analysis of the above system (4.1) we 

consider the following reduced framework (system): 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑆(𝑡) −

𝛽𝑆𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
,  

𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
− (𝜇 + 𝑑 + 𝛾)𝐼(𝑡) − 𝐻(𝐼(𝑡)),          (4.4) 

with initial conditions  

𝑆(𝜃) = 𝜑1(𝜃), 𝐼(𝜃) = 𝜑2(𝜃), 𝜑𝑖(𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0], 𝜑𝑖(0) > 0 (𝑖 = 1,2)             (4.4.1) 

where (𝜑1(𝜃), 𝜑2(𝜃), ) ∈ 𝐶([−𝜏, 0], ℝ+
2 ). Here 𝐶 denotes the Banach space of continuous 

functions mapping the interval [−𝜏, 0] into ℝ+
2 .  

 

Theorem 4.2: All state variables (𝑆(𝑡), 𝐼(𝑡)) of the system (4.4) with the initial 

condition (4.4.1) are nonnegative. 

Proof: First we show that  𝑆(𝑡) is nonnegative for all  𝑡 ≥ 0. On the contrary, it is 

assumed that there exist 𝑡1 > 0 be the first time such that  𝑆(𝑡1) = 0, then by the first 

equation of the system (4.4) we have  𝑆′(𝑡1) = 𝐴 > 0, and hence 𝑆(𝑡) < 0 for  𝑡 ∈ (𝑡1 −
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휀, 𝑡1), where 휀 > 0 is sufficiently small. This contradicts 𝑆(𝑡) > 0 for  𝑡 ∈ [0, 𝑡1). It 

follows that 𝑆(𝑡) > 0 for  𝑡 > 0. Now, we prove that positivity of solution  𝐼(𝑡). 

Integrating the second equation of the system (4.4) from 0 to 𝑡 for  0 < 𝑡 ≤ 𝜏, by applying 

the variation of constant formula and the step by step integration method, we obtain: 

𝐼(𝑡) = 𝐼(0)𝑒−(𝜇+𝑑+𝛾)𝑡.𝑒∫ 𝐹(𝑆(𝛿),𝐼(𝛿−𝜏),𝐼(𝛿))
𝑡

0  𝑑𝛿  

here,        𝐹(𝑆(𝛿), 𝐼(𝛿 − 𝜏), 𝐼(𝛿)) = (
𝛽𝑆(𝛿)𝐼(𝛿−𝜏)

(1+𝛼𝐼(𝛿−𝜏))𝐼(𝛿)
−

𝐻(𝐼(𝛿))

𝐼(𝛿)
). 

It is easy to see that 𝐼(𝑡) > 0 for all  0 ≤ 𝑡 ≤ 𝜏. Integrating the second equation of the 

system (4.4) from 𝜏 to 𝑡 for 𝜏 < 𝑡 ≤ 2𝜏 gives 

𝐼(𝑡) = 𝐼(𝜏)𝑒−(𝜇+𝑑+𝛾)𝑡.𝑒∫ 𝐹(𝑆(𝛿),𝐼(𝛿−𝜏),𝐼(𝛿))
𝑡

𝜏  𝑑𝛿 

Note that 𝐼(𝑡) > 0 for all 𝜏 ≤ 𝑡 ≤ 2𝜏 and this procedure can easily carry on. It follows 

that for all  𝑡 > 0, we have  𝐼(𝑡) > 0. This completes the proof. 

 

4.4 Equilibrium points 

 

In this section, we obtain the equilibrium points of the system (4.4). The equilibrium 

solutions of a system with time delay are the same as those of the corresponding system 

with zero delays [Tipsri and Chinviriyasit (2014)]. The equilibria of the system (4.4) are 

calculated by putting the right-hand terms to zero which are as follows: 

i. Disease-free equilibrium (DFE) 𝑄 (
𝐴

𝜇
, 0), 

ii. Endemic equilibrium (EE) 𝑄∗(𝑆∗, 𝐼∗). 

 

4.5 Stability analysis of the equilibria for the combination of Holling 

type II incidence and treatment rates 

 

In this section, we discuss the local stability of model equilibria when the incidence and 

treatment rates are Holling functional type II. For the stability behavior, first, we compute 

the basic reproduction number (𝑅0). 

 

4.5.1 Computation of basic reproduction number (𝑹𝟎) 
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The characteristic equation of the system (4.4) evaluated at 𝑄 is given as: 

(𝜇 + 𝜆) (
𝛽𝐴

𝜇
 𝑒−𝜆𝜏 − 𝛿 − 𝑎 − 𝜆) = 0, where 𝛿 = (μ + d + γ)       (4.5) 

Eq. (4.5) has a root 𝜆1 = −𝜇 and other roots can be evaluated from 

                                               
𝛽𝐴

𝜇
 𝑒−𝜆𝜏 − 𝛿 − 𝑎 − 𝜆 = 0.   

The term 
𝛽𝐴

𝜇(𝛿+𝑎)
𝑒−𝜆𝜏 at 𝜏 = 0, is known as the basic reproduction number, denoted by 𝑅0. 

Therefore, we define the basic reproduction number 𝑅0 of our model by 𝑅0 =
𝛽𝐴

𝜇(𝛿+𝑎)
 .  

 

4.5.2 Analysis for 𝑹𝟎 ≠ 𝟏 

 

Clearly, Eq. (4.5) always has one negative root 𝜆1 = −𝜇  and other roots are determined 

by the solution of the equation 

𝜆 + 𝛿 + 𝑎 −
𝛽𝐴

𝜇
 𝑒−𝜆𝜏 = 0            (4.6) 

Let 

𝑓(𝜆) = 𝜆 + 𝛿 + 𝑎 −
𝛽𝐴

𝜇
 𝑒−𝜆𝜏 

If 𝑅0 > 1, for  𝜆 real, 

𝑓(0) = 𝛿 + 𝑎 −
𝛽𝐴

𝜇
< 0, Lim

𝜆→∞
𝑓(𝜆) → +∞ 

Hence, there exists a positive real root of  𝑓(𝜆) = 0 if 𝑅0 > 1. 

If 𝑅0 < 1, we assume that 𝑅𝑒 𝜆 ≥ 0. 

We notice that  

𝑅𝑒 𝜆 =
𝛽𝐴

𝜇
𝑒−𝑅𝑒 𝜆 𝜏 cos 𝐼𝑚 𝜆 𝜏 − 𝛿 − 𝑎 ≤

𝛽𝐴

𝜇
− 𝛿 − 𝑎 < 0. 

a contradiction to our assumption. Hence, if 𝑅0 < 1 then the root 𝜆 of Eq. (4.5) has a 

negative real part.  
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Thus, we state the following theorem: 

 

Theorem 4.3:  DFE (𝑄) is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 >

1 for 𝜏 ≥ 0.  

 

4.5.3 Analysis at  𝑹𝟎 = 𝟏 

 

i. For 𝝉 = 𝟎 

 

We notice that the system (4.4) is being evaluated at  𝑅0 = 1 and 𝛽 = 𝛽∗ =
𝜇(𝛿+𝑎)

𝐴
 has a 

zero eigenvalue and another eigenvalue is negative. The stability behavior of the 

equilibrium point at  𝑅0 = 1 cannot be determined using linearization so we use center 

manifold theory [Sastry (1999)]. For this, we redefined 𝑆 = 𝑥1 and 𝐼 = 𝑥2, then the 

system (4.4) can be rewritten as  

𝑑𝑥1

𝑑𝑡
= 𝐴 − 𝜇𝑥1 −

𝛽𝑥1𝑥2

1+𝛼𝑥2
 ≡ 𝑓1, 

𝑑𝑥2

𝑑𝑡
=

𝛽𝑥1𝑥2

1+𝛼𝑥2
− (𝜇 + 𝑑 + 𝛾)𝑥2 −

𝑎𝑥2

1+𝑏𝑥2
≡ 𝑓2.          (4.7) 

 

Let  𝐽∗ be the Jacobian matrix at  𝑅0 = 1  and bifurcation parameter 𝛽 = 𝛽∗. Then 

𝐽∗ = [−𝜇 −
𝛽∗𝐴

𝜇
0 0

] 

 

Let 𝑢 = [𝑢1, 𝑢2 ] and 𝑤 = [𝑤1, 𝑤2 ]𝑇 be the left eigenvector and right eigenvector of 

 𝐽∗associated with the zero (null) eigenvalue. Then we have 

𝑢1 = 0, 𝑢2 = 1 and 𝑤1 = −
𝛽∗𝐴

𝜇2
, 𝑤2 = 1. 

 

The non-zero partial derivatives corresponding to the functions of the system (4.7) 

evaluated at  𝑅0 = 1 and  𝛽 = 𝛽∗ are  

(
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2
)

𝑄
= 𝛽∗, (

𝜕2𝑓2

𝜕𝑥2𝜕𝑥1
)

𝑄
= 𝛽∗, (

𝜕2𝑓2

𝜕𝑥2
2)

𝑄
=

−2𝛼𝛽∗𝐴

𝜇
+ 2𝑎𝑏 and (

𝜕2𝑓2

𝜕𝑥2𝜕𝛽∗)
𝑄

=
𝐴

𝜇
. 
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The bifurcation constants 𝑎1and 𝑏1 may be computed using the theorem 4.1 of [Chavez 

and Song (2004)] as follows: 

 𝑎1 = ∑ 𝑢𝑘𝑤𝑖𝑤𝑗
2
𝑘,𝑖,𝑗=1 (

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
)

𝑄

 

= 𝑢2 (2𝑤1𝑤2𝛽∗ + 𝑤2
2 (

−2𝛼𝛽∗𝐴

𝜇
+ 2𝑎𝑏)) 

= 2 (𝑎𝑏 − (
𝛽∗𝐴(𝛽∗ + 𝜇𝛼)

𝜇2
)), 

and 

𝑏1 = ∑ 𝑢𝑘𝑤𝑖
2
𝑘,𝑖=1 (

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝛽∗)
𝑄

  

= 𝑢2 (𝑤2
𝐴

𝜇
)  

=
𝐴

𝜇
> 0.  

Thus, the following theorem may be stated using theorem 4.1(iv) of [Chavez and Song 

(2004)], as follows: 

 

Theorem 4.4: For transcritical bifurcation, we have the following results: 

i) If 𝑎𝑏 <
𝛽∗𝐴(𝛽∗+𝜇𝛼)

𝜇2 , the behavior of DFE (𝑄) changes from stable to unstable at 

 𝑅0 = 1 and there exists a positive equilibrium as  𝑅0 crosses one. Thus, the 

system (4.4) undergoes a forward transcritical bifurcation at 𝑅0 = 1.  

ii) If 𝑎𝑏 >
𝛽∗𝐴(𝛽∗+𝜇𝛼)

𝜇2 , there will be either a backward transcritical bifurcation or a 

saddle-node bifurcation. 

 

ii. For 𝝉 > 𝟎 

 

If  𝑅0 = 1, then  𝜆 = 0 is a simple root of Eq. (4.5). Let 𝜆 = 𝑥 + 𝑖𝑦 any of the other 

solutions, then Eq. (4.6) change into: 

𝑥 + 𝑖𝑦 + 𝛿 + 𝑎 −
𝛽𝐴

𝜇
 𝑒−(𝑥+𝑖𝑦 )𝜏 = 0               (4.8) 

By using Euler’s formula and by separating real and imaginary parts we can write 
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𝑥 + 𝛿 + 𝑎 =
𝛽𝐴

𝜇
cos 𝑦𝜏 𝑒−𝑥𝜏,  𝑦 = −

𝛽𝐴

𝜇
sin 𝑦𝜏  𝑒−𝑥𝜏                 (4.9) 

Observing that 𝑅0 = 1 implies  
𝛽𝐴

𝜇
= (𝛿 + 𝑎). Moreover, there exists a root satisfying 

both Eqs. (4.9), so they also satisfy the equation obtained by squaring and adding them 

member to member; we obtain 

(𝑥 + 𝛿 + 𝑎)2 + 𝑦2 = (𝛿 + 𝑎)2𝑒−2𝑥𝜏.                      (4.10) 

For Eq. (4.10) to be satisfied, we must have 𝑥 ≤ 0. Thus, we proposed the following 

theorem: 

 

Theorem 4.5: DFE of the system (4.4) is linearly neutrally stable if  𝑅0 = 1. 

 

4.5.4  Existence  and stability analysis of endemic equilibrium 

 

To find the conditions for the existence of an equilibrium 𝑄∗(𝑆∗, 𝐼∗) for which the disease 

is endemic in the population, the system (4.4) is rearranged to get  𝑆∗and 𝐼∗  which gives 

𝐼∗ =
𝐴 − 𝜇𝑆∗

𝛽𝑆∗ − (𝐴 − 𝜇𝑆∗)𝛼
 , 

where 𝑆∗ is given by the following equation 

 𝐶1𝑆∗2 + 𝐶2𝑆∗ + 𝐶3 = 0                 (4.11) 

here, 

𝐶1 = −𝛽2 + 𝑏𝛽𝜇 − 2𝛼𝛽𝜇 + 𝑏𝛼𝜇2 − 𝛼2𝜇2,  

𝐶2 = 𝑎𝛽 − 𝐴𝑏𝛽 + 2𝐴𝛼𝛽 + 𝛽𝛿 + 𝑎𝛼𝜇 − 2𝐴𝑏𝛼𝜇 + 2𝐴𝛼2𝜇 − 𝑏𝛿𝜇 + 𝛼𝛿𝜇 ,  

𝐶3 = −𝑎𝐴𝛼 + 𝐴2𝑏𝛼 − 𝐴2𝛼2 + 𝐴𝑏𝛿 − 𝐴𝛼𝛿.  

 

Using Descartes’ rule of signs [Wang (2004)], the existence of unique positive real  𝐼∗  of 

Eq. (4.11) is required to satisfy any of the following conditions is satisfied: 

i. 𝐶1 > 0, 𝐶2 > 0 and 𝐶3 < 0. 

ii. 𝐶1 > 0, 𝐶2 < 0 and 𝐶3 < 0. 

iii. 𝐶1 < 0, 𝐶2 < 0 and 𝐶3 > 0. 
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After getting  𝑆∗, we can get  𝐼∗. Hence, a unique positive 𝑄∗(𝑆∗ , 𝐼∗ ) exists if one of the 

above conditions hold true. 

 

The local stability of 𝑄∗ is explored as follows:  

The characteristic equation of the system (4.4) at the endemic equilibrium point  𝑄∗ is 

given by the following second degree transcendental equation 

𝜆2 + 𝑝0𝜆 + 𝑞0 + (𝑝1𝜆 + 𝑞1)𝑒−𝜆𝜏 = 0, 

where 

𝑝0 = (𝛿 + 𝜇 +
𝑎

(1+𝑏𝐼∗)2
+

𝛽𝐼∗

(1+𝛼𝐼∗)
)  ,  

𝑞0 = (𝛿𝜇 +
𝜇𝑎

(1+𝑏𝐼∗)2 +
𝛿𝛽𝐼∗

(1+𝛼𝐼∗)
+

𝑎𝛽𝐼∗

(1+𝛼𝐼∗)(1+𝑏𝐼∗)2  ),  

𝑝1 =
− 𝛽𝑆∗

(1+𝛼𝐼∗)2  ,   

𝑞1 =
− 𝜇𝛽𝑆∗

(1+𝛼𝐼∗)2. 

 

Theorem 4.6: For 𝜏 = 0, 𝑄∗ is locally asymptotically stable if both 
𝑆∗

𝐼∗
≤

𝛿

𝜇
 and 

𝑆∗

𝐼∗
≤ 1 

hold true simultaneously. 

Proof: At 𝑄∗, the characteristic equation at 𝜏 = 0 is given by 

𝜆2 + 𝑝0𝜆 + 𝑞0 + (𝑝1𝜆 + 𝑞1) = 0,                     (4.12) 

It is easy to show that if  
𝑆∗

𝐼∗ ≤
𝛿

𝜇
 and

𝑆∗

𝐼∗ ≤ 1 are satisfied simultaneously then 

𝑝0 + 𝑝1 = 𝛿 + 𝜇 +
𝑎

(1+𝑏𝐼∗)2
+

𝛽𝐼∗

(1+𝛼𝐼∗)
−

𝛽𝑆∗

(1+𝛼𝐼∗)2
  

= 𝛿 + 𝜇 +
𝑎

(1+𝑏𝐼∗)2 +
(𝛽𝛼𝐼∗2

+(𝛽𝐼∗−𝛽𝑆∗))

(1+𝛼𝐼∗)2  > 0 if 
𝑆∗

𝐼∗ ≤ 1 ,   

𝑞0 + 𝑞1 = 𝛿𝜇 +
𝜇𝑎

(1+𝑏𝐼∗)2 +
𝛿𝛽𝐼∗

(1+𝛼𝐼∗)
+

𝑎𝛽𝐼∗

(1+𝛼𝐼∗)(1+𝑏𝐼∗)2  −
𝜇𝛽𝑆∗

(1+𝛼𝐼∗)2  

= 𝛿𝜇 +
𝜇𝑎

(1+𝑏𝐼∗)2 +
𝑎𝛽𝐼∗

(1+𝛼𝐼∗)(1+𝑏𝐼∗)2 +
(𝛽𝛼𝛿𝐼∗2

+(𝛿𝛽𝐼∗−𝜇𝛽𝑆∗))

(1+𝛼𝐼∗)2 > 0 if 
𝑆∗

𝐼∗ ≤
𝛿

𝜇
.  

Hence, by the definition of the Routh-Hurwitz criterion, 𝑄∗ is locally asymptotically 

stable when 𝜏 = 0.  
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Theorem 4.7:  For 𝜏 > 0, 𝑄∗ is locally asymptotically stable if all three  
1

(1+𝑏𝐼∗)2
≤

𝜇

𝛼
≤

1,
𝑆∗

𝐼∗
≤

𝛿

𝜇
 and 

𝑆∗

𝐼∗
≤ 1 are satisfied simultaneously. 

Proof: At 𝑄∗, the characteristic equation at 𝜏 > 0 is given by 

𝜆2 + 𝑝0𝜆 + 𝑞0 + (𝑝1𝜆 + 𝑞1)𝑒−𝜆𝜏 = 0,                   (4.13) 

For 𝜏 > 0, corollary 2.4 of Ruan and Wei [2003] ensure that if the endemic 

equilibrium 𝑄∗ is unstable for particular values of delay then roots of the characteristic 

equation (4.13) must intersect the imaginary axis. Thus, to prove the stability of the 

system (4.4), we will use the contradictory assumption i.e. we assume that 𝜆 = 𝑖𝜔, 𝜔 > 0 

is the root of the Eq. (4.13).  

Substituting  𝜆 = 𝑖𝜔 in equation (4.13), we get 

−𝜔2 + 𝑞0 + 𝑝1𝜔 sin 𝜔𝜏  + 𝑞1 cos 𝜔𝜏  + 𝑖 (𝑝1𝜔 cos  𝜔𝜏 − 𝑞1 sin 𝜔𝜏  +  𝑝0𝜔) = 0.   

                     (4.14) 

On separating real and imaginary part of Eq. (4.14), we get  

𝑝1𝜔 sin 𝜔𝜏  + 𝑞1 cos 𝜔𝜏  = 𝜔2 − 𝑞0                    (4.15) 

𝑝1𝜔 cos 𝜔𝜏 − 𝑞1  sin 𝜔𝜏 = −𝑝0𝜔                     (4.16) 

On squaring and adding both sides of Eqs. (4.15) & (4.16) yield 

𝜔4 + (𝑝0
2 − 2𝑞0 − 𝑝1

2)𝜔2 + (𝑞0
2 − 𝑞1

2) = 0                  (4.17) 

Letting 𝜔2 = 𝑧1, Eq. (4.17) becomes 

    𝑧1
2 + 𝑃𝑧1 + 𝑇 = 0                  (4.18) 

Here, 𝑃 = (𝑝0
2 − 2𝑞0 − 𝑝1

2) and  𝑇 = (𝑞0
2 − 𝑞1

2) 

It is easy to show that if  
1

(1+𝑏𝐼∗)2
≤

𝜇

𝛼
≤ 1,

𝑆∗

𝐼∗
≤

𝛿

𝜇
 and 

𝑆∗

𝐼∗
≤ 1 are satisfied 

simultaneously then 

𝑃 = (𝑝0
2 − 2𝑞0 − 𝑝1

2)  

= (𝛿 + 𝜇 +
𝑎

(1+𝑏𝐼∗)2 +
𝛽𝐼∗

(1+𝛼𝐼)
 )

2

− 2 (𝛿𝜇 +
𝜇𝑎

(1+𝑏𝐼∗)2 +
𝛿𝛽𝐼∗

(1+𝛼𝐼∗)
+

𝑎𝛽𝐼∗

(1+𝛼𝐼∗)(1+𝑏𝐼∗)2) −

(
− 𝛽𝑆∗

(1+𝛼𝐼∗)2 )
2
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=  𝛿2 + 𝑎2 + 𝜇2 + 2𝛿𝑎 + 2𝑎𝜇 (1 −
1

(1+𝑏𝐼∗)2
) +

2𝛽𝑎𝐼∗

(1+𝛼𝐼∗)
+

2𝛽𝐼∗

𝛼(1+𝛼𝐼∗)
(

𝜇

𝛼
−

1

(1+𝑏𝐼∗)2
) +

𝛽2

(1+𝛼𝐼∗)4 (𝐼∗2(1 + 𝛼𝐼∗)2 − 𝐼∗2 + (𝐼∗2 − 𝑆∗2)) > 0, 

 

𝑇 = (𝑞0
2 − 𝑞1

2)  

 = (𝛿𝜇 +
𝜇𝑎

(1+𝑏𝐼∗)2 +
𝛿𝛽𝐼∗

(1+𝛼𝐼∗)
+

𝑎𝛽𝐼∗

(1+𝛼𝐼∗)(1+𝑏𝐼∗)2 )
2

− (
− 𝜇𝛽𝑆∗

(1+𝛼𝐼∗)2)
2

  

= (𝛿𝜇 +
𝜇𝑎

(1+𝑏𝐼∗)2
+

𝛿𝛽𝐼∗

(1+𝛼𝐼∗)
+

𝑎𝛽𝐼∗

(1+𝛼𝐼∗)(1+𝑏𝐼∗)2
 )

2

− (
𝛿𝛽𝐼∗

(1+𝛼𝐼∗)
)

2

+
𝛽2

(1+𝛼𝐼∗)4
(𝛿2𝐼∗2(1 +

𝛼𝐼∗)2 − 𝛿2𝐼∗2 + (𝛿2𝐼∗2 − 𝜇2𝑆∗2)) > 0.  

Clearly, if 𝑃 > 0 and 𝑇 > 0 are satisfied simultaneously then by the definition of Routh-

Hurwitz criterion Eq. (4.18) will always have roots with a negative real part. It contradicts 

to our assumption for instability that 𝜆 = 𝑖𝜔 is the root of Eq. (4.13). Hence, the endemic 

equilibrium 𝑄∗  of the system (4.4) is locally asymptotically stable when 𝜏 > 0. 

 

4.6 Stability analysis of the equilibria for the combination of Holling 

type II incidence and Holling type III treatment rates 

 

4.6.1 Computation of the basic reproduction number (𝑹𝟎) 

 

The characteristic equation of the system (4.4) at 𝑄 is given by the following equation: 

(𝜇 + 𝜆) (𝜆 −
𝛽𝐴

𝜇
 𝑒−𝜆𝜏 + (𝜇 + 𝑑 + 𝛾)) = 0                            (4.19) 

The term 
𝛽𝐴

𝜇(𝜇+𝑑+𝛾)
 𝑒−𝜆𝜏 at 𝜏 = 0 is known as basic reproduction number denoted as 𝑅0. 

The threshold parameter 𝑅0 is helpful in describing the spread of an infectious disease. 

Thus, 𝑅0 for the system (4.4) is obtained as 

 𝑅0 =
𝛽𝐴

𝜇(𝜇 + 𝑑 + 𝛾)
. 

 

4.6.2 Analysis for 𝑹𝟎 ≠ 𝟏 
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One of the roots of Eq. (4.19) is given by 𝜆1 = −𝜇 and the other roots can be obtained 

from 

                                              
𝛽𝐴

𝜇
 𝑒−𝜆𝜏 − (𝜇 + 𝑑 + 𝛾) − 𝜆 = 0                (4.20) 

Suppose that, 

                                             𝐺(𝜆) = 𝜆 −
𝛽𝐴

𝜇
 𝑒−𝜆𝜏 + (𝜇 + 𝑑 + 𝛾)                 (4.21) 

If 𝑅0 > 1, for  𝜆 real, 

𝐺(0) = (𝜇 + 𝑑 + 𝛾) −
𝛽𝐴

𝜇
= (𝜇 + 𝑑 + 𝛾)(1 − 𝑅0), Lim

𝑛→∞
𝐺(𝜆) → +∞. 

Hence, 𝐺(𝜆) = 0 has a positive real root if 𝑅0 > 1. 

If 𝑅0 < 1, we assume that 𝑅𝑒 𝜆 ≥ 0. 

We see that  

𝑅𝑒 𝜆 =
𝛽𝐴

𝜇
𝑒−𝑅𝑒 𝜆 𝜏 cos 𝐼𝑚 𝜆 𝜏 − (𝜇 + 𝑑 + 𝛾) ≤ (𝜇 + 𝑑 + 𝛾)(𝑅0 − 1) < 0. 

a contradiction to our assumption. Hence, if 𝑅0 < 1 then the characteristic root 𝜆 of Eq. 

(4.20) has a negative real part.  

Thus, the following theorem is proposed: 

 

Theorem 4.8:  DFE 𝑄 is locally asymptotically stable (LAS) when  𝑅0 < 1 and 

unstable when  𝑅0 > 1.  

 

4.6.3 Analysis at 𝑹𝟎 = 𝟏 

 

If  𝑅0 = 1, then 𝜆 = 0 is a simple root of Eq. (4.19). Let 𝜆 = 𝑥 + 𝑖𝑦 be any of the other 

solutions, then Eq. (4.20) becomes: 

𝑥 + 𝑖𝑦 + 𝜇 + 𝑑 + 𝛾 −
𝛽𝐴

𝜇
𝑒−(𝑥+𝑖𝑦)𝜏 = 0                (4.22) 

By using Euler’s formula and by separating real and imaginary parts we can write 
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𝑥 + 𝜇 + 𝑑 + 𝛾 =
𝛽𝐴

𝜇
 cos 𝑦𝜏  𝑒−𝑥𝜏, 𝑦 = −

𝛽𝐴

𝜇
sin 𝑦𝜏  𝑒−𝑥𝜏                 (4.23) 

Observing that 𝑅0 = 1 implies  
𝛽𝐴

𝜇
= (𝜇 + 𝑑 + 𝛾). Moreover, if there exists a root 

satisfying both the equations of (4.23), then it also satisfies the equation obtained by 

squaring and adding them member to member, 

(𝑥 + 𝜇 + 𝑑 + 𝛾)2 + 𝑦2 = (𝜇 + 𝑑 + 𝛾)2𝑒−2𝑥𝜏.                  (4.24) 

For Eq. (4.24) to be verified, we must have 𝑥 ≤ 0. Thus, we propose the following 

theorem: 

 

Theorem 4.9: DFE 𝑄 of the system (4.4) is linearly neutrally stable if  𝑅0 = 1 for 𝜏 >

0. 

 

4.6.4 Existence and stability analysis of the endemic equilibrium 

 

To establish the existence of an endemic equilibrium  𝑄∗(𝑆∗, 𝐼∗ ), the right-hand side of 

the system (4.4) is equated to zero. Thus, the solution of the following set of algebraic 

equations gives the endemic equilibrium point 𝑄∗(𝑆∗, 𝐼∗) for the proposed model system: 

𝐴 − 𝜇𝑆∗ − 
𝛽 𝑆∗𝐼∗

1+𝛼 𝐼∗ = 0,  
𝛽 𝑆∗𝐼∗

1+𝛼 𝐼∗ − (𝜇 + 𝑑 + 𝛾)𝐼∗ −
𝑎 𝐼∗2

1+𝑏 𝐼∗2 = 0.                 (4.25) 

The solution of Eq. (4.25) gives 

𝑆∗ =
𝐴(1 + 𝛼 𝐼∗)

𝜇 + (𝜇𝛼 + 𝛽)𝐼∗
, 

and  𝐼∗ is given by the following cubic equation 

𝑃(𝐼∗) = 𝐾0 + 𝐾1𝐼∗ + 𝐾2𝐼∗2 + 𝐾3𝐼∗3 = 0               (4.26) 

where 

𝐾0 = 𝐴𝛽 − 𝛾𝜇 − 𝜇2 − 𝜇𝑑 = 𝜇(𝜇 + 𝑑 + 𝛾)(𝑅0 − 1),  

𝐾1 = −(𝛽 + 𝛼𝜇)(𝛾 + 𝜇 + 𝑑) − 𝜇𝑎,  

𝐾2 = 𝜇(𝛾 + 𝜇 + 𝑑)𝑏(𝑅0 − 1) − (𝛽 + 𝛼𝜇)𝑎,   
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𝐾3 = −(𝛽 + 𝛼𝜇)(𝛾 + 𝜇 + 𝑑)𝑏.  

 

Next, we propose the following result for the existence of endemic equilibrium: 

 

 

Theorem 4.10: If  𝑅0 > 1, then there are either one or three positive endemic 

equilibria, if all equilibria are simple roots and if  𝑅0 ≤ 1 then no positive endemic 

equilibria exist. 

Proof:  It is evident from the expressions of  𝐾0, 𝐾1, 𝐾2  and  𝐾3 that 𝐾1 and 𝐾3 are 

always negative. Suppose 𝑅0 > 1 (𝐾0 > 0). The leading coefficient 𝐾3 is negative. 

Hence,  Lim
𝐼∗→∞

𝑃(𝐼∗) = −∞. Also, note that 𝑃(0) > 0 when 𝑅0 > 1. 𝑃(𝐼∗) is a continuous 

function of  𝐼∗ and by applying fundamental theorem of algebra, it is evident that Eq. 

(4.26) can have at most three real roots. By a geometric argument, it is readily seen that 

there is either one or three positive endemic equilibria, if all equilibria are simple roots. 

Whereas, when 𝑅0 < 1  then the coefficients 𝐾0,  𝐾1,  𝐾2 and 𝐾3 all are negative then by a 

fundamental theorem of algebra, we know that Eq. (4.26) can’t have any positive real root 

and when 𝑅0 = 1 then the coefficients 𝐾0 is zero and other coefficients  𝐾1,  𝐾2 and 𝐾3 all 

are negative then by a fundamental theorem of algebra, this polynomial cannot have any 

positive real root. 

 

To discuss the local stability of the system (4.4) at 𝑄∗, we linearize the system (4.4) at 𝑄∗ 

and obtained the characteristic equation which is as given below:  

𝜆2 + 𝑀1𝜆 + 𝑁1 + (𝑀2𝜆 + 𝑁2)𝑒−𝜆𝜏 = 0                                  (4.27) 

𝑀1 =
(1+𝐼∗𝛼)(𝛾+2𝜇+𝑑+𝐼∗3(𝛽+𝛼(𝛾+2𝜇+𝑑))𝑏2+𝐼∗(𝛽+𝛼(𝛾+2𝜇+𝑑)+2(𝛾𝑏+2𝜇𝑏+𝑑𝑏+𝑎)))

(1+𝐼∗𝛼)2(1+𝐼∗𝑏)2
+   

(1+𝐼∗𝛼)𝐼∗2(2𝛽𝑏+(𝛾+2𝜇+𝑑)𝑏2+2𝛼(𝛾𝑏+2𝜇𝑏+𝑑𝑏+𝑎))

(1+𝐼∗𝛼)2(1+𝐼∗𝑏)2 , 

𝑀2 =
−𝑆∗𝛽

(1+𝐼∗𝛼)2
 , 

𝑁1 =
(1+𝐼∗𝛼)(𝜇+𝐼∗(𝛽+𝛼𝜇))(𝛾+𝜇+𝑑)

(1+𝐼∗𝛼)2 , 

𝑁2 =
−𝑆∗𝛽𝜇

(1+𝐼∗𝛼)2
. 
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Theorem 4.11:  For 𝜏 > 0, the system (4.4) at 𝑄∗ is locally asymptotically stable if 

𝑀1
2 − 2𝑁1 − 𝑀2

2 > 0  and 𝑁1
2 − 𝑁2

2 > 0  hold true simultaneously. 

Proof: At endemic equilibrium 𝑄∗ the characteristic equation of the system for 𝜏 > 0 is 

given by the Eq. (4.27) 

𝜆2 + 𝑀1𝜆 + 𝑁1 + (𝑀2𝜆 + 𝑁2)𝑒−𝜆𝜏 = 0 

For  𝜏 > 0, by corollary 2.4 of Ruan and Wei [2003], a characteristic root of the Eq. 

(4.27) must cross the imaginary axis for instability, for a specific value of  𝜏. Accordingly, 

let 𝜆 = 𝑖𝜔, 𝜔 > 0 is the root of the characteristic equation (4.27). Putting  𝜆 = 𝑖𝜔 in the 

Eq. (4.27) gives: 

−𝜔2 + 𝑁1 + 𝑀2𝜔 sin 𝜔𝜏 + 𝑁2  cos 𝜔𝜏 + 𝑖 (𝑀2𝜔 cos 𝜔𝜏 − 𝑁2  sin 𝜔𝜏 +  𝑀1𝜔) = 0    

                     (4.28) 

Using Euler’s formula and separating the real and imaginary part of Eq. (4.28), we get  

𝑀2𝜔 sin 𝜔𝜏 + 𝑁2 cos 𝜔𝜏 = 𝜔2 − 𝑁1                    (4.29) 

𝑀2𝜔 cos 𝜔𝜏 − 𝑁2  sin 𝜔𝜏 = −𝑀1𝜔                    (4.30) 

Squaring and adding both sides of Eqs. (4.29) & (4.30) yields 

𝜔4 + (𝑀1
2 − 2𝑁1 − 𝑀2

2)𝜔2 + (𝑁1
2 − 𝑁2

2) = 0                 (4.31) 

Setting 𝜔2 = 𝑍1, Eq. (4.31) becomes 

    𝑍1
2 + 𝑀𝑍1 + 𝑇 = 0                  (4.32) 

     

Here, 𝑀 = (𝑀1
2 − 2𝑁1 − 𝑀2

2) and  𝑇 = (𝑁1
2 − 𝑁2

2). 

 

Clearly, if 𝑀 = (𝑀1
2 − 2𝑁1 − 𝑀2

2)  > 0 and   𝑇 = (𝑁1
2 − 𝑁2

2) > 0  are satisfied 

simultaneously then by Routh-Hurwitz Criterion Eq. (4.32) will always have roots with 

the negative real part. It contradicts our assumption for instability that 𝜆 = 𝑖𝜔 is a root of 

Eq. (4.27). Hence, 𝑄∗ is locally asymptotically stable for 𝜏 > 0. 

 

4.6.5 Hopf bifurcation analysis  
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In this section, we discuss the Hopf bifurcation of the system (4.4). 

 

If 𝑇 = (𝑁1
2 − 𝑁2

2) in Eq. (4.32) is negative then there is unique positive 𝜔0 satisfying 

Eq. (4.32) i. e. there is a single pair of purely imaginary roots ±𝑖𝜔0 to Eq. (4.32). 

From Eqs. (4.39) & (4.30) 𝜏𝑛 corresponding to 𝜔0 can be obtained as 

                     𝜏𝑛 =
1

𝜔0
 𝑎𝑟𝑐𝑐𝑜𝑠 (

(𝑁2−𝑀1𝑀2)𝜔0
2−𝑁1𝑁2

𝑀2
2𝜔0

2+𝑁2
2 ) +

2𝑛𝜋

𝜔0
, 𝑛 = 0, 1, 2, ….               (4.33) 

Endemic equilibrium 𝑄∗ is stable for 𝜏 < 𝜏0 if transversality condition holds true i.e. 

if  
𝑑 

𝑑𝜏
(𝑅𝑒 (𝜆))|

𝜆=𝑖𝜔0

> 0. 

Differentiating Eq. (4.27) with respect to 𝜏, we get 

(2𝜆 + 𝑀1 + 𝑀2𝑒−𝜆𝜏 − (𝑀2𝜆 + 𝑁2)𝜏𝑒−𝜆𝜏)
𝑑𝜆

𝑑𝜏
= 𝜆(𝑀2𝜆 + 𝑁2)𝑒−𝜆𝜏                (4.34) 

(
𝑑𝜆

𝑑𝜏
)

−1

=
(2𝜆+𝑀1+𝑀2𝑒−𝜆𝜏−(𝑀2𝜆+𝑁2)𝜏𝑒−𝜆𝜏)

𝜆(𝑀2𝜆+𝑁2)𝑒−𝜆𝜏 =
(2𝜆+𝑀1)

𝜆(𝑀2𝜆+𝑁2)𝑒−𝜆𝜏 +
𝑀2

𝜆(𝑀2𝜆+𝑁2)
−

𝜏

𝜆
  

(
𝑑𝜆

𝑑𝜏
)

−1

=
(2𝜆+𝑀1)

−𝜆(𝜆2+𝑀1𝜆+𝑁1)
+

𝑀2

𝜆(𝑀2𝜆+𝑁2)
−

𝜏

𝜆
  

𝑑 

𝑑𝜏
(𝑅𝑒 (𝜆))

−1
|
𝜆=𝑖𝜔0

= 𝑅𝑒 (
𝑑𝜆

𝑑𝜏
)

−1

|
𝜆=𝑖𝜔0

   

= 𝑅𝑒 (
(2𝑖𝜔0+𝑀1)

−𝑖𝜔0(−𝜔0
2+𝑖𝑀1𝜔0+𝑁1)

+
𝑀2

𝑖𝜔0(𝑖𝑀2𝜔0+𝑁2)
−

𝜏

𝑖𝜔0
 )  

= 𝑅𝑒 (
1

𝜔0
(

(2𝑖𝜔0+𝑀1)

(𝜔0
2−𝑁1)𝑖+𝑀1𝜔0)

+
𝑀2

(−𝑀2𝜔0+𝑖𝑁2)
+ 𝑖𝜏 ))  

=
1

𝜔0
(

2𝜔0(𝜔0
2−𝑁1)+𝑀1

2𝜔0

(𝜔0
2−𝑁1)2+(𝑀1𝜔0)2

−
𝑀2

2𝜔0

(𝑀2𝜔0)2+𝑁2
2 )  

=
2𝜔0

2+(𝑀1
2−2𝑁1−𝑀2

2)

(𝑀2𝜔0)2+𝑁2
2  (Since, from Eqs. (4.29) & (4.30), (𝜔0

2 −

𝑁1)2 + (𝑀1𝜔0)2 = (𝑀2𝜔0)2 + 𝑁2
2 ) 

Under the condition 𝑀1
2 − 2𝑁1 − 𝑀2

2 ≠ 0, we have  
𝑑 

𝑑𝜏
(𝑅𝑒 (𝜆))|

𝜆=𝑖𝜔0

> 0. 

Thus, the transversality condition holds and Hopf bifurcation occurs at 𝜔 = 𝜔0, 𝜏 = 𝜏0.  



78 
 

By summarizing the above analysis, we arrive at the following Theorem. 

 

Theorem 4.12: The endemic equilibrium (EE) of the system (4.4) is locally 

asymptotically stable for  𝜏 ∈ [0, 𝜏0) and it exhibits Hopf bifurcation at 𝜏 = 𝜏0 . 

 

4.6.6 Global stability analysis 

 

We suppose that, 

𝐻(𝑆(𝑡)) = 𝛽𝑆(𝑡), 𝐹(𝐼(𝑡)) =
𝐼(𝑡)

1 + 𝛼𝐼(𝑡)
. 

To prove our results, we need the following assumptions: 

A1.  𝐻(0) = 𝐹(0) = 0; 𝐻′(𝑆) > 0, for all  𝑆, 𝐼 > 0. 

A2.  𝐹′(𝐼) > 0; 
𝜕2𝐹(𝐼)

𝜕𝐼2 ≤ 0, for all  𝑆, 𝐼 > 0. 

A3.  
𝐹(𝐼)

𝐹(𝐼∗)
≤ 1; 

(𝜇+𝑑+𝛾)𝐼+
𝑎𝐼2

1+𝑏𝐼2

𝐻(𝑆∗)𝐹(𝐼)
≥ 1 or  

𝐹(𝐼)

𝐹(𝐼∗)
≥ 1; 

(𝜇+𝑑+𝛾)𝐼+
𝑎𝐼2

1+𝑏𝐼2

𝐻(𝑆∗)𝐹(𝐼)
≤ 1 for all  𝑆, 𝐼 > 0. 

 

Theorem 4.13: Suppose that assumptions (A1-A3) are satisfied. 

i. If 𝑅0 > 1, the endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗) is globally asymptotically stable for 

any 𝜏 ≥ 0.  

ii. If 𝑅0 ≤ 1, the disease-free equilibrium 𝑄(𝑆0, 0) = 𝑄 (
𝐴

µ
, 0) is globally 

asymptotically stable for any 𝜏 ≥ 0. 

Proof:  

i) Let us consider the solution (𝑆(𝑡), 𝐼(𝑡)) of the system (4.4) with the initial 

conditions. For any 𝜏 ≥ 0, we define the function 𝑈1(𝑡) as follows: 

𝑈1(𝑡) = 𝑆(𝑡) − ∫
𝐻(𝑆∗)

𝐻(𝜂)
𝑑𝜂

𝑆(𝑡)

𝑆∗ + 𝐼(𝑡) − ∫
𝐹(𝐼∗)

𝐹(𝜂)
𝑑𝜂.

𝐼(𝑡)

𝐼∗   

Korobeinikov and Maini [2004] showed that  𝑄∗ is the only internal stationary point and 

the minimum point of 𝑈1(𝑡) → ∞ at the boundary of the positive quadrant. Therefore, 𝑄∗ 

is the global minimum point, and the function is bounded from below. 

Let  
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𝑈2 = ∫ [
𝐹(𝐼(𝑡−𝜉))

𝐹(𝐼∗)
− 1 − ln

𝐹(𝐼(𝑡−𝜉))

𝐹(𝐼∗)
] 𝑑𝜉,

𝜏

0
  

It is easy to see that 𝑈2 > 0 and 𝑈2 = 0 if and only if 𝐼(𝑡 − 𝜉) = 𝐼∗ for all 𝜉 ∈ [0, 𝜏]. For 

any positive 𝐼(𝑡 − 𝜉) for 𝜉 in [0, 𝜏], 𝑈2 will be finite and can be differentiated. Therefore, 

the derivative of 𝑈2 is 

𝑑𝑈2

𝑑𝑡
=

𝑑

𝑑𝑡
∫ [

𝐹(𝐼(𝑡−𝜉))

𝐹(𝐼∗)
− 1 − ln

𝐹(𝐼(𝑡−𝜉))

𝐹(𝐼∗)
]

𝜏

0
𝑑𝜉  

= ∫
𝑑

𝑑𝑡

𝜏

0
[

𝐹(𝐼(𝑡−𝜉))

𝐹(𝐼∗)
− 1 − ln

𝐹(𝐼(𝑡−𝜉))

𝐹(𝐼∗)
] 𝑑𝜉  

= − ∫
𝑑

𝑑𝜉

𝜏

0
[

𝐹(𝐼(𝑡−𝜉))

𝐹(𝐼∗)
− 1 − ln

𝐹(𝐼(𝑡−𝜉))

𝐹(𝐼∗)
] 𝑑𝜉  

= − [
𝐹(𝐼(𝑡−𝜉))

𝐹(𝐼∗)
− 1 − ln

𝐹(𝐼(𝑡−𝜉))

𝐹(𝐼∗)
]

𝜉=0

𝜏

  

= −
𝐹(𝐼(𝑡−𝜏))

𝐹(𝐼∗)
+

𝐹(𝐼(𝑡))

𝐹(𝐼∗)
+ ln

𝐹(𝐼(𝑡−𝜏))

𝐹(𝐼)
.  

Now we study the behavior of Lyapunov functional 

𝑉1 = 𝑈1(𝑡) + (𝜇 + 𝑑 + 𝛾 +
𝑎𝐼∗

1+𝑏𝐼∗2)𝐼∗𝑈2  

The derivative of 𝑉1 along the solution of (4.4) is given by 

𝑑𝑉1

𝑑𝑡
= (1 −

𝐻(𝑆∗)

𝐻(𝑆)
) �̇�(𝑡) + (1 −

𝐹(𝐼∗)

𝐹(𝐼)
) 𝐼(̇𝑡) + (𝜇 + 𝑑 + 𝛾 +

𝑎𝐼∗

1 + 𝑏𝐼∗2) 𝐼∗
𝑑𝑈2

𝑑𝑡
 

= (1 −
𝐻(𝑆∗)

𝐻(𝑆)
) (𝜇𝑆∗ + 𝐻(𝑆∗)𝐹(𝐼∗) − 𝜇𝑆 − 𝐻(𝑆)𝐹(𝐼(𝑡 − 𝜏)))

+ (1 −
𝐹(𝐼∗)

𝐹(𝐼)
) (𝐻(𝑆)𝐹(𝐼(𝑡 − 𝜏)) − (𝜇 + 𝑑 + 𝛾)𝐼 −

𝑎𝐼2

1 + 𝑏𝐼2
)

− (𝜇 + 𝑑 + 𝛾 +
𝑎𝐼∗

1 + 𝑏𝐼∗2) 𝐼∗ (
𝐹(𝐼(𝑡 − 𝜏))

𝐹(𝐼∗)
−

𝐹(𝐼)

𝐹(𝐼∗)

− ln
𝐹(𝐼(𝑡 − 𝜏))

𝐹(𝐼)
). 

By noting that 

ln
𝐹(𝐼(𝑡−𝜏))

𝐹(𝐼∗)
= ln

𝐻(𝑆∗)

𝐻(𝑆)
+ ln

𝐻(𝑆)𝐹(𝐼(𝑡−𝜏))

𝐻(𝑆∗)𝐹(𝐼)
,  
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and  

(𝜇 + 𝑑 + 𝛾 +
𝑎𝐼∗

1+𝑏𝐼∗2) 𝐼∗ = 𝐻(𝑆∗)𝐹(𝐼∗),  

It is easy to see that 

𝑑𝑉1

𝑑𝑡
=

𝜇

𝐻(𝑆)
(𝐻(𝑆) − 𝐻(𝑆∗))(𝑆∗ − 𝑆) + 𝐻(𝑆∗)𝐹(𝐼∗) (1 −

𝐻(𝑆∗)

𝐻(𝑆)
+ ln

𝐻(𝑆∗)

𝐻(𝑆)
) +

𝐻(𝑆∗)𝐹(𝐼∗) (1 + 𝑙𝑛
𝐻(𝑆)𝐹(𝐼(𝑡−𝜏))

𝐻(𝑆∗)𝐹(𝐼)
−

𝐻(𝑆)𝐹(𝐼(𝑡−𝜏))

𝐻(𝑆∗)𝐹(𝐼)
) + 𝐻(𝑆∗)𝐹(𝐼∗) ((

𝐹(𝐼)

𝐹(𝐼∗)
−

1) (1 −
(𝜇+𝑑+𝛾)𝐼+

𝑎𝐼2

1+𝑏𝐼2

𝐻(𝑆∗)𝐹(𝐼)
)).  

Here, 

1 −
𝐻(𝑆∗)

𝐻(𝑆)
+ ln

𝐻(𝑆∗)

𝐻(𝑆)
≤ 0; for all 𝑆 > 0, and 1 + ln

𝐻(𝑆)𝐹(𝐼(𝑡−𝜏))

𝐻(𝑆∗)𝐹(𝐼)
−

𝐻(𝑆)𝐹(𝐼(𝑡−𝜏))

𝐻(𝑆∗)𝐹(𝐼)
≤ 0; for all 

𝐼(𝑡 − 𝜏) > 0, 𝑆 > 0.                 (4.35) 

For monotonically increasing function 𝐻(𝑆), 𝐻(𝑆) ≥ 𝐻(𝑆∗) holds when 𝑆 ≥ 𝑆∗ and 

hence the following inequalities holds: 

(𝑆∗ − 𝑆)(𝐻(𝑆) − 𝐻(𝑆∗)) ≤ 0.                  (4.36) 

Hence, by condition (A3) and inequalities (4.35)-(4.36), all the conditions of corollary 5.2 

of [Kuang (1993)] hold true. Hence, 𝑄∗ is globally asymptotically stable for any 𝜏 ≥ 0 

when 𝑅0 > 1. 

 

ii) We consider the Lyapunov functional 

𝑉2 = 𝑆(𝑡) − ∫
𝐻(𝑆0)

𝐻(𝜂)

𝑆(𝑡)

𝑆0
𝑑𝜂 + 𝐼(𝑡) + 𝐻(𝑆0) ∫ 𝐹(𝐼(𝑡 − 𝜉))𝑑𝜉.

𝜏

0
                (4.37) 

Let 

𝑈3 = ∫ 𝐹(𝐼(𝑡 − 𝜉))𝑑𝜉.
𝜏

0
  

The derivative of 𝑈3 is  

𝑑𝑈3

𝑑𝑡
= ∫

𝑑

𝑑𝑡
𝐹(𝐼(𝑡 − 𝜉))𝑑𝜉 = − ∫

𝑑

𝑑𝜉
𝐹(𝐼(𝑡 − 𝜉))𝑑𝜉 = −

𝜏

0

𝜏

0
𝐹(𝐼(𝑡 − 𝜏)) + 𝐹(𝐼(𝑡)).  
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Hence, we obtain 

𝑑𝑉2

𝑑𝑡
 = (1 −

𝐻(𝑆0)

𝐻(𝑆)
) �̇�(𝑡) + 𝐼(̇𝑡) + 𝐻(𝑆0)

𝑑𝑈3

𝑑𝑡
   

= (1 −
𝐻(𝑆0)

𝐻(𝑆)
) (𝜇𝑆0 − 𝜇𝑆 − 𝐻(𝑆)𝐹(𝐼(𝑡 − 𝜏))) + (𝐻(𝑆)𝐹(𝐼(𝑡 − 𝜏)) − (𝜇 + 𝑑 +

𝛾)𝐼 −
𝑎𝐼2

1+𝑏𝐼2
) − 𝐻(𝑆0)𝐹(𝐼(𝑡 − 𝜏)) + 𝐻(𝑆0)𝐹(𝐼(𝑡))   

= −
𝜇

𝐻(𝑆)
(𝑆 − 𝑆0)(𝐻(𝑆) − 𝐻(𝑆0)) −

𝑎𝐼2

1+𝑏𝐼2 + (𝜇 + 𝑑 + 𝛾) (
𝐻(𝑆0)𝐹(𝐼(𝑡))

(𝜇+𝑑+𝛾)
− 𝐼).  

Here,  

(𝑆 − 𝑆0)(𝐻(𝑆) − 𝐻(𝑆0)) ≥ 0                  (4.38) 

and the condition (A2) ensure that 𝐹(𝐼) ≤
𝜕𝐹(0)

𝜕𝐼
𝐼 for all 𝐼 > 0. Hence, 

𝐻(𝑆0)𝐹(𝐼(𝑡))

(𝜇+𝑑+𝛾)
− 𝐼 ≤ (

𝐻(𝑆0)
𝜕𝐹(0)

𝜕𝐼

(𝜇+𝑑+𝛾)
− 1) 𝐼 = (𝑅0 − 1)𝐼.                  (4.39) 

Therefore, 𝑅0 < 1 ensures that 
𝑑𝑉2

𝑑𝑡
≤ 0 for all 𝑆(𝑡), 𝐼(𝑡) ≥ 0. Hence, again from 

Corollary 5.2 of [Kuang (1993)], we have that 𝑄 is stable. Furthermore, for 𝑅0 = 1,
𝑑𝑉2

𝑑𝑡
=

0  implies that  𝑆(𝑡) = 𝑆0. Hence, it can be shown that 𝑄(𝑆0, 0) is the largest invariant set 

in  {(𝑆(𝑡), 𝐼(𝑡)) | 𝑉2̇ = 0}. With the help of the classical Lyapunov-LaSalle invariance 

principle [Hale and Lunel (1993); Sastry (1999)], 𝑄 is globally stable. 

This completes the proof of theorem 4.13. 

 

4.6.7 Undelayed system 

 

In this subsection, we consider the case of instantaneous transmission of primary 

infection. We perform a qualitative analysis of the system (4.4) without delay, i.e., we 

set 𝜏 = 0. This analysis has interest in itself and will also allow getting some information 

on the stability of coexistence equilibrium in the case with delay. 

It is useful to investigate the stability properties of the system (4.4), without delay, near 

the criticality (that is at  𝑄 and  𝑅0 = 1). To achieve this aim, we use the bifurcation 
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theory approach developed in [Buonomo and Cerasuolo (2015)], which is based on the 

center manifold theory [Sastry (1999)]. In particular, we are interested to assess that if 

there is a stable coexistence equilibrium bifurcation form 𝑄, and 𝑄 changes from being 

stable to unstable. This behaviour is called forward bifurcation [Buonomo and Cerasuolo 

(2015)]. 

Now, for the undelayed system, we propose the following result: 

 

Theorem 4.14: When  𝜏 = 0, the system (4.4) exhibits a forward bifurcation at  𝑄 

and  𝑅0 = 1. 

Proof: Clearly, from the expression of 𝑅0 it can be seen that 𝑅0 is directly related to 𝛽. 

Subsequently, we choose 𝛽 as the bifurcation parameter. Moreover, 𝑅0 = 1 implies 

that 𝛽 = 𝛽∗ =
𝜇(𝜇+𝑑+𝛾)

𝐴
. Since the linearization technique is not applicable to check the 

stability behavior at 𝑅0 = 1, so we use center manifold theory [Sastry (1999)]. For this 

we redefine  𝑆 = 𝑥1 and 𝐼 = 𝑥2, then the system (4.4) takes the form  

𝑑𝑥1

𝑑𝑡
= 𝐴 − 𝜇𝑥1 −

𝛽𝑥1𝑥2

1+𝛼𝑥2
 ≡ f1 ,     

𝑑𝑥2

𝑑𝑡
=

𝛽𝑥1𝑥2

1+𝛼𝑥2
− (𝜇 + 𝑑 + 𝛾)𝑥2 −

𝑎𝑥2
2

1+𝑏𝑥2
2  ≡ f2.                  (4.40) 

                 

The Jacobian matrix 𝐽′ of the system (4.40) evaluated at  𝑅0 = 1  and 𝛽 = 𝛽∗ around the 

disease-free equilibrium is 

𝐽′ = [−𝜇 −
𝛽∗𝐴

𝜇
0 0

] 

𝐽′ has a simple zero eigenvalue while the other eigenvalue is negative. The right 

eigenvector, 𝑤 = [𝑤1, 𝑤2 ]𝑇 of 𝐽′ corresponding to zero eigenvalue can be obtained as 

under 

𝑤1 = −
𝛽∗𝐴

𝜇2
, 𝑤2 = 1 

Similarly, the left eigenvector, 𝑢 = [𝑢1, 𝑢2 ] of 𝐽′ corresponding to zero eigenvalue is 

obtained as [0, 1]. The non-zero partial derivatives associated with the functions f1 and f2 

evaluated at  𝑅0 = 1 and  𝛽 = 𝛽∗ are  

(
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2
)

𝑄
= (

𝜕2𝑓2

𝜕𝑥2𝜕𝑥1
)

𝑄
= 𝛽∗, (

𝜕2𝑓2

𝜕𝑥2
2)

𝑄
= −

2𝛼𝛽∗𝐴

𝜇
− 2𝑎 and (

𝜕2𝑓2

𝜕𝑥2𝜕𝛽∗)
𝑄

=
𝐴

𝜇
. 
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Using theorem 4.1 of [Chavez and Song (2004)], the coefficients 𝑎1and 𝑏1 can be 

computed as 

𝑎1 = ∑ 𝑢𝑘𝑤𝑖𝑤𝑗
2
𝑘,𝑖,𝑗=1 (

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
)

𝑄

  

= 𝑢2 (2𝑤1𝑤2𝛽∗ − 𝑤2
2 (

2𝛼𝛽∗𝐴

𝜇
+ 2𝑎))  

= − (2
𝛽∗𝐴

𝜇2
𝛽∗ +

2𝛼𝛽∗𝐴

𝜇
+ 2𝑎) < 0  

and 

𝑏1 = ∑ 𝑢𝑘𝑤𝑖
2
𝑘,𝑖=1 (

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝛽∗)
𝑄

  

= 𝑢2 (𝑤2
𝐴

𝜇
)  

=
𝐴

𝜇
> 0.  

From the expressions of 𝑎1 and 𝑏1, it is evident that 𝑎1 < 0 and  𝑏1 > 0. Therefore, from 

theorem 4.1 (iv) of [Chavez and Song (2004)] bifurcation is forward. This completes the 

proof. 

 

Theorem 4.15: For 𝜏 = 0, the system (4.4) at 𝑄∗ is locally asymptotically stable if 

𝑀1 + 𝑀2 > 0  and 𝑁1 + 𝑁2 > 0  are satisfied simultaneously. 

Proof: At endemic equilibrium 𝑄∗ the characteristic equation of the system (4.4) is 

obtaining by putting  𝜏 = 0 in the Eq. (4.27) as given below: 

𝜆2 + 𝑀1𝜆 + 𝑁1 + (𝑀2𝜆 + 𝑁2) = 0                   (4.41) 

Clearly, if 𝑀1 + 𝑀2 > 0  and 𝑁1 + 𝑁2 > 0  are satisfied simultaneously then by Routh-

Hurwitz Criterion Eq. (4.41) will always have roots with the negative real part and hence, 

the system (4.4) at 𝑄∗ for 𝜏 = 0 is locally asymptotically stable. 

 

4.7 Numerical simulation 

 

In this section, we will simulate the system (4.2) numerically. The set of values of 

parameters is given in Table 4.1. 
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Graphs have been plotted for 𝑆 and 𝐼 for various values of  𝜏. The trajectory of 𝑆 and 

𝐼 approach to steady state as shown in Fig. 4.2 and Fig. 4.3 for 𝜏 = 0 and 1 respectively. 

In Figs. 4.2 & 4.3, the number of the infected individuals initially increases and as time 

passes, they approach to the steady state which may be due to the treatment. These 

individuals once recovered have become immunized to the infection and will not get re-

infected in the future. Furthermore, the number of susceptible individuals decreases to 

attain a steady state.  

 

Fig. 4.4 shows the variation in the infected population for the various values of  𝜏. It can 

be seen that the infected population is less at 𝜏 = 0 than the infected population at 𝜏 =

1,2 and 3 respectively. It can be depicted that delay in showing the symptoms of the 

disease will cause the increment in the infected population. 

 

Figs. 4.5 & 4.6 demonstrate the effect of treatment/ cure rate (𝑎) and limitation rate (𝑏) 

in treatment availability on the infected population with various values of a and b. Fig. 

4.5 shows the decline in infected population as treatment rate (𝑎) increases and it settles 

down at its steady state, but the disease is not getting totally eliminated rather it will 

persist at a much lower level. Fig. 4.6 shows the increment in the infected population as  

𝑏 increases, which is due to the limited availability of resources in the society.   

 

Figs. 4.7 & 4.8 show the variation in the infected population with and without treatment 

rate Holling type II treatment rate at 𝜏 = 0 and 1 respectively. It can be observed that the 

infected population will decrease drastically if Holling type II treatment is given at the 

appropriate time. 

 

Figs. 4.9 & 4.10 show the infected population at various values of 𝛽 and 𝛼 respectively. 

Clearly, it can be seen that the infected population decreases in both situations, when the 

transmission rate (𝛽) is decreasing and the measures of inhibition (𝛼) is increasing 

respectively. 

 

Fig. 4.11 shows the variation in the infected population when treatment to infectives is 

given according to Holling type II and Holling type III treatment rates respectively.  
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4.8 Conclusions 

 

In this chapter, we proposed a time-delayed SIR model with Holling functional type II 

incidence rate and two different treatment rates (Holling functional type II & III). The 

model analysis showed that the model has two equilibria, namely; disease-free and 

endemic. The stability analysis of the model equilibria discussed separately for both 

combinations of incidence and treatment rates (i.e. incidence rate as Holling functional 

type II and treatment rate as Holling functional type II & III). The local stability of 

disease-free equilibrium (DFE) 𝑄 has been explained in terms of the basic reproduction 

number 𝑅0 for both combinations separately. Further, we have shown that the DFE at 

 𝑅0 = 1 is linearly neutrally stable for time delay 𝜏 > 0 which reveals that disease may 

persist at a very low level in society; and exhibits either a forward bifurcation or 

backward or possibly saddle-node bifurcation for the time delay 𝜏 = 0 under certain 

conditions. Furthermore, we showed that the endemic equilibrium (EE) 𝑄∗ of the system 

(4.2) is locally asymptotically stable for both the combinations at 𝜏 = 0 if the conditions 

stated in theorems 4.6 and 4.15 are satisfied respectively. Furthermore, conditions for the 

existence of Hopf bifurcation were discussed. Moreover, for the combination of Holling 

type II incidence rate and Holling type II treatment rate, we showed that both DFE and 

EE are globally asymptotically stable when  𝑅0 ≤ 1 and 𝑅0 > 1  for time lag 𝜏 ≥

0 respectively. Numerical simulations demonstrate that there will be marginal decrement 

in the lessening in the infected population in the two circumstances; when the 

transmission rate (𝛽) decreases and measures of inhibition (𝛼) increases (Figs. 4.9 & 

4.10). It very well may be reasoned that the infected population increases with the 

increment in a delay in the incidence rate (Fig. 4.4) and the infected population 

diminishes when treatment of infectives is given according to Holling type treatment rates 

at the proper time (Figs. 4.8 & 4.11). 
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Table 4.1: Description and numerical values of parameters for simulation 

 

Parameter Value 

Recruitment rate (𝑨)  6 

Measures of inhibition (𝛼) 0.05 

Effective contact rate or Transmission rate (𝛽) 0.007 

Natural mortality rate (𝜇) 0.05 

Disease induced mortality rate (𝑑) 0.005 

Recovery rate (𝛾) 0.003 

Treatment or Cure rate  (𝑎) 0.02 

Limitation rate in treatment availability (𝑏) 0.02 
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Fig. 4.2: Susceptible (𝑆) and infected (𝐼) population versus time at time lag 𝜏 = 0. 

 

 

Fig. 4.3: Susceptible (𝑆) and infected (𝐼) population versus time at time lag 𝜏 = 1. 
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Fig. 4.4: Infected population (𝐼) at various values of time lag 𝜏. 

 

Fig. 4.5: Infected population (𝐼) at various values of cure rate (𝑎) for 𝜏 = 0. 
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Fig. 4.6: Infected population (𝐼) at various values of limitation rate (𝑏) in treatment 

availability for 𝜏 = 0. 

 

Fig. 4.7: Infected population (𝐼) with and without Holling type II treatment rate at time 

lag𝜏 = 0. 
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Fig.4.8: Infected population (𝐼) with and without Holling type II treatment rate at time 

lag 𝜏 = 1. 

 

Fig. 4.9: Infected population (𝐼) at various values of the transmission rate (𝛽) at 𝜏 = 0. 
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Fig. 4.10: Infected population (𝐼) at various values of measures of inhibition (𝛼) at 𝜏 =

0.  

 

Fig. 4.11: Variation in the infected population (𝐼) with Holling type II & III treatment 

rates. 
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CHAPTER 5 

 

DYNAMICAL STUDY OF A SIR EPIDEMIC MODEL 

ALONG WITH TIME DELAY; HOLLING FUNCTIONAL 

TYPE II INCIDENCE RATE AND MONOD-HALDANE 

FUNCTIONAL TYPE TREATMENT RATE 

 

 

In this chapter, a time-delayed susceptible-infected-recovered epidemic model is being 

proposed to capture the role of latency period mathematically along with Holling 

functional type incidence rate and Monod-Haldane (M-H) functional type treatment rate 

for the diseases like SARS, MERS, etc. The stability of model equilibria has been 

established in the three regions of the basic reproduction number 𝑅0 i. e. 𝑅0 equals to one, 

greater than one and less than one. The model is locally asymptotically stable for disease-

free equilibrium when the basic reproduction number is less than one and unstable when 

the basic reproduction number is greater than one. We have investigated the stability of 

the disease-free equilibrium at 𝑅0 equals to one using center manifold theory. We proved 

that at 𝑅0 = 1, disease-free equilibrium changes its stability from stable to unstable. We 

also investigated the stability for endemic equilibrium. Further, numerical simulations 

have been carried out to strengthen the theoretical findings. 
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5.1 Introduction 

 

In mathematical epidemiology literature, many authors [Gumel et al. (2006); Moghadas 

and Alexander (2006); Xu and Ma (2009a) & (2009b); Dubey et al. (2013); Hattaf et al. 

(2013); Sahani and Yashi (2016)] have suggested various mathematical models for the 

disease transmission such as susceptible-infected-recovered (SIR) model, susceptible-

infected-recovered-susceptible (SIRS), susceptible-exposed-infected-recovered (SEIR) 

and many others. In this chapter, an attempt has been made to understand the disease 

transmission process by incorporating the incidence rate as Holling functional type II and 

treatment rate as Monod-Haldane (M-H) functional type for the diseases like SARS, 

MERS, etc. In the modulation of population dynamics, both transmission and treatment 

rates play an important role. The incidence of infection is the process in which susceptible 

becomes infected via infected population through various channels [Dubey et al. (2016)]. 

Several authors have suggested that the disease transmission process may have a 

nonlinear incidence rate [Moghadas and Alexander (2006); Xu and Ma (2009)]. The 

explanations of bilinear and Holling type II nonlinear incidence rates have already been 

given in chapter 2. 

 

In the field of epidemiology, treatment, vaccination, and many more play an important 

role in controlling the disease spread. Recently, many researchers [Dubey et al. (2013), 

(2015) & (2016); Li and Liu (2014)] have focused on the nonlinear type treatment rates. 

Different type of treatment rates like Holling type II, Holling type III and many others 

have been implemented by the authors in their model to study the dynamics of infectious 

diseases. Andrews [1968] had suggested a functional having the form  

𝐺(𝐼) =
𝑚𝐼

𝑎 + 𝑏𝐼 + 𝐼2
  

called the Monod-Haldane functional. Sokol and Howell [1981] had proposed a 

simplified Monod-Haldane (M-H) functional having the form 

𝐺(𝐼) =
𝑚𝐼

𝑎 + 𝐼2
  

 

Baek et al. [2009] used this M-H functional to describe the dynamical relation between 

prey and predator. Considering these facts, we have incorporated treatment rate as 
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simplified M-H functional type in our delayed SIR model with Holling type II incidence 

rate. 

 

In this chapter, we have analyzed the effect of time-delay on a SIR epidemic model along 

with Holling functional type II incidence rate and M-H functional type treatment rate for 

the better understanding of transmission dynamics of the diseases like SARS, MERS, etc. 

Furthermore, we evaluate the basic reproduction number 𝑅0, analyzed the dynamical 

behavior of the model and also discussed the stability of the model equilibria. The 

stability analysis of equilibria has been done by Descartes’s rule of signs [Wang (2004)] 

along with the Routh-Hurwitz criterion. 

 

5.2 Mathematical model 

 

We assume that the total population  𝑁(𝑡)  is divided into three compartments: 

susceptible individuals compartment  𝑆(𝑡), infected individuals compartment 𝐼(𝑡) and 

recovered individuals compartment 𝑅(𝑡). We considered that the treatment of infectives 

is given according to the simplified Monod-Haldane type treatment rate (ℎ(𝐼) =

𝑎𝐼/(𝐼2 + 𝑏)) for the recovery. The progression of an epidemic in different compartments 

has been shown by block diagram as given in Fig. 5.1.  

  

                                                                            𝒉(𝑰(𝒕)) 

          𝑨       
𝜷𝑺(𝒕−𝝉)𝑰(𝒕−𝝉)

𝟏+𝜶𝑰(𝒕−𝝉)
                           𝜹𝑰(𝒕)    

 

 

     𝝁𝑺(𝒕)                             (𝝁 + 𝒅)𝑰(𝒕)                 𝝁𝑹(𝒕)        

Fig. 5.1: Transfer diagram of the infection through various compartments. 

 

The rate of change of the population in each compartment is given by the following 

nonlinear system of the delay differential equations:  

𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑆(𝑡) −

𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
,               

𝑆(𝑡) 𝐼(𝑡) 𝑅(𝑡) 
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𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
− (𝜇 + 𝑑 + 𝛿)𝐼(𝑡) −

𝑎𝐼(𝑡)

𝐼2(𝑡)+𝑏
,         (5.1) 

𝑑𝑅(𝑡)

𝑑𝑡
=

𝑎𝐼(𝑡)

𝐼2(𝑡)+𝑏
+ 𝛿𝐼(𝑡) − 𝜇𝑅(𝑡).               

where 𝜏 > 0 is a fixed time during which the infectious agents develop in the vector and 

it is only after this time that the infected vector can infect a susceptible individual. 

 

Let 𝐶 = 𝐶([−𝜏, 0], ℝ3) be the Banach space of continuous functions mapping the interval 

[−𝜏, 0] to ℝ3 with the topology of uniform convergence. By the fundamental theory of 

functional differential equations [Hattaf et al. (2013)], it can be shown that there exists a 

unique solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of the model (5.1) with initial data (𝑆0, 𝐼0, 𝑅0 ) ∈ 𝐶. 

For ecological reasons, we assume that the initial conditions of the model (5.1) satisfy: 

𝑆0(𝜑) ≥ 0, 𝐼0(𝜑) ≥ 0, 𝑅0(𝜑) ≥ 0, 𝜑 ∈ [−𝜏, 0].                 (5.2) 

 

The term ℎ(𝐼(𝑡)) =  
𝑎𝐼(𝑡)

𝑏 + 𝐼2(𝑡)
 in the model (5.1) represents the Monod-Haldane (M-H) 

type treatment rate, where 𝑎  is the cure/treatment rate and 𝑏 is the rate of limitation in 

treatment availability. The detailed explanation of the M-H treatment rate has already 

been given in section (2.1). The term 
𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
 in the model (5.1) represent the Holling 

functional type II incidence rate, and, here, 𝜏 is taken in both susceptible (𝑆) and infected 

(𝐼) populations to capture the role of latency period as time delay (see section (3.1) for 

detailed explanation).  

 

5.3 Basic properties of the model 

 

From the model (5.1) we can infer that 𝑆 and 𝐼 are free from the effect of 𝑅. Thus it is 

enough to consider the following reduced system for mathematical analysis: 

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝜇𝑆 −

𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
,               

𝑑𝐼

𝑑𝑡
=

𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
− (𝜇 + 𝑑 + 𝛿)𝐼 −

𝑎𝐼

𝐼2+𝑏
.          (5.3) 

with initial conditions  

𝑆0(𝜑) ≥ 0, 𝐼0(𝜑) ≥ 0, 𝜑 ∈ [−𝜏, 0].                                         (5.4) 
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The system (5.3) monitors the population. It is assumed that the 

parameters 𝐴, 𝜇, 𝛽, 𝑑, 𝛿, 𝑎, 𝛼, 𝑏 > 0. The description of parameters is given in Table 5.1. 

From Hattaf et al. [2013] it follows that all dependent variables of the system (5.3) are 

nonnegative i.e. (𝑆, 𝐼) ∈ ℝ+
2 .  

 

Theorem 5.1: The system (5.3) has a nonnegative solution with the initial value (5.4). 

Proof: The proof of this theorem is similar to theorem (4.2) as in section (4.3). Hence, it 

is omitted here. 

 

Theorem 5.2: All solutions of the system (5.3) starting in ℝ+
2  are bounded and enter in 

the set 𝐷 = {(𝑆, 𝐼) ∈ 𝑆(𝑡) + 𝐼(𝑡) ≤
𝐴

𝜇
}. 

Proof: The proof of this theorem is similar to theorem (4.1) as in section (4.3). Hence, it 

is omitted here. 

 

5.4 Equilibria and their stability analysis 

 

In this section, we find the equilibrium points and discuss their stability. Equilibria of the 

system (5.3) are obtained by setting the right-hand sides of the equations of the system to 

zero as given below: 

i. Disease-free equilibrium 𝑄(
 𝐴

𝜇
, 0) (DFE),   

ii. Endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗) (EE). 

 

5.4.1 Computation of the basic reproduction number (𝑹𝟎) 

 

The characteristic equation at DFE (𝑄) of the system (5.3) is given by  

(𝜇 + 𝜆) (
𝛽𝐴

𝜇
 𝑒−𝜆𝜏 − 𝜇 − 𝑑 − 𝛿 −

𝑎

𝑏
− 𝜆) = 0         (5.5)  

One of the roots of Eq. (5.5) is given by 𝜆1 = −𝜇 and other can be obtained from 

(
𝛽𝐴

𝜇
 𝑒−𝜆𝜏 − 𝜇 − 𝑑 − 𝛿 −

𝑎

𝑏
− 𝜆) = 0 

where,    
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The term 
𝛽𝐴

𝜇(𝜇+𝑑+𝛿+
𝑎

𝑏
)

𝑒−𝜆𝜏 at 𝜏 = 0, is known as the basic reproduction number, denoted 

by 𝑅0. Therefore, we define the basic reproduction number 𝑅0 of our model by 

𝑅0 =
𝛽𝐴

𝜇 (𝜇 + 𝑑 + 𝛿 +
𝑎
𝑏

)
. 

 

5.4.1.1 Analysis for 𝑹𝟎 ≠ 𝟏 

 

It can be observed that Eq. (5.5) always has one negative root 𝜆1 = −𝜇  and other roots 

are the solutions of the equation 

𝜆 + 𝜇 + 𝑑 + 𝛿 +
𝑎

𝑏
−

𝛽𝐴

𝜇
 𝑒−𝜆𝜏 = 0 

Let 

𝑓(𝜆) = 𝜆 + 𝜇 + 𝑑 + 𝛿 +
𝑎

𝑏
−

𝛽𝐴

𝜇
 𝑒−𝜆𝜏 

If 𝑅0 > 1, for real λ , 

𝑓(0) = 𝜇 + 𝑑 + 𝛿 +
𝑎

𝑏
−

𝛽𝐴

𝜇
= (𝜇 + 𝑑 + 𝛿 +

𝑎

𝑏
) (1 − 𝑅0) < 0, 𝐿𝑖𝑚

𝜆→ + ∞
𝑓(𝜆) → +∞ 

Hence, there exists a positive real root of 𝑓(𝜆) = 0 if 𝑅0 > 1. 

If 𝑅0 < 1, we assume that 𝑅𝑒 𝜆 ≥ 0. 

We notice that  

𝑅𝑒 𝜆 =
𝛽𝐴

𝜇
𝑒−𝑅𝑒 𝜆 𝜏 𝑐𝑜𝑠 𝐼𝑚 𝜆 𝜏 − (𝜇 + 𝑑 + 𝛿 +

𝑎

𝑏
) ≤

𝛽𝐴

𝜇
− (𝜇 + 𝑑 + 𝛿 +

𝑎

𝑏
)

= (𝜇 + 𝑑 + 𝛿 +
𝑎

𝑏
) ( 𝑅0 − 1) < 0. 

a contradiction to our assumption. Hence, if 𝑅0 < 1 then Eq. (5.5) has a root λ with a 

negative real part. 

Hence, we state the following theorem:  
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Theorem 5.3:  DFE 𝑄( 
𝐴

𝜇
, 0) is locally asymptotically stable if 𝑅0 < 1 and unstable 

if  𝑅0 > 1.  

 

5.4.1.2 Analysis at  𝑹𝟎 = 𝟏 

 

We notice that the system (5.3), when evaluated at  𝑅0 = 1, so that 𝛽 = 𝛽∗ =

𝜇(𝜇+𝑑+𝛿+
𝑎

𝑏
)

𝐴
,  has a zero eigenvalue and another eigenvalue that is negative. The stability 

behavior of the equilibrium point at  𝑅0 = 1 cannot be determined using linearization so 

we use center manifold theory [Sastry (1999)]. For this, we redefined 𝑆 = 𝑥1 and 𝐼 = 𝑥2 

then the system (5.3) can be rewritten as  

𝑑𝑥1

𝑑𝑡
= 𝐴 − 𝜇𝑥1 −

𝛽𝑥1(𝑡−𝜏)𝑥2(𝑡−𝜏)

1+𝛼𝑥2(𝑡−𝜏)
 ≡  𝑓1,        

𝑑𝑥2

𝑑𝑡
=

𝛽𝑥1(𝑡−𝜏)𝑥2(𝑡−𝜏)

1+𝛼𝑥2(𝑡−𝜏)
− (𝜇 + 𝑑 + 𝛿)𝑥2 −

𝑎𝑥2

𝑏+𝑥2
2 ≡ 𝑓2.        (5.6) 

 

Let  𝐽∗ be the Jacobian matrix at  𝑅0 = 1  and bifurcation parameter 𝛽 = 𝛽∗. Then 

𝐽∗ = [−𝜇 −
𝛽∗𝐴

𝜇
0 0

] 

Let 𝑢 = [𝑢1, 𝑢2 ] and 𝑤 = [𝑤1, 𝑤2 ]𝑇 denotes the left eigenvector and right eigenvector of 

 𝐽∗ associated with null eigenvalue. Then, we get 

𝑢1 = 0, 𝑢2 = 1 and 𝑤1 = −
𝛽∗𝐴

𝜇2
, 𝑤2 = 1. 

 

The non-zero partial derivatives corresponding to the functions of the system (5.6) 

evaluated at  𝑅0 = 1 and  𝛽 = 𝛽∗ are  

(
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2
)

𝑄
= 𝛽∗, (

𝜕2𝑓2

𝜕𝑥2𝜕𝑥1
)

𝑄
= 𝛽∗, (

𝜕2𝑓2

𝜕𝑥2
2)

𝑄
=

−2𝛼𝛽∗𝐴

𝜇
 and (

𝜕2𝑓2

𝜕𝑥2𝜕𝛽∗)
𝑄

=
𝐴

𝜇
 

Then from [Chavez and Song (2004)], the bifurcation constants 𝑎1 and  𝑏1 are 

𝑎1 = ∑ 𝑢𝑘𝑤𝑖𝑤𝑗

2

𝑘,𝑖,𝑗=1

(
𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
)

𝑄

 

                 = 𝑢2 (2𝑤1𝑤2𝛽∗ + 𝑤2
2 (

−2𝛼𝛽∗𝐴

𝜇
)) 
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= − (
2𝛽∗𝐴(𝛽∗ + 𝜇𝛼)

𝜇2
) < 0 

and 

𝑏1 = ∑ 𝑢𝑘𝑤𝑖

2

𝑘,𝑖=1

(
𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝛽∗
)

𝑄

= 𝑢2 (𝑤2

𝐴

𝜇
) 

=
𝐴

𝜇
> 0. 

Thus, the following theorem is established: 

 

Theorem 5.4: The behavior of DFE 𝑄 (
𝐴

𝜇
, 0) changes from stable to unstable at  𝑅0 =

1 and it implies the existence of a positive equilibrium as  𝑅0 crosses one. Hence, the 

system (5.3) undergoes a forward transcritical bifurcation at 𝑅0 = 1.    

 

5.4.2 Existence and stability analysis of endemic equilibrium 

 

To find the conditions for the existence of an equilibrium 𝑄∗(𝑆∗, 𝐼∗) for which the disease 

is endemic in the population, the system (5.3) is rearranged to get  𝑆∗, and 𝐼∗  which gives 

𝑆∗ =
(1 + 𝛼𝐼∗) ((𝜇 + 𝑑 + 𝛿)(𝑏 + 𝐼∗2) +  𝑎)

𝛽(𝑏 + 𝐼∗2)
, 

where 𝐼∗ is given by the following equation 

 

𝐶1𝐼∗3 + 𝐶2𝐼∗2 + 𝐶3𝐼∗ + 𝐶4 = 0           (5.7) 

where 

𝐶1 = (𝜇 + 𝑑 + 𝛿)(𝜇𝛼 + 𝛽),   

𝐶2 = 𝜇(𝜇 + 𝑑 + 𝛿) − 𝐴𝛽,  

 𝐶3 = (𝑏(𝜇 + 𝑑 + 𝛿) + 𝑎)(𝜇𝛼 + 𝛽),  

𝐶4 = −𝛽𝑏𝐴 + 𝜇(𝑎 + 𝜇𝑏 + 𝛿𝑏 + 𝑑𝑏) = 𝜇𝑏(𝜇 + 𝑑 + 𝛿 +
𝑎

𝑏
)(1 − 𝑅0).  

 

Now applying Descartes’s rule of signs [Wang (2004)], for 𝑅0 > 1, the cubic equation 

admits a unique positive real root 𝐼∗ if the condition  𝐶1 > 0, 𝐶2 > 0, 𝐶3 > 0 and 𝐶4 <

0 is satisfied. 
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After getting  𝐼∗ we can obtain  𝑆∗. Thus, there exists an endemic equilibrium 𝑄∗(𝑆∗ , 𝐼∗ ) 

if above condition hold true. 

The local stability of  𝑄∗ is explored as follows:  

 

The characteristic equation of the system (5.3) obtained at  𝑄∗(𝑆∗ , 𝐼∗ ) is given as 

𝜆2 + 𝑝0𝜆 + 𝑞0 + (𝑝1𝜆 + 𝑞1)𝑒−𝜆𝜏 = 0, 

where 

𝑝0 = ((2𝜇 + 𝑑 + 𝛿) +
𝑎(𝑏−𝐼∗2

)

(𝑏+𝐼∗2)
2 )  ,  𝑞0 = 𝜇 ((𝜇 + 𝑑 + 𝛿) +

𝑎(𝑏−𝐼∗2
)

(𝑏+𝐼∗2)
2 ),   

𝑝1 = (
𝛽𝐼∗

(1+𝛼𝐼∗)
−

𝛽𝑆∗

(1+𝛼𝐼∗)2
) ,   𝑞1 = (𝛽 ((𝜇 + 𝑑 + 𝛿) +

𝑎(𝑏−𝐼∗2
)

(𝑏+𝐼∗2)
2 )

𝐼∗

(1+𝛼𝐼∗)
−

𝜇𝛽𝑆∗

(1+𝛼𝐼∗)2
) . 

 

Theorem 5.5: For 𝜏 = 0, 𝑄∗ is locally asymptotically stable if both conditions 

𝑆∗

(1+𝛼𝐼∗)𝐼∗ ≤ 1, and
𝜇𝑆∗

(1+𝛼𝐼∗)
≤ ((𝜇 + 𝑑 + 𝛿) +

𝑎(𝑏− 𝐼∗2
)

(𝑏+𝐼∗2)
2 ) 𝐼∗ are satisfied simultaneously. 

Proof: At 𝑄∗, the characteristic equation at 𝜏 = 0 is given by 

𝜆2 + 𝑝0𝜆 + 𝑞0 + (𝑝1𝜆 + 𝑞1) = 0,            (5.8) 

It is easy to show that if both conditions  
𝑆∗

 (1+𝛼𝐼∗)𝐼∗ ≤ 1, and 
𝜇𝑆∗

(1+𝛼𝐼∗)
≤ ((𝜇 + 𝑑 + 𝛿) +

𝑎( 𝑏− 𝐼∗2
)

(𝑏+𝐼∗2)
2 ) 𝐼∗ are satisfied simultaneously, then 

𝑝0 + 𝑝1 = ((2𝜇 + 𝑑 + 𝛿) +
𝑎(𝑏−𝐼∗2

)

(𝑏+𝐼∗2)
2 ) + (

𝛽𝐼∗

(1+𝛼𝐼∗)
−

𝛽𝑆∗

(1+𝛼𝐼∗)2
)  

=  (𝜇 + (𝜇 + 𝑑 + 𝛿) +
𝑎(𝑏 − 𝐼∗2

)

(𝑏+𝐼∗2)
2 ) +

𝛽

(1+𝛼𝐼∗)
(𝐼∗ −

𝑆∗

(1+𝛼𝐼∗)
) > 0,   

𝑞0 + 𝑞1 = 𝜇 ((𝜇 + 𝑑 + 𝛿) +
𝑎(𝑏−𝐼∗2

)

(𝑏+𝐼∗2)
2 ) + (𝛽 ((𝜇 + 𝑑 + 𝛿) +

𝑎(𝑏−𝐼∗2
)

(𝑏+𝐼∗2)
2 )

𝐼∗

(1+𝛼𝐼∗)
−

𝜇𝛽𝑆∗

(1+𝛼𝐼∗)2)   
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= 𝜇 ((𝜇 + 𝑑 + 𝛿) +
𝑎(𝑏− 𝐼∗2

)

(𝑏+𝐼∗2)
2 ) +

𝛽

(1+𝛼𝐼∗)
(((𝜇 + 𝑑 + 𝛿) +

𝑎(𝑏−𝐼∗2
)

(𝑏+𝐼∗2)
2 ) 𝐼∗ −

𝜇𝑆∗

(1+𝛼𝐼∗)
) > 0.  

Hence, using the Routh-Hurwitz criterion, the endemic equilibrium 𝑄∗ of the system (5.3) 

is locally asymptotically stable at 𝜏 = 0.  

 

Theorem 5.6: For 𝜏 > 0, 𝑄∗ is locally asymptotically stable if all the three 

conditions  
𝜇𝑆∗

(1+𝛼𝐼∗)
≤ ((𝜇 + 𝑑 + 𝛿) +

𝑎(𝑏− 𝐼∗2
)

(𝑏+𝐼∗2)
2 ) 𝐼∗ ,

𝛽

𝜇
≤

(1+𝛼𝐼∗)

𝐼∗  and 𝑀2 < 𝑀1  hold true 

simultaneously, 

where 

𝑀1 = 𝜇2 + ((𝜇 + 𝑑 + 𝛿) +
𝑎(𝑏−𝐼∗2

)

(𝑏+𝐼∗2)
2 )

2

,  

𝑀2 = (
𝛽𝐼∗

(1+𝛼𝐼∗)
−

𝛽𝑆∗

(1+𝛼𝐼∗)2)
2

.  

Proof: At 𝑄∗ the characteristic equation at 𝜏 > 0 is given by 

𝜆2 + 𝑝0𝜆 + 𝑞0 + (𝑝1𝜆 + 𝑞1)𝑒−𝜆𝜏 = 0           (5.9) 

For 𝜏 > 0, by [Ruan and Wei (2003)], if instability occurs for a particular value of the 

delay 𝜏,  a characteristic root of Eq. (5.9) must intersect the imaginary axis. Therefore, we 

take 𝜆 = 𝑖𝜔, 𝜔 > 0 is the roots of Eq. (5.9.). Substituting  𝜆 = 𝑖𝜔 in Eq. (5.9), we get 

−𝜔2 + 𝑞0 + 𝑝1𝜔 sin 𝜔𝜏 + 𝑞1 cos 𝜔𝜏 + 𝑖 (𝑝1𝜔 cos 𝜔𝜏 − 𝑞1 sin 𝜔𝜏 +  𝑝0𝜔) = 0 (5.10) 

On separating real and imaginary part of Eq. (5.10)  

𝑝1𝜔 sin 𝜔𝜏 + 𝑞1  cos 𝜔𝜏 = 𝜔2 − 𝑞0         (5.11) 

𝑝1𝜔 cos 𝜔𝜏 − 𝑞1  sin 𝜔𝜏 = −𝑝0𝜔          (5.12) 

On squaring and adding both sides of Eqs. (5.11) and (5.12), we find 

𝜔4 + (𝑝0
2 − 2𝑞0 − 𝑝1

2)𝜔2 + (𝑞0
2 − 𝑞1

2) = 0       (5.13) 
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Let 𝜔2 = 𝑧1, Eq. (5.13) becomes 

    𝑧1
2 + 𝑃𝑧1 + 𝑇 = 0       (5.14) 

where 𝑃 = (𝑝0
2 − 2𝑞0 − 𝑝1

2) and  𝑇 = (𝑞0
2 − 𝑞1

2) 

It is easy to show that if all three conditions   
𝜇𝑆∗

(1+𝛼𝐼∗)
≤ ((𝜇 + 𝑑 + 𝛿) +

𝑎(𝑏− 𝐼∗2
)

(𝑏+𝐼∗2)
2 ) 𝐼∗ ,

𝛽

𝜇
≤

(1+𝛼𝐼∗)

𝐼∗
 and 𝑀2 < 𝑀1 are satisfied simultaneously, then 

𝑃 = (𝑝0
2 − 2𝑞0 − 𝑝1

2) = ((2𝜇 + 𝑑 + 𝛿) +
𝑎(𝑏−𝐼∗2

)

(𝑏+𝐼∗2)
2 )

2

− 2𝜇 ((𝜇 + 𝑑 + 𝛿) +

𝑎(𝑏−𝐼∗2
)

(𝑏+𝐼∗2)
2 ) − (

𝛽𝐼∗

(1+𝛼𝐼∗)
−

𝛽𝑆∗

(1+𝛼𝐼∗)2)
2

  

= 𝜇2 + ((𝜇 + 𝑑 + 𝛿) +
𝑎(𝑏−𝐼∗2

)

(𝑏+𝐼∗2)
2 )

2

− (
𝛽𝐼∗

(1+𝛼𝐼∗)
−

𝛽𝑆∗

(1+𝛼𝐼∗)2)
2

  

= 𝑀1 − 𝑀2 > 0.  

 

𝑇 = (𝑞0
2 − 𝑞1

2) = (𝑞0 − 𝑞1)(𝑞0 + 𝑞1)  

= (𝜇 ((𝜇 + 𝑑 + 𝛿) +
𝑎(𝑏−𝐼∗2

)

(𝑏+𝐼∗2)
2 ) − (𝛽 ((𝜇 + 𝑑 + 𝛿) +

𝑎(𝑏−𝐼∗2
)

(𝑏+𝐼∗2)
2 )

𝐼∗

(1+𝛼𝐼∗)
−

𝜇𝛽𝑆∗

(1+𝛼𝐼∗)2) ) (𝜇 ((𝜇 + 𝑑 + 𝛿) +
𝑎(𝑏−𝐼∗2

)

(𝑏+𝐼∗2)
2 ) + (𝛽 ((𝜇 + 𝑑 + 𝛿) +

𝑎(𝑏−𝐼∗2
)

(𝑏+𝐼∗2)
2 )

𝐼∗

(1+𝛼𝐼∗)
−

𝜇𝛽𝑆∗

(1+𝛼𝐼∗)2) )  

= (((𝜇 + 𝑑 + 𝛿) +
𝑎(𝑏−𝐼∗2

)

(𝑏+𝐼∗2)
2 ) (𝜇 −

𝛽𝐼∗

(1+𝛼𝐼∗)
) +

𝜇𝛽𝑆∗

(1+𝛼𝐼∗)2) (𝜇 ((𝜇 + 𝑑 + 𝛿) +

𝑎(𝑏−𝐼∗2
)

(𝑏+𝐼∗2)
2 ) + (𝛽 ((𝜇 + 𝑑 + 𝛿) +

𝑎(𝑏−𝐼∗2
)

(𝑏+𝐼∗2)
2 )

𝐼∗

(1+𝛼𝐼∗)
−

𝜇𝛽𝑆∗

(1+𝛼𝐼∗)2) ) > 0. 

By Routh-Hurwitz criterion, Eq. (5.14) will have roots with negative real part, so this 

contradicts to our assumption for instability i. e. 𝜆 = 𝑖𝜔. Hence, it is proved that 𝑄∗ of the 

model is locally asymptotically stable for 𝜏 > 0. 

 

5.5 Numerical simulation 
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In this section, we will discuss the results of numerical simulations of the system (5.3) 

numerically. We choose numerically experimental values of the parameters as given in 

Table 5.1. 

 

Fig. 5.2 shows the behavior of susceptible and infected at different values of time lag τ =

0,1 and 2. It is evident that when the time lag is increasing, the susceptibles are 

decreasing and the number of infected is increasing. Furthermore, both populations are 

decreasing and increasing respectively to attain a steady state. Hence, it can be concluded 

that the time delay plays an important role to understand the infection progression in the 

human population. 

 

Fig. 5.3 shows the difference in the infected population at various values of the 

transmission rate (𝛽). It can be seen that as the values of 𝛽 increases, the numbers of 

infected individuals also increase. 

 

Fig. 5.4 demonstrates the changes in the infected population at various values of 

inhibition rate (𝛼) according to which, the infected population is decreasing with the 

increase in the value of α . 

 

Fig. 5.5 portrays the infected population at various values of cure rate/treatment rate (𝑎). 

Clearly, as the value of treatment rate is increasing the infected population is decreasing. 

 

Fig. 5.6 demonstrates the variation in the infected population with and without Monod-

Haldane type treatment rate. According to the behavior of the graph, the infected 

population is less with M-H type treatment rate in comparison to the infected population 

without M-H type treatment rate. Hence, the M-H function type treatment rate plays a 

significant role in controlling the infection in the population. 

 

5.6 Conclusions 

 

In this chapter, we proposed a delayed SIR model along with Holling type II incidence 

and M-H functional type treatment rates. We showed that the model admits the disease-

free equilibrium (DFE) and the endemic equilibrium (EE). We showed the stability of 
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DFE with the help of the basic reproduction number 𝑅0. We proved that DFE is locally 

asymptotically stable when 𝑅0 < 1 and unstable when 𝑅0 > 1 for time lag 𝜏 ≥ 0. The 

stability of DFE at 𝑅0 = 1 has been discussed by center manifold theory and it is 

investigated that the model undergoes a forward transcritical bifurcation. The stability of 

EE has been investigated by the Routh-Hurwitz criterion. We investigated that EE is 

locally asymptotically stable when the theorem 5.5 and theorem 5.6 hold true for time lag 

𝜏 = 0 and 𝜏 > 0 respectively. The numerical simulations indicate that the infection will 

increase with the increased transmission rate, infection settles down even when there is no 

treatment, but at a higher value than with treatment. Moreover, the infection will decrease 

when there is an increase in the measures of inhibition adopted by infected. With the help 

of numerical simulations, we also observed that the infection may eradicate only when the 

treatment given to the infectives is appropriately managed according to the availability of 

the resources.   

 

 

 

Table 5.1: Description and numerical values of parameters for simulation 

 

Parameter Value 

Constant recruitment rate (𝐴) 5 

Inhibition rate due to infected (𝛼) 0.002 

Transmission rate (𝛽) 0.004 

Natural mortality rate (𝜇) 0.05 

Disease induced mortality rate (𝑑) 0.001 

Recovery rate (𝛿) 0.002 

Treatment rate or Cure rate (𝑎) 0.2 

Limitation rate (𝑏) in treatment availability 0.004 
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Fig. 5.2: Susceptible (𝑆) and infected (𝐼) population at various values of time lag 𝜏. 

 

Fig. 5.3: Infected population (𝐼) at various values of the transmission rate (𝛽). 
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Fig. 5.4: Infected population (𝐼) at various values of measures of inhibition(𝛼). 

 

Fig. 5.5: Infected population (𝐼) at various values of cure rate (𝑎). 
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Fig. 5.6: Infected population (𝐼) with and without Monod-Haldane (M-H) treatment rate 

with 𝑎 = 0.8 and 𝑏 = 0.004. 
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CHAPTER 6 

 

TIME DELAYED SIR EPIDEMIC MODEL WITH MONOD-

HALDANE INCIDENCE RATE AND DIFFERENT 

TREATMENT RATES 

 

 

In case of an outbreak of an epidemic, psychological or inhibitory effects and various 

limitations on treatment methods play major roles in controlling the impact of an 

epidemic in society. The Monod-Haldane (M-H) functional type incidence rate is taken to 

annotate the psychological or inhibitory effect on the population with time delay 

representing the incubation period of the disease. The Holling type II & III treatment rates 

are considered to incorporate the limitation in treatment availability for infectives. 

Therefore, in the present paper, a novel combination of M-H incidence rate and two 

different treatment rates (Holling type II & III) is applied to the time-delayed SIR 

epidemic model to incorporate these important aspects. The mathematical analysis shows 

that the model has two equilibria, namely, disease-free equilibrium (DFE) and endemic 

equilibrium (EE). The detailed dynamical analysis of the model has been performed using 

the basic reproduction number 𝑅0, center manifold theory, Routh-Hurwitz criterion and 

Lyapunov functional. It has been investigated that disease can be eradicated when 𝑅0 is 

less than unity and disease will persist when 𝑅0 is greater than unity. The Hopf 

bifurcation at endemic equilibrium has also been addressed. Further, global stability 

behavior of equilibria only for the second combination i.e. M-H incidence and Holling 

type III treatment rates has also been discussed. Finally, the numerical simulations have 

been performed to support our analytical findings. 

 

 

 

 

 

 

 



110 
 

6.1 Introduction 

 

The widespread and frequent occurrences of many communicable diseases are a major 

problem for healthcare workers and policymakers all over the world. Controlling 

infectious diseases has been an increasingly complex issue in recent years. In order to 

control or to remove disease, a complete understanding of the dynamics of the disease 

progression is required. Based on the observed characteristics of infectious diseases, 

epidemiologists [Michael et al. (1999); Alexander et al. (2004); Gumel et al. (2006); 

Hattaf and Yousfi (2009); Xu and Ma (2009a); Zhang and Yaohong (2010); Hattaf et al. 

(2013); Zhou and Fan (2012); Dubey et al. (2013), (2015) & (2016)] have attempted to 

construct mathematical models that would make it possible to understand various aspects 

of many diseases and to suggest its control strategy. A pivotal issue in the study of the 

spread of an infectious disease is how it is transmitted. In epidemiology, the transmission 

of infectious disease is determined by the incidence rate which is defined as the average 

number of new cases infected by a disease per unit time. Therefore, the incidence rate 

plays a key role to study the qualitative description of transmission dynamics of the 

infectious disease. 

 

In this chapter, to describe the psychological effect from the behavioral change of the 

susceptible individuals when the number of infective people is very high, we have 

considered Monod-Haldane (M-H) type incidence rate. This is a non-monotone type 

incidence rate, which interprets the “psychological” effects [Liu et al. (1987)]. The 

detailed explanation of the M-H functional type incidence rate has already been given in 

section 2.1. For most communicable diseases there is an interval between infection and 

visibility of symptoms (the incubation period) in which the infectious agent is multiplying 

or developing. To push the epidemic models into a more realistic state, we have 

considered M-H functional type incidence rate with the inclusion of time delay 

(representing the incubation period). To contribute to the nonlinear mechanism of the 

epidemic, we have incorporated nonlinear incidence rate as M-H functional with the 

inclusion of time delay and treatment rate in two different forms (Holling functional type 

II & III) in our model. The detailed explanation of Holling type II and Holling type III 

treatment rates have already been given in section 3.1 and section 4.1 respectively. 
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In this chapter, we have examined the impact of time lag on the SIR epidemic model with 

Monod-Haldane functional type incidence rate and Holling type II & III treatment rates, 

separately, for better understanding of the disease mechanism. Further, we have evaluated 

the basic reproduction number (𝑅0) [Driessche and Watmough (2002)] for both the 

combinations of incidence and treatment rates. Furthermore, for the model dynamics, 

stability analysis of the equilibria has been analyzed by the basic reproduction number, 

center manifold theory, Descartes’s Rule [Wang (2004)], Routh-Hurwitz criterion and 

Lyapunov direct method. Only local stability of model equilibria is discussed for the 

combination of M-H functional type incidence and Holling type II treatment rates, 

whereas for the combination of M-H functional type treatment and Holling type III 

treatment rates local as well as global stability of equilibria are discussed.  

 

6.2 Mathematical model 

 

Mathematical models help to study the transmission dynamics and spread of infectious 

diseases, to recognize the factors governing the transmission process in order to improve 

effective control strategies and to evaluate the efficacy of surveillance strategies and 

possible interventions. Therefore, we propose a mathematical SIR model along with time 

delay, nonlinear M-H functional type incidence rate, and two different treatment rates. 

We assume that at time 𝑡 the total population is  𝑁(𝑡), with the immigration of susceptible 

individuals at a constant rate 𝐴. Further, it is assumed that the total population 𝑁(𝑡) is 

divided into three disjoint subclasses of individuals, namely; susceptible 𝑆(𝑡), 

infectives 𝐼(𝑡), and recovered 𝑅(𝑡). It is assumed that the disease can be spread due to the 

direct contact between susceptible and infectives only. Let 𝜇 be the natural death rate of 

the population, 𝑑 be the disease induced death rate and 𝛿 be the recovery rate of infected 

individuals. The progression dynamics of the infection is given by the block diagram in 

Fig. 6.1 below. 
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                                                                              𝑻(𝑰(𝒕)) 

                𝑨           
𝜷𝑺(𝒕)𝑰(𝒕−𝝉)

𝟏+𝜶𝑰𝟐(𝒕−𝝉)
                        𝜹𝑰(𝒕)    

 

 

         𝝁𝑺(𝒕)                               (𝝁 + 𝒅)𝑰(𝒕)             𝝁𝑹(𝒕)      

Fig. 6.1: Transfer diagram of the infection through various compartments. 

  

The dynamics of the model is given by the following system of nonlinear delay 

differential equations: 

d𝑆(𝑡)

d𝑡
= 𝐴 − 𝜇𝑆(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼2(𝑡−𝜏)
 ,             

d𝐼(𝑡)

d𝑡
=

𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼2(𝑡−𝜏)
− (𝜇 + 𝑑 + 𝛿)𝐼(𝑡) − 𝑇(𝐼(𝑡)),         (6.1) 

d𝑅(𝑡)

d𝑡
= 𝑇(𝐼(𝑡))  + 𝛿𝐼(𝑡) − 𝜇𝑅(𝑡) .           

where time lag 𝜏 > 0 represents the incubation period of the disease. 

 

The term  𝑇(𝐼(𝑡)) denotes the nonlinear saturated treatment rate. 𝑇(𝐼(𝑡)) Is taken in two 

following form: 

i. 𝑇1(𝐼(𝑡)) =
𝑎 𝐼(𝑡)

(1+𝑏 𝐼(𝑡))
  (Holling type II treatment rate). 

ii. 𝑇2(𝐼(𝑡)) =
𝑎 𝐼2(𝑡)

(1+𝑏 𝐼2(𝑡))
 (Holling type III treatment rate). 

 

Let 𝐶 = 𝐶([−𝜏, 0], ℝ3) denotes the Banach space of continuous functions, mapping the 

interval [−𝜏, 0] to ℝ3 with the topology of uniform convergence. It is well known by the 

fundamental theory of functional differential equations [Hattaf et al. (2013); Xu and Ma 

(2009a); Hale and Lunel (1993); Kuang (1993)] that the model (6.1) admits a unique 

solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) with initial data (𝑆0, 𝐼0, 𝑅0 ) ∈ 𝐶. For biological reasons the 

initial conditions of the model (6.1) are non-negative continuous functions 

𝑆0(𝜑) ≥ 0, 𝐼0(𝜑) ≥ 0, 𝑅0(𝜑) ≥ 0, 𝜑 ∈ [−𝜏, 0].                                   (6.2) 

 

𝑆(𝑡) 𝐼(𝑡) 𝑅(𝑡) 
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The term  
𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼2(𝑡−𝜏)
  in the model represents the nonlinear M-H functional type incidence 

rate with time lag 𝜏, here 𝛽 is the transmission rate of infection and 𝛼 measures the 

inhibitory or psychological effects due to the infected individuals. The 

term 
𝑎𝐼(𝑡)

1+𝑏𝐼(𝑡)
 & 

𝑎𝐼2(𝑡)

1+𝑏𝐼2(𝑡)
 in the model, represent Holling type II & III treatment rates, where 

𝑎 and 𝑏 are both non-negative constants. The parameters 𝑎 and 𝑏 are the cure rate given 

to infectives and the rate of limitation in treatment availability, respectively. The 

movement of an epidemic in various classes is presented by the transfer diagram as given 

in Fig. 6.1. 

 

6.3 Basic properties of the model 

 

The first two equations of the model (6.2) do not depend on the third equation; therefore, 

without loss of generality, it is sufficient to consider the following reduced system for the 

analysis: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑆(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼2(𝑡−𝜏)
 ,          

𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼2(𝑡−𝜏)
− (𝜇 + 𝑑 + 𝛿)𝐼(𝑡) − 𝑇(𝐼(𝑡))  ,           (6.3) 

 

with initial conditions 

𝑆(𝜃) = 𝜑1(𝜃), 𝐼(𝜃) = 𝜑2(𝜃),
                         

  𝜑𝑖(𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0], 𝜑𝑖(0) > 0 (𝑖 = 1,2)      (6.4) 

 

In the system (6.3), for ecological reasons, it is assumed that all 

parameters 𝐴, 𝜇, 𝛽, 𝑑, 𝛿, 𝑎, 𝛼 and 𝑏 are positive. Since the system (6.3) monitors the 

population, it is important to show that all state variables with non-negative initial data 

will remain non-negative and bounded for all time. Thus, we have the following theorem: 

 

Theorem 6.1: All state variables of the system (6.3), subject to the condition (6.4), 

remain non-negative and bounded for all 𝑡 ≥ 0. 

Proof: The proof of this theorem is similar to the proof of theorems 4.1 & 4.2 as given 

in section 4.1. Hence, it is omitted here. 
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6.4 Equilibrium points 

 

In this section, we obtain the equilibrium points of the system (6.3). The equilibria of the 

system (6.3) are calculated by putting the right-hand terms to zero which are as follow: 

i. Disease-free equilibrium (DFE) 𝑄(
𝐴

𝜇
, 0), 

ii. Endemic equilibrium (EE) 𝑄∗(𝑆∗, 𝐼∗). 

  

6.5 Stability analysis of the equilibria for the combination of M-H type 

incidence and Holling type II treatment rates 

 

In this section, we discuss the local stability of model equilibria when the incidence rate is 

M-H functional type and treatment rate is Holling functional type II. To study the stability 

behavior, first, we compute the basic reproduction number (𝑅0). 

 

6.5.1 Computation of basic reproduction number (𝑹𝟎) 

 

The characteristic equation at 𝑄 (
𝐴

𝜇
, 0) of the system (6.3) is given by  

(𝜇 + 𝜆) (
𝛽𝐴

𝜇
 𝑒−𝜆𝜏 − 𝜇 − 𝑑 − 𝛿 − 𝑎 − 𝜆) = 0          (6.5) 

One root of Eq. (6.5) is given by 𝜆1 = −𝜇 and other roots can be obtained from the 

following equation:  

(
𝛽𝐴

𝜇
 𝑒−𝜆𝜏 − 𝜇 − 𝑑 − 𝛿 − 𝑎 − 𝜆) = 0 

The term 
𝛽𝐴

𝜇(𝜇+𝑑+𝛿+𝑎)
𝑒−𝜆𝜏 at 𝜏 = 0 is the basic reproduction number 𝑅0 [Driessche and 

Watmough (2002)] of our model i.e. 

𝑅0 =
𝛽𝐴

𝜇(𝜇 + 𝑑 + 𝛿 + 𝑎)
.  

 

6.5.2 Analysis for 𝑹𝟎 ≠ 𝟏 
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Clearly, Eq. (6.5) has a negative root 𝜆1 = −𝜇  and other roots are the solution of the 

equation 

 𝜆 + 𝜇 + 𝑑 + 𝛿 + 𝑎 −
𝛽𝐴

𝜇
 𝑒−𝜆𝜏 = 0           (6.6) 

Let  

𝑓(𝜆) = 𝜆 + 𝜇 + 𝑑 + 𝛿 + 𝑎 −
𝛽𝐴

𝜇
 𝑒−𝜆𝜏 

If 𝑅0 > 1, then for real 𝜆, 

𝑓(0) = 𝜇 + 𝑑 + 𝛿 + 𝑎 −
𝛽𝐴

𝜇
< 0, Lim

𝜆→+∞
𝑓(𝜆) → +∞ 

Hence, if 𝑅0 > 1 then 𝑓(𝜆) = 0 has a positive real root. 

If 𝑅0 < 1, we suppose that 𝑅𝑒 𝜆 ≥ 0. 

We observe that  

            𝑅𝑒 𝜆 =
𝛽𝐴

𝜇
 𝑒−𝑅𝑒 𝜆 𝜏 cos 𝐼𝑚 𝜆 𝜏 − (𝜇 + 𝑑 + 𝛿 + 𝑎) ≤

𝛽𝐴

𝜇
 − (𝜇 + 𝑑 + 𝛿 + 𝑎) < 0  

a contradiction to our assumption. Hence, if 𝑅0 < 1 then  𝜆 is a root of Eq. (6.5) with the 

negative real part.  

Thus, the following theorem is proposed: 

 

Theorem 6.2: DFE is locally asymptotically stable if 𝑅0 < 1 and unstable if  𝑅0 > 1 

for 𝜏 ≥ 0. 

 

6.5.3 Analysis at  𝑹𝟎 = 𝟏 

 

i. For 𝝉 > 𝟎 

 

If  𝑅0 = 1, then 𝜆 = 0 is a simple root of Eq. (6.5). Let 𝜆 = 𝑥 + 𝑖𝑦 be any of the other 

solutions, then Eq. (6.6) change into: 
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𝑥 + 𝑖𝑦 + 𝜇 + 𝑑 + 𝛿 + 𝑎 −
𝛽𝐴

𝜇
 𝑒−(𝑥+𝑖𝑦 )𝜏 = 0         (6.7) 

By using Euler’s formula and by separating real and imaginary parts we can write 

𝑥 + 𝜇 + 𝑑 + 𝛿 + 𝑎 =
𝛽𝐴

𝜇
 𝐶𝑜𝑠 𝑦𝜏 𝑒−𝑥𝜏,  𝑦 = −

𝛽𝐴

𝜇
 𝑆𝑖𝑛 𝑦𝜏 𝑒−𝑥𝜏       (6.8) 

𝑅0 = 1 implies  
𝛽𝐴

𝜇
= (𝜇 + 𝑑 + 𝛿 + 𝑎). Moreover, there exists root that satisfies both the 

equations of (6.8), then they will also satisfy the equation obtained on squaring and 

adding them member to member, as follows 

(𝑥 + 𝜇 + 𝑑 + 𝛿 + 𝑎)2 + 𝑦2 = (𝜇 + 𝑑 + 𝛿 + 𝑎)2𝑒−2𝑥𝜏.        (6.9) 

To verify Eq. (6.9), we must have 𝑥 ≤ 0. Thus, we proposed the following theorem: 

 

Theorem 6.3: DFE of the system (6.3) is linearly neutrally stable if  𝑅0 = 1. 

 

ii. For 𝝉 = 𝟎 

 

When we evaluate the system (6.3) at  𝑅0 = 1 and bifurcation parameter 𝛽 = 𝛽∗ =

𝜇(𝜇+𝑑+𝛿+𝑎)

𝐴
, we obtain that system has a zero eigenvalue and another eigenvalue is 

negative. Therefore, the stability behavior of DFE at  𝑅0 = 1 cannot be examined using 

linearization technique. So, to examine the behavior of the equilibrium point, we use 

center manifold theory [Sastry (1999)]. To apply the center manifold theory, we redefine  

𝑆(𝑡) = 𝑥1 and 𝐼(𝑡) = 𝑥2 then the system (6.3) can be re-written as   

𝑑𝑥1

𝑑𝑡
= 𝐴 − 𝜇𝑥1 −

𝛽𝑥1𝑥2

1+𝛼𝑥2
2

≡ 𝑓1 ,         

𝑑𝑥2

𝑑𝑡
=

𝛽𝑥1𝑥2

1+𝛼𝑥2
2

− (𝜇 + 𝑑 + 𝛿)𝑥2 −
𝑎𝑥2

1+𝑏𝑥2
≡ 𝑓2.        (6.10) 

 

The Jacobian matrix, denoted by  𝐽∗ of the system (6.10) evaluated at 𝑅0 = 1 and 𝛽 =

𝛽∗is given by 

𝐽∗ = [−𝜇 −
𝛽∗𝐴

𝜇
0 0

] 
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  Let 𝑢 = [𝑢1, 𝑢2 ] and 𝑤 = [𝑤1, 𝑤2 ]𝑇 be the left eigenvector and right eigenvector of 

 𝐽∗corresponding to the zero eigenvalue. Then we have 

𝑢1 = 0, 𝑢2 = 1 and 𝑤1 = −
𝛽∗𝐴

𝜇2
, 𝑤2 = 1. 

 

The non-zero partial derivatives associated with the functions of the system (6.10) 

evaluated at  𝑅0 = 1 and  𝛽 = 𝛽∗ are  

(
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2
)

𝑄
= (

𝜕2𝑓2

𝜕𝑥2𝜕𝑥1
)

𝑄
= 𝛽∗, and (

𝜕2𝑓2

𝜕𝑥2𝜕𝛽∗
)

𝑄
=

𝐴

𝜇
. 

Then, from [Chavez and Song (2004)], the bifurcation constants 𝑎1and 𝑏1 are 

𝑎1 = ∑ 𝑢𝑘𝑤𝑖𝑤𝑗

2

𝑘,𝑖,𝑗=1

(
𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
)

𝑄

 

= 𝑢2(2𝑤1𝑤2 𝛽∗ + 𝑤2
2. 0 + 𝑤1

2. 0) 

= −2
 𝛽∗2𝐴

𝜇2
< 0, 

and 

𝑏1 = ∑ 𝑢𝑘𝑤𝑖

2

𝑘,𝑖=1

(
𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝛽∗
)

𝑄

 

= 𝑢2 (𝑤2

𝐴

𝜇
) 

=
𝐴

𝜇
> 0. 

The bifurcation constants 𝑎1 < 0 and 𝑏1 > 0. Hence, from Theorem 4.1(iv) of [Chavez 

and Song (2004)], we propose the following theorem: 

 

Theorem 6.4: DFE exhibits the forward bifurcation when the basic reproduction 

number is equal to unity. 

 

The bifurcation is illustrated in Fig. 6.2. 

 

6.5.4 Existence and stability analysis of endemic equilibrium 
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To investigate the conditions for the existence of the endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗), the 

system (6.3) is rearranged to get  𝑆∗, and 𝐼∗  which gives 

𝑆∗ =
((𝜇 + 𝑑 + 𝛿)(1 + 𝑏𝐼∗) + 𝑎)(1 + 𝛼𝐼∗2)

𝛽(1 + 𝑏𝐼∗)
, 

and  𝐼∗ is given by the equation 

𝐶1𝐼∗3 + 𝐶2𝐼∗2 + 𝐶3𝐼∗ + 𝐶4 = 0            (6.11) 

where 

𝐶1 = 𝜇𝛼𝑏(𝜇 + 𝑑 + 𝛿), 

𝐶2 = 𝜇𝛼(𝜇 + 𝑑 + 𝛿 + 𝑎) + 𝛽𝑏(𝜇 + 𝑑 + 𝛿), 

𝐶3 = (𝜇𝑏 + 𝛽)(𝜇 + 𝑑 + 𝛿) + 𝛽𝑎 − 𝐴𝛽𝑏,  

𝐶4 = 𝜇(𝜇 + 𝑑 + 𝛿 + 𝑎) − 𝐴𝛽 = 𝜇(𝜇 + 𝑑 + 𝛿 + 𝑎)(1 − 𝑅0). 

 

Using Descartes’ rule of the signs, for 𝑅0 > 1, the existence of a unique positive real root 

𝐼∗ of Eq. (6.11) is required to satisfy any of the following conditions: 

i. 𝐶1 > 0, 𝐶2 > 0, 𝐶3 < 0 and 𝐶4 < 0. 

ii. 𝐶1 > 0, 𝐶2 > 0, 𝐶3 > 0 and 𝐶4 < 0. 

 

After getting the value of  𝐼∗, we can obtain the value of  𝑆∗. Hence, a unique 𝑄∗(𝑆∗ , 𝐼∗ ) 

exists if one of the above conditions holds true. 

 

Now, we explore the local stability of  𝑄∗ as follows: 

 

The characteristic equation of the system (6.3) obtained at  𝑄∗ is given by 

𝜆2 + 𝑝0𝜆 + 𝑞0 + (𝑝1𝜆 + 𝑞1)𝑒−𝜆𝜏 = 0         (6.12) 

where 

𝑝0 = (2𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2
+

𝛽𝐼∗

(1+𝛼𝐼∗2)
,  

𝑞0 = (𝜇 +
𝛽𝐼∗

(1+𝛼𝐼∗2)
) ((𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2),  

𝑝1 = −
𝛽𝑆∗(1−𝛼𝐼∗2

)

(1+𝛼𝐼∗2)2 ,  

𝑞1 = −
𝛽𝜇𝑆∗(1−𝛼𝐼∗2

)

(1+𝛼𝐼∗2)2 . 

 



119 
 

Theorem 6.5: At 𝜏 = 0, 𝑄∗ is locally asymptotically stable if  𝑆∗ ≤ 𝐼∗(1 +

𝛼𝐼∗2)  holds true. 

Proof:  At  𝑄∗, the characteristic equation at 𝜏 = 0 is given by 

𝜆2 + 𝑝0𝜆 + 𝑞0 + (𝑝1𝜆 + 𝑞1) = 0          (6.13) 

It is easy to show that if  𝑆∗ ≤ 𝐼∗(1 + 𝛼𝐼∗2) is satisfied then 

𝑝0 + 𝑝1 = (2𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2 +
𝛽𝐼∗

(1+𝛼𝐼∗2)
−

𝛽𝑆∗(1−𝛼𝐼∗2
)

(1+𝛼𝐼∗2)
2   

= (2𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2 +
𝛼𝛽𝑆∗𝐼∗2

(1+𝛼𝐼∗2)
2 +

𝛽

(1+𝛼𝐼∗2)
(𝐼∗ −

𝑆∗

(1+𝛼𝐼∗2)
) > 0.  

𝑞0 + 𝑞1 = (𝜇 +
𝛽𝐼∗

(1+𝛼𝐼∗2)
) ((𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2) −
𝛽𝜇𝑆∗(1−𝛼𝐼∗2

)

(1+𝛼𝐼∗2)
2   

=  𝜇 ((𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2) +
𝛽𝐼∗

(1+𝛼𝐼∗2)
((𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2) +
𝛽𝜇𝛼𝐼∗2

𝑆∗

(1+𝛼𝐼∗2)
2 +

𝛽𝜇

(1+𝛼𝐼∗2)
(𝐼∗ −

𝑆∗

(1+𝛼𝐼∗2)
) > 0.  

Therefore, using the Routh-Hurwitz criterion, 𝑄∗ is locally asymptotically stable 

when 𝜏 = 0. 

 

Theorem 6.6:  For 𝜏 > 0, 𝑄∗ is locally asymptotically stable if  𝑆∗ ≤
𝐼∗(1+𝛼𝐼∗2

)  

1−𝛼𝐼∗2  holds 

true. 

Proof: At 𝑄∗ the characteristic equation for 𝜏 > 0 is given by the Eq. (6.12) 

𝜆2 + 𝑝0𝜆 + 𝑞0 + (𝑝1𝜆 + 𝑞1)𝑒−𝜆𝜏 = 0 

For  𝜏 > 0, according to Ruan and Wei [2003], for the occurrence of the instability, a 

characteristic root of the Eq. (6.12) must cross the imaginary axis for a specific value 

of  𝜏. In this manner, we assume that 𝜆 = 𝑖𝜔, 𝜔 > 0 is the root of the Eq. (6.12). 

Putting  𝜆 = 𝑖𝜔 in Eq. (6.12) gives: 

−𝜔2 + 𝑞0 + 𝑝1𝜔 sin 𝜔𝜏  + 𝑞1 cos 𝜔𝜏  + 𝑖 (𝑝1𝜔 cos 𝜔𝜏 − 𝑞1 sin  𝜔𝜏 +  𝑝0𝜔) = 0   (6.14) 

By using Euler’s formula and separating the real and imaginary part of Eq. (6.14), we get 
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𝑝1𝜔 sin 𝜔𝜏 + 𝑞1 cos 𝜔𝜏 = 𝜔2 − 𝑞0         (6.15) 

𝑝1𝜔 cos 𝜔𝜏 − 𝑞1 sin 𝜔𝜏 = −𝑝0𝜔          (6.16) 

Squaring and adding both sides of Eqs. (6.15) & (6.16) yields 

𝜔4 + (𝑝0
2 − 2𝑞0 − 𝑝1

2)𝜔2 + (𝑞0
2 − 𝑞1

2) = 0       (6.17) 

Assuming 𝜔2 = 𝑧1, Eq. (6.17) becomes 

    𝑧1
2 + 𝑃𝑧1 + 𝑇 = 0       (6.18) 

here, 𝑃 = (𝑝0
2 − 2𝑞0 − 𝑝1

2) and  𝑇 = (𝑞0
2 − 𝑞1

2) 

 It is easy to show that if  𝑆∗ ≤
𝐼∗(1+𝛼𝐼∗2

)  

1−𝛼𝐼∗2  is satisfied then 

 𝑃 = (𝑝0
2 − 2𝑞0 − 𝑝1

2)  

= ((2𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2 +
𝛽𝐼∗

(1+𝛼𝐼∗2)
)

2

− 2 (𝜇 +
𝛽𝐼∗

(1+𝛼𝐼∗2)
) ((𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2) − (
𝛽𝑆∗(1−𝛼𝐼∗2

)

(1+𝛼𝐼∗2)
2 )

2

= (𝜇 +
𝛽𝐼∗

(1+𝛼𝐼∗2)
)

2

+ ((𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2)

2

−

(
𝛽𝑆∗(1−𝛼𝐼∗2

)

(1+𝛼𝐼∗2)
2 )

2

  

= 𝜇2 +
2𝜇𝛽𝐼∗

(1+𝛼𝐼∗2)
+ ((𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2)

2

+
𝛽2

(1+𝛼𝐼∗2)
2 (𝐼∗2 −

(𝑆∗(1−𝛼𝐼∗2
))

2

(1+𝛼𝐼∗2)
2 ) > 0,  

 𝑇 = (𝑞0
2 − 𝑞1

2)  

= ((𝜇 +
𝛽𝐼∗

(1+𝛼𝐼∗2)
) ((𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2))

2

− (
𝛽𝜇𝑆∗(1−𝛼𝐼∗2

)

(1+𝛼𝐼∗2)
2 )

2

  

 = (𝜇 ((𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2) +
𝛽𝐼∗

(1+𝛼𝐼∗2)
((𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2) +
𝛽𝜇𝐼∗

(1+𝛼𝐼∗2)
)

2

−

(
𝛽𝜇𝑆∗(1−𝛼𝐼∗2

)

(1+𝛼𝐼∗2)
2 )

2
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= (𝜇 ((𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2
) +

𝛽𝐼∗

(1+𝛼𝐼∗2)
((𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2
))

2

+ 2 (𝜇 ((𝜇 + 𝑑 +

𝛿) +
𝑎

(1+𝑏𝐼∗)2) +
𝛽𝐼∗

(1+𝛼𝐼∗2)
((𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2)) (
𝛽𝜇𝐼∗

(1+𝛼𝐼∗2)
) +

𝛽2𝜇2

(1+𝛼𝐼∗2)
2 (𝐼∗2 −

(𝑆∗(1−𝛼𝐼∗2
))

2

(1+𝛼𝐼∗2)
2 ) > 0.  

Clearly, if 𝑃 = (𝑝0
2 − 2𝑞0 − 𝑝1

2)  > 0 and   𝑇 = (𝑞0
2 − 𝑞1

2) > 0  are satisfied 

simultaneously then by Routh-Hurwitz Criterion, Eq. (6.18) will always have roots with 

the negative real part. It contradicts our assumption for instability that 𝜆 = 𝑖𝜔 is a root of 

Eq. (6.12). Hence, the endemic equilibrium 𝑄∗ of the system (6.3) is locally 

asymptotically stable for 𝜏 > 0. 

 

6.5.5 Hopf bifurcation analysis  

 

If  𝑇 < 0 in Eq. (6.18) then there is unique positive 𝜔0 satisfying the Eq. (6.18) i. e. there 

is a single pair of purely imaginary roots ±𝑖𝜔0 to Eq. (6.18). 

From Eq. (6.15) and Eq. (6.16),  𝜏𝑛 corresponding to 𝜔0 can be obtained as 

                    𝜏𝑛 =
1

𝜔0
arccos (

(𝑞1−𝑝0𝑝1)𝜔0
2−𝑞0𝑞1

𝑝1
2𝜔0

2+𝑞1
2 ) +

2𝑛𝜋

𝜔0
, 𝑛 = 0, 1, 2, ….       (6.19) 

For  𝜏 = 0, endemic equilibrium 𝑄∗ is stable, it remains stable for 𝜏 < 𝜏0 

if  
𝑑 

𝑑𝑡
(𝑅𝑒 (𝜆))|

𝜆=𝑖𝜔0

> 0. 

Differentiating Eq. (6.12) with respect to 𝜏, we get 

(2𝜆 + 𝑝0 + 𝑝1𝑒−𝜆𝜏 − (𝑝1𝜆 + 𝑞1)𝜏𝑒−𝜆𝜏)
𝑑𝜆

𝑑𝜏
= 𝜆(𝑝1𝜆 + 𝑞1)𝑒−𝜆𝜏      (6.20) 

(
𝑑𝜆

𝑑𝜏
)

−1

=
(2𝜆+𝑝0+𝑝1𝑒−𝜆𝜏−(𝑝1𝜆+𝑞1)𝜏𝑒−𝜆𝜏)

𝜆(𝑝1𝜆+𝑞1)𝑒−𝜆𝜏 =
(2𝜆+𝑝0)

𝜆(𝑝1𝜆+𝑞1)𝑒−𝜆𝜏 +
𝑝1

𝜆(𝑝1𝜆+𝑞1)
−

𝜏

𝜆
  

(
𝑑𝜆

𝑑𝜏
)

−1

=
(2𝜆+𝑝0)

−𝜆(𝜆2+𝑝0𝜆+𝑞0)
+

𝑝1

𝜆(𝑝1𝜆+𝑞1)
−

𝜏

𝜆
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𝑑 

𝑑𝜏
(𝑅𝑒 (𝜆))|

𝜆=𝑖𝜔0

= 𝑅𝑒 (
𝑑𝜆

𝑑𝜏
)

−1

|
𝜆=𝑖𝜔0

  

= 𝑅𝑒 (
(2𝑖𝜔0+𝑝0)

−𝑖𝜔0(−𝜔0
2+𝑖𝑝0𝜔0+𝑞0)

+
𝑝1

𝑖𝜔0(𝑖𝑝1𝜔0+𝑞1)
−

𝜏

𝑖𝜔0
 )  

= 𝑅𝑒 (
1

𝜔0
(

(2𝑖𝜔0+𝑝0)

(𝜔0
2−𝑞0)𝑖+𝑝0𝜔0)

+
𝑝1

(−𝑝1𝜔0+𝑖𝑞1)
+ 𝑖𝜏 ))  

=
1

𝜔0
(

2𝜔0(𝜔0
2−𝑞0)+𝑝0

2𝜔0

(𝜔0
2−𝑞0)2+(𝑝0𝜔0)2

−
𝑝1

2𝜔0

(𝑝1𝜔0)2+𝑞1
2
 )  

=
2𝜔0

2+(𝑝0
2−2𝑞0−𝑝1

2)

(𝑝1𝜔0)2+𝑞1
2

. (Since, from Eqs. (6.15) & (6.16),(𝜔0
2 −

𝑞0)2 + (𝑝0𝜔0)2 = (𝑝1𝜔0)2 + 𝑞1
2) 

Under the condition 𝑝0
2 − 2𝑞0 − 𝑝1

2 > 0, we have  
𝑑 

𝑑𝜏
(𝑅𝑒 (𝜆))|

𝜆=𝑖𝜔0

> 0. 

Hence, the transversality condition holds and Hopf bifurcation occurs at 𝜔 = 𝜔0, 𝜏 = 𝜏0.  

By summarizing the above analysis, we arrive at the following Theorem. 

 

Theorem 6.7: The endemic equilibrium (𝑄∗) of the system (6.3) is asymptotically 

stable for  𝜏 ∈ [0, 𝜏0) and it undergoes Hopf bifurcation at 𝜏 = 𝜏0. 

 

6.6 Stability analysis of the equilibria for the combination of M-H type 

incidence and Holling type III treatment rates 

 

In this section, we discuss the local and global stability of equilibria when the incidence 

rate is M-H functional type and treatment rate is Holling functional type III. For the 

stability of equilibria first, we determine the basic reproduction number 𝑅0 as given 

below: 

 

6.6.1 Computation of basic reproduction number(𝑹𝟎) 

  

The characteristic equation of the system (6.3) at 𝑄 is given by 
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(𝜇 + 𝜆) (
𝛽𝐴

𝜇
 e−𝜆𝜏 − 𝜇 − 𝑑 − 𝛿 − 𝜆) = 0.      (6.21) 

The one root of Eq. (6.21) is given by 𝜆1 = −𝜇 and other roots are the solution to the 

following equation: 

(
𝛽𝐴

𝜇
 e−𝜆𝜏 − 𝜇 − 𝑑 − 𝛿 − 𝜆) = 0. 

The term 
𝛽𝐴

𝜇(𝜇+𝑑+𝛿+𝑎)
e−𝜆𝜏 at 𝜏 = 0, is defined as the basic reproduction number denoted 

by 𝑅0 i.e. the basic reproduction number for our model is 

𝑅0 =
𝛽𝐴

𝜇(𝜇 + 𝑑 + 𝛿)
 . 

 

6.6.2 Analysis at 𝑹𝟎 ≠ 𝟏 

 

Clearly, Eq. (6.21) has a negative real root 𝜆1 = −𝜇  and other root can be obtained by 

solving the following equation: 

 𝜆 + 𝜇 + 𝑑 + 𝛿 −
𝛽𝐴

𝜇
 e−𝜆𝜏 = 0. 

Let 

𝑓(𝜆) = 𝜆 + 𝜇 + 𝑑 + 𝛿 −
𝛽𝐴

𝜇
 e−𝜆𝜏 . 

If 𝑅0 > 1, it can be seen that for real 𝜆, 

𝑓(0) = (𝜇 + 𝑑 + 𝛿) (1 −
𝛽𝐴

𝜇(𝜇 + 𝑑 + 𝛿)
) < 0, Lim

𝜆→+∞
𝑓(𝜆) → +∞. 

Hence, if 𝑅0 > 1 then there exists at least one positive root of 𝑓(𝜆) = 0. 

If 𝑅0 < 1, we assume that 𝑅𝑒 (𝜆) ≥ 0. 

We notice that  

𝑅𝑒 (𝜆) =
𝛽𝐴

𝜇
 e−𝑅𝑒( 𝜆 𝜏) cos(𝐼𝑚 (𝜆 𝜏)) − (𝜇 + 𝑑 + 𝛿) ≤ ( 

𝛽𝐴

𝜇(𝜇+𝑑+𝛿)
 − 1) (𝜇 + 𝑑 + 𝛿) <

0. 
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 It contradicts to our assumption that 𝑅𝑒 (𝜆) ≥ 0. Thus, the root 𝜆 of Eq. (6.21) has a 

negative real part if 𝑅0 < 1. Hence, we state the following theorem:  

 

Theorem 6.8:  DFE 𝑄 (
𝐴

𝜇
, 0) of the system (6.3) is locally asymptotically stable 

if 𝑅0 < 1 and unstable if  𝑅0 > 1. 

 

6.6.3 Analysis at  𝑹𝟎 = 𝟏 

 

i. For 𝝉 > 𝟎 

 

If  𝑅0 = 1, then 𝜆 = 0 is a simple root of Eq. (6.21). Let 𝜆 = 𝑥 + 𝑖𝑦 be any other solution, 

then Eq. (6.21) changes into: 

𝑥 + 𝑖𝑦 + 𝜇 + 𝑑 + 𝛿 −
𝛽𝐴

𝜇
 𝑒−(𝑥+𝑖𝑦 )𝜏 = 0            (6.22) 

By using Euler’s formula and on separating real and imaginary parts we can write 

𝑥 + 𝜇 + 𝑑 + 𝛿 =
𝛽𝐴

𝜇
cos 𝑦𝜏 𝑒−𝑥𝜏,  𝑦 = −

𝛽𝐴

𝜇
sin 𝑦𝜏  𝑒−𝑥𝜏          (6.23) 

𝑅0 = 1 implies  
𝛽𝐴

𝜇
= (𝜇 + 𝑑 + 𝛿). Moreover, there exists root satisfying both the 

equations of Eq. (6.23), then they also satisfy the equation obtained by squaring and 

adding them member to member, as given below: 

(𝑥 + 𝜇 + 𝑑 + 𝛿)2 + 𝑦2 = (𝜇 + 𝑑 + 𝛿)2𝑒−2𝑥𝜏.         (6.24) 

To verify Eq. (6.24), we must have 𝑥 ≤ 0. Thus, we propose the following theorem: 

 

Theorem 6.9: DFE of the system (6.3) is linearly neutrally stable if  𝑅0 = 1. 

 

ii. For 𝝉 = 𝟎 

 

We notice that the system (6.3) is being evaluated at  𝑅0 = 1 and bifurcation parameter 

𝛽 = 𝛽∗ =
𝜇(𝜇+𝑑+𝛿)

𝐴
 has a zero eigenvalue and another eigenvalue is negative. Since it is 
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not possible to analyse the stability behaviour of DFE 𝑄 at  𝑅0 = 1 using linearization, 

therefore we use center manifold theory [Sastry (1999)]. For this, we redefine  𝑆 =

𝑦1 and 𝐼 = 𝑦2 then the system (6.3) can be rewritten as: 

d𝑦1

d𝑡
= 𝐴 − 𝜇𝑦1 −

𝛽𝑦1𝑦2

1+𝛼𝑦2
2  ≡ 𝐺1,       

d𝑦2

d𝑡
=

𝛽𝑦1𝑦2

1+𝛼𝑦2
2 − (𝜇 + 𝑑 + 𝛿)𝑦2 −

𝑎𝑦2
2

1+𝑏𝑦2
2 ≡ 𝐺2.           (6.25) 

 

Let  𝐽∗ be the Jacobian matrix at  𝑅0 = 1  and bifurcation parameter 𝛽 = 𝛽∗. Then 

𝐽∗ = [−𝜇 −
𝛽∗𝐴

𝜇
0 0

]. 

Let 𝑢 = [𝑢1, 𝑢2 ] and 𝑤 = [𝑤1, 𝑤2 ]𝑇 denote the left eigenvector and right eigenvector of 

the Jacobian matrix  𝐽∗corresponding to the zero eigenvalue. Then we have 

𝑢1 = 0, 𝑢2 = 1 and 𝑤1 = −
𝛽∗𝐴

𝜇2
, 𝑤2 = 1. 

The non-zero partial derivatives associated with the functions 𝐺1 and 𝐺2 of the system 

(6.22) evaluated at  𝑅0 = 1 and  𝛽 = 𝛽∗ are  

(
𝜕2𝐺2

𝜕𝑦1𝜕𝑦2
)

𝑄
= (

𝜕2𝐺2

𝜕𝑦2𝜕𝑦1
)

𝑄
= 𝛽∗,

𝜕2𝐺2

𝜕2𝑦2
= −2𝑎 and  (

𝜕2𝐺2

𝜕𝑦2𝜕𝛽∗)
𝑄

=
𝐴

𝜇
. 

Using theorem 4.1 of [Chavez and Song (2004)], we obtain the bifurcation constants 𝐵1 

and 𝐵2 as 

𝐵1 = ∑ 𝑢𝑘𝑤𝑖𝑤𝑗
2
𝑘,𝑖,𝑗=1 (

𝜕2𝐺𝑘

𝜕𝑦𝑖𝜕𝑦𝑗
)

𝑄

= 𝑢2(2𝑤1𝑤2 𝛽∗) + 𝑢2𝑤2
2(−2𝑎) = −2 (

 𝛽∗2
𝐴

𝜇2 + 𝑎) < 0,  

and 

𝐵2 = ∑ 𝑢𝑘𝑤𝑖

2

𝑘,𝑖=1

(
𝜕2𝐺𝑘

𝜕𝑦𝑖𝜕𝛽∗
)

𝑄

= 𝑢2 (𝑤2

𝐴

𝜇
) =

𝐴

𝜇
> 0. 

Thus, from theorem 4.1(iv) of [Chavez and Song (2004)], we state the following theorem: 

 

Theorem 6.10: DFE 𝑄 (
𝐴

𝜇
, 0) changes its behavior from stable to unstable at  𝑅0 = 1 

and there exists a positive equilibrium as  𝑅0 crosses one. Hence, the system (6.25) 

undergoes a forward transcritical bifurcation at 𝑅0 = 1. 

 

6.6.4. Existence and stability analysis of endemic equilibrium 
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To find the condition for the existence of the endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗), the system 

(6.3) is rearranged to get  𝑆∗, and  𝐼∗  which gives 

𝑆∗ =
((𝜇 + 𝑑 + 𝛿)(1 + 𝑏𝐼∗) + 𝑎𝐼∗2

) (1 + 𝛼𝐼∗2)

𝛽(1 + 𝑏𝐼∗2)
, 

and  𝐼∗ is given by the equation 

𝐾1𝐼∗4 + 𝐾2𝐼∗3 + 𝐾3𝐼∗2 + 𝐾4𝐼∗ + 𝐾5 = 0,     (6.26) 

where 

𝐾1 = 𝜇𝛼𝑏(𝜇 + 𝑑 + 𝛿), 

𝐾2 = 𝑏𝛽(𝜇 + 𝑑 + 𝛿) − 𝑎𝜇𝛼, 

𝐾3 = 𝜇(𝛼 + 𝑏)(𝜇 + 𝑑 + 𝛿) − (𝑎 + 𝐴)𝛽,  

𝐾4 = 𝛽(𝜇 + 𝑑 + 𝛿) − 𝑎𝜇,  

𝐾5 = 𝜇(𝜇 + 𝑑 + 𝛿) − 𝛽𝐴 = 𝜇(𝜇 + 𝑑 + 𝛿)(1 − 𝑅0). 

 

Using Descartes’ rule of signs, the existence of a unique positive real root 𝐼∗ of the 

biquadratic Eq. (6.26) is required to satisfy any of the following conditions: 

i. 𝐾1 > 0, 𝐾2 > 0, 𝐾3 > 0, 𝐾4 > 0, and 𝐾5 < 0 . 

ii. 𝐾1 > 0, 𝐾2 > 0, 𝐾3 > 0, 𝐾4 < 0, and 𝐾5 < 0 . 

iii. 𝐾1 > 0, 𝐾2 > 0, 𝐾3 < 0, 𝐾4 < 0, and 𝐾5 < 0 . 

iv. 𝐾1 > 0, 𝐾2 < 0, 𝐾3 < 0, 𝐾4 < 0, and 𝐾5 < 0 . 

 

Once we get the value of 𝐼∗, we can obtain the value of 𝑆∗ as well. Thus, it implies that 

the system (6.3) admits a unique endemic equilibrium 𝑄∗(𝑆∗ , 𝐼∗ ) if one of the above 

conditions holds true. 

 

To investigate the local stability of endemic equilibrium 𝑄∗, we linearize this system (6.3) 

at 𝑄∗ and obtain the characteristic equation as given below: 

𝜆2 + 𝑀0𝜆 + 𝑁0 + (𝑀1𝜆 + 𝑁1)e−𝜆𝜏 = 0,         (6.27) 

where 

𝑀0 = (2𝜇 + 𝑑 + 𝛿) +
2𝑎

(1+𝑏𝐼∗2)2 +
𝛽𝐼∗

(1+𝛼𝐼∗2)
,  

𝑁0 = (𝜇 +
𝛽𝐼∗

(1+𝛼𝐼∗2)
) ((𝜇 + 𝑑 + 𝛿) +

2𝑎

(1+𝑏𝐼∗2)
2),  

𝑀1 = −
𝛽𝑆∗(1−𝛼𝐼∗2

)

(1+𝛼𝐼∗2)2
,  
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𝑁1 = −
𝛽𝜇𝑆∗(1−𝛼𝐼∗2

)

(1+𝛼𝐼∗2)2 . 

 

Theorem 6.11: For 𝜏 = 0, endemic equilibrium 𝑄∗ of the system (6.3) is locally 

asymptotically stable if  𝑀0 + 𝑀1 > 0  and 𝑁0 + 𝑁1 > 0  hold true simultaneously. 

Proof:  At endemic equilibrium 𝑄∗, the characteristic equation of the system for 𝜏 = 0 is 

given by putting 𝜏 = 0 in Eq. (6.27) as given below: 

𝜆2 + 𝑀0𝜆 + 𝑁0 + (𝑀1𝜆 + 𝑁1) = 0. 

⇒          𝜆2 + (𝑀0 + 𝑀1)𝜆 + (𝑁0 + 𝑁1) = 0.     (6.28) 

 

Clearly, if 𝑀0 + 𝑀1 > 0 and  𝑁0 + 𝑁1 > 0  are satisfied simultaneously then by Routh – 

Hurwitz Criterion, Eq. (6.28) will always has roots with the negative real part and hence 

the system (6.3) at 𝑄∗ for 𝜏 = 0 is locally asymptotically stable. This completes the proof. 

 

Theorem 6.12:  For 𝜏 > 0, endemic equilibrium 𝑄∗ of the system (6.3) is locally 

asymptotically stable if 𝑀0
2 − 2𝑁0 − 𝑀1

2 > 0 and 𝑁0
2 − 𝑁1

2 > 0  are satisfied 

simultaneously. 

Proof: At endemic equilibrium 𝑄∗, the characteristic equation of the system for 𝜏 > 0 is 

given by the Eq. (6.27) 

𝜆2 + 𝑀0𝜆 + 𝑁0 + (𝑀1𝜆 + 𝑁1)e−𝜆𝜏 = 0. 

For  𝜏 > 0, corollary 2.4 of Ruan and Wei [2003] ensures that if the endemic equilibrium 

𝑄∗ is unstable for a particular value of the delay parameter, then the roots of the 

characteristic equation (6.27) must intersect the imaginary axis. Thus, to prove the 

stability of the system (6.3), we will use the contradictory assumption i. e. we assume that 

𝜆 = i𝜔, 𝜔 > 0 is a root of the equation (6.27). On substituting  𝜆 = i𝜔 in Eq. (6.27): 

−𝜔2 + 𝑁0 + 𝑀1𝜔 sin(𝜔𝜏) + 𝑁1 cos(𝜔𝜏) + i (𝑀1𝜔 cos(𝜔𝜏) − 𝑁1  sin(𝜔𝜏) +  𝑀0𝜔) = 0.    

          (6.29) 

By using Euler’s formula and by separating the real and imaginary part of Eq. (6.29), we 

get  

𝑀1𝜔 sin(𝜔𝜏) + 𝑁1  cos(𝜔𝜏) = 𝜔2 − 𝑁0,        (6.30) 
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𝑀1𝜔 cos(𝜔𝜏) − 𝑁1  sin(𝜔𝜏) = −𝑀0𝜔.        (6.31) 

On squaring and adding both the sides of the Eqs. (6.30) and (6.31) yield 

𝜔4 + (𝑀0
2 − 2𝑁0 − 𝑀1

2)𝜔2 + (𝑁0
2 − 𝑁1

2) = 0.       (6.32) 

Let 𝜔2 = 𝑍1, Eq. (6.32) becomes 

    𝑍1
2 + 𝑀𝑍1 + 𝑇 = 0.       (6.33) 

     

Here, 𝑀 = (𝑀0
2 − 2𝑁0 − 𝑀1

2) and  𝑇 = (𝑁0
2 − 𝑁1

2). 

Clearly, if 𝑀 = (𝑀0
2 − 2𝑁0 − 𝑀1

2)  > 0 and   𝑇 = (𝑁0
2 − 𝑁1

2) > 0  are satisfied 

simultaneously then by Routh-Hurwitz Criterion Eq. (6.33) will always has roots with the 

negative real part. It contradicts our assumption for instability that 𝜆 = i𝜔 is a root of Eq. 

(6.27). Hence, the endemic equilibrium 𝑄∗ of the system (6.3) is locally asymptotically 

stable for 𝜏 > 0. It completes the proof. 

 

6.6.5. Hopf bifurcation analysis 

 

The Hopf bifurcation analysis is similar to section 6.5.5. Hence, we omitted the proof of 

the following result: 

 

Theorem 6.13: The endemic equilibrium (EE) of the system (6.3) is asymptotically 

stable for  𝜏 ∈ [0, 𝜏0) and it undergoes a Hopf bifurcation at 𝜏 = 𝜏0. 

 

6.6.6. Global stability analysis 

 

In this section, we discuss the global stability analysis of equilibria. For this, we state the 

results in the form of theorems and prove them. 

We see that 𝑌(𝑆(𝑡), 𝐼(𝑡)) =
𝛽𝑆(𝑡)𝐼(𝑡)

1+𝛼𝐼2(𝑡)
  and 𝑇2(𝐼(𝑡)) =

𝑎𝐼2(𝑡)

1+𝑏𝐼2(𝑡)
  are always positive, 

continuously differentiable and monotonically increasing for all 𝑆 > 0 and 𝐼 > 0. That is, 

they satisfy the following conditions: 
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A1.  𝑌(𝑆(𝑡), 𝐼(𝑡)) > 0, 𝑌′
𝑆(𝑆, 𝐼) > 0, for 𝑆 > 0 and 𝐼 > 0 and 𝑌′

𝐼(𝑆, 𝐼) > 0 for 𝐼 <

1/√𝛼.  

A2.  𝑌(𝑆, 0) = 𝑌(0, 𝐼) = 0, 𝑌′
𝑆(𝑆, 0) = 0, 𝑌′

𝐼(𝑆, 0) > 0 for 𝑆 > 0 and 𝐼 > 0. 

A3.  𝑇2(0) = 0, 𝑇′2(𝐼) > 0 for 𝐼 > 0. 

These properties will be used to prove the global stability of equilibria. 

 

6.6.6.1. Global stability of disease-free equilibrium (DFE) 

 

In this subsection, we show the global stability of the DFE of the system (6.3). For this, 

we suppose the following condition: 

A4. 𝜑(𝑆, 𝐼) =
𝑌(𝑆,𝐼)

𝐼
 is a bounded and monotonic decreasing function of 𝐼 > 0, for 

any fixed 𝑆 ≥ 0, and 𝐾(𝑆) = lim
𝐼→+0

𝜑(𝑆, 𝐼) is continuous on 𝑆 ≥ 0 and a 

monotone increasing function of 𝑆 ≥ 0. 

For the global stability of DFE, we prove the following theorem: 

 

Theorem 6.14: DFE 𝑄 (
𝐴

𝜇
, 0) of the system (6.3) is globally asymptotically stable if 

and only if 𝑅0 ≤ 1. 

Proof: To prove this theorem, we consider the following Lyapunov function: 

𝑊(𝑡) = 𝑊1(𝑡) + 𝑊2(𝑡) + 𝐼(𝑡), 

where 

 𝑊1(𝑡) = ∫ (1 −
𝐾(𝑆0)

𝐾(𝑆)
) d𝑠

𝑆(𝑡)

𝑆0=
𝐴

𝜇

 and 𝑊2(𝑡) = ∫ 𝑌(𝑠(𝑢 + 𝜏), 𝐼(𝑢))
𝐾(𝑆0)

𝐾(𝑆(𝑢+𝜏))
d𝑢

𝑡

𝑡−𝜏
 . 

The derivative of 𝑊1(𝑡) is 

d𝑊1(𝑡)

d𝑡
= (1 −

𝐾(𝑆0)

𝐾(𝑆(𝑡))
) (𝐴 − 𝜇𝑆(𝑡) − 𝑌(𝑆(𝑡), 𝐼(𝑡 − 𝜏)))  

           = − (1 −
𝐾(𝑆0)

𝐾(𝑆(𝑡))
) 𝑌(𝑆(𝑡), 𝐼(𝑡 − 𝜏)) − 𝜇(𝑆(𝑡) − 𝑆0) (1 −

𝐾(𝑆0)

𝐾(𝑆(𝑡))
). 

The derivative of 𝑊2(𝑡) is 
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d𝑊2(𝑡)

d𝑡
= 𝑌(𝑆(𝑡 + 𝜏), 𝐼(𝑡)) (

𝐾(𝑆0)

𝐾(𝑆(𝑡+𝜏))
) − 𝑌(𝑆(𝑡), 𝐼(𝑡 − 𝜏))

𝐾(𝑆0)

𝐾(𝑆(𝑡))
. 

Hence, we obtain 

d𝑊(𝑡)

d𝑡
= − (1 −

𝐾(𝑆0)

𝐾(𝑆(𝑡))
) 𝑌(𝑆(𝑡), 𝐼(𝑡 − 𝜏)) − 𝜇(𝑆(𝑡) − 𝑆0) (1 −

𝐾(𝑆0)

𝐾(𝑆(𝑡))
)  

               + 𝑌(𝑆(𝑡 + 𝜏), 𝐼(𝑡)) (
𝐾(𝑆0)

𝐾(𝑆(𝑡+𝜏))
) − 𝑌(𝑆(𝑡), 𝐼(𝑡 − 𝜏))

𝐾(𝑆0)

𝐾(𝑆(𝑡))
  

               + 𝑌(𝑆(𝑡), 𝐼(𝑡 − 𝜏)) − (𝜇 + 𝑑 + 𝛿)𝐼(𝑡) −
𝑎𝐼2(𝑡)

1+𝑏𝐼2(𝑡)
 

         = −𝜇(𝑆(𝑡) − 𝑆0) (1 −
𝐾(𝑆0)

𝐾(𝑆(𝑡))
) + 𝑌(𝑆(𝑡 + 𝜏), 𝐼(𝑡)) (

𝐾(𝑆0)

𝐾(𝑆(𝑡+𝜏))
) − (𝜇 + 𝑑 + 𝛿 +

𝑎𝐼

1+𝑏𝐼2
) 𝐼(𝑡).  

Here, by the conditions (A1-A2), we obtain that 

 −𝜇(𝑆(𝑡) − 𝑆0) (1 −
𝐾(𝑆0)

𝐾(𝑆(𝑡))
) ≤ 0, 

with equality if and only if 𝑆(𝑡) = 𝑆0. From the condition (A4), it follows that 

𝑌(𝑆(𝑡 + 𝜏), 𝐼(𝑡)) (
𝐾(𝑆0)

𝐾(𝑆(𝑡+𝜏))
) − (𝜇 + 𝑑 + 𝛿 +

𝑎𝐼

1+𝑏𝐼2) 𝐼(𝑡)  

   ≤ (
𝑌(𝑆(𝑡+𝜏),𝐼(𝑡))

(𝜇+𝑑+𝛿)𝐼(𝑡)
(

𝐾(𝑆0)

𝐾(𝑆(𝑡+𝜏))
) − 1) (𝜇 + 𝑑 + 𝛿)𝐼(𝑡)  

   ≤ (
𝐾(𝑆(𝑡+𝜏))

(𝜇+𝑑+𝛿)
×

𝐾(𝑆0)

𝐾(𝑆(𝑡+𝜏))
− 1) (𝜇 + 𝑑 + 𝛿)𝐼(𝑡)  

   = (
𝐾(𝑆0)

(𝜇+𝑑+𝛿+𝑇2
′(0))

− 1) (𝜇 + 𝑑 + 𝛿)𝐼(𝑡)  

   = (𝑅0 − 1)(𝜇 + 𝑑 + 𝛿)𝐼(𝑡).  

Therefore, 𝑅0 ≤ 1 ensures that 
d𝑊(𝑡)

d𝑡
≤ 0 for all 𝑡 > 0, where 

d𝑊(𝑡)

d𝑡
= 0 holds if 𝑆(𝑡) =

𝑆0. Hence, it immediately follows from the system (6.3) that DFE 𝑄 is the largest 

invariant set in {(𝑆(𝑡), 𝐼(𝑡)) ∈ ℝ+0
2 |

d𝑊(𝑡)

d𝑡
= 0}. From the Lyapunov-LaSalle asymptotic 

stability theorem [Hale and Lunel (1993)], we obtain that DFE 𝑄 is globally 

asymptotically stable. This completes the proof. 
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6.6.6.2. Global stability of endemic equilibrium (EE) 

In this subsection, we discuss the global stability of endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗) of the 

system (6.3) using the Lyapunov direct method. For this, we propose the following 

hypotheses: 

A5.   
𝐼(𝑡)

𝐼∗
≤

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡),𝐼∗)
 for 𝐼 ∈ (0, 𝐼∗),

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡),𝐼∗)
≤

𝐼(𝑡)

𝐼∗
 for 𝐼 ≥ 𝐼∗. 

A6.   
𝑇2(𝐼(𝑡))

𝑇2(𝐼∗)
≤

𝐼(𝑡)

𝐼∗  for 𝐼 ∈ (0, 𝐼∗),
𝑇2(𝐼(𝑡))

𝑇2(𝐼∗)
≥

𝐼(𝑡)

𝐼∗  for 𝐼 ≥ 𝐼∗ and 𝐼∗ <
1

√𝑏
. 

 

Theorem 6.15: Suppose that conditions (A1) - (A3) and (A5) - (A6) are satisfied. Then 

the endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗) of the system (6.3) is globally asymptotically stable 

if  𝑅0 > 1. 

Proof: We consider the following Lyapunov functional 

𝑋(𝑡) = 𝑋1(𝑡) + 𝑋2(𝑡), 

where 

𝑋1(𝑡) = 𝑆(𝑡) − 𝑆∗ − ∫
𝑌(𝑆∗,𝐼∗)

𝑌(𝑢,𝐼∗)
d𝑢

𝑆(𝑡)

𝑆∗ + 𝐼(𝑡) − 𝐼∗ − 𝐼∗ loge
𝐼(𝑡)

𝐼∗ − ∫ 𝑌(𝑆(𝑢 +
𝑡

𝑡−𝜏

𝜏), 𝐼(𝑢))d𝑢, 

𝑋2(𝑡) = 𝑌(𝑆∗, 𝐼∗) ∫ (
𝑌(𝑆(𝑢+𝜏),𝐼(𝑢))

𝑌(𝑆∗,𝐼∗)
− 1 − loge

𝑌(𝑆(𝑢+𝜏),𝐼(𝑢))

𝑌(𝑆∗,𝐼∗)
)

𝑡

𝑡−𝜏
d𝑢. 

𝑋(𝑡) = 𝑋1(𝑡) + 𝑋2(𝑡) is defined and continuously differentiable for all 𝑆(𝑡), 𝐼(𝑡) > 0. 

and 𝑋(0) = 0 at 𝑄∗(𝑆∗, 𝐼∗). At 𝑄∗(𝑆∗, 𝐼∗), 

𝐴 − 𝜇𝑆∗ = 𝑌(𝑆∗, 𝐼∗), 𝑌(𝑆∗, 𝐼∗) = (𝜇 + 𝑑 + 𝛿)𝐼∗ + 𝑇2(𝐼∗). 

The time derivative of 𝑋1(𝑡) along the solution of system (6.3) is given by  

d𝑋1(𝑡)

d𝑡
= 𝑆′(𝑡) −

𝑌(𝑆∗,𝐼∗)

𝑌(𝑆(𝑡),𝐼∗)
𝑆′(𝑡) + 𝐼′(𝑡) −

𝐼∗

𝐼(𝑡)
𝐼′(𝑡) − 𝑌(𝑆(𝑡 + 𝜏), 𝐼(𝑡)) + 𝑌(𝑆(𝑡), 𝐼(𝑡 −

𝜏))  

          = (1 −
𝑌(𝑆∗,𝐼∗)

𝑌(𝑆(𝑡),𝐼∗)
) (𝜇𝑆∗ − 𝜇𝑆(𝑡) + 𝑌(𝑆∗, 𝐼∗) − 𝑌((𝑆(𝑡), 𝐼(𝑡 − 𝜏)))  

            + (1 −
𝐼∗

𝐼(𝑡)
) (𝑌(𝑆(𝑡), 𝐼(𝑡 − 𝜏)) − 𝑌(𝑆∗, 𝐼∗)

𝐼(𝑡)

𝐼∗ + 𝑇2(𝐼∗)
𝐼(𝑡)

𝐼∗ − 𝑇2(𝐼(𝑡)))  

            −𝑌(𝑆(𝑡 + 𝜏), 𝐼(𝑡)) + 𝑌(𝑆(𝑡), 𝐼(𝑡 − 𝜏))  

         = 𝜇𝑆∗ (1 −
𝑌(𝑆∗,𝐼∗)

𝑌(𝑆(𝑡),𝐼∗)
) (1 −

𝑆(𝑡)

𝑆∗
) + 𝑌(𝑆∗, 𝐼∗) (1 −

𝑌(𝑆∗,𝐼∗)

𝑌(𝑆(𝑡),𝐼∗)
+

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡),𝐼∗)
)  

          + 𝑌(𝑆∗, 𝐼∗) (1 −
𝐼(𝑡)

𝐼∗ −
𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡),𝐼∗)

𝐼∗

𝐼(𝑡)
) + 𝑇2(𝐼∗) (

𝐼(𝑡)

𝐼∗ − 1 −
𝑇2(𝐼(𝑡))

𝑇2(𝐼∗)
+

𝑇2(𝐼(𝑡))

𝑇2(𝐼∗)

𝐼∗

𝐼(𝑡)
) 

−𝑌(𝑆(𝑡 + 𝜏), 𝐼(𝑡)) + 𝑌(𝑆(𝑡), 𝐼(𝑡 − 𝜏)). 
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Further,  

 
d𝑋2(𝑡)

d𝑡
= 𝑌(𝑆∗, 𝐼∗) (

𝑌(𝑆(𝑡+𝜏),𝐼(𝑡))

𝑌(𝑆∗,𝐼∗)
− 1 − loge

𝑌(𝑆(𝑡+𝜏),𝐼(𝑡))

𝑌(𝑆∗,𝐼∗)
−

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆∗,𝐼∗)
+ 1 +

loge
𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆∗,𝐼∗)
) 

           = 𝑌(𝑆(𝑡 + 𝜏), 𝐼(𝑡)) − 𝑌(𝑆(𝑡), 𝐼(𝑡 − 𝜏)) + 𝑌(𝑆∗, 𝐼∗) loge
𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡+𝜏),𝐼(𝑡))
 . 

Then we have, 

d𝑋(𝑡)

d𝑡
= 𝜇𝑆∗ (1 −

𝑌(𝑆∗,𝐼∗)

𝑌(𝑆(𝑡),𝐼∗)
) (1 −

𝑆(𝑡)

𝑆∗
) + 𝑌(𝑆∗, 𝐼∗) (1 −

𝑌(𝑆∗,𝐼∗)

𝑌(𝑆(𝑡),𝐼∗)
+

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡),𝐼∗)
)  

            + 𝑌(𝑆∗, 𝐼∗) (1 −
𝐼(𝑡)

𝐼∗ −
𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡),𝐼∗)

𝐼∗

𝐼(𝑡)
) + 𝑇2(𝐼∗) (

𝐼(𝑡)

𝐼∗ − 1 −
𝑇2(𝐼(𝑡))

𝑇2(𝐼∗)
+

𝑇2(𝐼(𝑡))

𝑇2(𝐼∗)

𝐼∗

𝐼(𝑡)
)  

            − 𝑌(𝑆(𝑡 + 𝜏), 𝐼(𝑡)) + 𝑌(𝑆(𝑡), 𝐼(𝑡 − 𝜏)) + 𝑌(𝑆(𝑡 + 𝜏), 𝐼(𝑡))  

           − 𝑌(𝑆(𝑡), 𝐼(𝑡 − 𝜏)) + 𝑌(𝑆∗, 𝐼∗) loge
𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡+𝜏),𝐼(𝑡))
  

       = 𝜇𝑆∗ (1 −
𝑌(𝑆∗,𝐼∗)

𝑌(𝑆(𝑡),𝐼∗)
) (1 −

𝑆(𝑡)

𝑆∗ ) + 𝑌(𝑆∗, 𝐼∗) (1 −
𝑌(𝑆∗,𝐼∗)

𝑌(𝑆(𝑡),𝐼∗)
+ loge

𝑌(𝑆∗,𝐼∗)

𝑌(𝑆(𝑡),𝐼∗)
)  

         + 𝑌(𝑆∗, 𝐼∗) (1 −
𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡),𝐼∗)

𝐼∗

𝐼(𝑡)
+ loge

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡),𝐼∗)

𝐼∗

𝐼(𝑡)
)  

         + 𝑌(𝑆∗, 𝐼∗) (1 −
𝐼(𝑡)

𝐼∗

𝑌(𝑆(𝑡),𝐼∗)

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))
+ loge

𝐼(𝑡)

𝐼∗

𝑌(𝑆(𝑡),𝐼∗)

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))
)  

        + 𝑌(𝑆∗, 𝐼∗) (
𝐼(𝑡)

𝐼∗
−

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡),𝐼∗)
) (

𝑌(𝑆(𝑡),𝐼∗)

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))
− 1) + 𝑇2(𝐼∗) (

(𝑇2(𝐼(𝑡))

𝑇2(𝐼∗)
−

𝐼(𝑡)

𝐼∗
) (

𝐼∗

𝐼(𝑡)
−

1). 

The function 𝑌(𝑆, 𝐼) is monotonically increasing for any 𝑆 > 0; hence the following 

inequality holds: 

(1 −
𝑌(𝑆∗,𝐼∗)

𝑌(𝑆(𝑡),𝐼∗)
) (1 −

𝑆(𝑡)

𝑆∗ ) ≤ 0.          (6.34) 

and by the properties of the function 𝑟(𝑥) = 1 − 𝑥 + loge 𝑥 , (𝑥 > 0), we note that 𝑟(𝑥) 

has its global maximum 𝑟(1) = 0. Hence 𝑟(𝑥) ≤ 0 when 𝑥 > 0 and the following 

inequalities hold true: 

1 −
𝑌(𝑆∗,𝐼∗)

𝑌(𝑆(𝑡),𝐼∗)
+ loge

𝑌(𝑆∗,𝐼∗)

𝑌(𝑆(𝑡),𝐼∗)
≤ 0, 1 −

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡),𝐼∗)

𝐼∗

𝐼(𝑡)
+ loge

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡),𝐼∗)

𝐼∗

𝐼(𝑡)
≤ 0, and 

 1 −
𝐼(𝑡)

𝐼∗

𝑌(𝑆(𝑡),𝐼∗)

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))
+ loge

𝐼(𝑡)

𝐼∗

𝑌(𝑆(𝑡),𝐼∗)

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))
≤ 0.       (6.35)   

 

Further by conditions (A5) - (A6) the following inequalities hold: 

(
𝐼(𝑡)

𝐼∗
−

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))

𝑌(𝑆(𝑡),𝐼∗)
) (

𝑌(𝑆(𝑡),𝐼∗)

𝑌(𝑆(𝑡),𝐼(𝑡−𝜏))
− 1) ≤ 0, (

𝑇2(𝐼(𝑡))

𝑇2(𝐼∗)
−

𝐼(𝑡)

𝐼∗
) (

𝐼∗

𝐼(𝑡)
− 1) ≤ 0.  (6.36) 
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By inequalities (6.34) – (6.36), we see that 
d𝑋(𝑡)

d𝑡
≤ 0 for all 𝑆(𝑡) ≥ 0, 𝐼(𝑡) ≥ 0. It is easy 

to verify that the largest invariant set in {(𝑆(𝑡), 𝐼(𝑡)) | 
𝑑𝑋(𝑡)

𝑑𝑡
= 0} is the singleton {𝑄∗}.  

By the Lyapunov-LaSalle asymptotic stability theorem [Hale and Lunel (1993)], endemic 

equilibrium 𝑄∗ is globally asymptotically stable. 

 

6.7. Numerical simulations 

 

In this section, we elaborate the results obtained by the simulation of the model. 

 

6.7.1 Numerical simulation of the model for the combination of M-H 

type incidence and Holling type II treatment rates 

 

For numerical computation, we take the following numerically experimental values of the 

parameters: 

 

𝐴 = 12, 𝛼 = 0.001, 𝛽 = 0.005, 𝜇 = 0.05, 𝑑 = 0.01, 𝛿 = 0.002, 𝑎 = 0.02, 𝑏 = 0.002 . 

 

Fig. 6.3 shows the variations in the susceptible and infected population at time lag 𝜏 =

0 ,1. The figure depicts that as time passes both types of population approaches to steady 

state. It is also seen that as delay occurs, the infected population increases and susceptible 

population decreases.  

 

Fig. 6.4 shows variation in the infected population at several values of time lag 𝜏. It can 

be observed from the figure that the infected population is increasing as the value of time 

lag increases. Hence, whenever the delays occur in effective incidence between 

susceptible and infected individuals, the number of infected individuals always increases. 

 

Fig. 6.5 depicts variation in the infected population at time lag 𝜏 = 1 for numerous values 

of the transmission rate (𝛽). It can be seen from the figure that the increase in 

transmission rate results in the increase of the infected population. 
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Fig. 6.6 demonstrates the variation in the infected population at the numerous values of 

the inhibitory effect (𝛼). It is easily observed that as the value of 𝛼 increases, the infected 

population decreases. 

 

Fig. 6.7 shows variation in the infected population at time lag 𝜏 = 1 for different values 

of cure rate (𝑎). It is evident that, as the value of the cure rate (𝑎) is increasing, the 

infected population is decreasing. Hence, the cure rate is playing a vital role in controlling 

the spread of the epidemic.  

 

Fig. 6.8 illustrates the variations in the infected population at numerous values of 

limitation rate (𝑏) in treatment availability. It can be viewed from the figure that the 

infected population is increasing as the value of 𝑏 is also increasing. 

 

Fig. 6.9 delineates the difference in the infected population with and without the Holling 

type II treatment rate. It can be interpreted that the infected population with Holling type 

II treatment is less in comparison to the infected population without Holling type II 

treatment. Hence, the Holling type II treatment rate may be proved as a better option in 

minimizing the loss of lives and wealth of society. 

 

Fig. 6.10 shows the variation in the infected population for a different set of values of 

inhibitory effect and treatment rate. It can be interpreted from the figure that with our 

novel combination of Monod-Haldane incidence and Holling type II treatment rates (in 

the presence of inhibitory effect and H-II treatment rate); the infected individuals are less 

in comparison of rest. 

 

Fig. 6.11 shows the oscillatory behavior of the infected population. For this, we take the 

following numerical experimental values of the parameters: 

 

A = 𝟓, 𝛼 = 1.2, 𝛽 = 0.06, 𝜇 = 0.05, 𝑑 = 0.001, 𝛿 = 0.002, 𝑎 = 1.2, 𝑏 = 0.82. 

At this set of parameters values, the model approaches to the endemic equilibrium 

𝑄∗(76.36, 3.031). 
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6.7.2 Numerical simulation of the model for the combination of M-H 

type incidence and Holling type III treatment rates 

 

In this section, we will display the results of numerical simulation. All computations have 

been carried out with the following data. 

 

𝐴 = 3, 𝜇 = 0.05, 𝛽 = 0.004, 𝛼 = 0.08, 𝑑 = 0.001, 𝛿 = 0.002, 𝑎 = 0.02, 𝑏 = 0.0004 

 

Variation in the susceptible and infected population with respect to time delay by taking 

various values of time lag 𝜏 = 0, 2 and 4  at different initial values have been shown in 

Figs. 6.12(a) & 6.13(a) and Figs. 6.12(b) & 6.13(b) respectively. Figs. 6.12(a) & 6.13(a) 

depict the decrement in susceptible population and Figs. 6.12(b) & 6.13(b) show the 

increment in the infected population as time lag 𝜏 increases. Thus, the higher the delay, 

the higher will be the occurrence of infection in the society, which is biologically to be 

expected. 

 

The influence of transmission rate (𝛽) and inhibitory effect (𝛼) on the infected 

population has been interpreted in Figs. 6.14 and 6.15 respectively. Fig. 6.14 shows that 

the infected population is increasing with the increase in the transmission rate (𝛽), while 

decrement in the infected population is observed with increasing value of inhibitory 

effects (𝛼) (Fig. 6.15). Based on these figures, it can be concluded that inhibitions must 

be exercised to control the disease from the society. Further, Figs. 6.14 and 6.15 observe 

resemblance in nature and hence ensure the validation of the mathematical structure of 

the model. 

  

Fig. 6.16 shows the impact of the cure rate on the infected population at different values 

of cure rate 𝑎 = 0.02, 0.04 and 0.006 respectively. The diminution of the infected 

population with the increment in cure rate 𝑎 can be seen from the graph and then, the 

infected population settles down to its steady state. Also, it is readily seen from the graph 

that when there are low treatment facilities available then infection is occurring at a 

higher rate.  
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Fig. 6.17 represents the variation in the population of infected individuals in the presence 

of inhibitory effect and Holling type III treatment rate, in the absence of inhibitory effect 

and in presence of Holling type III treatment rate, in presence of inhibitory effect and in 

the absence of Holling type III treatment rate, and in absence of inhibitory effect and 

Holling type III treatment rate respectively. This figure shows how the combination of 

Monod-Haldane incidence (presence of inhibitory effects) and Holling type III treatment 

rates help to control the spread of infectious disease effectively. From the graph, it can be 

seen that when infected individuals have been treated using Holling type III rate then the 

number of the infected individuals sharply decreases initially, and thereafter it begins to 

decrease gradually and reaches its steady state.  

 

Fig.6.18 shows the infected population at increased values of limitation rate in treatment 

availability. It can be observed from the figure that higher the limitation in treatment 

availability, the higher will be the infection. 

 

To illustrate the Hopf bifurcation numerically, the oscillatory and periodic behavior of the 

infected population has been drawn in Figs. 6.19, 6.20, and 6.21.  For this, we take the 

following data: 

 

𝐴 = 5 , 𝜇 = 0.05 , 𝛽 = 0.54 , 𝛼 = 1.2, 𝑑 = 0.001 , 𝛿 = 0.002 , 𝑎 = 0.1 , 𝑏 = 0.0387 . 

 

Figs. 6.19 and 6.20 show damped oscillations for the time delay 𝜏 = 9 and 𝜏 = 11 

respectively, which mean the inherent dynamics contain a strong oscillatory component, 

but the amplitude of these fluctuations declines over time as the system equilibrates. It 

shows how the fraction of infectives oscillates with decreasing amplitude as it settles 

towards the equilibrium whereas Fig. 6.21 shows the periodic solution of the infected 

population with respect to the time for the time delay  𝜏 = 13.5, which confirms the 

occurrence of Hopf bifurcation. 

 

6.8 Conclusions 

 

In this chapter, we proposed a time-delayed SIR epidemic model with a novel 

combination of Monod-Haldane (M-H) Incidence rate and two different treatment rates 
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(Holling type II & III treatment rates). We analyzed the model at equilibrium points. It 

has been found that the model has two equilibria: disease-free and endemic equilibria. We 

investigated the local stability of DFE by basic reproduction number 𝑅0  and it is 

concluded that DFE is locally asymptotical stable when 𝑅0 < 1 for 𝜏 ≥ 0 for both 

combination of incidence and treatment rates separately. We have also shown that DFE 

at 𝑅0 = 1: (i) DFE is linearly neutrally stable for 𝜏 > 0, (ii) exhibits the forward 

bifurcation for 𝜏 = 0. Further, we also discussed the stability of EE and investigated that 

EE is locally asymptotically stable for time lag 𝜏 ≥ 0 under the conditions stated in 

Theorem 6.5, 6.6, 6.11 & 6.12 respectively for both the combinations of incidence and 

treatment rates. We showed that the model exhibits a Hopf bifurcation at endemic 

equilibrium under the conditions stated in theorem 6.7 & 6.13. Further, for the 

combination of M-H incidence rate and Holling type III treatment rate, we investigated 

that DFE is globally asymptotically stable when 𝑅0 ≤ 1 and EE is globally 

asymptotically stable when 𝑅0 > 1 under the conditions (A1-A3), (A4) and (A5-A6) 

respectively. We also simulated the model numerically in the support of our theoretical 

findings and have drawn the graphs for time delay, transmission rate, measures of 

inhibition and treatment rate. From the graphs, we observed that the higher the delay, the 

higher will be the infection and also observed that Holling type II & III treatment rates 

may play a crucial role in controlling the infection. The effect of inhibitory measures and 

transmission rate of disease on the infected population has been shown and it is evident 

from the figures that the infected population is increasing with the increased value of 

transmission rate, while it is decreasing with the increasing values of inhibitory measures. 

This implies that the higher the inhibitory effects, the lesser will be the infection.  With 

the help of figures, we also showed the oscillatory and periodic behavior of infection in 

the population. It shows the occurrence of Hopf bifurcation and also confirms the 

appearance of the periodic solution. 
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Fig 6.2: Forward bifurcation diagram for the data 𝐴 = 12, 𝛼 = 0.001, 𝛽 = 0.0003, 𝜇 =

0.05, 𝑑 = 0.01, 𝛿 = 0.002, 𝑎 = 0.02, 𝑏 = 0.002. 

 
Fig. 6.3: Susceptible (𝑆) and Infected (𝐼) population at time lag 𝜏 = 0, 1. 
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Fig. 6.4: Variation in the infected population (𝐼) at various values of time lag 𝜏. 

 

 
Fig. 6.5: Variation in the infected population (𝐼) at various values of the transmission 

rate (𝛽). 
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Fig. 6.6: Variation in the infected population (𝐼) at various values of psychological 

effects/ inhibitory effects (𝛼). 

 
Fig. 6.7: Variation in the infected population (𝐼) at various values of cure rate(𝑎). 
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Fig. 6.8: Variation in the infected population (𝐼) at various values of limitation rate (𝑏) 

in treatment availability. 

 
Fig. 6.9: Variation in the infected population (𝐼) with and without Holling type II 

treatment rate with 𝑎 = 0.05 and 𝑏 = 0.002. 
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Fig. 6.10: Variation in the infected population (𝐼) with the various combinations of 

inhibitory effect and treatment rate.  

 

Fig. 6.11: Oscillatory behavior of the infected population (𝐼) at time lag 𝜏 = 8. 
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Fig. 6.12(a): Variation in the susceptible population (𝑆) at various values of time lag 𝜏. 

 

Fig. 6.12(b): Variation in the infected population (𝐼) at various values of time lag 𝜏. 
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Fig. 6.13(a): Variation in the susceptible population (𝑆) at various values of time lag 𝜏. 

 

Fig. 6.13(b): Variation in the infected population (𝐼) at various values of time lag 𝜏. 
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Fig. 6.14: Effect of the transmission rate (𝛽) on the infected population (𝐼). 

 

Fig. 6.15: Impact of inhibitory effect (𝛼) on the infected population(𝐼). 
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Fig. 6.16: Impact of cure rate (𝑎) on the infected population (𝐼). 

 

Fig. 6.17: Variation in the infected population (𝐼) with various combinations of 

incidence and treatment rates at time lag 𝜏 = 1. 
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Fig. 6.18: Variation in the infected population (𝐼) at various values of limitation rate 

(𝑏) in treatment availability. 

 

Figs. 6.19: Oscillatory behavior of the infected population (𝐼) at time lag 𝜏 = 9. 
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Figs. 6.20: Oscillatory behavior of the infected population (𝐼) at time lag 𝜏 = 11. 

 

Fig. 6.21: Periodic behavior of the infected population (𝐼) at time lag 𝜏 = 13.5. 
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CHAPTER 7 

 

ANALYSIS OF A TIME-DELAYED SIR EPIDEMIC 

MODEL WITH CROWLEY-MARTIN FUNCTIONAL TYPE 

INCIDENCE RATE AND HOLLING FUNCTIONAL TYPE 

II TREATMENT RATE 

 

 

In this chapter, the incidence rate of a new infection is considered as Crowley-Martin (C-

M) functional type because it considers the effect of inhibition among infectives even in 

case of the high density of susceptible population which is neglected by any other 

incidence rate. The latency time has been used as a delay in the incidence rate to 

understand the dynamics of the epidemic more pragmatically. Therefore, a combination 

of C-M incidence rate along with time delay and Holling functional type II treatment rate 

is studied. The local stability, as well as global stability analysis of the model equilibria, 

is being discussed. The numerical outcomes demonstrate the impact of measure of 

inhibition, time delay and nonlinear treatment on the infectious population. 
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7.1 Introduction 

 

The Crowley-Martin (C-M) type of functional response was introduced by Crowley and 

Martin [1989] and is expressed as below: 

𝑔(𝑆(𝑡), 𝐼(𝑡)) =
𝛽𝑆(𝑡)

(1 + 𝛼𝑆(𝑡))(1 + 𝛾𝐼(𝑡))
 

where 𝛼, 𝛽, 𝛾 are positive constants. From the expression, we observe that similar to the 

Beddington-DeAngelis type incidence rate (see section 1.5), one can easily derive other 

forms of incidence rates. The important difference between the Beddington-DeAngelis 

type and the Crowley-Martin type incidence rate is that the latter considers the effect of 

inhibition among infectives even in case of the high density of susceptible populations 

while the former neglects the aforesaid effect. This can be seen as follows: 

 

For Beddington-DeAngelis type incidence rate 

Lim
𝑆(𝑡)→∞

𝑔(𝑆(𝑡), 𝐼(𝑡)) =
𝛽

𝛼
 , 

and for Crowley-Martin type incidence rate 

 Lim
𝑆(𝑡)→∞

𝑔(𝑆(𝑡), 𝐼(𝑡)) =
𝛽

𝛼(1 + 𝛾𝐼(𝑡))
 . 

 

Models in which the rates of transfer depend on the sizes of compartments over the past 

as well as at the moment of transfer lead to more general types of realistic models. Time 

delay has a significant effect on the epidemic dynamics and it strongly influences the 

model output. Therefore, the present paper aims to study the impact of time delay on an 

epidemic model with Crowley-Martin incidence rate that determines the course of 

infection within the individuals and treatment rate as Holling type II (the detailed 

explanations of Holling functional type II treatment rate is already given in section (3.1)) 

that design the programs for the control of infection and disease within the different 

communities. Furthermore, dynamical behavior and stability of the model is governed by 

the value of the basic reproduction number 𝑅0. 

 

7.2 Mathematical model 
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In the study of disease transmission model, the total population is divided into three 

classes of individuals, labeled as susceptible class  𝑆(𝑡), infected class 𝐼(𝑡) and recovered 

class 𝑅(𝑡). 𝑆(𝑡) denotes the individuals who are susceptible to the disease (who are not 

yet infected at time 𝑡) but are capable of catching the disease and can become infected. 

𝐼(𝑡) denotes the individuals who are infected and are capable of transmitting the disease 

to others. 𝑅(𝑡) denotes the individuals who have been infected and removed from the 

possibility of being re-infected and enter into the recovered compartment, because of the 

autoimmune response of the body and treatment. We assume that susceptible individuals 

are recruited at the rate 𝐴. The movements out of the susceptible compartment into the 

infective compartment is governed by Crowley-Martin incidence rate 

𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

(1+𝛼𝑆(𝑡−𝜏))(1+𝛾𝐼(𝑡−𝜏))
; where 𝛽 denotes the transmission rate, 𝛼 is the measure of 

inhibition adopted by susceptibles, 𝛾 is the measure of inhibition adopted by infectives, 

and 𝜏 denotes the time delay. The parameters 𝜇, 𝑑, and 𝛿 are defined as natural death rate, 

disease induced death rate and recovery rate respectively. The term ℎ(𝐼(𝑡)) =
𝑎𝐼(𝑡)

1+𝑏𝐼(𝑡)
 

defines the Holling type II treatment rate where 𝑎 is cure rate, 𝑏 represents limitation rate 

in resources availability. The movement of the individuals in different compartments is 

shown by the block diagram in Fig 7.1 below. 

 

                                                                            𝒉(𝑰(𝒕)) 

                𝑨          
𝜷𝑺(𝒕−𝝉)𝑰(𝒕−𝝉)

(𝟏+𝜶𝑺(𝒕−𝝉))(𝟏+𝜸𝑰(𝒕−𝝉))
                    𝜹𝑰(𝒕)    

 

 

           𝝁𝑺(𝒕)                               (𝝁 + 𝒅)𝑰(𝒕)             𝝁𝑹(𝒕)      

 

Fig. 7.1: Transfer diagram of the infection through various compartments. 

 

These assumptions lead to the following nonlinear system of the delay differential 

equations to describe the changes in  𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡) with respect to time  𝑡:  

𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑆(𝑡) −

𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

(1+𝛼𝑆(𝑡−𝜏))(1+𝛾𝐼(𝑡−𝜏))
 ,         

𝑆(𝑡) 𝐼(𝑡) 𝑅(𝑡) 
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𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

(1+𝛼𝑆(𝑡−𝜏))(1+𝛾𝐼(𝑡−𝜏))
− (𝜇 + 𝑑 + 𝛿)𝐼(𝑡) −

𝑎𝐼(𝑡)

1+𝑏𝐼(𝑡)
  ,        (7.1) 

𝑑𝑅(𝑡)

𝑑𝑡
=

𝑎𝐼(𝑡)

1+𝑏𝐼(𝑡)
+ 𝛿𝐼(𝑡) − 𝜇𝑅(𝑡) .          

where 𝜏 > 0 is a fixed time during which the infectious agents develop in the vector, and 

it is only after this time that the infected vector can infect a susceptible individual. 

 

The initial conditions of the model (7.1) are given by 

𝑆(𝜃) = 𝜑1(𝜃), 𝐼(𝜃) = 𝜑2(𝜃), 𝑅(𝜃) = 𝜑3(𝜃),  𝜑𝑖(𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0], 𝜑𝑖(0) > 0 (𝑖 =

1,2,3)               (7.2) 

where (𝜑1(𝜃), 𝜑2(𝜃), 𝜑3(𝜃)) ∈ 𝐶([−𝜏, 0], ℝ+
3 ). Here 𝐶 denotes the Banach space of 

continuous functions mapping the interval [−𝜏, 0] into ℝ+
3 . 

 

7.3 Basic properties of the model 

 

Since the first two equations of the model (7.1) are free from the effect of  𝑅, we consider 

the following reduced system for analysis: 

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝜇𝑆 −

𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

(1+𝛼𝑆(𝑡−𝜏))(1+𝛾𝐼(𝑡−𝜏))
 ,         

𝑑𝐼

𝑑𝑡
=

𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

(1+𝛼𝑆(𝑡−𝜏))(1+𝛾𝐼(𝑡−𝜏))
− (𝜇 + 𝑑 + 𝛿)𝐼 −

𝑎𝐼

1+𝑏𝐼
  .         (7.3) 

with initial conditions 

𝑆(𝜃) = 𝜑1(𝜃), 𝐼(𝜃) = 𝜑2(𝜃),
                         

  𝜑𝑖(𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0], 𝜑𝑖(0) > 0 (𝑖 = 1,2),      (7.4) 

where (𝜑1(𝜃), 𝜑2(𝜃), ) ∈ 𝐶([−𝜏, 0], ℝ+
2 ). Here 𝐶 denotes the Banach space of continuous 

functions mapping the interval [−𝜏, 0] into ℝ+
2 .  

 

The equations of the system (7.3) monitor population. It is assumed that all state variables 

of the system (7.3) are nonnegative i.e. (𝑆, 𝐼) ∈ ℝ+
2  and all parameters 

𝐴, 𝜇, 𝛽, 𝛼, 𝑑, 𝛾, 𝛿, 𝑎, 𝑏 > 0.  

We also assume that 𝐹(𝑆(𝑡), 𝐼(𝑡)) =
𝛽𝑆(𝑡)𝐼(𝑡)

(1+𝛼𝑆(𝑡))(1+𝛾𝐼(𝑡))
 and ℎ(𝐼(𝑡)) =

𝑎𝐼(𝑡)

1+𝑏𝐼(𝑡)
 are always 

positive, continuously differentiable, and monotonically increasing for all 𝑆(𝑡) > 0 

and 𝐼(𝑡) > 0. That is, they satisfy the following conditions: 
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A1.  𝐹(𝑆(𝑡), 𝐼(𝑡)) > 0, 𝐹′
𝑆(𝑆(𝑡), 𝐼(𝑡)) > 0, 𝐹′

𝐼(𝑆(𝑡), 𝐼(𝑡)) > 0 for 𝑆(𝑡) > 0 

and 𝐼(𝑡) > 0. 

A2. 𝐹(𝑆(𝑡), 0) = 𝐹(0, 𝐼(𝑡)) = 0, 𝐹′
𝑆(𝑆(𝑡), 0) = 0, 𝐹′

𝐼(𝑆(𝑡), 0) > 0 for 𝑆(𝑡) > 0 

and 𝐼(𝑡) > 0. 

A3. ℎ(0) = 0, ℎ′(0) > 0 for 𝐼(𝑡) ≥ 0. 

 

Theorem 7.1:  The set 𝐷 = {(𝑆, 𝐼) ∈ ℝ+
2 : 0 < 𝑆(𝑡) + 𝐼(𝑡) ≤

𝐴

𝜇
} is a positively invariant 

and attracting region for the system (7.3).  

Proof: The proof of this theorem is as given in section 4.1. Hence, it is omitted here. 

 

7.4 Equilibria and their stability analysis 

 

In this section, we will illustrate our results on the local stability of the equilibria of the 

system (7.3). Time delayed systems will have the same equilibrium solution as those of 

zero delayed systems [Tipsri and Chinviriyasit (2014)].   

 

7.4.1 Disease-free equilibrium (DFE) 

 

By setting the derivatives of the system (7.3) to zero, we obtain a unique DFE of the 

form 𝑄(
𝐴

𝜇
, 0). 

The characteristic equation of the system (7.3) evaluated at disease-free equilibrium 𝑄 is 

obtained as:  

(𝜇 + 𝜆) (
𝛽𝐴

(𝜇+𝛼𝐴)
 𝑒−𝜆𝜏 − 𝜇 − 𝑑 − 𝛿 − 𝑎 − 𝜆) = 0          (7.5) 

One of the roots of Eq. (7.5) is given by 𝜆1 = −𝜇 and the other root can be obtained from 

the equation 

𝛽𝐴

(𝜇+𝛼𝐴)
 𝑒−𝜆𝜏 − 𝜇 − 𝑑 − 𝛿 − 𝑎 − 𝜆 = 0. 

The term 
𝛽𝐴

(𝜇+𝛼𝐴)(𝜇+𝑑+𝛿+𝑎)
 𝑒−𝜆𝜏  evaluated at 𝜏 = 0 is termed as the basic reproduction 

number, represented by 𝑅0. Therefore,  𝑅0 for the system (7.3) is 



154 
 

𝑅0 =
𝛽𝐴

(𝜇+𝛼𝐴)(𝜇+𝑑+𝛿+𝑎)
 . 

 

7.4.1.1 Analysis for 𝑹𝟎 ≠ 𝟏 

 

Eq. (7.5) has a negative root 𝜆1 = −𝜇  and another root can be obtained from equation 

𝜆 + 𝜇 + 𝑑 + 𝛿 + 𝑎 −
𝛽𝐴

(𝜇+𝛼𝐴)
 𝑒−𝜆𝜏 = 0.  

Let 

𝑓(𝜆) = 𝜆 + 𝜇 + 𝑑 + 𝛿 + 𝑎 −
𝛽𝐴

(𝜇 + 𝛼𝐴)
 𝑒−𝜆𝜏. 

If 𝑅0 > 1 then for real value of  𝜆, 

𝑓(0) = 𝜇 + 𝑑 + 𝛿 + 𝑎 −
𝛽𝐴

(𝜇 + 𝛼𝐴)
< 0, Lim

𝜆→∞
𝑓(𝜆) → +∞. 

Hence, 𝑓(𝜆) = 0 has a positive real root if 𝑅0 > 1. 

If 𝑅0 < 1, we assume that 𝑅𝑒 𝜆 ≥ 0. 

Also,  

𝑅𝑒 𝜆 =
𝛽𝐴

(𝜇+𝛼𝐴)
 𝑒−𝑅𝑒 𝜆 𝜏 cos 𝐼𝑚 𝜆 𝜏 − (𝜇 + 𝑑 + 𝛿 + 𝑎) ≤

𝛽𝐴

(𝜇+𝛼𝐴)
 − (𝜇 + 𝑑 + 𝛿 + 𝑎) < 0,  

a contradiction to our assumption. Hence, if 𝑅0 < 1 then  𝜆 is a root of Eq. (7.5) whose 

real part is negative.  

Hence, the following theorem can be stated: 

 

Theorem 7.2: If  𝑅0 < 1 then the disease-free equilibrium 𝑄(
𝐴

𝜇
, 0) is locally 

asymptotically stable and if 𝑅0 > 1 then 𝑄 is unstable. 

 

7.4.1.2 Analysis at  𝑹𝟎 = 𝟏 
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We see that roots of the system (7.3) at  𝑅0 = 1 and bifurcation parameter 𝛽 = 𝛽∗ =

(𝜇+𝛼𝐴)(𝜇+𝑑+𝛿+𝑎)

𝐴
 has one zero eigenvalue and one negative eigenvalue respectively. To 

analyze the stability of the equilibrium point at  𝑅0 = 1, linearization is not applicable to 

investigate the stability behavior of equilibrium 𝑄, at 𝑅0 = 1. We may use the center 

manifold theory [Sastry (1999)]. For this purpose, we use the notations  𝑆 = 𝑥1 and 𝐼 =

𝑥2. Thus, the system (7.3) can be rewritten as:  

𝑑𝑥1

𝑑𝑡
= 𝐴 − 𝜇𝑥1 −

𝛽𝑥1𝑥2

(1+𝛼𝑥1)(1+𝛾𝑥2)
≡ 𝑓1,                  

𝑑𝑥2

𝑑𝑡
=

𝛽𝑥1𝑥2

(1+𝛼𝑥1)(1+𝛾𝑥2)
− (𝜇 + 𝑑 + 𝛿)𝑥2 −

𝑎𝑥2

1+𝑏𝑥2
≡ 𝑓2.        (7.6) 

 

Let  𝐽∗ denotes the Jacobian matrix of the system (7.6) evaluated at bifurcation parameter 

𝛽 = 𝛽∗ and 𝑅0 = 1 . Then, 

𝐽∗ = [−𝜇 −
𝛽∗𝐴

𝜇 + 𝛼𝐴
0 0

] 

 

Let 𝑢 = [𝑢1, 𝑢2 ] be the left eigenvector and 𝑤 = [𝑤1, 𝑤2 ]𝑇 be the right eigenvector of 

the Jacobian matrix  𝐽∗corresponding to the zero eigenvalue. Then we have 

𝑢1 = 0, 𝑢2 = 1 and 𝑤1 = −
𝛽∗𝐴

𝜇(𝜇 + 𝛼𝐴)
, 𝑤2 = 1. 

 

The non-zero partial derivatives of the functions 𝑓1 and 𝑓2 of the system (7.6) at  𝑅0 = 1 

and  𝛽 = 𝛽∗ are obtained as 

(
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2
)

𝑄
=

𝛽∗𝜇2

(𝜇+𝛼𝐴)2
, (

𝜕2𝑓2

𝜕𝑥2𝜕𝑥1
)

𝑄
=

𝛽∗𝜇2

(𝜇+𝛼𝐴)2
, (

𝜕2𝑓2

𝜕𝑥2
2
)

𝑄
=

−2𝛾𝛽∗𝐴

(𝜇+𝛼𝐴)
+ 2𝑎𝑏,  

  (
𝜕2𝑓2

𝜕𝑥1
2)

𝑄
= −

2𝛼𝛽∗𝜇3

𝜇+𝛼𝐴
, (

𝜕2𝑓2

𝜕𝑥2𝜕𝛽∗)
𝑄

=
𝐴

(𝜇+𝛼𝐴)
.  

Then using theorem 4.1 of [Chavez and Song (2004)], the bifurcation constants 

𝑎1 and  𝑏1 are 

𝑎1 = ∑ 𝑢𝑘𝑤𝑖𝑤𝑗
2
𝑘,𝑖,𝑗=1 (

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
)

𝑄

  

= −2 ((
𝛽∗𝐴

𝜇+𝛼𝐴
)

3 𝛼𝜇

𝐴(𝜇+𝛼𝐴)
+ (

𝛽∗𝐴

𝜇+𝛼𝐴
)

2 𝜇

𝐴(𝜇+𝛼𝐴)
+ 𝛾

𝛽∗𝐴

𝜇+𝛼𝐴
) + 2𝑎𝑏  

= 2 (𝑎𝑏 −
𝜇𝛽∗𝐴

𝜇+𝛼𝐴
(

𝛽∗2
𝐴𝛼

(𝜇+𝛼𝐴)3 +
𝛽∗

(𝜇+𝛼𝐴)2 +
𝛾

𝜇
))  
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= 𝑎𝑏 − 𝑐, where 𝑐 =
𝜇𝛽∗𝐴

𝜇+𝛼𝐴
(

𝛽∗2
𝐴𝛼

(𝜇+𝛼𝐴)3 +
𝛽∗

(𝜇+𝛼𝐴)2 +
𝛾

𝜇
) 

 

and 

𝑏1 = ∑ 𝑢𝑘𝑤𝑖
2
𝑘,𝑖=1 (

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝛽∗)
𝑄

  

= 𝑢2 (𝑤2
𝐴

(𝜇+𝛼𝐴)
)  

=
𝐴

(𝜇+𝛼𝐴)
> 0.  

Hence, according to the sign of 𝑎1, the following theorem is being proposed: 

 

Theorem 7.3: For the transcritical bifurcations, we have the following results: 

i) When 𝑎𝑏 < 𝑐, 𝑎1 < 0, the system (7.3) exhibits a forward transcritical bifurcation 

at disease-free equilibrium (𝑄) and  𝑅0 = 1. 

ii) When 𝑎𝑏 > 𝑐, 𝑎1 > 0, the system (7.3) either exhibits a backward transcritical 

bifurcation or saddle-node bifurcation at disease-free equilibrium (𝑄) and  𝑅0 =

1. 

The forward bifurcation is illustrated in Fig. 7.2. 

 

7.4.2 Existence and stability analysis of endemic equilibrium 

 

For the existence of an endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗), the system (7.3) is rearranged to 

get  𝑆∗and 𝐼∗  which gives 

𝑆∗ =
𝐴 + (𝐴𝑏 − 𝜇 − 𝑑 − 𝛿 − 𝑎)𝐼∗ − 𝑏(𝜇 + 𝑑 + 𝛿)𝐼∗2

𝜇(1 + 𝑏𝐼∗)
, 

and  𝐼∗ is given by the following equation 

𝐶1𝐼∗4 + 𝐶2𝐼∗3 + 𝐶3𝐼∗2 + 𝐶4𝐼∗ + 𝐶5 = 0          (7.7) 

where 

𝐶1 = 𝛾𝑏2𝛼(𝜇 + 𝑑 + 𝛿)2, 

𝐶2 = (𝛾𝑏𝛼(𝜇 + 𝑑 + 𝛿)(𝜇 + 𝑑 + 𝛿 + 𝑎) + 𝑏(𝜇 + 𝑑 + 𝛿)(−𝛼𝑏(𝜇 + 𝑑 + 𝛿) + 𝛾𝜇𝑏 +

𝛾𝛼(𝐴𝑏 − 𝜇 − 𝑑 − 𝛿 − 𝑎)) + 𝛽𝑏2(𝜇 + 𝑑 + 𝛿)), 
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𝐶3 = ((𝜇 + 𝑑 + 𝛿 + 𝑎)(−𝛼𝑏(𝜇 + 𝑑 + 𝛿) + 𝛾𝜇𝑏 + 𝛾𝛼(𝐴𝑏 − 𝜇 − 𝑑 − 𝛿 − 𝑎)) +

𝑏(𝜇 + 𝑑 + 𝛿)(𝜇𝑏 + 𝛼(𝐴𝑏 − 𝜇 − 𝑑 − 𝛿 − 𝑎) + 𝛾𝜇 + 𝛾𝛼𝐴) − 𝛽𝑏(𝐴𝑏 − 2𝜇 − 2𝑑 −

2𝛿 − 𝑎)), 

𝐶4 = ((𝜇 + 𝑑 + 𝛿 + 𝑎)(𝜇𝑏 + 𝛼(𝐴𝑏 − 𝜇 − 𝑑 − 𝛿 − 𝑎) + 𝛾𝜇 + 𝛾𝛼𝐴) + 𝑏(𝜇 + 𝑑 +

𝛿)(𝜇 + 𝛼𝐴) − 𝛽(2𝐴𝑏 − 𝜇 − 𝑑 − 𝛿 − 𝑎)), 

𝐶5 = ((𝜇 + 𝑑 + 𝛿 + 𝑎)(𝜇 + 𝛼𝐴) − 𝛽𝐴) = (𝜇 + 𝑑 + 𝛿 + 𝑎)(𝜇 + 𝛼𝐴)(1 − 𝑅0) . 

Using Descartes’ rule of signs, there exists a unique positive real root 𝐼∗ of the 

biquadratic equation (7.7) if any of the following condition is satisfied: 

i. 𝐶1 > 0, 𝐶2 < 0, 𝐶3 < 0, 𝐶4 < 0 and 𝐶5 < 0. 

ii. 𝐶1 > 0, 𝐶2 > 0, 𝐶3 < 0, 𝐶4 < 0 and 𝐶5 < 0. 

iii. 𝐶1 > 0, 𝐶2 > 0, 𝐶3 > 0, 𝐶4 < 0 and 𝐶5 < 0. 

iv. 𝐶1 > 0, 𝐶2 > 0, 𝐶3 > 0, 𝐶4 > 0 and 𝐶5 < 0. 

 

If any of the above conditions is satisfied then there is a unique 𝐼∗ > 0, from which the 

value of  𝑆∗ may be determined as well. This implies that there exists a unique endemic 

equilibrium 𝑄∗(𝑆∗ , 𝐼∗ ). 

 

We now investigate the local stability of  𝑄∗. The characteristic equation of the system 

(7.3) evaluated at 𝑄∗ is given by 

𝜆2 + 𝑝0𝜆 + 𝑞0 + (𝑝1𝜆 + 𝑞1)𝑒−𝜆𝜏 = 0           (7.8) 

where 

𝑝0 = (2𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2
 ,  

𝑞0 = 𝜇 ((𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2),  

𝑝1 =
𝛽

(1+𝛼𝑆∗)(1+𝛾𝐼∗)
(

𝐼∗

(1+𝛼𝑆∗)
−

𝑆∗

(1+𝛾𝐼∗)
),  

𝑞1 =
𝛽𝐼∗

(1+𝛼𝑆∗)2(1+𝛾𝐼∗)
((𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2) −
𝜇𝛽𝑆∗

(1+𝛾𝐼∗)2(1+𝛼𝑆∗)
. 

 

Theorem 7.4: At  𝜏 = 0, 𝑄∗ is locally asymptotically stable if  
𝑆∗

𝐼∗
≤

(1+𝛾𝐼∗)

(1+𝛼𝑆∗)
  is satisfied. 

Proof:  At 𝑄∗, the characteristic equation at 𝜏 = 0 is given by 



158 
 

𝜆2 + 𝑝0𝜆 + 𝑞0 + (𝑝1𝜆 + 𝑞1) = 0.            (7.9) 

It is easy to show that if  
𝑆∗

𝐼∗ ≤
(1+𝛾𝐼∗)

(1+𝛼𝑆∗)
 is satisfied then 

𝑝0 + 𝑝1 = (2𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2
+

𝛽

(1+𝛼𝑆∗)(1+𝛾𝐼∗)
(

𝐼∗

(1+𝛼𝑆∗)
−

𝑆∗

(1+𝛾𝐼∗)
) > 0,  

𝑞0 + 𝑞1 =  𝜇 ((𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2
) +

𝛽𝐼∗

(1+𝛼𝑆∗)2(1+𝛾𝐼∗)
((𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2
) −

𝜇𝛽𝑆∗

(1+𝛾𝐼∗)2(1+𝛼𝑆∗)
  

 =  𝜇 ((𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2) +
𝛽𝐼∗

(1+𝛼𝑆∗)2(1+𝛾𝐼∗)
((𝛿 + 𝑑) +

𝑎

(1+𝑏𝐼∗)2) +

𝜇𝛽

(1+𝛼𝑆∗)(1+𝛾𝐼∗)
(

𝐼∗

(1+𝛼𝑆∗)
−

𝑆∗

(1+𝛾𝐼∗)
) > 0.     

Hence, by the definition of the Routh-Hurwitz criterion, the endemic equilibrium 𝑄∗  of 

the system (7.3) is locally asymptotically stable when 𝜏 = 0. 

 

Theorem 7.5: For 𝜏 > 0, 𝑄∗ is locally asymptotically stable if (1 + 𝑏𝐼∗)2 ≥

2𝜇𝑎

((𝜇+𝑑+𝛿)2+𝜇2)
,  𝐿1 ≥ 𝐿2, 𝐿3 ≥ 𝐿4 and (1 + 𝛼𝑆∗)2 ≥

𝛽𝐼∗

𝜇(1+𝛾𝐼∗)
 hold true simultaneously, 

where 

𝐿1 = (
𝑎

(1+𝑏𝐼∗)2)
2

+
2𝛽2𝑆∗𝐼∗

(1+𝛼𝑆∗)3(1+𝛾𝐼∗)3 ,  

𝐿2 =
𝛽2

(1+𝛼𝑆∗)2(1+𝛾𝐼∗)2 ((
𝐼∗

(1+𝛼𝑆∗)
)

2

+ (
𝑆∗

(1+𝛾𝐼∗)
)

2

), 

𝐿3 =
𝑎

(1+𝑏𝐼∗)2 (𝜇 +
𝛽𝐼∗

(1+𝛼𝑆∗)2(1+𝛾𝐼∗)
), 

𝐿4 =
𝜇𝛽𝑆∗

(1+𝛾𝐼∗)2(1+𝛼𝑆∗)
 . 

Proof: At 𝑄∗ the characteristic equation for 𝜏 > 0 is given by Eq. (7.8) 

𝜆2 + 𝑝0𝜆 + 𝑞0 + (𝑝1𝜆 + 𝑞1)𝑒−𝜆𝜏 = 0, 

For  𝜏 > 0, corollary 2.4 of Ruan and Wei [2003] ensure that if the endemic equilibrium 

𝑄∗ is unstable for the particular value of delay, then roots of the characteristic equation 

(7.8) must intersect the imaginary axis. Thus, to prove the stability of the system (7.3), we 
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will use the contradictory assumption i.e. we assume that 𝜆 = 𝑖𝜔, 𝜔 > 0 is the roots of 

Eq. (7.8). Let  𝜆 = 𝑖𝜔.  Then Eq. (7.8) becomes: 

−𝜔2 + 𝑞0 + 𝑝1𝜔 sin 𝜔𝜏 + 𝑞1 cos 𝜔𝜏 + 𝑖 (𝑝1𝜔 cos 𝜔𝜏 − 𝑞1 sin 𝜔𝜏 +  𝑝0𝜔) = 0      (7.10) 

On separating real and imaginary parts of Eq. (7.10), we obtain 

𝑝1𝜔 sin 𝜔𝜏 + 𝑞1  cos 𝜔𝜏 = 𝜔2 − 𝑞0         (7.11) 

𝑝1𝜔 cos 𝜔𝜏 − 𝑞1  sin 𝜔𝜏 = −𝑝0𝜔          (7.12) 

Squaring and adding both sides of Eqs. (7.11) and (7.12) gives 

𝜔4 + (𝑝0
2 − 2𝑞0 − 𝑝1

2)𝜔2 + (𝑞0
2 − 𝑞1

2) = 0       (7.13) 

Assuming 𝜔2 = 𝑧1, Equation (7.13) becomes 

    𝑧1
2 + 𝑃𝑧1 + 𝑇 = 0       (7.14) 

where 𝑃 = (𝑝0
2 − 2𝑞0 − 𝑝1

2) and  𝑇 = (𝑞0
2 − 𝑞1

2). 

 It is easy to show that if (1 + 𝑏𝐼∗)2 ≥
2𝜇𝑎

((𝜇+𝑑+𝛿)2+𝜇2)
,  𝐿1 ≥ 𝐿2, 𝐿3 ≥ 𝐿4 and (1 +

𝛼𝑆∗)2 ≥
𝛽𝐼∗

𝜇(1+𝛾𝐼∗)
  are satisfied simultaneously then 

𝑃 = (𝑝0
2 − 2𝑞0 − 𝑝1

2)  

= ((2𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2)

2

− 2𝜇 ((𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2) −

(
𝛽

(1+𝛼𝑆∗)(1+𝛾𝐼∗)
(

𝐼∗

(1+𝛼𝑆∗)
−

𝑆∗

(1+𝛾𝐼∗)
))

2

   

=
2𝑎(2𝜇+𝑑+𝛿)

(1+𝑏𝐼∗)2 + ((2𝜇 + 𝑑 + 𝛿)2 − 2𝜇 ((𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2)) + (
𝑎

(1+𝑏𝐼∗)2)
2

+

2𝛽2𝑆∗𝐼∗

(1+𝛼𝑆∗)3(1+𝛾𝐼∗)3
−

𝛽2

(1+𝛼𝑆∗)2(1+𝛾𝐼∗)2
((

𝐼∗

(1+𝛼𝑆∗)
)

2

+ (
𝑆∗

(1+𝛾𝐼∗)
)

2

)  

=
2𝑎(2𝜇+𝑑+𝛿)

(1+𝑏𝐼∗)2 + ((𝜇 + 𝑑 + 𝛿)2 + 𝜇2 −
2𝜇𝑎

(1+𝑏𝐼∗)2) + ((
𝑎

(1+𝑏𝐼∗)2)
2

+
2𝛽2𝑆∗𝐼∗

(1+𝛼𝑆∗)3(1+𝛾𝐼∗)3 −

𝛽2

(1+𝛼𝑆∗)2(1+𝛾𝐼∗)2
((

𝐼∗

(1+𝛼𝑆∗)
)

2

+ (
𝑆∗

(1+𝛾𝐼∗)
)

2

))  

=
2𝑎(2𝜇+𝑑+𝛿)

(1+𝑏𝐼∗)2 + ((𝜇 + 𝑑 + 𝛿)2 + 𝜇2 −
2𝜇𝑎

(1+𝑏𝐼∗)2) + (𝐿1 − 𝐿2) > 0,  

 

𝑇 = (𝑞0
2 − 𝑞1

2) = (𝑞0 + 𝑞1)(𝑞0 − 𝑞1)  
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= (𝜇 ((𝜇 + 𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2) + (
𝛽𝐼∗

(1+𝛼𝑆∗)2(1+𝛾𝐼∗)
((𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2) −

𝜇𝛽𝑆∗

(1+𝛾𝐼∗)2(1+𝛼𝑆∗)
)) (𝜇 ((𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2
) − (

𝛽𝐼∗

(1+𝛼𝑆∗)2(1+𝛾𝐼∗)
((𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2) −
𝜇𝛽𝑆∗

(1+𝛾𝐼∗)2(1+𝛼𝑆∗)
))  

 = (𝜇(𝜇 + 𝑑 + 𝛿) +
𝛽(𝜇+𝑑+𝛿)𝐼∗

(1+𝛼𝑆∗)2(1+𝛾𝐼∗)
+

𝑎

(1+𝑏𝐼∗)2 (𝜇 +
𝛽𝐼∗

(1+𝛼𝑆∗)2(1+𝛾𝐼∗)
) −

𝜇𝛽𝑆∗

(1+𝛾𝐼∗)2(1+𝛼𝑆∗)
) (((𝜇 +

𝑑 + 𝛿) +
𝑎

(1+𝑏𝐼∗)2) (
𝜇

(1+𝛼𝑆∗)2) ((1 + 𝛼𝑆∗)2 −
𝛽𝐼∗

𝜇(1+𝛾𝐼∗)
) +

𝜇𝛽𝑆∗

(1+𝛾𝐼∗)2(1+𝛼𝑆∗)
) 

= (𝜇(𝜇 + 𝑑 + 𝛿) +
𝛽(𝜇+𝑑+𝛿)𝐼∗

(1+𝛼𝑆∗)2(1+𝛾𝐼∗)
+ (𝐿3 − 𝐿4)) (((𝜇 + 𝑑 + 𝛿) +

𝑎

(1+𝑏𝐼∗)2) (
𝜇

(1+𝛼𝑆∗)2) ((1 +

𝛼𝑆∗)2 −
𝛽𝐼∗

𝜇(1+𝛾𝐼∗)
) +

𝜇𝛽𝑆∗

(1+𝛾𝐼∗)2(1+𝛼𝑆∗)
) > 0.  

Evidently, if 𝑃 > 0 and   𝑇 > 0  are satisfied simultaneously, then by Routh – Hurwitz 

Criterion, Eq. (7.14) will always have roots with a negative real part. It contradicts our 

assumption for instability that 𝜆 = 𝑖𝜔 is a root of Eq. (7.8). Hence, the endemic 

equilibrium 𝑄∗  of the system (7.3) is locally asymptotically stable for 𝜏 > 0. 

Alternatively, by Descartes’ rule of signs, Eq. (7.14) does not have any positive roots, 

implying 𝜔 is not real, which contradicts our assumption.  

 

7.4.2.1 Hopf bifurcation analysis 

 

If  𝑇 < 0 in Eq. (7.14), then there is a unique positive 𝑧0 satisfying Eq. (7.14) i.e. there is 

a single pair of purely imaginary roots ±𝑖𝑧0 to Eq. (7.8). 

From Eqs. (7.11) and (7.12)  𝜏𝑛 corresponding to 𝑧0 can be obtained as 

                                𝜏𝑛 =
1

𝑧0
 𝑎𝑟𝑐𝑐𝑜𝑠 (

(𝑞1−𝑝0𝑝1)𝑧0
2−𝑞0𝑞1

𝑝1
2𝑧0

2+𝑞1
2 ) +

2𝑛𝜋

𝑧0
, 𝑛 = 0, 1, 2, ….    (7.15) 

For  𝜏 = 0, endemic equilibrium 𝑄∗ is stable; it remains stable for 𝜏 < 𝜏0 

if  
𝑑 

𝑑𝜏
(𝑅𝑒 (𝜆))|

𝜆=𝑖𝑧0

> 0. 

Differentiating Eq. (7.8) with respect to 𝜏, we get 
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(2𝜆 + 𝑝0 + 𝑝1𝑒−𝜆𝜏 − (𝑝1𝜆 + 𝑞1)𝜏𝑒−𝜆𝜏)
𝑑𝜆

𝑑𝜏
= 𝜆(𝑝1𝜆 + 𝑞1)𝑒−𝜆𝜏     (7.16) 

(
𝑑𝜆

𝑑𝜏
)

−1

=
(2𝜆+𝑝0+𝑝1𝑒−𝜆𝜏−(𝑝1𝜆+𝑞1)𝜏𝑒−𝜆𝜏)

𝜆(𝑝1𝜆+𝑞1)𝑒−𝜆𝜏 =
(2𝜆+𝑝0)

𝜆(𝑝1𝜆+𝑞1)𝑒−𝜆𝜏 +
𝑝1

𝜆(𝑝1𝜆+𝑞1)
−

𝜏

𝜆
  

(
𝑑𝜆

𝑑𝜏
)

−1

=
(2𝜆+𝑝0)

−𝜆(𝜆2+𝑝0𝜆+𝑞0)
+

𝑝1

𝜆(𝑝1𝜆+𝑞1)
−

𝜏

𝜆
  

𝑑 

𝑑𝜏
(𝑅𝑒 (𝜆))|

𝜆=𝑖𝑧0

= 𝑅𝑒 (
𝑑𝜆

𝑑𝜏
)

−1

|
𝜆=𝑖𝑧0

  

= 𝑅𝑒 (
(2𝑖𝑧0+𝑝0)

−𝑖𝑧0(−𝑧0
2+𝑖𝑝0𝑧0+𝑞0)

+
𝑝1

𝑖𝑧0(𝑖𝑝1𝑧0+𝑞1)
−

𝜏

𝑖𝑧0
 )  

= 𝑅𝑒 (
1

𝑧0
(

(2𝑖𝑧0+𝑝0)

(𝑧0
2−𝑞0)𝑖+𝑝0𝑧0)

+
𝑝1

(−𝑝1𝑧0+𝑖𝑞1)
+ 𝑖𝜏 ))  

=
1

𝑧0
(

2𝑧0(𝑧0
2−𝑞0)+𝑝0

2𝑧0

(𝑧0
2−𝑞0)2+(𝑝0𝑧0)2 −

𝑝1
2𝑧0

(𝑝1𝑧0)2+𝑞1
2 )  

=
2𝑧0

2+(𝑝0
2−2𝑞0−𝑝1

2)

(𝑝1𝑧0)2+𝑞1
2   (Since, from Eqs. (7.11) & (7.12), (𝑧0

2 − 𝑞0)2 +

(𝑝0𝑧0)2 = (𝑝1𝑧0)2 + 𝑞1
2 ).  

Under the condition 𝑝0
2 − 2𝑞0 − 𝑝1

2 > 0, we have  
𝑑 

𝑑𝜏
(𝑅𝑒 (𝜆))|

𝜆=𝑖𝑧0

> 0. 

Therefore, the transversality condition holds and Hopf bifurcation occurs at 𝜔 = 𝑧0, 𝜏 =

𝜏0.  

By summarizing the above analysis, we arrive at the following theorem: 

 

Theorem 7.6: The endemic equilibrium 𝑄∗ of the system (7.3) is asymptotically stable 

for  𝜏 ∈ [0, 𝜏0) and it undergoes Hopf bifurcation at 𝜏 = 𝜏0. 

 

7.4.3 Global stability analysis 

 

In this section, we study the global stability of disease-free (𝑄) and endemic (𝑄∗) 

equilibria: 

 

7.4.3.1 Global stability of disease-free equilibrium (DFE) 
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In this subsection, we show the global asymptotic stability for disease-free equilibrium 

𝑄 (
𝐴

𝜇
, 0) of the system (7.3). For this, we assume the following: 

A4. 𝐹𝐼
′(𝑆(𝑡),0) is increasing with respect to 𝑆(𝑡) > 0, 

A5. 
𝐹𝐼

′(𝑆0,0)

𝐹𝐼
′(𝑆(𝑡),0)

< 1 for 𝑆(𝑡) > 𝑆0; 
𝐹𝐼

′(𝑆0,0)

𝐹𝐼
′(𝑆(𝑡),0)

> 1  for 𝑆(𝑡) ∈ (0, 𝑆0). 

A6. 𝐹(𝑆(𝑡), 𝐼(𝑡)) ≤ 𝐼(𝑡) (
𝜕𝐹(𝑆(𝑡),𝐼(𝑡))

𝜕𝐼
|

(𝑆0,0)
−

𝜕𝐺(𝐼)

𝜕𝐼
|

𝐼=0
) + 𝐺(𝐼(𝑡)), 𝐼(𝑡) > 0. 

 

Under these assumptions, we have the following theorem: 

 

Theorem 7.7: Suppose that (A1) – (A6) are satisfied, the disease-free equilibrium 

(𝑄(𝑆0, 0),  𝑆0 =
𝐴

𝜇
 ) of the system (7.3) is globally asymptotically stable for any 𝜏 ≥ 0 

if 𝑅0 ≤ 1. 

Proof: From the conditions (A1) and (A2), it follows that the disease-free equilibrium 

𝑄(𝑆0, 0) is the only equilibrium of the system (7.3). We define the following Lyapunov 

functional: 

𝑊1(𝑡) = 𝑌1(𝑡) + 𝑌2(𝑡)  

where 

𝑌1(𝑡) = 𝑆(𝑡) − 𝑆0 − ∫ Lim
𝐼→0+

𝐹(𝑆0, 𝐼(𝑡))

𝐹(𝜎, 𝐼(𝑡))
 𝑑𝜎

𝑆(𝑡)

𝑆0

+ 𝐼(𝑡), 

 𝑌2(𝑡) = ∫ 𝐹(𝑆(𝑡 − 𝜌), 𝐼(𝑡 − 𝜌)) 𝑑𝜌
𝜏

0

. 

By (A1) – (A3), it can be seen that 𝑊1(𝑡) is defined and continuously differentiable for 

all 𝑆(𝑡), 𝐼(𝑡) > 0, and 𝑊1(𝑡) = 0 at 𝑄(𝑆0, 0).  We show that 
𝑑𝑊1

𝑑𝑡
≤ 0 for all 𝑡 ≥ 0.  First, 

we calculate  
𝑑𝑌1

𝑑𝑡
. 

𝑑𝑌1

𝑑𝑡
= (1 − Lim

𝐼→0+

𝐹(𝑆0, 𝐼(𝑡))

𝐹(𝑆, 𝐼(𝑡))
 ) 𝑆′(𝑡) + 𝐼′(𝑡) 

Now, 𝐴 − 𝜇𝑆 = −µ (𝑆 −
𝐴

µ
) = −µ(𝑆 − 𝑆0) 
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Therefore, 

𝑑𝑌1

𝑑𝑡
= (1 − Lim

𝐼→0+

𝐹(𝑆0, 𝐼(𝑡))

𝐹(𝑆, 𝐼(𝑡))
 ) (−µ(𝑆 − 𝑆0) − 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏)))

+ 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏)) − 𝐺(𝐼(𝑡))  

where,  

𝐺(𝐼(𝑡)) = (𝜇 + 𝑑 + 𝛿)𝐼(𝑡) + ℎ(𝐼(𝑡)). 

Now, calculating 

𝑑𝑌2

𝑑𝑡
= −𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏)) + 𝐹(𝑆(𝑡), 𝐼(𝑡)) 

Therefore, it follows that 

𝑑𝑊1

𝑑𝑡
=

𝑑𝑌1

𝑑𝑡
+

𝑑𝑌2

𝑑𝑡
. 

𝑑𝑊1

𝑑𝑡
= (1 − lim

𝐼→0+

𝐹(𝑆0, 𝐼(𝑡))

𝐹(𝑆, 𝐼(𝑡))
 ) (−µ(𝑆 − 𝑆0) − 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏)))

+ 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏)) − 𝐺(𝐼)  − 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))

+ 𝐹(𝑆(𝑡), 𝐼(𝑡)) 

= 𝜇 (1 − lim
𝐼→0+

𝐹(𝑆0, 𝐼(𝑡))

𝐹(𝑆, 𝐼(𝑡))
 ) (𝑆0 − 𝑆(𝑡))

+ 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏)) ( lim
𝐼→0+

𝐹(𝑆0, 𝐼(𝑡))

𝐹(𝑆, 𝐼(𝑡))
 − 1) + 𝐹(𝑆(𝑡), 𝐼(𝑡))

− 𝐺(𝐼). 

Furthermore, (A4)-(A6) implies that 

𝑑𝑊1

𝑑𝑡
≤ 𝜇 (1 −

𝐹𝐼
′(𝑆0, 0)

𝐹𝐼
′(𝑆(𝑡),0)

) (𝑆0 − 𝑆(𝑡)) + 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏)) (
𝐹𝐼

′(𝑆0, 0)

𝐹𝐼
′(𝑆(𝑡),0)

− 1)

+ 𝐼(𝑡) (
𝜕𝐹(𝑆(𝑡), 𝐼(𝑡))

𝜕𝐼
|

(𝑆0,0)

−
𝜕𝐺(𝐼)

𝜕𝐼
|

𝐼=0

) 
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= 𝜇 (1 −
𝐹𝐼

′(𝑆0, 0)

𝐹𝐼
′(𝑆(𝑡),0)

) (𝑆0 − 𝑆(𝑡)) + 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏)) (
𝐹𝐼

′(𝑆0, 0)

𝐹𝐼
′(𝑆(𝑡),0)

− 1)

+ 𝐼(𝑡).
𝜕𝐺(𝐼)

𝜕𝐼
|

𝐼=0

. (𝑅0 − 1). 

Therefore, 𝑅0 ≤ 1 ensures that 
𝑑𝑊1

𝑑𝑡
≤ 0 for all 𝑡 ≥ 0, where 

𝑑𝑊1

𝑑𝑡
= 0 holds if  𝑆(𝑡) = 𝑆0. 

Hence it follows from the system (7.3) that largest invariant set in {(𝑆(𝑡), 𝐼(𝑡)) ∈

ℝ+
2 |

𝑑𝑊1

𝑑𝑡
= 0} is the singleton set 𝑄(𝑆0, 0). From the Lyapunov-LaSalle asymptotic 

stability theorem [Huang et al. (2010a) & (2010b); Hale and Lunel (1993); Li and Liu 

(2014)], 𝑄 is the only equilibrium of the system (7.3) and globally asymptotically stable. 

This completes the proof. 

 

7.4.3.2 Global stability of endemic equilibrium (EE) 

 

In this subsection, we study the global stability of the endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗) of 

the system (7.3) using the Lyapunov direct method. We propose the following hypothesis: 

A7. (
𝐹(𝑆∗,𝐼∗)

𝐹(𝑆(𝑡),𝐼∗)
−

𝐼∗

𝐼(𝑡)
) ≤ 0; (

𝐹(𝑆(𝑡),𝐼(𝑡))

𝐹(𝑆∗,𝐼∗)
− 1) ≤ 0; (

𝐹(𝑆(𝑡),𝐼∗)

𝐹(𝑆(𝑡),𝐼(𝑡))
−

𝐼(𝑡)

𝐼∗ ) ≤ 0 for 𝐼 ≥ 𝐼∗. 

A8. (
ℎ(𝐼∗)

ℎ(𝐼(𝑡))
−

𝐼∗

𝐼(𝑡)
) (1 −

𝐼(𝑡)

𝐼∗ ) ≤ 0 for 𝐼 ≥ 𝐼∗. 

 

Based on these hypotheses, the following theorem may be stated: 

 

Theorem 7.8: Assume that the conditions (A1) – (A3) and (A7) – (A8) are satisfied. 

Then the endemic equilibrium 𝑄∗(𝑆∗, 𝐼∗) of the system (7.3) is globally asymptotically 

stable for any 𝜏 ≥ 0 if 𝑅0 > 1. 

Proof: We assume the following Lyapunov functional 

𝑊2(𝑡) = 𝑋1(𝑡) + 𝑋2(𝑡) 

where 

𝑋1(𝑡) = 𝑆(𝑡) − 𝑆∗ − ∫
𝐹(𝑆∗, 𝐼∗)

𝐹(𝜑, 𝐼∗)
 𝑑𝜑

𝑆(𝑡)

𝑆∗

+ 𝐼(𝑡) − 𝐼∗ − 𝐼∗ ln
𝐼(𝑡)

𝐼∗
, 
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𝑋2 = 𝐹(𝑆∗, 𝐼∗) ∫ (
𝐹(𝑆(𝑡 − 𝜃), 𝐼(𝑡 − 𝜃))

𝐹(𝑆∗, 𝐼∗)
− 1 − ln

𝐹(𝑆(𝑡 − 𝜃), 𝐼(𝑡 − 𝜃))

𝐹(𝑆∗, 𝐼∗)
)  𝑑𝜃

𝜏

0

. 

From (A1)–(A3),  𝑊2(𝑡) = 𝑋1(𝑡) + 𝑋2(𝑡) is defined and continuously differentiable for 

all 𝑆(𝑡), 𝐼(𝑡) > 0 and 𝑊2(0) = 0 at 𝑄∗(𝑆∗, 𝐼∗). At 𝑄∗(𝑆∗, 𝐼∗), the system (7.3) has 

𝐴 − 𝜇𝑆∗ = 𝐹(𝑆∗, 𝐼∗) = (𝜇 + 𝑑 + 𝛿)𝐼∗ + ℎ(𝐼∗)        (7.17) 

The time derivative of 𝑋1(𝑡) along the solution of the system (7.3) is given by 

𝑑𝑋1

𝑑𝑡
= (1 −

𝐹(𝑆∗, 𝐼∗)

𝐹(𝑆(𝑡), 𝐼∗)
) 𝑆′(𝑡) + (1 −

𝐼∗

𝐼(𝑡)
) 𝐼′(𝑡) 

= (1 −
𝐹(𝑆∗, 𝐼∗)

𝐹(𝑆(𝑡), 𝐼∗)
) (𝜇𝑆∗ − 𝜇𝑆(𝑡) + 𝐹(𝑆∗, 𝐼∗) − 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏)))

+ (1 −
𝐼∗

𝐼(𝑡)
) (𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))

−
(𝐹(𝑆∗, 𝐼∗) − ℎ(𝐼∗))

𝐼∗
 𝐼(𝑡) − ℎ(𝐼(𝑡))) 

= 𝜇(𝑆∗ − 𝑆(𝑡)) (1 −
𝐹(𝑆∗, 𝐼∗)

𝐹(𝑆(𝑡), 𝐼∗)
)

+ 𝐹(𝑆∗, 𝐼∗) (1 −
𝐹(𝑆∗, 𝐼∗)

𝐹(𝑆(𝑡), 𝐼∗)
+

𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))

𝐹(𝑆(𝑡), 𝐼∗)
)

−
𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))

𝐼(𝑡)
𝐼∗ + 𝐹(𝑆∗, 𝐼∗) (1 −

𝐼(𝑡)

𝐼∗ 
)

+ (ℎ(𝐼∗) −
ℎ(𝐼(𝑡))

𝐼(𝑡)
𝐼∗) (1 −

𝐼(𝑡)

𝐼∗
). 

Further, we have 

𝑑𝑋2(𝑡)

𝑑𝑡
= 𝐹(𝑆∗, 𝐼∗).

𝑑

𝑑𝑡
∫ (

𝐹(𝑆(𝑡 − 𝜃), 𝐼(𝑡 − 𝜃))

𝐹(𝑆∗, 𝐼∗)
− 1 − ln

𝐹(𝑆(𝑡 − 𝜃), 𝐼(𝑡 − 𝜃))

𝐹(𝑆∗, 𝐼∗)
)  𝑑𝜃

𝜏

0

 

       = 𝐹(𝑆(𝑡), 𝐼(𝑡)) − 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏)) + 𝐹(𝑆∗, 𝐼∗) ln
𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))

𝐹(𝑆(𝑡), 𝐼(𝑡))
. 

Then we have 
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𝑑𝑊2(𝑡)

𝑑𝑡
=

𝑑𝑋1(𝑡)

𝑑𝑡
+

𝑑𝑋2(𝑡)

𝑑𝑡
 

𝑑𝑊2(𝑡)

𝑑𝑡
= 𝜇(𝑆∗ − 𝑆(𝑡)) (1 −

𝐹(𝑆∗, 𝐼∗)

𝐹(𝑆(𝑡), 𝐼∗)
)

+ 𝐹(𝑆∗, 𝐼∗) (1 −
𝐹(𝑆∗, 𝐼∗)

𝐹(𝑆(𝑡), 𝐼∗)
+

𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))

𝐹(𝑆(𝑡), 𝐼∗)
)

−
𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))

𝐼(𝑡)
𝐼∗ + 𝐹(𝑆∗, 𝐼∗) (1 −

𝐼(𝑡)

𝐼∗ 
)

+ (ℎ(𝐼∗) −
ℎ(𝐼(𝑡))

𝐼(𝑡)
𝐼∗) (

𝐼(𝑡)

𝐼∗
− 1) + 𝐹(𝑆(𝑡), 𝐼(𝑡))

− 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏)) + 𝐹(𝑆∗, 𝐼∗) ln
𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))

𝐹(𝑆(𝑡), 𝐼(𝑡))
 

    = 𝜇(𝑆∗ − 𝑆(𝑡)) (1 −
𝐹(𝑆∗, 𝐼∗)

𝐹(𝑆(𝑡), 𝐼∗)
)

+ 𝐹(𝑆∗, 𝐼∗) (1 −
𝐹(𝑆∗, 𝐼∗)

𝐹(𝑆(𝑡), 𝐼∗)
+ ln

𝐹(𝑆∗, 𝐼∗)

𝐹(𝑆(𝑡), 𝐼∗)
)

+ 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏)) (
𝐹(𝑆∗, 𝐼∗)

𝐹(𝑆(𝑡), 𝐼∗)
−

𝐼∗

𝐼(𝑡)
)

+ 𝐹(𝑆∗, 𝐼∗) (1 −
𝐼(𝑡)

𝐼∗
+ ln

𝐼(𝑡)

𝐼∗
)

+ (
ℎ(𝐼∗)

ℎ(𝐼(𝑡))
−

𝐼∗

𝐼(𝑡)
) (

𝐼(𝑡)

𝐼∗
− 1) ℎ(𝐼(𝑡))

+ 𝐹(𝑆∗, 𝐼∗) (1 −
𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))

𝐹(𝑆(𝑡), 𝐼(𝑡))
.
𝐹(𝑆(𝑡), 𝐼∗)

𝐹(𝑆∗, 𝐼∗)
.

𝐼∗

𝐼(𝑡)

+ ln (
𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))

𝐹(𝑆(𝑡), 𝐼(𝑡))
.
𝐹(𝑆(𝑡), 𝐼∗)

𝐹(𝑆∗, 𝐼∗)
.

𝐼∗

𝐼(𝑡)
))

+ 𝐹(𝑆∗, 𝐼∗) (
𝐹(𝑆(𝑡), 𝐼(𝑡))

𝐹(𝑆∗, 𝐼∗)
− 1)

+ 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏)).
𝐼∗

𝐼(𝑡)
(

𝐹(𝑆(𝑡), 𝐼∗)

𝐹(𝑆(𝑡), 𝐼(𝑡))
−

𝐼(𝑡)

𝐼∗
). 

The function 𝐹(𝑆(𝑡), 𝐼(𝑡)) is monotonically increasing for any 𝑆(𝑡) > 0; hence, the 

following inequality holds: 

(𝑆∗ − 𝑆(𝑡)) (1 −
𝐹(𝑆∗,𝐼∗)

𝐹(𝑆(𝑡),𝐼∗)
) ≤ 0.           (7.18) 

By the properties of the function 𝐾(𝑥) = 1 − 𝑥 + ln 𝑥  , (𝑥 > 0), we note that 𝐾(𝑥) has 

its global maximum  𝐾(1) = 0. Hence, 𝐾(𝑥) ≤ 0 when 𝑥 > 0 and the following 

inequalities hold true: 
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(1 −
𝐹(𝑆∗,𝐼∗)

𝐹(𝑆(𝑡),𝐼∗)
+ ln

𝐹(𝑆∗,𝐼∗)

𝐹(𝑆(𝑡),𝐼∗)
) ≤ 0, (1 −

𝐼(𝑡)

𝐼∗
+ ln

𝐼(𝑡)

𝐼∗
) ≤ 0,  

(1 −
𝐹(𝑆(𝑡−𝜏),𝐼(𝑡−𝜏))

𝐹(𝑆(𝑡),𝐼(𝑡))
.

𝐹(𝑆(𝑡),𝐼∗)

𝐹(𝑆∗,𝐼∗)
.

𝐼∗

𝐼(𝑡)
+ ln

𝐹(𝑆(𝑡−𝜏),𝐼(𝑡−𝜏))

𝐹(𝑆(𝑡),𝐼(𝑡))
.

𝐹(𝑆(𝑡),𝐼∗)

𝐹(𝑆∗,𝐼∗)
.

𝐼∗

𝐼(𝑡)
) ≤ 0.     (7.19) 

Hence, by (A7) - (A8) and inequalities (7.18) - (7.19), we see that 
𝑑𝑊2

𝑑𝑡
≤ 0 for all 𝑆(𝑡) ≥

0, 𝐼(𝑡) ≥ 0. It is easy to verify that the largest invariant in {(𝑆(𝑡), 𝐼(𝑡)) ∈ ℝ+
2 :

𝑑𝑊2

𝑑𝑡
= 0} is 

singleton {𝑄∗}. By the Lyapunov-LaSalle asymptotic stability theorem [Huang et al. 

(2010a) & (2010b); Hale and Lunel (1993); Li and Liu (2014)],  𝑄∗ is globally 

asymptotically stable. 

 

7.5 Numerical simulation  

 

In this section, we represent the results of numerical simulation. For simulations, we take 

the numerical experimental values of parameters as given in Table 7.1. 

 

Graphs have been plotted for S and I for different values of time lag  𝜏. The trajectory of S 

and I approach to the endemic equilibrium as shown in Fig. 7.3 and Fig. 7.4 for 𝜏 =

0 and 2 respectively.  

       Fig. 7.3 and Fig. 7.4 depict the combined population of susceptible and infected 

individuals for time lag 𝜏 = 0 and 2 respectively. According to the data given in Table 

7.1, we found that the value of  𝑅0 is 4.3. Thus, the disease will be endemic in the 

population, which can be observed from the figures that as time passes both the 

populations approaches to the endemic equilibrium. 

 

Fig. 7.5 delineates the difference between the infected populations at the various values of 

time lag  𝜏. It is observed that the infected population is less at 𝜏 = 0 than the infected 

population at 𝜏 = 1, 2 and 3 respectively. It can be deduced that delay in showing the 

symptoms of the disease will cause a slight increase in the infected population. 

 

Fig. 7.6 shows the susceptible population at various values of the transmission rate ( 𝛽) 

at 𝜏 = 1. It is evident that the susceptible population increases when the transmission rate 

(𝛽)  decreases. 
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Fig. 7.7 demonstrates the variation in the infected population for different values of 𝛽 

at 𝜏 = 1. It shows the dynamics of the model for larger values of 𝛽. This figure shows 

that for an increase in value of the probability of transmission per contact rate (or 

effective contact rate) 𝛽, the number of infectives increases, which is biologically true. It 

can be observed that the decline in transmission rate (𝛽) contributed to a sharp drop in 

the spread of disease. As the value of 𝛽 decreases, the number of infected individuals also 

decreases and settles down to a steady state which shows that disease will not eradicate 

completely, rather it will persist in the community. 

 

Fig. 7.8 and Fig. 7.9 are depicting the infected population at different values of 𝛼 and 𝛾  

at 𝜏 = 1. It is noticed that the infected population is decreasing when 𝛼 and 𝛾 are 

increasing. It shows that higher values of  𝛼 and 𝛾, will restrict the possibility of 

spreading the disease.  Thus, it is concluded that inhibitory effects among susceptibles 

and infectives will help in diminishing the spread of disease. Also, as inhibitory effects 

increase, the delay in peak infection increases. 

 

Fig. 7.10 and Fig. 7.11 show the effect of cure rate (𝑎) and limitation rate (𝑏) in 

treatment availability on the infected population with various values of a and b at 𝜏 = 1 

day. Fig. 7.10 shows the decrease in infected population as cure rate (𝑎) increases and it 

settles down at its steady state, but the disease is not getting totally eliminated as it will 

persist at a lower level. Fig. 7.11 shows an increase in infected population as  𝑏 increases, 

which is due to the limited availability of treatment resources in the society.   

 

Fig. 7.12 demonstrates the difference in the infected population with and without 

treatment rate ℎ (𝐼) at 𝜏 = 1 day. It can be clearly observed that the infected population 

will decrease drastically if Holling type II treatment is given to the infected population. 

 

Fig. 7.13 presents the oscillatory behavior of the infected population with time. Fig. 7.14 

shows the population in S-I & S-I-R plane respectively. According to Eq. (7.14) and 

theorem 7.6, the values have been computed as;  𝜏0 = 10.0726, 𝑝0
2 − 2𝑞0 − 𝑝1

2 =

0.00100295 > 0, and  𝑞0
2 − 𝑞1

2 = −0.0000373748 < 0. From Fig. 7.13 it can be 

viewed that when 𝜏 = 9.5 < 𝜏0 = 10.0726 then the endemic equilibrium is 

asymptotically stable. 
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Figs. 7.15 & 7.16 show the variation in the infected population for increased cure rate (𝑎) 

and measures of inhibition (𝛾) taken by infected respectively for the data given in Table 

7.1. In both figures, the infectives are decreasing due to the increments in the cure rate 

and measure of inhibition taken by infected respectively. 

 

7.6 Conclusions 

 

In this chapter, we developed and analyzed a time delayed SIR epidemic model with 

Crowley-Martin (C-M) functional type incidence rate and Holling type II treatment rate. 

From the analysis of the model, we demonstrated that the model has two equilibria named 

as disease-free equilibrium (DFE) and endemic equilibrium (EE). The stability analysis of 

DFE is investigated by the basic reproduction number 𝑅0 and it is concluded that DFE is 

locally and globally asymptotically stable when 𝑅0 < 1 and unstable when 𝑅0 > 1 for 

time lag 𝜏 ≥ 0. Clearly, it indicates that the infection will persist in the society when the 

basic reproduction number is greater than one and disease will die out when the basic 

reproduction number is less than one. We also showed that the system (7.3) undergoes 

either a forward bifurcation or backward bifurcation or saddle-node bifurcation under 

certain conditions at 𝑅0 = 1. We have investigated that EE of the system (7.3) for time 

lag 𝜏 ≥ 0 is locally asymptotically stable if the inequalities as stated in theorem 7.4 and 

theorem 7.5 respectively hold true. Hopf bifurcation analysis of the system (7.3) at EE 

has also presented. Further, we analyzed the global stability of DFE & EE and obtained 

the conditions as stated in theorems 7.7 and 7.8 respectively. Simulation has been carried 

out to delineate the effects of time delay, cure rate, limitation rate in available treatment, 

and measures of inhibition accepted by susceptible and infected individuals. The 

numerical simulation of the model shows that the infection will see a rise with the 

increment in transmission rate and settles down at a lower level because of the availability 

of treatment. Further, decrement in infection is being observed with an increment in the 

measure of inhibition adopted by susceptible and infective. Furthermore, Hopf bifurcation 

at endemic equilibrium has also been discussed numerically. 
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Table 7.1: Description and numerical values of parameters for simulation 

Parameter Value 

𝐴 (Recruitment rate) 11 

𝛼 (Measure of inhibition taken by susceptible) 0.005 

𝛽 (Transmission rate) 0.003 

𝜇 (Natural death rate) 0.03 

𝑑 (Disease induced death rate) 0.04 

𝛾 (Measure of inhibition taken by infected) 0.005 

𝛿 (Recovery rate) 0.001 

𝑎 (Cure rate) 0.02 

𝑏 (Limitation rate in treatment availability) 0.02 
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Fig. 7.2: Bifurcation diagram in (𝑅0, 𝐼) plane: forward bifurcation for the data set  𝐴 =

10, 𝛼 = 0.005, 𝛽 = 0.00073, 𝛾 = 0.005, 𝜇 = 0.03, 𝛿 = 0.001, 𝑑 = 0.04, 𝑎 =

0.02 and 𝑏 = 0.02. 

  

Fig. 7.3: Population (𝑆, 𝐼) at time lag 𝜏 = 0 and 𝑅0 = 4.3. 
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Fig. 7.4: Population (𝑆, 𝐼) at time lag 𝜏 = 2 and 𝑅0 = 4.3. 

 

Fig. 7.5: Infected Population (𝐼) at increased values of time lag 𝜏. 
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Fig. 7.6: Susceptible population (𝑆) for increased values of transmission rate (𝛽) at 

time lag 𝜏 = 1. 

 

 

Fig. 7.7: Infected population (𝐼) for increased values of the transmission rate (𝛽) at 

time lag 𝜏 = 1. 
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Fig. 7.8: Infected population (𝐼) at increased values of measures of inhibition (𝛼) due to 

the susceptibles at time lag𝜏 = 1. 

 

Fig. 7.9: Infected population (𝐼) at increased values of measures of inhibition (𝛾) due to 

the infectives at time lag 𝜏 = 1. 
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Fig. 7.10: Infected population (𝐼) at increased values of cure rate (𝑎) at time lag 𝜏 = 1. 

 

Fig. 7.11: Infected population (𝐼) at increased values of limitation rate (𝑏) in treatment 

availability at time lag 𝜏 = 1. 
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Fig. 7.12: Infected population (𝐼) with and without Holling type II treatment rate. 

 

Fig. 7.13: Oscillatory graph of the infected population (𝐼) at  𝐴 = 12, 𝛽 =

0.00585, 𝛾 = 0.02, 𝜏 = 9.5. 
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Fig. 7.14 (a): Population in 𝑆 − 𝐼 plane at 𝐴 = 12, 𝛽 = 0.00585, 𝛾 = 0.02, 𝜏 = 9.5. 

 

 

Fig. 7.14 (b): Population in 𝑆 − 𝐼 − 𝑅 plane at 𝐴 = 12, 𝛽 = 0.00585, 𝛾 = 0.02, 𝜏 =

9.5. 
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Fig. 7.15: Infected population (𝐼) versus cure rate (𝑎) graph. 

 

 

Fig. 7.16: Infected population (𝐼) versus measures of inhibition (𝛾) due to the 

infectives. 
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CHAPTER 8 

 

MATHEMATICAL AND NUMERICAL STUDY OF A SIR 

EPIDEMIC MODEL WITH THE INCLUSION OF 

ALERTNESS, INCUBATION PERIOD AND PRE & POST 

TREATMENT CLASSES 

 

 

In this chapter, we present two different epidemic transmission models by incorporating 

different compartments according to disease status. Firstly, we present and analyze a 

susceptible-infected-recovered epidemic model by incorporating an alert individual’s 

compartment along with the consideration of two explicit saturated incidence rates and 

Holling functional type II treatment rate. Awareness about the epidemic may play a 

significant role in the control of the spread of an epidemic. Hence, an alert compartment 

has been incorporated into the SIR model. It motivates us to take two incidence rates: one 

from the susceptible class to infected class and another from alert class to infected class. 

Holling functional type II treatment rate has been introduced to capture the effects of 

resource limitation in treating infectives. Secondly, we propose and analyze a time-

delayed susceptible-infected-recovered epidemic model by introducing two explicit 

treatment classes (or compartments) along with nonlinear incidence rate. The treatment 

classes are named as a pre-treated class and post-treated class. The pre-treatment and 

post-treatment rates are being considered as Holling type I and Holling type III 

respectively. Long term qualitative analysis has been carried out after incorporating 

incubation time delay (𝜏) into the incidence rate. Further, we analyze both the models 

mathematically and obtain the model equilibria and discuss their local stability for both 

models separately. Finally, numerical simulations are presented to epitomize the 

analytical studies.  
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8.1 Introduction 

 

In this chapter, we have proposed two different susceptible-infected-recovered (SIR) 

models with Holling type incidence rate and treatment rates. In the first model, we 

proposed a SIR model by incorporating an alert class along with Holling type II incidence 

rate and treatment rate. Alertness from the infection in the population always helps the 

health agencies to minimize the infection in society. When the population is alert about 

the infection, they always try to take precautionary measures which definitely reduces the 

spread of the disease. Therefore, an alert population compartment is incorporated into the 

SIR model. In this model two Holling functional type II incidence rates have been used:   

one from susceptible to infectives and second from alert individuals to infectives. 

 

In the second model, a SIR model is proposed by incorporating two explicit treatment 

compartments along with Holling type incidence rates, time delay and Holling type III 

treatment rate. In this model, not all susceptible population who are in effective contact 

with infected individuals become infected. Some of them enter into the infected 

compartment but some of them are already vaccinated before symptoms of the disease are 

visible. On the other hand, individuals who have already entered into the infected 

compartment will be given treatment according to the severity of the disease. Therefore, 

to take into account these pre-treated and post-treated individuals, two compartments 

have been incorporated in the SIR model namely pre-treated compartment and post-

treated compartment respectively.  The incidence rate and treatment rates are considered 

as Holling functional type. The detailed explanation of Holling functional type incidence 

rate and Holling functional type II & III treatment rates have already been given in 

section 4.1 in chapter 4.  

 

In this chapter, we propose and analyze both models separately. Further, we investigate 

the basic reproduction number 𝑅0 for both models separately and analyze the dynamical 

behavior of the model’s equilibria. The stability analysis of the equilibria for both models 

has been done using Descartes' rule of signs [Wang (2004)] with the Routh-Hurwitz 

criterion separately. Finally, models are simulated numerically to support our theoretical 

findings. 
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8.2 A susceptible-alert-infected-recovered (SAIR) model 

 

To formulate the mathematical epidemic model, the total population 𝑁(𝑡) is divided into 

four compartments (or classes); susceptible individual class (𝑆), alert individual 

class (𝐴), infected individual class (𝐼), and recovered individual class (𝑅). Vulnerable 

(susceptible) people are those individuals who are healthy and can get the infection under 

appropriate conditions. Alert people are the individuals who know about the effect of 

disease, infection and symptoms and are taking necessary precautions to control the 

infection, and can get the infection only under adverse conditions. Infected people are the 

individuals who have caught the infection and can transmit it to susceptible and alert 

people via contacts.  As time passes, via auto recuperation which could be due to the 

immune system reaction of the body or by treatment, the infected individuals lose 

infectivity and transfer to the recover class. We consider the Holling functional type II 

treatment rate 𝐻(𝐼) for the recovery of the infected people since it considers the cure rate 

along with the limitation rate in treatment availability which is more realistic. The transfer 

diagram of the epidemic for the various classes is shown by the block diagram in Fig. 8.1 

below: 

  𝝁𝑨  

 

 

      𝜹𝑺                        
𝜸𝑨𝑰

𝟏+𝜶𝑰
   

 

                𝝅          
𝜷𝑺𝑰

𝟏+𝜶𝑰
                𝜽𝑰 

 

 

                    𝝁𝑺                              (𝝁 + 𝒅)𝑰                  𝝁𝑹     

Fig. 8.1: Transfer diagram of the infection through various compartments for the model 

(8.1). 
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A 
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𝑯(𝑰) 



182 
 

The proposed model is given by the following system of nonlinear ordinary differential 

equations: 

𝑑𝑆

𝑑𝑡
= 𝜋 − 𝛿𝑆 − 𝜇𝑆 −

𝛽𝑆𝐼

1+𝛼𝐼
,  

𝑑𝐴

𝑑𝑡
= 𝛿𝑆 − 𝜇𝐴 −

𝛾𝐴𝐼

1+𝛼𝐼 
,               (8.1) 

𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

1+𝛼𝐼
+

𝛾𝐴𝐼

1+𝛼𝐼
− (𝜇 + 𝑑 + 𝜃)𝐼 −

𝑎𝐼

1+𝑏𝐼
,  

𝑑𝑅

𝑑𝑡
=

𝑎𝐼

1+𝑏𝐼
+ 𝜃𝐼 − 𝜇𝑅. 

where, 𝑆(0) > 0, 𝐴(0) ≥ 0, 𝐼(0) ≥ 0, and 𝑅(0) ≥ 0. 

 

The parameter 𝜋 represents the constant recruitment rate of susceptible by birth or 

immigration. We consider that the susceptible individuals are moving into alert class at a 

rate 𝛿, hence 𝛿 defines the rate of alertness of susceptible individuals. The incidence term 

𝛽𝑆𝐼

1+𝛼𝐼
 represents the nonlinear saturation-limited rate (where 𝛽 denotes the transmission 

rate of susceptible to infected individuals and 𝛼 is the measure of inhibition taken by 

infectives), describing the rate of new infection when the susceptible individuals are 

becoming infected. 𝜇 is the natural mortality rate. The term 
𝛾𝐴𝐼

1+𝛼𝐼 
  represents the incidence 

rate of alert population (where 𝛾 denotes the transmission rate of alert to infected 

individuals), describing the number of new infections when the alert individuals are 

becoming infected. The parameters 𝑑 and 𝜃 represent the disease-induced death rate and 

recovery rate of the infected individuals, respectively. The term  𝐻(𝐼) =
𝑎𝐼

1+𝑏𝐼
 represents 

the Holling functional type II treatment rate, where 𝑎 is the cure rate and 𝑏 is the rate, 

taking into account as resource limitations [Zhou and Fan (2012); Dubey et al. (2015)].  

 

8.2.1 Basic properties of the model 

 

Since the model (8.1) monitors the population, therefore for the biological reasons it is 

supposed that all the state variables are nonnegative and all the parameters of the model 

are positive.  
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For the model (8.1), we find that all the solutions with nonnegative initial data will 

remain non-negative and bounded for all time 𝑡. It can be observed as follows: 

The total population 𝑁(𝑡) is  

𝑁(𝑡) = 𝑆(𝑡) + 𝐴(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). 

The rate of change in the total population is 

𝑑𝑁(𝑡)

𝑑𝑡
=
𝑑𝑆(𝑡)

𝑑𝑡
+
𝑑𝐴(𝑡)

𝑑𝑡
+
𝑑𝐼(𝑡)

𝑑𝑡
+
𝑑𝑅(𝑡)

𝑑𝑡
= 𝜋 − 𝜇𝑁(𝑡) − 𝑑𝐼(𝑡) ≤ 𝜋 − 𝜇𝑁(𝑡) 

It implies that, 

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 +
𝜋

𝜇
(1 − 𝑒−𝜇𝑡) 

Thus, we get  

Lim
𝑡→∞

𝑁(𝑡)  ≤
𝜋

𝜇
. 

Furthermore, 
𝑑𝑁(𝑡)

𝑑𝑡
< 0 if 𝑁(𝑡) > 0. Thus, all the solutions of the model (8.1) tend to the 

positively invariant region 𝐷 = {(𝑆, 𝐴, 𝐼, 𝑅) ∈ ℝ+
4 : 0 < 𝑆 + 𝐴 + 𝐼 + 𝑅 ≤

𝜋

𝜇
}. Hence, all 

the solutions of the model (8.1) are bounded and nonnegative. Thus, the model (8.1) is 

well-posed mathematically and epidemiologically.  

Hence, we establish the following theorem: 

 

Theorem 8.1: The set 𝐷 = {(𝑆, 𝐴, 𝐼, 𝑅) ∈ ℝ+
4 : 0 < 𝑆 + 𝐴 + 𝐼 + 𝑅 ≤

𝜋 

𝜇
} is a positively 

invariant region of the Model (8.1). 

 

Since the recovered population 𝑅(𝑡) does not feature in the first three equations of the 

model (8.1), without loss of generality,  this equation can be omitted for theoretical  

analysis. Thus, we consider the following reduced system for the analysis: 

𝑑𝑆

𝑑𝑡
= 𝜋 − 𝛿𝑆 − 𝜇𝑆 −

𝛽𝑆𝐼

1+𝛼𝐼
,  
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𝑑𝐴

𝑑𝑡
= 𝛿𝑆 − 𝜇𝐴 −

𝛾𝐴𝐼

1+𝛼𝐼 
,               (8.2) 

𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

1+𝛼𝐼
+

𝛾𝐴𝐼

1+𝛼𝐼
− (𝜇 + 𝑑 + 𝜃)𝐼 −

𝑎𝐼

1+𝑏𝐼
.  

 

In the next section, we obtain the equilibria of the system (8.2) and discuss their stability 

behavior. 

 

8.2.2 Equilibria and their stability analysis 

 

The system (8.2) has two equilibria which are obtained by equating the derivatives of the 

system (8.2) to zero. These are as follows: 

i. Disease-free equilibrium (DFE) 𝑄 (
𝜋

𝜇+𝛿
,

𝛿𝜋

𝜇(𝜇+𝛿)
, 0). 

ii. Endemic (Positive) equilibrium (EE) 𝑄∗(𝑆∗, 𝐴∗, 𝐼∗).   

 

To investigate the stability of the system (8.2) at obtained equilibria, we first find the 

linearized matrix. For this, we assume that 𝐹 = (𝐹1, 𝐹2, 𝐹3)
𝑇, where 𝐹1 , 𝐹2 and 𝐹3 

represent the right-hand sides of the system (8.2) respectively. Furthermore, let 𝑋 =

(𝑆, 𝐴, 𝐼)𝑇 . Then, the linearized matrix for the system (8.2) is obtained as follows: 

𝐽 =

(

 
 
 
 
(−𝛿 − 𝜇 −

𝛽𝐼

1 + 𝛼𝐼
) 0 −

𝛽𝑆

(1 + 𝛼𝐼)2

𝛿 (−𝜇 −
𝛾𝐼

1 + 𝛼𝐼
) −

𝛾𝐴

(1 + 𝛼𝐼)2

𝛽𝐼

1 + 𝛼𝐼

𝛾𝐼

1 + 𝛼𝐼
(

𝛽𝑆

(1 + 𝛼𝐼)2
+

𝛾𝐴

(1 + 𝛼𝐼)2
− 𝑑 − 𝜇 − 𝜃 −

𝑎

(1 + 𝑏𝐼)2
)
)

 
 
 
 

. 

 

Now, we will obtain the threshold parameter 𝑅0, known as the basic reproduction 

number, which determines the stability of the equilibria.  

 

8.2.2.1 Computation of the basic reproduction number (𝑹𝟎) 

 

The characteristic equation of the matrix  𝐽 in 𝜆 at DFE(𝑄) is given by 

(𝜇 + 𝜆)(𝜇 + 𝛿 + 𝜆)[𝜆 − (𝑑 + 𝜇 + 𝜃 + 𝑎)(𝑅0 − 1)] = 0        (8.3) 
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The characteristic equation (8.3) has three roots 𝜆1 = −𝜇, 𝜆2 = −(𝜇 + 𝛿), and 𝜆3 =

(𝑑 + 𝜇 + 𝜃 + 𝑎)(𝑅0 − 1). 

where,   

𝑅0 =
𝜋(𝜇𝛽 + 𝛾𝛿)

𝜇(𝜇 + 𝛿)(𝑑 + 𝜇 + 𝜃 + 𝑎)
. 

The term 𝑅0 is known as the basic reproduction number for the model. 

 

8.2.2.2 Stability analysis of disease-free equilibrium 

 

In this subsection, we analyze the stability of the disease-free equilibrium (𝑄).  

 

8.2.2.2.1 Analysis for 𝑹𝟎 ≠ 𝟏 

 

From Eq. (8.3) we note that the matrix 𝐽 evaluated at 𝑄 has two negative 

eigenvalues 𝜆1 = −𝜇 and 𝜆2 = −𝜇 − 𝛿, and the sign of third eigenvalue 𝜆3 depends on 

the basic reproduction number 𝑅0. 𝜆3 is negative if and only if 𝑅0 < 1. Thus, with the 

help of the Routh-Hurwitz criterion, we propose the following theorem: 

 

Theorem 8.2:  The DFE 𝑄 (
𝜋

𝜇+𝛿
,

𝛿𝜋

𝜇(𝜇+𝛿)
, 0) is locally asymptotically stable if 𝑅0 < 1 

and unstable if 𝑅0 > 1.  

 

8.2.2.2.2 Analysis at 𝑹𝟎 = 𝟏 

 

We notice that the matrix  𝐽 of the system (8.2) is being evaluated at 𝑅0 = 1 and 

bifurcation parameter 𝛽 = 𝛽∗ = (
(𝛿+𝜇)(𝑑+𝜇+𝜃+𝑎)

𝜋
−
𝛾𝛿

𝜇
) has a simple zero eigenvalue and 

the other eigenvalues are negative. Therefore, the disease-free equilibrium 𝑄 is a non-

hyperbolic equilibrium when 𝑅0 = 1. To analyze the behavior of the system (8.2) for the 

basic reproduction number 𝑅0 equals to one, we use the bifurcation theory approach 

which is based on the center manifold theory [Sastry (1999); Dubey et al. (2015)]. 

Through this approach, we are interested to assess if there is a stable coexistence 
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equilibrium bifurcating from 𝑄, and 𝑄 changes from being stable to unstable. This 

behavior is known as transcritical bifurcation [Chavez and Song (2004); Buonomo and 

Cerasuolo (2015)]. For the analysis, we assume that 𝑆 = 𝑥1, 𝐴 = 𝑥2 and 𝐼 = 𝑥3 then the 

system (8.2) can be rewritten as   

𝑑𝑥1

𝑑𝑡
= 𝜋 − 𝛿𝑥1 − 𝜇𝑥1 −

𝛽𝑥1𝑥3

1+𝛼𝑥3
≡ 𝑓1,  

𝑑𝑥2

𝑑𝑡
= 𝛿𝑥1 − 𝜇𝑥2 −

𝛾𝑥2𝑥3

1+𝛼𝑥3
≡ 𝑓2,            (8.4) 

𝑑𝑥3

𝑑𝑡
=
𝛽𝑥1𝑥3

1+𝛼𝑥3
+
𝛾𝑥2𝑥3

1+𝛼𝑥3
− (𝜇 + 𝑑 + 𝜃)𝑥3 −

𝑎𝑥3

1+𝑏𝑥3
≡ 𝑓3. 

 

The Jacobian matrix  𝐽∗ evaluated at 𝑅0 = 1 and 𝛽 = 𝛽∗  is obtained as  

𝐽∗ =

(

 
 
(−𝛿 − 𝜇) 0 −

𝛽∗𝜋

(𝜇 + 𝛿)

𝛿 −𝜇 −
𝛾𝛿𝜋

𝜇(𝜇 + 𝛿)
0 0 0 )

 
 
. 

 

Let 𝑢 = [𝑢1, 𝑢2, 𝑢3 ] denotes the left eigenvector and 𝑤 = [𝑤1, 𝑤2, 𝑤3 ]
𝑇 denotes the right 

eigenvector of 𝐽∗corresponding to the zero eigenvalue. Then, we obtain that 

𝑢1 = 0, 𝑢2 = 0, 𝑢3 = 1 and 𝑤1 = −
𝛽∗𝜋

(𝛿 + 𝜇)2
, 𝑤2 = −

𝛿𝜋(𝛾𝛿 + 𝛾𝜇 + 𝜇𝛽∗)

𝜇2(𝛿 + 𝜇)2
, 𝑤3 = 1. 

 

The non-zero partial derivatives associated with the functions 𝑓1, 𝑓2, and 𝑓3 of the system 

(8.4) calculated at  𝑅0 = 1 and 𝛽 = 𝛽∗ are 

(
𝜕2𝑓3

𝜕𝑥1𝜕𝑥3
)
𝑄
= 𝛽∗, (

𝜕2𝑓3

𝜕𝑥2𝜕𝑥3
)
𝑄
= 𝛾 , (

𝜕2𝑓3

𝜕𝑥3𝜕𝑥1
)
𝑄
= 𝛽∗,  

(
𝜕2𝑓3

𝜕𝑥3𝜕𝑥2
)
𝑄
= 𝛾 , (

𝜕2𝑓3

𝜕𝑥32
)
𝑄
= −

2𝛼𝜋

𝜇(𝜇+𝛿)
(𝜇𝛽∗ + 𝛾𝛿) + 2𝑎𝑏,   and (

𝜕2𝑓3

𝜕𝑥3𝜕𝛽∗
)
𝑄
= 

𝜋

(𝛿+𝜇)
 .  

 

From [Chavez and Song (2004); Buonomo and Cerasuolo (2015)], we obtain the 

bifurcation constants 𝑎1and 𝑏1 as given below: 

𝑎1 = ∑ 𝑢𝑘𝑤𝑖𝑤𝑗
3
𝑘,𝑖,𝑗=1 (

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
)
𝑄

  

= 𝑢3 (𝑤1𝑤3𝛽
∗ + 𝑤2𝑤3𝛾 + 𝑤3𝑤1𝛽

∗ + 𝑤3𝑤2𝛾 + 𝑤3
2 (2𝑎𝑏 −

2𝛼𝜋

𝜇(𝜇+𝛿)
(𝜇𝛽∗ + 𝛾𝛿)))  
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= −(2
𝛽∗
2
𝜋

(𝛿+𝜇)2
+ 2

𝛿𝛾𝜋(𝛾𝛿+𝛾𝜇+𝜇𝛽∗)

𝜇2(𝛿+𝜇)2
+

2𝛼𝜋

𝜇(𝛿+𝜇)
(𝜇𝛽∗ + 𝛾𝛿)) + 2𝑎𝑏  

𝑏1 = ∑ 𝑢𝑘𝑤𝑖
3
𝑘,𝑖=1 (

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝛽
∗
)
𝑄

  

= 𝑤3 (
𝜋

(𝛿+𝜇)
)  

=
𝜋

(𝛿+𝜇)
> 0.  

Thus, according to sign of 𝑎1, we propose the following theorem: 

 

Theorem 8.3: The DFE 𝑄 (
𝜋

𝜇+𝛿
,

𝛿𝜋

𝜇(𝜇+𝛿)
, 0) either exhibits a forward or backward 

bifurcation at  𝑅0 = 1.  

 

8.2.2.3 Existence and stability analysis of endemic equilibrium  

 

To obtain the conditions for the existence of the endemic equilibrium 𝑄∗(𝑆∗, 𝐴∗, 𝐼∗), the 

system (8.2) is rearranged to get  𝑆∗, 𝐴∗and 𝐼∗  which gives: 

𝑆∗ =
𝜋(1+𝛼𝐼∗)

(𝛿+𝜇)(1+𝛼𝐼∗)+𝛽𝐼∗
 , 𝐴∗ =

𝛿𝑆∗(1+𝛼𝐼∗)

𝜇(1+𝛼𝐼∗)+𝛾𝐼∗
 , 

and  𝐼∗ is given by the cubic equation 

𝐶4𝐼
∗3 + 𝐶3𝐼

∗2 + 𝐶2𝐼
∗ + 𝐶1 = 0             (8.5) 

where, 

𝐶1 = 𝜇(𝛿 + 𝜇)(𝑎 + 𝑑 + 𝜃 + 𝜇) − 𝜋(𝛾𝛿 + 𝛽𝜇) =  𝜇(𝛿 + 𝜇)(𝑎 + 𝑑 + 𝜃 + 𝜇)(1 − 𝑅0), 

𝐶2 = −𝜋((𝑏 + 𝛼)𝛾𝛿 + 𝛽(𝛾 + (𝑏 + 𝛼)𝜇)) + 𝑎(𝛾(𝛿 + 𝜇) + 𝜇(𝛽 + 2𝛼(𝛿 + 𝜇))) + (𝑑 +

𝜃 + 𝜇)(𝛾(𝛿 + 𝜇) + 𝜇(𝛽 + (𝑏 + 2𝛼)(𝛿 + 𝜇))),  

𝐶3 = 𝑎(𝛾 + 𝛼𝜇)(𝛽 + 𝛼(𝛿 + 𝜇)) − 𝜋𝑏(𝛼𝛾𝛿 + 𝛽(𝛾 + 𝛼𝜇)) + (𝑑 + 𝜃 + 𝜇)(𝛽(𝛾 + (𝑏 +

𝛼)𝜇) + (𝛿 + 𝜇)(𝛼(𝛾 + 𝛼𝜇) + 𝑏(𝛾 + 2𝛼𝜇))),  

𝐶4 = 𝑏(𝑑 + 𝜃 + 𝜇)(𝛾 + 𝛼𝜇)(𝛽 + 𝛼(𝛿 + 𝜇)).  

 

After simplifying the coefficients 𝐶2 and 𝐶3, we get that 

𝐶2 = −𝜋((𝑏 + 𝛼)𝛾𝛿 + 𝛽(𝛾 + (𝑏 + 𝛼)𝜇)) + 𝑎(𝛾𝑛 + 𝜇(𝛽 + 2𝛼𝑛)) + 𝑚(𝛾𝑛 +

𝜇(𝛽 + (𝑏 + 2𝛼)𝑛)),  
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𝐶3 = −𝜋𝑏(𝛼𝛾𝛿 + 𝛽(𝛾 + 𝛼𝜇)) + 𝑎(𝛾 + 𝛼𝜇)(𝛽 + 𝛼𝑛) + 𝑚(𝛽(𝛾 + (𝑏 + 𝛼)𝜇) +

𝑛((𝑏 + 𝛼)𝛾 + 𝛼(2𝑏 + 𝛼)𝜇)),  

where, 𝑚 =  𝑑 + 𝜃 + 𝜇, and 𝑛 =  𝛿 + 𝜇. 

 

Using Descartes’ rule of the signs, for 𝑅0 > 1, there exists a unique positive real root  𝐼∗ 

of Eq. (8.5) if any of the following conditions holds true: 

i. 𝐶1 < 0, 𝐶2 > 0, 𝐶3 > 0, 𝐶4 > 0. 

ii. 𝐶1 < 0, 𝐶2 < 0, 𝐶3 > 0, 𝐶4 > 0. 

iii. 𝐶1 < 0, 𝐶2 < 0, 𝐶3 < 0, 𝐶4 > 0. 

 

Here, 𝐶1 is negative for 𝑅0 > 1, and 𝐶4 is always positive whereas the coefficients 𝐶2, 

and 𝐶3 are positive or negative under the conditions given below: 

𝐶2 {
> 0 when 𝜋((𝑏 + 𝛼)𝛾𝛿 < 𝛽(𝛾 + (𝑏 + 𝛼)𝜇)) + 𝑎(𝛾𝑛 + 𝜇(𝛽 + 2𝛼𝑛)) + 𝑚(𝛾𝑛 + 𝜇(𝛽 + (𝑏 + 2𝛼)𝑛)).

< 0 when 𝜋((𝑏 + 𝛼)𝛾𝛿 > 𝛽(𝛾 + (𝑏 + 𝛼)𝜇)) + 𝑎(𝛾𝑛 + 𝜇(𝛽 + 2𝛼𝑛)) + 𝑚(𝛾𝑛 + 𝜇(𝛽 + (𝑏 + 2𝛼)𝑛)).
 

and 

𝐶3 {
> 0 when 𝜋𝑏(𝛼𝛾𝛿 + 𝛽(𝛾 + 𝛼𝜇)) < 𝑎(𝛾 + 𝛼𝜇)(𝛽 + 𝛼𝑛) + 𝑚 (𝛽(𝛾 + (𝑏 + 𝛼)𝜇) + 𝑛((𝑏 + 𝛼)𝛾 + 𝛼(2𝑏 + 𝛼)𝜇)) .

< 0 when 𝜋𝑏(𝛼𝛾𝛿 + 𝛽(𝛾 + 𝛼𝜇)) > 𝑎(𝛾 + 𝛼𝜇)(𝛽 + 𝛼𝑛) + 𝑚 (𝛽(𝛾 + (𝑏 + 𝛼)𝜇) + 𝑛((𝑏 + 𝛼)𝛾 + 𝛼(2𝑏 + 𝛼)𝜇)) .
 

 

After getting the value of  𝐼∗ we can obtain the values of 𝑆∗ and 𝐴∗. It indicates the 

existence of a unique positive equilibrium 𝑄∗(𝑆∗, 𝐴∗ , 𝐼∗ ) if any one of the above 

conditions is satisfied. 

 

The local stability analysis of the endemic equilibrium 𝑄∗ is explored as follows: The 

characteristic equation of the system (8.2) at  𝑄∗ is a third-degree polynomial: 

𝜆3 + 𝑝0𝜆
2 + 𝑝1𝜆 + 𝑝2 = 0,            (8.6) 

where, 

𝑝0 = 𝛿 + 2𝜇 +
(𝛽+𝛾)𝐼∗

1+𝛼𝐼∗
+ (

𝑎

(1+𝑏𝐼∗)2
+ 𝜇 + 𝑑 + 𝜃 −

(𝛽𝑆∗+𝛾𝐴∗)

(1+𝛼𝐼∗)2
) ,   

𝑝1 = (𝛿 + 𝜇 +
𝛽𝐼∗

1+𝛼𝐼∗
) (𝜇 +

𝛾𝐼∗

1+𝛼𝐼∗
) +

(𝛽2𝑆∗+𝛾2𝐴∗)𝐼∗

(1+𝛼𝐼∗)3
+ (𝛿 + 2𝜇 +

(𝛽+𝛾)𝐼∗

1+𝛼𝐼∗
) (

𝑎

(1+𝑏𝐼∗)2
+ 𝜇 +

𝑑 + 𝜃 −
(𝛽𝑆∗+𝛾𝐴∗)

(1+𝛼𝐼∗)2
),  
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𝑝2 = (𝛿 + 𝜇 +
𝛽𝐼∗

1+𝛼𝐼∗
) (𝜇 +

𝛾𝐼∗

1+𝛼𝐼∗
) (

𝑎

(1+𝑏𝐼∗)2
+ 𝜇 + 𝑑 + 𝜃 −

(𝛽𝑆∗+𝛾𝐴∗)

(1+𝛼𝐼∗)2
) +

𝛾2𝐴∗𝐼∗

(1+𝛼𝐼∗)3
(𝛿 +

𝜇 +
𝛽𝐼∗

1+𝛼𝐼∗
) +

𝛽𝛿𝛾𝑆∗𝐼∗

(1+𝛼𝐼∗)3
+

𝛽𝑆∗𝐼∗

(1+𝛼𝐼∗)3
(𝜇 +

𝛾𝐼∗

1+𝛼𝐼∗
).  

 

Theorem 8.4:  The endemic equilibrium 𝑄∗ is locally asymptotically stable 

when  
(𝛽𝑆∗+𝛾𝐴∗)

(1+𝛼𝐼∗)2
≤

𝑎

(1+𝑏𝐼∗)2
+ 𝜇 + 𝑑 + 𝜃. 

Proof: From Eq. (8.6), it is clear that the coefficients 𝑝0, 𝑝1 and 𝑝2 of 𝜆2, 𝜆 and 1, 

respectively, are positive if  
(𝛽𝑆∗+𝛾𝐴∗)

(1+𝛼𝐼∗)2
≤

𝑎

(1+𝑏𝐼∗)2
+ 𝜇 + 𝑑 + 𝜃. Therefore, by the 

Descartes’ rule of the signs [Wang 2004], it is clear that all the eigenvalues of Eq. (8.6) 

are negative.  Hence, by the definition of the Routh-Hurwitz criterion 𝑄∗ is locally 

asymptotically stable when the condition  
(𝛽𝑆∗+𝛾𝐴∗)

(1+𝛼𝐼∗)2
≤

𝑎

(1+𝑏𝐼∗)2
+ 𝜇 + 𝑑 + 𝜃 is satisfied. 

 

8.3 A susceptible−pre-treated−infected−post treated−recovered model  

 

We propose a mathematical model for epidemic through compartments (or classes). For 

this, we consider the total population  𝑁(𝑡) at time 𝑡, with the immigration of susceptible 

individuals with a constant rate 𝐴. We divided the total population into five 

compartments: susceptible (𝑆) compartment, pre-treated (𝑇1) compartment, infected (𝐼) 

compartment, post-treated (𝑇2) compartment and recovered (𝑅) compartment. 

Susceptible are those who can get a disease under appropriate conditions, pre-treated  are 

those who are vaccinated before the infection and can get a disease under adverse 

conditions, infected are those who have contracted the disease and can spread the disease 

to susceptible and pre – treated individuals under suitable conditions, post-treated  are 

those who are infected and taking the medical treatments and recovered are those who are 

immunized after the medical treatment and are free from the effect of disease. The pre-

treatment and post – treatment of individuals are given by the Holling type I and Holling 

type III treatment rates respectively. It has been considered that treatment before getting 

infected will be given in a linear form; therefore, Holling type I functional response has 

been considered for the treatment rate in the pre-treated class. The treatment given to 

infected individuals will be more than a linearly increasing function because of the 

limitation to the treatment availability which is well explained by Holling type III 
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functional response and therefore Holling type III treatment rate will be considered for 

the treatment of infected individuals. Incubation time delay has been incorporated as a 

time delay in force of infection and inhibition effect which form nonlinear incidence rate. 

This time delay (𝜏 > 0) will be a fixed time during which the infectious agents develop 

in the vector and it is only after this time that the infected vector can infect a susceptible 

individual.  Let 𝜇 be the natural death rate of the population, 𝑑 the death rate due to the 

disease and 𝜃 the recovery rate of post - treated individuals. The progression of the 

epidemic in different compartments is shown by the block diagram as given in Fig 8.2 

below.    

                      𝝁𝑻𝟏 

 

      

  

                                          𝜹𝑺                   𝜸𝑰𝑻𝟏                     

              𝑨      
𝜷𝑺𝑰(𝒕−𝝉)

𝟏+𝜶𝑰(𝒕−𝝉)
                   

𝒂𝑰𝟐

𝟏+𝒃𝑰𝟐
                    𝜽𝑻𝟐 

 

         𝝁𝑺                        (𝝁 + 𝒅)𝑰                   𝝁𝑻𝟐                   𝝁𝑹             

 Fig 8.2: Progression of infection from susceptible (𝑆) and pre-treated (𝑇1) 

compartments through infected (𝐼), post treated (𝑇2) and recovered 

(𝑅) compartments. 

 

The rate of change in each compartment is given by the following system of nonlinear 

delay differential equations:  

𝑑𝑠(𝑡)

𝑑𝑡
= 𝐴 − (𝜇 + 𝛿)𝑆(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
,         

𝑑𝑇1(𝑡)

𝑑𝑡
= 𝛿𝑆(𝑡) − 𝜇𝑇1(𝑡) − 𝛾𝐼(𝑡)𝑇1(𝑡),       

𝑑𝐼(𝑡)

𝑑𝑡
=
𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
+ 𝛾𝐼(𝑡)𝑇1(𝑡) − (𝜇 + 𝑑)𝐼(𝑡) −

𝑎𝐼2(𝑡)

1+𝑏𝐼2(𝑡)
,        (8.7) 

𝑑𝑇2(𝑡)

𝑑𝑡
=

𝑎𝐼2(𝑡)

1+𝑏𝐼2(𝑡)
− (𝜇 + 𝜃)𝑇2(𝑡),        

𝑑𝑅(𝑡)

𝑑𝑡
= 𝜃𝑇2(𝑡) − 𝜇𝑅(𝑡).    

𝑺 𝑰 𝑹 𝑻𝟐 

𝑻𝟏 
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The initial conditions of the model are given by 

𝑆(𝜃) = 𝜑1(𝜃), 𝑇1(𝜃) = 𝜑2(𝜃), 𝐼(𝜃) = 𝜑3(𝜃), 𝑇2(𝜃) = 𝜑4(𝜃), 𝑅(𝜃) = 𝜑5(𝜃),  

𝜑𝑖(𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0], 𝜑𝑖(0) > 0 (𝑖 = 1,2,3,4,5)           (8.8) 

 

where (𝜑1(𝜃), 𝜑2(𝜃), 𝜑3(𝜃), 𝜑4(𝜃), 𝜑5(𝜃)) ∈ 𝐶([−𝜏, 0], ℝ+
5 ). Here 𝐶 denotes the 

Banach space of continuous functions mapping the interval [−𝜏, 0] into ℝ+
5 . 

 

The term 𝛿𝑆 represents the Holling type I treatment rate, where, 𝛿 is defined as pre-

treatment rate and the term 
𝑎𝐼2

1+𝑏𝐼2
  represents the Holling type III treatment rate, where, 

both 𝑎 and 𝑏 are positive constants defined as cure rate of the infected individuals and 

limitation rate in treatment availability [Dubey et al. 2016] respectively. The 

term  
𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
  represents the Holling functional type II incidence rate, where, 𝛽 is the 

transmission rate of infection in susceptible individuals and 𝛼 is the measure of inhibition 

effect due to the infected individuals. The term  𝛾𝐼(𝑡)𝑇1(𝑡) in the model, represent the 

bilinear incidence rate of infection between pre-treated and infected individuals, where, 𝛾 

is the transmission rate of infection in pre-treated individuals. The incidence 

rate  
𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
 represents the rate at the time (𝑡 − 𝜏) at which susceptible individuals 

leave the susceptible class and enter into the infectious class at time t. Furthermore, it is 

assumed that all other parameters of the model are positive which is also biologically 

true.  

 

It should be mentioned that although the recovered population continues to make contacts 

with other individuals of the population, it does not contribute to the transmission 

dynamics of the disease. Since, the recovered population 𝑅, does not feature in the first 

four equations of the model, therefore, without loss of generality we consider the 

following reduce system for theoretical analysis: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴 − (𝜇 + 𝛿)𝑆(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
,         

𝑑𝑇1(𝑡)

𝑑𝑡
= 𝛿𝑆(𝑡) − 𝜇𝑇1(𝑡) − 𝛾𝐼(𝑡)𝑇1(𝑡),      

𝑑𝐼(𝑡)

𝑑𝑡
=
𝛽𝑆(𝑡)𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
+ 𝛾𝐼(𝑡)𝑇1(𝑡) − (𝜇 + 𝑑)𝐼(𝑡) −

𝑎𝐼2(𝑡)

1+𝑏𝐼2(𝑡)
,     (8.9) 
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𝑑𝑇2(𝑡)

𝑑𝑡
=

𝑎𝐼2(𝑡)

1+𝑏𝐼2(𝑡)
− (𝜇 + 𝜃)𝑇2(𝑡).  

 

8.3.1 Basic properties of the model 

 

It is assumed that all state variables of the model are positive i.e. (𝑆, 𝑇1, 𝐼, 𝑇2) ∈ ℝ+
4 . It 

follows that nonnegative cone ℝ+
4  is invariant, as the disease-free plane (𝐼 = 𝑇2 = 0). 

It is convenient to define  𝑁0 =
𝐴

𝜇
, 𝑆0 =

𝐴

(𝜇+𝛿)
  and 𝑇10 =

𝛿𝐴

𝜇(𝜇+𝛿)
. 

 

The rate of change of the total population of the model (8.7) is given by 

𝑑𝑁

𝑑𝑡
= 𝐴 − 𝜇𝑁 − 𝑑𝐼 ≤ 𝐴 − 𝜇𝑁                               (8.10) 

with  𝑁 = 𝑆 + 𝑇1 + 𝐼 + 𝑇2 + 𝑅. 

Since as 𝑡 → ∞, the disease will disappear, therefore  𝐼(𝑡)𝑡→∞
Lim 𝑠𝑢𝑝 = 0 

Eq. (8.10) ⟹  
𝑑𝑁

𝑑𝑡
= 𝐴 − 𝜇𝑁 

⟹ 𝑁(𝑡) =
𝐴

𝜇
+ (𝑁(0) −

𝐴

𝜇
) 𝑒−𝜇𝑡 

⟹ 𝑁(𝑡)𝑡→∞
lim =

𝐴

𝜇
= 𝑁0 

This follows that 

0 < 𝑁(𝑡)𝑡→∞
Lim 𝑠𝑢𝑝 ≤ 𝑁0 if and only if  𝐼(𝑡)𝑡→∞

Lim 𝑠𝑢𝑝 = 0 

From the first equation of the model, it follows that  

0 < 𝑆(𝑡)𝑡→∞
Lim 𝑠𝑢𝑝 ≤ 𝑆0           (8.11) 

and then from the second equation of system (8.9),  

 0 < 𝑇1(𝑡)𝑡→∞
Lim 𝑠𝑢𝑝 ≤ 𝑇10.          (8.12) 

From the Eq. (8.10) it follows that if 𝑁 > 𝑁0 then 
𝑑𝑁

𝑑𝑡
< 0. This establishes the following 

theorem: 
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Theorem 8.5:  The set  𝐷 = {(𝑆, 𝑇1, 𝐼, 𝑇2) ∈ ℝ+
4 : 𝑆 + 𝑇1 + 𝐼 + 𝑇2 ≤ 𝑁0, 𝑆 ≤ 𝑆0, 𝑇1 ≤

𝑇10} is a positively invariant and attracting region for the disease transmission system 

(8.9) with initial conditions in ℝ+
4 . 

 

In the absence of disease (I = 0), the total population 𝑁 approaches the carrying 

capacity 𝑁0 asymptotically, and in the presence of disease, the total population is less 

than or equals to 𝑁0. 

 

Thus, every solution of the system (8.9) with initial conditions in ℝ+
4  tends towards 𝐷 as 

𝑡 → ∞, and every solution with an initial condition in 𝐷 remains there for  𝑡 > 0. 

Furthermore, in 𝐷, the usual existence, uniqueness and continuation results hold for the 

system so that the system (8.9) is well posed mathematically and biologically. 

 

8.3.2 Equilibria and their stability analysis 

 

In this subsection, we obtain the model equilibria and discuss their stability behavior. 

  

8.3.2.1 Disease-free equilibrium and its stability analysis 

 

The system (8.9) has a unique disease-free equilibrium of the form 𝑄 (
𝐴

𝜇+𝛿
,

𝛿𝐴

𝜇(𝜇+𝛿)
, 0,0). 

The characteristic equation at 𝑄 (
𝐴

𝜇+𝛿
,

𝛿𝐴

𝜇(𝜇+𝛿)
, 0,0) of the system (8.9) is given by  

(𝜆 + 𝜇)(𝜆 + 𝜇 + 𝜃)(𝜆 + 𝜇 + 𝛿) (𝜆 + (𝜇 + 𝑑) (1 −
𝐴(𝛾𝛿+𝛽𝜇𝑒−𝜆𝜏

𝜇(𝜇+𝛿)(𝜇+𝑑)
)) = 0    (8.13) 

At 𝜏 = 0 the term  
𝐴(𝛾𝛿+𝛽𝜇𝑒−𝜆𝜏)

𝜇(𝜇+𝛿)(𝜇+𝑑)
 is known as a basic reproduction number 𝑅0. Therefore, 

we define the basic reproduction number 𝑅0 of our model by 
𝐴(𝛾𝛿+𝛽𝜇)

𝜇(𝜇+𝛿)(𝜇+𝑑)
.  

 

8.3.2.1.1 Analysis for 𝑹𝟎 ≠ 𝟏 
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Eq. (8.13) always has three negative roots 𝜆1 = −𝜇, 𝜆2 = −(𝜇 + 𝜃),  𝜆3 = −(𝜇 + 𝛿)  

and one other root is determined by the solution of the equation 

𝜆 + 𝜇 + 𝑑 −
𝐴(𝛾𝛿+𝛽𝜇𝑒−𝜆𝜏)

𝜇(𝜇+𝛿)
= 0. 

Let 

𝑓(𝜆) = 𝜆 + 𝜇 + 𝑑 −
𝐴(𝛾𝛿+𝛽𝜇𝑒−𝜆𝜏)

𝜇(𝜇+𝛿)
  

If 𝑅0 > 1, for real 𝜆, 

𝑓(0) = 𝜇 + 𝑑 −
𝐴(𝛾𝛿+𝛽𝜇)

𝜇(𝜇+𝛿)
< 0, Lim

𝜆→∞
𝑓(𝜆) → +∞. 

Hence, 𝑓(𝜆) = 0 has a positive real root if 𝑅0 > 1. 

If 𝑅0 < 1, we assume that 𝑅𝑒 𝜆 ≥ 0. 

We notice that  

𝑅𝑒 𝜆 =
𝐴(𝛾𝛿+𝛽𝜇𝑒−𝑅𝑒 𝜆 𝜏 cos 𝐼𝑚 𝜆 𝜏  )

𝜇(𝜇+𝛿)
− (𝜇 + 𝑑) <

𝐴(𝛾𝛿+𝛽𝜇)

𝜇(𝜇+𝛿)
− (𝜇 + 𝑑) < 0.  

a contradiction to our assumption. Hence, if 𝑅0 < 1 then the root 𝜆 of Eq. (8.13) has a 

negative real part. 

Hence, we state the following theorem: 

 

Theorem 8.6: DFE 𝑄 (
𝐴

𝜇+𝛿
,

𝛿𝐴

𝜇(𝜇+𝛿)
, 0,0) of the system (8.9) is locally asymptotically 

stable if  𝑅0 < 1 and unstable if  𝑅0 > 1 for 𝜏 ≥ 0. 

 

8.3.2.1.2 Analysis at  𝑹𝟎 = 𝟏 

 

This section is to analyze the behavior of the system (8.9) when 𝑅0 = 1. The Jacobian 

matrix of the system (8.9) is being obtained at 𝑅0 = 1 and bifurcation parameter 𝛽 =

𝛽∗ = (
𝜇(𝛿+𝜇)(𝑑+𝜇)−𝛾𝛿𝐴

𝐴𝜇
) has one of the eigenvalue as zero and the remaining eigenvalues 

are negative. The stability behavior of equilibrium points at 𝑅0 = 1 cannot be determined 
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using linearization, so we apply center manifold theory [Sastry (1999)]. For this, we 

consider that  𝑆 = 𝑥1, 𝑇1 = 𝑥2, 𝐼 = 𝑥3 and 𝑇2 = 𝑥4 then the system (8.9) can be rewritten 

as 

𝑑𝑥1

𝑑𝑡
= 𝐴 − 𝛿𝑥1 − 𝜇𝑥1 −

𝛽𝑥1𝑥3

1+𝛼𝑥3
≡ 𝑓1,          

𝑑𝑥2

𝑑𝑡
= 𝛿𝑥1 − 𝜇𝑥2 − 𝛾𝑥2𝑥3 ≡ 𝑓2,         

𝑑𝑥3

𝑑𝑡
=
𝛽𝑥1𝑥3

1+𝛼𝑥3
+ 𝛾𝑥2𝑥3 − (𝜇 + 𝑑)𝑥3 −

𝑎𝑥3
2

1+𝑏𝑥32
≡ 𝑓3,       (8.14) 

𝑑𝑥4

𝑑𝑡
=

𝑎𝑥3
2

1+𝑏𝑥32
− (𝜃 + 𝜇)𝑥4 ≡ 𝑓4.          

 

Let  𝐽∗ be the Jacobian matrix evaluated at 𝑅0 = 1 and 𝛽 = 𝛽∗. Also, let 𝑢 =

[𝑢1, 𝑢2, 𝑢3, 𝑢4] and 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4]
𝑇 be the left eigenvector and right eigenvector of 

𝐽∗associated with the zero eigenvalue. 

𝐽∗ = (

−𝜇 − 𝛿
𝛿
0
0

0
−𝜇
0
0

−𝛽∗𝐴/(𝜇 + 𝛿)
−𝛾𝛿𝐴/𝜇(𝜇 + 𝛿)

0
0

0
0
0

−𝜇 − 𝜃

) 

Then, we get 

𝑢1 = 0, 𝑢2 = 0, 𝑢3 = 1, 𝑢4 = 0  and 𝑤1 = −
𝛽∗𝐴

(𝛿+𝜇)2
, 𝑤2 = −

(𝛾𝛿𝐴𝜇+𝛾𝐴𝛿2+𝜇𝛿𝐴𝛽∗)

𝜇2(𝛿+𝜇)2
, 𝑤3 =

1,𝑤4 = 0.  

 

The non-zero partial derivatives corresponding to the functions of the system (8.14) 

evaluated at  𝑅0 = 1 and 𝛽 = 𝛽∗ are 

(
𝜕2𝑓3

𝜕𝑥1𝜕𝑥3
)
𝑄
= (

𝜕2𝑓3

𝜕𝑥3𝜕𝑥1
)
𝑄
= 𝛽∗,  (

𝜕2𝑓3

𝜕𝑥2𝜕𝑥3
)
𝑄
= (

𝜕2𝑓3

𝜕𝑥3𝜕𝑥2
)
𝑄
= 𝛾 , (

𝜕2𝑓3

𝜕𝑥32
)
𝑄
= −2(

𝐴𝛼𝛽∗

𝜇+𝛿
+

𝑎)  and (
𝜕2𝑓3

𝜕𝑥3𝜕𝛽∗
)
𝑄
= 

𝐴

(𝛿+𝜇)
.  . 

Then, using [Chavez and Song (2004)], the bifurcation constants 𝑎1and 𝑏1 are obtained 

as follows: 

𝑎1 = ∑ 𝑢𝑘𝑤𝑖𝑤𝑗
4
𝑘,𝑖,𝑗=1 (

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
)
𝑄

  

= 𝑢3 (𝑤1𝑤3𝛽
∗ + 𝑤2𝑤3𝛾 + 𝑤3𝑤1𝛽

∗ + 𝑤3𝑤2𝛾 − 𝑤3
2 (

𝐴𝛼𝛽∗

𝜇+𝛿
+ 𝑎))  

= −
2

𝜇+𝛿
(𝐴𝛽∗2 +

𝛾(𝜇𝛿𝛽∗𝐴+𝛾𝐴𝛿𝜇+𝛾𝛿2𝐴)

𝜇(𝜇+𝛿)
+ 𝛼𝐴𝛽∗ + 𝑎(𝜇 + 𝛿)) < 0,  
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𝑏1 = ∑ 𝑢𝑘𝑤𝑖
4
𝑘,𝑖=1 (

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝛽
∗)
𝑄

  

= 𝑤3 (
𝐴

(𝛿+𝜇)
)  

=
𝐴

(𝛿+𝜇)
> 0. 

Thus, we state the following theorem: 

 

Theorem 8.7: DFE 𝑄 (
𝐴

𝜇+𝛿
,

𝛿𝐴

𝜇(𝜇+𝛿)
, 0,0) changes its behavior from stable to unstable at 

 𝑅0 = 1 and there exists a positive equilibrium as  𝑅0 crosses one. Hence, the system 

(8.14) exhibits transcritical forward bifurcation with a bifurcation parameter 𝛽∗ at 𝑅0 = 1.  

 

8.3.2.2 Existence and stability analysis of the endemic equilibrium 

 

To find conditions for the existence of an equilibrium 𝑄∗(𝑆∗, 𝑇1
∗, 𝐼∗, 𝑇2

∗) for which the 

disease is endemic in the population, the system (8.9) are rearranged to get  

𝑆∗, 𝑇1
∗, 𝐼∗and 𝑇2

∗  which gives 

𝑆∗ =
𝐴(1+𝛼𝐼∗)

(𝛿+𝜇)(1+𝛼𝐼∗)+𝛽𝐼∗
, 𝑇1

∗ =
𝐴𝛿(1+𝛼𝐼∗)

(𝜇+𝛾𝐼∗)((𝛿+𝜇)(1+𝛼𝐼∗)+𝛽𝐼∗)
, 𝑇2

∗ =
𝑎𝐼∗

2

(𝜇+𝜃)(1+𝑏𝐼∗2)
, 

and 𝐼∗ is given by the equation 

𝐶1𝐼
∗4 + 𝐶2𝐼

∗3 + 𝐶3𝐼
∗2 + 𝐶4𝐼

∗ + 𝐶5 = 0                                                  (8.15) 

where  

𝐶1 = {𝑏𝛾(𝜇 + 𝑑)(𝛽 + 𝛼(𝛿 + 𝜇))},  

𝐶2 = {𝑏(𝜇 + 𝑑) (𝛾(𝜇 + 𝛿) + 𝜇(𝛽 + 𝛼(𝛿 + 𝜇))) + 𝑎𝛾𝛽 + 𝑎𝛾𝛼(𝛿 + 𝜇) − 𝐴𝑏(𝛽𝛾 +

𝛾𝛿𝛼)},  

𝐶3 = {𝜇𝑏(𝜇 + 𝑑)(𝜇 + 𝛿) + 𝑎𝜇(𝛽 + 𝛼(𝛿 + 𝜇)) + 𝛾
2(𝜇 + 𝑑)(𝛽 + 𝛼(𝛿 + 𝜇)) − 𝐴𝑏(𝛽𝜇 +

𝛾𝛿)},  

𝐶4 = {𝑎𝜇(𝜇 + 𝛿) + (𝜇 + 𝑑) (𝛾(𝛿 + 𝜇) + 𝜇(𝛽 + 𝛼(𝛿 + 𝜇))) − 𝐴(𝛽𝛾 + 𝛾𝛿𝛼)},  

𝐶5 = {𝜇(𝜇 + 𝑑)(𝜇 + 𝛿) − 𝐴(𝛽𝜇 + 𝛾𝛿)} = 𝜇(𝜇 + 𝑑)(𝜇 + 𝛿)(1 − 𝑅0). 

 

Now using Descartes’ rule of signs, there exists a unique positive real root 𝐼∗ of the 

biquadratic equation (8.15) if any of the following conditions holds true: 

I. 𝐶1 > 0, 𝐶2 < 0, 𝐶3 < 0, 𝐶4 < 0 and 𝐶5 < 0. 
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II. 𝐶1 > 0, 𝐶2 > 0, 𝐶3 < 0, 𝐶4 < 0 and 𝐶5 < 0. 

III. 𝐶1 > 0, 𝐶2 > 0, 𝐶3 > 0, 𝐶4 < 0 and 𝐶5 < 0. 

IV. 𝐶1 > 0, 𝐶2 > 0, 𝐶3 > 0, 𝐶4 > 0 and 𝐶5 < 0. 

 

After finding 𝐼∗, we can find 𝑆∗, 𝑇1
∗ and 𝑇2

∗. Thus, a unique positive 𝑄∗(𝑆∗, 𝑇1
∗, 𝐼∗, 𝑇2

∗ )  

exists if one of the above conditions holds true. 

 

The local stability of  𝑄∗ is explored as follows:  

 

The characteristic equation of the system (8.9) evaluated at the endemic equilibrium 

point 𝑄∗ is given by 

(𝜆 + 𝜇 + 𝜃)(𝜆3 + 𝑝0𝜆
2 + 𝑞0𝜆 + 𝑟0 − (𝑝1𝜆

2 + 𝑞1𝜆 + 𝑟1)𝑒
−𝜆𝜏) = 0   (8.16) 

where  

𝑝0 = (3𝜇 + 𝛿 +
𝛽𝐼∗

1+𝛼𝐼∗
+ 𝛾𝐼∗ + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)2
) , 

𝑞0 = ((2𝜇 + 𝛾𝐼
∗ − 𝛾𝑇1

∗ + 𝑑 +
2𝑎𝐼∗

(1+𝑏𝐼∗2)2
) (𝜇 + 𝛿 +

𝛽𝐼∗

1+𝛼𝐼∗
) + (𝜇 + 𝛾𝐼∗) (𝜇 + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2 − 𝛾𝑇1

∗) + 𝛾2𝑇1
∗𝐼∗) , 

𝑟0 = (𝜇 + 𝛿 +
𝛽𝐼∗

1+𝛼𝐼∗
) ((𝜇 + 𝛾𝐼∗) (𝜇 + 𝑑 − 𝛾𝑇1

∗ +
2𝑎𝐼∗

(1+𝑏𝐼∗2)
2) + 𝛾

2𝑇1
∗𝐼∗) , 

𝑝1 =
𝛽𝑆∗

(1+𝛼𝐼∗)2
 , 

𝑞1 = (2𝜇 + 𝛿 + 𝛾𝐼
∗)

𝛽𝑆∗

(1+𝛼𝐼∗)2
 , 

𝑟1 = (𝜇
2 + 𝜇𝛾𝐼∗ + 𝛿𝜇)

𝛽𝑆∗

(1+𝛼𝐼∗)2
 . 

Clearly, 𝜆1 = −(𝜇 + 𝜃) is a root of the characteristic equation (8.16) for 𝜏 ≥ 0, others 

roots 𝜆2, 𝜆3 and 𝜆4 can be obtained by the following equation: 

 𝜆3 + 𝑝0𝜆
2 + 𝑞0𝜆 + 𝑟0 − (𝑝1𝜆

2 + 𝑞1𝜆 + 𝑟1)𝑒
−𝜆𝜏 = 0       (8.17) 
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Theorem 8.8: For 𝜏 = 0, Q∗ is locally asymptotically stable if all three  
𝑆∗

𝐼∗
≤ 1,

𝑆∗

𝐼∗
≤

(2𝜇+𝑑)

(𝛿+𝛾𝐼∗)
 and 

𝑆∗

𝐼∗
≤

(𝜇+𝛾𝐼∗)(𝜇+𝑑)

(𝜇2+𝜇𝛾𝐼∗+𝛿𝜇)
  are satisfied simultaneously. 

Proof: At 𝑄∗, the roots of the system (8.9) are 𝜆1 = −(𝜇 + 𝜃), and other roots 

𝜆2, 𝜆3 and 𝜆4 of the system are given by the equation 𝜆3 + 𝑝0𝜆
2 + 𝑞0𝜆 + 𝑟0 −

(𝑝1𝜆
2 + 𝑞1𝜆 + 𝑟1) = 0 for 𝜏 = 0. 

It is easy to show that if  
𝑆∗

𝐼∗
≤ 1,

𝑆∗

𝐼∗
≤

(2𝜇+𝑑)

(𝛿+𝛾𝐼∗)
 and 

𝑆∗

𝐼∗
≤

(𝜇+𝛾𝐼∗)(𝜇+𝑑)

(𝜇2+𝜇𝛾𝐼∗+𝛿𝜇)
 are satisfied 

simultaneously then 

𝑝0 − 𝑝1  = 3𝜇 + 𝛿 +
𝛽𝐼∗

1+𝛼𝐼∗
+ 𝛾𝐼∗ + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2 −

𝛽𝑆∗

(1+𝛼𝐼∗)2
  

= 3𝜇 + 𝛿 + 𝛾𝐼∗ + 𝑑 +
𝛼𝛽𝐼∗

2

(1+𝛼𝐼∗)2
+

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2 +

𝛽(𝐼∗−𝑆∗)

(1+𝛼𝐼∗)2
> 0,   

𝑞0 − 𝑞1 = (2𝜇 + 𝛾𝐼
∗ + 𝑑 − 𝛾𝑇1

∗ +
2𝑎𝐼∗

(1+𝑏𝐼∗2)
2)(𝜇 + 𝛿 +

𝛽𝐼∗

1+𝛼𝐼∗
) + (𝜇 + 𝛾𝐼∗) (𝜇 + 𝑑 −

𝛾𝑇1
∗ +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2) + 𝛾

2𝑇1
∗𝐼∗ − (2𝜇 + 𝛿 + 𝛾𝐼∗)

𝛽𝑆∗

1+𝛼𝐼∗
= (𝜇 + 𝛾𝐼∗) (𝜇 + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2) + 𝛾

2𝑇1
∗𝐼∗ + (2𝜇 + 𝛾𝐼∗ + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2) (𝜇 + 𝛿) + (

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2 +

𝛾𝐼∗) (
𝛽𝐼∗

1+𝛼𝐼∗
) +

𝛽

1+𝛼𝐼∗
((2𝜇 + 𝑑)𝐼∗ − (𝛿 + 𝛾𝐼∗)𝑆∗) > 0,  

𝑟0 − 𝑟1 = (𝜇 + 𝛿 +
𝛽𝐼∗

1+𝛼𝐼∗
) ((𝜇 + 𝛾𝐼∗)(𝜇 + 𝑑 − 𝛾𝑇1

∗) +
2𝑎𝐼∗(𝜇+𝛾𝐼∗)

(1+𝑏𝐼∗2)
2 + 𝛾

2𝑇1
∗𝐼∗) − (𝜇2 +

𝜇𝛾𝐼∗ + 𝛿𝜇)
𝛽𝑆∗

(1+𝛼𝐼∗)2
  

= ((𝜇 + 𝛾𝐼∗)(𝜇 + 𝑑) +
2𝑎𝐼∗(𝜇+𝛾𝐼∗)

(1+𝑏𝐼∗2)
2 + 𝛾

2𝑇1
∗𝐼∗) (𝜇 + 𝛿) + (

2𝑎𝐼∗(𝜇+𝛾𝐼∗)

(1+𝑏𝐼∗2)
2 +

𝛾2𝑇1
∗𝐼∗)

𝛽𝐼∗

1+𝛼𝐼∗
+

𝛽

1+𝛼𝐼∗
((𝜇 + 𝛾𝐼∗)(𝜇 + 𝑑)𝐼∗ − (𝜇2 + 𝜇𝛾𝐼∗ + 𝛿𝜇)𝑆∗) > 0.  

Hence, by the Routh-Hurwitz criterion, the endemic equilibrium 𝑄∗ is locally 

asymptotically stable when 𝜏 = 0. 
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Theorem 8.9: For 𝜏 > 0, 𝑄∗ is locally asymptotically stable if all three   𝐿1 > 𝐿2, 𝐿3 >

𝐿4 and 
𝑆∗

𝐼∗
≤

(𝜇+𝛾𝐼∗)(𝜇+𝑑)

(𝜇2+𝜇𝛾𝐼∗+𝛿𝜇)
 are satisfied simultaneously, 

where  

𝐿1 = (3𝜇 + 𝛿 + 𝛾𝐼
∗ + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2 +

𝛽(𝐼∗+𝑆∗)

1+𝛼𝐼∗
)(3𝜇 + 𝛿 + 𝛾𝐼∗ + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2 +

𝛽(𝐼∗−𝑆∗)

1+𝛼𝐼∗
),  

𝐿2 = 2((2𝜇 + 𝛾𝐼
∗ + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)2
) (𝜇 + 𝛿 +

𝛽𝐼∗

1+𝛼𝐼∗
) + (𝜇 + 𝛾𝐼∗) (𝜇 + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2) +

𝛾2𝑇1
∗𝐼∗),  

𝐿3 = (2((𝜇
2 + 𝜇𝛾𝐼∗ + 𝛿𝜇)

𝛽𝑆∗

1+𝛼𝐼∗
) (

𝛽𝑆∗

1+𝛼𝐼∗
) + ((2𝜇 + 𝛾𝐼∗ + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2)(𝜇 + 𝛿 +

𝛽𝐼∗

1+𝛼𝐼∗
) + (𝜇 + 𝛾𝐼∗) (𝜇 + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2) + 𝛾

2𝑇1
∗𝐼∗)

2

),  

𝐿4 = (2 (𝜇 + 𝛿 +
𝛽𝐼∗

1+𝛼𝐼∗
) ((𝜇 + 𝛾𝐼∗) (𝜇 + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2) + 𝛾

2𝑇1
∗𝐼∗)(3𝜇 + 𝛿 +

𝛽𝐼∗

1+𝛼𝐼∗
+

𝛾𝐼∗ + 𝑑 +
2𝑎𝐼∗

(1+𝑏𝐼∗2)
2) + ((𝛿 + 𝛾𝐼

∗)
𝛽𝑆∗

1+𝛼𝐼∗
)
2

).  

Proof: At 𝑄∗, the roots of Eq. (8.16) are 𝜆1 = −(𝜇 + 𝜃), and other roots 𝜆2, 𝜆3 and 𝜆4 

are given by the equation 𝜆3 + 𝑝0𝜆
2 + 𝑞0𝜆 + 𝑟0 − (𝑝1𝜆

2 + 𝑞1𝜆 + 𝑟1)𝑒
−𝜆𝜏 = 0 for 𝜏 > 0. 

Assume that 𝜆 = 𝑖𝜔, 𝜔 > 0 is the root of Eq. (8.17). 

Substituting 𝜆 = 𝑖𝜔 in Eq. (8.17), we get 

(𝑟0 − 𝑝0𝜔
2) − 𝑖𝜔(𝜔2 − 𝑞0) = (𝑟1 − 𝑝1𝜔

2)cos  𝜔𝜏 + 𝑞1𝜔 sin  𝜔𝜏 − 𝑖((𝑟1 −

𝑝1𝜔
2) sin 𝜔𝜏 − 𝑞1𝜔 cos 𝜔𝜏)      (8.18) 

On separating real and imaginary part of Eq. (8.18)  

(𝑟0 − 𝑝0𝜔
2) = (𝑟1 − 𝑝1𝜔

2)cos  𝜔𝜏 + 𝑞1𝜔 sin  𝜔𝜏       (8.19) 
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𝜔(𝜔2 − 𝑞0) = (𝑟1 − 𝑝1𝜔
2) sin  𝜔𝜏 − 𝑞1𝜔 cos  𝜔𝜏                  (8.20) 

On squaring and adding both sides of Eqs. (8.19) & (8.20), we yield 

(𝑟0 − 𝑝0𝜔
2)2 + 𝜔2(𝜔2 − 𝑞0)

2 = (𝑟1 − 𝑝1𝜔
2)2 + 𝑞1

2𝜔2       (8.21)  

Letting 𝜔2 = 𝑧1, Eq. (8.21) becomes 

𝑧1
3 + (𝑝0

2 − 2𝑞0 − 𝑝1
2)𝑧1

2 + (𝑞0
2 + 2𝑟1𝑝1 − 2𝑟0𝑝0 − 𝑞1

2)𝑧1 + (𝑟0
2 − 𝑟1

2) = 0  (8.22) 

It is easy to show that if  𝐿1 > 𝐿2, 𝐿3 > 𝐿4 and 
𝑆∗

𝐼∗
≤

(𝜇+𝛾𝐼∗)(𝜇+𝑑)

(𝜇2+𝜇𝛾𝐼∗+𝛿𝜇)
 are satisfied 

simultaneously, then 

𝑝0
2 − 2𝑞0 − 𝑝1

2 = (𝑝0 + 𝑝1)(𝑝0 − 𝑝1) − 2𝑞0  

= (3𝜇 + 𝛿 + 𝛾𝐼∗ + 𝑑 +
2𝑎𝐼∗

(1+𝑏𝐼∗2)
2 +

𝛽(𝐼∗+𝑆∗)

1+𝛼𝐼∗
)(3𝜇 + 𝛿 + 𝛾𝐼∗ + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2 +

𝛽(𝐼∗−𝑆∗)

1+𝛼𝐼∗
) − 2((2𝜇 + 𝛾𝐼∗ + 𝑑 − 𝛾𝑇1

∗ +
2𝑎𝐼∗

(1+𝑏𝐼∗2)
2)(𝜇 +

𝛿 +
𝛽𝐼∗

1+𝛼𝐼∗
) + (𝜇 + 𝛾𝐼∗) (𝜇 + 𝑑 − 𝛾𝑇1

∗ +
2𝑎𝐼∗

(1+𝑏𝐼∗2)
2) + 𝛾

2𝑇1
∗𝐼∗)  

= 𝐿1 − 𝐿2 > 0,   

2𝑟1𝑝1 + 𝑞0
2 − 2𝑟0𝑝0 − 𝑞1

2 = 2((𝜇2 + 𝜇𝛾𝐼∗ + 𝛿𝜇)
𝛽𝑆∗

(1+𝛼𝐼∗)2
) (

𝛽𝑆∗

(1+𝛼𝐼∗)2
) + ((2𝜇 + 𝛾𝐼∗ +

𝑑 − 𝛾𝑇1
∗ +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2)(𝜇 + 𝛿 +

𝛽𝐼∗

1+𝛼𝐼∗
) + (𝜇 + 𝛾𝐼∗) (𝜇 +

𝑑 − 𝛾𝑇1
∗ +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2) + 𝛾

2𝑇1
∗𝐼∗)

2

− (2 (𝜇 + 𝛿 +

𝛽𝐼∗

1+𝛼𝐼∗
) ((𝜇 + 𝛾𝐼∗) (𝜇 + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2) + 𝛾

2𝑇1
∗𝐼∗)(3𝜇 +

𝛿 +
𝛽𝐼∗

1+𝛼𝐼∗
+ 𝛾𝐼∗ + 𝑑 +

2𝑎𝐼∗

(1+𝑏𝐼∗2)
2) + ((2𝜇 + 𝛿 +

𝛾𝐼∗)
𝛽𝑆∗

1+𝛼𝐼∗
)
2

) = 𝐿3 − 𝐿4 > 0,  

𝑟0
2 − 𝑟1

2 = (𝑟0 + 𝑟1)(𝑟0 − 𝑟1)  
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= (((𝜇 + 𝛾𝐼∗)(𝜇 + 𝑑 − 𝛾𝑇1
∗) +

2𝑎𝐼∗(𝜇+𝛾𝐼∗)

(1+𝑏𝐼∗2)
2 + 𝛾

2𝑇1
∗𝐼∗) (𝜇 + 𝛿) +

(
2𝑎𝐼∗(𝜇+𝛾𝐼∗)

(1+𝑏𝐼∗2)
2 + 𝛾

2𝑇1
∗𝐼∗)

𝛽𝐼∗

1+𝛼𝐼∗
+

𝛽

1+𝛼𝐼∗
((𝜇 + 𝛾𝐼∗)(𝜇 + 𝑑)𝐼∗ +

(𝜇2 + 𝜇𝛾𝐼∗ + 𝛿𝜇)𝑆∗))(((𝜇 + 𝛾𝐼∗)(𝜇 + 𝑑 − 𝛾𝑇1
∗) +

2𝑎𝐼∗(𝜇+𝛾𝐼∗)

(1+𝑏𝐼∗2)
2 +

𝛾2𝑇1
∗𝐼∗) (𝜇 + 𝛿) + (

2𝑎𝐼∗(𝜇+𝛾𝐼∗)

(1+𝑏𝐼∗2)
2 + 𝛾

2𝑇1
∗𝐼∗)

𝛽𝐼∗

1+𝛼𝐼∗
+

𝛽

1+𝛼𝐼∗
((𝜇 + 𝛾𝐼∗)(𝜇 +

𝑑)𝐼∗ − (𝜇2 + 𝜇𝛾𝐼∗ + 𝛿𝜇)𝑆∗)) > 0. 

Hence, by the Routh-Hurwitz criterion, the endemic equilibrium 𝑄∗ is locally 

asymptotically stable for 𝜏 > 0. 

 

8.4 Numerical simulations 

 

This section is devoted to the demonstration of the results of the numerical simulation of 

the models. 

 

8.4.1 Results of the system (8.1) 

 

For the simulation of the system (8.1), we take the following numerically experimental 

values of parameters: 

 

𝜋 = 2, 𝛼 = 0.5, 𝛽 = 0.003, 𝜇 = 0.007, 𝑑 = 0.05, 𝛾 = 0.001, 𝛿 = 0.002, 𝑎 = 0.2, 𝑏

= 0.2, 𝜃 = 0.002. 

 

With the above values of parameters, we calculate the coefficients of Eq. (8.5) as 𝐶1 =

−0.0000044829,  𝐶2 = 0.000004607, 𝐶3 = 0.00000503207, 𝐶4 = 3.0267 × 10
−7 with the 

basic reproduction number  𝑅0 = 1.274 which satisfies the condition (𝑖) i.e. 𝐶1 < 0, 𝐶2 >

0, 𝐶3 > 0, 𝐶4 > 0 for the existence of a unique positive 𝐼∗. The trajectories of  𝑆, 𝐴, 𝐼, 
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and 𝑅 with initial conditions  𝑆(0) = 200, 𝐴(0) = 15, 𝐼(0) = 2, 𝑅(0) = 1 approaches 

to the endemic equilibrium 𝑄∗(  154.6402, 37.1406,   3.8084, 62.1365) as shown in Fig. 

8.4. 

 

In Fig. 8.4, we plot the graphs for 𝑆, 𝐴, 𝐼 and 𝑅 populations. We observe that the number 

of infected individuals goes up, and after some days it decreases and become constant due 

to Holling type II treatment, and these individuals once recovered, become immunized to 

the infection and will not get re-infected in future. Susceptible individuals decrease to 

attain a steady state. This decrease may be due to increase in the number of alert 

individuals. Further, the alert population increases as the alertness behavior prevents 

infection and finally, the population settles down to its steady state. This increase causes a 

decrease in the number of infected individuals because of alertness in society. 

Furthermore, the recovered individuals increase which may be due to the Holling type II 

treatment of infected individuals, and settles to the steady state.  

 

Fig. 8.5 portrays the difference between the infectives with alert and without alert class. It 

can be seen that the number of infected individuals without the alert class is higher than 

the number of infected individuals with the alert class. Hence, the alert class plays a vital 

role in controlling the infection of an epidemic in society.  

 

Fig. 8.6 exhibits the difference between the infected population with Holling type II 

treatment rate and without treatment. It is evident from this figure that the number of 

infected individuals without treatment rate is very high in comparison to the number of 

infected individuals with Holling type II treatment rate. Hence, the Holling type II 

treatment rate has an important role in suppressing the infection in society. 

 

Figs. 8.7 and 8.8 show the effect of the cure rate (𝑎) and limitation rate (𝑏) in treatment 

availability on the infected population at numerous values of a and b. Fig. 8.7 

demonstrates the decrease in the infected population as the cure rate (𝑎) increases and it 

settles down at its steady state, but the disease is not eliminated entirely as it will persist 

at a much lower level. Fig. 8.8 expresses an increase in the infected population as  𝑏 

increases, which is due to the limited availability of resources in the society.  
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Figs. 8.9 & 8.10 depict the infected population at various values of transmission rates (𝛽) 

and (𝛾) respectively. Clearly, in these figures, the infected population (𝐼) increases with 

the increase in the values of 𝛽 and 𝛾. 

 

 Fig. 8.11 depicts the infected population at numerous values of 𝛼. It can be seen that the 

number of infected individuals decreases as the values of 𝛼 increases. 

 

Fig. 8.12 shows the combined population of susceptible (𝑆) and alert (𝐴) individuals with 

respect to the time. 

 

8.4.2 Results of the system (8.9) 

 

For the numerical simulation, we take the following numerically experimental values of 

parameters. 

 

𝐴 = 9, 𝛼 = 0.05, 𝛽 = 0.003, 𝜇 = 0.02, 𝑑 = 0.05, 𝛾 = 0.001, 𝛿 = 0.01, 𝑎 = 0.2, 𝑏 =

0.02, 𝜃 = 0.002. 

 

Figs. 8.13 and 8.14 delineate the population in various compartments at two different 

values of incubation time delay 𝜏 = 1 ,2 approaches to endemic equilibrium. The number 

of infected individuals is initially increasing and as time passes, they are decreasing due 

to treatment and recovery from infection.  The susceptible population decreases to attain 

its steady state. Also, pre-treated and post-treated populations increase to attain a steady 

state for both the time delays as shown in Figs. 8.13 and 8.14. The increment in the pre-

treated population is because of the vaccination of susceptible population as a result of 

which susceptible population decreases. The post treated population increases because the 

treatment is given to the infected population and hence infected population decreases. We 

also observe that the final number of infected is lower for 𝜏 = 1 than 𝜏 = 2. 

 

Fig. 8.15 exhibits the effect of delay on the infected individuals. It is evident that as the 

value of 𝜏 increases, the number of infected individuals also increases in comparison to 

decreasing values of time lag  𝜏. Delay clearly indicates that as much time we take to 

initiate the preventive measures, the greater number of individuals will be infected.  
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Fig. 8.16 expresses the effect of delay on the pre-treated population. According to the 

figure, as the value of 𝜏 increases, the number of pre- treated individuals decreases. This 

decrease may be due to the time taken by health agencies to provide the precautionary 

treatment to the susceptible individuals. It can be understood that time will be consumed 

to provide vaccination or any other precautionary treatment to susceptibles; this will 

result in the increment of the infected population. 

 

The effect of delay on the post-treated population is shown in Fig. 8.17. Clearly, as 𝜏 

increases the number of post-treated individual’s increases. Delay indicates that greater 

time we take to initiate the post treatment to infected, requires us to provide the treatment 

to more infected individuals.  

 

Figs. 8.18 and 8.19 exhibit the variations in the infected population at various values of 

𝛽 and 𝛼 respectively. The graphs show the decrement in the infected population with a 

decline in transmission rate  (𝛽) and an enhancement of inhibition rate (𝛼). 

 

Fig. 8.20 shows the pre-treated population at various values of the pre-treatment rate (𝛿). 

Clearly, as 𝛿 increases, the number of pre-treated individuals also increases.  

 

Figs. 8.21and 8.22 differentiate in the infected population at various values of  𝑎 and 𝑏 

respectively. Fig. 8.21 shows the increment in an infected population with a decrement in 

𝑎 and it settles down at its steady state, but the disease is not getting totally eradicated as 

it will persist at a much lower level. Fig. 8.22 shows the increment in an infected 

population with increment in 𝑏 which is due to limited availability of resources in the 

society. 

 

8.5 Conclusions 

 

In this chapter, we have proposed and analyzed two different models: (𝒊) A susceptible-

alert-infected-recovered (SAIR) model with two explicit saturated incidence rates along 

with Holling type II treatment rate (𝒊𝒊) A time-delayed SIR model by introducing two 

explicit treatment classes along with the saturating incidence rate, Holling type I 

treatment to susceptible population and Holling type III treatment to infected population, 
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to study the transmission and control of the epidemic. The models analysis show that 

there exist only two types of equilibria: disease-free, i.e. when there is no infection in the 

society, and endemic, i.e. when the infection is present in the society. The disease-free 

equilibrium is locally asymptotically stable when the basic reproduction number is less 

than unity. We have also shown that both the systems (8.2) & (8.9) undergo a transcritical 

bifurcation at 𝑅0 = 1. We also investigated the stability of the endemic equilibrium (EE) 

for both the models and showed that endemic equilibrium is locally asymptotically stable 

when the condition stated in theorem 8.4 holds true for the system (8.2) and the 

conditions stated in theorems 8.8 & 8.9 holds true for the system (8.9).  Numerical 

simulations have been carried out to explore the effect of alertness, Holling type II 

treatment rate and the incubation time delay on various classes of the population. It is 

observed that the number of infected individuals decreases as the cure rate increases. 

However, the number of infected individuals increases as the limitation rate in treatment 

availability increases. It shows that for effective treatment, the resource limitation should 

be minimized. We also observed that the number of infected individuals increases as the 

transmission rate increases and it decreases as the rate of inhibition increases. Further, we 

observed that the delay can play a very crucial role to control the disease and in providing 

the preventive measures. 
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Fig. 8.3: Graph in support of theorem 8.2 & 8.3 with parameter values 𝜋 = 2, 𝛼 =

0.5, 𝛾 = 0.0009, 𝜇 = 0.007, 𝑑 = 0.05, 𝛿 = 0.002, 𝑏 = 0.2, 𝑎 = 0.2, 𝜃 =

0.002, 𝛽 = 0.0012. 

  

Fig. 8.4: Susceptible (𝑆), alert (𝐴), infected (𝐼) and recovered (𝑅) population.  

 



207 
 

 

Fig. 8.5: Infected population (𝐼) with and without alert class(𝐴). 

  

Fig. 8.6: Graph depicting the behavior of the infected population (𝐼) with and without 

Holling Type II treatment rate. 
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Fig. 8.7: Impact of the cure rate (𝑎) on the infected population (𝐼). 

 

Fig. 8.8: Impact of limitation rate (𝑏) in treatment availability on the infected 

population (𝐼). 
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Fig. 8.9: Impact of the transmission rate (𝛽) on the infected population(𝐼). 

 

Fig. 8.10: Impact of the transmission rate (𝛾) on the infected population (𝐼). 

 



210 
 

 

Fig. 8.11: Infected population (𝐼) at various values of measures of inhibition (𝛼). 

 

 

Fig.12: Combined population (𝑆(𝑡) + 𝐴(𝑡)) with respect to time (𝑡). 
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Fig. 8.13: Population (𝑆, 𝑇1, 𝐼, 𝑇2) at time lag 𝜏 = 1. 

 

Fig. 8.14: Population (𝑆, 𝑇1, 𝐼, 𝑇2) at time lag 𝜏 = 2. 
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Fig. 8.15: Infected population (𝐼) for various values of time lag 𝜏. 

 

Fig. 8.16: Pre-treated population (𝑇1) at various values of time lag 𝜏. 
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Fig. 8.17: Post-treated population (𝑇2) at various values of time lag 𝜏. 

 

         Fig. 8.18: Infected population (𝐼) at various values of the transmission rate (𝛽) 

at 𝜏 = 0. 
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  Fig. 8.19: Infected population (𝐼) at various values of measures of inhibition (𝛼) 

at 𝜏 = 0.  

 

Fig. 8.20: Pre-treated population (𝑇1) at various values of pre-treatment rate (𝛿) at 𝜏 =

0. 
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        Fig. 8.21: Infected population (𝐼) at various values of cure rate (𝑎) at 𝜏 = 0. 

 

        Fig. 8.22: Infected population (𝐼) at various values of limitation rate (𝑏) in 

treatment availability at 𝜏 = 0. 
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CHAPTER 9 

 

CONCLUSIONS AND FUTURE WORK 

 

 

In this chapter, we summarize the main outcomes of the thesis and some future aspects 

have been reported which may be studied in the future course of time. 

 

9.1. Conclusions 

There is no doubt that mathematical modeling is essential in planning and formulation of 

policy on contagious diseases. In this thesis, we studied transmission and prevention 

mechanisms of the epidemics through mathematical models. We focused mainly on SIR 

models and also incorporated various compartments according to epidemiological states 

in SIR model. Delay differential equations are being used and they can, for instance, 

accommodate the phenomenon of an incubation period and latency period in SIR models. 

We studied their stability properties, paying particular attention to the basic reproductive 

number. We also addressed the global stability of some epidemic models. 

 

The main focus of the thesis is to provide the epidemics transmission process and control 

strategies with nonlinear incidence and treatment rates to provide more realism for 

eradication/ minimization/possible control of the infection in society. Models have been 

classified according to the outbreak, transmission, and spread of the disease by 

incorporating various factors, e.g. psychological effects, low density of susceptibles, 

measures of inhibition, and limitations in treatment. Extra compartments in the SIR model 

have been introduced for various stages according to the requirements of the diseases, for 

example, pre-treated, post-treated, and alert compartments. The novel combination of 

different types of nonlinear incidence and treatment rates as per the need of the disease 

has also been introduced in the models.  The incidence rates of infection are the nonlinear 

functional type which provides desired dynamics of transmission of infection in case of a 

large population. It is shown that proposed models are epidemiologically well-behaved. 

Equilibrium analysis of the models proves the existence and uniqueness of equilibria. 
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Local and global stability analysis of the equilibria have been investigated and further 

validated through numerical simulations. We found the threshold parametric value of 

infection, i.e. the basic reproduction number 𝑅0 for each model, to determine the 

persistence of infection in the endemic zone. The explained models are able to capture 

successfully better incidence and treatment rates for the different type of diseases 

according to the dynamics. The proposed combinations of incidence and treatment rates 

may be adopted by the public health agencies to monitor and further control of the 

epidemic. 

 

9.2. Future work 

In this thesis, we have proposed only deterministic models for disease transmission. We 

have studied the stability analysis of these models and presented the numerical 

computations in the form of graphs in the supports of theoretical results. As further 

studies and future directions, we may explore the models for chaotic behaviour and 

stochasticity. We may also present disease transmission dynamics by fractional order 

derivatives for a better understanding of the disease dynamics. 
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